WO2019044888A1 - タイヤ用ゴム組成物 - Google Patents

タイヤ用ゴム組成物 Download PDF

Info

Publication number
WO2019044888A1
WO2019044888A1 PCT/JP2018/031911 JP2018031911W WO2019044888A1 WO 2019044888 A1 WO2019044888 A1 WO 2019044888A1 JP 2018031911 W JP2018031911 W JP 2018031911W WO 2019044888 A1 WO2019044888 A1 WO 2019044888A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
tire
rubber composition
mass
liquid diene
Prior art date
Application number
PCT/JP2018/031911
Other languages
English (en)
French (fr)
Inventor
神原 浩
大輔 香田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65525460&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019044888(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to US16/643,181 priority Critical patent/US20200207956A1/en
Priority to CA3074203A priority patent/CA3074203A1/en
Priority to CN201880056290.8A priority patent/CN111032770B/zh
Priority to EP18851976.3A priority patent/EP3677637B1/en
Priority to KR1020207007416A priority patent/KR102550282B1/ko
Priority to JP2019539570A priority patent/JP7112405B2/ja
Publication of WO2019044888A1 publication Critical patent/WO2019044888A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/20Incorporating sulfur atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C2001/005Compositions of the bead portions, e.g. clinch or chafer rubber or cushion rubber
    • B60C2001/0058Compositions of the bead apexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C2001/0066Compositions of the belt layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0025Modulus or tan delta
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition for a tire, a tire tread, a bead filler, a tire belt, and a pneumatic tire using at least a part thereof.
  • Pneumatic tires not only have good grip performance on dry road surfaces (dry grip performance), but also high grip performance on wet road surfaces (wet grip performance) and grip performance at low temperatures and snow (ice grip performance) In addition, it is also desired that the steering stability and the wear resistance be excellent.
  • a method of improving the dry grip performance there is known a method of using a rubber having a high glass transition temperature (Tg) such as styrene-butadiene rubber or a method of blending a large amount of carbon black having an average particle diameter of about 5 to 100 nm. It is done.
  • Tg glass transition temperature
  • carbon black having an average particle diameter of about 5 to 100 nm.
  • Process oils, liquid polymers and the like are used as processability improvers.
  • the conventional processability improver although the processability is improved, there is a problem that the dry grip performance, the wet grip performance and the wear resistance are not sufficiently improved.
  • the crosslinked product obtained from the rubber composition is excellent in abrasion resistance etc. by containing a specific modified liquid diene rubber etc. in the rubber composition for a tire.
  • a tire tread, a bead filler, a tire belt and a pneumatic tire partially using the composition or the crosslinked product have sufficient dry grip performance and both excellent wet grip performance and ice grip performance, It has been found that the stability is improved, and the present invention has been completed.
  • a rubber composition for a tire comprising 0.1 to 50 parts by mass of (B) and 20 to 200 parts by mass of a filler (C),
  • denatured liquid diene rubber (B) is the following (i)-(iv) (I) weight average molecular weight (Mw) is 1,000 or more and less than 15,000, (Ii) vinyl content less than 70 mol%, (Iii) Modified liquid diene rubber (B) The average number of functional groups per molecule is 1 to 20, (Iv) Glass transition temperature (Tg) of 0 ° C. or less, Meets the rubber composition for tires.
  • R 1 is a divalent alkylene group having 1 to 6 carbon atoms
  • R 2 , R 3 and R 4 are each independently a methoxy group, an ethoxy group, a phenoxy group, a methyl group, an ethyl group Group or phenyl group, provided that at least one of R 2 , R 3 and R 4 is a methoxy group, an ethoxy group or a phenoxy group.
  • a pneumatic tire comprising at least a part of the rubber composition for a tire according to any one of [12] [1] to [7]. [13] The pneumatic tire according to [12], wherein the pneumatic tire is a winter tire or a studless tire. [14] The pneumatic tire according to [12], wherein the pneumatic tire is an all season tire.
  • the crosslinked product obtained from the rubber composition for a tire is excellent in abrasion resistance and the like, and from the composition or the crosslinked product, for example, the dry grip performance is sufficient, and the excellent wet grip performance and It is possible to obtain a tire tread, a bead filler, a belt for tires, and a pneumatic tire which partially use the composition or the cross-linked product which can achieve an improvement in steering stability and ice grip performance.
  • Solid rubber (A) used in the rubber composition for a tire according to the present invention means a rubber which can be handled in solid form at 20 ° C., and the Mooney viscosity ML 1 + 4 at 100 ° C. of the solid rubber (A) is usually 20 It is in the range of ⁇ 200 and is usually selected from at least one of synthetic rubber and natural rubber.
  • solid rubber (A) examples include styrene butadiene rubber (hereinafter, also referred to as “SBR”), butadiene rubber, isoprene rubber, butyl rubber, halogenated butyl rubber, ethylene propylene diene rubber, butadiene acrylonitrile copolymer rubber, chloroprene Synthetic rubbers such as rubber, acrylic rubber, fluororubber, and urethane rubber; and natural rubber.
  • SBR styrene butadiene rubber
  • isoprene rubber butyl rubber
  • halogenated butyl rubber ethylene propylene diene rubber
  • butadiene acrylonitrile copolymer rubber examples of the solid rubber (A)
  • chloroprene Synthetic rubbers such as rubber, acrylic rubber, fluororubber, and urethane rubber
  • natural rubber, SBR, butadiene rubber and isoprene rubber are preferable, and natural rubber, butadiene rubber and SBR
  • the number average molecular weight (Mn) of the solid rubber (A) is preferably 80,000 or more, preferably 100,000 to 3,000, from the viewpoint of sufficiently exhibiting the characteristics of the obtained rubber composition and crosslinked product. More preferably, it is in the range of 1,000.
  • the number average molecular weight in this specification is a number average molecular weight of polystyrene conversion measured by gel permeation chromatography (GPC).
  • the glass transition temperature of the solid rubber (A) determined by differential thermal analysis ( Tg) is ⁇ 10 ° C. or less, preferably ⁇ 20 ° C. or less, more preferably ⁇ 30 ° C. or less, still more preferably ⁇ 40 ° C. or less, still more preferably ⁇ 45 ° C. or less, particularly preferably ⁇ 50 ° C. or less , Most preferably below -55.degree.
  • flexibility in the low temperature of the rubber composition for tires improves that a glass transition temperature is in the said range, and ice grip performance improves.
  • the glass transition temperature (Tg) of the solid rubber (A) in the present invention is the glass transition temperature of the rubber component substantially constituting the solid rubber (A), and, for example, a plurality of solid rubbers (A)
  • the glass transition temperature of each of the plurality of rubber components substantially constituting the solid rubber (A) is ⁇ 10 ° C. or less.
  • the glass transition temperature of each of the STR20 and butadiene rubber may be -10 ° C or less.
  • SBR SBR
  • those having a styrene content of 0.1 to 70% by mass are preferable, and those having 5 to 60% by mass are more preferable. 5 to 50% by mass is more preferable, 5 to 40% by mass is more preferable, 5 to 30% by mass is particularly preferable, and 5 to 25% by mass is most preferable.
  • the vinyl content is preferably 0.1 to 80% by mass, and more preferably 5 to 70% by mass.
  • the vinyl content of SBR in this specification represents content of the monomer unit which has a vinyl group among the units derived from all the butadienes contained in SBR.
  • the vinyl content of the solid rubber (A) represents the content of monomer units having a vinyl group, relative to the total amount of monomer units that may have a vinyl group depending on the bonding mode.
  • the weight average molecular weight (Mw) of the SBR is preferably 100,000 to 2,500,000, more preferably 150,000 to 2,000,000, and still more preferably 150,000 to 1,500,000.
  • Mw weight average molecular weight
  • the processability of the rubber composition for a tire is improved, the wet grip performance of the tire obtained from the rubber composition for a tire is improved, and mechanical strength, Wear resistance and steering stability are also improved.
  • the weight average molecular weight in this specification is a weight average molecular weight of polystyrene conversion calculated
  • the glass transition temperature (Tg) determined by differential thermal analysis of SBR is ⁇ 10 ° C. or less, preferably ⁇ 20 ° C. or less, more preferably ⁇ 30 ° C. or less, still more preferably ⁇ 40 ° C. or less, still more preferably It is ⁇ 45 ° C. or less, particularly preferably ⁇ 50 ° C. or less, and most preferably ⁇ 55 ° C. or less.
  • flexibility in the low temperature of the rubber composition for tires improves that a glass transition temperature is in the said range, and ice grip performance improves.
  • the SBR that can be used in the present invention is obtained by copolymerizing styrene and butadiene.
  • There are no particular restrictions on the method for producing SBR and any of emulsion polymerization, solution polymerization, gas phase polymerization and bulk polymerization can be used, but among these production methods, emulsion polymerization and solution polymerization are preferred. .
  • Emulsion polymerization Styrene butadiene rubber (hereinafter also referred to as E-SBR) can be produced by a known emulsion polymerization method or a known emulsion polymerization method. For example, it can be obtained by emulsifying and dispersing predetermined amounts of styrene and butadiene monomers in the presence of an emulsifying agent, and then performing emulsion polymerization with a radical polymerization initiator.
  • a long chain fatty acid salt having 10 or more carbon atoms or a rosin acid salt is used as an emulsifier.
  • a long chain fatty acid salt having 10 or more carbon atoms or a rosin acid salt is used as an emulsifier.
  • Specific examples thereof include potassium salts or sodium salts of fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid and stearic acid.
  • Water is generally used as the dispersion medium, and a water-soluble organic solvent such as methanol or ethanol may be included as long as the stability during polymerization is not impaired.
  • a water-soluble organic solvent such as methanol or ethanol
  • the radical polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate, organic peroxides, hydrogen peroxide and the like.
  • Chain transfer agents can also be used to adjust the molecular weight of the resulting E-SBR.
  • chain transfer agents include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan; carbon tetrachloride, thioglycolic acid, diterpenes, terpinenol, ⁇ -terpinene, ⁇ -methylstyrene dimer and the like.
  • the temperature of the emulsion polymerization can be appropriately selected according to the type of radical polymerization initiator to be used, but generally, 0 to 100 ° C. is preferable, and 0 to 60 ° C. is more preferable.
  • the polymerization mode may be either continuous polymerization or batch polymerization.
  • the polymerization reaction can be terminated by the addition of a polymerization terminator.
  • polymerization terminator examples include amine compounds such as isopropylhydroxylamine, diethylhydroxylamine and hydroxylamine; quinone compounds such as hydroquinone and benzoquinone; and sodium nitrite.
  • an anti-aging agent may be added as required.
  • a salt such as sodium chloride, calcium chloride, potassium chloride or the like is used as a coagulant, and if necessary, nitric acid, sulfuric acid etc.
  • the polymer can be recovered as a crumb by separating the dispersion medium. The crumb is washed with water and then dewatered, and then dried with a band drier or the like to obtain E-SBR.
  • latex and an extender oil made into an emulsified dispersion may be mixed in advance and recovered as an oil spread rubber.
  • the extender oil is not included in the solid rubber (A).
  • E-SBR oil-extended styrene butadiene rubber “JSR1723” manufactured by JSR Corporation.
  • Solution polymerization styrene butadiene rubber (hereinafter also referred to as S-SBR) can be produced by a conventional solution polymerization method, for example, using an active metal which can be anionically polymerized in a solvent, optionally in the presence of a polar compound It polymerizes styrene and butadiene.
  • the solvent examples include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; benzene, Aromatic hydrocarbons such as toluene and the like can be mentioned. It is preferable to use these solvents in the range in which the monomer concentration is usually 1 to 50% by mass.
  • anionically polymerizable active metal examples include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; lanthanoid rare earth metals such as lanthanum and neodymium .
  • alkali metals and alkaline earth metals are preferable, and alkali metals are more preferable.
  • organic alkali metal compounds are more preferably used.
  • organic alkali metal compound examples include organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, stilbenelithium, etc .; dilithiomethane, 1,4-dilithiobutane, 1,4 -Multifunctional organolithium compounds such as dilithio-2-ethylcyclohexane and 1,3,5-trilithiobenzene; sodium naphthalene, potassium naphthalene and the like.
  • organic lithium compounds are preferable, and organic monolithium compounds are more preferable.
  • the amount of the organic alkali metal compound used is appropriately determined by the required molecular weight of S-SBR.
  • the organic alkali metal compounds can also be used as organic alkali metal amides by reacting with secondary amines such as dibutylamine, dihexylamine, dibenzylamine and the like.
  • the polar compound is not particularly limited as long as it is generally used to adjust the microstructure of the butadiene unit and the distribution of styrene in the copolymer chain without deactivating the reaction in anionic polymerization, for example, Ether compounds such as dibutyl ether, tetrahydrofuran, ethylene glycol diethyl ether and the like; tertiary amines such as tetramethyl ethylene diamine and trimethylamine; alkali metal alkoxides, phosphine compounds and the like.
  • Ether compounds such as dibutyl ether, tetrahydrofuran, ethylene glycol diethyl ether and the like
  • tertiary amines such as tetramethyl ethylene diamine and trimethylamine
  • alkali metal alkoxides, phosphine compounds and the like alkali metal alkoxides, phosphine compounds and the like.
  • the temperature of the polymerization reaction is usually in the range of -80 to 150.degree. C., preferably 0 to 100.degree. C., more preferably 30 to 90.degree.
  • the polymerization mode may be either batchwise or continuous.
  • the polymerization reaction can be terminated by adding an alcohol such as methanol or isopropanol as a polymerization terminator.
  • the desired S-SBR can be recovered by separating the solvent directly from the polymerization solution after termination of the polymerization reaction by drying, steam stripping or the like.
  • the polymerization solution and the extender oil may be mixed in advance and recovered as an oil-extended rubber.
  • SBR As said SBR, you may use the modified SBR by which the functional group was introduce
  • a functional group an amino group, alkoxy silyl group, a hydroxyl group, an epoxy group, a carboxyl group etc. are mentioned, for example.
  • modified SBR for example, tin tetrachloride, tetrachlorosilane, dimethyldichlorosilane, dimethyldiethoxysilane, tetramethoxysilane, tetraethoxysilane, which can react with the polymerization active end before adding the polymerization terminator.
  • Coupling agents such as 3-aminopropyltriethoxysilane, tetraglycidyl-1,3-bisaminomethylcyclohexane, 2,4-tolylene diisocyanate, 4,4'-bis (diethylamino) benzophenone, N-vinyl pyrrolidone, etc.
  • the position of the polymer at which the functional group is introduced may be a polymerization terminal or a side chain of a polymer chain.
  • isoprene rubber examples include Ziegler-based catalysts such as titanium tetrahalide-trialkylaluminum-based, diethylaluminum chloride-cobalt-based, trialkylaluminum-boron trifluoride-nickel-based, diethylaluminum chloride-nickel-based;
  • Ziegler-based catalysts such as titanium tetrahalide-trialkylaluminum-based, diethylaluminum chloride-cobalt-based, trialkylaluminum-boron trifluoride-nickel-based, diethylaluminum chloride-nickel-based
  • a commercially available isoprene rubber polymerized using a lanthanide rare earth metal catalyst such as aluminum-organic acid neodymium-Lewis acid system or an organic alkali metal compound in the same manner as S-SBR can be used.
  • Isoprene rubber polymerized with a Ziegler-based catalyst is preferred because of
  • the vinyl content of the isoprene rubber is preferably 50% by mass or less, more preferably 40% by mass or less, and still more preferably 30% by mass or less. If the vinyl content exceeds 50% by mass, the rolling resistance tends to deteriorate.
  • the lower limit of the vinyl content is not particularly limited.
  • the glass transition temperature varies depending on the vinyl content, but is preferably ⁇ 20 ° C. or less, more preferably ⁇ 30 ° C. or less.
  • the weight average molecular weight (Mw) of the isoprene rubber is preferably 90,000 to 2,000,000, and more preferably 150,000 to 1,500,000. When Mw is in the above range, processability and mechanical strength become good.
  • the above isoprene rubber is a multifunctional modifier such as tin tetrachloride, silicon tetrachloride, an alkoxysilane having an epoxy group in the molecule, or an amino group containing, as long as the effect of the present invention is not impaired. It may have a branched structure or a polar functional group by using a modifier such as alkoxysilane.
  • butadiene rubber examples include Ziegler-based catalysts such as titanium tetrahalide-trialkylaluminum-based, diethylaluminum chloride-cobalt-based, trialkylaluminum-boron trifluoride-nickel-based, diethylaluminum chloride-nickel-based;
  • Ziegler-based catalysts such as titanium tetrahalide-trialkylaluminum-based, diethylaluminum chloride-cobalt-based, trialkylaluminum-boron trifluoride-nickel-based, diethylaluminum chloride-nickel-based
  • a commercially available butadiene rubber polymerized using a lanthanide-based rare earth metal catalyst such as an aluminum-organic acid neodymium-Lewis acid system or an organic alkali metal compound in the same manner as S-SBR can be used.
  • Butadiene rubber polymerized with a Ziegler-based catalyst has a high
  • the vinyl content of butadiene rubber is preferably 50% by mass or less, more preferably 40% by mass or less, and still more preferably 30% by mass or less.
  • the lower limit of the vinyl content is not particularly limited.
  • the glass transition temperature varies depending on the vinyl content, but is preferably ⁇ 40 ° C. or less, more preferably ⁇ 50 ° C. or less.
  • the weight average molecular weight (Mw) of butadiene rubber is preferably 90,000 to 2,000,000, more preferably 150,000 to 1,500,000.
  • Mw is in the above range, the processability of the rubber composition for a tire is improved, and the ice grip performance, the abrasion resistance and the steering stability of the tire partially using the rubber composition for a tire are also improved.
  • the butadiene rubber is a multifunctional modifier such as tin tetrachloride, silicon tetrachloride, an alkoxysilane having an epoxy group in the molecule, or an amino group-containing, as long as the effects of the present invention are not impaired. It may have a branched structure or a polar functional group formed by using a modifier such as alkoxysilane.
  • butyl rubber In addition to butyl rubber, halogenated butyl rubber, ethylene propylene diene rubber, butadiene acrylonitrile polymer rubber, chloroprene rubber and the like, at least one of SBR, isoprene rubber and butadiene rubber can be used alone or in combination of two or more. Moreover, the manufacturing method of these is not specifically limited, What is marketed can be used.
  • the above-mentioned natural rubber it is generally used in the tire industry such as SMR (Technically Specified Rubber) such as SMR (TSR from Malaysia), SIR (TSR from Indonesia), STR (TSR from Thailand), etc., and RSS (Ribbed Smoked Sheet).
  • SMR Technically Specified Rubber
  • SIR SMR from Indonesia
  • STR TSR from Thailand
  • RSS Rabbed Smoked Sheet
  • natural rubber high purity natural rubber
  • epoxidized natural rubber hydroxylated natural rubber
  • hydrogenated natural rubber and modified natural rubber such as grafted natural rubber.
  • SMR20, STR20 and RSS # 3 are preferable in terms of less variation in quality and availability.
  • These natural rubbers may be used alone or in combination of two or more.
  • synthetic rubber and natural rubber may be used in combination.
  • the modified liquid diene rubber (B) used in the rubber composition for a tire according to the present invention is a liquid polymer and has a weight average molecular weight (Mw) in the range of 1,000 to less than 15,000, and a vinyl content Is 70 mol% or less and has a functional group derived from the silane compound represented by the above-mentioned formula (1), and the average number of functional groups per molecule of the modified liquid diene rubber (B) is 1 .About.20, which have a glass transition temperature (Tg) in the range of 0.degree. C. or less.
  • the modified liquid diene rubber (B) has a high affinity for the filler (C) described later, is concentrated in the vicinity of the filler (C) and is excellent in the reinforcing property of the filler (C). It is estimated that it contributes also to the compatibility improvement of (C) and solid rubber (A). Therefore, the dispersibility of the filler (C) in the rubber composition is excellent, and the mechanical strength such as the abrasion resistance of the crosslinked product obtained from the rubber composition is excellent. Further, for example, when the crosslinked product is used as a tire tread or the like, dry grip performance is sufficient, both excellent wet grip performance and ice grip performance are provided, and steering stability is improved.
  • conjugated dienes include butadiene, isoprene; 2,3-dimethylbutadiene, 2-phenylbutadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-octadiene And butadienes such as 1,3-cyclohexadiene, 2-methyl-1,3-octadiene, 1,3,7-octatriene, myrcene and chloroprene and conjugated dienes other than isoprene (b1).
  • the conjugated diene unit contained in the unmodified liquid diene rubber (B ') preferably contains a monomer unit of butadiene and / or isoprene.
  • One preferred embodiment is a monomer unit.
  • the total content of butadiene units and isoprene units is preferably 60 to 100% by mass, and more preferably 70 to 100% by mass, based on all monomer units of the unmodified liquid diene rubber (B '). Is more preferred.
  • the total content of butadiene units and isoprene units can also be determined in consideration of compatibility with the solid rubber (A), etc.
  • butadiene rubber, isoprene rubber and natural rubber are included as components of the solid rubber (A) In a case where the total content of butadiene units and isoprene units is 100% by mass, it is a preferable embodiment.
  • aromatic vinyl compound (b2) examples include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 4-t-butylstyrene, 4-cyclohexylstyrene , 4-dodecylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene 2-vinylnaphthalene, vinyl anthracene, N, N-diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene, divinylbenzen
  • the content of other monomer units other than butadiene units and isoprene units in the unmodified liquid diene rubber (B ′) is preferably 50% by mass or less, and more preferably 40% by mass or less. 30 mass% or less is further more preferable.
  • the vinyl aromatic compound (b2) unit is less than the above range, the processability of the rubber composition tends to be improved.
  • non-modified liquid diene rubber (B ′) a conjugated diene and a monomer other than the conjugated diene optionally contained are polymerized by, for example, an emulsion polymerization method or a solution polymerization method. The resulting polymers are preferred.
  • emulsion polymerization method a known method or a method according to a known method can be applied.
  • a monomer containing a predetermined amount of conjugated diene is emulsified and dispersed in the presence of an emulsifier, and emulsion polymerization is performed by a radical polymerization initiator.
  • Examples of the emulsifier include long-chain fatty acid salts having 10 or more carbon atoms and rosin acid salts.
  • Examples of long-chain fatty acid salts include potassium salts or sodium salts of fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid and stearic acid.
  • a dispersion medium water is usually used, and a water-soluble organic solvent such as methanol or ethanol may be included as long as the stability during polymerization is not inhibited.
  • a water-soluble organic solvent such as methanol or ethanol
  • the radical polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate, organic peroxides, hydrogen peroxide and the like.
  • a chain transfer agent may be used to adjust the molecular weight of the resulting unmodified liquid diene rubber (B ').
  • chain transfer agents include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan; carbon tetrachloride, thioglycolic acid, diterpenes, terpinenol, ⁇ -terpinene, ⁇ -methylstyrene dimer and the like.
  • the temperature of the emulsion polymerization can be appropriately set depending on the type of the radical polymerization initiator to be used, etc., but is usually in the range of 0 to 100 ° C., preferably in the range of 0 to 60 ° C.
  • the polymerization mode may be either continuous polymerization or batch polymerization.
  • the polymerization reaction can be terminated by the addition of a polymerization terminator.
  • a polymerization terminator examples include amine compounds such as isopropylhydroxylamine, diethylhydroxylamine and hydroxylamine, quinone compounds such as hydroquinone and benzoquinone, and sodium nitrite.
  • an anti-aging agent may be added as required.
  • a salt such as sodium chloride, calcium chloride, potassium chloride or the like is used as a coagulant, and if necessary, nitric acid, sulfuric acid etc.
  • the unmodified liquid diene rubber (B ') is coagulated while adding an acid to adjust the pH of the coagulation system to a predetermined value, and then the dispersion medium is separated to recover the polymer. Then, after washing with water and dehydration, drying is performed to obtain the unmodified liquid diene rubber (B ').
  • a latex and an extender oil in the form of an emulsified dispersion may be mixed in advance, and recovered as an oil-extended non-modified liquid diene rubber (B ').
  • a known method or a method according to a known method can be applied.
  • a known method or a method according to a known method can be applied.
  • the solvent examples include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; benzene, Aromatic hydrocarbons such as toluene and xylene can be mentioned.
  • aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane
  • benzene Aromatic hydrocarbons such as toluene and xylene can be mentioned.
  • anionically polymerizable active metal examples include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; lanthanoid rare earth metals such as lanthanum and neodymium .
  • alkali metals and alkaline earth metals are preferable, and alkali metals are more preferable.
  • Organic alkali metal compounds are preferred as the anionically polymerizable active metal compound.
  • Organic alkali metal compounds include, for example, organic monolithium compounds such as methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, stilbene lithium; dilithiomethane, dilithionaphthalene And polyfunctional organolithium compounds such as 1,4-dilithiobutane, 1,4-dilithio-2-ethylcyclohexane and 1,3,5-trilithiobenzene; sodium naphthalene, potassium naphthalene and the like.
  • organic lithium compounds are preferable, and organic monolithium compounds are more preferable.
  • the amount of the organic alkali metal compound used can be appropriately set according to the melt viscosity, molecular weight and the like of the unmodified liquid diene rubber (B ') and the modified liquid diene rubber (B), but the total amount including conjugated diene It is usually used in an amount of 0.01 to 3 parts by mass with respect to 100 parts by mass of the body.
  • the organic alkali metal compound can also be used as an organic alkali metal amide by reacting with a secondary amine such as dibutylamine, dihexylamine, dibenzylamine and the like.
  • Polar compounds are generally used in anionic polymerization to adjust the microstructure (e.g. vinyl content) of conjugated diene units without quenching the reaction.
  • polar compounds include ether compounds such as dibutyl ether, tetrahydrofuran, ethylene glycol diethyl ether and the like; tertiary amines such as N, N, N ', N'- tetramethyl ethylene diamine and trimethylamine; alkali metal alkoxides, phosphine compounds and the like It can be mentioned.
  • the polar compound is generally used in an amount of 0.01 to 1000 mol per 1 mol of the organic alkali metal compound.
  • the temperature of solution polymerization is usually in the range of ⁇ 80 to 150 ° C., preferably in the range of 0 to 100 ° C., more preferably in the range of 10 to 90 ° C.
  • the polymerization mode may be either batchwise or continuous.
  • the polymerization reaction can be terminated by the addition of a polymerization terminator.
  • the polymerization terminator include alcohols such as methanol and isopropanol.
  • the obtained polymerization reaction solution is poured into a poor solvent such as methanol to precipitate an unmodified liquid diene rubber (B ') or the polymerization reaction solution is washed with water, separated, and then dried to obtain the above-mentioned undried product.
  • Modified liquid diene rubber (B ') can be isolated.
  • a solution polymerization method is preferable as a method for producing the non-modified liquid diene rubber (B ′).
  • the unmodified liquid diene rubber (B ') obtained in this way is subjected to modification with a functional group derived from a silane compound represented by the formula (1) described later (in the state not to be hydrogenated) as it is Although modification may be carried out after hydrogenation of at least a part of the unsaturated bonds contained in the liquid diene rubber.
  • the non-modified liquid diene rubber (B ′) is a functional group (eg, for example, from the viewpoint of exhibiting the characteristics of the functional group derived from the silane compound represented by Formula (1) described later in a more preferable state). It is a preferred embodiment that the resin is not modified with hydroxyl group or the like. When the unmodified liquid diene rubber (B ') is not modified with other functional groups, the stability of the resulting modified liquid diene rubber (B) tends to be more excellent. In addition, the interaction (eg, reactivity) of the functional group derived from the silane compound represented by the formula (1) of the modified liquid diene rubber (B) to be obtained (eg, silica) tends to be more excellent. It is in.
  • the unmodified liquid diene rubber (B ′) is modified with a functional group derived from a silane compound represented by the following formula (1) (hereinafter, also referred to as a silane compound (1)), a modified liquid diene rubber It is used as (B).
  • R ⁇ 1 > is a C1-C6 bivalent alkylene group.
  • the divalent C 1-6 alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group and a hexylene group.
  • R 2 , R 3 and R 4 each independently represent a methoxy group, an ethoxy group, a phenoxy group, a methyl group, an ethyl group or a phenyl group. However, at least one of R 2 , R 3 and R 4 is a methoxy group, an ethoxy group or a phenoxy group.
  • silane compound (1) examples include mercaptomethylenemethyldiethoxysilane, mercaptomethylenetriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 2-mercaptoethylmethoxydimethylsilane, and 2-mercaptoethyltrimethoxysilane.
  • the mercapto group (-SH) of the silane compound (1) is derived from the silane compound (1) by the radical addition reaction to the carbon-carbon unsaturated bond contained in the unmodified liquid diene rubber (B ')
  • a modified liquid diene rubber (B) having a functional group, specifically a partial structure represented by the following formula (2), as a functional group is obtained.
  • R 1, R 2, R 3 and R 4 in the formula (2) is defined and specific examples of R 1, R 2, R 3 and R 4 in the formula (1) or the like and It is the same.
  • the average number of functional groups per molecule of modified liquid diene rubber (B) of functional group derived from the silane compound (1) is 1 to 20, preferably 1 to 15, still more preferably 1 to 10, 1 to 9 are particularly preferred.
  • the average number of functional groups is less than 1, the affinity to the filler (C) is low, and the filler dispersibility in the rubber composition can not be improved, and when there is no desired improvement in physical properties, for example, wear resistance There is a possibility that the performance improvement, the improvement of steering stability, the dry grip performance and the wet grip performance may be impaired.
  • the affinity between the solid rubber (A) and the filler (C) is improved by interposing the modified liquid diene rubber (B), and the dispersed state of each component such as the filler (C) in the rubber composition is obtained. It is estimated that it is ideal for the improvement of physical properties of crosslinked products (eg, improvement in abrasion resistance, improvement in steering stability, dry grip performance, wet grip performance).
  • the number of functional groups of the modified liquid diene rubber is too large, the interaction between the modified liquid diene rubbers (B) adsorbed to the filler (C) causes the filler (C) to aggregate. It is presumed that the modified liquid diene rubber does not contribute to the improvement of the affinity between the solid rubber and the filler (C).
  • the average functional group number per molecule of the modified liquid diene rubber (B) can be determined from the equivalent (g / eq) of the functional group of the modified liquid diene rubber (B) and the number average molecular weight Mn in terms of styrene.
  • Average number of functional groups per molecule [(number average molecular weight Mn) / (molecular weight of styrene unit) ⁇ (average molecular weight of conjugated diene and monomer units other than conjugated diene optionally contained)] / (Equivalent of functional group)
  • the equivalent of the functional group of the modified liquid diene rubber (B) means the mass of butadiene bonded to one functional group and the other monomer other than butadiene contained as needed.
  • the equivalent weight of the functional group can be calculated from the area ratio of the peak derived from the functional group to the peak derived from the polymer main chain using 1 H-NMR or 13 C-NMR.
  • the peak derived from a functional group points out the peak derived from an alkoxy group.
  • the addition amount of the silane compound (1) in the modified liquid diene rubber (B) is preferably 1 to 200 parts by mass, more preferably 1 to 100 parts by mass with respect to 100 parts by mass of the unmodified liquid diene rubber (B ').
  • the amount is preferably 1 to 60 parts by mass, more preferably 1 to 50 parts by mass, and even 1 to 40 parts by mass. If the amount of the modifying compound added is more than 200 parts by mass, the dispersibility of the filler (C) is poor, the processability deteriorates, and the abrasion resistance of the resulting crosslinked product tends to decrease.
  • the amount is less than 1 part by mass, the dispersing effect of the filler (C) is poor, and it tends not to be ideal for improving the physical properties of the crosslinked product from which the dispersed state of the filler (C) is obtained.
  • the amount of addition of the silane compound (1) added to the modified liquid diene rubber (B) can be determined, for example, using various analyzers such as nuclear magnetic resonance spectroscopy.
  • the method for adding the silane compound (1) to the unmodified liquid diene rubber (B ′) is not particularly limited.
  • a method of heating in the presence or absence of an organic solvent can be employed.
  • the reaction to be added may not occur sufficiently, and the average number of functional groups per molecule may not fall within the desired range.
  • addition reaction may proceed, but generation of radicals on the polymer main chain may simultaneously proceed with polymer multimerization reaction. If the Mw of the rubber does not fall within the desired range, the viscosity of the modified liquid diene rubber may not fall within the desired range. In these cases where the temperature during the addition reaction is high, when the handleability of the modified liquid diene rubber is deteriorated due to the high viscosity, the physical properties of the rubber composition for a tire obtained by the reduction of the reactivity with silica. There may be adverse effects. On the other hand, when the addition reaction is carried out using a radical generator, the addition reaction proceeds sufficiently while sufficiently suppressing side reactions such as multimerization even at a relatively low temperature.
  • the percentage of the polymer having a molecular weight in the region of Mt ⁇ 1.45 or more is preferably in the range of 0 to 20%, more preferably in the range of 0 to 15%, with the total area being 100%. It is more preferably in the range of ⁇ 10%, particularly preferably in the range of 0 ⁇ 8%.
  • the processability of the rubber composition becomes good, and the affinity of the later-described filler (C) in the obtained rubber composition is improved. Therefore, when preparing the rubber composition, it tends to be present in the vicinity of the filler (C), and as a result, the physical property improvement of the crosslinked product from which a dispersed state such as filler (C) in the rubber composition is obtained (for example, dry It is estimated to be ideal for grip performance, wet grip performance). Moreover, as a result of the modified liquid diene rubber (B) being easily present in the vicinity of the filler (C), a crosslinked product having excellent abrasion resistance can be obtained.
  • organic peroxide examples include methyl ethyl ketone peroxide, cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide, methylcyclohexanone peroxide, acetylacetone peroxide, 1,1-bis (t-butylperoxy) -3,3,5-Trimethylcyclohexane 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 2,2-bis (t-butylperoxy) butane T-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, paramenthane hydroperoxide, 2,5-dimethylhexane 2,5-dihydroperoxide, 1,1,3, -Tetramethylbutyl hydroperoxide, di-t-butyl peroxide, t-butylcumyl
  • Examples of the azo compound include 2,2′-azobisisobutyronitrile, 1,1′-azobis (cyclohexane-1-carbonitrile), and 2,2′-azobis (2-methylbutyronitrile).
  • hydrocarbon solvents such as n-butane, n-hexane, n-heptane, cyclohexane, benzene, toluene and xylene are preferable.
  • an antiaging agent may be added from the viewpoint of suppressing side reactions and the like.
  • Preferable anti-aging agents used at this time are, for example, 2,6-di-t-butyl-4-methylphenol (BHT), 2,2'-methylenebis (4-methyl-6-t-butylphenol), 4,4 '-Thiobis (3-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol) (AO-40), 3,9-bis [1,1-dimethyl- 2- [3- (3-t-Butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane (AO-80), 2,4-bis [(octylthio) methyl] -6-methylphenol (Irganox 1520 L), 2,4-bis [(dodec) methyl] -6-methylphenol (Irganox 15
  • the said antiaging agent may be used individually by 1 type, and may use 2 or more types together.
  • the addition amount of the antiaging agent is preferably 0 to 10 parts by mass, and more preferably 0 to 5 parts by mass with respect to 100 parts by mass of the unmodified liquid diene rubber (B ').
  • the position at which the functional group is introduced may be a polymerization terminal or a side chain of a polymer chain, but a plurality of functional groups can be easily introduced. It is preferable that it is a side chain of a polymerization chain from a viewpoint of that.
  • the functional groups may be contained singly or in combination of two or more. Therefore, the modified liquid diene rubber (B) may be modified with one type of modifying compound, or may be modified with two or more types of modifying compounds.
  • the mixing ratio of the non-modified liquid diene rubber (B ') and the silane compound (1) is suitably selected so that, for example, the average number of functional groups per molecule of the modified liquid diene rubber (B) becomes a desired value. It may be set, for example, if mixed so that the mass ratio (B ') / (1) of unmodified liquid diene rubber (B') and silane compound (1) is 0.3 to 100. For example, they may be mixed such that the mass ratio (B ′) / (1) is 0.3 to 50.
  • the temperature in the reaction of adding the silane compound (1) to the unmodified liquid diene rubber (B ′) is preferably 10 to 200 ° C., more preferably 50 ° C. to 180 ° C., and still more preferably 50 ° C. to 140 ° C. .
  • the reaction time is preferably 1 to 200 hours, more preferably 1 to 100 hours, still more preferably 1 to 50 hours, and still more preferably 1 to 25 hours.
  • the melt viscosity of the modified liquid diene rubber (B) measured at 38 ° C. is preferably 0.1 to 2,000 Pa ⁇ s, more preferably 0.1 to 1500 Pa ⁇ s, and 0.1 to 1000 Pa ⁇ s More preferably, 0.1 to 500 Pa ⁇ s is more preferable, 0.1 to 250 Pa ⁇ s is particularly preferable, 0.1 to 100 Pa ⁇ s is more particularly preferable, and 0.1 to 50 Pa ⁇ s is most preferable.
  • the melt viscosity of the modified liquid diene rubber (B) is within the above range, the flexibility of the resulting rubber composition is improved, and the processability is improved.
  • the melt viscosity of the modified liquid diene rubber (B) is a value measured by a Brookfield viscometer at 38 ° C.
  • the weight average molecular weight (Mw) of the modified liquid diene rubber (B) is 1,000 or more and less than 15,000, preferably 2,000 or more and less than 15,000, and more preferably 3,000 or more and less than 15,000.
  • Mw of the modified liquid diene rubber (B) is a weight average molecular weight in terms of polystyrene calculated from measurement of gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • modified liquid diene rubbers (B) having different Mw may be used in combination.
  • the molecular weight distribution (Mw / Mn) of the modified liquid diene rubber (B) is preferably 1.0 to 20.0, more preferably 1.0 to 15.0, and still more preferably 1.0 to 10.0. Dispersion
  • molecular weight distribution (Mw / Mn) means the ratio of the weight average molecular weight (Mw) / number average molecular weight (Mn) of standard polystyrene conversion calculated
  • the vinyl content of the modified liquid diene rubber (B) is 70 mol% or less, and from the viewpoint of wear resistance and ice grip performance, less than 50 mol% is preferable, less than 40 mol% is more preferable, and 35 mol% Less than 30 more preferably less than 30 mol%, particularly preferably less than 25 mol%, most preferably less than 20 mol%.
  • the vinyl content of the modified liquid diene rubber (B) is preferably 20 mol% or more, more preferably 30 mol% or more, and 35 mol% or more Is more preferably 40 mol% or more, particularly preferably 45 mol% or more, and most preferably 50 mol% or more.
  • the “vinyl content” means 1, isoprene unit, butadiene unit, and a total of 100 mol% of a total of 100 mol% of isoprene units and conjugated diene (b 1) units other than butadiene units contained in the modified liquid diene rubber.
  • the total mole percentage of conjugated diene units (conjugated diene units linked other than 1,4-linkage) linked by 2-linkage or 3,4-linkage is meant.
  • the vinyl content is determined by 1 H-NMR and is conjugated to a peak derived from a conjugated diene unit linked by a 1,2-linkage or a 3,4-linkage with a conjugated diene unit linked by a 1,4-bond It can be calculated from the area ratio of the peaks derived from
  • the compatibility between the modified liquid diene rubber (B) and the solid rubber (A) deteriorates, so that the dispersed state of the filler (C) in the rubber composition is obtained. It is not ideal for developing physical properties of the crosslinked product, and the dry grip performance and the wet grip performance tend to be impaired. In addition, the abrasion resistance of the resulting crosslinked product also tends to deteriorate.
  • the vinyl content of the modified liquid diene rubber (B) is, for example, the type of solvent used when producing the unmodified liquid diene rubber (B ′), a polar compound used according to need,
  • the desired value can be obtained by controlling the polymerization temperature and the like.
  • the glass transition temperature (Tg) of the modified liquid diene rubber (B) is 0 ° C. or less, and the glass transition temperature (Tg) is a vinyl content of isoprene unit, butadiene unit and conjugated diene (b1) unit, conjugated diene ( Although it may change depending on the kind of b1), the content of units derived from monomers other than conjugated diene, etc., from the viewpoints of wear resistance, ice grip performance and rolling resistance performance, ⁇ 10 ° C. or less is preferable, ⁇ 20 C. or less is more preferable, -30.degree. C. or less is more preferable, -40.degree. C. or less is more preferable, -50.degree. C.
  • the glass transition temperature (Tg) of the modified liquid diene rubber (B) is preferably ⁇ 100 ° C. or higher, more preferably ⁇ 90 ° C. or higher, from the viewpoint of steering stability, dry grip performance, and wet grip performance.
  • Tg glass transition temperature
  • C. or higher is more preferable, -60.degree. C. or higher is more preferable, -40.degree. C. or higher is particularly preferable, and -20.degree. C. or higher is most preferable.
  • the modified liquid diene rubber (B) may be used alone or in combination of two or more.
  • the modified liquid diene rubber (B) preferably has a catalyst residue amount derived from the polymerization catalyst used for its production in the range of 0 to 200 ppm in terms of metal.
  • a catalyst residue amount derived from the polymerization catalyst used for its production in the range of 0 to 200 ppm in terms of metal.
  • an organic alkali metal such as an organic lithium compound
  • a catalyst residue The metal serving as the basis of the amount is an alkali metal such as lithium.
  • the amount of catalyst residue derived from the polymerization catalyst used for producing the modified liquid diene rubber (B) is more preferably 0 to 150 ppm, still more preferably 0 to 100 ppm, in terms of metal.
  • the amount of catalyst residue can be measured, for example, by using a polarization Zeeman atomic absorption spectrophotometer.
  • a modified liquid diene rubber (B) or a non-modified liquid diene rubber (B ') as a raw material is purified And the like.
  • a purification method washing with water or warm water, or an organic solvent or supercritical fluid carbon dioxide represented by methanol, acetone or the like is preferable.
  • the number of times of washing is preferably 1 to 20 times, and more preferably 1 to 10 times from an economic viewpoint.
  • the washing temperature is preferably 20 to 100 ° C., and more preferably 40 to 90 ° C.
  • the amount of catalyst residue in the rubber composition for a tire containing the solid rubber (A), the modified liquid diene rubber (B) and the filler (C) of the present invention is 0 in metal conversion.
  • the concentration is preferably 200 ppm, more preferably 0 to 150 ppm, and still more preferably 0 to 100 ppm.
  • the amount of catalyst residue in this case is the amount of catalyst residue derived from the polymerization catalyst used for the production of solid rubber (A), modified liquid diene rubber (B) and / or other optional components contained in the rubber composition for a tire It may be.
  • the content of the modified liquid diene rubber (B) is 0.1 to 50 parts by mass with respect to 100 parts by mass of the solid rubber (A), 0.1 to 45 parts by mass
  • the amount is preferably 0.5 to 40 parts by mass, more preferably 1 to 40 parts by mass, still more preferably 2 to 40 parts by mass, particularly preferably 2 to 30 parts by mass, and most preferably 2 to 20 parts by mass.
  • the content of the modified liquid diene rubber (B) is within the above range, the dispersibility of the filler (C) in the rubber composition and the improvement of the abrasion resistance of the obtained crosslinked product are observed. Dry grip performance is excellent, wet grip performance and ice grip performance are excellent, and steering stability etc. are good.
  • the filler (C) used in the rubber composition for a tire according to the present invention is not particularly limited as long as it is generally used for a rubber composition for a tire, and improvement of physical properties such as improvement of mechanical strength, rubber composition for a tire From the viewpoints of improving the dry grip performance, wet grip performance, steering stability performance, and fuel economy performance of a tire partially using a material, at least one selected from carbon black and silica among the above-mentioned fillers (C) The species is preferred.
  • Examples of the carbon black include furnace black, channel black, thermal black, acetylene black, and ketjen black. From the viewpoints of improving the crosslinking speed, improving the mechanical strength of the obtained crosslinked product, and improving the dry grip performance, wet grip performance, steering stability performance, and fuel economy performance of a tire partially using the rubber composition for a tire, etc.
  • furnace black is preferred.
  • These carbon blacks may be used alone or in combination of two or more.
  • the average particle size of the carbon black is preferably 5 nm or more, more preferably 10 nm or more, from the viewpoint of improving the dry grip performance, wet grip performance, and low fuel consumption performance of the tire partially using the rubber composition for a tire. More preferably, it is 15 nm or more, and preferably 100 nm or less, more preferably 80 nm or less, still more preferably 70 nm or less, still more preferably 60 nm or less.
  • the average particle diameter of carbon black can be calculated
  • the carbon black is surface-treated by acid treatment with nitric acid, sulfuric acid, hydrochloric acid or a mixed acid of these or the like, or heat treatment in the presence of air.
  • heat treatment may be performed at 2,000 to 3,000 ° C. in the presence of a graphitization catalyst.
  • boron As the graphitization catalyst, boron, boron oxide (for example, B 2 O 2 , B 2 O 3 , B 4 O 3 , B 4 O 5 and the like), boron oxo acid (for example, orthoboric acid, metaboric acid, Tetraboric acid and the like) and salts thereof, boron carbides (for example, B 4 C, B 6 C and the like), boron nitride (BN) and other boron compounds are suitably used.
  • boron carbides for example, B 4 C, B 6 C and the like
  • BN boron nitride
  • the above carbon black can also be used after adjusting the particle size by crushing or the like.
  • high-speed rotary crusher hammer mill, pin mill, cage mill
  • various ball mills rolling mill, vibration mill, planetary mill
  • stirring mill be used for pulverizing carbon black.
  • silica examples include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate and the like.
  • wet silica is preferred.
  • These silicas may be used alone or in combination of two or more.
  • the average particle diameter of silica is preferably 0 in view of improving the processability of the rubber composition for a tire, the dry grip performance, the wet grip performance, and the fuel economy performance of a tire partially using the rubber composition for a tire. .5 nm or more, more preferably 2 nm or more, still more preferably 5 nm or more, still more preferably 8 nm or more, particularly preferably 10 nm or more, and preferably 200 nm or less, more preferably 150 nm or less, still more preferably 100 nm or less Still more preferably, it is 50 nm or less, particularly preferably 30 nm or less, and most preferably 20 nm or less.
  • the average particle diameter of silica can be calculated
  • the filler (C) contains silica, from the viewpoint of improving the rolling resistance performance of the obtained rubber composition and the crosslinked product thereof.
  • the filler (C) may contain a filler.
  • fillers other than silica and carbon black for example, organic fillers, clay, talc, mica, calcium carbonate, magnesium hydroxide, aluminum hydroxide, barium sulfate, titanium oxide, glass fibers, fibrous fillers, and glass balloons Inorganic fillers can be used.
  • organic fillers clay, talc, mica, calcium carbonate, magnesium hydroxide, aluminum hydroxide, barium sulfate, titanium oxide, glass fibers, fibrous fillers, and glass balloons
  • Inorganic fillers can be used.
  • One of these fillers may be used alone, or two or more thereof may be used in combination.
  • the amount of filler (C) is 20 to 200 parts by mass with respect to 100 parts by mass of solid rubber (A).
  • amount of the filler (C) is in the above range, dry grip performance, wet grip performance, and low fuel consumption performance of a tire using a rubber composition for a tire partially improve.
  • the amount of filler (C) relative to 100 parts by mass of solid rubber (A) is more preferably 30 parts by mass or more, still more preferably 40 parts by mass or more, still more preferably 50 parts by mass or more, particularly preferably 60 parts by mass or more, and preferably 150 parts by mass or less, more preferably 120 parts by mass or less, still more preferably 100 parts by mass or less, still more preferably 90 parts by mass or less, particularly preferably 80 parts by mass or less, more Particularly preferably, it is 70 parts by mass or less.
  • the amount of silica relative to 100 parts by mass of the solid rubber (A) is the dry grip performance, wet grip performance, and low fuel consumption of a tire partially using the rubber composition for a tire. From the viewpoint of improving the performance, it is preferably 20 parts by mass or more, more preferably 25 parts by mass or more, still more preferably 30 parts by mass or more, still more preferably 35 parts by mass or more, particularly preferably 40 parts by mass or more, most preferably 45 parts by mass or more, and preferably 100 parts by mass or less, more preferably 90 parts by mass or less, still more preferably 80 parts by mass or less, still more preferably 70 parts by mass or less, particularly preferably 65 parts by mass or less Particularly preferably, it is at most 60 parts by mass, most preferably at most 55 parts by mass.
  • the amount of carbon black relative to 100 parts by mass of the solid rubber (A) is the dry grip performance, wet grip performance, and the tire partially using the rubber composition for a tire.
  • it is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, still more preferably 30 parts by mass or more, particularly preferably 40 parts by mass or more, and preferably 120 parts by mass Or less, more preferably 100 parts by mass or less, still more preferably 80 parts by mass or less, still more preferably 70 parts by mass or less, particularly preferably 60 parts by mass or less, more preferably 55 parts by mass or less, most preferably 50 parts by mass It is below.
  • the ratio of silica to carbon black is preferably 1/99 to 99/1, more preferably 10/90 to 90/10, and 30/70. Even more preferred is ⁇ 80/20.
  • the rubber composition for a tire of the present invention contains silica or the like as the filler (C), it is a preferred embodiment to contain a silane coupling agent.
  • a silane coupling agent a sulfide type compound, a mercapto type compound, a vinyl type compound, an amino type compound, a glycidoxy type compound, a nitro type compound, a chloro type compound etc. are mentioned, for example.
  • sulfide compounds include bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxy) Silylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) Disulfide, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 2-trimeth
  • mercapto compounds include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane and the like.
  • Examples of the vinyl compound include vinyltriethoxysilane and vinyltrimethoxysilane.
  • Examples of amino compounds include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropyltriethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxy Silane etc. are mentioned.
  • glycidoxy compounds include ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and ⁇ -glycidoxypropylmethyldimethoxysilane. It can be mentioned.
  • Examples of the nitro compound include 3-nitropropyltrimethoxysilane, 3-nitropropyltriethoxysilane and the like.
  • Examples of chloro compounds include 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 2-chloroethyltrimethoxysilane, 2-chloroethyltriethoxysilane and the like.
  • Examples of other compounds include octyltriethoxysilane, methyltriethoxysilane, methyltrimethoxysilane and hexadecyltrimethoxysilane.
  • silane coupling agents may be used alone or in combination of two or more.
  • silane coupling agents containing sulfur such as sulfide compounds and mercapto compounds are preferable, and bis (3-triethoxysilylpropyl) disulfide and bis (3- (3 triethoxysilylpropyl) disulfide are preferable. More preferred is triethoxysilylpropyl) tetrasulfide or 3-mercaptopropyltrimethoxysilane.
  • the above silane coupling agent is preferably contained in an amount of 0.1 to 30 parts by mass, more preferably 0.5 to 20 parts by mass, and still more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the filler (C).
  • the content of the silane coupling agent is in the above range, the dispersibility, the coupling effect, the reinforcing property, and the wear resistance are improved.
  • the rubber composition for a tire of the present invention may further contain a vulcanizing agent (D) in order to crosslink the rubber.
  • a vulcanizing agent (D) sulfur, a sulfur compound, etc. are mentioned, for example.
  • sulfur compounds include morpholine disulfide and alkylphenol disulfide.
  • These vulcanizing agents (D) may be used alone or in combination of two or more.
  • the above-mentioned vulcanizing agent (D) is usually 0.1 to 10 parts by mass, preferably 0.5 to 10 parts by mass, and more preferably 100 parts by mass of solid rubber (A) from the viewpoint of mechanical properties of a crosslinked product. Is contained in an amount of 0.8 to 5 parts by mass.
  • the rubber composition for a tire according to the present invention may further contain a vulcanization accelerator (E), for example, when the vulcanizing agent (D) for crosslinking (vulcanizing) the rubber is contained.
  • a vulcanization accelerator (E) for example, guanidine compounds, sulfenamide compounds, thiazole compounds, thiuram compounds, thiourea compounds, dithiocarbamic acid compounds, aldehyde-amine compounds, aldehyde-ammonia compounds And imidazoline compounds and xanthate compounds.
  • These vulcanization accelerators (E) may be used alone or in combination of two or more.
  • the above-mentioned vulcanization accelerator (E) is usually contained in an amount of 0.1 to 15 parts by mass, preferably 0.1 to 10 parts by mass, per 100 parts by mass of the solid rubber (A).
  • the rubber composition for a tire according to the present invention may further contain a vulcanization aid (F) when, for example, sulfur or a sulfur compound is contained as a vulcanizing agent (D) for crosslinking (vulcanizing) the rubber.
  • a vulcanization aid (F) when, for example, sulfur or a sulfur compound is contained as a vulcanizing agent (D) for crosslinking (vulcanizing) the rubber.
  • the vulcanization assistant (F) include fatty acids such as stearic acid, metal oxides such as zinc white, and fatty acid metal salts such as zinc stearate.
  • These vulcanization aids (F) may be used alone or in combination of two or more.
  • the amount of the above-mentioned vulcanizing aid (F) is usually 0.1 to 15 parts by mass, preferably 1 to 10 parts by mass, per 100 parts by mass of the solid rubber (A).
  • the rubber composition for a tire may contain a crosslinking agent in addition to the vulcanizing agent.
  • a crosslinking agent for example, oxygen, organic peroxide, phenol resin, amino resin, quinone and quinone dioxime derivative, halogen compound, aldehyde compound, alcohol compound, epoxy compound, metal halide, metal organic halide, and silane Compounds etc. may be mentioned. One of these may be used alone, or two or more may be used in combination.
  • the amount of the crosslinking agent is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the solid rubber (A).
  • the rubber composition for a tire according to the present invention is intended to improve processability, flowability, etc. within the range that does not inhibit the effects of the present invention, and if necessary, silicone oil, aroma oil, TDAE (Treated Distilled Aromatic Extracts), Process oil such as MES (Mild Extracted Solvates), RAE (Residual Aromatic Extracts), paraffin oil, naphthenic oil, aliphatic hydrocarbon resin, alicyclic hydrocarbon resin, C9 resin, rosin resin, coumarone-indene resin You may contain resin components, such as a phenolic resin, as a softener.
  • the rubber composition for a tire according to the present invention contains the above-mentioned process oil as a softener, its content is preferably 50 parts by mass with respect to 100 parts by mass of solid rubber (A) from the viewpoint of bleed resistance.
  • the amount is preferably 30 parts by mass or less, more preferably 15 parts by mass or less.
  • the rubber composition for a tire according to the present invention may, if necessary, be an anti-aging agent, an antioxidant, a wax, or the like for the purpose of improving the weather resistance, heat resistance, oxidation resistance, etc.
  • antioxidant examples include hindered phenol compounds, phosphorus compounds, lactone compounds, hydroxyl compounds and the like.
  • examples of the antiaging agent include amine-ketone compounds, imidazole compounds, amine compounds, phenol compounds, sulfur compounds and phosphorus compounds. These additives may be used alone or in combination of two or more.
  • the method for producing a rubber composition for a tire according to the present invention is not particularly limited as long as the above-mentioned components can be uniformly mixed.
  • the apparatus used for producing the rubber composition for a tire may be, for example, a tangential or intermeshing internal mixer such as a kneader ruder, Brabender, Banbury mixer, internal mixer, etc., single screw extruder, twin screw extruder, A mixing roll, a roller, etc. are mentioned.
  • the above rubber composition can be produced generally at a temperature range of 50 to 270.degree.
  • the rubber composition for a tire of the present invention is preferably used as a crosslinked product (vulcanized rubber) by crosslinking.
  • vulcanized rubber a crosslinked product
  • the extraction rate can be calculated from the amount of the modified liquid diene rubber (B) extracted in toluene after immersing 2 g of the cross-linked product in 400 mL of toluene and 48 hours at 23 ° C.
  • the tire tread of the present invention uses at least a part of the rubber composition for a tire, has a sufficient dry grip performance, exhibits excellent wet grip performance and ice grip performance, and has excellent steering stability performance. It is shown.
  • the structure of the tire tread according to the present invention is not particularly limited, and may be a single layer structure or a multilayer structure, but in the case of a multilayer structure, the rubber composition for a tire is used for the layer in contact with the road surface. Is preferred.
  • the pneumatic tire of the present invention uses at least a part of the rubber composition for a tire, and in particular, a pneumatic tire using the tire is preferable. Since the pneumatic tire of the present invention partially uses the rubber composition for a tire, dry grip performance is sufficient, both excellent wet grip performance and ice grip performance are achieved, and steering stability is improved. Excellent in wear resistance. Therefore, as a pneumatic tire, it is suitable as winter tires, such as winter tires and studless tires, and all season tires.
  • tread cap tread, under tread
  • sidewall rubber reinforcing layer for run flat tire (liner etc.)
  • rim cushion Bead filler, bead insulation, bead apex, clinch apex, belt, belt cushion, breaker, breaker cushion, chafer, chafer pad, strip apex, etc.
  • NXT SILANE Sulfur Tsurumi Chemical Industry Co., Ltd.
  • Stearic acid made by Kao Co., Ltd.
  • Zinc flower Antioxidant for zinc oxide manufactured by Sakai Chemical Industry Co., Ltd. (1): Noclack 6C manufactured by Ouchi Shinko Chemical Co., Ltd.
  • Antage RD Wax Seiko Instruments Inc. Suntight S
  • the Mw of the modified liquid diene rubber (B) was determined by GPC (gel permeation chromatography) using a standard polystyrene equivalent molecular weight.
  • the measuring apparatus and conditions are as follows. -Device: GPC apparatus "GPC 8020" manufactured by Tosoh Corporation ⁇ Separation column: “TSKgel G4000HXL” manufactured by Tosoh Corporation ⁇ Detector: "RI-8020” manufactured by Tosoh Corporation Eluent: Tetrahydrofuran Eluent flow rate: 1.0 mL / min Sample concentration: 5 mg / 10 mL ⁇ Column temperature: 40 ° C
  • the vinyl content was calculated from the area ratio of the peak of the double bond derived from the vinylated diene compound to the peak of the double bond derived from the non-vinylated diene compound in the spectrum obtained.
  • thermogram 10 mg of the modified liquid diene rubber (B) is collected in an aluminum pan, and a thermogram is measured by a differential scanning calorimetry (DSC) at a temperature rising rate of 10 ° C./min. (Tg).
  • DSC differential scanning calorimetry
  • melt viscosity at 38 ° C The melt viscosity at 38 ° C. of the modified liquid diene rubber (B) was measured by a Brookfield viscometer (manufactured by BROOKFIELD ENGINEERING LABS. INC.).
  • the average functional group number per molecule of the modified liquid diene rubber (B) can be determined from the equivalent (g / eq) of the functional group of the modified liquid diene rubber (B) and the number average molecular weight Mn in terms of styrene.
  • (Average number of functional groups per molecule) [(number average molecular weight Mn) / (molecular weight of styrene unit) ⁇ (average molecular weight of conjugated diene and monomer units other than conjugated diene optionally contained)] / (Equivalent of functional group)
  • the equivalent of the functional group of the modified liquid diene rubber (B) means the mass of butadiene bonded to one functional group and the other monomer other than butadiene contained as needed.
  • the equivalent weight of the functional group can be calculated from the area ratio of the peak derived from the functional group to the peak derived from the polymer main chain using 1 H-NMR or 13 C-NMR.
  • the peak derived from a functional group points out the peak derived from an alkoxy group.
  • Table 1 the physical properties of the modified liquid diene rubber (B-1) obtained in Production Example 1 are summarized in Table 1.
  • ⁇ Manufacture example 5 Manufacture of non-modified liquid diene rubber (B'-5) A fully dried 5 L autoclave is purged with nitrogen and charged with 1100 g of hexane and 204 g of n-butyllithium (17 mass% hexane solution). After the temperature was raised to ° C., 1300 g of butadiene was sequentially added while controlling the polymerization temperature to 50 ° C. under stirring conditions, and polymerization was performed for 1 hour. Thereafter, methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution and stirred, and the polymer solution was washed with water.
  • Example 1 and Comparative Example 1 Solid rubber (A), modified liquid diene rubber (B), filler (C), TDAE, silane coupling agent, zinc flower, stearic acid, wax, and according to the compounding ratio (parts by mass) described in Table 3
  • Each of the antioxidants was put into a closed Banbury mixer and kneaded for 6 minutes so that the start temperature would be 60 ° C. and the resin temperature would be 150 ° C. Then, it was taken out of the mixer and cooled to room temperature. Next, this mixture was again put into a Banbury mixer, a vulcanizing agent (sulfur) and a vulcanization accelerator were added, and the rubber composition was obtained by kneading for 75 seconds so that the starting temperature would be 50.degree. C. and the reaching temperature 100.degree. .
  • the resulting rubber composition is press-formed (145 ° C, 20 to 40 minutes) to prepare a vulcanized rubber sheet (thickness 2 mm) and a cylindrical test piece for measuring the coefficient of friction (width 16 mm, diameter 80 mm).
  • the ice grip performance, wet grip performance, and steering stability were evaluated based on the following method. The results are shown in Table 3.
  • the measuring method of each evaluation is as follows.
  • the coefficient of friction ( ⁇ ) on ice was evaluated as an index of the ice grip performance of the rubber composition.
  • the coefficient of friction on ice was measured using the cylindrical friction coefficient measuring specimens obtained in Examples and Comparative Examples. The measuring apparatus and conditions are as follows. The coefficient of friction was measured in the range of 0 to 40% for the slip ratio of the tire and the road surface, and the maximum value of the obtained coefficient of friction was taken as the coefficient of friction on ice ( ⁇ ). The higher the coefficient of friction on ice ( ⁇ ), the better the ice grip performance.
  • the wet road surface friction coefficient ( ⁇ ) was evaluated as an index of the wet grip performance of the rubber composition.
  • the wet road surface friction coefficient was measured using the cylindrical friction coefficient measuring test pieces obtained in Examples and Comparative Examples.
  • the measuring apparatus and conditions are as follows. The coefficient of friction was measured in the range of 0 to 40% for the slip ratio of the tire and the road surface, and the maximum value of the obtained coefficient of friction was taken as the wet road surface friction coefficient ( ⁇ ). The higher the value of the wet road surface friction coefficient ( ⁇ ), the better the wet grip performance.
  • Steping stability A test piece of 40 mm long ⁇ 5 mm wide is cut out from the vulcanized rubber sheet of the rubber composition prepared in the examples and comparative examples, and a measurement temperature of 25 ° C., 60 ° C., frequency is obtained using a dynamic viscoelasticity measuring device manufactured by GABO E '(storage elastic modulus) was measured at 10 Hz, static strain 10%, dynamic strain 2%, and used as an index of stiffness.
  • the numerical values of the respective examples and the comparative examples are relative values when the value of the comparative example 1 in Table 3 is 100. The larger the numerical value, the higher the rigidity of the rubber composition and the smaller the deformation, so the steering stability is good.
  • Example 1 using a modified liquid diene rubber is excellent in wet grip performance without losing ice grip performance.
  • the storage elastic modulus at 25 ° C. and 60 ° C. is both high, and the temperature dependence of the storage elastic modulus is low and the steering stability is excellent.
  • Examples 2 to 6 and Comparative Examples 2 to 4 Solid rubber (A), modified liquid diene rubber (B) (unmodified liquid diene rubber in Comparative Examples 2 and 3; unblended in Comparative Example 4) according to the blending ratio (parts by mass) described in Table 4 , Filler (C), TDAE, Silane coupling agent, Zinc flower, Stearic acid, Wax, and anti-aging agent, respectively, into a closed Banbury mixer, so that the starting temperature is 60 ° C and the resin temperature is 150 ° C. After kneading for 6 minutes, it was taken out of the mixer and cooled to room temperature.
  • this mixture was again put into a Banbury mixer, a vulcanizing agent (sulfur) and a vulcanization accelerator were added, and the rubber composition was obtained by kneading for 75 seconds so that the starting temperature would be 50.degree. C. and the reaching temperature 100.degree. .
  • the resulting rubber composition is press-formed (145 ° C, 20 to 40 minutes) to prepare a vulcanized rubber sheet (thickness 2 mm) and a cylindrical test piece for measuring the coefficient of friction (width 16 mm, diameter 80 mm).
  • the wet grip performance and steering stability were evaluated in the same manner as described above. Further, the fuel consumption performance was evaluated by the following measurement method. Each evaluation result is a relative value when the value of Comparative Example 4 is 100. The results are shown in Table 4.
  • Examples 2 to 6 using a modified liquid diene rubber are excellent in low fuel consumption performance without impairing the wet grip performance.
  • the storage elastic modulus at 25 ° C. and 60 ° C. is both high, and the temperature dependence of the storage elastic modulus is low and the steering stability is excellent.
  • Example 7 and Comparative Example 5 According to the compounding ratio (parts by mass) described in Table 5, a rubber composition was produced in the same manner as in Example 3 (in Comparative Example 5, the modified liquid diene rubber was not compounded). The resulting rubber composition is press molded (160 ° C., 20 to 40 minutes) to prepare a vulcanized rubber sheet (thickness 2 mm) and a cylindrical test piece for measuring the coefficient of friction (width 16 mm, diameter 80 mm), Similar to the above, the abrasion resistance, ice grip performance, wet grip performance, steering stability, and fuel economy performance were evaluated. Each evaluation result is a relative value when the value of Comparative Example 5 is 100. The results are shown in Table 5.
  • Example 7 using a modified liquid diene rubber is excellent in low fuel consumption performance without deteriorating the abrasion resistance, ice grip performance and wet grip performance. Moreover, the storage elastic modulus at 25 ° C. and 60 ° C. is both high, and the temperature dependence of the storage elastic modulus is low and the steering stability is excellent.
  • Example 8 and Comparative Example 6 Example 6 was carried out in the same manner as in Example 3 except that kneading was performed for 6 minutes so that the resin temperature was 165 ° C. according to the compounding ratio (parts by mass) described in Table 6 (in Comparative Example 6, modified liquid diene rubber was not compounded) A rubber composition was made. The obtained rubber composition was press-molded (160 ° C., 20 to 40 minutes) to prepare a vulcanized rubber sheet (thickness 2 mm), and the steering stability was evaluated in the same manner as described above. Further, tan ⁇ at 0 ° C. was measured by the following measurement method, and this was used as an index of wet grip performance. Each evaluation result is a relative value when the value of Comparative Example 6 is 100. The results are shown in Table 6.
  • Example 8 using modified liquid diene rubber has high tan ⁇ (0 ° C.) and is excellent in wet grip performance. Moreover, the storage elastic modulus at 25 ° C. and 60 ° C. is both high, and the temperature dependence of the storage elastic modulus is low and the steering stability is excellent.
  • Example 9 and Comparative Example 7 According to the compounding ratio (parts by mass) described in Table 7, a rubber composition was produced in the same manner as in Example 3 (in Comparative Example 7, the modified liquid diene rubber was not compounded). The resulting rubber composition is press molded (160 ° C., 20 to 40 minutes) to produce a vulcanized rubber sheet (thickness 2 mm), and the abrasion resistance, steering stability, and fuel economy performance are evaluated in the same manner as described above. did. Each evaluation result is a relative value when the value of Comparative Example 7 is 100. The results are shown in Table 7.
  • Example 9 using the modified liquid diene rubber has high storage elastic modulus at 25 ° C. and 60 ° C. without deteriorating the wear resistance and fuel economy performance, and the temperature dependence of the storage elastic modulus Low resistance and excellent handling stability.
  • the rubber composition for a tire according to the present invention is excellent not only in processability and filler dispersibility, but also when it is made into a crosslinkable rubber composition by adding a crosslinking agent, etc., it is an excellent crosslinked product showing improvement in wear resistance and the like. Can be suitably used for tire applications and the like.
  • a cross-linked product is used for a tire tread or the like, it is useful because it has sufficient dry grip performance and not only excellent wet grip performance and ice grip performance but also can achieve improvement in steering stability.

Abstract

耐摩耗性等の機械強度等に優れる架橋物が得られるタイヤ用ゴム組成物及び該架橋物、ならびに、ドライグリップ性能が十分で、優れたウェットグリップ性能及びアイスグリップ性能を兼ね備え、操縦安定性の向上を達成できる該組成物又は該架橋物を一部に用いたタイヤトレッド、ビードフィラー、タイヤ用ベルト及び空気入りタイヤを提供する。 ガラス転移温度(Tg)が-10℃以下の固形ゴム(A)100質量部に対して、特定の構造を有するシラン化合物に由来する官能基を有する変性液状ジエン系ゴム(B)を0.1~50質量部、及びフィラー(C)を20~200質量部含有するタイヤ用ゴム組成物であり、前記変性液状ジエン系ゴム(B)が、下記(i)~(iv)、(i)重量平均分子量(Mw)が1,000以上15,000未満、(ii)ビニル含有量が70モル%以下、(iii)変性液状ジエン系ゴム(B)一分子当たりの平均官能基数が1~20個、(iv)ガラス転移温度(Tg)が0℃以下、を満たす、タイヤ用ゴム組成物。

Description

タイヤ用ゴム組成物
 本発明はタイヤ用ゴム組成物、これを少なくとも一部に用いたタイヤトレッド、ビードフィラー、タイヤ用ベルト及び空気入りタイヤに関する。
 空気入りタイヤは、乾燥路面でのグリップ性能(ドライグリップ性能)だけでなく、湿潤路面でのグリップ性能(ウェットグリップ性能)や低温時や積雪時でのグリップ性能(アイスグリップ性能)等も高い水準で兼ね備えていることが望まれており、さらに操縦安定性、耐摩耗性に優れることも求められている。
 ドライグリップ性能を向上させる方法としては、スチレン-ブタジエンゴム等のガラス転移温度(Tg)が高いゴムを使用する方法や、平均粒径が5~100nm程度のカーボンブラックを多量に配合する方法が知られている。しかし、これらの方法ではタイヤトレッド用ゴム組成物の粘度が高くなり、製造時の加工性が低下するという問題、低温時の柔軟性が低下し、アイスグリップ性能やウェットグリップ性能に影響を与える場合があった。
 アイスグリップ性能を向上させるには、タイヤと氷雪との接触面積を大きくすることが有効であると共に、タイヤの低温時の柔軟性を向上させることが有効である。そして、タイヤに柔軟性を付与する方法としては、Tgの低い固形ゴムを使用する方法や、カーボンブラックの配合量を減らす方法、配合するカーボンブラックの平均粒径を100~200nm程度に調整する方法、オイル等の軟化剤を配合する方法が知られている。しかし、柔軟性を付与することによりタイヤのアイスグリップ性能を改善すると、ウェットグリップ性能やドライグリップ性能が低下するという問題がある。また、オイル等の軟化剤を配合した場合には、時間が経つとこれらが配合物からブリードし、経年でゴムが硬化してしまうという問題もある。
 同様に、耐摩耗性を向上させる方法としては、一般的に、ゴム組成物にゴム補強剤としてカーボンブラックやシリカを配合する方法が知られている。しかしこれらの方法でも、製造時の加工性が低下することが問題であった。
 加工性改良剤としてプロセスオイルや液状重合体等が使用されている。しかしながら、従来の加工性改良剤を用いた場合、加工性が改良されるものの、ドライグリップ性能、ウェットグリップ性能及び耐摩耗性は充分に改善されないという問題があった。
国際公開第2013/115011号
 特許文献1に記載のゴム組成物を用いて製造したタイヤにおいては、グリップ性能等に改善がみられるものの十分ではないため、更なる改良が望まれている。
 本発明は、上記の実情に鑑みてなされたものであり、耐摩耗性等の機械強度等に優れる架橋物が得られるタイヤ用ゴム組成物及び該架橋物、ならびに、ドライグリップ性能が十分であり、優れたウェットグリップ性能及びアイスグリップ性能を兼ね備え、操縦安定性の向上を達成できる該組成物又は該架橋物を一部に用いたタイヤトレッド、ビードフィラー、タイヤ用ベルト及び空気入りタイヤを提供する。
 本発明者らが、鋭意検討を行った結果、特定の変性液状ジエン系ゴム等をタイヤ用ゴム組成物に含有させることにより、そのゴム組成物から得られた架橋物では耐摩耗性等に優れ、また該組成物又は該架橋物を一部に用いたタイヤトレッド、ビードフィラー、タイヤ用ベルト及び空気入りタイヤはドライグリップ性能が十分であり、優れたウェットグリップ性能及びアイスグリップ性能を兼ね備え、操縦安定性が向上することを見出し、本発明を完成するに至った。
 すなわち、本発明は以下〔1〕~〔14〕に関する。
 〔1〕ガラス転移温度(Tg)が-10℃以下の固形ゴム(A)100質量部に対して、下記式(1)で表されるシラン化合物に由来する官能基を有する変性液状ジエン系ゴム(B)を0.1~50質量部、及びフィラー(C)を20~200質量部含有するタイヤ用ゴム組成物であり、
前記変性液状ジエン系ゴム(B)が、下記(i)~(iv)
(i)重量平均分子量(Mw)が1,000以上15,000未満、
(ii)ビニル含有量が70モル%以下、
(iii)変性液状ジエン系ゴム(B)一分子当たりの平均官能基数が1~20個、
(iv)ガラス転移温度(Tg)が0℃以下、
を満たす、タイヤ用ゴム組成物。
Figure JPOXMLDOC01-appb-C000002
(式(1)中、R1は炭素数1から6の2価のアルキレン基であり、R2、R3及びR4はそれぞれ独立に、メトキシ基、エトキシ基、フェノキシ基、メチル基、エチル基又はフェニル基を示す。ただし、R2、R3及びR4の少なくとも1つはメトキシ基、エトキシ基又はフェノキシ基である。)
 〔2〕前記変性液状ジエン系ゴム(B)の38℃における溶融粘度が0.1~2,000Pa・sである、〔1〕に記載のタイヤ用ゴム組成物。
 〔3〕前記変性液状ジエン系ゴム(B)がイソプレン及び/又はブタジエンの単量体単位を含む重合体である、〔1〕又は〔2〕に記載のタイヤ用ゴム組成物。
 〔4〕前記フィラー(C)が、カーボンブラック及びシリカから選ばれる少なくとも1種である〔1〕~〔3〕のいずれかに記載のタイヤ用ゴム組成物。
 〔5〕前記フィラー(C)が、平均粒径5~100nmのカーボンブラック及び平均粒径が0.5~200nmのシリカから選ばれる少なくとも1種である、〔4〕に記載のタイヤ用ゴム組成物。
 〔6〕前記フィラー(C)がシリカであり、シリカ100質量部に対し、シランカップリング剤を0.1~30質量部含有する、〔4〕又は〔5〕に記載のゴム組成物。
 〔7〕前記固形ゴム(A)が、天然ゴム、スチレンブタジエンゴム、ブタジエンゴム及びイソプレンゴムから選ばれる1種以上である、〔1〕~〔6〕のいずれかに記載のタイヤ用ゴム組成物。
 〔8〕〔1〕~〔7〕のいずれかに記載のタイヤ用ゴム組成物を架橋させた架橋物。
 〔9〕〔1〕~〔7〕のいずれかに記載のタイヤ用ゴム組成物又は〔8〕に記載の架橋物を少なくとも一部に用いたタイヤトレッド。
 〔10〕〔1〕~〔7〕のいずれかに記載のタイヤ用ゴム組成物又は〔8〕に記載の架橋物を少なくとも一部に用いたビードフィラー。
 〔11〕〔1〕~〔7〕のいずれかに記載のタイヤ用ゴム組成物又は〔8〕に記載の架橋物を少なくとも一部に用いたタイヤ用ベルト。
 〔12〕〔1〕~〔7〕のいずれかに記載のタイヤ用ゴム組成物を少なくとも一部に用いた空気入りタイヤ。
 〔13〕前記空気入りタイヤがウインタータイヤ又はスタッドレスタイヤである、〔12〕に記載の空気入りタイヤ。
 〔14〕前記空気入りタイヤがオールシーズンタイヤである、〔12〕に記載の空気入りタイヤ。
 本発明によれば、そのタイヤ用ゴム組成物から得られる架橋物は耐摩耗性等に優れ、該組成物又は架橋物からは、例えば、ドライグリップ性能が十分であり、優れたウェットグリップ性能及びアイスグリップ性能を兼ね備え、操縦安定性の向上を達成できる該組成物又は該架橋物を一部に用いたタイヤトレッド、ビードフィラー、タイヤ用ベルト及び空気入りタイヤが得られる。
[固形ゴム(A)]
 本発明のタイヤ用ゴム組成物で用いる固形ゴム(A)とは、20℃において固形状で取り扱うことができるゴムをいい、固形ゴム(A)の100℃におけるムーニー粘度ML1+4は通常20~200の範囲にあり、通常合成ゴム及び天然ゴムの少なくとも1種から選ばれるものである。
 上記固形ゴム(A)としては、例えば、スチレンブタジエンゴム(以下、「SBR」ともいう。)、ブタジエンゴム、イソプレンゴム、ブチルゴム、ハロゲン化ブチルゴム、エチレンプロピレンジエンゴム、ブタジエンアクリロニトリル共重合体ゴム、クロロプレンゴム、アクリルゴム、フッ素ゴム、及びウレタンゴム等の合成ゴム;天然ゴムなどが挙げられる。これら固形ゴム(A)の中でも、天然ゴム、SBR、ブタジエンゴム、及びイソプレンゴムが好ましく、天然ゴム、ブタジエンゴム、及びSBRがさらに好ましい。これら固形ゴム(A)は、1種単独で用いてもよく、2種以上を併用してもよい。
 上記固形ゴム(A)の数平均分子量(Mn)は、得られるゴム組成物及び架橋物における特性を十分に発揮させる観点から、80,000以上であることが好ましく、100,000~3,000,000の範囲内であることがより好ましい。なお、本明細書における数平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の数平均分子量である。
 本発明のタイヤ用ゴム組成物を、冬用タイヤ(ウインタータイヤ、スタッドレスタイヤ)トレッド、オールシーズンタイヤトレッドとして用いる観点からは、上記固形ゴム(A)の示差熱分析法により求めたガラス転移温度(Tg)は、-10℃以下であり、好ましくは-20℃以下、より好ましくは-30℃以下、さらに好ましくは-40℃以下、よりさらに好ましくは-45℃以下、特に好ましくは-50℃以下、最も好ましくは-55℃以下である。ガラス転移温度が前記範囲内であると、タイヤ用ゴム組成物の低温での柔軟性が向上し、アイスグリップ性能が向上する。ここで、本発明における固形ゴム(A)のガラス転移温度(Tg)とは、該固形ゴム(A)を実質的に構成するゴム成分のガラス転移温度であり、例えば固形ゴム(A)が複数のゴム成分を含む場合には、該固形ゴム(A)を実質的に構成する複数のゴム成分それぞれのガラス転移温度が-10℃以下である。例えば、固形ゴム(A)を実質的に構成するゴム成分がSTR20(タイ製天然ゴム)とブタジエンゴムである場合、STR20とブタジエンゴムそれぞれのガラス転移温度が-10℃以下であればよい。
 SBRとしては、タイヤ用途に用いられる一般的なものを使用できるが、具体的には、スチレン含有量が0.1~70質量%のものが好ましく、5~60質量%のものがより好ましく、5~50質量%のものがさらに好ましく、5~40質量%のものがよりさらに好ましく、5~30質量%のものが特に好ましく、5~25質量%のものが最も好ましい。また、ビニル含有量が0.1~80質量%のものが好ましく、5~70質量%のものがより好ましい。
 なお、本明細書におけるSBRのビニル含有量とは、SBRに含まれる全ブタジエンに由来する単位のうち、ビニル基を有する単量体単位の含有量を表す。以下同様に、固形ゴム(A)のビニル含有量は、結合形態によりビニル基を有しうる単量体単位の全量に対し、実際にビニル基を有する単量体単位の含有量を表す。
 SBRの重量平均分子量(Mw)は、好ましくは100,000~2,500,000、より好ましくは150,000~2,000,000、さらに好ましくは150,000~1,500,000である。SBRの重量平均分子量(Mw)が上記範囲である場合、タイヤ用ゴム組成物の加工性が向上すると共に、タイヤ用ゴム組成物から得られるタイヤのウェットグリップ性能が向上し、さらに、機械強度、耐摩耗性、及び操縦安定性も向上する。なお、本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)の測定から求めたポリスチレン換算の重量平均分子量である。
 SBRの示差熱分析法により求めたガラス転移温度(Tg)は-10℃以下であり、好ましくは-20℃以下、より好ましくは-30℃以下、さらに好ましくは-40℃以下、よりさらに好ましくは-45℃以下、特に好ましくは-50℃以下、最も好ましくは-55℃以下である。ガラス転移温度が前記範囲内であると、タイヤ用ゴム組成物の低温での柔軟性が向上し、アイスグリップ性能が向上する。
 本発明において用いることができるSBRは、スチレンとブタジエンとを共重合して得られる。SBRの製造方法について特に制限はなく、乳化重合法、溶液重合法、気相重合法、バルク重合法のいずれも用いることができるが、これら製造方法の中でも、乳化重合法、溶液重合法が好ましい。
 乳化重合スチレンブタジエンゴム(以下、E-SBRともいう。)は、公知又は公知に準ずる通常の乳化重合法により製造できる。例えば、所定量のスチレン及びブタジエン単量体を乳化剤の存在下に乳化分散し、ラジカル重合開始剤により乳化重合することにより得られる。
 乳化剤としては、例えば、炭素数10以上の長鎖脂肪酸塩又はロジン酸塩が用いられる。具体例としては、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン酸等の脂肪酸のカリウム塩又はナトリウム塩が挙げられる。
 分散媒としては通常、水が使用され、重合時の安定性が阻害されない範囲で、メタノール、エタノール等の水溶性有機溶媒を含んでいてもよい。
 ラジカル重合開始剤としては、例えば、過硫酸アンモニウムや過硫酸カリウム等の過硫酸塩、有機過酸化物、過酸化水素等が挙げられる。
 得られるE-SBRの分子量を調整するため、連鎖移動剤を使用することもできる。連鎖移動剤としては、例えば、t-ドデシルメルカプタン、n-ドデシルメルカプタン等のメルカプタン類;四塩化炭素、チオグリコール酸、ジテルペン、ターピノーレン、γ-テルピネン、α-メチルスチレンダイマー等が挙げられる。
 乳化重合の温度は、使用するラジカル重合開始剤の種類によって適宜選択できるが、通常、0~100℃が好ましく、0~60℃がより好ましい。重合様式は、連続重合、回分重合のいずれでもよい。重合反応は、重合停止剤の添加により停止できる。
 重合停止剤としては、例えば、イソプロピルヒドロキシルアミン、ジエチルヒドロキシルアミン、ヒドロキシルアミン等のアミン化合物;ヒドロキノンやベンゾキノン等のキノン系化合物、亜硝酸ナトリウム等が挙げられる。
 重合反応停止後、必要に応じて老化防止剤を添加してもよい。重合反応停止後、得られたラテックスから必要に応じて未反応単量体を除去し、次いで、塩化ナトリウム、塩化カルシウム、塩化カリウム等の塩を凝固剤とし、必要に応じて硝酸、硫酸等の酸を添加して凝固系のpHを所定の値に調整しながら重合体を凝固させた後、分散媒を分離することによって重合体をクラムとして回収できる。クラムを水洗、次いで脱水後、バンドドライヤー等で乾燥することで、E-SBRが得られる。なお、凝固の際に、必要に応じて予めラテックスと乳化分散液にした伸展油とを混合し、油展ゴムとして回収してもよい。なお、本明細書におけるタイヤ用ゴム組成物中の組成において伸展油は固形ゴム(A)には含めない。
 E-SBRの市販品としては、JSR株式会社製、油展スチレンブタジエンゴム「JSR1723」等が挙げられる。
 溶液重合スチレンブタジエンゴム(以下、S-SBRともいう。)は、通常の溶液重合法により製造でき、例えば、溶媒中でアニオン重合可能な活性金属を使用して、所望により極性化合物の存在下、スチレン及びブタジエンを重合する。
 溶媒としては、例えば、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン等の芳香族炭化水素等が挙げられる。これらの溶媒は通常、単量体濃度が1~50質量%となる範囲で用いることが好ましい。
 アニオン重合可能な活性金属としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属;ランタン、ネオジム等のランタノイド系希土類金属等が挙げられる。これら活性金属の中でもアルカリ金属及びアルカリ土類金属が好ましく、アルカリ金属がより好ましい。さらにアルカリ金属の中でも、有機アルカリ金属化合物がより好ましく用いられる。
 有機アルカリ金属化合物としては、例えば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム等の有機モノリチウム化合物;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等の多官能性有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン等が挙げられる。中でも有機リチウム化合物が好ましく、有機モノリチウム化合物がより好ましい。有機アルカリ金属化合物の使用量は、要求されるS-SBRの分子量によって適宜決められる。有機アルカリ金属化合物は、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン等の第2級アミンと反応させて、有機アルカリ金属アミドとして使用することもできる。
 極性化合物としては、アニオン重合において、反応を失活させず、ブタジエン単位のミクロ構造やスチレンの共重合体鎖中の分布を調整するために通常用いられるものであれば特に制限はなく、例えば、ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;アルカリ金属アルコキシド、ホスフィン化合物等が挙げられる。
 重合反応の温度は、通常-80~150℃、好ましくは0~100℃、さらに好ましくは30~90℃の範囲である。重合様式は、回分式あるいは連続式のいずれでもよい。また、スチレン及びブタジエンのランダム共重合性を向上させるため、重合系中のスチレン及びブタジエンの組成比が特定範囲になるように、反応液中にスチレン及びブタジエンを連続的あるいは断続的に供給することが好ましい。
 重合反応は、重合停止剤としてメタノール、イソプロパノール等のアルコールを添加して停止できる。重合反応停止後の重合溶液から直接乾燥やスチームストリッピング等により溶媒を分離して、目的のS-SBRが回収できる。なお、溶媒を除去する前に、予め重合溶液と伸展油とを混合し、油展ゴムとして回収してもよい。
 上記SBRとしては、本発明の効果を損ねない範囲であれば、SBRに官能基が導入された変性SBRを用いてもよい。官能基としては、例えばアミノ基、アルコキシシリル基、水酸基、エポキシ基、カルボキシル基等が挙げられる。
 変性SBRの製造方法としては、例えば、重合停止剤を添加する前に、重合活性末端と反応し得る四塩化錫、テトラクロロシラン、ジメチルジクロロシラン、ジメチルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、3-アミノプロピルトリエトキシシラン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン、2,4-トリレンジイソシアネート等のカップリング剤や、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、N-ビニルピロリドン等の重合末端変性剤、又は特開2011-132298号公報に記載のその他の変性剤を添加する方法が挙げられる。この変性SBRにおいて、官能基が導入される重合体の位置については重合末端であってもよく、重合体鎖の側鎖であってもよい。
 上記イソプレンゴムとしては、例えば、四ハロゲン化チタン-トリアルキルアルミニウム系、ジエチルアルミニウムクロライド-コバルト系、トリアルキルアルミニウム-三弗化ホウ素-ニッケル系、ジエチルアルミニウムクロライド-ニッケル系等のチーグラー系触媒;トリエチルアルミニウム-有機酸ネオジム-ルイス酸系等のランタノイド系希土類金属触媒、又はS-SBRと同様に有機アルカリ金属化合物を用いて重合された、市販のイソプレンゴムを用いることができる。チーグラー系触媒により重合されたイソプレンゴムが、シス体含有量が高く好ましい。また、ランタノイド系希土類金属触媒を用いて得られる超高シス体含有量のイソプレンゴムを用いてもよい。
 イソプレンゴムのビニル含有量は好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下である。ビニル含有量が50質量%を超えると転がり抵抗性能が悪化する傾向にある。ビニル含有量の下限は特に限定されない。またガラス転移温度はビニル含有量によって変化するが、-20℃以下であることが好ましく、-30℃以下であることがより好ましい。
 イソプレンゴムの重量平均分子量(Mw)は90,000~2,000,000であることが好ましく、150,000~1,500,000であることがより好ましい。Mwが上記範囲にある場合、加工性と機械強度が良好となる。
 上記イソプレンゴムは、本発明の効果を損ねない範囲であれば、その一部が多官能型変性剤、例えば四塩化錫、四塩化珪素、エポキシ基を分子内に有するアルコキシシラン、又はアミノ基含有アルコキシシランのような変性剤を用いることにより分岐構造又は極性官能基を有していてもよい。
 上記ブタジエンゴムとしては、例えば、四ハロゲン化チタン-トリアルキルアルミニウム系、ジエチルアルミニウムクロライド-コバルト系、トリアルキルアルミニウム-三弗化ホウ素-ニッケル系、ジエチルアルミニウムクロライド-ニッケル系等のチーグラー系触媒;トリエチルアルミニウム-有機酸ネオジム-ルイス酸系等のランタノイド系希土類金属触媒、又はS-SBRと同様に有機アルカリ金属化合物を用いて重合された、市販のブタジエンゴムを用いることができる。チーグラー系触媒により重合されたブタジエンゴムが、シス体含有量が高く好ましい。また、ランタノイド系希土類金属触媒を用いて得られる超高シス体含有量(例えばシス体含有量95%以上)のブタジエンゴムを用いてもよい。
 ブタジエンゴムのビニル含有量は、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下である。ビニル含有量が50質量%を超えると転がり抵抗性能(低燃費性能)、耐摩耗性が悪化する傾向にある。ビニル含有量の下限は特に限定されない。またガラス転移温度はビニル含有量によって変化するが、-40℃以下であることが好ましく、-50℃以下であることがより好ましい。
 ブタジエンゴムの重量平均分子量(Mw)は好ましくは90,000~2,000,000、より好ましくは150,000~1,500,000である。Mwが上記範囲にある場合、タイヤ用ゴム組成物の加工性が向上すると共に、タイヤ用ゴム組成物を一部に用いたタイヤのアイスグリップ性能、耐摩耗性及び操縦安定性も向上する。
 上記ブタジエンゴムは、本発明の効果を損ねない範囲であれば、その一部が多官能型変性剤、例えば四塩化錫、四塩化珪素、エポキシ基を分子内に有するアルコキシシラン、又はアミノ基含有アルコキシシランのような変性剤を用いることにより形成された分岐構造又は極性官能基を有していてもよい。
 なお、SBR、イソプレンゴム、及びブタジエンゴムの少なくとも1種と共に、ブチルゴム、ハロゲン化ブチルゴム、エチレンプロピレンジエンゴム、ブタジエンアクリロニトリル重合体ゴム、クロロプレンゴム等を1種又は2種以上を使用することができる。また、これらの製造方法は特に限定されず、市販されているものを使用できる。
 上記天然ゴムとしては、例えばSMR(マレーシア産TSR)、SIR(インドネシア産TSR)、STR(タイ産TSR)等のTSR(Technically Specified Rubber)やRSS(Ribbed Smoked Sheet)等のタイヤ工業において一般的に用いられる天然ゴム、高純度天然ゴム、エポキシ化天然ゴム、水酸基化天然ゴム、水素添加天然ゴム、グラフト化天然ゴム等の改質天然ゴムが挙げられる。中でも、品質のばらつきが少ない点、及び入手容易性の点から、SMR20、STR20やRSS#3が好ましい。これら天然ゴムは1種単独で用いてもよく、2種以上を併用してもよい。なお、本発明においては合成ゴムと天然ゴムとを併用してもよい。
[変性液状ジエン系ゴム(B)]
 本発明のタイヤ用ゴム組成物で用いる変性液状ジエン系ゴム(B)とは、液状の重合体であり、その重量平均分子量(Mw)が1,000以上15,000未満の範囲、ビニル含有量が70モル%以下であり、前述した式(1)で表されるシラン化合物に由来する官能基を有し、その官能基の変性液状ジエン系ゴム(B)一分子当たりの平均官能基数が1~20個、ガラス転移温度(Tg)が0℃以下の範囲にあるものをいう。本発明のタイヤ用ゴム組成物において変性液状ジエン系ゴム(B)は後述するフィラー(C)との親和性が高くフィラー(C)近傍に集中しフィラー(C)の補強性に優れ、またフィラー(C)と固形ゴム(A)との相溶性向上にも寄与すると推定される。そのため、ゴム組成物中のフィラー(C)の分散性に優れ、そのゴム組成物から得られる架橋物の耐摩耗性等の機械強度に優れる。また、例えば該架橋物をタイヤトレッド等として用いた場合には、ドライグリップ性能が十分であり、優れたウェットグリップ性能及びアイスグリップ性能を兼ね備え、操縦安定性が向上する。
 変性液状ジエン系ゴム(B)の原料となる未変性の液状ジエン系ゴム(B’)は、その重合体を構成する単量体単位として共役ジエン単位を含む。共役ジエンとしては、例えば、ブタジエン、イソプレン;2,3-ジメチルブタジエン、2-フェニルブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロヘキサジエン、2-メチル-1,3-オクタジエン、1,3,7-オクタトリエン、ミルセン、及びクロロプレン等のブタジエン及びイソプレン以外の共役ジエン(b1)が挙げられる。未変性の液状ジエン系ゴム(B’)に含まれる共役ジエン単位としては、ブタジエン及び/又はイソプレンの単量体単位が含まれていることが好ましい。
 変性液状ジエン系ゴム(B)の原料となる未変性の液状ジエン系ゴム(B’)は、その重合体を構成する全単量体単位のうち、50質量%以上がブタジエン及び/又はイソプレンの単量体単位であることが好ましい一態様である。ブタジエン単位及びイソプレン単位の合計含有量は、未変性の液状ジエン系ゴム(B’)の全単量体単位に対して60~100質量%であることが好ましく、70~100質量%であることがより好ましい。なお、固形ゴム(A)との相溶性などを考慮してブタジエン単位及びイソプレン単位の合計含有量は定めることもでき、例えば固形ゴム(A)の成分としてブタジエンゴム、イソプレンゴム、天然ゴムが含まれる場合には、ブタジエン単位及びイソプレン単位の合計含有量が100質量%であることは好ましい一態様である。
 上記未変性の液状ジエン系ゴム(B’)に含まれ得るブタジエン単位及びイソプレン単位以外の他の単量体単位としては、前述したブタジエン及びイソプレン以外の共役ジエン(b1)単位、芳香族ビニル化合物(b2)単位などが挙げられる。特に、固形ゴム(A)の成分としてSBRが含まれる場合には、未変性の液状ジエン系ゴム(B’)に芳香族ビニル化合物(b2)単位が含まれると、変性液状ジエン系ゴム(B)の固形ゴム(A)への相溶性向上効果が期待できる。
 芳香族ビニル化合物(b2)としては、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、2,4,6-トリメチルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレン、ビニルアントラセン、N,N-ジエチル-4-アミノエチルスチレン、ビニルピリジン、4-メトキシスチレン、モノクロロスチレン、ジクロロスチレン、及びジビニルベンゼンなどが挙げられる。これら芳香族ビニル化合物の中では、スチレン、α-メチルスチレン、及び4-メチルスチレンが好ましい。
 上記未変性の液状ジエン系ゴム(B’)における、ブタジエン単位及びイソプレン単位以外の他の単量体単位の含有量は、50質量%以下であることが好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。例えば、ビニル芳香族化合物(b2)単位が上記範囲以下であると、ゴム組成物の加工性が向上する傾向にある。
 上記未変性の液状ジエン系ゴム(B’)としては、共役ジエン及び必要に応じて含まれる共役ジエン以外の他の単量体を、例えば、乳化重合法、又は溶液重合法等により重合して得られる重合体が好ましい。
 上記乳化重合法としては、公知又は公知に準ずる方法を適用できる。例えば、所定量の共役ジエンを含む単量体を乳化剤の存在下に乳化分散し、ラジカル重合開始剤により乳化重合する。
 乳化剤としては、例えば炭素数10以上の長鎖脂肪酸塩及びロジン酸塩などが挙げられる。長鎖脂肪酸塩としては、例えば、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン酸等の脂肪酸のカリウム塩又はナトリウム塩などが挙げられる。
 分散媒としては通常、水が使用され、重合時の安定性が阻害されない範囲で、メタノール、エタノールなどの水溶性有機溶媒を含んでいてもよい。
 ラジカル重合開始剤としては、例えば過硫酸アンモニウムや過硫酸カリウムのような過硫酸塩、有機過酸化物、過酸化水素等が挙げられる。
 得られる未変性の液状ジエン系ゴム(B’)の分子量を調整するため、連鎖移動剤を使用してもよい。連鎖移動剤としては、例えば、t-ドデシルメルカプタン、n-ドデシルメルカプタン等のメルカプタン類;四塩化炭素、チオグリコール酸、ジテルペン、ターピノーレン、γ-テルピネン、α-メチルスチレンダイマーなどが挙げられる。
 乳化重合の温度は、使用するラジカル重合開始剤の種類などにより適宜設定できるが、通常0~100℃の範囲、好ましくは0~60℃の範囲である。重合様式は、連続重合、回分重合のいずれでもよい。
 重合反応は、重合停止剤の添加により停止できる。重合停止剤としては、例えば、イソプロピルヒドロキシルアミン、ジエチルヒドロキシルアミン、ヒドロキシルアミン等のアミン化合物、ヒドロキノンやベンゾキノン等のキノン系化合物、亜硝酸ナトリウム等が挙げられる。
 重合反応停止後、必要に応じて老化防止剤を添加してもよい。重合反応停止後、得られたラテックスから必要に応じて未反応単量体を除去し、次いで、塩化ナトリウム、塩化カルシウム、塩化カリウム等の塩を凝固剤とし、必要に応じて硝酸、硫酸等の酸を添加して凝固系のpHを所定の値に調整しながら、上記未変性の液状ジエン系ゴム(B’)を凝固させた後、分散媒を分離することによって重合体を回収する。次いで水洗、及び脱水後、乾燥することで、上記未変性の液状ジエン系ゴム(B’)が得られる。なお、凝固の際に、必要に応じて予めラテックスと乳化分散液にした伸展油とを混合し、油展した未変性の液状ジエン系ゴム(B’)として回収してもよい。
 上記溶液重合法としては、公知又は公知に準ずる方法を適用できる。例えば、溶媒中で、チーグラー系触媒、メタロセン系触媒、アニオン重合可能な活性金属又は活性金属化合物を使用して、必要に応じて極性化合物の存在下で、共役ジエンを含む単量体を重合する。
 溶媒としては、例えば、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などが挙げられる。
 アニオン重合可能な活性金属としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属;ランタン、ネオジム等のランタノイド系希土類金属等が挙げられる。アニオン重合可能な活性金属の中でもアルカリ金属及びアルカリ土類金属が好ましく、アルカリ金属がより好ましい。
 アニオン重合可能な活性金属化合物としては、有機アルカリ金属化合物が好ましい。有機アルカリ金属化合物としては、例えば、メチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム等の有機モノリチウム化合物;ジリチオメタン、ジリチオナフタレン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等の多官能性有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン等が挙げられる。これら有機アルカリ金属化合物の中でも有機リチウム化合物が好ましく、有機モノリチウム化合物がより好ましい。
 有機アルカリ金属化合物の使用量は、未変性の液状ジエン系ゴム(B’)及び変性液状ジエン系ゴム(B)の溶融粘度、分子量などに応じて適宜設定できるが、共役ジエンを含む全単量体100質量部に対して、通常0.01~3質量部の量で使用される。
 上記有機アルカリ金属化合物は、ジブチルアミン、ジヘキシルアミン、ジベンジルアミンなどの第2級アミンと反応させて、有機アルカリ金属アミドとして使用することもできる。
 極性化合物は、アニオン重合において、通常、反応を失活させず、共役ジエン単位のミクロ構造(例えば、ビニル含有量)を調整するため用いられる。極性化合物としては、例えば、ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物;N,N,N’,N’-テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;アルカリ金属アルコキシド、ホスフィン化合物などが挙げられる。極性化合物は、有機アルカリ金属化合物1モルに対して、通常0.01~1000モルの量で使用される。
 溶液重合の温度は、通常-80~150℃の範囲、好ましくは0~100℃の範囲、より好ましくは10~90℃の範囲である。重合様式は回分式あるいは連続式のいずれでもよい。
 重合反応は、重合停止剤の添加により停止できる。重合停止剤としては、例えば、メタノール、イソプロパノール等のアルコールが挙げられる。得られた重合反応液をメタノール等の貧溶媒に注いで、未変性の液状ジエン系ゴム(B’)を析出させるか、重合反応液を水で洗浄し、分離後、乾燥することにより上記未変性の液状ジエン系ゴム(B’)を単離できる。
 上記未変性の液状ジエン系ゴム(B’)の製造方法としては、上記方法の中でも、溶液重合法が好ましい。
 このようにして得られた未変性の液状ジエン系ゴム(B’)は、そのまま(水素添加されない状態で)後述する式(1)で表されるシラン化合物に由来する官能基による変性が行われてもよいが、その液状ジエン系ゴム中に含まれる不飽和結合の少なくとも一部を水素添加した後に変性が行われてもよい。
 また、上記未変性の液状ジエン系ゴム(B’)は、後述する式(1)で表されるシラン化合物に由来する官能基の特性をより好ましい状態で発揮させる点から、官能基(例えば、水酸基など)で変性されていないことが好ましい一態様である。未変性の液状ジエン系ゴム(B’)が他の官能基で変性されていないことにより、得られる変性液状ジエン系ゴム(B)の安定性がより優れる傾向にある。また、得られる変性液状ジエン系ゴム(B)の式(1)で表されるシラン化合物に由来する官能基のフィラー(C)(例えばシリカ)への相互作用(例えば反応性)がより優れる傾向にある。
 上記未変性の液状ジエン系ゴム(B’)は下記式(1)で表されるシラン化合物(以下、シラン化合物(1)とも称する。)に由来する官能基により変性され、変性液状ジエン系ゴム(B)として用いられる。
Figure JPOXMLDOC01-appb-C000003
 上記式(1)中、R1は炭素数1から6の2価のアルキレン基である。二価の炭素数1~6のアルキレン基としては、例えばメチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基が挙げられる。R2、R3及びR4はそれぞれ独立に、メトキシ基、エトキシ基、フェノキシ基、メチル基、エチル基又はフェニル基を示す。ただし、R2、R3及びR4の少なくとも1つはメトキシ基、エトキシ基又はフェノキシ基である。
 上記シラン化合物(1)としては、例えば、メルカプトメチレンメチルジエトキシシラン、メルカプトメチレントリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルメトキシジメチルシラン、2-メルカプトエチルエトキシジメチルシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルジメトキシメチルシラン、3-メルカプトプロピルジエトキシメチルシラン、3-メルカプトプロピルジメトキシエチルシラン、3-メルカプトプロピルジエトキシエチルシラン、3-メルカプトプロピルメトキシジメチルシラン、3-メルカプトプロピルエトキシジメチルシランなどが挙げられる。これらシラン化合物は1種単独で用いてもよく、2種以上を併用してもよい。
 シラン化合物(1)のメルカプト基(-SH)が、未変性の液状ジエン系ゴム(B’)に含まれる炭素-炭素不飽和結合にラジカル付加反応することにより、シラン化合物(1)に由来する官能基、具体的には下記式(2)で示される部分構造を官能基として有する変性液状ジエン系ゴム(B)が得られる。
Figure JPOXMLDOC01-appb-C000004
 上記式(2)中のR1、R2、R3及びR4の定義及び具体例等は、式(1)中のR1、R2、R3及びR4の定義及び具体例等と同一である。
 シラン化合物(1)に由来する官能基の変性液状ジエン系ゴム(B)一分子当たりの平均官能基数は1~20個であり、1~15個が好ましく、1~10個がさらにより好ましく、1~9個が特に好ましい。平均官能基数が1未満である場合には、フィラー(C)との親和性が低く、ゴム組成物中のフィラー分散性を改善することができず、所望の物性向上がない場合、例えば耐摩耗性向上、操縦安定性の向上、ドライグリップ性能とウェットグリップ性能が損なわれる場合がある。一方平均官能基数が20を超える場合には、そのゴム組成物から得られる架橋物でも所望の物性向上がなく悪化する傾向、例えば、耐摩耗性、又はウェットグリップ性能が悪化する傾向にある。その詳細なメカニズムは不明であるが、変性液状ジエン系ゴム(B)に適切な量の官能基が導入されていることにより、変性液状ジエン系ゴムがフィラー(C)近傍に集中しやすくなり、フィラー(C)の補強効果が大きくなり、得られる架橋物の耐摩耗性の向上につながると推定される。また、変性液状ジエン系ゴム(B)を介することで、固形ゴム(A)とフィラー(C)との親和性が向上し、ゴム組成物中のフィラー(C)等各成分の分散状態が得られる架橋物の物性向上(例えば、耐摩耗性の向上、操縦安定性の向上、ドライグリップ性能、ウェットグリップ性能)のためには理想的になると推定される。一方、変性液状ジエン系ゴムとしてその官能基数が大きくなり過ぎると、フィラー(C)に吸着した変性液状ジエン系ゴム(B)同士の相互作用により、フィラー(C)を凝集させてしまうこととなり、変性液状ジエン系ゴムが、固形ゴムとフィラー(C)との親和性向上に寄与しないものと推定される。
 変性液状ジエン系ゴム(B)一分子当たりの平均官能基数は、変性液状ジエン系ゴム(B)の官能基の当量(g/eq)とスチレン換算の数平均分子量Mnより求めることができる。
(一分子当たりの平均官能基数)=[(数平均分子量Mn)/(スチレン単位の分子量)×(共役ジエン及び必要に応じて含まれる共役ジエン以外の他の単量体単位の平均分子量)]/(官能基の当量)
 なお、変性液状ジエン系ゴム(B)の官能基の当量は、官能基1個当たりに結合しているブタジエン及び必要に応じて含まれるブタジエン以外の他の単量体の質量を意味する。官能基の当量は、1H-NMR又は13C-NMRを用いて官能基由来のピークと重合体主鎖に由来するピークの面積比から算出することができる。なお、官能基由来のピークとは、アルコキシ基由来のピークを指す。
 変性液状ジエン系ゴム(B)におけるシラン化合物(1)の付加量は、未変性の液状ジエン系ゴム(B’)100質量部に対し1~200質量部が好ましく、1~100質量部がより好ましく、1~60質量部がさらに好ましく、1~50質量部がよりさらに好ましく、1~40質量部であってもよい。付加された変性化合物量が200質量部より多い場合には、フィラー(C)の分散性効果に乏しく、加工性が悪化し、得られる架橋物の耐摩耗性も低下する傾向にある。1質量部より低い場合には、フィラー(C)の分散性効果に乏しく、フィラー(C)などの分散状態が得られる架橋物の物性向上のためには理想的にならない傾向にある。なお、変性液状ジエン系ゴム(B)中に付加されたシラン化合物(1)の付加量は、例えば、核磁気共鳴分光法等の各種分析機器を用いて求めることができる。
 シラン化合物(1)を、未変性の液状ジエン系ゴム(B’)に付加させる方法は特に限定されず、例えば、液状ジエン系ゴム中にシラン化合物(1)、さらに必要に応じてラジカル触媒を加えて、有機溶媒の存在下又は非存在下に加熱する方法を採用することができる。使用するラジカル発生剤には特に制限はなく、通常市販されている有機過酸化物、アゾ系化合物、過酸化水素等が使用できる。シラン化合物(1)を未変性の液状ジエン系ゴム(B’)に付加する反応を、ラジカル発生剤を使用せずに加熱のみによって行うことは望ましくない。例えば、加熱温度が低すぎる場合には付加する反応が十分に起こらず、一分子当たりの平均官能基数が所望の範囲とならない場合がある。また、加熱温度を高くした場合には、付加反応が進行する場合があるが、ポリマー主鎖上にラジカルが発生することによりポリマーの多量化反応も同時に進行する場合があるため、変性液状ジエン系ゴムのMwが所望の範囲とならない場合、変性液状ジエン系ゴムの粘度が所望の範囲とならない場合がある。付加反応時の温度が高いこれらの場合には、高粘度のために変性液状ジエン系ゴムの取扱い性の悪化する場合、シリカとの反応性の低下により得られるタイヤ用ゴム組成物の物性への悪影響が出る場合がある。一方で、付加反応をラジカル発生剤を使用して行うと、比較的低い温度でも多量化反応等の副反応を十分に抑制しつつ、付加する反応が十分に進行する。
 上記変性液状ジエン系ゴム(B)のGPCの測定から求めたポリスチレン換算の最大ピーク分子量をMtとしたとき、変性液状ジエン系ゴム(B)のGPC測定により得られるGPCクロマトグラムの重合体由来の全面積を100%として、分子量がMt×1.45以上の領域にある重合体の割合が0~20%の範囲にあることが好ましく、0~15%の範囲であることがより好ましく、0~10%の範囲であることがさらに好ましく、0~8%の範囲であることが特に好ましい。このような変性液状ジエン系ゴム(B)をゴム組成物に配合することにより、ゴム組成物の加工性が良好となり、また得られるゴム組成物中の後述するフィラー(C)の親和性が向上するため、ゴム組成物を作製する際にフィラー(C)の近傍に存在しやすくなり、その結果ゴム組成物中のフィラー(C)などの分散状態が得られる架橋物の物性向上(例えば、ドライグリップ性能、ウェットグリップ性能)のためには理想的になると推定される。また、その変性液状ジエン系ゴム(B)がフィラー(C)の近傍に存在しやすくなる結果、耐摩耗性に優れる架橋物が得られる。
 上記有機過酸化物としては、例えば、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、3,3,5-トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、アセチルアセトンパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、2,5-ジメチルヘキサン2,5-ジハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジt-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、ビス(t-ブチルパーオキシイソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2.5-ヘキサノイルパーオキサイド、ラウロイルパーオキサイド、過酸化こはく酸、過酸化ベンゾイル及びその置換体、2,4-ジクロロベンゾイルパーオキサイド、メタトルオイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、t-ブチル-2-エチルヘキサノエート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジメトキシイソプロピルパーオキシカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシピバレート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシオクタノエート、t-ブチルパーオキシ3,3,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシカーボネート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソブチレート等が挙げられる。
 上記アゾ系化合物としては、例えば、2,2’-アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)、2,2’-アゾビス(2-(2-イミダゾリン-2-イル)プロパン)、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(2-メチルプロパン)、2,2’-アゾビス(2-ヒドロキシメチルプロピオンニトリル)、4,4’-アゾビス(4-シアノバレリックアシッド)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、2-シアノ-2-プロピルアゾホルムアミド、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル等が挙げられる。
 上記方法で使用される有機溶媒としては、一般的には炭化水素系溶媒、ハロゲン化炭化水素系溶媒が挙げられる。これら有機溶媒の中でも、n-ブタン、n-ヘキサン、n-ヘプタン、シクロヘキサン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒が好ましい。
 さらに、上記方法により変性化合物を付加する反応を行う時には、副反応を抑制する観点等から老化防止剤を添加してもよい。
 この時に用いる好ましい老化防止剤としては、例えば、2,6-ジt-ブチル-4-メチルフェノール(BHT)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)(AO-40)、3,9-ビス[1,1-ジメチル-2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン(AO-80)、2,4-ビス[(オクチルチオ)メチル]-6-メチルフェノール(Irganox1520L)、2,4-ビス[(ドデシルチオ)メチル]-6-メチルフェノール(Irganox1726)、2-[1-(2-ヒドロキシ-3,5-ジt-ペンチルフェニル)エチル]-4,6-ジt-ペンチルフェニルアクリレート(SumilizerGS)、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(SumilizerGM)、6-t-ブチル-4-[3-(2,4,8,10-テトラ-t-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イルオキシ)プロピル]-2-メチルフェノール(SumilizerGP)、亜りん酸トリス(2,4-ジt-ブチルフェニル)(Irgafos168)、ジオクタデシル3,3’-ジチオビスプロピオネート、ヒドロキノン、p-メトキシフェノール、N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(ノクラック6C)、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(LA-77Y)、N,N-ジオクタデシルヒドロキシルアミン(IrgastabFS042)、ビス(4-t-オクチルフェニル)アミン(Irganox5057)などが挙げられる。上記老化防止剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 老化防止剤の添加量は、未変性の液状ジエン系ゴム(B’)100質量部に対して0~10質量部が好ましく、0~5質量部がより好ましい。
 この変性液状ジエン系ゴム(B)において、官能基が導入される位置については重合末端であってもよく、重合体鎖の側鎖であってもよいが、複数の官能基を容易に導入できるという観点で、重合鎖の側鎖であることが好ましい。また上記官能基は1種単独で含まれていてもよく2種以上含まれていてもよい。したがって、変性液状ジエン系ゴム(B)は、変性化合物1種により変性されたものであってもよく、また2種以上の変性化合物で変性されていてもよい。
 未変性の液状ジエン系ゴム(B’)とシラン化合物(1)との混合割合は、例えば、変性液状ジエン系ゴム(B)一分子当たりの平均官能基数が所望の値とになるように適宜設定すればよいが、例えば、未変性の液状ジエン系ゴム(B’)とシラン化合物(1)との質量比(B’)/(1)が0.3~100となるように混合すればよく、例えば質量比(B’)/(1)が0.3~50となるように混合してもよい。
 特定の性状を有する変性液状ジエン系ゴム(B)を製造する手法としては、シラン化合物(1)をラジカル付加する反応を適切な反応温度において、充分な反応時間で反応させることが有効である。例えば、未変性の液状ジエン系ゴム(B’)にシラン化合物(1)を付加させる反応における温度は10~200℃が好ましく、50℃~180℃がより好ましく、50℃~140℃がさらに好ましい。また反応時間は1~200時間が好ましく、1~100時間がより好ましく、1~50時間がさらに好ましく、1~25時間がよりさらに好ましい。
 上記変性液状ジエン系ゴム(B)の38℃で測定した溶融粘度は、0.1~2,000Pa・sが好ましく、0.1~1500Pa・sがより好ましく、0.1~1000Pa・sがさらに好ましく、0.1~500Pa・sがよりさらに好ましく、0.1~250Pa・sが特に好ましく、0.1~100Pa・sがより特に好ましく、0.1~50Pa・sが最も好ましい。変性液状ジエン系ゴム(B)の溶融粘度が前記範囲内であると、得られるゴム組成物の柔軟性が向上するため、加工性が向上する。このような特定の溶融粘度にある変性液状ジエン系ゴム(B)を合成する手法としては、変性反応時にラジカル触媒を添加し、反応温度を低温で、また短時間で行うことが有効である。なお、本発明において変性液状ジエン系ゴム(B)の溶融粘度は、38℃においてブルックフィールド型粘度計により測定した値である。
 変性液状ジエン系ゴム(B)の重量平均分子量(Mw)は1,000以上15,000未満であり、2,000以上15,000未満が好ましく、3,000以上15,000未満がより好ましい。本発明において変性液状ジエン系ゴム(B)のMwは、ゲルパーミエーションクロマトグラフィー(GPC)の測定から求めたポリスチレン換算の重量平均分子量である。上記変性液状ジエン系ゴム(B)のMwが前記範囲内であると、製造時の工程通過性に優れ、経済性が良好となる。また、本発明のタイヤ用ゴム組成物の加工性が良好となり、また得られるゴム組成物中の後述するフィラー(C)の親和性が向上するため、ゴム組成物を作製する際にフィラー(C)の近傍に存在しやすくなり、その結果ゴム組成物中のフィラー(C)などの分散状態が得られる架橋物の物性向上(例えば、ドライグリップ性能、ウェットグリップ性能)のためには理想的になると推定される。また、その変性液状ジエン系ゴム(B)がフィラー(C)の近傍に存在しやすくなる結果、耐摩耗性に優れる架橋物が得られる。また、その変性液状ジエン系ゴムが固形ゴムと共加硫しやすくなり、その結果、配合物から変性液状ジエン系ゴムがブリードしにくくなり、経年による物性の低下が小さくなる。これらのことから、例えば、その架橋物からなるタイヤ等は、優れたドライグリップ性能及びウェットグリップ性能を兼ね備え、操縦安定性などが良好となり、経年による物性低下も小さい。本発明においては、Mwが異なる2種以上の変性液状ジエン系ゴム(B)を組み合わせて用いてもよい。
 変性液状ジエン系ゴム(B)の分子量分布(Mw/Mn)は1.0~20.0が好ましく、1.0~15.0がより好ましく、1.0~10.0がさらに好ましい。Mw/Mnが前記範囲内であると、得られる変性液状ジエン系ゴム(B)の粘度のばらつきが小さく、より好ましい。なお、分子量分布(Mw/Mn)は、GPCの測定により求めた標準ポリスチレン換算の重量平均分子量(Mw)/数平均分子量(Mn)の比を意味する。
 変性液状ジエン系ゴム(B)のビニル含有量は70モル%以下であり、耐摩耗性、アイスグリップ性能の観点からは、50モル%未満が好ましく、40モル%未満がより好ましく、35モル%未満さらに好ましく、30モル%未満がよりさらに好ましく、25モル%未満が特に好ましく、20モル%未満が最も好ましい。変性液状ジエン系ゴム(B)のビニル含有量は、操縦安定性、ドライグリップ性能、ウェットグリップ性能の観点からは、20モル%以上が好ましく、30モル%以上がより好まく、35モル%以上がさらに好ましく、40モル%以上がよりさらに好ましく、45モル%以上が特に好ましく、50モル%以上が最も好ましい。本発明において、「ビニル含有量」とは、変性液状ジエン系ゴムに含まれる、イソプレン単位、ブタジエン単位、及びイソプレン単位とブタジエン単位以外の共役ジエン(b1)単位の合計100モル%中、1,2-結合又は3,4-結合で結合をしている共役ジエン単位(1,4-結合以外で結合をしている共役ジエン単位)の合計モル%を意味する。ビニル含有量は、1H-NMRを用いて1,2-結合又は3,4-結合で結合をしている共役ジエン単位由来のピークと1,4-結合で結合をしている共役ジエン単位に由来するピークの面積比から算出することができる。
 ビニル含有量が70モル%を超えると、変性液状ジエン系ゴム(B)と固形ゴム(A)との相溶性が悪くなるために、フィラー(C)のゴム組成物中の分散状態が得られる架橋物の物性発現のためには理想的とはいえず、ドライグリップ性能及びウェットグリップ性能が損なわれる傾向にある。また、得られる架橋物の耐摩耗性も悪化する傾向にある。
 なお、変性液状ジエン系ゴム(B)のビニル含有量は、例えば、未変性の液状ジエン系ゴム(B’)を製造する際に使用する溶媒の種類、必要に応じて使用される極性化合物、重合温度などを制御することにより所望の値とすることができる。
 変性液状ジエン系ゴム(B)のガラス転移温度(Tg)は0℃以下であり、該ガラス転移温度(Tg)はイソプレン単位、ブタジエン単位及び共役ジエン(b1)単位のビニル含有量、共役ジエン(b1)の種類、共役ジエン以外の単量体に由来する単位の含有量などによって変化し得るが、耐摩耗性、アイスグリップ性能、転がり抵抗性能の観点から、-10℃以下が好ましく、-20℃以下がより好ましく、-30℃以下がさらに好ましく、-40℃以下がよりさらに好ましく、-50℃以下が特に好ましく、-60℃以下がより特に好ましく、-70℃以下が最も好ましい。変性液状ジエン系ゴム(B)のガラス転移温度(Tg)は、操縦安定性、ドライグリップ性能、ウェットグリップ性能の観点からは、-100℃以上が好ましく、-90℃以上がより好ましく、-70℃以上がさらに好ましく、-60℃以上がよりさらに好ましく、-40℃以上がより特に好ましく、-20℃以上が最も好ましい。
 上記変性液状ジエン系ゴム(B)は、1種単独で用いられてもよく、2種以上を併用してもよい。
 上記変性液状ジエン系ゴム(B)は、その製造に用いる重合触媒に由来する触媒残渣量が、金属換算で0~200ppmの範囲にあることが好ましい。例えば、変性液状ジエン系ゴム(B)の原料となる未変性の液状ジエン系ゴム(B’)を製造するための重合触媒として有機リチウム化合物等の有機アルカリ金属を用いた場合には、触媒残渣量の基準となる金属は、リチウム等のアルカリ金属になる。触媒残渣量が上記範囲にあることにより、加工等する際にタックが低下せず、また本発明のタイヤ用ゴム組成物から得られる架橋物の耐熱性、タイヤの転がり抵抗性能が向上する。変性液状ジエン系ゴム(B)の製造に用いる重合触媒に由来する触媒残渣量としては、金属換算で、より好ましくは0~150ppm、さらに好ましくは0~100ppmである。なお、触媒残渣量は、例えば偏光ゼーマン原子吸光分光光度計を用いることにより測定できる。
 液状ジエン系ゴムの触媒残渣量をこのような特定の量とする方法としては、変性液状ジエン系ゴム(B)又は原料となる未変性の液状ジエン系ゴム(B’)を精製し、触媒残渣を十分に除去する方法などが挙げられる。精製する方法としては、水若しくは温水、又はメタノール、アセトンなどに代表される有機溶媒若しくは超臨界流体二酸化炭素による洗浄が好ましい。洗浄回数としては、経済的な観点から1~20回が好ましく、1~10回がより好ましい。また、洗浄温度としては、20~100℃が好ましく、40~90℃がより好ましい。また重合反応前に、重合の阻害を行うような不純物を蒸留や吸着剤により除去し、単量体の純度を高めた後に重合を行うことによっても、必要な重合触媒量が少なくてすむため、触媒残渣量を低減することができる。また、上記と同様の観点から、本発明の固形ゴム(A)、変性液状ジエン系ゴム(B)及びフィラー(C)を含有するタイヤ用ゴム組成物中の触媒残渣量が、金属換算で0~200ppmであることが好ましく、0~150ppmがより好ましく、0~100ppmがさらに好ましい。この場合の触媒残渣量は固形ゴム(A)、変性液状ジエン系ゴム(B)及び/又は該タイヤ用ゴム組成物中に含まれるその他任意成分の製造に用いる重合触媒に由来する触媒残渣量であってもよい。
 本発明のタイヤ用ゴム組成物において、固形ゴム(A)100質量部に対する変性液状ジエン系ゴム(B)の含有量は、0.1~50質量部であり、0.1~45質量部が好ましく、0.5~40質量部がより好ましく、1~40質量部がさらに好ましく、2~40質量部がよりさらに好ましく、2~30質量部が特に好ましく、2~20質量部が最も好ましい。変性液状ジエン系ゴム(B)の含有量が上記範囲内であると、ゴム組成物中でのフィラー(C)の分散性、得られる架橋物の耐摩耗性の向上が見られ、例えばタイヤ等のドライグリップ性能が十分であり、ウェットグリップ性能及びアイスグリップ性能が優れ、操縦安定性などが良好となる。
[フィラー(C)]
 本発明のタイヤ用ゴム組成物で用いるフィラー(C)としては、タイヤ用ゴム組成物に一般的に用いるものであれば特に制限はなく、機械強度の向上等の物性の改善、タイヤ用ゴム組成物を一部に用いたタイヤのドライグリップ性能、ウェットグリップ性能、操縦安定性能及び低燃費性能を向上させるなどの観点からは、上記フィラー(C)の中でも、カーボンブラック及びシリカから選ばれる少なくとも1種が好ましい。
 上記カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、及びケッチェンブラックなどが挙げられる。架橋速度向上、得られる架橋物の機械強度向上、タイヤ用ゴム組成物を一部に用いたタイヤのドライグリップ性能、ウェットグリップ性能、操縦安定性能及び低燃費性能を向上させるなどの観点からは、これらカーボンブラックの中でも、ファーネスブラックが好ましい。これらカーボンブラックは、1種単独で用いてもよく、2種以上を併用してもよい。
 カーボンブラックの平均粒径は、タイヤ用ゴム組成物を一部に用いたタイヤのドライグリップ性能、ウェットグリップ性能、及び低燃費性能を向上させる観点から、好ましくは5nm以上、より好ましくは10nm以上、さらに好ましくは15nm以上であり、そして、好ましくは100nm以下、より好ましくは80nm以下、さらに好ましくは70nm以下、よりさらに好ましくは60nm以下である。なお、カーボンブラックの平均粒径は、透過型電子顕微鏡により粒子の直径を測定してその平均値を算出することにより求めることができる。
 上記ファーネスブラックの市販品としては、例えば、三菱化学株式会社「ダイアブラック」、東海カーボン株式会社製「シースト」などが挙げられる。アセチレンブラックの市販品としては、例えば、電気化学工業株式会社製「デンカブラック」などが挙げられる。ケッチェンブラックの市販品としては、例えば、ライオン株式会社製「ECP600JD」などが挙げられる。
 上記カーボンブラックは、固形ゴム(A)への濡れ性、分散性などを向上させる観点から、硝酸、硫酸、塩酸又はこれらの混合酸等による酸処理や、空気存在下での熱処理による表面酸化処理を行ってもよい。また、本発明のタイヤ用ゴム組成物及びこの組成物から得られる架橋物の機械強度向上の観点から、黒鉛化触媒の存在下に2,000~3,000℃で熱処理を行ってもよい。なお、黒鉛化触媒としては、ホウ素、ホウ素酸化物(例えば、B22、B23、B43、B45等)、ホウ素オキソ酸(例えば、オルトホウ酸、メタホウ酸、四ホウ酸等)及びその塩、ホウ素炭化物(例えば、B4C、B6C等)、窒化ホウ素(BN)、その他のホウ素化合物が好適に用いられる。
 上記カーボンブラックは、粉砕等により粒度を調整した後、用いることもできる。カーボンブラックの粉砕には、高速回転粉砕機(ハンマーミル、ピンミル、ケージミル)や各種ボールミル(転動ミル、振動ミル、遊星ミル)、撹拌ミル(ビーズミル、アトライター、流通管型ミル、アニュラーミル)等が使用できる。
 上記シリカとしては、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等を挙げることができる。これらシリカの中でも、加工性、得られる架橋物の機械強度及び耐摩耗性を一層向上させ、タイヤ用ゴム組成物を一部に用いたタイヤのドライグリップ性能、ウェットグリップ性能、操縦安定性能及び低燃費性能を一層向上させる観点から、湿式シリカが好ましい。これらシリカは、1種単独で用いてもよく、2種以上を併用してもよい。
 シリカの平均粒径は、タイヤ用ゴム組成物の加工性、タイヤ用ゴム組成物を一部に用いたタイヤのドライグリップ性能、ウェットグリップ性能、及び低燃費性能を向上させる観点から、好ましくは0.5nm以上、より好ましくは2nm以上、さらに好ましくは5nm以上、よりさらに好ましくは8nm以上、特に好ましくは10nm以上であり、そして、好ましくは200nm以下、より好ましくは150nm以下、さらに好ましくは100nm以下、よりさらに好ましくは50nm以下、特に好ましくは30nm以下、最も好ましくは20nm以下である。なお、シリカの平均粒径は、透過型電子顕微鏡により粒子の直径を測定して、その平均値を算出することにより求めることができる。
 これらカーボンブラック及びシリカの中でも、得られるゴム組成物及びその架橋物の転がり抵抗性能向上等の観点からは、フィラー(C)としてはシリカを含むことがより好ましい。
 本発明においては、タイヤ用ゴム組成物を一部に用いたタイヤの機械強度を向上させること、及びフィラーを増量剤として配合することによる製造コストの改善等を目的として、シリカ及びカーボンブラック以外のフィラーを含有していてもよい。
 シリカ及びカーボンブラック以外のフィラーとしては、例えば、有機充填剤や、クレー、タルク、マイカ、炭酸カルシウム、水酸化マグネシウム、水酸化アルミニウム、硫酸バリウム、酸化チタン、ガラス繊維、繊維状フィラー、及びガラスバルーン等の無機充填剤を使用できる。これらのフィラーは、1種を単独で用いてもよく、2種以上を併用してもよい。
 固形ゴム(A)100質量部に対するフィラー(C)の量は20~200質量部である。フィラー(C)の量が前記範囲内であると、タイヤ用ゴム組成物を一部に用いたタイヤのドライグリップ性能、ウェットグリップ性能、及び低燃費性能が向上する。前述の観点から、固形ゴム(A)100質量部に対するフィラー(C)の量は、より好ましくは30質量部以上、さらに好ましくは40質量部以上、よりさらに好ましくは50質量部以上、特に好ましくは60質量部以上であり、そして、好ましくは150質量部以下、より好ましくは120質量部以下、さらに好ましくは100質量部以下、よりさらに好ましくは90質量部以下、特に好ましくは80質量部以下、より特に好ましくは70質量部以下である。
 また、フィラー(C)としてシリカを用いる場合、固形ゴム(A)100質量部に対するシリカの量は、タイヤ用ゴム組成物を一部に用いたタイヤのドライグリップ性能、ウェットグリップ性能、及び低燃費性能を向上させる観点から、好ましくは20質量部以上、より好ましくは25質量部以上、さらに好ましくは30質量部以上、よりさらに好ましくは35質量部以上、特に好ましくは40質量部以上、最も好ましくは45質量部以上であり、そして、好ましくは100質量部以下、より好ましくは90質量部以下、さらに好ましくは80質量部以下、よりさらに好ましくは70質量部以下、特に好ましくは65質量部以下、より特に好ましくは60質量部以下、最も好ましくは55質量部以下である。
 さらに、フィラー(C)としてカーボンブラックを用いる場合、固形ゴム(A)100質量部に対するカーボンブラックの量は、タイヤ用ゴム組成物を一部に用いたタイヤのドライグリップ性能、ウェットグリップ性能、及び低燃費性能を向上させる観点から、好ましくは10質量部以上、より好ましくは20質量部以上、よりさらに好ましくは30質量部以上、特に好ましくは40質量部以上であり、そして、好ましくは120質量部以下、より好ましくは100質量部以下、さらに好ましくは80質量部以下、よりさらに好ましくは70質量部以下、特に好ましくは60質量部以下、より特に好ましくは55質量部以下、最も好ましくは50質量部以下である。
 シリカ及びカーボンブラックを併用する場合、シリカとカーボンブラックの割合(質量比=シリカ/カーボンブラック)は、1/99~99/1が好ましく、10/90~90/10がより好ましく、30/70~80/20がよりさらに好ましい。
[その他の成分]
 本発明のタイヤ用ゴム組成物では、フィラー(C)としてシリカなどを含有する場合は、シランカップリング剤を含有することが好ましい一態様である。シランカップリング剤としては、例えば、スルフィド系化合物、メルカプト系化合物、ビニル系化合物、アミノ系化合物、グリシドキシ系化合物、ニトロ系化合物、クロロ系化合物等が挙げられる。
 スルフィド系化合物としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリメトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、3-オクタノイルチオ-1-プロピルトリエトキシシランなどが挙げられる。
 メルカプト系化合物としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシランなどが挙げられる。
 ビニル系化合物としては、例えばビニルトリエトキシシラン、ビニルトリメトキシシランなどが挙げられる。
 アミノ系化合物としては、例えば、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシランなどが挙げられる。
 グリシドキシ系化合物としては、例えば、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシランなどが挙げられる。
 ニトロ系化合物としては、例えば、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシラン等が挙げられる。
 クロロ系化合物としては、例えば、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、2-クロロエチルトリメトキシシラン、2-クロロエチルトリエトキシシランなどが挙げられる。
 その他の化合物としては、例えば、オクチルトリエトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、ヘキサデシルトリメトキシシランなどが挙げられる。
 これらシランカップリング剤は、1種単独で用いてもよく、2種以上を併用してもよい。これらシランカップリング剤の中でも、補強効果が大きい観点から、スルフィド系化合物及びメルカプト系化合物等の硫黄を含有するシランカップリング剤が好ましく、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、3-メルカプトプロピルトリメトキシシランがより好ましい。
 上記シランカップリング剤は、フィラー(C)100質量部に対して好ましくは0.1~30質量部、より好ましくは0.5~20質量部、さらに好ましくは1~15質量部含有される。シランカップリング剤の含有量が前記範囲内であると、分散性、カップリング効果、補強性、耐摩耗性が向上する。
 本発明のタイヤ用ゴム組成物は、そのゴムを架橋するために、さらに加硫剤(D)を含有していてもよい。加硫剤(D)としては、例えば、硫黄、硫黄化合物などが挙げられる。硫黄化合物としては、例えば、モルホリンジスルフィド、及びアルキルフェノールジスルフィドなどが挙げられる。これら加硫剤(D)は1種単独で用いてもよく、2種以上を併用してもよい。上記加硫剤(D)は、架橋物の力学物性の観点から、固形ゴム(A)100質量部に対し、通常0.1~10質量部、好ましくは0.5~10質量部、より好ましくは0.8~5質量部含有される。
 本発明のタイヤ用ゴム組成物は、例えばゴムを架橋(加硫)するための加硫剤(D)が含まれている場合には、さらに加硫促進剤(E)を含有していてもよい。加硫促進剤(E)としては、例えば、グアニジン系化合物、スルフェンアミド系化合物、チアゾール系化合物、チウラム系化合物、チオウレア系化合物、ジチオカルバミン酸系化合物、アルデヒド-アミン系化合物、アルデヒド-アンモニア系化合物、イミダゾリン系化合物、及びキサンテート系化合物などが挙げられる。これら加硫促進剤(E)は1種単独で用いてもよく、2種以上を併用してもよい。上記加硫促進剤(E)は、固形ゴム(A)100質量部に対し、通常0.1~15質量部、好ましくは0.1~10質量部含有される。
 本発明のタイヤ用ゴム組成物は、例えばゴムを架橋(加硫)するための加硫剤(D)として硫黄、硫黄化合物等が含まれている場合には、さらに加硫助剤(F)を含有していてもよい。加硫助剤(F)としては、例えば、ステアリン酸等の脂肪酸、亜鉛華等の金属酸化物、ステアリン酸亜鉛等の脂肪酸金属塩が挙げられる。これら加硫助剤(F)は1種単独で用いてもよく、2種以上を併用してもよい。上記加硫助剤(F)は、固形ゴム(A)100質量部に対し、通常0.1~15質量部、好ましくは1~10質量部含有される。
 タイヤ用ゴム組成物は加硫剤の他に架橋剤を含有してもよい。架橋剤としては、例えば、酸素、有機過酸化物、フェノール樹脂、アミノ樹脂、キノン及びキノンジオキシム誘導体、ハロゲン化合物、アルデヒド化合物、アルコール化合物、エポキシ化合物、金属ハロゲン化物、有機金属ハロゲン化物、及びシラン化合物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。架橋剤の量は、固形ゴム(A)100質量部に対して、好ましくは0.1~10質量部である。
 本発明のタイヤ用ゴム組成物は、本発明の効果を阻害しない範囲で、加工性、流動性等の改良を目的とし、必要に応じてシリコンオイル、アロマオイル、TDAE(Treated Distilled Aromatic Extracts)、MES(Mild Extracted Solvates)、RAE(Residual Aromatic Extracts)、パラフィンオイル、ナフテンオイル等のプロセスオイル、脂肪族炭化水素樹脂、脂環族炭化水素樹脂、C9系樹脂、ロジン系樹脂、クマロン・インデン系樹脂、フェノール系樹脂等の樹脂成分を軟化剤として含有していてもよい。本発明のタイヤ用ゴム組成物が上記プロセスオイルを軟化剤として含有する場合には、その含有量は、耐ブリード性の観点から、固形ゴム(A)100質量部に対して好ましくは50質量部以下、より好ましくは30質量部以下、さらに好ましくは15質量部以下である。
 本発明のタイヤ用ゴム組成物は、本発明の効果を阻害しない範囲で、耐候性、耐熱性、耐酸化性等の向上を目的として、必要に応じて老化防止剤、酸化防止剤、ワックス、滑剤、光安定剤、スコーチ防止剤、加工助剤、顔料や色素等の着色剤、難燃剤、帯電防止剤、艶消し剤、ブロッキング防止剤、紫外線吸収剤、離型剤、発泡剤、抗菌剤、防カビ剤、香料等の添加剤を含有してもよい。
 酸化防止剤としては、例えば、ヒンダードフェノール系化合物、リン系化合物、ラクトン系化合物、ヒドロキシル系化合物等が挙げられる。
 老化防止剤としては、例えば、アミン-ケトン系化合物、イミダゾール系化合物、アミン系化合物、フェノール系化合物、硫黄系化合物及びリン系化合物等が挙げられる。これら添加剤は、1種単独で用いられてもよく、2種以上を併用してもよい。
[タイヤ用ゴム組成物の製造方法]
 本発明のタイヤ用ゴム組成物の製造方法は、上記各成分を均一に混合できれば特に限定されない。タイヤ用ゴム組成物の製造に用いる装置としては、例えば、ニーダールーダー、ブラベンダー、バンバリーミキサー、インターナルミキサー等の接線式又は噛合式の密閉式混練機、単軸押出機、二軸押出機、ミキシングロール、及びローラーなどが挙げられる。上記ゴム組成物を製造は、通常50~270℃の温度範囲で行うことができる。
 本発明のタイヤ用ゴム組成物は架橋することにより架橋物(加硫ゴム)として用いることが好ましい。加硫の条件及び方法に特に制限はないが、加硫金型を用いて加硫温度120~200℃及び加硫圧力0.5~20MPaの条件で行うことが好ましい。
 架橋物中からの、変性液状ジエン系ゴム(B)の抽出率は、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましい。
 なお、上記抽出率は、架橋物2gをトルエン400mL中に浸漬し、23℃で48時間後にトルエン中に抽出された変性液状ジエン系ゴム(B)の量から算出することができる。
[タイヤトレッド及び空気入りタイヤ]
 本発明のタイヤトレッドは、前記タイヤ用ゴム組成物を少なくとも一部に用いたものであり、ドライグリップ性能が十分であり、優れたウェットグリップ性能及びアイスグリップ性能を示し、優れた操縦安定性能を示すものである。本発明のタイヤトレッドの構造は特に制限されず、一層構造であっても多層構造であってもよいが、多層構造とする場合は、路面と接触する層に前記タイヤ用ゴム組成物を用いることが好ましい。
 本発明の空気入りタイヤは、前記タイヤ用ゴム組成物を少なくとも一部に用いたものであり、特に前記タイヤを用いた空気入りタイヤが好ましい。本発明の空気入りタイヤは、前記タイヤ用ゴム組成物を一部に用いているため、ドライグリップ性能が十分であり、優れたウェットグリップ性能及びアイスグリップ性能を兼ね備え、操縦安定性が向上しており、耐摩耗性にも優れる。そのため、空気入りタイヤとしては、ウインタータイヤ、スタッドレスタイヤ等の冬用タイヤ、オールシーズンタイヤとして好適である。
 上記ゴム組成物及び該ゴム組成物の架橋物を使用できるタイヤの部位としては、例えば、トレッド(キャップトレッド、アンダートレッド)、サイドウォール、ランフラットタイヤ用ゴム補強層(ライナーなど)、リムクッション、ビードフィラー、ビードインシュレーション、ビードエイペックス、クリンチエイペックス、ベルト、ベルトクッション、ブレーカー、ブレーカークッション、チェーファー、チェーファーパッド、ストリップエイペックスなどが挙げられる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 本実施例及び比較例において使用した各成分は以下のとおりである。
<(A)成分>
天然ゴム(NR)   :STR20(タイ製天然ゴム)、ガラス転移温度-63℃
ブタジエンゴム(BR):JSR株式会社製 JSR BR01、
            重量平均分子量55万、シス体含有量95質量%、
            ガラス転移温度-103℃
SBR(1):乳化重合スチレンブタジエンゴム、JSR1500(JSR株式会社製)

       重量平均分子量45万、スチレン含有量23.5質量%、
       ガラス転移温度-52℃
SBR(2):溶液重合スチレンブタジエンゴム、HPR355(JSR株式会社製)
       アルコキシシランでカップリングし末端に導入、
       スチレン含有量28質量%、ビニル含有量56質量%、
       ガラス転移温度-27℃
<(B)成分>
後述する製造例1~3で得られた変性液状ジエン系ゴム並びに製造例4及び5で得られた未変性の液状ジエン系ゴム
<(C)成分>
シリカ     :エボニック社製 Ultrasil7000GR(湿式シリカ)、
         平均粒径14nm
カーボンブラック:三菱化学株式会社製 ダイアブラックI、
         平均粒径20nm
<(X)成分>
(B)成分の比較用に下記(X)成分を用いた。
TDAE   :H&R社製 VivaTec500
<その他の成分>
シランカップリング剤(1):エボニック社製 Si75
シランカップリング剤(2):モメンティブ・パフォーマンス・マテリアルズ社製 NXT SILANE
硫黄        :鶴見化学工業株式会社製 微粉硫黄200メッシュ
加硫促進剤(1)  :大内新興化学工業株式会社製 ノクセラーCZ-G
加硫促進剤(2)  :大内新興化学工業株式会社製 ノクセラーD
加硫促進剤(3)  :大内新興化学工業株式会社製 ノクセラーTBT-N
ステアリン酸    :花王株式会社製 ルナックS-20
亜鉛華       :堺化学工業株式会社製 酸化亜鉛
老化防止剤(1)  :大内新興化学工業株式会社製 ノクラック6C
老化防止剤(2)  :川口化学工業株式会社製 アンテージRD
ワックス      :精工化学株式会社製 サンタイトS
 <製造例1> 変性液状ジエン系ゴム(B-1)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、ヘキサン1150g及びn-ブチルリチウム(17質量%ヘキサン溶液)154gを仕込み、50℃に昇温し、撹拌条件下、N,N,N’,N’-テトラメチルエチレンジアミン10gを添加した後、重合温度を50℃となるように制御しながら、ブタジエン1250gを逐次添加して、1時間重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、未変性液状ジエン系ゴム(B’-1)を得た。
 続いて、容量1Lのオートクレーブ中に、得られた未変性液状ジエン系ゴム(B’-1)700gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン0.2gと(3-メルカプトプロピル)トリエトキシシラン130gを添加し、105℃で8時間反応させて、変性液状ジエン系ゴム(B-1)を得た。
 なお、製造例で得られた変性液状ジエン系ゴム等の各物性の測定方法及び算出方法は以下の通りである。
 (重量平均分子量の測定方法)
 変性液状ジエン系ゴム(B)のMwは、GPC(ゲルパーミエーションクロマトグラフィー)により標準ポリスチレン換算分子量で求めた。測定装置及び条件は、以下の通りである。
・装置    :東ソー株式会社製GPC装置「GPC8020」
・分離カラム :東ソー株式会社製「TSKgelG4000HXL」
・検出器   :東ソー株式会社製「RI-8020」
・溶離液   :テトラヒドロフラン
・溶離液流量 :1.0mL/分
・サンプル濃度:5mg/10mL
・カラム温度 :40℃
 (ビニル含有量)
 変性液状ジエン系ゴム(B)のビニル含有量を、日本電子株式会社製1H-NMR(500MHz)を使用し、サンプル/重クロロホルム=50mg/1mLの濃度、積算回数1024回で測定した。得られたスペクトルのビニル化されたジエン化合物由来の二重結合のピークと、ビニル化されていないジエン化合物由来の二重結合のピークとの面積比から、ビニル含有量を算出した。
 (ガラス転移温度)
 変性液状ジエン系ゴム(B)10mgをアルミパンに採取し、示差走査熱量測定(DSC)により10℃/分の昇温速度条件においてサーモグラムを測定し、DDSCのピークトップの値をガラス転移温度(Tg)とした。
 (38℃における溶融粘度の測定方法)
 変性液状ジエン系ゴム(B)の38℃における溶融粘度をブルックフィールド型粘度計(BROOKFIELD ENGINEERING LABS.INC.製)により測定した。
 (変性液状ジエン系ゴム(B)一分子当たりの平均官能基数)
 変性液状ジエン系ゴム(B)一分子当たりの平均官能基数は、変性液状ジエン系ゴム(B)の官能基の当量(g/eq)とスチレン換算の数平均分子量Mnより求めることができる。
(一分子当たりの平均官能基数)=[(数平均分子量Mn)/(スチレン単位の分子量)×(共役ジエン及び必要に応じて含まれる共役ジエン以外の他の単量体単位の平均分子量)]/(官能基の当量)
 なお、変性液状ジエン系ゴム(B)の官能基の当量は、官能基1個当たりに結合しているブタジエン及び必要に応じて含まれるブタジエン以外の他の単量体の質量を意味する。官能基の当量は、1H-NMR又は13C-NMRを用いて官能基由来のピークと重合体主鎖に由来するピークの面積比から算出することができる。なお、官能基由来のピークとは、アルコキシ基由来のピークを指す。
 以下、製造例1で得られた変性液状ジエン系ゴム(B-1)の物性を表1にまとめる。
Figure JPOXMLDOC01-appb-T000005
 <製造例2> 変性液状ジエン系ゴム(B-2)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、ヘキサン1100g及びn-ブチルリチウム(17質量%ヘキサン溶液)204gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、ブタジエン1300gを逐次添加して、1時間重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、未変性液状ジエン系ゴム(B’-2)を得た。
 続いて、容量1Lのオートクレーブ中に、得られた未変性液状ジエン系ゴム(B’-2)700gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン0.2gと(3-メルカプトプロピル)トリメトキシシラン102gを添加し、105℃で8時間反応させて、変性液状ジエン系ゴム(B-2)を得た。製造例2で得られた変性液状ジエン系ゴム(B-2)の物性を表2にまとめる。
 <製造例3> 変性液状ジエン系ゴム(B-3)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、ヘキサン1100g及びn-ブチルリチウム(17質量%ヘキサン溶液)100gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、ブタジエン1100gを逐次添加して、1時間重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、未変性液状ジエン系ゴム(B’-3)を得た。
 続いて、容量1Lのオートクレーブ中に、得られた未変性液状ジエン系ゴム(B’-3)700gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン0.2gと(3-メルカプトプロピル)トリメトキシシラン214gを添加し、105℃で8時間反応させて、変性液状ジエン系ゴム(B-3)を得た。製造例3で得られた変性液状ジエン系ゴム(B-3)の物性を表2にまとめる。
 <製造例4> 未変性の液状ジエン系ゴム(B’-4)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、ヘキサン1150g及びn-ブチルリチウム(17質量%ヘキサン溶液)154gを仕込み、50℃に昇温し、撹拌条件下、N,N,N’,N’-テトラメチルエチレンジアミン10gを添加した後、重合温度を50℃となるように制御しながら、ブタジエン1250gを逐次添加して、1時間重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、未変性の液状ジエン系ゴム(B’-4)を得た。製造例4で得られた液状ジエン系ゴム(B’-4)の物性を表2にまとめる。
 <製造例5> 未変性の液状ジエン系ゴム(B’-5)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、ヘキサン1100g及びn-ブチルリチウム(17質量%ヘキサン溶液)204gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、ブタジエン1300gを逐次添加して、1時間重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、未変性の液状ジエン系ゴム(B’-5)を得た。製造例5で得られた液状ジエン系ゴム(B’-5)の物性を表2にまとめる。
Figure JPOXMLDOC01-appb-T000006
 実施例1及び比較例1
 表3に記載した配合割合(質量部)にしたがって、固形ゴム(A)、変性液状ジエン系ゴム(B)、フィラー(C)、TDAE、シランカップリング剤、亜鉛華、ステアリン酸、ワックス、及び老化防止剤を、それぞれ密閉式バンバリーミキサーに投入して開始温度60℃、樹脂温度が150℃となるように6分間混練した後、ミキサー外に取り出して室温まで冷却した。次いで、この混合物を再度バンバリーミキサーに入れ、加硫剤(硫黄)及び加硫促進剤を加えて開始温度50℃、到達温度100℃となるように75秒混練することでゴム組成物を得た。
 また、得られたゴム組成物をプレス成形(145℃、20~40分)して加硫ゴムシート(厚み2mm)及び円柱形の摩擦係数測定用試験片(幅16mm、直径80mm)を作製し、下記の方法に基づき、アイスグリップ性能、ウェットグリップ性能、操縦安定性を評価した。その結果を表3に示す。
 なお、各評価の測定方法は以下のとおりである。
 (氷上摩擦係数(μ))
 ゴム組成物のアイスグリップ性能の指標として氷上摩擦係数(μ)の評価を行った。
 実施例及び比較例で得られた円柱形の摩擦係数測定用試験片を用いて氷上摩擦係数を測定した。測定装置及び条件は、以下のとおりである。
 タイヤと路面のSlip ratioを0から40%までの範囲で摩擦係数を測定し、得られた摩擦係数の最大値を、氷上摩擦係数(μ)とした。氷上摩擦係数(μ)の数値が高いほど、アイスグリップ性能は良好であることを示す。
〔測定装置及び測定条件〕
・装置:株式会社上島製作所製 RTM摩擦試験機
・測定温度:-3.0℃
・路面:氷
・速度:30km/hrs
・荷重:50N
・Slip ratio:0~40%
 (湿潤路面摩擦係数(μ))
 ゴム組成物のウェットグリップ性能の指標として湿潤路面摩擦係数(μ)の評価を行った。
 実施例及び比較例で得られた円柱形の摩擦係数測定用試験片を用いて湿潤路面摩擦係数を測定した。測定装置及び条件は、以下のとおりである。
 タイヤと路面のSlip ratioを0から40%までの範囲で摩擦係数を測定し、得られた摩擦係数の最大値を、湿潤路面摩擦係数(μ)とした。湿潤路面摩擦係数(μ)の数値が高いほど、ウェットグリップ性能は良好であることを示す。
〔測定装置及び測定条件〕
・装置:株式会社上島製作所製 RTM摩擦試験機
・測定温度:20℃
・路面:株式会社ノリタケコーテッドアブレーシブ製、METABRIT、粒度120、砥粒A
・路面供給水量:0.5L/min
・路面供給水温:20℃
・速度:30km/hrs
・荷重:50N
・Slip ratio:0~40%
 (耐摩耗性)
 JIS K 6264に準拠して、10N荷重下、摩耗距離40mでのDIN摩耗量を測定した。各実施例及び比較例の数値は、DIN摩耗量の逆数において表5の比較例5(表7では比較例7)の値を100とした際の相対値である。なお、数値が大きいほど摩耗量が少なく耐摩耗性が良好である。
 (操縦安定性)
 実施例及び比較例で作製したゴム組成物の加硫ゴムシートから縦40mm×横5mmの試験片を切り出し、GABO社製動的粘弾性測定装置を用いて、測定温度25℃、60℃、周波数10Hz、静的歪み10%、動的歪み2%の条件で、E’(貯蔵弾性率)を測定し、剛性の指標とした。各実施例及び比較例の数値は、表3の比較例1の値を100とした際の相対値である。なお、数値が大きいほどゴム組成物の剛性が高く、変形が小さいため操縦安定性能が良好である。
Figure JPOXMLDOC01-appb-T000007
 比較例1に対し、変性液状ジエン系ゴムを用いた実施例1は、アイスグリップ性能を損なうことなく、ウェットグリップ性能に優れている。また、25℃、60℃の貯蔵弾性率が共に高く、貯蔵弾性率の温度依存性が低く操縦安定性に優れる。
 実施例2~6及び比較例2~4
 表4に記載した配合割合(質量部)にしたがって、固形ゴム(A)、変性液状ジエン系ゴム(B)(比較例2、3では未変性の液状ジエン系ゴム、比較例4では未配合)、フィラー(C)、TDAE、シランカップリング剤、亜鉛華、ステアリン酸、ワックス、及び老化防止剤を、それぞれ密閉式バンバリーミキサーに投入して開始温度60℃、樹脂温度が150℃となるように6分間混練した後、ミキサー外に取り出して室温まで冷却した。次いで、この混合物を再度バンバリーミキサーに入れ、加硫剤(硫黄)及び加硫促進剤を加えて開始温度50℃、到達温度100℃となるように75秒混練することでゴム組成物を得た。
 また、得られたゴム組成物をプレス成形(145℃、20~40分)して加硫ゴムシート(厚み2mm)及び円柱形の摩擦係数測定用試験片(幅16mm、直径80mm)を作製し、上述と同様に、ウェットグリップ性能、操縦安定性を評価した。また、下記の測定方法により、低燃費性能を評価した。それぞれの評価結果は比較例4の値を100とした際の相対値である。その結果を表4に示す。
 (低燃費性能)
 実施例及び比較例で作製したゴム組成物のシートから縦40mm×横5mmの試験片を切り出し、GABO社製動的粘弾性測定装置を用いて、測定温度60℃、周波数10Hz、静的歪み10%、動的歪み2%の条件で、tanδを測定し、低燃費性能の指標とした。各実施例及び比較例の数値は、表4の比較例4(表5では比較例5)の値を100とした際の相対値である。なお、数値が小さいほどゴム組成物の低燃費性能が良好である。
Figure JPOXMLDOC01-appb-T000008
 比較例2~4に対し、変性液状ジエン系ゴムを用いた実施例2~6は、ウェットグリップ性能を損なうことなく、低燃費性能に優れている。また、25℃、60℃の貯蔵弾性率が共に高く、貯蔵弾性率の温度依存性が低く操縦安定性に優れる。
 実施例7及び比較例5
 表5に記載した配合割合(質量部)にしたがって、実施例3と同様に(比較例5では変性液状ジエン系ゴムは未配合)ゴム組成物を作製した。得られたゴム組成物をプレス成形(160℃、20~40分)して加硫ゴムシート(厚み2mm)及び円柱形の摩擦係数測定用試験片(幅16mm、直径80mm)を作製し、上述と同様に、耐摩耗性、アイスグリップ性能、ウェットグリップ性能、操縦安定性、低燃費性能を評価した。それぞれの評価結果は比較例5の値を100とした際の相対値である。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000009
 比較例5に対し、変性液状ジエン系ゴムを用いた実施例7は、耐摩耗性、アイスグリップ性能、ウェットグリップ性能を損なうことなく、低燃費性能に優れている。また、25℃、60℃の貯蔵弾性率が共に高く、貯蔵弾性率の温度依存性が低く操縦安定性に優れる。
 実施例8及び比較例6
 表6に記載した配合割合(質量部)にしたがって、樹脂温度が165℃となるように6分間混練した以外は、実施例3と同様に(比較例6では変性液状ジエン系ゴムは未配合)ゴム組成物を作製した。得られたゴム組成物をプレス成形(160℃、20~40分)して加硫ゴムシート(厚み2mm)を作製し、上述と同様に、操縦安定性を評価した。また、下記の測定方法により、0℃でのtanδを測定し、これをウェットグリップ性能の指標とした。それぞれの評価結果は比較例6の値を100とした際の相対値である。その結果を表6に示す。
 (tanδ(0℃))
 実施例及び比較例で作製したゴム組成物のシートから縦40mm×横5mmの試験片を切り出し、GABO社製動的粘弾性測定装置を用いて、測定温度0℃、周波数10Hz、静的歪み10%、動的歪み2%の条件で、tanδを測定し、ウェットグリップ性能の指標とした。各実施例及び比較例の数値は、表6の比較例6の値を100とした際の相対値である。なお、数値が大きいほどゴム組成物のウェットグリップ性能が良好である。
Figure JPOXMLDOC01-appb-T000010
 比較例6に対し、変性液状ジエン系ゴムを用いた実施例8は、tanδ(0℃)が高く、ウェットグリップ性能に優れている。また、25℃、60℃の貯蔵弾性率が共に高く、貯蔵弾性率の温度依存性が低く操縦安定性に優れる。
 実施例9及び比較例7
 表7に記載した配合割合(質量部)にしたがって、実施例3と同様に(比較例7では変性液状ジエン系ゴムは未配合)ゴム組成物を作製した。得られたゴム組成物をプレス成形(160℃、20~40分)して加硫ゴムシート(厚み2mm)を作製し、上述と同様に、耐摩耗性、操縦安定性、低燃費性能を評価した。それぞれの評価結果は比較例7の値を100とした際の相対値である。その結果を表7に示す。
Figure JPOXMLDOC01-appb-T000011
 比較例7に対し、変性液状ジエン系ゴムを用いた実施例9は、耐摩耗性、低燃費性能を損なうことなく、25℃、60℃の貯蔵弾性率が共に高く、貯蔵弾性率の温度依存性が低く操縦安定性に優れる。
 本発明のタイヤ用ゴム組成物は加工性、フィラー分散性に優れるだけでなく、架橋剤を加えるなどして架橋性のゴム組成物とした場合、耐摩耗性の向上等が見られる優れる架橋物を与えることからタイヤ用途などに好適に用いることができる。特に、タイヤトレッド等に架橋物を用いた場合には、ドライグリップ性能が十分で、優れたウェットグリップ性能及びアイスグリップ性能を兼ね備えるだけでなく、操縦安定性の向上を達成できるため有用である。

Claims (14)

  1.  ガラス転移温度(Tg)が-10℃以下の固形ゴム(A)100質量部に対して、下記式(1)で表されるシラン化合物に由来する官能基を有する変性液状ジエン系ゴム(B)を0.1~50質量部、及びフィラー(C)を20~200質量部含有するタイヤ用ゴム組成物であり、
    前記変性液状ジエン系ゴム(B)が、下記(i)~(iv)
    (i)重量平均分子量(Mw)が1,000以上15,000未満、
    (ii)ビニル含有量が70モル%以下、
    (iii)変性液状ジエン系ゴム(B)一分子当たりの平均官能基数が1~20個、
    (iv)ガラス転移温度(Tg)が0℃以下、
    を満たす、タイヤ用ゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R1は炭素数1から6の2価のアルキレン基であり、R2、R3及びR4はそれぞれ独立に、メトキシ基、エトキシ基、フェノキシ基、メチル基、エチル基又はフェニル基を示す。ただし、R2、R3及びR4の少なくとも1つはメトキシ基、エトキシ基又はフェノキシ基である。)
  2.  前記変性液状ジエン系ゴム(B)の38℃における溶融粘度が0.1~2,000Pa・sである、請求項1に記載のタイヤ用ゴム組成物。
  3.  前記変性液状ジエン系ゴム(B)がイソプレン及び/又はブタジエンの単量体単位を含む重合体である、請求項1又は2に記載のタイヤ用ゴム組成物。
  4.  前記フィラー(C)が、カーボンブラック及びシリカから選ばれる少なくとも1種であ
    る、請求項1~3のいずれかに記載のタイヤ用ゴム組成物。
  5.  前記フィラー(C)が、平均粒径5~100nmのカーボンブラック及び平均粒径が0.5~200nmのシリカから選ばれる少なくとも1種である、請求項4に記載のタイヤ用ゴム組成物。
  6.  前記フィラー(C)がシリカであり、シリカ100質量部に対し、シランカップリング剤を0.1~30質量部含有する、請求項4又は5に記載のタイヤ用ゴム組成物。
  7.  前記固形ゴム(A)が、天然ゴム、スチレンブタジエンゴム、ブタジエンゴム及びイソプレンゴムから選ばれる1種以上である、請求項1~6のいずれか1項に記載のタイヤ用ゴム組成物。
  8.  請求項1~7のいずれか1項に記載のタイヤ用ゴム組成物を架橋させた架橋物。
  9.  請求項1~7のいずれか1項に記載のタイヤ用ゴム組成物又は請求項8に記載の架橋物を少なくとも一部に用いたタイヤトレッド。
  10.  請求項1~7のいずれか1項に記載のタイヤ用ゴム組成物又は請求項8に記載の架橋物を少なくとも一部に用いたビードフィラー。
  11.  請求項1~7のいずれか1項に記載のタイヤ用ゴム組成物又は請求項8に記載の架橋物を少なくとも一部に用いたタイヤ用ベルト。
  12.  請求項1~7のいずれかに記載のタイヤ用ゴム組成物を少なくとも一部に用いた空気入りタイヤ。
  13.  前記空気入りタイヤがウインタータイヤ又はスタッドレスタイヤである、請求項12に記載の空気入りタイヤ。
  14.  前記空気入りタイヤがオールシーズンタイヤである、請求項12に記載の空気入りタイヤ。
PCT/JP2018/031911 2017-09-01 2018-08-29 タイヤ用ゴム組成物 WO2019044888A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/643,181 US20200207956A1 (en) 2017-09-01 2018-08-29 Tire rubber compositions
CA3074203A CA3074203A1 (en) 2017-09-01 2018-08-29 Tire rubber compositions
CN201880056290.8A CN111032770B (zh) 2017-09-01 2018-08-29 轮胎用橡胶组合物
EP18851976.3A EP3677637B1 (en) 2017-09-01 2018-08-29 Tire rubber compositions
KR1020207007416A KR102550282B1 (ko) 2017-09-01 2018-08-29 타이어용 고무 조성물
JP2019539570A JP7112405B2 (ja) 2017-09-01 2018-08-29 タイヤ用ゴム組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-168624 2017-09-01
JP2017168624 2017-09-01
JP2018-040833 2018-03-07
JP2018040833 2018-03-07

Publications (1)

Publication Number Publication Date
WO2019044888A1 true WO2019044888A1 (ja) 2019-03-07

Family

ID=65525460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031911 WO2019044888A1 (ja) 2017-09-01 2018-08-29 タイヤ用ゴム組成物

Country Status (8)

Country Link
US (1) US20200207956A1 (ja)
EP (1) EP3677637B1 (ja)
JP (1) JP7112405B2 (ja)
KR (1) KR102550282B1 (ja)
CN (1) CN111032770B (ja)
CA (1) CA3074203A1 (ja)
TW (1) TWI773815B (ja)
WO (1) WO2019044888A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113348095A (zh) * 2019-03-18 2021-09-03 横滨橡胶株式会社 无钉轮胎用橡胶组合物及使用了该无钉轮胎用橡胶组合物的无钉轮胎
EP3907256A1 (en) * 2020-05-04 2021-11-10 Evonik Operations GmbH Rubber mixtures with improved properties
WO2022138026A1 (ja) * 2020-12-25 2022-06-30 株式会社Eneosマテリアル 重合体組成物、架橋体及びタイヤ
EP3974206A4 (en) * 2019-05-22 2023-07-05 Kuraray Co., Ltd. DIENE RUBBER AND RUBBER COMPOSITION
JP7348491B2 (ja) 2019-08-29 2023-09-21 横浜ゴム株式会社 重荷重用空気入りタイヤ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11590799B2 (en) * 2017-09-01 2023-02-28 Kuraray Co., Ltd. Heavy-duty tire rubber compositions and tires

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197646A (ja) * 1985-02-27 1986-09-01 Idemitsu Petrochem Co Ltd ゴム配合油
JPS62112618A (ja) * 1985-11-11 1987-05-23 Idemitsu Petrochem Co Ltd ポリウレタン用組成物
JP2011132298A (ja) 2009-12-22 2011-07-07 Sumitomo Rubber Ind Ltd 変性共重合体、それを用いたゴム組成物および空気入りタイヤ
WO2013115011A1 (ja) 2012-02-02 2013-08-08 住友ゴム工業株式会社 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ
JP2013249359A (ja) * 2012-05-31 2013-12-12 Bridgestone Corp ゴム組成物及びタイヤ
JP2014098102A (ja) * 2012-11-15 2014-05-29 Jsr Corp ゴム組成物
JP2016028235A (ja) * 2014-07-08 2016-02-25 宇部興産株式会社 相構造解析方法、ポリマー材料、ポリマー材料製造方法
JP2016060789A (ja) * 2014-09-17 2016-04-25 Jsr株式会社 ビードフィラー用ゴム組成物およびランフラット補強材用ゴム組成物
JP2016113588A (ja) * 2014-12-17 2016-06-23 ヘンケルジャパン株式会社 積層シート用接着剤
WO2018043700A1 (ja) * 2016-09-02 2018-03-08 株式会社クラレ ゴム組成物
WO2018043699A1 (ja) * 2016-09-02 2018-03-08 株式会社クラレ ゴム組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2743564A1 (fr) * 1996-01-11 1997-07-18 Michelin & Cie Compositions de caoutchouc pour enveloppes de pneumatiques a base de silices contenant un additif de renforcement a base d'un polyorganosiloxane fonctionnalise et d'un compose organosilane .
JP5256262B2 (ja) * 2009-12-07 2013-08-07 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP5097862B1 (ja) * 2011-05-25 2012-12-12 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP2013043954A (ja) * 2011-08-25 2013-03-04 Sumitomo Rubber Ind Ltd ゴム組成物及び空気入りタイヤ
CA2942256C (en) * 2014-03-14 2022-04-12 Kuraray Co., Ltd. Rubber composition comprising modified liquid isoprene rubber

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197646A (ja) * 1985-02-27 1986-09-01 Idemitsu Petrochem Co Ltd ゴム配合油
JPS62112618A (ja) * 1985-11-11 1987-05-23 Idemitsu Petrochem Co Ltd ポリウレタン用組成物
JP2011132298A (ja) 2009-12-22 2011-07-07 Sumitomo Rubber Ind Ltd 変性共重合体、それを用いたゴム組成物および空気入りタイヤ
WO2013115011A1 (ja) 2012-02-02 2013-08-08 住友ゴム工業株式会社 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ
JP2013249359A (ja) * 2012-05-31 2013-12-12 Bridgestone Corp ゴム組成物及びタイヤ
JP2014098102A (ja) * 2012-11-15 2014-05-29 Jsr Corp ゴム組成物
JP2016028235A (ja) * 2014-07-08 2016-02-25 宇部興産株式会社 相構造解析方法、ポリマー材料、ポリマー材料製造方法
JP2016060789A (ja) * 2014-09-17 2016-04-25 Jsr株式会社 ビードフィラー用ゴム組成物およびランフラット補強材用ゴム組成物
JP2016113588A (ja) * 2014-12-17 2016-06-23 ヘンケルジャパン株式会社 積層シート用接着剤
WO2018043700A1 (ja) * 2016-09-02 2018-03-08 株式会社クラレ ゴム組成物
WO2018043699A1 (ja) * 2016-09-02 2018-03-08 株式会社クラレ ゴム組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3677637A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113348095A (zh) * 2019-03-18 2021-09-03 横滨橡胶株式会社 无钉轮胎用橡胶组合物及使用了该无钉轮胎用橡胶组合物的无钉轮胎
EP3974206A4 (en) * 2019-05-22 2023-07-05 Kuraray Co., Ltd. DIENE RUBBER AND RUBBER COMPOSITION
JP7348491B2 (ja) 2019-08-29 2023-09-21 横浜ゴム株式会社 重荷重用空気入りタイヤ
EP3907256A1 (en) * 2020-05-04 2021-11-10 Evonik Operations GmbH Rubber mixtures with improved properties
WO2021223961A1 (en) 2020-05-04 2021-11-11 Evonik Operations Gmbh Rubber mixtures with improved properties
WO2022138026A1 (ja) * 2020-12-25 2022-06-30 株式会社Eneosマテリアル 重合体組成物、架橋体及びタイヤ

Also Published As

Publication number Publication date
CN111032770B (zh) 2022-03-01
TWI773815B (zh) 2022-08-11
CN111032770A (zh) 2020-04-17
JP7112405B2 (ja) 2022-08-03
EP3677637B1 (en) 2023-03-01
EP3677637A1 (en) 2020-07-08
KR102550282B1 (ko) 2023-07-03
TW201920296A (zh) 2019-06-01
EP3677637A4 (en) 2021-04-14
JPWO2019044888A1 (ja) 2020-10-01
CA3074203A1 (en) 2019-03-07
US20200207956A1 (en) 2020-07-02
KR20200040832A (ko) 2020-04-20

Similar Documents

Publication Publication Date Title
JP7112406B2 (ja) タイヤ用ゴム組成物
JP7458146B2 (ja) ゴム組成物
JP7112405B2 (ja) タイヤ用ゴム組成物
JP2023166459A (ja) ゴム組成物
JP7112407B2 (ja) 高グリップタイヤ用ゴム組成物
JP7112408B2 (ja) 重荷重タイヤ用ゴム組成物およびタイヤ
JP7153655B2 (ja) 重荷重タイヤ用ゴム組成物およびタイヤ
JP7153654B2 (ja) 高グリップタイヤ用ゴム組成物
WO2019172185A1 (ja) 変性液状ジエン系重合体およびゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539570

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3074203

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207007416

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018851976

Country of ref document: EP

Effective date: 20200401