WO2019044704A1 - 高周波モジュールおよび通信装置 - Google Patents

高周波モジュールおよび通信装置 Download PDF

Info

Publication number
WO2019044704A1
WO2019044704A1 PCT/JP2018/031367 JP2018031367W WO2019044704A1 WO 2019044704 A1 WO2019044704 A1 WO 2019044704A1 JP 2018031367 W JP2018031367 W JP 2018031367W WO 2019044704 A1 WO2019044704 A1 WO 2019044704A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
signal
high frequency
frequency module
low noise
Prior art date
Application number
PCT/JP2018/031367
Other languages
English (en)
French (fr)
Inventor
亮史 本多
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019044704A1 publication Critical patent/WO2019044704A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication

Definitions

  • the present invention relates to a high frequency module and a communication device.
  • a module mounted with an amplifier is used in various communication devices. Modules incorporating amplifiers have become highly integrated and complex, and it has become common for switches to be incorporated.
  • the received signal received by the antenna is transmitted to the receiving circuit via the switch and the amplifier.
  • Patent Document 1 discloses an amplification module having one input end and one output end, and providing a signal path of an antenna signal from the input end to the output end.
  • FIG. 5 is a block diagram showing an example of a functional configuration of the amplification module disclosed in Patent Document 1.
  • the amplification module 900 may include a first switch 910, filters 921, 922, 923, amplifiers 931, 932, 933, and a second switch 940, and may further include a bypass path 924.
  • the bypass path 924 bypasses the amplifiers 931, 932, 933 and provides a path in which the input signal from the first switch 910 to the second switch 940 is not amplified.
  • the output end of the amplification module 900 is connected to an FEM (front end module) 950 by a single wiring, and the FEM 950 is connected to a radio frequency integrated circuit (RFIC) 960.
  • RFIC radio frequency integrated circuit
  • the filters 921, 922, 923 and the amplifiers 931, 932, 933 of the amplification module 900 are provided for communication in a specific frequency band (hereinafter also referred to as a communication band or simply as a band).
  • the amplification module 900 processes the signal in the desired communication band using the filters and amplifiers selected by the first switch 910 and the second switch 940 among the filters 921, 922, 923 and the amplifiers 931, 932, 933. Do. Signals in the communication band that can not be processed by the amplification module 900 are supplied to the FEM 950 via the bypass path 924 and processed by the FEM 950.
  • the reception performance of each communication band can be optimized, and furthermore, the reception signal of the communication band which can not be processed by the amplification module 900 can be processed by the FEM 950.
  • the high-frequency module is required to have versatility that can cope with an RF reception signal having an appropriate amplification level according to, for example, the characteristics of the RFIC.
  • an internal LNA (Low Noise Amplifier) mounted on a high frequency module is limited in size by the high frequency module, so a small LNA is used.
  • the external LNA outside the high frequency module is not susceptible to the size limitation of the high frequency module, it is possible to use a large LNA having a higher amplification level than the small internal LNA.
  • the internal LNA of the amplification module 900 and the external LNA connected to the output terminal out can be used in combination.
  • an object of the present invention is to provide a high frequency module and a communication apparatus capable of coping with a plurality of RF reception signals having different amplification levels without complicating an external circuit connected to an output terminal.
  • a high frequency module includes a first common terminal to which an RF reception signal is input, a first selected terminal electrically connected to the first common terminal, and A first switch that has a second selected terminal, and switches the connection between the first common terminal and the first selected terminal and the connection between the first common terminal and the second selected terminal;
  • a low noise amplifier for amplifying a received signal, the first selected terminal connected to the first signal path via the low noise amplifier, and the second selected terminal connected to the second selected terminal not via the low noise amplifier
  • a second signal path an output terminal of the first signal path, a first output terminal for outputting the amplified RF reception signal to an RF signal processing circuit, and an output terminal different from the first output terminal, ,
  • the output of the second signal path A child, and a second output terminal for outputting the RF received signal in the RF signal processing circuit.
  • the present invention it is possible to obtain a high frequency module and a communication device capable of coping with a plurality of RF reception signals having different amplification levels without complicating the external circuit connected to the output terminal.
  • FIG. 1 is a block diagram showing an example of a functional configuration of the high frequency module according to the first embodiment.
  • FIG. 2A is a circuit diagram showing an example of a circuit configuration of a signal transmission circuit according to a first modification of the first embodiment.
  • FIG. 2B is a circuit diagram showing an example of a circuit configuration of a signal transmission circuit according to a second modification of the first embodiment.
  • FIG. 3A is a block diagram showing an example of a functional configuration of the high frequency module according to the second embodiment.
  • FIG. 3B is a block diagram showing an example of a functional configuration of the high frequency module according to the third embodiment.
  • FIG. 4 is a block diagram showing an example of a functional configuration of the communication apparatus according to the fourth embodiment.
  • FIG. 5 is a block diagram showing an example of a functional configuration of a communication apparatus including an amplification module according to the prior art.
  • the high frequency module according to the first embodiment will be described by taking an example of a front end circuit of a communication apparatus compatible with multiband (plural frequency bands) / multimode (plural wireless communication standards).
  • Each band constituting the multiband may correspond to different wireless communication standards.
  • full-duplex communication by frequency division may be performed using a transmission subband and a reception subband.
  • FIG. 1 is a block diagram showing an example of a functional configuration of the high frequency module 10 according to the first embodiment.
  • an amplifier 20 and an RF signal processing circuit 30 outside the high frequency module 10 are shown together with the high frequency module 10.
  • the high frequency module 10 includes a power amplifier (PA) 110, a transmission switch 111, a reception switch 120, duplexers 121, 122, 123, an antenna switch 130, a directional coupler 140, a signal transmission circuit 150, And a control circuit 190.
  • PA power amplifier
  • the PA 110 amplifies the transmission RF signal supplied to the transmission signal terminal Tx of the high frequency module 10 and transmits it to the transmission switch 111.
  • the transmission switch 111 transmits the transmission RF signal received from the PA 110 to a duplexer designated by a control signal (not shown) among the duplexers 121, 122, and 123.
  • the duplexers 121, 122, and 123 are provided for each band, and combine / split the transmission RF signal of the transmission sub-band in the band and the RF reception signal of the reception sub-band.
  • the receive switch 120 receives an RF receive signal from each of the duplexers 121, 122, 123.
  • the reception switch 120 transmits an RF reception signal designated by a control signal (not shown) among the received RF reception signals to the signal transmission circuit 150.
  • the signal transmission circuit 150 transmits the RF reception signal through one signal path selected from a plurality of signal paths including at least a signal path passing through the low noise amplifier and a signal path not passing through the low noise amplifier.
  • the signal transmission circuit 150 is selected from three signal paths in which a signal path passing through the attenuator is added to a signal path passing through the low noise amplifier and a signal path not passing through the low noise amplifier. Transmit the RF reception signal through the signal path.
  • the signal transmission circuit 150 includes a first signal path P1, a second signal path P2, a third signal path P3, and a first switch 151.
  • an example of the first signal path P1, the second signal path P2, and the third signal path P3 is a signal path passing through a low noise amplifier, a signal path passing through an attenuator and a signal path not passing through a low noise amplifier, respectively. It is.
  • the first signal path P1 has a first amplifier 152.
  • the first amplifier 152 is a low noise amplifier.
  • the second signal path P2 has an attenuator 153.
  • the third signal path P3 is configured only by the wiring conductor. That is, circuit elements such as an amplifier, an attenuator, and a capacitor are not provided in the third signal path P3.
  • the first switch 151 has a first common terminal S0 to which an RF reception signal is input, a first selected terminal S1 electrically connected to the first common terminal S0, a second selected terminal S2, and a third selected terminal. And a terminal S3.
  • the first switch 151 is connected between the first common terminal S0 and the first selected terminal S1, connected between the first common terminal S0 and the second selected terminal S2, and connected between the first common terminal S0 and the third selected terminal S3. Switch the connection with
  • the first selected terminal S1, the second selected terminal S2, and the third selected terminal S3 are connected to the first signal path P1, the second signal path P2, and the third signal path P3, respectively.
  • the first output terminal Rx1 is an output terminal of the first signal path P1, and outputs the RF reception signal amplified by the first amplifier 152 to the RF signal processing circuit 30.
  • the second output terminal Rx2 is an output terminal different from the first output terminal Rx1, is an output terminal of the second signal path P2, and outputs the RF reception signal attenuated by the attenuator 153 to the RF signal processing circuit 30. .
  • the third output terminal Rx is an output terminal different from any of the first output terminal Rx1 and the second output terminal Rx2, and is an output terminal of the third signal path P3 and does not pass through the first amplifier 152 nor the attenuator 153 Output RF reception signal of through path.
  • the first output terminal Rx1 and the second output terminal Rx2 are not connected to the amplifier 20 outside the high frequency module 10, and the third output terminal Rx3 is connected to the amplifier 20 outside the high frequency module 10. .
  • the amplified RF received signal, the attenuated RF received signal, or the RF received signal which is neither amplified nor attenuated is the first, second and third selected terminals S1, It is outputted to S2 and S3 respectively.
  • the signal transmission circuit 150 may be configured by an integrated circuit (IC) chip.
  • the antenna switch 130 connects the duplexer designated by the control signal (not shown) among the duplexers 121, 122, and 123 to the antenna terminal ANT.
  • the directional coupler 140 is provided on a signal path connecting the antenna switch 130 and the antenna terminal ANT of the high frequency module 10.
  • the directional coupler 140 outputs a monitor signal corresponding to the strength of the signal flowing through the signal path to the monitor terminal MON of the high frequency module 10.
  • the control circuit 190 controls the first switch 151 of the signal transmission circuit 150 in accordance with the control signal supplied to the control terminal CTL of the high frequency module 10.
  • the control signal may be supplied from the RF signal processing circuit 30.
  • the high frequency module 10 switches the first switch 151 under the control of the RF signal processing circuit 30 to configure a circuit that can obtain an optimal reception performance according to the characteristics of the RF signal processing circuit 30, for example. be able to.
  • the RF signal processing circuit 30 operates in conjunction with the first amplifier 152 mounted on the high frequency module 10 to exhibit optimum reception performance, the first common terminal S0 and one end of the first signal path P1 The other end of the first signal path P1 and the RF signal processing circuit 30 are connected.
  • the RF signal processing circuit 30 uses the attenuated RF reception signal to exhibit optimum reception performance, the first common terminal S0 and one end of the second signal path P2 are connected, and the second The other end of the signal path P2 is connected to the RF signal processing circuit 30.
  • the RF signal processing circuit 30 when the RF signal processing circuit 30 operates in conjunction with the amplifier 20 external to the high frequency module 10 to exhibit optimum reception performance, the first common terminal S0 and one end of the third signal path P3 The other end of the third signal path P3 is connected to the RF signal processing circuit 30 via the amplifier 20.
  • the signal transmission circuit 150 may select different signal paths from the first, second, and third signal paths P1, P2, and P3 in order to process signals in the same communication band.
  • a low noise amplifier (internal LNA) mounted on a high frequency module is subject to the size limitation of the high frequency module, so a small LNA is used.
  • the low noise amplifier (external LNA) outside the high frequency module is not susceptible to the size limitation of the high frequency module, it is possible to use a large LNA having a higher amplification level than a small internal LNA.
  • the RF reception signal amplified at the amplification level of the internal LNA is RF-selected by selecting the first signal path P1.
  • the signal processing circuit 30 is supplied.
  • the RF reception signal amplified at the amplification level of the external LNA is selected by selecting the third signal path P3.
  • the signal is supplied to the RF signal processing circuit 30.
  • a versatile signal transmission circuit 150 capable of supporting an RF received signal can be obtained.
  • the first output terminal Rx1 which is an output terminal of the first signal path P1 passing through the first amplifier 152, and the output terminal of a third signal path P3 which is a through path not passing through the first amplifier 152.
  • the second output terminal Rx3 is configured by different signal terminals.
  • selecting the first signal path P1 utilizes the first amplifier 152 to select the third signal path P3.
  • the amplifier 20 can be used. That is, even if a path for bypassing the amplifier 20 is not provided outside the high frequency module 10, the first amplifier 152 and the amplifier 20 can be selectively used only by switching the signal path. Therefore, it is possible to cope with a plurality of RF reception signals having different amplification levels without complicating the external circuit connected to the output terminal.
  • the reference for controlling the first switch 151 of the signal transmission circuit 150 is not limited to the characteristics of the RF signal processing circuit 30.
  • the first switch 151 may be controlled in accordance with the strength of the RF reception signal. Therefore, the RF signal processing circuit 30 may control the first switch 151 via a control signal generated according to the strength of the RF reception signal acquired from the high frequency module 10.
  • the RF received signal amplified to an appropriate level by the first amplifier 152 is selected by selecting the first signal path P1.
  • the signal is supplied to the RF signal processing circuit 30.
  • the RF reception signal may be strong to the extent that amplification is not necessary.
  • the RF signal processing circuit 30 is supplied with the RF reception signal of the through path which does not pass through the first amplifier 152 nor the attenuator 153.
  • the RF signal processing circuit 30 When the communication apparatus is too close to the base station and the RF reception signal becomes too strong, the RF signal processing circuit 30 appropriately attenuates the RF reception signal appropriately attenuated by the attenuator 153 by selecting the second signal path P2. Supply to
  • the first amplifier 152 and the amplifier 20 are both LNAs (low noise amplifiers).
  • the high frequency module 10 is an appropriate amplifier even when it is necessary to operate together with a specific LNA which is not mounted on the high frequency module 10 in order for the RF signal processing circuit 30 to exhibit optimal reception performance.
  • 20 can be disposed outside the high frequency module 10 to construct an optimum receiving circuit.
  • the first output terminal Rx1 and the second output terminal Rx2 are not connected to the amplifier 20, and the third output terminal Rx3 is connected to the amplifier 20, so an external circuit connected to the output terminal is It can be simplified.
  • the first, second and third output terminals Rx1, Rx2 and Rx3 are connected to a single output terminal and the amplifier 20 is connected to the output terminals.
  • the amplifier 20 needs to be bypassed outside the high frequency module 10.
  • the first output terminal Rx1 and the second output terminal Rx2 are not connected to the amplifier 20, the first signal path P1 or the first signal path P1 or By selecting the two signal path P2, only the first amplifier 152 or the attenuator 153 can be used.
  • the first output terminal Rx1 and the second output terminal Rx2 are not connected to the amplifier 20, the first signal path P1 generated when the first output terminal Rx1 and the second output terminal Rx2 are connected to the amplifier 20 And the deterioration of the noise figure in the second signal path P2 can be avoided.
  • the third signal path P3 has neither an amplifier nor an attenuator, connecting the amplifier 20 to the third signal path P3 allows amplification by the amplifier 20 without significantly degrading the noise figure of the amplifier 20. You can increase the level variation.
  • the high frequency module 10 it is possible to obtain a high frequency module capable of coping with a plurality of RF reception signals having different amplification levels without complicating the external circuit connected to the output terminal.
  • FIG. 2A is a circuit diagram showing an example of a circuit configuration of a signal transmission circuit 160 according to a first modified example of the first embodiment.
  • the first switch 161 and the first and second signal paths P1 and P2 are changed as follows, as compared with the signal transmission circuit 150 (FIG. 1).
  • the input end of the first signal path P1 and the input end of the second signal path P2 are connected to the selected terminal S12 of the first switch 161.
  • a single output terminal (the output terminal of the first signal path P1 and the output terminal of the second signal path P2 are used both as the first output terminal Rx1 and the second output terminal Rx2 in the signal transmission circuit 150) Not shown).
  • the first amplifier 162 stops the output of the signal in response to the control signal OP, and the second signal path P2 has a switch 164 for blocking the path.
  • the signal transmission circuit 160 According to the signal transmission circuit 160, signal amplification and attenuation can be selectively performed in a single signal path in which the first signal path P1 and the second signal path P2 are connected in parallel. As a result, by reducing the number of selected terminals and the number of output terminals of the first switch 161, it is possible to obtain the signal transmission circuit 160 which is miniaturized and has versatility similar to the versatility described above.
  • FIG. 2B is a circuit diagram showing an example of a circuit configuration of a signal transmission circuit 170 according to a second modification of the first embodiment.
  • the second signal path P2 of the signal transmission circuit 170 can be electrically disconnected in parallel with the attenuator 173 to the second signal path P2 of the signal transmission circuit 150 (FIG. 1).
  • Fuse 175 is added.
  • the amount of attenuation in the second signal path P2 can be adjusted by electrically disconnecting the fuse 175.
  • a signal transmission circuit 170 is obtained.
  • the high frequency module according to the second embodiment is compatible with so-called carrier aggregation communication in which communication is simultaneously performed using two communication bands selected one by one each from the first communication band group and the second communication band group.
  • carrier aggregation communication in which communication is simultaneously performed using two communication bands selected one by one each from the first communication band group and the second communication band group.
  • FIG. 3A is a circuit diagram showing an example of the configuration of the high frequency module 11 according to the second embodiment.
  • the amplifier 20a, 20b and the RF signal processing circuit 31 are shown together with the high frequency module 11.
  • the high frequency module 11 has two sets of configurations in which the second switch 180 is added to the high frequency module 10 of FIG.
  • the components of the high frequency module 11 are indicated by reference numerals with suffix a or b for distinguishing sets.
  • the constituent elements may be referred to with reference numerals in which the suffixes a and b are omitted.
  • the high frequency module 11 will be described focusing on differences from the high frequency module 10.
  • the second switch 180 is a fourth selected terminal S6 and a fifth selected terminal S7 that are electrically connected to the second common terminal S4 and the third common terminal S5, and the second common terminal S4 and the third common terminal S5. And a sixth selected terminal S8.
  • the second switch 180 is connected to the second common terminal S4 and the fourth selected terminal S6, connected to the second common terminal S4 and the fifth selected terminal S7, and is connected to the second common terminal S4 and the sixth selected terminal S8.
  • the output end of the first signal path P1 is connected to the fourth selected terminal S6.
  • the output end of the second signal path P2 is connected to the fifth selected terminal S7.
  • the output end of the third signal path P3 is connected to the sixth selected terminal S8.
  • the fourth output terminal Rx4 is connected to the second common terminal S4, and the fifth output terminal Rx5 is connected to the third common terminal S5.
  • the fourth output terminal Rx4 is not connected to the amplifier 20 outside the high frequency module 11, and the fifth output terminal Rx5 is connected to the amplifier 20 outside the high frequency module 11.
  • a circuit corresponding to the high frequency module 10 can be configured by switching the second switch 180 for each set, so that the same effect as the high frequency module 10 can be obtained.
  • the high frequency module 11 can have a circuit configuration in which the first amplifier 152 as an internal LNA and the amplifier 20 as an external LNA can be connected in series, RF reception with a higher amplification level compared to the high frequency module 10 is possible. It can respond to the signal.
  • one corresponds to multiband / multimode communication in the first communication band group, and the other corresponds to multiband / multimode communication in the second communication band group.
  • communication by carrier aggregation is performed simultaneously using two frequency bands selected one by one from the first frequency band group and the second frequency band group. be able to.
  • the high frequency module according to the third embodiment is compatible with so-called carrier aggregation communication in which communication is simultaneously performed using two communication bands selected one by one each from the first communication band group and the second communication band group. High frequency module.
  • FIG. 3B is a circuit diagram showing an example of the configuration of the high frequency module 12 according to the third embodiment.
  • the amplifiers 21a, 21b, 22a, 22b, the switches 182a, 182b and the RF signal processing circuit 32 are shown.
  • the high frequency module 12 has two sets of configurations in which the third switch 181 is added to the high frequency module 10 of FIG.
  • the components of the high frequency module 12 are indicated by reference numerals with suffix a or b for distinguishing sets.
  • the constituent elements may be referred to with reference numerals in which the suffixes a and b are omitted.
  • the high frequency module 12 will be described focusing on differences from the high frequency module 10.
  • the third switch 181 includes a fourth common terminal S9 and a seventh selected terminal S10 and an eighth selected terminal S11 that are electrically connected to the fourth common terminal S9.
  • the third switch 181 switches the connection between the fourth common terminal S9 and the seventh selected terminal S10 and the connection between the fourth common terminal S7 and the eighth selected terminal S11.
  • the output end of the first signal path P1 is connected to the seventh selected terminal S10.
  • the output end of the second signal path P2 is connected to the eighth selected terminal S11.
  • the sixth output terminal Rx6 is connected to the fourth common terminal S9.
  • the seventh output terminal Rx7 is an output end of the third signal path P3.
  • the sixth output terminal Rx6 is connected to the amplifier 21 outside the high frequency module 12 via the switch 182 outside the high frequency module 12.
  • the seventh output terminal Rx7 is connected to the amplifier 22 outside the high frequency module 12.
  • the amplifier 21 is an example of a first low noise amplifier
  • the amplifier 22 is an example of a second low noise amplifier.
  • the circuit corresponding to the high frequency module 10 can be configured by switching the third switch 181 and the switch 182 outside the high frequency module 12, so the same effect as the high frequency module 10 can be obtained.
  • the seventh output terminal Rx7 that can connect the amplifier 22 and the first switch 151 without passing through the third switch 181 is provided. Can use an external LNA.
  • FIG. 4 is a block diagram showing an example of a functional configuration of the communication apparatus 1 according to the fourth embodiment.
  • the communication device 1 includes a front end circuit 10, an amplifier 20, an RF signal processing circuit 30, and a baseband signal processing circuit 40.
  • the amplifier 20 may be a low noise amplifier.
  • the front end circuit 10 may be configured by, for example, the high frequency module 10 according to the first embodiment.
  • the amplifier 20 may be provided independently of the high frequency module 10. By providing the amplifier 20 outside the high frequency module 10, it is possible to configure the communication device 1 capable of exhibiting optimum performance in accordance with the characteristics of the RF signal processing circuit 30.
  • the front end circuit 10 and the high frequency module 10 are referred to by the same reference numerals.
  • the signal terminal and the signal transmitted through the signal terminal are referred to by the same reference numerals.
  • the front end circuit 10 receives the transmission RF signal Tx from the RF signal processing circuit 30, amplifies it by the power amplifier, and outputs it to the antenna 50.
  • one RF reception signal is selected among the RF reception signal Rx1 received from the antenna 50, and the amplified RF reception signal Rx1, the attenuated RF reception signal Rx2, and the RF reception signal Rx3 which is neither amplified nor attenuated. Output.
  • the RF reception signal Rx1 and the RF reception signal Rx2 may be directly supplied to the RF signal processing circuit 30, and the RF reception signal Rx3 may be amplified by the amplifier 20 and supplied to the RF signal processing circuit 30.
  • the RF signal processing circuit 30 is responsive to the monitor signal MON indicating the strength of the RF reception signal acquired from the front end circuit 10 to designate which one of the RF reception signals Rx1, Rx2 and Rx3 to output. May be supplied to the front end circuit 10.
  • the RF signal processing circuit 30 converts the transmission signal generated by the baseband signal processing circuit 40 into a transmission RF signal Tx, and supplies the transmission RF signal Tx to the front end circuit 10.
  • the conversion may include modulation and upconversion of the signal.
  • the RF reception signals Rx 1, Rx 2 and Rx 3 received from the front end circuit 10 are converted into reception signals and supplied to the baseband signal processing circuit 40.
  • the conversion may include demodulation and down conversion of the signal.
  • the RF signal processing circuit 30 may be configured by a high frequency integrated circuit (RFIC) chip.
  • RFIC high frequency integrated circuit
  • the baseband signal processing circuit 40 converts the transmission data generated by the application device / application software into a transmission signal, and supplies the transmission signal to the RF signal processing circuit 30.
  • the conversion may include data compression, multiplexing, and addition of an error correction code.
  • it converts the received signal received from the RF signal processing circuit 30 into received data and supplies it to the application device / application software.
  • the conversion may include data decompression, demultiplexing, and error correction.
  • the baseband signal processing circuit 40 may be configured by a baseband integrated circuit (BBIC) chip.
  • BBIC baseband integrated circuit
  • the application device / application software uses the transmission data and the reception data to perform application operations such as voice communication and image display.
  • the communication device 1 by using the high-frequency module 10 having excellent versatility as the front end circuit 10, for example, the communication device 1 can be obtained which exhibits optimum reception performance according to the characteristics of the RF signal processing circuit 30.
  • the present invention is not limited to the individual embodiments. Without departing from the spirit of the present invention, various modifications that can be conceived by a person skilled in the art may be applied to the present embodiment, or a form constructed by combining components in different embodiments may be one or more of the present invention. It may be included within the scope of the embodiments.
  • a high frequency module has a first common terminal to which an RF reception signal is input, and a first selected terminal and a second selected terminal electrically connected to the first common terminal.
  • a first switch for switching the connection between the first common terminal and the first selected terminal and the connection between the first common terminal and the second selected terminal, and a low noise amplifier for amplifying the RF reception signal A second signal path connected to the first selected terminal via the low noise amplifier, connected to the second selected terminal but not via the low noise amplifier, and An output terminal of one signal path, a first output terminal for outputting the amplified RF reception signal to an RF signal processing circuit, and an output terminal different from the first output terminal, the output of the second signal path Terminal, the RF reception signal And a second output terminal for outputting the RF signal processing circuit.
  • the first signal path passing through the low noise amplifier and the second signal path not passing through the low noise amplifier are RF signal processed via the first output terminal and the second output terminal, which are different signal terminals.
  • Each connected to the circuit As a result, it is possible to obtain a high frequency module capable of coping with a plurality of RF reception signals having different amplification levels without complicating the external circuit connected to the output terminal.
  • the high frequency module may include an attenuator, and the second signal path may pass through the attenuator.
  • the high frequency module has a third output terminal different from the first output terminal and the second output terminal, and a third signal path, and the first switch is electrically connected to the first common terminal.
  • a third selected terminal connected to the first common terminal, the connection between the first common terminal and the first selected terminal, the connection between the first common terminal and the second selected terminal, and the first common terminal.
  • the connection between the terminal and the third selected terminal is switched, and the third signal path is a signal path of a through path which is connected to the third selected terminal and does not pass through any of the low noise amplifier and the attenuator. It may be
  • a high frequency module capable of supporting an RF receive signal having an initial amplification level not amplified or attenuated in addition to an RF receive signal having an amplification level adjusted by amplification and attenuation is obtained. can get.
  • the first output terminal and the second output terminal are not connected to a low noise amplifier outside the high frequency module, and the third output terminal is a low noise amplifier outside the high frequency module. It may be connected.
  • the first output terminal or the second output terminal can be used when not connected to an external low noise amplifier, and the third output terminal can be used when connected to an external low noise amplifier. Therefore, it is not necessary to provide a path for bypassing the external low noise amplifier to switch between the case where the external low noise amplifier is connected and the case where the external low noise amplifier is not connected. As a result, it is possible to obtain a high-frequency module capable of coping with a plurality of RF reception signals having different amplification levels without complicating the external circuit connected to the output terminal.
  • a high frequency module includes a first common terminal to which an RF reception signal is input, a first selected terminal electrically connected to the first common terminal, a second selected terminal, and a third A selected terminal, a connection between the first common terminal and the first selected terminal, a connection between the first common terminal and the second selected terminal, and the first common terminal and the third A fourth selected terminal electrically connected to a first switch that switches connection with a selected terminal, a second common terminal and a third common terminal, and the second common terminal and the third common terminal, and a fifth A selected terminal and a sixth selected terminal, connection between the second common terminal and the fourth selected terminal, connection between the second common terminal and the fifth selected terminal, the second common Connection between the terminal and the sixth selected terminal, the third common terminal and the fourth object
  • a second switch for switching the connection with the selection terminal, the connection between the third common terminal and the fifth selected terminal, and the connection between the third common terminal and the sixth selected terminal; and amplifying the RF reception signal Low noise amplifier, an attenuator for atten
  • a fourth output terminal and an output terminal different from the fourth output terminal which is connected to the third common terminal, and the amplified RF reception signal according to the switching of the second switch, the attenuated And a fifth output terminal for outputting, to the RF signal processing circuit, one of the RF reception signal and one of the RF reception signals of through paths not passing through any of the low noise amplifier and the attenuator.
  • a fourth output terminal is not connected to a low noise amplifier outside the high frequency module, and a fifth output terminal is low noise increase outside the high frequency module. It is connected with the spreader.
  • the first signal path passing through the low noise amplifier and the second signal path not passing through the low noise amplifier are RF signal processed through the fourth output terminal and the fifth output terminal, which are different signal terminals.
  • Each connected to the circuit As a result, it is possible to obtain a high frequency module capable of coping with a plurality of RF reception signals having different amplification levels without complicating the external circuit connected to the output terminal.
  • a high frequency module includes a first common terminal to which an RF reception signal is input, a first selected terminal electrically connected to the first common terminal, a second selected terminal, and a third A selected terminal, a connection between the first common terminal and the first selected terminal, a connection between the first common terminal and the second selected terminal, and the first common terminal and the third A fourth switch connected to the selected terminal, a fourth common terminal, and a seventh selected terminal and an eighth selected terminal electrically connected to the fourth common terminal; A third switch that switches between the connection between the common terminal and the seventh selected terminal and the connection between the fourth common terminal and the eighth selected terminal; a low noise amplifier for amplifying the RF reception signal; and the RF reception An attenuator for attenuating the signal, and the first end An output end is connected to the seventh selected terminal, a first signal path passing through the low noise amplifier, an input end is connected to the second selected terminal, and an output end is the eighth A second signal path connected to the selected terminal and passing through the attenuator, and
  • the RF reception of the through path which is connected to the other end of the third signal path and which does not pass through the low noise amplifier and the attenuator.
  • Signal above A seventh output terminal for outputting to an F signal processing circuit, and the sixth output terminal is connected to a first low noise amplifier outside the high frequency module via a switch outside the high frequency module, The seventh output terminal is connected to a second low noise amplifier outside the high frequency module.
  • the first signal path passing through the low noise amplifier and the second signal path not passing through the low noise amplifier are RF signal processed via the seventh output terminal and the eighth output terminal, which are different signal terminals.
  • Each connected to the circuit As a result, it is possible to obtain a high frequency module capable of coping with a plurality of RF reception signals having different amplification levels without complicating the external circuit connected to the output terminal.
  • a communication apparatus comprising: the high frequency module; the low noise amplifier external to the high frequency module; and the RF signal processing circuit to which an RF reception signal is supplied from the high frequency module.
  • the communication apparatus is capable of coping with a plurality of RF reception signals having different amplification levels without complicating the external circuit connected to the output terminal of the high frequency module. can get.
  • the present invention can be widely used for various communication devices as a signal transmission circuit and a high frequency module.
  • 1 communication device 10 front end circuit (high frequency module) 11, 12 high frequency modules 20, 20a, 20b, 21a, 21b, 22a, 22b amplifiers (low noise amplifiers) 30, 31, 32 RF signal processing circuit 40 baseband signal processing circuit 50 antenna 110, 110a, 110b power amplifier (PA) 111, 111a, 111b Transmit switch 120, 120a, 120b Receive switch 121, 121a, 121b, 122, 122a, 122b, 123, 123a, 123b Duplexer 130, 131 Antenna switch 140 Directional coupler 150, 150a, 150b, 160, 170 Signal Transmission Circuit 151, 151a, 151b, 161 First Switch 152, 152a, 152b, 162 First Amplifier (Low Noise Amplifier) 153, 153a, 153b, 173 attenuator 164 switch 175 fuse 180a, 180b second switch 181a, 181b third switch 182a, 182b switch 190, 191 control circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

高周波モジュール(10)は、RF受信信号が入力される第1共通端子(S0)と、第1共通端子(S0)と電気的に接続される第1被選択端子(S1)および第2被選択端子(S2)とを有し、第1共通端子(S0)と第1被選択端子(S1)との接続および第1共通端子(S0)と第2被選択端子(S2)との接続を切り替える第1スイッチ(151)と、RF受信信号を増幅する低雑音増幅器(152)と、第1被選択端子(S1)と接続され、低雑音増幅器(152)を経由する第1信号経路(P1)と、第2被選択端子(S2)と接続され、低雑音増幅器(152)を経由しない第2信号経路(P2)と、増幅されたRF受信信号をRF信号処理回路(30)に出力する第1出力端子(Rx1)と、第1出力端子(Rx1)と異なる出力端子であって、RF受信信号をRF信号処理回路(30)に出力する第2出力端子(Rx2)と、を備える。

Description

高周波モジュールおよび通信装置
 本発明は高周波モジュールおよび通信装置に関する。
 各種の通信装置において、増幅器を搭載したモジュールが用いられている。増幅器を搭載したモジュールは、高集積化および複雑化してきており、スイッチが組み込まれることが一般的となってきている。アンテナで受信された受信信号は、スイッチおよび増幅器を経由して受信回路へ伝送される。
 例えば、特許文献1には、1つの入力端と1つの出力端とを有し、入力端から出力端へのアンテナ信号の信号経路を提供する増幅モジュールが開示されている。
 図5は、特許文献1に開示される増幅モジュールの機能的な構成の一例を示すブロック図である。図5に示されるように、増幅モジュール900は、第1スイッチ910、フィルタ921、922、923、増幅器931、932、933、および第2スイッチ940を含んでもよく、さらにバイパス経路924を含んでもよい。バイパス経路924は、増幅器931、932、933をバイパスし、第1スイッチ910から第2スイッチ940への入力信号が増幅されない経路を提供する。増幅モジュール900の出力端は、単一の配線でFEM(フロントエンドモジュール)950に接続され、FEM950は、RFIC(Radio Frequency Integrated Circuit、高周波集積回路)960に接続される。
 増幅モジュール900のフィルタ921、922、923および増幅器931、932、933は、特定の周波数帯域(以下、通信バンド、または単にバンドともいう)での通信用に設けられる。増幅モジュール900は、フィルタ921、922、923および増幅器931、932、933の中から、第1スイッチ910および第2スイッチ940によって選択されるフィルタおよび増幅器を用いて、所望の通信バンドの信号を処理する。増幅モジュール900で処理できない通信バンドの信号は、バイパス経路924を介してFEM950に供給され、FEM950で処理される。
 増幅モジュール900によれば、通信バンドごとの受信性能を最適化し、さらに、増幅モジュール900で処理できない通信バンドの受信信号を、FEM950で処理することができるとされている。
米国特許出願公開第US2016/0020738号明細書
 昨今、複数のメーカから特性が異なる様々なRFICが提供されている。そのため、高周波モジュールには、例えばRFICの特性に応じて、適切な増幅レベルをもつRF受信信号に対応できる汎用性が求められる。
 一般的には、高周波モジュールに搭載される内部LNA(Low Noise Amplifier)は高周波モジュールのサイズ制限を受けるため、小型のLNAが用いられる。一方で、高周波モジュールの外部にある外部LNAは、高周波モジュールのサイズ制限を受けにくいため、小型の内部LNAよりも増幅レベルの高い大型のLNAを用いることが可能である。
 したがって、内部LNAと外部LNAとを併用すれば、複数の内部LNAのみを併用する高周波モジュールと比べて、より大きな増幅レベルをもつRF受信信号に対応することが可能となる。
 例えば、増幅モジュール900の出力端子outに外部LNAを接続することで、増幅モジュール900の内部LNAと出力端子outに接続された外部LNAとを併用することはできる。
 しかしながら、その場合、内部LNAのみを経由し外部LNAを経由しない信号経路を利用したいときには、外部LNAにバイパススイッチを設ける必要があるといったように、出力端子outとつながる外部回路が複雑になる場合がある。
 そこで、本発明は、出力端子とつながる外部回路を複雑にしなくとも、各異なる増幅レベルをもつ複数のRF受信信号に対応することが可能な高周波モジュールおよび通信装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る高周波モジュールは、RF受信信号が入力される第1共通端子と、前記第1共通端子と電気的に接続される第1被選択端子および第2被選択端子とを有し、前記第1共通端子と前記第1被選択端子との接続および前記第1共通端子と前記第2被選択端子との接続を切り替える第1スイッチと、前記RF受信信号を増幅する低雑音増幅器と、前記第1被選択端子と接続され、前記低雑音増幅器を経由する第1信号経路と、前記第2被選択端子と接続され、前記低雑音増幅器を経由しない第2信号経路と、前記第1信号経路の出力端子であり、前記増幅されたRF受信信号をRF信号処理回路に出力する第1出力端子と、前記第1出力端子と異なる出力端子であって、前記第2信号経路の出力端子であり、前記RF受信信号を前記RF信号処理回路に出力する第2出力端子と、を備える。
 本発明によれば、出力端子とつながる外部回路を複雑にしなくとも、各異なる増幅レベルをもつ複数のRF受信信号に対応することが可能な高周波モジュールおよび通信装置が得られる。
図1は、第1の実施の形態に係る高周波モジュールの機能的な構成の一例を示すブロック図である。 図2Aは、第1の実施の形態の第1の変形例に係る信号伝送回路の回路構成の一例を示す回路図である。 図2Bは、第1の実施の形態の第2の変形例に係る信号伝送回路の回路構成の一例を示す回路図である。 図3Aは、第2の実施の形態に係る高周波モジュールの機能的な構成の一例を示すブロック図である。 図3Bは、第3の実施の形態に係る高周波モジュールの機能的な構成の一例を示すブロック図である。 図4は、第4の実施の形態に係る通信装置の機能的な構成の一例を示すブロック図である。 図5は、従来技術に係る増幅モジュールを含む通信装置の機能的な構成の一例を示すブロック図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。
 (第1の実施の形態)
 第1の実施の形態に係る高周波モジュールについて、マルチバンド(複数の周波数帯域)/マルチモード(複数の無線通信規格)に対応する通信装置のフロントエンド回路の例を挙げて説明する。マルチバンドを構成する各バンドは、異なる無線通信規格に対応してもよい。各バンドでは、例えば、送信用のサブバンドと受信用のサブバンドとを用いて、周波数分割による全二重通信が行われてもよい。
 図1は、第1の実施の形態に係る高周波モジュール10の機能的な構成の一例を示すブロック図である。図1では、高周波モジュール10とともに、高周波モジュール10の外部にある増幅器20およびRF信号処理回路30を示している。
 図1に示されるように、高周波モジュール10は、電力増幅器(PA)110、送信スイッチ111、受信スイッチ120、デュプレクサ121、122、123、アンテナスイッチ130、方向性結合器140、信号伝送回路150、および制御回路190を備える。
 PA110は、高周波モジュール10の送信信号端子Txに供給された送信RF信号を増幅し、送信スイッチ111へ送信する。
 送信スイッチ111は、PA110から受信した送信RF信号を、デュプレクサ121、122、123のうち、図示していない制御信号で指定されるデュプレクサへ送信する。
 デュプレクサ121、122、123は、バンドごとに設けられ、当該バンド内の送信サブバンドの送信RF信号と受信サブバンドのRF受信信号とを合波/分波する。
 受信スイッチ120は、デュプレクサ121、122、123の各々からRF受信信号を受信する。受信スイッチ120は、受信したRF受信信号のうち、図示していない制御信号で指定されるRF受信信号を、信号伝送回路150へ送信する。
 信号伝送回路150は、低雑音増幅器を経由する信号経路および低雑音増幅器を経由しない信号経路を少なくとも含む複数の信号経路の中から選択される1の信号経路でRF受信信号を伝達する。図1の例では、信号伝送回路150は、低雑音増幅器を経由する信号経路および低雑音増幅器を経由しない信号経路に、減衰器を経由する信号経路を加えた3つの信号経路の中から選択される信号経路でRF受信信号を伝達する。
 信号伝送回路150は、第1信号経路P1と、第2信号経路P2と、第3信号経路P3と、第1スイッチ151と、を有する。ここで、第1信号経路P1、第2信号経路P2および第3信号経路P3が、それぞれ低雑音増幅器を経由する信号経路、減衰器を経由する信号経路および低雑音増幅器を経由しない信号経路の一例である。
 第1信号経路P1は、第1増幅器152を有する。第1増幅器152は、低雑音増幅器である。第2信号経路P2は、減衰器153を有する。第3信号経路P3は、配線導体のみで構成されている。つまり、第3信号経路P3には、増幅器、減衰器、コンデンサのような回路素子が設けられていない。
 第1スイッチ151は、RF受信信号が入力される第1共通端子S0と、第1共通端子S0と電気的に接続される第1被選択端子S1、第2被選択端子S2および第3被選択端子S3とを有する。第1スイッチ151は、第1共通端子S0と第1被選択端子S1との接続、第1共通端子S0と第2被選択端子S2との接続および第1共通端子S0と第3被選択端子S3との接続を切り替える。
 第1被選択端子S1、第2被選択端子S2および第3被選択端子S3は、第1信号経路P1、第2信号経路P2および第3信号経路P3にそれぞれ接続されている。
 第1出力端子Rx1は、第1信号経路P1の出力端子であり、第1増幅器152で増幅されたRF受信信号をRF信号処理回路30に出力する。
 第2出力端子Rx2は、第1出力端子Rx1と異なる出力端子であって、第2信号経路P2の出力端子であり、減衰器153で減衰されたRF受信信号をRF信号処理回路30に出力する。
 第3出力端子Rxは、第1出力端子Rx1および第2出力端子Rx2のいずれとも異なる出力端子であって、第3信号経路P3の出力端子であり、第1増幅器152も減衰器153も経由しないスルーパスのRF受信信号を出力する。
 第1出力端子Rx1および第2出力端子Rx2は、高周波モジュール10の外部にある増幅器20と接続されておらず、第3出力端子Rx3は、高周波モジュール10の外部にある増幅器20と接続されている。
 第1スイッチ151による選択に応じて、増幅されたRF受信信号、減衰されたRF受信信号、または増幅も減衰もなされていないRF受信信号が、第1、第2、第3被選択端子S1、S2、S3にそれぞれ出力される。
 信号伝送回路150は、集積回路(IC)チップで構成されてもよい。
 アンテナスイッチ130は、デュプレクサ121、122、123のうち、図示していない制御信号で指定されるデュプレクサとアンテナ端子ANTとを接続する。
 方向性結合器140は、アンテナスイッチ130と高周波モジュール10のアンテナ端子ANTとを結ぶ信号経路上に設けられる。方向性結合器140は、当該信号経路に流れる信号の強度に応じたモニタ信号を高周波モジュール10のモニタ端子MONへ出力する。
 制御回路190は、高周波モジュール10の制御端子CTLに供給された制御信号に従って信号伝送回路150の第1スイッチ151を制御する。制御信号は、RF信号処理回路30から供給されてもよい。これにより、高周波モジュール10は、RF信号処理回路30の制御下で第1スイッチ151を切り替えることで、例えば、RF信号処理回路30の特性に応じて、最適な受信性能が得られる回路を構成することができる。
 例えば、RF信号処理回路30が、高周波モジュール10に搭載された第1増幅器152とともに動作することによって最適な受信性能を発揮する場合、第1共通端子S0と第1信号経路P1の一方端とを接続し、第1信号経路P1の他方端とRF信号処理回路30とを接続する。
 また、例えば、RF信号処理回路30が、減衰されたRF受信信号を用いて最適な受信性能を発揮する場合、第1共通端子S0と第2信号経路P2の一方端とを接続し、第2信号経路P2の他方端とRF信号処理回路30とを接続する。
 また、例えば、RF信号処理回路30が、高周波モジュール10の外部にある増幅器20とともに動作することによって最適な受信性能を発揮する場合、第1共通端子S0と第3信号経路P3の一方端とを接続し、第3信号経路P3の他方端とRF信号処理回路30とを、増幅器20を介して接続する。
 これらの異なる回路構成は、同一の通信バンドでの通信を異なるRF信号処理回路30を備える複数の通信装置において行う場合に、通信装置ごとに適用されてもよい。つまり、信号伝送回路150は、同一の通信バンドの信号を処理するために、第1、第2、第3信号経路P1、P2、P3の中から異なる信号経路を選択してもよい。
 一般的には、高周波モジュールに搭載される低雑音増幅器(内部LNA)は高周波モジュールのサイズ制限を受けるため、小型のLNAが用いられる。一方で、高周波モジュールの外部にある低雑音増幅器(外部LNA)は、高周波モジュールのサイズ制限を受けにくいため、小型の内部LNAよりも増幅レベルの高い大型のLNAを用いることが可能である。
 したがって、内部LNAの増幅レベルをもつRF受信信号を必要とするRF信号処理回路30を用いる場合は、第1信号経路P1を選択することにより、内部LNAの増幅レベルで増幅したRF受信信号をRF信号処理回路30へ供給する。また、より大きな増幅レベルをもつRF受信信号を必要とする別のRF信号処理回路30を用いる場合は、第3信号経路P3を選択することにより、外部LNAの増幅レベルで増幅したRF受信信号をRF信号処理回路30へ供給する。
 このようにして、例えば、RF信号処理回路30の特性に応じて、内部LNAである第1増幅器152と外部LNAである増幅器20と減衰器153とを用いて、各異なる増幅レベルをもつ複数のRF受信信号に対応可能な汎用性に優れた信号伝送回路150が得られる。
 信号伝送回路150では、第1増幅器152を経由する第1信号経路P1の出力端子である第1出力端子Rx1と、第1増幅器152を経由しないスルーパスである第3信号経路P3の出力端子である第2出力端子Rx3とが、異なる信号端子によって構成されている。
 増幅器20は第2出力端子Rx2に接続され、第1出力端子Rx1には接続されていないので、第1信号経路P1を選択することで第1増幅器152を利用し、第3信号経路P3を選択することで増幅器20を利用することができる。つまり、増幅器20をバイパスする経路を高周波モジュール10の外部に設けなくとも、信号経路の切り替えだけで、第1増幅器152と増幅器20とを使い分けることができる。そのため、出力端子とつながる外部回路を複雑にしなくとも、各異なる増幅レベルをもつ複数のRF受信信号に対応することが可能となる。
 なお、信号伝送回路150の第1スイッチ151を制御するための基準は、RF信号処理回路30の特性には限られない。例えば、RF受信信号の強度に応じて、第1スイッチ151を制御してもよい。そのために、RF信号処理回路30は、高周波モジュール10から取得したRF受信信号の強度に応じて生成した制御信号を介して、第1スイッチ151を制御してもよい。
 例えば、所定の閾値との比較によりRF受信信号が通常の強度であると判定された場合、第1信号経路P1を選択することにより、第1増幅器152によって適切なレベルに増幅したRF受信信号をRF信号処理回路30に供給する。
 通信装置が基地局に近いときは、増幅する必要がない程度にRF受信信号が強くなることがある。このような場合、第3信号経路P3を選択することにより、第1増幅器152も減衰器153も経由しないスルーパスのRF受信信号をRF信号処理回路30に供給する。
 通信装置が基地局に近すぎてRF受信信号が強くなりすぎてしまうときは、第2信号経路P2を選択することにより、減衰器153によって適切に減衰させたRF受信信号をRF信号処理回路30に供給する。
 このようにして、RF受信信号の強度に応じて最適な受信回路を構成できる汎用性に優れた高周波モジュール10が得られる。
 上記の説明において、第1増幅器152および増幅器20は、いずれもLNA(低雑音増幅器)である。これにより、高周波モジュール10は、RF信号処理回路30が最適な受信性能を発揮するために、高周波モジュール10に搭載されていない特定のLNAとともに動作する必要がある場合であっても、適切な増幅器20を高周波モジュール10の外部に配置して、最適な受信回路を構成できる。
 また、高周波モジュール10では、第1出力端子Rx1および第2出力端子Rx2は増幅器20と接続されておらず、第3出力端子Rx3は増幅器20と接続されているので、出力端子とつながる外部回路が簡素化できる。例えば、第1、第2および第3出力端子Rx1、Rx2およびRx3を単一の出力端子に接続し、当該出力端子に増幅器20を接続する比較例では、第1増幅器152または減衰器153のみを利用したいとき、増幅器20を高周波モジュール10の外部でバイパスする必要がある。
 その点、高周波モジュール10では、第1出力端子Rx1および第2出力端子Rx2は増幅器20と接続されていないので、増幅器20を高周波モジュール10の外部でバイパスしなくとも、第1信号経路P1または第2信号経路P2を選択することで、第1増幅器152または減衰器153のみを利用することができる。
 また、第1出力端子Rx1および第2出力端子Rx2は増幅器20と接続されていないので、第1出力端子Rx1および第2出力端子Rx2と増幅器20とを接続した場合に生じる、第1信号経路P1および第2信号経路P2における雑音指数の悪化が回避できる。
 また、第3信号経路P3は、増幅器も減衰器も有していないので、増幅器20を第3信号経路P3に接続することで、増幅器20の雑音指数を大きく劣化させることなく、増幅器20による増幅レベルのバリエーションを増やすことができる。
 このように、高周波モジュール10によれば、出力端子とつながる外部回路を複雑にしなくとも、各異なる増幅レベルをもつ複数のRF受信信号に対応することが可能な高周波モジュールが得られる。
 次に、信号伝送回路のいくつかの変形例について説明する。
 図2Aは、第1の実施の形態の第1の変形例に係る信号伝送回路160の回路構成の一例を示す回路図である。図2Aに示されるように、信号伝送回路160では、信号伝送回路150(図1)と比べて、第1スイッチ161および第1、第2信号経路P1、P2が次のように変更される。
 すなわち、第1信号経路P1の入力端と第2信号経路P2の入力端とが、第1スイッチ161の被選択端子S12に接続される。また、第1信号経路P1の出力端と第2信号経路P2の出力端とが、信号伝送回路150での第1出力端子Rx1と第2出力端子Rx2とに兼用される単一の出力端子(図示せず)に接続される。第1増幅器162は、制御信号OPに応じて信号の出力を停止し、第2信号経路P2は、経路を遮断するスイッチ164を有している。
 信号伝送回路160によれば、第1信号経路P1と第2信号経路P2とを並列に接続した単一の信号経路において、信号の増幅と減衰とを選択的に行うことができる。これにより、第1スイッチ161の被選択端子の数および出力端子の数を削減することにより、小型化されかつ前述した汎用性と同等の汎用性を有する信号伝送回路160が得られる。
 図2Bは、第1の実施の形態の第2の変形例に係る信号伝送回路170の回路構成の一例を示す回路図である。図2Bに示されるように、信号伝送回路170の第2信号経路P2は、信号伝送回路150(図1)の第2信号経路P2に、減衰器173と並列に接続された電気的に切断可能なフューズ175が追加される。
 信号伝送回路170によれば、高周波モジュール10に搭載された後でも、フューズ175を電気的に切断することにより第2信号経路P2における減衰量を調整できる。これにより、最適な受信性能を得るために必要となるRF受信信号の減衰量が異なる複数のRF信号処理回路に適応して第2信号経路P2における減衰量を調整可能な、汎用性に優れた信号伝送回路170が得られる。
 (第2の実施の形態)
 第2の実施の形態に係る高周波モジュールについて、第1通信バンド群および第2通信バンド群からそれぞれ1つずつ選択される2つの通信バンドを同時に使用して通信を行う、いわゆるキャリアアグリゲーション通信に対応する高周波モジュールの例を挙げて説明する。
 図3Aは、第2の実施の形態に係る高周波モジュール11の構成の一例を示す回路図である。図3Aでは、高周波モジュール11とともに、増幅器20a、20bおよびRF信号処理回路31を示している。
 図3Aに示されるように、高周波モジュール11は、図1の高周波モジュール10に第2スイッチ180を追加した構成を2組有している。図3Aでは、高周波モジュール11の構成要素を、組を区別する添え字aまたはbを付した符号で示している。なお、2つの組で共通する事項の説明においては、添え字a、bを省略した符号で構成要素を参照することがある。以下、高周波モジュール11について高周波モジュール10と異なる点を中心に説明する。
 第2スイッチ180は、第2共通端子S4および第3共通端子S5と、第2共通端子S4および第3共通端子S5と電気的に接続される第4被選択端子S6、第5被選択端子S7および第6被選択端子S8とを有する。第2スイッチ180は、第2共通端子S4と第4被選択端子S6との接続、第2共通端子S4と第5被選択端子S7との接続、第2共通端子S4と第6被選択端子S8との接続、第3共通端子S5と第4被選択端子S6との接続、第3共通端子S5と第5被選択端子S7との接続および第3共通端子S5と第6被選択端子S8との接続を切り替える。
 第1信号経路P1の出力端は第4被選択端子S6と接続される。第2信号経路P2の出力端は第5被選択端子S7と接続される。第3信号経路P3の出力端は第6被選択端子S8と接続される。
 第4出力端子Rx4は第2共通端子S4と接続され、第5出力端子Rx5は第3共通端子S5と接続される。第4出力端子Rx4は、高周波モジュール11の外部にある増幅器20と接続されておらず、第5出力端子Rx5は、高周波モジュール11の外部にある増幅器20と接続される。
 高周波モジュール11によれば、組ごとに、第2スイッチ180の切り替えにより、高周波モジュール10に対応する回路を構成できるので、高周波モジュール10と同等の効果が得られる。
 さらには、高周波モジュール11では、内部LNAである第1増幅器152と外部LNAである増幅器20とを直列に接続する回路構成が可能なので、高周波モジュール10と比べて、より高い増幅レベルをもつRF受信信号に対応できる。
 高周波モジュール11における2組の構成のうち、一方は第1通信バンド群におけるマルチバンド/マルチモード通信に対応し、他方は、第2通信バンド群におけるマルチバンド/マルチモード通信に対応する。高周波モジュール11では、2組の構成を同時に動作させることにより、第1周波数バンド群および第2周波数バンド群から1つずつ選択される2つの周波数バンドを同時に使用して、キャリアアグリゲーションによる通信を行うことができる。
 (第3の実施の形態)
 第3の実施の形態に係る高周波モジュールは、第1通信バンド群および第2通信バンド群からそれぞれ1つずつ選択される2つの通信バンドを同時に使用して通信を行う、いわゆるキャリアアグリゲーション通信に対応する高周波モジュールである。
 図3Bは、第3の実施の形態に係る高周波モジュール12の構成の一例を示す回路図である。図3Bでは、高周波モジュール12とともに、増幅器21a、21b、22a、22b、スイッチ182a、182bおよびRF信号処理回路32を示している。
 図3Bに示されるように、高周波モジュール12は、図1の高周波モジュール10に第3スイッチ181を追加した構成を2組有している。図3Bでは、高周波モジュール12の構成要素を、組を区別する添え字aまたはbを付した符号で示している。なお、2つの組で共通する事項の説明においては、添え字a、bを省略した符号で構成要素を参照することがある。以下、高周波モジュール12について高周波モジュール10と異なる点を中心に説明する。
 第3スイッチ181は、第4共通端子S9と、第4共通端子S9と電気的に接続される第7被選択端子S10および第8被選択端子S11とを有する。第3スイッチ181は、第4共通端子S9と第7被選択端子S10との接続および第4共通端子S7と第8被選択端子S11との接続を切り替える。
 第1信号経路P1の出力端は第7被選択端子S10と接続される。第2信号経路P2の出力端は第8被選択端子S11と接続される。
 第6出力端子Rx6は第4共通端子S9と接続される。第7出力端子Rx7は第3信号経路P3の出力端である。第6出力端子Rx6は、高周波モジュール12の外部にあるスイッチ182を介して高周波モジュール12の外部にある増幅器21と接続される。第7出力端子Rx7は、高周波モジュール12の外部にある増幅器22と接続される。増幅器21は第1低雑音増幅器の一例であり、増幅器22は第2低雑音増幅器の一例である。
 高周波モジュール12によれば、第3スイッチ181および高周波モジュール12の外部にあるスイッチ182の切り替えにより、高周波モジュール10に対応する回路を構成できるので、高周波モジュール10と同等の効果が得られる。
 また、高周波モジュール11と同じく、内部LNAである第1増幅器152と外部LNAである増幅器21とを直列に接続する回路構成が可能なので、高周波モジュール10と比べて、より高い増幅レベルをもつRF受信信号に対応できる。
 さらには、高周波モジュール10の第3出力端子Rx3と同じく、第3スイッチ181を経由せずに増幅器22と第1スイッチ151とを接続できる第7出力端子Rx7を設けるので、挿入損失の小さい回路構成において外部LNAを使用することができる。
 (第4の実施の形態)
 第4の実施の形態では、前述した高周波モジュールを備える通信装置について説明する。
 図4は、第4の実施の形態に係る通信装置1の機能的な構成の一例を示すブロック図である。図4に示されるように、通信装置1は、フロントエンド回路10、増幅器20、RF信号処理回路30、およびベースバンド信号処理回路40を備える。増幅器20は、低雑音増幅器であってもよい。フロントエンド回路10は、例えば、第1の実施の形態に係る高周波モジュール10で構成されてもよい。
 増幅器20は高周波モジュール10から独立して設けられていてもよい。増幅器20を高周波モジュール10の外部に設けることにより、RF信号処理回路30の特性に応じて、最適な性能を発揮可能な通信装置1を構成することができる。
 以下では、便宜のため、フロントエンド回路10と高周波モジュール10とを同じ符号で参照する。また、信号端子と信号端子を介して伝送される信号とを同じ符号で参照する。
 フロントエンド回路10は、RF信号処理回路30から送信RF信号Txを受信し、電力増幅器により増幅してアンテナ50へ出力する。また、アンテナ50からRF受信信号を受信し、増幅されたRF受信信号Rx1、減衰されたRF受信信号Rx2、および増幅も減衰もなされていないRF受信信号Rx3のうち、1つのRF受信信号を選択的に出力する。例えば、RF受信信号Rx1およびRF受信信号Rx2は、直接、RF信号処理回路30へ供給され、RF受信信号Rx3は、増幅器20で増幅されて、RF信号処理回路30へ供給されてもよい。
 RF信号処理回路30は、フロントエンド回路10から取得したRF受信信号の強度を示すモニタ信号MONに応じて、RF受信信号Rx1、Rx2、Rx3のうちのいずれを出力するかを指定する制御信号CTLをフロントエンド回路10へ供給してもよい。
 RF信号処理回路30は、ベースバンド信号処理回路40で生成された送信信号を送信RF信号Txに変換し、フロントエンド回路10へ供給する。当該変換は、信号の変調およびアップコンバートを含んでもよい。また、フロントエンド回路10から受信したRF受信信号Rx1、Rx2、Rx3を受信信号に変換し、ベースバンド信号処理回路40へ供給する。当該変換は、信号の復調およびダウンコンバートを含んでもよい。RF信号処理回路30は、高周波集積回路(RFIC)チップで構成されてもよい。
 ベースバンド信号処理回路40は、応用装置/応用ソフトウェアで生成された送信データを送信信号に変換し、RF信号処理回路30へ供給する。当該変換は、データの圧縮、多重化、誤り訂正符号の付加を含んでもよい。また、RF信号処理回路30から受信した受信信号を受信データに変換し、応用装置/応用ソフトウェアへ供給する。当該変換は、データの伸長、多重分離、誤り訂正を含んでもよい。ベースバンド信号処理回路40は、ベースバンド集積回路(BBIC)チップで構成されてもよい。
 応用装置/応用ソフトウェアは、送信データおよび受信データを用いて、音声通話や画像表示などの応用動作を行う。
 通信装置1によれば、フロントエンド回路10に、汎用性に優れた高周波モジュール10を用いることにより、例えば、RF信号処理回路30の特性に応じて最適な受信性能を発揮する通信装置1が得られる。
 以上、本発明の実施の形態に係る信号伝送回路、高周波モジュールおよび通信装置について説明したが、本発明は、個々の実施の形態には限定されない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つ又は複数の態様の範囲内に含まれてもよい。
 (まとめ)
 本発明の一態様に係る高周波モジュールは、RF受信信号が入力される第1共通端子と、前記第1共通端子と電気的に接続される第1被選択端子および第2被選択端子とを有し、前記第1共通端子と前記第1被選択端子との接続および前記第1共通端子と前記第2被選択端子との接続を切り替える第1スイッチと、前記RF受信信号を増幅する低雑音増幅器と、前記第1被選択端子と接続され、前記低雑音増幅器を経由する第1信号経路と、前記第2被選択端子と接続され、前記低雑音増幅器を経由しない第2信号経路と、前記第1信号経路の出力端子であり、前記増幅されたRF受信信号をRF信号処理回路に出力する第1出力端子と、前記第1出力端子と異なる出力端子であって、前記第2信号経路の出力端子であり、前記RF受信信号を前記RF信号処理回路に出力する第2出力端子と、を備える。
 この構成によれば、低雑音増幅器を経由する第1信号経路および低雑音増幅器を経由しない第2信号経路を、互いに異なる信号端子である第1出力端子および第2出力端子を介してRF信号処理回路にそれぞれ接続している。これにより、出力端子とつながる外部回路を複雑にしなくとも、各異なる増幅レベルをもつ複数のRF受信信号に対応することが可能な高周波モジュールが得られる。
 また、前記高周波モジュールは、減衰器を有し、前記第2信号経路は、前記減衰器を経由してもよい。
 この構成によれば、増幅だけでなく、減衰によって調整された増幅レベルをもつ複数のRF受信信号に対応することが可能な高周波モジュールが得られる。
 また、前記高周波モジュールは、前記第1出力端子および前記第2出力端子と異なる第3出力端子と、第3信号経路と、を有し、前記第1スイッチは、前記第1共通端子と電気的に接続される第3被選択端子を有し、前記第1共通端子と前記第1被選択端子との接続、前記第1共通端子と前記第2被選択端子との接続、および前記第1共通端子と前記第3被選択端子との接続を切り替え、前記第3信号経路は、前記第3被選択端子と接続され、前記低雑音増幅器および前記減衰器のいずれも経由しないスルーパスの信号経路であるとしてもよい。
 この構成によれば、増幅および減衰によって調整されたる増幅レベルをもつRF受信信号に加えて、増幅も減衰もなされていない当初の増幅レベルをもつRF受信信号に対応することが可能な高周波モジュールが得られる。
 また、前記第1出力端子および前記第2出力端子は、前記高周波モジュールの外部にある低雑音増幅器と接続されておらず、前記第3出力端子は、前記高周波モジュールの外部にある低雑音増幅器と接続されているとしてもよい。
 この構成によれば、外部の低雑音増幅器と接続しない場合は第1出力端子または第2出力端子を利用し、外部の低雑音増幅器と接続する場合は第3出力端子を利用することができる。そのため、外部の低雑音増幅器をバイパスする経路を設けて、外部の低雑音増幅器を接続する場合としない場合とを切り替える必要がない。その結果、出力端子とつながる外部回路を複雑にしなくとも、各異なる増幅レベルをもつ複数のRF受信信号に対応することが可能な高周波モジュールが得られる。
 本発明の一態様に係る高周波モジュールは、RF受信信号が入力される第1共通端子と、前記第1共通端子と電気的に接続される第1被選択端子、第2被選択端子および第3被選択端子とを有し、前記第1共通端子と前記第1被選択端子との接続、前記第1共通端子と前記第2被選択端子との接続、および前記第1共通端子と前記第3被選択端子との接続を切り替える第1スイッチと、第2共通端子および第3共通端子と、前記第2共通端子および前記第3共通端子と電気的に接続される第4被選択端子、第5被選択端子および第6被選択端子とを有し、前記第2共通端子と前記第4被選択端子との接続、前記第2共通端子と前記第5被選択端子との接続、前記第2共通端子と前記第6被選択端子との接続、前記第3共通端子と前記第4被選択端子との接続、前記第3共通端子と前記第5被選択端子との接続および前記第3共通端子と前記第6被選択端子との接続を切り替える第2スイッチと、前記RF受信信号を増幅する低雑音増幅器と、前記RF受信信号を減衰させる減衰器と、入力端が前記第1被選択端子と接続され、出力端が前記第4被選択端子と接続され、前記低雑音増幅器を経由する第1信号経路と、入力端が前記第2被選択端子と接続され、出力端が前記第5被選択端子と接続され、前記減衰器を経由する第2信号経路と、入力端が前記第3被選択端子と接続され、出力端が前記第6被選択端子と接続され、前記低雑音増幅器および前記減衰器のいずれも経由しない第3信号経路と、前記第2共通端子に接続され、前記第2スイッチの切り替えに応じて、前記増幅されたRF受信信号、前記減衰されたRF受信信号、および前記低雑音増幅器および前記減衰器のいずれも経由しないスルーパスの前記RF受信信号のうちの1の受信信号を、RF信号処理回路に出力する第4出力端子と、前記第4出力端子と異なる出力端子であって、前記第3共通端子に接続され、前記第2スイッチの切り替えに応じて、前記増幅されたRF受信信号、前記減衰されたRF受信信号、および前記低雑音増幅器および前記減衰器のいずれも経由しないスルーパスの前記RF受信信号のうちの1の受信信号を前記RF信号処理回路に出力する第5出力端子と、を備え、前記第4出力端子は、前記高周波モジュールの外部にある低雑音増幅器と接続されておらず、前記第5出力端子は、前記高周波モジュールの外部にある低雑音増幅器と接続されている。
 この構成によれば、低雑音増幅器を経由する第1信号経路および低雑音増幅器を経由しない第2信号経路を、互いに異なる信号端子である第4出力端子および第5出力端子を介してRF信号処理回路にそれぞれ接続している。これにより、出力端子とつながる外部回路を複雑にしなくとも、各異なる増幅レベルをもつ複数のRF受信信号に対応することが可能な高周波モジュールが得られる。
 本発明の一態様に係る高周波モジュールは、RF受信信号が入力される第1共通端子と、前記第1共通端子と電気的に接続される第1被選択端子、第2被選択端子および第3被選択端子とを有し、前記第1共通端子と前記第1被選択端子との接続、前記第1共通端子と前記第2被選択端子との接続、および前記第1共通端子と前記第3被選択端子との接続を切り替える第1スイッチと、第4共通端子と、前記第4共通端子と電気的に接続される第7被選択端子および第8被選択端子とを有し、前記第4共通端子と前記第7被選択端子との接続および前記第4共通端子と前記第8被選択端子との接続を切り替える第3スイッチと、前記RF受信信号を増幅する低雑音増幅器と、前記RF受信信号を減衰させる減衰器と、入力端が前記第1被選択端子と接続され、出力端が前記第7被選択端子と接続され、前記低雑音増幅器を経由する第1信号経路と、入力端が前記第2被選択端子と接続され、出力端が前記第8被選択端子と接続され、前記減衰器を経由する第2信号経路と、入力端が前記第3被選択端子と接続され、前記低雑音増幅器および前記減衰器のいずれも経由しない第3信号経路と、前記第4共通端子に接続され、前記第3スイッチの切り替えに応じて、前記増幅されたRF受信信号および前記減衰されたRF受信信号のうちの1の受信信号を、RF信号処理回路に出力する第6出力端子と、前記第6出力端子と異なる出力端子であって、前記第3信号経路の他端に接続され、前記低雑音増幅器および前記減衰器のいずれも経由しないスルーパスの前記RF受信信号を前記RF信号処理回路に出力する第7出力端子と、を備え、前記第6出力端子は、前記高周波モジュールの外部にあるスイッチを介して前記高周波モジュールの外部にある第1低雑音増幅器と接続され、前記第7出力端子は、前記高周波モジュールの外部にある第2低雑音増幅器と接続されている。
 この構成によれば、低雑音増幅器を経由する第1信号経路および低雑音増幅器を経由しない第2信号経路を、互いに異なる信号端子である第7出力端子および第8出力端子を介してRF信号処理回路にそれぞれ接続している。これにより、出力端子とつながる外部回路を複雑にしなくとも、各異なる増幅レベルをもつ複数のRF受信信号に対応することが可能な高周波モジュールが得られる。
 また、前記高周波モジュールと、前記高周波モジュールの外部にある前記低雑音増幅器と、前記高周波モジュールからRF受信信号が供給される前記RF信号処理回路と、を備える通信装置。
 この構成によれば、高周波モジュールの特徴に基づいて、高周波モジュールの出力端子とつながる外部回路を複雑にしなくとも、各異なる増幅レベルをもつ複数のRF受信信号に対応することが可能な通信装置が得られる。
 本発明は、信号伝送回路および高周波モジュールとして、各種の通信装置に広く利用できる。
  1  通信装置
  10  フロントエンド回路(高周波モジュール)
  11、12  高周波モジュール
  20、20a、20b、21a、21b、22a、22b  増幅器(低雑音増幅器)
  30、31、32  RF信号処理回路
  40  ベースバンド信号処理回路
  50  アンテナ
  110、110a、110b  電力増幅器(PA)
  111、111a、111b  送信スイッチ
  120、120a、120b  受信スイッチ
  121、121a、121b、122、122a、122b、123、123a、123b  デュプレクサ
  130、131  アンテナスイッチ
  140  方向性結合器
  150、150a、150b、160、170  信号伝送回路
  151、151a、151b、161  第1スイッチ
  152、152a、152b、162  第1増幅器(低雑音増幅器)
  153、153a、153b、173  減衰器
  164  スイッチ
  175  フューズ
  180a、180b  第2スイッチ
  181a、181b  第3スイッチ
  182a、182b  スイッチ
  190、191  制御回路
  900  増幅モジュール
  910、940  スイッチ
  921、922、923  フィルタ
  924  バイパス経路
  931、932、933  増幅器
  950  FEM(フロントエンドモジュール)
  960  RFIC(高周波集積回路)
  P1、P1a、P1b、P2、P2a、P2b、P3、P3a、P3b  信号経路
  Rx1  第1出力端子
  Rx2  第2出力端子
  Rx3  第3出力端子
  Rx4  第4出力端子
  Rx5  第5出力端子
  Rx6  第6出力端子
  Rx7  第7出力端子

Claims (7)

  1.  RF受信信号が入力される第1共通端子と、前記第1共通端子と電気的に接続される第1被選択端子および第2被選択端子とを有し、前記第1共通端子と前記第1被選択端子との接続および前記第1共通端子と前記第2被選択端子との接続を切り替える第1スイッチと、
     前記RF受信信号を増幅する低雑音増幅器と、
     前記第1被選択端子と接続され、前記低雑音増幅器を経由する第1信号経路と、
     前記第2被選択端子と接続され、前記低雑音増幅器を経由しない第2信号経路と、
     前記第1信号経路の出力端子であり、前記増幅されたRF受信信号をRF信号処理回路に出力する第1出力端子と、
     前記第1出力端子と異なる出力端子であって、前記第2信号経路の出力端子であり、前記RF受信信号を前記RF信号処理回路に出力する第2出力端子と、
     を備える高周波モジュール。
  2.  前記高周波モジュールは、減衰器を有し、
     前記第2信号経路は、前記減衰器を経由する、請求項1に記載の高周波モジュール。
  3.  前記高周波モジュールは、前記第1出力端子および前記第2出力端子と異なる第3出力端子と、第3信号経路と、を有し、
     前記第1スイッチは、前記第1共通端子と電気的に接続される第3被選択端子を有し、前記第1共通端子と前記第1被選択端子との接続、前記第1共通端子と前記第2被選択端子との接続、および前記第1共通端子と前記第3被選択端子との接続を切り替え、
     前記第3信号経路は、前記第3被選択端子と接続され、前記低雑音増幅器および前記減衰器のいずれも経由しないスルーパスの信号経路である、請求項2に記載の高周波モジュール。
  4.  前記第1出力端子および前記第2出力端子は、前記高周波モジュールの外部にある低雑音増幅器と接続されておらず、
     前記第3出力端子は、前記高周波モジュールの外部にある低雑音増幅器と接続されている、請求項3に記載の高周波モジュール。
  5.  RF受信信号が入力される第1共通端子と、前記第1共通端子と電気的に接続される第1被選択端子、第2被選択端子および第3被選択端子とを有し、前記第1共通端子と前記第1被選択端子との接続、前記第1共通端子と前記第2被選択端子との接続、および前記第1共通端子と前記第3被選択端子との接続を切り替える第1スイッチと、
     第2共通端子および第3共通端子と、前記第2共通端子および前記第3共通端子と電気的に接続される第4被選択端子、第5被選択端子および第6被選択端子とを有し、前記第2共通端子と前記第4被選択端子との接続、前記第2共通端子と前記第5被選択端子との接続、前記第2共通端子と前記第6被選択端子との接続、前記第3共通端子と前記第4被選択端子との接続、および前記第3共通端子と前記第5被選択端子との接続および前記第3共通端子と前記第6被選択端子との接続を切り替える第2スイッチと、
     前記RF受信信号を増幅する低雑音増幅器と、
     前記RF受信信号を減衰させる減衰器と、
     入力端が前記第1被選択端子と接続され、出力端が前記第4被選択端子と接続され、前記低雑音増幅器を経由する第1信号経路と、
     入力端が前記第2被選択端子と接続され、出力端が前記第5被選択端子と接続され、前記減衰器を経由する第2信号経路と、
     入力端が前記第3被選択端子と接続され、出力端が前記第6被選択端子と接続され、前記低雑音増幅器および前記減衰器のいずれも経由しない第3信号経路と、
     前記第2共通端子に接続され、前記第2スイッチの切り替えに応じて、前記増幅されたRF受信信号、前記減衰されたRF受信信号、および前記低雑音増幅器および前記減衰器のいずれも経由しないスルーパスの前記RF受信信号のうちの1の受信信号を、RF信号処理回路に出力する第4出力端子と、
     前記第4出力端子と異なる出力端子であって、前記第3共通端子に接続され、前記第2スイッチの切り替えに応じて、前記増幅されたRF受信信号、前記減衰されたRF受信信号、および前記低雑音増幅器および前記減衰器のいずれも経由しないスルーパスの前記RF受信信号のうちの1の受信信号を前記RF信号処理回路に出力する第5出力端子と、を備え、
     前記第4出力端子は、前記高周波モジュールの外部にある低雑音増幅器と接続されておらず、
     前記第5出力端子は、前記高周波モジュールの外部にある低雑音増幅器と接続されている、高周波モジュール。
  6.  RF受信信号が入力される第1共通端子と、前記第1共通端子と電気的に接続される第1被選択端子、第2被選択端子および第3被選択端子とを有し、前記第1共通端子と前記第1被選択端子との接続、前記第1共通端子と前記第2被選択端子との接続、および前記第1共通端子と前記第3被選択端子との接続を切り替える第1スイッチと、
     第4共通端子と、前記第4共通端子と電気的に接続される第7被選択端子および第8被選択端子とを有し、前記第4共通端子と前記第7被選択端子との接続および前記第4共通端子と前記第8被選択端子との接続を切り替える第3スイッチと、
     前記RF受信信号を増幅する低雑音増幅器と、
     前記RF受信信号を減衰させる減衰器と、
     入力端が前記第1被選択端子と接続され、出力端が前記第7被選択端子と接続され、前記低雑音増幅器を経由する第1信号経路と、
     入力端が前記第2被選択端子と接続され、出力端が前記第8被選択端子と接続され、前記減衰器を経由する第2信号経路と、
     入力端が前記第3被選択端子と接続され、出力記低雑音増幅器および前記減衰器のいずれも経由しない第3信号経路と、
     前記第4共通端子に接続され、前記第3スイッチの切り替えに応じて、前記増幅されたRF受信信号および前記減衰されたRF受信信号のうちの1の受信信号を、RF信号処理回路に出力する第6出力端子と、
     前記第6出力端子と異なる出力端子であって、前記第3信号経路の他端に接続され、前記低雑音増幅器および前記減衰器のいずれも経由しないスルーパスの前記RF受信信号を前記RF信号処理回路に出力する第7出力端子と、を備え、
     前記第6出力端子は、前記高周波モジュールの外部にあるスイッチを介して前記高周波モジュールの外部にある第1低雑音増幅器と接続され、
     前記第7出力端子は、前記高周波モジュールの外部にある第2低雑音増幅器と接続されている、高周波モジュール。
  7.  請求項4から6のいずれか1項に記載の高周波モジュールと、
     前記高周波モジュールの外部にある前記低雑音増幅器と、
     前記高周波モジュールからRF受信信号が供給される前記RF信号処理回路と、
     を備える通信装置。
PCT/JP2018/031367 2017-08-28 2018-08-24 高周波モジュールおよび通信装置 WO2019044704A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017163081 2017-08-28
JP2017-163081 2017-08-28

Publications (1)

Publication Number Publication Date
WO2019044704A1 true WO2019044704A1 (ja) 2019-03-07

Family

ID=65527366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031367 WO2019044704A1 (ja) 2017-08-28 2018-08-24 高周波モジュールおよび通信装置

Country Status (1)

Country Link
WO (1) WO2019044704A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039083A1 (ja) * 2019-08-28 2021-03-04 株式会社村田製作所 高周波モジュール及び通信装置
WO2022034818A1 (ja) * 2020-08-13 2022-02-17 株式会社村田製作所 高周波モジュール

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084300A (ja) * 1996-09-10 1998-03-31 Matsushita Electric Ind Co Ltd 高周波フロントエンド回路
JP2012156878A (ja) * 2011-01-27 2012-08-16 Japan Radio Co Ltd 過入力保護回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084300A (ja) * 1996-09-10 1998-03-31 Matsushita Electric Ind Co Ltd 高周波フロントエンド回路
JP2012156878A (ja) * 2011-01-27 2012-08-16 Japan Radio Co Ltd 過入力保護回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039083A1 (ja) * 2019-08-28 2021-03-04 株式会社村田製作所 高周波モジュール及び通信装置
US11942973B2 (en) 2019-08-28 2024-03-26 Murata Manufacturing Co., Ltd. Radio frequency module and communication device
WO2022034818A1 (ja) * 2020-08-13 2022-02-17 株式会社村田製作所 高周波モジュール

Similar Documents

Publication Publication Date Title
US10381989B2 (en) High-frequency circuit, front end module, and communication apparatus
JP6950110B2 (ja) 受信システム、無線周波数モジュール及び無線デバイス
US10236925B2 (en) High frequency front-end circuit and communication device
WO2017077852A1 (ja) 分波装置及びその設計方法
CN107809267B (zh) 高频模块及通信装置
JP6294273B2 (ja) 無線周波数モジュール、無線デバイス及び受信インタフェイスモジュール
CN114337693B (zh) 射频L-PA Mid器件、射频收发系统和通信设备
US11349510B2 (en) Radio frequency front end module and communication device
JP2017208656A (ja) スイッチモジュール及び高周波モジュール
WO2022062584A1 (zh) 射频drx器件、射频收发系统和通信设备
JP5638468B2 (ja) 信号切替装置
KR102297728B1 (ko) 고주파 신호 송수신 회로
US10847306B2 (en) High-frequency module
WO2019044704A1 (ja) 高周波モジュールおよび通信装置
US11581908B2 (en) Radio frequency module and communication device
JP6428184B2 (ja) 高周波フロントエンド回路、高周波モジュール
US20220311455A1 (en) Radio-frequency circuit and communication device
CN113196675B (zh) 高频模块和通信装置
JP2017188919A (ja) フレキシブルな帯域引き回しを備えたダイバーシティ受信器フロントエンドシステム
JP2022170177A (ja) 電力増幅モジュール
CN112929039A (zh) 一种高频模块及通信装置
US20220173765A1 (en) Radio-frequency circuit and communication device
US11804863B2 (en) Radio-frequency signal transmission/reception circuit and radio-frequency signal transmission/reception device
US20240072741A1 (en) Radio-frequency module
WO2019021841A1 (ja) 高周波回路及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP