WO2019044372A1 - Method for producing zirconium phosphomolybdate fine particles - Google Patents

Method for producing zirconium phosphomolybdate fine particles Download PDF

Info

Publication number
WO2019044372A1
WO2019044372A1 PCT/JP2018/029096 JP2018029096W WO2019044372A1 WO 2019044372 A1 WO2019044372 A1 WO 2019044372A1 JP 2018029096 W JP2018029096 W JP 2018029096W WO 2019044372 A1 WO2019044372 A1 WO 2019044372A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium
water
soluble
aqueous solution
phase
Prior art date
Application number
PCT/JP2018/029096
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 博和
忠之 伊左治
淳一 中島
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2019044372A1 publication Critical patent/WO2019044372A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites

Definitions

  • the present invention relates to a method of producing zirconium phosphomolybdate particles.
  • non-crystalline fine particle as a filler of underfilling is used. That is, a circuit mounted on a base material by wire bonding, flip chip bonding or the like is likely to be broken by a relatively small force because it is often fragile to external force or stress. Under the circumstances, it has been practiced to infiltrate a liquid curable resin (epoxy resin or the like) called an underfill between substrate parts to secure connection reliability.
  • a liquid curable resin epoxy resin or the like
  • an underfill between substrate parts to secure connection reliability.
  • an inorganic substance with small CTE amorphous fine particles for the purpose of suppressing such thermal expansion and contraction of the resin Etc.
  • the CTE of the sealing material and the material for forming the underfill can be effectively reduced, further Improvement was desired.
  • Zr 2 MoP 2 O 12 which is one of the formation phases of zirconium phosphomolybdate (sometimes referred to as zirconium molybdate phosphate), is known as a material having a high negative CTE, It is conceivable to use as a filler.
  • the molar ratio of ZrO 2 , MoO 3 and P 2 O 5 (ZrO 2 : MoO 3 : P 2 O 5 ) is mixed and fired at 2: 1 to 1.2: 1 to 1.2. It is disclosed that a sintered body of Zr 2 MoP 2 O 12 is produced by a solid phase reaction method (see, for example, Patent Document 1). Further, by a solid phase reaction method of firing a mixture of oxide material of a predetermined allocation amount is disclosed that it is possible to synthesize a group of compounds containing Zr 2 MoP 2 O 12 (e.g., see Non-Patent Document 1).
  • a Zr 2 MoP 2 O 12 powder can be synthesized by a solid phase reaction method using ZrO 2 , (NH 4 ) H 2 PO 4 and a 20 mol% excess MoO 3 as a starting material (for example, Non-Patent Document 2).
  • Patent Document 2 a compound group including Zr 2 MoP 2 O 12 is disclosed, and a synthesis example by a solid phase reaction method using various oxides and (NH 4 ) H 2 PO 4 as starting materials is described (for example, Patent Document 2).
  • Patent Document 2 a precipitate obtained by heating a mixed aqueous solution of oxychloride, nitrate and the like to 80 ° C. to 100 ° C. is calcined (liquid phase reaction method) to contain Zr 2 MoP 2 O 12 It is stated that there is a possibility that compounds can be synthesized.
  • Patent Document 1 since the form of the obtained product is not a powder, it can not be used as a filler for reducing the CTE of the composite resin. Moreover, in the method using the solid phase reaction method such as Patent Document 1, Non-patent Document 1 and Non-Patent Document 2, there is a background that the highly pure Zr 2 MoP 2 O 12 can not be produced.
  • Patent Document 2 Although the possibility of the liquid phase reaction method is suggested in Patent Document 2, no specific method has been studied. In particular, oxychlorides and nitrates are used as raw materials in Patent Document 2, but since there is a difference in water solubility among the raw materials, the precipitate obtained by heating the mixed aqueous solution to 80 ° C. to 100 ° C. There was a risk of deviation from the composition. In this case, highly pure Zr 2 MoP 2 O 12 can not be obtained.
  • the present invention has been made in view of these circumstances, and it is desirable to use a synthetic method using a water-soluble raw material to make a highly pure Zr 2 MoP 2 O 12 phase advantageous for reducing the CTE of a composite resin. It is an object of the present invention to provide the method of producing zirconium phosphomolybdate fine particles having
  • the present inventors mixed water-soluble zirconium salt, water-soluble molybdenum salt and water-soluble phosphate, and the mixture after mixing was a zirconium atom: molybdenum atom:
  • the Zr 2 MoP 2 O 12 phase is obtained by calcination in a molar ratio of phosphorus atoms (Zr: Mo: P) of 2: x: 2-y (x ⁇ 1, 0 ⁇ y ⁇ 0.5). It has been found that zirconium phosphomolybdate fine particles having high purity can be produced.
  • the present invention relates to the method for producing zirconium phosphomolybdate fine particles described in any one of the following first to seventh aspects.
  • the first aspect includes a first step of mixing a water-soluble zirconium salt, a water-soluble molybdenum salt and a water-soluble phosphate, and a third step of firing the mixture after the mixing at a temperature of 900 ° C. or more and less than 1200 ° C.
  • the molar ratio of zirconium atom: molybdenum atom: phosphorus atom (Zr: Mo: P) in the mixture is 2: x: 2-y (x ⁇ 1, 0 ⁇ y ⁇ 0. 5)
  • the method for producing zirconium phosphomolybdate fine particles characterized in that the above-mentioned calcination is carried out.
  • the crystallite diameter in the direction perpendicular to the (121) plane of the Zr 2 MoP 2 O 12 phase, which is the generation phase of the zirconium phosphomolybdate fine particles is less than 80 nm. It is a manufacturing method of the zirconium phosphomolybdate microparticles
  • a third aspect is a method for producing zirconium phosphomolybdate fine particles according to the first aspect or the second aspect, wherein an ammonium salt of zirconium is used as the water-soluble zirconium salt.
  • a fourth aspect is the method for producing zirconium phosphomolybdate microparticles according to the first aspect or the second aspect, characterized in that an ammonium salt of molybdenum is used as the water-soluble molybdenum salt.
  • a fifth aspect is the method for producing zirconium phosphomolybdate microparticles according to the first aspect or the second aspect, characterized in that an ammonium salt of phosphoric acid is used as the water-soluble phosphate.
  • the sixth aspect is that, in the second step, the mixed aqueous solution containing the water-soluble zirconium salt, the water-soluble molybdenum salt and the water-soluble phosphate in the first step is dried in the second step.
  • B. calcining at a temperature less than ° C. is a method for producing zirconium phosphomolybdate particles according to any one of the first to fifth aspects.
  • the first method of firing the mixture obtained by spray drying at less than 0 ° C. the molar ratio (Zr: Mo: P) is 2: x: 2-y (x ⁇ 1, 0 ⁇ y ⁇ 0.5)
  • the second molar ratio (Zr: Mo: P) is 2: 2: x: 2-y (x ⁇ 1, 0 ⁇ y ⁇ ).
  • zirconium phosphomolybdate fine particles having a high purity of Zr 2 MoP 2 O 12 phase which is advantageous for reducing CTE of composite resin are manufactured.
  • the zirconium phosphomolybdate fine particles obtained by this production method can be suitably used as a filler for a semiconductor sealing material or underfilling.
  • the method for producing zirconium phosphomolybdate fine particles according to the present invention comprises the first step of mixing the water-soluble zirconium salt, the water-soluble molybdenum salt and the water-soluble phosphate, and the mixture after mixing at a temperature of 900 ° C. or more and less than 1200 ° C.
  • the molar ratio (Zr: Mo: P) of zirconium atom: molybdenum atom: phosphorus atom in the mixture is 2: x: 2-y (x ⁇ 1, in the third step) Baking is performed in the range of 0 ⁇ y ⁇ 0.5).
  • Examples of the formation phase of zirconium phosphomolybdate include a Zr 2 P 2 O 9 phase and a Zr 2 MoP 2 O 12 phase. Both the Zr 2 P 2 O 9 phase and the Zr 2 MoP 2 O 12 phase have negative CTEs, but when comparing the two , the Zr 2 MoP 2 O 12 phase has a larger negative degree (smaller CTE) . Therefore, from the viewpoint of the effect of reducing the CTE of the composite resin by adding zirconium phosphomolybdate fine particles (CTE reduction effect), Zr 2 P mixed in the Zr 2 MoP 2 O 12 phase in the zirconium phosphomolybdate formation phase It is desirable that the proportion of 2 O 9 phase be small.
  • highly pure zirconium phosphomolybdate of the Zr 2 MoP 2 O 12 phase can be obtained.
  • the ratio of the X-ray diffraction peak intensity I ⁇ of the (002) plane of the Zr 2 P 2 O 9 phase to the X-ray diffraction peak intensity I ⁇ belonging to the (121) plane of the Zr 2 MoP 2 O 12 phase Zirconium phosphomolybdate having an I ⁇ / I ⁇ of less than 0.05, and even less than 0.01 can be obtained.
  • the zirconium phosphomolybdate obtained by the conventional manufacturing method is generally a mixture of the Zr 2 P 2 O 9 phase and the Zr 2 MoP 2 O 12 phase, but the phosphorus molybdenum obtained by the manufacturing method of the present invention According to the acid zirconium, it is possible to obtain zirconium phosphomolybdate having a high purity of the Zr 2 MoP 2 O 12 phase in which the ratio I ⁇ / I ⁇ is less than 0.05.
  • the diffraction peak is, for example, a database “PDF-2” of ICDD (international centre for differential data), and the Zr 2 MoP 2 O 12 phase is a PDF No. 01-078-5687, Zr 2 P 2 O 9 phase is PDF No. Attribution of the formation phase can be performed with reference to 01-070-0888.
  • the production method according to the present invention has a first step of mixing a water-soluble zirconium salt, a water-soluble molybdenum salt and a water-soluble phosphate.
  • the solid material which is the above-mentioned salt can be dissolved in a predetermined solution as it is to obtain the mixed aqueous solution. It is preferable to mix the above aqueous solutions after the above-mentioned salts have been previously made into aqueous solutions.
  • the water-soluble zirconium salt is, for example, a zirconium salt which is dissolved in water at 25 ° C. in an amount of 1% by mass or more, and includes zirconium ammonium carbonate, zirconyl acetate, zirconyl chloride, and zirconyl nitrate. These can be used alone or as a mixture of two or more as long as there is no problem with compatibility. However, from the viewpoint of the stability of the mixed aqueous solution, it is preferable to use an ammonium salt (zirconium ammonium carbonate) alone. The ammonium salt also ensures the solubility in the mixed aqueous solution as compared to other strong acid salts.
  • the water-soluble molybdenum salt is, for example, a molybdenum salt which dissolves in water at 25 ° C. in an amount of 1% by mass or more, hexaammonium heptamolybdate and its hydrate, sodium molybdate and its hydrate, and potassium molybdate It can be mentioned. These can be used alone or as a mixture of two or more as long as there is no problem with compatibility.
  • Molybunden chloride is a compound with good water solubility, but it is unstable and may release hydrogen chloride gradually in the air to be decomposed.
  • a filler When a filler is used in an electronic device application, it is desirable that the filler does not contain a chloride or an alkali metal. From the viewpoint of containing no alkali element, hexaammonium heptamolybdate tetrahydrate is preferably used. be able to.
  • ammonium salts as in the case of zirconium, the solubility in the mixed aqueous solution is also secured compared to other strong acid salts.
  • the water-soluble phosphate is, for example, a phosphate dissolved in water at 25 ° C. in an amount of 1% by mass or more, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, sodium dihydrogen phosphate, Disodium hydrogen phosphate and trisodium phosphate can be mentioned. These can be used alone or as a mixture of two or more as long as there is no problem with compatibility. As described above, since it is desirable that the filler used in the electronic device application does not contain an alkali metal, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and triammonium phosphate can be preferably used. In the case of an ammonium salt, as in the case of zirconium and molybdenum, the solubility in a mixed aqueous solution is also secured as compared with other strong acid salts.
  • an oxycarboxylic acid such as citric acid or glycolic acid may be added. According to this, it is possible to suppress phase separation and gelation at the time of drying of the mixed aqueous solution, and maintain high uniformity.
  • the mixed aqueous solution containing the water-soluble zirconium salt, the water-soluble molybdenum salt and the water-soluble phosphate in the first step can be dried in the second step.
  • the drying method include spray drying and lyophilization described below. Through such drying, it becomes easy to ensure the mixing uniformity of the zirconium atom, the molybdenum atom and the phosphorus atom together with the subsequent third step.
  • the spray thermal decomposition mentioned later is also mentioned as a method of drying. In this case, the drying in the second step and the pre-baking are performed in the same step.
  • the manufacturing method which concerns on this invention has the 3rd process of baking the mixture after mixing a water soluble zirconium salt, a water soluble molybdenum salt, and a water soluble phosphate at the temperature of 900 degreeC or more and less than 1200 degreeC.
  • the mixture here includes the above-mentioned mixed aqueous solution and a dried product obtained by drying the mixed aqueous solution.
  • the temperature of the mixture in the air or in the oxidizing atmosphere is in the range of 900 ° C. to less than 1200 ° C., preferably in the range of 900 ° C. to less than 1150 ° C.
  • the temperature at the time of firing is above the above temperature, the Zr 2 MoP 2 O 12 phase is thermally decomposed, and there is a possibility that the Zr 2 P 2 O 9 phase may be changed with the sublimation of MoO 3 .
  • the temperature at the time of firing is lower than the above temperature, there is a possibility that the water-soluble zirconium salt, the water-soluble molybdenum salt and the water-soluble phosphate may not sufficiently react with each other. In this case, Zr 2 MoP 2 O 12 It becomes difficult to generate.
  • baking can also be performed in multiple times within said temperature range.
  • a second firing (main firing) may be performed after the first firing, which is the first firing.
  • Each firing time is 0.5 to 20 hours, and may be 1 to 10 hours.
  • pre-baking at a temperature lower than the sublimation temperature of MoO 3 before firing (first firing when firing is performed a plurality of times).
  • pre-baking in the atmosphere or in an oxidizing atmosphere at a temperature of 550 ° C. or more and less than 700 ° C.
  • sublimation of MoO 3 in the next firing step can be suppressed, whereby the produced phase of zirconium phosphomolybdate is produced.
  • the ratio of the Zr 2 P 2 O 9 phase mixed in the Zr 2 MoP 2 O 12 phase can be reduced.
  • the molar ratio of zirconium atom: molybdenum atom: phosphorus atom in the mixture (Zr: Mo: P) is 2: x: 2-y (x ⁇ 1). And 0 ⁇ y ⁇ 0.5).
  • the above molar ratio is realized at the time before firing. .
  • the Zr 2 P 2 O 9 phase is likely to be formed in the produced phase of zirconium phosphomolybdate manufactured.
  • the ZrO 2 phase and the Zr 2 MoP 2 O 12 phase easily become a mixed phase.
  • the molar ratio of zirconium atom: molybdenum atom: phosphorus atom (Zr: Mo: P) in the mixture can be rephrased as the molar ratio of zirconium type atom: molybdenum type atom: phosphorus type atom.
  • zirconium atoms may be substituted with hafnium atoms as long as the CTE reduction effect is obtained.
  • a part of the molybdenum atom may be substituted by a tungsten atom in the range where the CTE reduction effect can be obtained.
  • the third step for example, drying obtained by spray-drying a mixed aqueous solution having a molar ratio (Zr: Mo: P) of 2: x: 2-y (x ⁇ 1, 0 ⁇ y ⁇ 0.5)
  • the first method of firing the substance (mixture) in the above temperature range is used.
  • Spray drying can be carried out in the second step described above.
  • a spray dryer capable of spraying and drying while maintaining a uniform mixing state in an aqueous solution, or a spray drying device according thereto can be used.
  • the temperature atmosphere at the time of drying with a spray dryer or a spray dryer according thereto is 50 ° C. or more and less than 350 ° C., and is equal to or less than the decomposition temperature of the water-soluble zirconium salt, water-soluble molybdenum salt and water-soluble phosphate used. Is preferred.
  • the atmosphere for drying is not particularly limited, and may be in the air, in an oxidizing atmosphere, in a reducing atmosphere, or in an inert atmosphere.
  • the third step for example, it is obtained by freeze-drying an aqueous solution having a molar ratio (Zr: Mo: P) of 2: x: 2-y (x ⁇ 1, 0 ⁇ y ⁇ 0.5).
  • the second method of firing the dried product (mixture) in the above temperature range is used.
  • Lyophilization can be performed in the second step described above. Lyophilization here includes vacuum lyophilization or freeze drying.
  • a refrigerant which can be used by freeze drying a mixed medium of dry ice and methanol, liquid nitrogen and the like can be mentioned.
  • a mixed aqueous solution having a molar ratio (Zr: Mo: P) of 2: x: 2-y (x ⁇ 1, 0 ⁇ y ⁇ 0.5) is sprayed at a predetermined temperature range
  • the third method of thermal decomposition and firing is used.
  • spray pyrolysis the drying in the second step and the calcination are performed in the same step.
  • spray pyrolysis drying and pre-sintering can be simultaneously performed by atomizing a mixed aqueous solution in which water-soluble zirconium salt, water-soluble molybdenum salt and water-soluble phosphate are mixed, and spraying it in a heating furnace.
  • the temperature atmosphere in spray pyrolysis is, for example, 350 ° C. or more and less than 900 ° C. According to this, spray pyrolysis can be suitably performed.
  • X-ray source Cu, voltage: 40 kV, current: 15 mA, step width: 0.02 °, scan rate: 10 ° / min, divergence angle slit (DS) using Rigaku X-ray diffractometer MiniFlex 600 0.625 °, scattering slit (SS); 8.0 mm, light receiving slit (S); OPEN, incident solar slit; 2.5 °, light receiving solar slit; measured at 2.5 °, X-ray diffraction data I got
  • ⁇ X-ray diffraction intensity> The X-ray diffraction data of each sample was subjected to automatic processing for background processing and removal of K ⁇ radiation using analysis software PDXL-2, and the X-ray diffraction intensity was measured.
  • the ratio I ⁇ / I ⁇ of the diffraction peak intensity I ⁇ of the (121) plane was calculated.
  • Preparation Example 2 Preparation of Zirconium Salt Aqueous Solution
  • a zirconium ammonium carbonate aqueous solution (manufactured by Nippon Light Metal Co., Ltd., product name; Baycoat 20, zirconium oxide concentration 19 to 20 mass%) was treated with pure water to a zirconium oxide concentration of 10 mass%. It was diluted to obtain an aqueous solution of zirconium salt.
  • Preparation Example 3 Preparation of Phosphate Aqueous Solution 100 g of diammonium hydrogen phosphate was dissolved in 900 g of pure water to obtain an aqueous phosphate solution.
  • Example 1 Citric acid in a mixed aqueous solution of 141.2 g (0.08 mol as Mo) of the aqueous solution of molybdenum salt obtained in Production Example 1 and 197.1 g (0.16 mol as Zr) of the aqueous solution of zirconium salt obtained in Production Example 2 42 g (0.2 mol) of monohydrate were added. Furthermore, 190.2 g (0.144 mol as P) of the phosphate aqueous solution obtained in Production Example 3 and 281 g of pure water were added to prepare a mixed aqueous solution. The specific gravity of the prepared mixed aqueous solution was 1.07, the pH was 6.6, and the electrical conductivity was 40.0 mS / cm.
  • This mixed aqueous solution was sent using a spray dryer (Palvis Mini Spray GB 210-A, manufactured by Yamato Scientific Co., Ltd.) at an inlet temperature of 210 ° C., a spray pressure of 0.15 MPa and an air volume of 0.55 m 3 / min. It dried on conditions of speed 400g / h, and obtained dry powder.
  • the outlet temperature at this time was 90 ⁇ 5 ° C.
  • 3.0 g of the obtained dry powder is put in a high purity alumina crucible and calcined at 600 ° C. for 4 hours in the atmosphere using an electric furnace, it is then calcined at 900 ° C. for 2 hours and then at 1050 ° C. for 2 hours. By firing, 1.2 g of powder was obtained.
  • the generated phase consisted of a single phase of Zr 2 MoP 2 O 12 , and the intensity ratio I ⁇ / I ⁇ of X-ray diffraction peaks was less than 0.01.
  • Example 2 A powder was obtained in the same manner as in Example 1 except that the main firing at 1050 ° C. was changed to 1150 ° C.
  • the generated phase consisted of a single phase of Zr 2 MoP 2 O 12 , and the intensity ratio I ⁇ / I ⁇ of X-ray diffraction peaks was less than 0.01.
  • the crystallite diameter calculated from the diffraction peak of the Zr 2 MoP 2 O 12 phase (121) surface appearing near 2 ⁇ 19.8 ° was 64 nm.
  • Example 3 A powder was obtained in the same manner as in Example 1 except that the main firing at 1050 ° C. was not performed.
  • the generated phase consisted of a single phase of Zr 2 MoP 2 O 12 , and the intensity ratio I ⁇ / I ⁇ of X-ray diffraction peaks was less than 0.01.
  • the crystallite diameter calculated from the diffraction peak of the Zr 2 MoP 2 O 12 phase (121) surface appearing near 2 ⁇ 19.8 ° was 60 nm.
  • Example 4 Citric acid in a mixed aqueous solution of 141.2 g (0.08 mol as Mo) of the aqueous solution of molybdenum salt obtained in Production Example 1 and 197.1 g (0.16 mol as Zr) of the aqueous solution of zirconium salt obtained in Production Example 2 42 g (0.2 mol) of monohydrate were added. Furthermore, 179.6 g (0.136 mol as P) of the aqueous solution of phosphate obtained in Production Example 3 and 291.6 g of pure water were added to prepare a mixed aqueous solution. The specific gravity of the prepared mixed aqueous solution was 1.07, the pH was 6.8, and the electrical conductivity was 40.0 mS / cm.
  • the mixed aqueous solution was dried by a spray dryer in the same manner as in Example 1 to obtain a dry powder.
  • 3.0 g of the obtained dry powder is put in a high purity alumina crucible and temporarily fired at 600 ° C. for 4 hours in the atmosphere using an electric furnace, and then main firing at 900 ° C. for 2 hours and 1150 ° C. for 2 hours As a result, 1.2 g of powder was obtained.
  • the generated phase consisted of a single phase of Zr 2 MoP 2 O 12 , and the intensity ratio I ⁇ / I ⁇ of X-ray diffraction peaks was less than 0.01.
  • the crystallite diameter calculated from the diffraction peak of the Zr 2 MoP 2 O 12 phase (121) surface appearing near 2 ⁇ 19.8 ° was 71 nm.
  • the mixed aqueous solution was dried by a spray dryer as in Example 1 to obtain a dry powder.
  • 3.0 g of the obtained dry powder is put in a high purity alumina crucible and temporarily fired at 600 ° C. for 4 hours in the atmosphere using an electric furnace, and then main firing at 900 ° C. for 2 hours and 1150 ° C. for 2 hours As a result, 1.2 g of powder was obtained.
  • the generated phase consisted of a single phase of Zr 2 MoP 2 O 12 , and the intensity ratio I ⁇ / I ⁇ of X-ray diffraction peaks was less than 0.01.
  • the crystallite diameter calculated from the diffraction peak of the Zr 2 MoP 2 O 12 phase (121) surface appearing near 2 ⁇ 19.8 ° was 67 nm.
  • Example 6 A mixed aqueous solution of 141.2 g (0.08 mol as Mo) of the aqueous solution of molybdenum salt obtained in Production Example 1 and 197.1 g (0.16 mol as Zr) of the aqueous solution of zirconium salt obtained in Production Example 2
  • a mixed aqueous solution was prepared by adding 190.2 g (0.144 mol as P) of the aqueous phosphate solution obtained in Example 3 and 323 g of pure water.
  • the specific gravity of the prepared mixed aqueous solution was 1.06, the pH was 8.7, and the electrical conductivity was 41.6 mS / cm.
  • the mixed aqueous solution was dried by a spray dryer in the same manner as in Example 1 to obtain a dry powder. 3.0 g of the obtained dry powder is put in a high purity alumina crucible and calcined at 600 ° C. for 4 hours in the atmosphere using an electric furnace, and then calcined at 900 ° C. for 2 hours and 1150 ° C. for 2 hours Thus, 1.5 g of powder was obtained.
  • the generated phase consisted of a single phase of Zr 2 MoP 2 O 12 , and the intensity ratio I ⁇ / I ⁇ of X-ray diffraction peaks was less than 0.01.
  • Example 7 The powder was prepared in the same manner as in Example 1 except that the mixed aqueous solution was put into an eggplant flask and dried under reduced pressure at 10 Torr using a rotary evaporator instead of the method using a spray dryer. Obtained.
  • the generated phase consisted of a single phase of Zr 2 MoP 2 O 12 , and the intensity ratio I ⁇ / I ⁇ of X-ray diffraction peaks was less than 0.01.
  • the crystallite diameter calculated from the diffraction peak of the Zr 2 MoP 2 O 12 phase (121) surface appearing near 2 ⁇ 19.8 ° was 64 nm.
  • Comparative Example 1 A powder was obtained in the same manner as in Example 1 except that the firing conditions after temporary firing were changed to 800 ° C. for 2 hours. When the obtained powder was identified by X-ray diffraction analysis, it was found that it was a mixed phase of the intermediate products ZrP 2 O 7 and Zr 2 MoP 2 O 12 and the firing was insufficient.
  • Comparative Example 2 A powder was obtained in the same manner as in Example 1 except that the main firing at 1050 ° C. was changed to 1200 ° C. The obtained powder was identified by X-ray diffraction analysis, and thermal decomposition proceeded completely to be almost single phase of Zr 2 P 2 O 9 . In addition, MoO 3 generated during thermal decomposition is not detected by X-ray diffractometry because it is sublimated and released out of the system.
  • the mixed aqueous solution was dried by a spray dryer in the same manner as in Example 1 to obtain a dry powder.
  • 3.0 g of the obtained dry powder is put in a high purity alumina crucible and temporarily fired at 600 ° C. for 4 hours in the atmosphere using an electric furnace, and then main firing at 900 ° C. for 2 hours and 1150 ° C. for 2 hours As a result, 1.2 g of powder was obtained.
  • the product phase is a mixed phase of Zr 2 P 2 O 9 and Zr 2 MoP 2 O 12 , and the intensity ratio I ⁇ / I ⁇ of X-ray diffraction peaks is 0. It was 15.
  • the mixed aqueous solution was dried by a spray dryer in the same manner as in Example 1 to obtain a dry powder.
  • 3.0 g of the obtained dry powder is put in a high purity alumina crucible and temporarily fired at 600 ° C. for 4 hours in the atmosphere using an electric furnace, and then main firing at 900 ° C. for 2 hours and 1150 ° C. for 2 hours As a result, 1.2 g of powder was obtained.
  • Comparative Example 5 19.11 g (0.08 mol as Zr) of powdered ammonium zirconium carbonate (containing 51.58% as ZrO 2 ) and 7.06 g (0.04 mol as Mo) of powdered ammonium heptamolybdate tetrahydrate And 9.51 g of diammonium hydrogen phosphate (0.072 mol as P) were ground and mixed for 30 minutes using an agate mortar to prepare a mixed powder. Into a high purity alumina crucible, 4.0 g of the prepared mixed powder is put, and after calcining at 600 ° C. for 4 hours in the atmosphere using an electric furnace, it is bluish by baking at 900 ° C. for 2 hours 2.2 g of white powder was obtained. When the obtained powder was identified by X-ray diffraction analysis, the product phase was a mixed phase of ZrP 2 O 7 and Zr 2 MoP 2 O 12 .
  • Comparative Example 6 A powder was obtained in the same manner as in Comparative Example 5 except that baking was performed at 1050 ° C. for 2 hours after baking at 900 ° C. When the obtained powder was identified by X-ray diffraction analysis, the product phase was a mixed phase of ZrP 2 O 7 and Zr 2 MoP 2 O 12 .
  • zirconium molybdate fine particles can be produced.
  • the obtained zirconium phosphomolybdate was a highly pure Zr 2 MoP 2 O 12 phase in which the ratio I ⁇ / I ⁇ was less than 0.05 in any of Examples 1 to 7.
  • zirconium phosphomolybdate fine particles having a crystallite diameter of less than 80 nm can be obtained.
  • the particle size is small and can be densely packed into a composite resin. Therefore, according to the zirconium phosphomolybdate fine particles produced in Examples 1 to 7, a high CTE reduction effect can be expected by using it as a filler of a composite resin.
  • Comparative Examples 1 to 2 where the firing temperature is not within the range of the present invention
  • Comparative Examples 3 to 4 where the molar ratio of zirconium atom: molybdenum atom: phosphorus atom is not within the range of the present invention
  • liquid phase reaction methods such as the present invention It was confirmed that the zirconium phosphomolybdate fine particles as in Examples 1 to 7 can not be obtained in Comparative Examples 5 to 6 in which no such substance is obtained.
  • the method for producing zirconium phosphomolybdate fine particles of the present invention is a phosphorus having a high purity of Zr 2 MoP 2 O 12 phase which is advantageous for reducing CTE of composite resin by using a synthesis method using a water-soluble raw material.
  • Zirconium molybdate fine particles can be obtained. Therefore, it can be suitably used as a filler for reducing CTE, for example, in applications such as semiconductor sealing materials and underfills.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention comprises: a first step for mixing a water-soluble zirconium salt, a water-soluble molybdenum salt, and a water-soluble phosphate; a second (drying) step which is performed as necessary; and a third step for firing a mixture obtained after mixing at a temperature of 900-1200°C (exclusive of 1200°C), wherein the firing in the third step is performed while the molar ratio of a zirconium atom: molybdenum atom:phosphorus atom (Zr:Mo:P) in the mixture is 2:x:2-y (x≥1, 0≤y<5).

Description

リンモリブデン酸ジルコニウム微粒子の製造方法Method for producing zirconium phosphomolybdate particles
 本発明は、リンモリブデン酸ジルコニウム微粒子の製造方法に関する。 The present invention relates to a method of producing zirconium phosphomolybdate particles.
 電子機器の普及に伴い、その主要部品であるプリント配線基板の需要が増大している。回路の高集積化や多層化が進むなか、基板の熱膨張係数(CTE:Coefficient of Thermal Exapansion)に対して半導体封止材料のCTEが大きくなると、回路破壊の原因になる。そこで、封止材料のCTEを低減させる目的で、該材料を構成するエポキシ樹脂等の耐熱性樹脂に、CTEの小さな無機物(非晶質微粒子等)をフィラーとして充填する技術が用いられている。 With the spread of electronic devices, the demand for printed wiring boards, which are the main components of the electronic devices, is increasing. When the CTE of the semiconductor sealing material increases with respect to the coefficient of thermal expansion (CTE) of the substrate while circuit integration and layering progress, circuit destruction will occur. Therefore, in order to reduce the CTE of the sealing material, a technique is used in which a heat-resistant resin such as an epoxy resin constituting the material is filled with an inorganic material (such as amorphous fine particles) having a small CTE as a filler.
 上記のような封止材料のフィラーとしてだけでなく、非晶質微粒子を、アンダーフィリングのフィラーとして利用する技術も用いられている。すなわち、ワイヤーボンディングやフリップチップボンディング等で基材に実装された回路は、外力や応力に対して脆弱であるケースが多いため、比較的小さな力で破断しやすい。そこで、アンダーフィルと呼ばれる液状硬化性樹脂(エポキシ樹脂等)を基板部品間に浸透させ、接続信頼性を確保することが行われている。ここで、樹脂の熱膨張・収縮が原因となり、ボンディングの破壊が引き起こされる場合も予想されるため、このような樹脂の熱膨張・収縮を抑制する目的で、CTEの小さな無機物(非晶質微粒子等)をフィラーとして充填する技術が用いられている。 Not only as a filler of the above-mentioned sealing material, the technique which utilizes an amorphous | non-crystalline fine particle as a filler of underfilling is used. That is, a circuit mounted on a base material by wire bonding, flip chip bonding or the like is likely to be broken by a relatively small force because it is often fragile to external force or stress. Under the circumstances, it has been practiced to infiltrate a liquid curable resin (epoxy resin or the like) called an underfill between substrate parts to secure connection reliability. Here, since it is expected that thermal expansion and contraction of the resin may cause bonding breakage, an inorganic substance with small CTE (amorphous fine particles for the purpose of suppressing such thermal expansion and contraction of the resin Etc.) is used as a filler.
 このような非晶質微粒子を充填する技術にあっては、封止材料やアンダーフィリングの形成材料(エポキシ樹脂等を主成分としたコンポジットレジン)のCTEを効果的に低減させる点で、更なる改善が望まれていた。 In the technology of filling such amorphous fine particles, the CTE of the sealing material and the material for forming the underfill (composite resin containing epoxy resin etc. as the main component) can be effectively reduced, further Improvement was desired.
 そこで、リンモリブデン酸ジルコニウム(モリブデンリン酸ジルコニウムと称される場合もある)の生成相の一つであるZrMoP12は、高い負のCTEを有する物質として知られているため、これをフィラーとして利用することが考えられる。 Therefore, Zr 2 MoP 2 O 12 , which is one of the formation phases of zirconium phosphomolybdate (sometimes referred to as zirconium molybdate phosphate), is known as a material having a high negative CTE, It is conceivable to use as a filler.
 以上の点に関して、ZrO、MoO及びPのモル比(ZrO:MoO:P)を2:1~1.2:1~1.2で混合して焼成する固相反応法により、ZrMoP12の焼結体を製造することが開示されている(例えば、特許文献1参照)。また、所定配分量の酸化物原料を混合して焼成する固相反応法により、ZrMoP12を含む化合物群を合成できることが開示されている(例えば、非特許文献1参照)。また、出発原料としてZrO、(NH)HPO及び20mol%過剰量のMoOを用いた固相反応法により、ZrMoP12粉末が合成できることが開示されている(例えば、非特許文献2参照)。 Regarding the above points, the molar ratio of ZrO 2 , MoO 3 and P 2 O 5 (ZrO 2 : MoO 3 : P 2 O 5 ) is mixed and fired at 2: 1 to 1.2: 1 to 1.2. It is disclosed that a sintered body of Zr 2 MoP 2 O 12 is produced by a solid phase reaction method (see, for example, Patent Document 1). Further, by a solid phase reaction method of firing a mixture of oxide material of a predetermined allocation amount is disclosed that it is possible to synthesize a group of compounds containing Zr 2 MoP 2 O 12 (e.g., see Non-Patent Document 1). In addition, it is disclosed that a Zr 2 MoP 2 O 12 powder can be synthesized by a solid phase reaction method using ZrO 2 , (NH 4 ) H 2 PO 4 and a 20 mol% excess MoO 3 as a starting material (for example, Non-Patent Document 2).
 また、ZrMoP12を含む化合物群が開示されており、各種酸化物及び(NH)HPOを出発原料とする固相反応法による合成例が記載されている(例えば、特許文献2参照)。なお、特許文献2では、オキシ塩化物や硝酸塩等の混合水溶液を80℃~100℃に加熱して得られる沈殿物を焼成することにより(液相反応法)、ZrMoP12を含む化合物群を合成できる可能性があると記載されている。 In addition, a compound group including Zr 2 MoP 2 O 12 is disclosed, and a synthesis example by a solid phase reaction method using various oxides and (NH 4 ) H 2 PO 4 as starting materials is described (for example, Patent Document 2). In Patent Document 2, a precipitate obtained by heating a mixed aqueous solution of oxychloride, nitrate and the like to 80 ° C. to 100 ° C. is calcined (liquid phase reaction method) to contain Zr 2 MoP 2 O 12 It is stated that there is a possibility that compounds can be synthesized.
中国特許第101891470号公報Chinese Patent No. 101891470 米国特許第5,919,720号公報U.S. Pat. No. 5,919,720
 しかしながら、特許文献1では、得られる結果物の形態が粉末ではないため、コンポジットレジンのCTEを低減させるフィラーとして用いることができなかった。また、特許文献1、非特許文献1や非特許文献2のような固相反応法を用いた方法では、高純度なZrMoP12を製造することができない背景があった。 However, in Patent Document 1, since the form of the obtained product is not a powder, it can not be used as a filler for reducing the CTE of the composite resin. Moreover, in the method using the solid phase reaction method such as Patent Document 1, Non-patent Document 1 and Non-Patent Document 2, there is a background that the highly pure Zr 2 MoP 2 O 12 can not be produced.
 特許文献2では、液相反応法による可能性が示唆されているものの、その具体的な手法については何ら検討されていなかった。特に、特許文献2ではオキシ塩化物や硝酸塩等が原料とされているが、原料ごとの水溶解度に違いがあるため、混合水溶液を80℃~100℃に加熱して得られる沈殿物は仕込みの組成から乖離する恐れがあった。この場合、高純度なZrMoP12を得ることができない。 Although the possibility of the liquid phase reaction method is suggested in Patent Document 2, no specific method has been studied. In particular, oxychlorides and nitrates are used as raw materials in Patent Document 2, but since there is a difference in water solubility among the raw materials, the precipitate obtained by heating the mixed aqueous solution to 80 ° C. to 100 ° C. There was a risk of deviation from the composition. In this case, highly pure Zr 2 MoP 2 O 12 can not be obtained.
 本発明はこのような事情に鑑みてなされたものであり、水溶性原料を用いた合成法を利用して、コンポジットレジンのCTEを低減させるのに有利なZrMoP12相を高純度に有するリンモリブデン酸ジルコニウム微粒子を製造することができる該製造方法を提供することを目的とする。 The present invention has been made in view of these circumstances, and it is desirable to use a synthetic method using a water-soluble raw material to make a highly pure Zr 2 MoP 2 O 12 phase advantageous for reducing the CTE of a composite resin. It is an object of the present invention to provide the method of producing zirconium phosphomolybdate fine particles having
 本発明者らは上記課題を解決するため鋭意研究を行った結果、水溶性ジルコニウム塩、水溶性モリブデン塩及び水溶性リン酸塩を混合し、その混合後の混合物を、ジルコニウム原子:モリブデン原子:リン原子のモル比(Zr:Mo:P)が2:x:2-y(x≧1、0≦y<0.5)にある中で焼成することにより、ZrMoP12相を高純度に有するリンモリブデン酸ジルコニウム微粒子を製造できることを見出した。 As a result of intensive studies to solve the above problems, the present inventors mixed water-soluble zirconium salt, water-soluble molybdenum salt and water-soluble phosphate, and the mixture after mixing was a zirconium atom: molybdenum atom: The Zr 2 MoP 2 O 12 phase is obtained by calcination in a molar ratio of phosphorus atoms (Zr: Mo: P) of 2: x: 2-y (x ≧ 1, 0 ≦ y <0.5). It has been found that zirconium phosphomolybdate fine particles having high purity can be produced.
 すなわち、本発明は、以下の第1観点~第7観点の何れか一つに記載のリンモリブデン酸ジルコニウム微粒子の製造方法に関する。 That is, the present invention relates to the method for producing zirconium phosphomolybdate fine particles described in any one of the following first to seventh aspects.
 第1観点は、水溶性ジルコニウム塩、水溶性モリブデン塩及び水溶性リン酸塩を混合する第1工程と、前記混合後の混合物を900℃以上1200℃未満の温度で焼成する第3工程と、を含み、前記第3工程では、前記混合物中のジルコニウム原子:モリブデン原子:リン原子のモル比(Zr:Mo:P)が2:x:2-y(x≧1、0≦y<0.5)にある中で前記焼成することを特徴とするリンモリブデン酸ジルコニウム微粒子の製造方法である。 The first aspect includes a first step of mixing a water-soluble zirconium salt, a water-soluble molybdenum salt and a water-soluble phosphate, and a third step of firing the mixture after the mixing at a temperature of 900 ° C. or more and less than 1200 ° C. In the third step, the molar ratio of zirconium atom: molybdenum atom: phosphorus atom (Zr: Mo: P) in the mixture is 2: x: 2-y (x ≧ 1, 0 ≦ y <0. 5) The method for producing zirconium phosphomolybdate fine particles characterized in that the above-mentioned calcination is carried out.
 第2観点は、前記リンモリブデン酸ジルコニウム微粒子の生成相であるZrMoP12相の、(121)面に垂直方向の結晶子径が80nm未満であることを特徴とする第1観点に記載のリンモリブデン酸ジルコニウム微粒子の製造方法である。 According to a second aspect, in the first aspect, the crystallite diameter in the direction perpendicular to the (121) plane of the Zr 2 MoP 2 O 12 phase, which is the generation phase of the zirconium phosphomolybdate fine particles, is less than 80 nm. It is a manufacturing method of the zirconium phosphomolybdate microparticles | fine-particles of description.
 第3観点は、前記水溶性ジルコニウム塩として、ジルコニウムのアンモニウム塩を用いることを特徴とする第1観点又は第2観点に記載のリンモリブデン酸ジルコニウム微粒子の製造方法である。 A third aspect is a method for producing zirconium phosphomolybdate fine particles according to the first aspect or the second aspect, wherein an ammonium salt of zirconium is used as the water-soluble zirconium salt.
 第4観点は、前記水溶性モリブデン塩として、モリブデンのアンモニウム塩を用いることを特徴とする第1観点又は第2観点に記載のリンモリブデン酸ジルコニウム微粒子の製造方法である。 A fourth aspect is the method for producing zirconium phosphomolybdate microparticles according to the first aspect or the second aspect, characterized in that an ammonium salt of molybdenum is used as the water-soluble molybdenum salt.
 第5観点は、前記水溶性リン酸塩として、リン酸のアンモニウム塩を用いることを特徴とする第1観点又は第2観点に記載のリンモリブデン酸ジルコニウム微粒子の製造方法である。 A fifth aspect is the method for producing zirconium phosphomolybdate microparticles according to the first aspect or the second aspect, characterized in that an ammonium salt of phosphoric acid is used as the water-soluble phosphate.
 第6観点は、前記第1工程で水溶性ジルコニウム塩、水溶性モリブデン塩及び水溶性リン酸塩を含有した混合水溶液を、第2工程で乾燥すること、第3工程で混合物を900℃以上1200℃未満の温度で焼成すること、を含むことを特徴とする第1観点~第5観点の何れか一つに記載のリンモリブデン酸ジルコニウム微粒子の製造方法である。 The sixth aspect is that, in the second step, the mixed aqueous solution containing the water-soluble zirconium salt, the water-soluble molybdenum salt and the water-soluble phosphate in the first step is dried in the second step. B. calcining at a temperature less than ° C. is a method for producing zirconium phosphomolybdate particles according to any one of the first to fifth aspects.
 第7観点は、前記第3工程で、前記モル比(Zr:Mo:P)が2:x:2-y(x≧1、0≦y<0.5)である水溶液を50℃以上350℃未満で噴霧乾燥して得られた前記混合物を前記焼成する第1手法、前記モル比(Zr:Mo:P)が2:x:2-y(x≧1、0≦y<0.5)である水溶液を凍結乾燥して得られた前記混合物を前記焼成する第2手法、又は前記モル比(Zr:Mo:P)が2:x:2-y(x≧1、0≦y<0.5)である水溶液を350℃以上900℃未満で噴霧熱分解して得られた前記混合物を前記焼成する第3手法、を用いることを特徴とする第1観点~第6観点の何れか一つに記載のリンモリブデン酸ジルコニウム微粒子の製造方法である。 According to a seventh aspect, in the third step, an aqueous solution having a molar ratio (Zr: Mo: P) of 2: x: 2-y (x ≧ 1, 0 ≦ y <0.5) at 50 ° C. to 350 ° C. The first method of firing the mixture obtained by spray drying at less than 0 ° C., the molar ratio (Zr: Mo: P) is 2: x: 2-y (x ≧ 1, 0 ≦ y <0.5) And the second molar ratio (Zr: Mo: P) is 2: 2: x: 2-y (x ≧ 1, 0 ≦ y <). A third method of firing the mixture obtained by spray pyrolysis of an aqueous solution of 0.5) at a temperature of 350 ° C. or more and less than 900 ° C., any one of the first to sixth aspects It is a manufacturing method of the zirconium phosphomolybdate microparticles | fine-particles as described in one.
 本発明によれば、水溶性原料を用いた合成法を利用して、コンポジットレジンのCTEを低減させるのに有利なZrMoP12相を高純度に有するリンモリブデン酸ジルコニウム微粒子を製造する方法を提供することができる。かかる製造方法により得られたリンモリブデン酸ジルコニウム微粒子は、半導体封止材料やアンダーフィリング等のフィラーとして好適に使用できる。 According to the present invention, using a synthesis method using a water-soluble raw material, zirconium phosphomolybdate fine particles having a high purity of Zr 2 MoP 2 O 12 phase which is advantageous for reducing CTE of composite resin are manufactured. We can provide a way. The zirconium phosphomolybdate fine particles obtained by this production method can be suitably used as a filler for a semiconductor sealing material or underfilling.
 本発明に係るリンモリブデン酸ジルコニウム微粒子の製造方法について説明する。以下の説明は、本発明の一態様を示すものであり、本発明の趣旨の範囲内で任意に変更できる。 The method for producing zirconium phosphomolybdate particles according to the present invention will be described. The following description shows one aspect of the present invention, and can be arbitrarily changed within the scope of the present invention.
 本発明のリンモリブデン酸ジルコニウム微粒子の製造方法は、水溶性ジルコニウム塩、水溶性モリブデン塩及び水溶性リン酸塩を混合する第1工程と、混合後の混合物を900℃以上1200℃未満の温度で焼成する第3工程と、を含み、第3工程では、該混合物中のジルコニウム原子:モリブデン原子:リン原子のモル比(Zr:Mo:P)が2:x:2-y(x≧1、0≦y<0.5)にある中で焼成するものである。 The method for producing zirconium phosphomolybdate fine particles according to the present invention comprises the first step of mixing the water-soluble zirconium salt, the water-soluble molybdenum salt and the water-soluble phosphate, and the mixture after mixing at a temperature of 900 ° C. or more and less than 1200 ° C. In the third step, the molar ratio (Zr: Mo: P) of zirconium atom: molybdenum atom: phosphorus atom in the mixture is 2: x: 2-y (x ≧ 1, in the third step) Baking is performed in the range of 0 ≦ y <0.5).
 リンモリブデン酸ジルコニウムの生成相には、例えば、Zr相やZrMoP12相がある。Zr相及びZrMoP12相の何れも負のCTEを有するが、両者を比較すると、ZrMoP12相の方が負の度合いが大きい(CTEが小さい)。従って、リンモリブデン酸ジルコニウム微粒子を添加してコンポジットレジンのCTEを低減させる効果(CTE低減効果)の観点では、リンモリブデン酸ジルコニウムの生成相において、ZrMoP12相に混在するZr相の割合が少ないことが望ましい。 Examples of the formation phase of zirconium phosphomolybdate include a Zr 2 P 2 O 9 phase and a Zr 2 MoP 2 O 12 phase. Both the Zr 2 P 2 O 9 phase and the Zr 2 MoP 2 O 12 phase have negative CTEs, but when comparing the two , the Zr 2 MoP 2 O 12 phase has a larger negative degree (smaller CTE) . Therefore, from the viewpoint of the effect of reducing the CTE of the composite resin by adding zirconium phosphomolybdate fine particles (CTE reduction effect), Zr 2 P mixed in the Zr 2 MoP 2 O 12 phase in the zirconium phosphomolybdate formation phase It is desirable that the proportion of 2 O 9 phase be small.
 この点、本発明の製造方法によれば、ZrMoP12相の高純度なリンモリブデン酸ジルコニウムを得ることができる。特に、Zr相の(002)面のX線回折ピーク強度Iαと、ZrMoP12相の(121)面に帰属するX線回折ピーク強度Iβと、の比Iα/Iβが0.05未満、更には0.01未満であるリンモリブデン酸ジルコニウムを得ることができる。 In this respect, according to the production method of the present invention, highly pure zirconium phosphomolybdate of the Zr 2 MoP 2 O 12 phase can be obtained. In particular, the ratio of the X-ray diffraction peak intensity I α of the (002) plane of the Zr 2 P 2 O 9 phase to the X-ray diffraction peak intensity I β belonging to the (121) plane of the Zr 2 MoP 2 O 12 phase Zirconium phosphomolybdate having an I α / I β of less than 0.05, and even less than 0.01 can be obtained.
 比Iα/Iβは、その値が小さいほど、ZrMoP12相の高純度なリンモリブデン酸ジルコニウムが得られている指標となるものである。従来からの製造方法によって得られるリンモリブデン酸ジルコニウムは、一般に、Zr相とZrMoP12相とが混ざりやすいものであるが、本発明の製造方法により得られるリンモリブデン酸ジルコニウムによれば、比Iα/Iβが0.05未満という、ZrMoP12相を高純度に有するリンモリブデン酸ジルコニウムを得ることができる。 The smaller the value of the ratio I α / I β , the better the index to which the highly pure zirconium phosphomolybdate of the Zr 2 MoP 2 O 12 phase is obtained. The zirconium phosphomolybdate obtained by the conventional manufacturing method is generally a mixture of the Zr 2 P 2 O 9 phase and the Zr 2 MoP 2 O 12 phase, but the phosphorus molybdenum obtained by the manufacturing method of the present invention According to the acid zirconium, it is possible to obtain zirconium phosphomolybdate having a high purity of the Zr 2 MoP 2 O 12 phase in which the ratio I α / I β is less than 0.05.
 なお、比Iα/Iβを算出するための装置や手法の一例は、実施例の通りである。回折ピークは、例えば、ICDD(international centre for diffraction data)のデータベース「PDF-2」を使用し、ZrMoP12相はPDF No.01-078-5687、Zr相はPDF No.01-070-0888を参照して生成相の帰属を行うことができる。 Note that an example of an apparatus or method for calculating the ratio I α / I β is as in the embodiment. The diffraction peak is, for example, a database “PDF-2” of ICDD (international centre for differential data), and the Zr 2 MoP 2 O 12 phase is a PDF No. 01-078-5687, Zr 2 P 2 O 9 phase is PDF No. Attribution of the formation phase can be performed with reference to 01-070-0888.
 まず、本発明に係る製造方法は、水溶性ジルコニウム塩、水溶性モリブデン塩及び水溶性リン酸塩を混合する第1工程を有する。水溶性ジルコニウム塩、水溶性モリブデン塩及び水溶性リン酸塩を含有する混合水溶液を調製する場合、上記の塩である固体原料のまま所定の溶液に溶解させて該混合水溶液とすることもできるが、上記の塩を予め水溶液とした上でこれらの水溶液同士を混合することが好ましい。これによれば、混合水溶液中のジルコニウム原子(Zr)、モリブデン原子(Mo)及びリン原子(P)のモル比、すなわち、仕込み時点のモル比を調整するのが容易となる。 First, the production method according to the present invention has a first step of mixing a water-soluble zirconium salt, a water-soluble molybdenum salt and a water-soluble phosphate. When preparing a mixed aqueous solution containing a water-soluble zirconium salt, a water-soluble molybdenum salt and a water-soluble phosphate, the solid material which is the above-mentioned salt can be dissolved in a predetermined solution as it is to obtain the mixed aqueous solution. It is preferable to mix the above aqueous solutions after the above-mentioned salts have been previously made into aqueous solutions. According to this, it becomes easy to adjust the molar ratio of the zirconium atom (Zr), the molybdenum atom (Mo) and the phosphorus atom (P) in the mixed aqueous solution, that is, the molar ratio at the time of charging.
 水溶性ジルコニウム塩としては、例えば、25℃の水に1質量%以上溶解するジルコニウム塩であり、炭酸ジルコニウムアンモニウム、酢酸ジルコニル、塩化ジルコニル、及び硝酸ジルコニルが挙げられる。これらは、単独で用いることができるし、相溶性に問題がない範囲で2種以上を混合して用いることもできる。ただ、混合水溶液の安定性の観点からは、アンモニウム塩(炭酸ジルコニウムアンモニウム)を単独で用いることが好ましい。アンモニウム塩であれば、他の強酸塩と比べ、混合水溶液への溶解性も確保される。 The water-soluble zirconium salt is, for example, a zirconium salt which is dissolved in water at 25 ° C. in an amount of 1% by mass or more, and includes zirconium ammonium carbonate, zirconyl acetate, zirconyl chloride, and zirconyl nitrate. These can be used alone or as a mixture of two or more as long as there is no problem with compatibility. However, from the viewpoint of the stability of the mixed aqueous solution, it is preferable to use an ammonium salt (zirconium ammonium carbonate) alone. The ammonium salt also ensures the solubility in the mixed aqueous solution as compared to other strong acid salts.
 水溶性モリブデン塩としては、例えば、25℃の水に1質量%以上溶解するモリブデン塩であり、七モリブデン酸六アンモニウム及びその水和物、モリブデン酸ナトリウム及びその水和物、並びにモリブデン酸カリウムが挙げられる。これらは、単独で用いることができるし、相溶性に問題がない範囲で2種以上を混合して用いることもできる。 The water-soluble molybdenum salt is, for example, a molybdenum salt which dissolves in water at 25 ° C. in an amount of 1% by mass or more, hexaammonium heptamolybdate and its hydrate, sodium molybdate and its hydrate, and potassium molybdate It can be mentioned. These can be used alone or as a mixture of two or more as long as there is no problem with compatibility.
 塩化モリブンデンは水溶性が良好な化合物であるが、不安定で空気中で徐々に塩化水素を放出して分解する場合がある。電子デバイス用途でフィラーを使用する場合、該フィラーには塩化物やアルカリ金属が含まれないことが望ましいため、アルカリ元素を含まないという観点からは、七モリブデン酸六アンモニウム四水和物を好ましく用いることができる。アンモニウム塩であれば、ジルコニウムの場合と同様に、他の強酸塩と比べ、混合水溶液への溶解性も確保される。 Molybunden chloride is a compound with good water solubility, but it is unstable and may release hydrogen chloride gradually in the air to be decomposed. When a filler is used in an electronic device application, it is desirable that the filler does not contain a chloride or an alkali metal. From the viewpoint of containing no alkali element, hexaammonium heptamolybdate tetrahydrate is preferably used. be able to. In the case of ammonium salts, as in the case of zirconium, the solubility in the mixed aqueous solution is also secured compared to other strong acid salts.
 水溶性リン酸塩としては、例えば、25℃の水に1質量%以上溶解するリン酸塩であり、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、及びリン酸三ナトリウムが挙げられる。これらは、単独で用いることができるし、相溶性に問題がない範囲で2種以上を混合して用いることもできる。上記の通り、電子デバイス用途で使用されるフィラーはアルカリ金属を含まないことが望ましいため、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニムを好ましく用いることができる。アンモニウム塩であれば、ジルコニウムやモリブデンの場合と同様に、他の強酸塩と比べ、混合水溶液への溶解性も確保される。 The water-soluble phosphate is, for example, a phosphate dissolved in water at 25 ° C. in an amount of 1% by mass or more, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, sodium dihydrogen phosphate, Disodium hydrogen phosphate and trisodium phosphate can be mentioned. These can be used alone or as a mixture of two or more as long as there is no problem with compatibility. As described above, since it is desirable that the filler used in the electronic device application does not contain an alkali metal, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and triammonium phosphate can be preferably used. In the case of an ammonium salt, as in the case of zirconium and molybdenum, the solubility in a mixed aqueous solution is also secured as compared with other strong acid salts.
 水溶性ジルコニウム塩、水溶性モリブデン塩及び水溶性リン酸塩を含有する混合水溶液を調製する場合、クエン酸やグリコール酸等のオキシカルボン酸を添加してもよい。これによれば、混合水溶液の乾燥時における相分離やゲル化を抑制でき、均一性を高いままで維持することができる。 When preparing a mixed aqueous solution containing a water-soluble zirconium salt, a water-soluble molybdenum salt and a water-soluble phosphate, an oxycarboxylic acid such as citric acid or glycolic acid may be added. According to this, it is possible to suppress phase separation and gelation at the time of drying of the mixed aqueous solution, and maintain high uniformity.
 ここで、上記の第1工程で水溶性ジルコニウム塩、水溶性モリブデン塩及び水溶性リン酸塩を含有した混合水溶液を、第2工程で乾燥することができる。このような第2工程を実施することで、ジルコニウム原子、モリブデン原子及びリン原子の混合均一性を確保しやすくなる。かかる乾燥の手法としては、例えば、後述する噴霧乾燥や凍結乾燥が挙げられる。このような乾燥を経ることで、その後の第3工程とあわせて、ジルコニウム原子、モリブデン原子及びリン原子の混合均一性を確保しやすくなる。なお、乾燥の手法としては、後述する噴霧熱分解も挙げられる。この場合、第2工程での乾燥と、仮焼成が同工程で行われることとなる。 Here, the mixed aqueous solution containing the water-soluble zirconium salt, the water-soluble molybdenum salt and the water-soluble phosphate in the first step can be dried in the second step. By carrying out such a second step, it becomes easy to ensure the mixing uniformity of the zirconium atom, the molybdenum atom and the phosphorus atom. Examples of the drying method include spray drying and lyophilization described below. Through such drying, it becomes easy to ensure the mixing uniformity of the zirconium atom, the molybdenum atom and the phosphorus atom together with the subsequent third step. In addition, the spray thermal decomposition mentioned later is also mentioned as a method of drying. In this case, the drying in the second step and the pre-baking are performed in the same step.
 また、本発明に係る製造方法は、水溶性ジルコニウム塩、水溶性モリブデン塩及び水溶性リン酸塩を混合後の混合物を、900℃以上1200℃未満の温度で焼成する第3工程を有する。ここでの混合物には、上記の混合水溶液や、混合水溶液を乾燥させた乾燥物が含まれる。 Moreover, the manufacturing method which concerns on this invention has the 3rd process of baking the mixture after mixing a water soluble zirconium salt, a water soluble molybdenum salt, and a water soluble phosphate at the temperature of 900 degreeC or more and less than 1200 degreeC. The mixture here includes the above-mentioned mixed aqueous solution and a dried product obtained by drying the mixed aqueous solution.
 混合物の焼成は、大気中又は酸化雰囲気中の温度が900℃以上1200℃未満の範囲であり、好ましくは、900℃以上1150℃未満の範囲である。焼成時の温度が上記の温度以上の場合、ZrMoP12相が熱分解し、MoOの昇華を伴いながらZr相に変化する恐れが生じる。一方、焼成時の温度が上記の温度未満の場合、水溶性ジルコニウム塩、水溶性モリブデン塩及び水溶性リン酸塩が十分に反応し難くなる恐れが生じ、この場合、ZrMoP12が生成し難くなる。 The temperature of the mixture in the air or in the oxidizing atmosphere is in the range of 900 ° C. to less than 1200 ° C., preferably in the range of 900 ° C. to less than 1150 ° C. When the temperature at the time of firing is above the above temperature, the Zr 2 MoP 2 O 12 phase is thermally decomposed, and there is a possibility that the Zr 2 P 2 O 9 phase may be changed with the sublimation of MoO 3 . On the other hand, if the temperature at the time of firing is lower than the above temperature, there is a possibility that the water-soluble zirconium salt, the water-soluble molybdenum salt and the water-soluble phosphate may not sufficiently react with each other. In this case, Zr 2 MoP 2 O 12 It becomes difficult to generate.
 なお、上記の温度範囲内で、焼成は複数回行うこともできる。例えば、最初の焼成となる第1焼成に次いで、二回目の第2焼成(本焼成)するようにしてもよい。それぞれの焼成時間は0.5~20時間であり、1~10時間とすることもできる。 In addition, baking can also be performed in multiple times within said temperature range. For example, a second firing (main firing) may be performed after the first firing, which is the first firing. Each firing time is 0.5 to 20 hours, and may be 1 to 10 hours.
 また、焼成(焼成を複数回行う場合には第1焼成)の前に、MoOの昇華温度よりも低い温度で仮焼成することが好ましい。例えば、大気中又は酸化雰囲気中で550℃以上700℃未満の範囲で仮焼成することで、次の焼成工程におけるMoOの昇華を抑制でき、これにより、製造されるリンモリブデン酸ジルコニウムの生成相において、ZrMoP12相に混在するZr相の割合を低減することができる。 Moreover, it is preferable to perform pre-baking at a temperature lower than the sublimation temperature of MoO 3 before firing (first firing when firing is performed a plurality of times). For example, by pre-baking in the atmosphere or in an oxidizing atmosphere at a temperature of 550 ° C. or more and less than 700 ° C., sublimation of MoO 3 in the next firing step can be suppressed, whereby the produced phase of zirconium phosphomolybdate is produced. The ratio of the Zr 2 P 2 O 9 phase mixed in the Zr 2 MoP 2 O 12 phase can be reduced.
 更に、本発明に係る製造方法は、上記の第3工程で、混合物中のジルコニウム原子:モリブデン原子:リン原子のモル比(Zr:Mo:P)が2:x:2-y(x≧1、0≦y<0.5)にある中で焼成するものである。言い換えれば、水溶性ジルコニウム塩、水溶性モリブデン塩及び水溶性リン酸塩を混合した該混合時のモル比の如何に関わらず、焼成前の時点で、上記のモル比が実現されるようにする。 Furthermore, in the manufacturing method according to the present invention, in the third step, the molar ratio of zirconium atom: molybdenum atom: phosphorus atom in the mixture (Zr: Mo: P) is 2: x: 2-y (x ≧ 1). And 0 ≦ y <0.5). In other words, regardless of the molar ratio at the time of mixing the water-soluble zirconium salt, the water-soluble molybdenum salt and the water-soluble phosphate, the above molar ratio is realized at the time before firing. .
 ジルコニウム原子及びモリブデン原子に対してリン原子が過剰に存在すると、製造されるリンモリブデン酸ジルコニウムの生成相において、Zr相が生成しやすくなる。一方、ジルコニウム原子及びモリブデン原子に対してリン原子が不足すると、ZrO相とZrMoP12相との混相になりやすくなる。 When there is an excess of phosphorus atoms with respect to the zirconium atom and the molybdenum atom, the Zr 2 P 2 O 9 phase is likely to be formed in the produced phase of zirconium phosphomolybdate manufactured. On the other hand, when the phosphorus atom is insufficient with respect to the zirconium atom and the molybdenum atom, the ZrO 2 phase and the Zr 2 MoP 2 O 12 phase easily become a mixed phase.
 ジルコニウム原子及びリン原子に対してモリブデン原子が過剰に存在するときは、余剰のMo成分がMoOとして昇華し、ZrMoP12相が得られるので、Zr2MoP212相の高純度なリンモリブデン酸ジルコニウムを得ることができる。一方、ジルコニウム原子及びリン原子に対してモリブデン原子が不足すると、Zr相が生成しやすくなる。 When the zirconium atoms and molybdenum atoms relative to the phosphorus atom present in excess, the excess Mo component is sublimated as MoO 3, since Zr 2 MoP 2 O 12 phase is obtained, the Zr 2 MoP 2 O 12 phase high Pure zirconium phosphomolybdate can be obtained. On the other hand, when the molybdenum atom is insufficient with respect to the zirconium atom and the phosphorus atom, the Zr 2 P 2 O 9 phase is easily generated.
 なお、混合物中のジルコニウム原子:モリブデン原子:リン原子のモル比(Zr:Mo:P)は、ジルコニウム型原子:モリブデン型原子:リン型原子のモル比と言い換えることもできる。例えば、ジルコニウム原子の一部は、CTE低減効果が得られる範囲において、ハフニウム原子で置換されていてもよい。また、モリブデン原子の一部は、CTE低減効果が得られる範囲において、タングステン原子で置換されていてもよい。 The molar ratio of zirconium atom: molybdenum atom: phosphorus atom (Zr: Mo: P) in the mixture can be rephrased as the molar ratio of zirconium type atom: molybdenum type atom: phosphorus type atom. For example, some of the zirconium atoms may be substituted with hafnium atoms as long as the CTE reduction effect is obtained. In addition, a part of the molybdenum atom may be substituted by a tungsten atom in the range where the CTE reduction effect can be obtained.
 第3工程では、例えば、モル比(Zr:Mo:P)が2:x:2-y(x≧1、0≦y<0.5)である混合水溶液を噴霧乾燥して得られた乾燥物(混合物)を、上記の温度範囲で焼成する第1手法を用いる。噴霧乾燥は上記の第2工程で行うことができる。噴霧乾燥にあたっては、水溶液における均一な混合状態を維持したまま噴霧して乾燥可能なスプレードライヤー、又はそれに準じた噴霧乾燥装置を用いることができる。 In the third step, for example, drying obtained by spray-drying a mixed aqueous solution having a molar ratio (Zr: Mo: P) of 2: x: 2-y (x ≧ 1, 0 ≦ y <0.5) The first method of firing the substance (mixture) in the above temperature range is used. Spray drying can be carried out in the second step described above. For spray drying, a spray dryer capable of spraying and drying while maintaining a uniform mixing state in an aqueous solution, or a spray drying device according thereto can be used.
 スプレードライヤー又はそれに準じた噴霧乾燥装置で乾燥する際の温度雰囲気は、50℃以上350℃未満であり、使用する水溶性ジルコニウム塩、水溶性モリブデン塩及び水溶性リン酸塩の分解温度以下であることが好ましい。乾燥する際の雰囲気は特に限定されず、大気中、酸化雰囲気中、還元雰囲気中、又は不活性雰囲気中の何れでもよい。 The temperature atmosphere at the time of drying with a spray dryer or a spray dryer according thereto is 50 ° C. or more and less than 350 ° C., and is equal to or less than the decomposition temperature of the water-soluble zirconium salt, water-soluble molybdenum salt and water-soluble phosphate used. Is preferred. The atmosphere for drying is not particularly limited, and may be in the air, in an oxidizing atmosphere, in a reducing atmosphere, or in an inert atmosphere.
 また、第3工程では、例えば、モル比(Zr:Mo:P)が2:x:2-y(x≧1、0≦y<0.5)である水溶液を凍結乾燥して得られた乾燥物(混合物)を、上記の温度範囲で焼成する第2手法を用いる。凍結乾燥は上記の第2工程で行うことができる。ここでの凍結乾燥には、真空凍結乾燥すなわちフリーズドライが含まれる。フリーズドライで使用可能な冷媒としては、ドライアイスとメタノールの混合媒体や、液体窒素等が挙げられる。 In the third step, for example, it is obtained by freeze-drying an aqueous solution having a molar ratio (Zr: Mo: P) of 2: x: 2-y (x ≧ 1, 0 ≦ y <0.5). The second method of firing the dried product (mixture) in the above temperature range is used. Lyophilization can be performed in the second step described above. Lyophilization here includes vacuum lyophilization or freeze drying. As a refrigerant which can be used by freeze drying, a mixed medium of dry ice and methanol, liquid nitrogen and the like can be mentioned.
 更に、第3工程では、例えば、モル比(Zr:Mo:P)が2:x:2-y(x≧1、0≦y<0.5)である混合水溶液を所定の温度範囲で噴霧熱分解し焼成する第3手法を用いる。噴霧熱分解によれば、第2工程での乾燥と仮焼成とが同工程で行われる。噴霧熱分解によれば、水溶性ジルコニウム塩、水溶性モリブデン塩及び水溶性リン酸塩を混合した混合水溶液を霧化させ、加熱炉に噴霧することで、乾燥及び仮焼成を同時に行うことができる。噴霧熱分解での温度雰囲気は、例えば350℃以上900℃未満であり、これによれば噴霧熱分解を好適に行うことができる。 Furthermore, in the third step, for example, a mixed aqueous solution having a molar ratio (Zr: Mo: P) of 2: x: 2-y (x ≧ 1, 0 ≦ y <0.5) is sprayed at a predetermined temperature range The third method of thermal decomposition and firing is used. According to spray pyrolysis, the drying in the second step and the calcination are performed in the same step. According to spray pyrolysis, drying and pre-sintering can be simultaneously performed by atomizing a mixed aqueous solution in which water-soluble zirconium salt, water-soluble molybdenum salt and water-soluble phosphate are mixed, and spraying it in a heating furnace. . The temperature atmosphere in spray pyrolysis is, for example, 350 ° C. or more and less than 900 ° C. According to this, spray pyrolysis can be suitably performed.
 以下、実施例及び比較例を挙げて本発明を説明するが、本発明は、これらの例に限定されるものではない。実施例及び比較例中、各種の評価は、それぞれ以下の通り行った。 Hereinafter, the present invention will be described by way of examples and comparative examples, but the present invention is not limited to these examples. In Examples and Comparative Examples, various evaluations were performed as follows.
<X線回折分析>
 リガク社製X線回折装置MiniFlex600を用いて、X線源;Cu、電圧;40kV、電流;15mAで、ステップ幅;0.02°、スキャン速度;10°/分、発散角スリット(DS);0.625°、散乱スリット(SS);8.0mm、受光スリット(S);OPEN、入射ソーラースリット;2.5°、受光ソーラースリット;2.5°の条件で測定し、X線回折データを得た。
<X-ray diffraction analysis>
X-ray source: Cu, voltage: 40 kV, current: 15 mA, step width: 0.02 °, scan rate: 10 ° / min, divergence angle slit (DS) using Rigaku X-ray diffractometer MiniFlex 600 0.625 °, scattering slit (SS); 8.0 mm, light receiving slit (S); OPEN, incident solar slit; 2.5 °, light receiving solar slit; measured at 2.5 °, X-ray diffraction data I got
<X線回折強度>
 各試料のX線回折データを、解析ソフトPDXL-2を用いて、自動設定によるバックグラウンド処理及びKβ線の除去を実施し、X線回折強度を測定した。2θ=14.9°付近に出現するZr相の(002)面の回折ピーク強度Iαと、2θ=19.8°付近に出現するZrMoP12相の最強線(121)面の回折ピーク強度Iβと、の比Iα/Iβを算出した。
<X-ray diffraction intensity>
The X-ray diffraction data of each sample was subjected to automatic processing for background processing and removal of Kβ radiation using analysis software PDXL-2, and the X-ray diffraction intensity was measured. Diffraction peak intensity I α of (002) plane of Zr 2 P 2 O 9 phase appearing near 2θ = 14.9 ° and strongest line of Zr 2 MoP 2 O 12 phase appearing near 2θ = 19.8 ° The ratio I α / I β of the diffraction peak intensity I β of the (121) plane was calculated.
<結晶子径の算出>
 各試料のX線回折データを、解析ソフトPDXL-2を用いて、自動設定によるバックグラウンド処理及びKβ線の除去を実施し、シェラーの式に基づいて結晶子径を算出した。ZrMoP12相の結晶子径は(121)面に垂直方向の結晶子径を採用した。
<Calculation of crystallite diameter>
The X-ray diffraction data of each sample was subjected to automatic processing for background processing and removal of Kβ radiation using analysis software PDXL-2, and the crystallite diameter was calculated based on Scherrer's equation. The crystallite diameter of the Zr 2 MoP 2 O 12 phase employed the crystallite diameter in the direction perpendicular to the (121) plane.
[製造例1] モリブデン塩水溶液の調製
 塊状の七モリブデン酸六アンモニウム四水和物100gを純水900gに溶解させ、モリブデン塩水溶液とした。
Preparation Example 1 Preparation of Molybdenum Salt Aqueous Solution 100 g of bulked hexaammonium heptamolybdate tetrahydrate was dissolved in 900 g of pure water to obtain a molybdenum salt aqueous solution.
[製造例2] ジルコニウム塩水溶液の調製
 炭酸ジルコニウムアンモニウム水溶液(日本軽金属社製、製品名;ベイコート20、酸化ジルコニウム濃度19~20質量%)を、酸化ジルコニウム濃度として10質量%になるよう純水で希釈し、ジルコニウム塩水溶液とした。
Preparation Example 2 Preparation of Zirconium Salt Aqueous Solution A zirconium ammonium carbonate aqueous solution (manufactured by Nippon Light Metal Co., Ltd., product name; Baycoat 20, zirconium oxide concentration 19 to 20 mass%) was treated with pure water to a zirconium oxide concentration of 10 mass%. It was diluted to obtain an aqueous solution of zirconium salt.
[製造例3] リン酸塩水溶液の調製
 リン酸水素二アンモニウム100gを純水900gに溶解させ、リン酸塩水溶液とした。
Preparation Example 3 Preparation of Phosphate Aqueous Solution 100 g of diammonium hydrogen phosphate was dissolved in 900 g of pure water to obtain an aqueous phosphate solution.
[実施例1]
 製造例1で得られたモリブデン塩水溶液141.2g(Moとして0.08mol)と、製造例2で得られたジルコニウム塩水溶液197.1g(Zrとして0.16mol)と、の混合水溶液にクエン酸一水和物42g(0.2mol)を添加した。更に、製造例3で得られたリン酸塩水溶液190.2g(Pとして0.144mol)と、純水281gと、を加えて混合水溶液を調製した。調製した混合水溶液の比重は1.07、pHは6.6、電気伝導度は40.0mS/cmであった。
Example 1
Citric acid in a mixed aqueous solution of 141.2 g (0.08 mol as Mo) of the aqueous solution of molybdenum salt obtained in Production Example 1 and 197.1 g (0.16 mol as Zr) of the aqueous solution of zirconium salt obtained in Production Example 2 42 g (0.2 mol) of monohydrate were added. Furthermore, 190.2 g (0.144 mol as P) of the phosphate aqueous solution obtained in Production Example 3 and 281 g of pure water were added to prepare a mixed aqueous solution. The specific gravity of the prepared mixed aqueous solution was 1.07, the pH was 6.6, and the electrical conductivity was 40.0 mS / cm.
 この混合水溶液をスプレードライヤー(パルビスミニスプレーGB210-A型、ヤマト科学社製)を使用して、入口温度210℃、噴霧圧0.15MPa、風量0.55m3/分、混合水溶液の送液速度400g/時の条件で乾燥させ、乾燥粉を得た。このときの出口温度は90±5℃であった。得られた乾燥粉3.0gを高純度アルミナ坩堝に入れ、電気炉を使用して大気中において600℃で4時間の仮焼成した後、900℃で2時間、次いで1050℃で2時間の本焼成することにより、粉末1.2gを得た。 This mixed aqueous solution was sent using a spray dryer (Palvis Mini Spray GB 210-A, manufactured by Yamato Scientific Co., Ltd.) at an inlet temperature of 210 ° C., a spray pressure of 0.15 MPa and an air volume of 0.55 m 3 / min. It dried on conditions of speed 400g / h, and obtained dry powder. The outlet temperature at this time was 90 ± 5 ° C. After 3.0 g of the obtained dry powder is put in a high purity alumina crucible and calcined at 600 ° C. for 4 hours in the atmosphere using an electric furnace, it is then calcined at 900 ° C. for 2 hours and then at 1050 ° C. for 2 hours. By firing, 1.2 g of powder was obtained.
 得られた粉末をX線回折分析により同定したところ、生成相はZrMoP12の単相からなり、X線回折ピークの強度比Iα/Iβは0.01未満であった。また、2θ=19.8°付近に出現するZrMoP12相(121)面の回折ピークから算出される結晶子径は63nmであった。 When the obtained powder was identified by X-ray diffraction analysis, the generated phase consisted of a single phase of Zr 2 MoP 2 O 12 , and the intensity ratio I α / I β of X-ray diffraction peaks was less than 0.01. In addition, the crystallite diameter calculated from the diffraction peak of the Zr 2 MoP 2 O 12 phase (121) plane appearing near 2θ = 19.8 ° was 63 nm.
[実施例2]
 1050℃の本焼成を1150℃に変更した以外は実施例1と同様の手法で粉末を得た。
Example 2
A powder was obtained in the same manner as in Example 1 except that the main firing at 1050 ° C. was changed to 1150 ° C.
 得られた粉末をX線回折分析により同定したところ、生成相はZrMoP12の単相からなり、X線回折ピークの強度比Iα/Iβは0.01未満であった。また、2θ=19.8°付近に出現するZrMoP12相(121)面の回折ピークから算出される結晶子径は64nmであった。 When the obtained powder was identified by X-ray diffraction analysis, the generated phase consisted of a single phase of Zr 2 MoP 2 O 12 , and the intensity ratio I α / I β of X-ray diffraction peaks was less than 0.01. The crystallite diameter calculated from the diffraction peak of the Zr 2 MoP 2 O 12 phase (121) surface appearing near 2θ = 19.8 ° was 64 nm.
[実施例3]
 1050℃の本焼成を行わなかったこと以外は実施例1と同様の手法で粉末を得た。得られた粉末をX線回折分析により同定したところ、生成相はZrMoP12の単相からなり、X線回折ピークの強度比Iα/Iβは0.01未満であった。また、2θ=19.8°付近に出現するZrMoP12相(121)面の回折ピークから算出される結晶子径は60nmであった。
[Example 3]
A powder was obtained in the same manner as in Example 1 except that the main firing at 1050 ° C. was not performed. When the obtained powder was identified by X-ray diffraction analysis, the generated phase consisted of a single phase of Zr 2 MoP 2 O 12 , and the intensity ratio I α / I β of X-ray diffraction peaks was less than 0.01. The crystallite diameter calculated from the diffraction peak of the Zr 2 MoP 2 O 12 phase (121) surface appearing near 2θ = 19.8 ° was 60 nm.
[実施例4]
 製造例1で得られたモリブデン塩水溶液141.2g(Moとして0.08mol)と、製造例2で得られたジルコニウム塩水溶液197.1g(Zrとして0.16mol)と、の混合水溶液にクエン酸一水和物42g(0.2mol)を添加した。更に、製造例3で得られたリン酸塩水溶液179.6g(Pとして0.136mol)と、純水291.6gと、を加えて混合水溶液を調製した。調製した混合水溶液の比重は1.07、pHは6.8、電気伝導度は40.0mS/cmであった。
Example 4
Citric acid in a mixed aqueous solution of 141.2 g (0.08 mol as Mo) of the aqueous solution of molybdenum salt obtained in Production Example 1 and 197.1 g (0.16 mol as Zr) of the aqueous solution of zirconium salt obtained in Production Example 2 42 g (0.2 mol) of monohydrate were added. Furthermore, 179.6 g (0.136 mol as P) of the aqueous solution of phosphate obtained in Production Example 3 and 291.6 g of pure water were added to prepare a mixed aqueous solution. The specific gravity of the prepared mixed aqueous solution was 1.07, the pH was 6.8, and the electrical conductivity was 40.0 mS / cm.
 この混合水溶液を、実施例1と同様の手法によりスプレードライヤーで乾燥させ、乾燥粉を得た。得られた乾燥粉3.0gを高純度アルミナ坩堝に入れ、電気炉を使用して大気中において600℃で4時間の仮焼成した後、900℃で2時間、1150℃で2時間の本焼成することにより、粉末1.2gを得た。 The mixed aqueous solution was dried by a spray dryer in the same manner as in Example 1 to obtain a dry powder. 3.0 g of the obtained dry powder is put in a high purity alumina crucible and temporarily fired at 600 ° C. for 4 hours in the atmosphere using an electric furnace, and then main firing at 900 ° C. for 2 hours and 1150 ° C. for 2 hours As a result, 1.2 g of powder was obtained.
 得られた粉末をX線回折分析により同定したところ、生成相はZrMoP12の単相からなり、X線回折ピークの強度比Iα/Iβは0.01未満であった。また、2θ=19.8°付近に出現するZrMoP12相(121)面の回折ピークから算出される結晶子径は71nmであった。 When the obtained powder was identified by X-ray diffraction analysis, the generated phase consisted of a single phase of Zr 2 MoP 2 O 12 , and the intensity ratio I α / I β of X-ray diffraction peaks was less than 0.01. The crystallite diameter calculated from the diffraction peak of the Zr 2 MoP 2 O 12 phase (121) surface appearing near 2θ = 19.8 ° was 71 nm.
[実施例5]
 製造例1で得られたモリブデン塩水溶液141.2g(Moとして0.08mol)と、製造例2で得られたジルコニウム塩水溶液197.1g(Zrとして0.16mol)と、の混合水溶液にクエン酸一水和物42g(0.2mol)を添加した。更に、製造例3で得られたリン酸塩水溶液169.0g(Pとして0.128mol)と、純水302.2gと、を加えて混合水溶液を調製した。調製した混合水溶液の比重は1.07、pHは6.8、電気伝導度は40.0mS/cmであった。
[Example 5]
Citric acid in a mixed aqueous solution of 141.2 g (0.08 mol as Mo) of the aqueous solution of molybdenum salt obtained in Production Example 1 and 197.1 g (0.16 mol as Zr) of the aqueous solution of zirconium salt obtained in Production Example 2 42 g (0.2 mol) of monohydrate were added. Furthermore, 169.0 g (0.128 mol as P) of the aqueous phosphate solution obtained in Production Example 3 and 302.2 g of pure water were added to prepare a mixed aqueous solution. The specific gravity of the prepared mixed aqueous solution was 1.07, the pH was 6.8, and the electrical conductivity was 40.0 mS / cm.
 この混合水溶液を実施例1と同様にスプレードライヤーで乾燥させ、乾燥粉を得た。得られた乾燥粉3.0gを高純度アルミナ坩堝に入れ、電気炉を使用して大気中において600℃で4時間の仮焼成した後、900℃で2時間、1150℃で2時間の本焼成することにより、粉末1.2gを得た。 The mixed aqueous solution was dried by a spray dryer as in Example 1 to obtain a dry powder. 3.0 g of the obtained dry powder is put in a high purity alumina crucible and temporarily fired at 600 ° C. for 4 hours in the atmosphere using an electric furnace, and then main firing at 900 ° C. for 2 hours and 1150 ° C. for 2 hours As a result, 1.2 g of powder was obtained.
 得られた粉末をX線回折分析により同定したところ、生成相はZr2MoP212の単相からなり、X線回折ピークの強度比Iα/Iβは0.01未満であった。また、2θ=19.8°付近に出現するZrMoP12相(121)面の回折ピークから算出される結晶子径は67nmであった。 When the obtained powder was identified by X-ray diffraction analysis, the generated phase consisted of a single phase of Zr 2 MoP 2 O 12 , and the intensity ratio I α / I β of X-ray diffraction peaks was less than 0.01. The crystallite diameter calculated from the diffraction peak of the Zr 2 MoP 2 O 12 phase (121) surface appearing near 2θ = 19.8 ° was 67 nm.
[実施例6]
 製造例1で得られたモリブデン塩水溶液141.2g(Moとして0.08mol)と、製造例2で得られたジルコニウム塩水溶液197.1g(Zrとして0.16mol)と、の混合水溶液に、製造例3で得られたリン酸塩水溶液190.2g(Pとして0.144mol)と、純水323gと、を加えて混合水溶液を調製した。調製した混合水溶液の比重は1.06、pHは8.7、電気伝導度は41.6mS/cmであった。
[Example 6]
A mixed aqueous solution of 141.2 g (0.08 mol as Mo) of the aqueous solution of molybdenum salt obtained in Production Example 1 and 197.1 g (0.16 mol as Zr) of the aqueous solution of zirconium salt obtained in Production Example 2 A mixed aqueous solution was prepared by adding 190.2 g (0.144 mol as P) of the aqueous phosphate solution obtained in Example 3 and 323 g of pure water. The specific gravity of the prepared mixed aqueous solution was 1.06, the pH was 8.7, and the electrical conductivity was 41.6 mS / cm.
 この混合水溶液を、実施例1と同様の手法により、スプレードライヤーで乾燥させ、乾燥粉を得た。得られた乾燥粉3.0gを高純度アルミナ坩堝に入れ、電気炉を使用して大気中において600℃で4時間の仮焼成した後、900℃で2時間、1150℃で2時間の焼成することにより、粉末1.5gを得た。 The mixed aqueous solution was dried by a spray dryer in the same manner as in Example 1 to obtain a dry powder. 3.0 g of the obtained dry powder is put in a high purity alumina crucible and calcined at 600 ° C. for 4 hours in the atmosphere using an electric furnace, and then calcined at 900 ° C. for 2 hours and 1150 ° C. for 2 hours Thus, 1.5 g of powder was obtained.
 得られた粉末をX線回折分析により同定したところ、生成相はZr2MoP212の単相からなり、X線回折ピークの強度比Iα/Iβは0.01未満であった。また、2θ=19.8°付近に出現するZrMoP12相(121)面の回折ピークから算出される結晶子径は63nmであった。 When the obtained powder was identified by X-ray diffraction analysis, the generated phase consisted of a single phase of Zr 2 MoP 2 O 12 , and the intensity ratio I α / I β of X-ray diffraction peaks was less than 0.01. In addition, the crystallite diameter calculated from the diffraction peak of the Zr 2 MoP 2 O 12 phase (121) plane appearing near 2θ = 19.8 ° was 63 nm.
[実施例7]
 混合水溶液の乾燥手法を、スプレードライヤーを利用した手法の代わりに、混合水溶液をナスフラスコに入れてロータリーエバポレーターを用いて10Torrで減圧乾燥する手法とした以外は実施例1と同様の手法で粉末を得た。
[Example 7]
The powder was prepared in the same manner as in Example 1 except that the mixed aqueous solution was put into an eggplant flask and dried under reduced pressure at 10 Torr using a rotary evaporator instead of the method using a spray dryer. Obtained.
 得られた粉末をX線回折分析により同定したところ、生成相はZr2MoP212の単相からなり、X線回折ピークの強度比Iα/Iβは0.01未満であった。また、2θ=19.8°付近に出現するZrMoP12相(121)面の回折ピークから算出される結晶子径は64nmであった。 When the obtained powder was identified by X-ray diffraction analysis, the generated phase consisted of a single phase of Zr 2 MoP 2 O 12 , and the intensity ratio I α / I β of X-ray diffraction peaks was less than 0.01. The crystallite diameter calculated from the diffraction peak of the Zr 2 MoP 2 O 12 phase (121) surface appearing near 2θ = 19.8 ° was 64 nm.
[比較例1]
 仮焼成後の焼成条件を800℃で2時間に変更した以外は、実施例1と同様の手法で粉末を得た。得られた粉末をX線回折分析により同定したところ、中間生成物であるZrPとZrMoP12の混相であり、焼成が不十分であることが分かった。
Comparative Example 1
A powder was obtained in the same manner as in Example 1 except that the firing conditions after temporary firing were changed to 800 ° C. for 2 hours. When the obtained powder was identified by X-ray diffraction analysis, it was found that it was a mixed phase of the intermediate products ZrP 2 O 7 and Zr 2 MoP 2 O 12 and the firing was insufficient.
[比較例2]
 1050℃の本焼成を1200℃に変更した以外は、実施例1と同様の手法で粉末を得た。得られた粉末をX線回折分析により同定したところ、完全に熱分解が進行してZrのほぼ単相であった。また、熱分解時に発生するMoOは昇華して系外に放出されるのでX線回折法では検出されなかった。
Comparative Example 2
A powder was obtained in the same manner as in Example 1 except that the main firing at 1050 ° C. was changed to 1200 ° C. The obtained powder was identified by X-ray diffraction analysis, and thermal decomposition proceeded completely to be almost single phase of Zr 2 P 2 O 9 . In addition, MoO 3 generated during thermal decomposition is not detected by X-ray diffractometry because it is sublimated and released out of the system.
[比較例3]
 製造例1で得られたモリブデン塩水溶液141.2g(Moとして0.08mol)と、製造例2で得られたジルコニウム塩水溶液197.1g(Zrとして0.16mol)と、の混合水溶液にクエン酸一水和物42g(0.2mol)を添加した。更に、製造例3で得られたリン酸塩水溶液200.7g(Pとして0.152mol)と、純水270.5gと、を加えて混合水溶液を調製した。調製した混合水溶液の比重は1.07、pHは7.1、電気伝導度は40.4mS/cmであった。
Comparative Example 3
Citric acid in a mixed aqueous solution of 141.2 g (0.08 mol as Mo) of the aqueous solution of molybdenum salt obtained in Production Example 1 and 197.1 g (0.16 mol as Zr) of the aqueous solution of zirconium salt obtained in Production Example 2 42 g (0.2 mol) of monohydrate were added. Furthermore, 200.7 g (0.152 mol as P) of the aqueous solution of phosphate obtained in Production Example 3 and 270.5 g of pure water were added to prepare a mixed aqueous solution. The specific gravity of the prepared mixed aqueous solution was 1.07, the pH was 7.1, and the electrical conductivity was 40.4 mS / cm.
 この混合水溶液を、実施例1と同様の手法によりスプレードライヤーで乾燥させ、乾燥粉を得た。得られた乾燥粉3.0gを高純度アルミナ坩堝に入れ、電気炉を使用して大気中において600℃で4時間の仮焼成した後、900℃で2時間、1150℃で2時間の本焼成することにより、粉末1.2gを得た。 The mixed aqueous solution was dried by a spray dryer in the same manner as in Example 1 to obtain a dry powder. 3.0 g of the obtained dry powder is put in a high purity alumina crucible and temporarily fired at 600 ° C. for 4 hours in the atmosphere using an electric furnace, and then main firing at 900 ° C. for 2 hours and 1150 ° C. for 2 hours As a result, 1.2 g of powder was obtained.
 得られた粉末をX線回折分析により同定したところ、生成相はZrとZrMoP12の混相であり、X線回折ピークの強度比Iα/Iβは0.15であった。 When the obtained powder was identified by X-ray diffraction analysis, the product phase is a mixed phase of Zr 2 P 2 O 9 and Zr 2 MoP 2 O 12 , and the intensity ratio I α / I β of X-ray diffraction peaks is 0. It was 15.
[比較例4]
 製造例1で得られたモリブデン塩水溶液141.2g(Moとして0.08mol)と、製造例2で得られたジルコニウム塩水溶液197.1g(Zrとして0.16mol)と、の混合水溶液にクエン酸一水和物42g(0.2mol)を添加した。更に、製造例3で得られたリン酸塩水溶液158.4g(Pとして0.120mol)と、純水312.8gと、を加えて混合水溶液を調製した。調製した混合水溶液の比重は1.07、pHは6.3、電気伝導度は39.8mS/cmであった。
Comparative Example 4
Citric acid in a mixed aqueous solution of 141.2 g (0.08 mol as Mo) of the aqueous solution of molybdenum salt obtained in Production Example 1 and 197.1 g (0.16 mol as Zr) of the aqueous solution of zirconium salt obtained in Production Example 2 42 g (0.2 mol) of monohydrate were added. Furthermore, 158.4 g (0.120 mol as P) of the aqueous phosphate solution obtained in Production Example 3 and 312.8 g of pure water were added to prepare a mixed aqueous solution. The specific gravity of the prepared mixed aqueous solution was 1.07, the pH was 6.3, and the electrical conductivity was 39.8 mS / cm.
 この混合水溶液を、実施例1と同様の手法によりスプレードライヤーで乾燥させ、乾燥粉を得た。得られた乾燥粉3.0gを高純度アルミナ坩堝に入れ、電気炉を使用して大気中において600℃で4時間の仮焼成した後、900℃で2時間、1150℃で2時間の本焼成することにより、粉末1.2gを得た。 The mixed aqueous solution was dried by a spray dryer in the same manner as in Example 1 to obtain a dry powder. 3.0 g of the obtained dry powder is put in a high purity alumina crucible and temporarily fired at 600 ° C. for 4 hours in the atmosphere using an electric furnace, and then main firing at 900 ° C. for 2 hours and 1150 ° C. for 2 hours As a result, 1.2 g of powder was obtained.
 得られた粉末をX線回折分析により同定したところ、Zrの回折は見られなかったが、生成相はZrOとZrMoP12との混相であった。 When the obtained powder was identified by X-ray diffraction analysis, no diffraction of Zr 2 P 2 O 9 was observed, but the formed phase was a mixed phase of ZrO 2 and Zr 2 MoP 2 O 12 .
[比較例5]
 粉末状の炭酸ジルコニウムアンモニウム(ZrOとして51.58%含有)19.11g(Zrとして0.08mol)と、粉末状の七モリブデン酸六アンモニウム四水和物7.06g(Moとして0.04mol)と、リン酸水素二アンモニウム9.51g(Pとして0.072mol)とを、メノウ乳鉢を用いて30分粉砕・混合し、混合粉末を調製した。調製した混合粉末4.0gを高純度アルミナ坩堝に入れ、電気炉を使用して大気中において600℃で4時間の仮焼成した後、900℃で2時間の焼成することにより、青味を帯びた白色粉末2.2gを得た。得られた粉末をX線回折分析により同定したところ、生成相はZrPとZrMoP12との混相であった。
Comparative Example 5
19.11 g (0.08 mol as Zr) of powdered ammonium zirconium carbonate (containing 51.58% as ZrO 2 ) and 7.06 g (0.04 mol as Mo) of powdered ammonium heptamolybdate tetrahydrate And 9.51 g of diammonium hydrogen phosphate (0.072 mol as P) were ground and mixed for 30 minutes using an agate mortar to prepare a mixed powder. Into a high purity alumina crucible, 4.0 g of the prepared mixed powder is put, and after calcining at 600 ° C. for 4 hours in the atmosphere using an electric furnace, it is bluish by baking at 900 ° C. for 2 hours 2.2 g of white powder was obtained. When the obtained powder was identified by X-ray diffraction analysis, the product phase was a mixed phase of ZrP 2 O 7 and Zr 2 MoP 2 O 12 .
[比較例6]
 900℃の焼成後、1050℃で2時間の焼成した以外は、比較例5と同様の手法で粉末を得た。得られた粉末をX線回折分析により同定したところ、生成相はZrPとZrMoP12との混相であった。
Comparative Example 6
A powder was obtained in the same manner as in Comparative Example 5 except that baking was performed at 1050 ° C. for 2 hours after baking at 900 ° C. When the obtained powder was identified by X-ray diffraction analysis, the product phase was a mixed phase of ZrP 2 O 7 and Zr 2 MoP 2 O 12 .
 上記の結果を表1にまとめる。表中、焼成を二回行った実施例及び比較例では、一回目の焼成が単に「焼成」と表され、二回目の焼成が「本焼成」と表されている。 The above results are summarized in Table 1. In the table, in the examples and comparative examples in which the firing was performed twice, the first firing is represented simply as "firing" and the second firing is represented as "main firing".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上の通り、実施例1~7によれば、水溶性原料を用いた合成法を利用して、コンポジットレジンのCTEを低減させるのに有利なZrMoP12相を高純度に有するリンモリブデン酸ジルコニウム微粒子を製造することができることが確認された。得られたリンモリブデン酸ジルコニウムは、実施例1~7の何れも、比Iα/Iβが0.05未満という、ZrMoP12相の高純度なものであった。 As described above, according to Examples 1 to 7, phosphorus having a high purity of Zr 2 MoP 2 O 12 phase which is advantageous for reducing the CTE of the composite resin by using a synthesis method using a water-soluble raw material It was confirmed that zirconium molybdate fine particles can be produced. The obtained zirconium phosphomolybdate was a highly pure Zr 2 MoP 2 O 12 phase in which the ratio I α / I β was less than 0.05 in any of Examples 1 to 7.
 特に、実施例1~7によれば、結晶子径が80nm未満であるリンモリブデン酸ジルコニウム微粒子が得られることが確認された。粒子径が小さく、コンポジットレジンに対して高密度に充填させることができる。従って、実施例1~7により製造されたリンモリブデン酸ジルコニウム微粒子によれば、コンポジットレジンのフィラーとして用いることで、高いCTE低減効果が期待される。 In particular, according to Examples 1 to 7, it was confirmed that zirconium phosphomolybdate fine particles having a crystallite diameter of less than 80 nm can be obtained. The particle size is small and can be densely packed into a composite resin. Therefore, according to the zirconium phosphomolybdate fine particles produced in Examples 1 to 7, a high CTE reduction effect can be expected by using it as a filler of a composite resin.
 しかしながら、焼成温度が本発明の範囲でない比較例1~2、ジルコニウム原子:モリブデン原子:リン原子のモル比が本発明の範囲でない比較例3~4、及び本発明のような液相反応法ではない比較例5~6では、実施例1~7のようなリンモリブデン酸ジルコニウム微粒子を得ることができないことが確認された。 However, in Comparative Examples 1 to 2 where the firing temperature is not within the range of the present invention, Comparative Examples 3 to 4 where the molar ratio of zirconium atom: molybdenum atom: phosphorus atom is not within the range of the present invention, and liquid phase reaction methods such as the present invention It was confirmed that the zirconium phosphomolybdate fine particles as in Examples 1 to 7 can not be obtained in Comparative Examples 5 to 6 in which no such substance is obtained.
 本発明のリンモリブデン酸ジルコニウム微粒子の製造方法は、水溶性原料を用いた合成法を利用して、コンポジットレジンのCTEを低減させるのに有利なZrMoP12相を高純度に有するリンモリブデン酸ジルコニウム微粒子を得ることができる。そのため、例えば、半導体封止材料やアンダーフィル等の用途において、CTEを低減させるためのフィラーとして好適に使用できる。 The method for producing zirconium phosphomolybdate fine particles of the present invention is a phosphorus having a high purity of Zr 2 MoP 2 O 12 phase which is advantageous for reducing CTE of composite resin by using a synthesis method using a water-soluble raw material. Zirconium molybdate fine particles can be obtained. Therefore, it can be suitably used as a filler for reducing CTE, for example, in applications such as semiconductor sealing materials and underfills.

Claims (7)

  1.  水溶性ジルコニウム塩、水溶性モリブデン塩及び水溶性リン酸塩を混合する第1工程と、前記混合後の混合物を900℃以上1200℃未満の温度で焼成する第3工程と、を含み、
     前記第3工程では、前記混合物中のジルコニウム原子:モリブデン原子:リン原子のモル比(Zr:Mo:P)が2:x:2-y(x≧1、0≦y<0.5)にある中で前記焼成すること
     を特徴とするリンモリブデン酸ジルコニウム微粒子の製造方法。
    Including a first step of mixing the water-soluble zirconium salt, the water-soluble molybdenum salt and the water-soluble phosphate, and a third step of firing the mixture after the mixing at a temperature of 900 ° C to less than 1200 ° C;
    In the third step, the molar ratio of zirconium atom: molybdenum atom: phosphorus atom (Zr: Mo: P) in the mixture is 2: 2: x: 2-y (x ≧ 1, 0 ≦ y <0.5). A method for producing zirconium phosphomolybdate fine particles, characterized in that the firing is performed in a certain place.
  2.  前記リンモリブデン酸ジルコニウム微粒子の生成相であるZrMoP12相の、(121)面に垂直方向の結晶子径が80nm未満であること
     を特徴とする請求項1に記載のリンモリブデン酸ジルコニウム微粒子の製造方法。
    The phosphomolybdic acid according to claim 1, wherein the crystallite diameter in the direction perpendicular to the (121) plane of the Zr 2 MoP 2 O 12 phase, which is the formation phase of the zirconium phosphomolybdate fine particles, is less than 80 nm. Method of producing zirconium fine particles.
  3.  前記水溶性ジルコニウム塩として、ジルコニウムのアンモニウム塩を用いること
     を特徴とする請求項1又は2に記載のリンモリブデン酸ジルコニウム微粒子の製造方法。
    The ammonium salt of zirconium is used as said water soluble zirconium salt. The manufacturing method of the zirconium phosphomolybdate microparticles | fine-particles of Claim 1 or 2 characterized by these.
  4.  前記水溶性モリブデン塩として、モリブデンのアンモニウム塩を用いること
     を特徴とする請求項1又は2に記載のリンモリブデン酸ジルコニウム微粒子の製造方法。
    The ammonium salt of molybdenum is used as said water-soluble molybdenum salt. The manufacturing method of the phosphomolybdate zirconium microparticles | fine-particles of Claim 1 or 2 characterized by these.
  5.  前記水溶性リン酸塩として、リン酸のアンモニウム塩を用いること
     を特徴とする請求項1又は2に記載のリンモリブデン酸ジルコニウム微粒子の製造方法。
    The ammonium salt of phosphoric acid is used as said water-soluble phosphate, The manufacturing method of the phosphomolybdate zirconium microparticles | fine-particles of Claim 1 or 2 characterized by these.
  6.  前記第1工程で水溶性ジルコニウム塩、水溶性モリブデン塩及び水溶性リン酸塩を含有した混合水溶液を、第2工程で乾燥すること、第3工程で混合物を900℃以上1200℃未満の温度で焼成すること、を含むこと
     を特徴とする請求項1~5の何れか一項に記載のリンモリブデン酸ジルコニウム微粒子の製造方法。
    Drying the mixed aqueous solution containing the water-soluble zirconium salt, the water-soluble molybdenum salt and the water-soluble phosphate in the first step in the second step, and in the third step the mixture at a temperature of 900 ° C to less than 1200 ° C The method for producing zirconium phosphomolybdate particles according to any one of claims 1 to 5, comprising: baking.
  7.  前記第3工程で、
     前記モル比(Zr:Mo:P)が2:x:2-y(x≧1、0≦y<0.5)である水溶液を50℃以上350℃未満で噴霧乾燥して得られた前記混合物を前記焼成する第1手法、
     前記モル比(Zr:Mo:P)が2:x:2-y(x≧1、0≦y<0.5)である水溶液を凍結乾燥して得られた前記混合物を前記焼成する第2手法、又は
     前記モル比(Zr:Mo:P)が2:x:2-y(x≧1、0≦y<0.5)である水溶液を350℃以上900℃未満で噴霧熱分解して得られた前記混合物を前記焼成する第3手法、を用いること
     を特徴とする請求項1~6の何れか一項に記載のリンモリブデン酸ジルコニウム微粒子の製造方法。
     
    In the third step,
    The aqueous solution having the molar ratio (Zr: Mo: P) of 2: x: 2-y (x ≧ 1, 0 ≦ y <0.5) is spray-dried at 50 ° C. or more and less than 350 ° C. A first method of firing the mixture,
    A second baking is performed on the mixture obtained by lyophilizing an aqueous solution having the molar ratio (Zr: Mo: P) of 2: x: 2-y (x ≧ 1, 0 ≦ y <0.5). Or spray pyrolysis of an aqueous solution having the molar ratio (Zr: Mo: P) of 2: x: 2-y (x ≧ 1, 0 ≦ y <0.5) at 350 ° C. to less than 900 ° C. The method for producing zirconium phosphomolybdate microparticles according to any one of claims 1 to 6, wherein the third method of firing the obtained mixture is used.
PCT/JP2018/029096 2017-08-28 2018-08-02 Method for producing zirconium phosphomolybdate fine particles WO2019044372A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-163610 2017-08-28
JP2017163610 2017-08-28

Publications (1)

Publication Number Publication Date
WO2019044372A1 true WO2019044372A1 (en) 2019-03-07

Family

ID=65527626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029096 WO2019044372A1 (en) 2017-08-28 2018-08-02 Method for producing zirconium phosphomolybdate fine particles

Country Status (2)

Country Link
TW (1) TW201919991A (en)
WO (1) WO2019044372A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7311077B1 (en) * 2022-02-03 2023-07-19 Dic株式会社 Oxide fine particles and method for producing oxide fine particles
WO2023149315A1 (en) * 2022-02-03 2023-08-10 Dic株式会社 Fine oxide particle and fine oxide particle production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919720A (en) * 1997-04-15 1999-07-06 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Materials with low or negative thermal expansion
JP2011208035A (en) * 2010-03-30 2011-10-20 Asahi Kasei Chemicals Corp Metal pigment composition
JP2016037408A (en) * 2014-08-06 2016-03-22 国立大学法人京都大学 Zirconium phosphate particles, and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919720A (en) * 1997-04-15 1999-07-06 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Materials with low or negative thermal expansion
JP2011208035A (en) * 2010-03-30 2011-10-20 Asahi Kasei Chemicals Corp Metal pigment composition
JP2016037408A (en) * 2014-08-06 2016-03-22 国立大学法人京都大学 Zirconium phosphate particles, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7311077B1 (en) * 2022-02-03 2023-07-19 Dic株式会社 Oxide fine particles and method for producing oxide fine particles
WO2023149315A1 (en) * 2022-02-03 2023-08-10 Dic株式会社 Fine oxide particle and fine oxide particle production method

Also Published As

Publication number Publication date
TW201919991A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
WO2020133575A1 (en) Zirconia/titanium oxide/cerium oxide doped rare earth tantalum/niobate reta/nbo4 ceramic powder and preparation method therefor
Zhang et al. Preparation and characterization of thermally stable nanohydroxyapatite
WO2018150826A1 (en) Spherical magnesium oxide and production method therefor
WO2019044372A1 (en) Method for producing zirconium phosphomolybdate fine particles
WO2017061402A1 (en) Production method for zirconium tungsten phosphate
CN104556167B (en) A kind of method preparing tabular alumina powder
JP6587070B2 (en) Process for producing β-eucryptite fine particles
JP7054658B2 (en) Method for manufacturing LATP crystal particles for solid electrolyte of secondary battery
Cho et al. Large-scale production of fine-sized Zn 2 SiO 4: Mn phosphor microspheres with a dense structure and good photoluminescence properties by a spray-drying process
Lin et al. Polymer-assisted chemical solution approach to YVO 4: Eu nanoparticle networks
CN112752732B (en) Spherical magnesium oxide, method for producing same, thermally conductive filler, and resin composition
CN113348148B (en) Method for producing lithium titanium phosphate
JP7179603B2 (en) Method for producing NASICON-type oxide particles for solid electrolyte of lithium-ion secondary battery
JP4957073B2 (en) Glass composition containing low thermal expansion filler
JP6239456B2 (en) Phosphor and method for producing the same
JP6447968B2 (en) Zirconium phosphate particles and method for producing the same
JP2020011869A (en) Method for producing germanium pyrophosphate
Zhou et al. Coprecipitation and processing of mullite precursor phases
Cho et al. Large-scale production of spherical Y 2 O 3: Eu 3+ phosphor powders with narrow size distribution using a two-step spray drying method
WO2020203710A1 (en) Spherical magnesium oxide, method for producing same, heat-conductive filler, and resin composition
JP6941928B2 (en) Method for Producing Spherical Si3N4 Particles and Spherical Si3N4 Particles
JP7089983B2 (en) Method for manufacturing NASICON type negative electrode active material particles for sodium ion secondary battery
JP5987778B2 (en) Method for producing rare earth oxide powder
WO2019017435A1 (en) Silicate compound microparticles and method for producing same
JP6509668B2 (en) Method of manufacturing aluminum borate whisker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP