JP6941928B2 - Method for Producing Spherical Si3N4 Particles and Spherical Si3N4 Particles - Google Patents
Method for Producing Spherical Si3N4 Particles and Spherical Si3N4 Particles Download PDFInfo
- Publication number
- JP6941928B2 JP6941928B2 JP2016200002A JP2016200002A JP6941928B2 JP 6941928 B2 JP6941928 B2 JP 6941928B2 JP 2016200002 A JP2016200002 A JP 2016200002A JP 2016200002 A JP2016200002 A JP 2016200002A JP 6941928 B2 JP6941928 B2 JP 6941928B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- spherical
- powder
- granulated
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002245 particle Substances 0.000 title claims description 152
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 229910052581 Si3N4 Inorganic materials 0.000 title description 13
- 239000000843 powder Substances 0.000 claims description 101
- 238000000034 method Methods 0.000 claims description 32
- 239000011863 silicon-based powder Substances 0.000 claims description 32
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000012298 atmosphere Substances 0.000 claims description 9
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 6
- 238000001694 spray drying Methods 0.000 claims description 6
- 238000002441 X-ray diffraction Methods 0.000 claims description 5
- 238000005121 nitriding Methods 0.000 description 35
- 238000006243 chemical reaction Methods 0.000 description 23
- 239000012798 spherical particle Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 15
- 238000002156 mixing Methods 0.000 description 13
- 239000002994 raw material Substances 0.000 description 13
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 238000005469 granulation Methods 0.000 description 9
- 230000003179 granulation Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 238000011049 filling Methods 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000007561 laser diffraction method Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000007751 thermal spraying Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000007771 core particle Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011361 granulated particle Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 description 1
- 229910000071 diazene Inorganic materials 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Landscapes
- Ceramic Products (AREA)
- Silicon Compounds (AREA)
Description
本発明は、球状Si3N4粒子、および、球状Si3N4粒子の製造方法に関係する。 The present invention, spherical Si 3 N 4 particles, and relates to a method for producing spherical Si 3 N 4 particles.
Si3N4(窒化ケイ素)は、セラミックスの中でも高強度、高靭性を有する材料であり、各種構造用部材として用いられている。また、近年ではSi3N4の持つ高熱伝導性に着目した用途として半導体用の基板材料として実用化が進められている。Si3N4は、難焼結性の材料であることから、Si3N4単体では焼結することが困難であり、一般に希土類酸化物やアルミナ、シリカなどの酸化物を主に焼結助剤として用い、緻密な焼結体を得ることが行われている。 Si 3 N 4 (silicon nitride) is a material having high strength and high toughness among ceramics, and is used as various structural members. Further, in recent years, practical application has been promoted as a substrate material for semiconductors as an application focusing on the high thermal conductivity of Si 3 N 4. Since Si 3 N 4 is a difficult-to-sinter material, it is difficult to sinter Si 3 N 4 alone, and generally, rare earth oxides and oxides such as alumina and silica are mainly assisted in sintering. It is used as an agent to obtain a dense sintered body.
また、Si3N4は、高温で酸化されてしまうため、焼結の際は酸素を含まない窒素ガス雰囲気中で焼成するのが一般的である。更に、Si3N4は高温で分解してしまうため、1800℃を超えるような温度で焼成する場合には、Si3N4→3Si+2N2の分解反応を抑えるために、N2ガスを用いたガス圧焼結による焼成方法が用いられている Further, since Si 3 N 4 is oxidized at a high temperature, it is generally fired in a nitrogen gas atmosphere containing no oxygen at the time of sintering. Furthermore, since Si 3 N 4 decomposes at a high temperature, N 2 gas was used to suppress the decomposition reaction of Si 3 N 4 → 3 Si + 2 N 2 when firing at a temperature exceeding 1800 ° C. A firing method by gas pressure sintering is used.
一方、セラミックスの球状粒子は、半導体の封止材料や絶縁性樹脂基板、放熱シート等に用いられている。これらの用途には、SiO2(シリカ)やAl2O3(アルミナ)などの酸化物の球状粒子を樹脂と混合して使用されており、溶射法により製造されたものが広く使われている。 On the other hand, the spherical particles of ceramics are used as a sealing material for semiconductors, an insulating resin substrate, a heat radiating sheet, and the like. For these purposes, spherical particles of oxides such as SiO 2 (silica) and Al 2 O 3 (alumina) are mixed with a resin, and those manufactured by the thermal spraying method are widely used. ..
特に、高熱伝導が求められる樹脂基板や放熱シート、放熱グリースなどには、シリカより熱伝導率の高いアルミナの球状粒子も用いられるが、アルミナの熱伝導率は、焼結体で30W/mK程度であり必ずしも高くなく、樹脂に高充填した材料の熱伝導率も10数W/mKのものしか得られない。 In particular, spherical particles of alumina, which have a higher thermal conductivity than silica, are also used for resin substrates, heat-dissipating sheets, heat-dissipating grease, etc., which require high thermal conductivity, but the thermal conductivity of alumina is about 30 W / mK for sintered bodies. Therefore, it is not always high, and the thermal conductivity of the material highly filled in the resin is only 10 W / mK.
パワーデバイス等のより高熱伝導率が求められる部品に適用する場合、用いる球状粒子も更に高熱伝導率化が必要となる。これらの用途では、高熱伝導とともに絶縁性が求められるため、AlNなどが検討されている。AlNは、焼結体では150W/mKといった高熱伝導を有する材料である。 When applied to parts such as power devices that require higher thermal conductivity, the spherical particles used also need to have higher thermal conductivity. In these applications, high thermal conductivity and insulating properties are required, so AlN and the like are being studied. AlN is a material having a high thermal conductivity of 150 W / mK in a sintered body.
しかしながら、AlNは高温で酸化あるいは分解してしまうため、一般的な球状粒子の量産法である溶射を適用して球状粒子を製造することが困難である。更に、AlNは、酸化され易く、水分と反応してアンモニアが発生する等、化学的に不安定であるため、樹脂等と混合して部材として使用する際の信頼性に劣るという問題点がある。 However, since AlN is oxidized or decomposed at a high temperature, it is difficult to produce spherical particles by applying thermal spraying, which is a general mass production method for spherical particles. Further, AlN is easily oxidized and is chemically unstable such that ammonia is generated by reacting with water, so that there is a problem that reliability is inferior when it is mixed with a resin or the like and used as a member. ..
一方、Si3N4もAlNと同等の高熱伝導を有する材料であり、近年、150W/mK以上の熱伝導率を有する焼結体などが開発されている。Si3N4は、水分との反応などもほとんど起こらず、AlNに比べて化学的安定性に優れた材料であり、AlNに比べて信頼性の高い部材を得ることが期待できる。 On the other hand, Si 3 N 4 is also a material having a high thermal conductivity equivalent to that of AlN, and in recent years, a sintered body having a thermal conductivity of 150 W / mK or more has been developed. Si 3 N 4 is a material having almost no reaction with water and having excellent chemical stability as compared with AlN, and it can be expected that a member having higher reliability than AlN can be obtained.
しかしながら、Si3N4もAlN同様に高温で分解してしまうために、一般的な球状粒子の製造方法である溶射法を用いることができず、球状のSi3N4粒子を得ることは困難であった。 However, since Si 3 N 4 also decomposes at a high temperature like Al N, it is not possible to use the thermal spraying method, which is a general method for producing spherical particles, and it is difficult to obtain spherical Si 3 N 4 particles. Met.
Si3N4の粒子や粉末を製造する方法としては、金属Siを窒素ガスもしくはアンモニア雰囲気中で熱処理する直接窒化法、SiO2と炭素を混合して還元しながら窒素ガスもしくはアンモニア雰囲気中で窒化する還元窒化法、SiCl4からシリコンジイミドを生成してこれを分解させるイミド法などが用いられている。 As a method for producing Si 3 N 4 particles and powder, a direct nitriding method in which metallic Si is heat-treated in a nitrogen gas or ammonia atmosphere, and a nitriding method in a nitrogen gas or ammonia atmosphere while mixing SiO 2 and carbon and reducing them. A reduction nitriding method is used, or an imide method in which silicon diimide is generated from SiCl 4 and decomposed.
しかしながら、球状Si3N4粒子を得る方法で開示された技術はほとんどなく、球状のSi3N4粒子を得ることは困難であった。 However, spherical Si 3 N 4 obtain particles techniques rarely disclosed method, to obtain Si 3 N 4 particles spherical has been difficult.
特許文献1には、窒化ケイ素を主成分とする粒子を核として、その表面に金属ケイ素粉末を造粒コーティングした球状粒子を原料とし、これを窒素またはアンモニアを含む非酸化性ガス雰囲気で、 1000〜1500℃の温度範囲で窒化する窒化ケイ素粉末の製造方法が開示されている。 In Patent Document 1, a particle containing silicon nitride as a main component is used as a core, and spherical particles obtained by granulating and coating metallic silicon powder on the surface thereof are used as a raw material in a non-oxidizing gas atmosphere containing nitrogen or ammonia. A method for producing a silicon nitride powder that is nitrided in a temperature range of about 1500 ° C. is disclosed.
この技術は、造粒コーティングした球状粒子を用いるものの、球状のSi3N4粒を得ることを目的としたものではなく、Si3N4粒子を核とすることにより、造粒粒子中心部での金属ケイ素粉末の窒化反応による発熱を抑え、金属ケイ素粉末のコーティング層で発生する反応熱を熱伝導により有効に除去することで、α、β相比率などの品質の安定したSi3N4粉末を得ることを目的としたものである。 Although this technique uses granulated coated spherical particles, it is not intended to obtain spherical Si 3 N 4 particles, but by using Si 3 N 4 particles as nuclei, at the center of the granulated particles. By suppressing the heat generated by the silicon nitride reaction of the metal silicon powder and effectively removing the reaction heat generated in the coating layer of the metal silicon powder by heat conduction, the Si 3 N 4 powder with stable quality such as α and β phase ratios. The purpose is to obtain.
特許文献2には金属ケイ素粉末を造粒した粒子を原料とし、これを窒素又はアンモニアを含む非酸化性雰囲気において1,000〜1,400℃の温度範囲で流動層を用いて上記金属ケイ素粉末を窒化し、窒化ケイ素粉末を製造する方法が開示されている。 Patent Document 2 describes the above-mentioned metallic silicon powder using particles obtained by granulating metallic silicon powder as a raw material and using a fluidized layer in a non-oxidizing atmosphere containing nitrogen or ammonia in a temperature range of 1,000 to 1,400 ° C. A method for producing a silicon nitride powder by nitriding a silicon nitride powder is disclosed.
この技術は、反応管の壁への微粉の付着や粉末同士の凝集を避けるために、金属ケイ素粉末を造粒したものを使用し、造粒粒子径と流動ガス線速により除熱量を調整することで、流動層による窒化反応を均一にすることを目的としたものである。 This technology uses granulated metal silicon powder in order to avoid adhesion of fine powder to the wall of the reaction tube and aggregation of powders, and adjusts the amount of heat removal by the granulated particle size and fluidized gas linear velocity. Therefore, the purpose is to make the nitrided reaction by the fluidized bed uniform.
パワーデバイス等の高温環境下での使用あるいは高発熱化に伴い、放熱部材にはより高熱伝導化が求められており、特に樹脂基板や放熱シート、放熱グリースなど用いられるフィラー粒子として、樹脂に高充填でき高熱伝導が得られる球状で緻密なSi3N4粒子は非常に有用である。 With the use in a high temperature environment such as a power device or the increase in heat generation, the heat radiation member is required to have higher heat conductivity. dense Si 3 N 4 particles spherical filler can high thermal conductivity can be obtained is very useful.
特許文献1では、Si3N4粒子を核に金属Siをコーティングした球状の造粒粉を窒化する方法が提案されている。しかしながら、実施例に示されるように、得られるSi3N4粉末の窒化率は70%程度と低い。また、表面で反応が起こりSi3N4が成長するため、粒子同士が固着したり、造粒粉の表面に凹凸ができて形状が変わってしまうため、球形を保ったままの粒子を得ることが困難である。 Patent Document 1 proposes a method of nitriding a spherical granulated powder having Si 3 N 4 particles as a core and coated with metallic Si. However, as shown in Examples, the obtained Si 3 N 4 powder has a low nitriding rate of about 70%. In addition, since a reaction occurs on the surface and Si 3 N 4 grows, the particles stick to each other or the surface of the granulated powder becomes uneven and the shape changes, so that the particles that maintain the spherical shape can be obtained. Is difficult.
また、特許文献2では、金属Si粉末を造粒した粒子を窒化する方法が提案されている。しかしながら、実施例に示されるように、この方法によっても、得られるSi3N4粉末の窒化率は75%程度と低く、造粒粉表面から反応が起こりSi3N4が成長するため、特許文献1と同様に、造粒粉の球形を保ったままの粒子を得ることが困難である。 Further, Patent Document 2 proposes a method of nitriding particles obtained by granulating metal Si powder. However, as shown in Examples, the nitriding rate of the obtained Si 3 N 4 powder is as low as about 75% even with this method, and a reaction occurs from the surface of the granulated powder to grow Si 3 N 4. Similar to Document 1, it is difficult to obtain particles of the granulated powder while maintaining the spherical shape.
このようにSi粉末を造粒、あるいはSi3N4の核粒子の周囲にSi粉をコーティングして窒化するだけでは、窒化率の高い粒子を得ることができない。これらの方法では窒化率が低く、Siが残存した粒子となるため、熱伝導率の高い粒子を得ることができない。 It is not possible to obtain particles having a high nitriding rate only by granulating the Si powder or coating the Si powder around the core particles of Si 3 N 4 and nitriding the particles. With these methods, the nitriding rate is low and the particles have Si remaining, so that particles with high thermal conductivity cannot be obtained.
また、いずれの特許文献でも窒化後の粒子の形状に関する記述はないが、前述したように、造粒粉表面や造粒粉全体がSiである場合、表面からSi3N4が生成、成長するために造粒粉の形状を保った粒子を得ることが困難である。 Further, although there is no description about the shape of the particles after nitride in any of the patent documents, as described above, when the surface of the granulated powder or the entire granulated powder is Si, Si 3 N 4 is generated and grows from the surface. Therefore, it is difficult to obtain particles that maintain the shape of the granulated powder.
本発明は、以上のような従来技術の問題点を鑑み、高充填性、高熱伝導を有し、半導体分野にも適用可能な球状Si3N4粒子およびその製造方法を提供することを目的とする。 The present invention aims to provide more traditional view of the problems of the art, such as, high packing property, has a high thermal conductivity, also applicable spherical Si 3 N 4 particles and a manufacturing method thereof in the semiconductor field do.
本発明により、以下の態様が提供される。
[1]
Si3N4の含有率が90wt%以上であり、円形度が0.85〜1.00であることを特徴とする、球状Si3N4粒子。
[2]
平均粒径(D50)が5〜150μmであることを特徴とする、項目[1]に記載の球状Si3N4粒子。
[3]
Si粉末を10〜50wt%と、Si3N4粉末を50〜90wt%の割合で混合し、球状に造粒した粉末を、窒素含有雰囲気中で熱処理温度1200〜1700℃で窒化して、Si3N4の含有率が90wt%以上であり、円形度が0.85〜1.00である球状Si3N4粒子を製造することを特徴とする、球状Si3N4粒子の製造方法。
[4]
前記の球状に造粒する方法がスプレードライ法によることを特徴とする、項目[3]に記載の球状Si3N4粒子の製造方法。
The present invention provides the following aspects.
[1]
Spherical Si 3 N 4 particles, characterized in that the content of Si 3 N 4 is 90 wt% or more and the circularity is 0.85 to 1.00.
[2]
The spherical Si 3 N 4 particles according to item [1], wherein the average particle size (D50) is 5 to 150 μm.
[3]
Si powder is mixed at a ratio of 10 to 50 wt% and Si 3 N 4 powder at a ratio of 50 to 90 wt%, and the spherically granulated powder is nitrided at a heat treatment temperature of 1200 to 1700 ° C. in a nitrogen-containing atmosphere to obtain Si. 3 the content of N 4 is not less than 90 wt%, characterized in that to produce a spherical Si 3 N 4 particle circularity is 0.85 to 1.00, the production method of spherical Si 3 N 4 particles.
[4]
The method for producing spherical Si 3 N 4 particles according to item [3], wherein the method for granulating into spheres is a spray-drying method.
本発明によれば、高充填性、高熱伝導を有し、半導体分野にも適用可能な球状Si3N4粒子およびその製造方法が提供される。 According to the present invention, high packing property, it has a high thermal conductivity, applicable spherical Si 3 N 4 particles and a method for producing the same in the semiconductor field.
発明者は、上記課題を解決するために鋭意検討を重ねた結果、『Si3N4の含有率が90wt%以上であり、円形度が0.85〜1.00であることを特徴とする、球状Si3N4粒子』によって、高充填性、高熱伝導を有し、半導体分野にも適用可能な球状Si3N4粒子を実現できることを見出した。 As a result of diligent studies to solve the above problems, the inventor " is characterized in that the content of Si 3 N 4 is 90 wt% or more and the circularity is 0.85 to 1.00. , Spherical Si 3 N 4 particles ”has been found to be able to realize spherical Si 3 N 4 particles having high filling property and high thermal conductivity and applicable to the semiconductor field.
従来、Si3N4の粒子を製造するには、SiやSiO2を直接窒化、あるいは還元窒化する方法が用いられていたが、これらの方法では不定形のSi3N4粒子しか得ることができなかった。また、SiやSiO2の粉末をSi3N4粉末と均一に混合したものを原料としてSi3N4粒子を製造するということは行われていなかった。 Conventionally, in order to produce Si 3 N 4 particles, a method of directly nitriding Si or SiO 2 or reducing nitride has been used, but these methods can only obtain amorphous Si 3 N 4 particles. could not. Further, it has not been practiced to produce Si 3 N 4 particles from a material obtained by uniformly mixing Si or SiO 2 powder with Si 3 N 4 powder.
本発明に係る球状Si3N4粒子は、Si粉末とSi3N4粉末を混合し、球状に造粒・乾燥した造粒粉を、窒化する方法により製造することができる。 The spherical Si 3 N 4 particles according to the present invention can be produced by a method in which Si powder and Si 3 N 4 powder are mixed, and spherically granulated and dried granulated powder is nitrided.
Si粉末だけで造粒粉を作製した場合、造粒粉表面から反応が起こり、造粒粉の外周に反応生成したSi3N4が成長するため、粒子の形状が造粒粉の形状を保たずに、いびつな不定形になってしまう。
また、反応には雰囲気ガス中の窒素が必要であるため、造粒粉の内部まで窒化して窒化率を高くするためには、長時間あるいは高温での処理が必要となり、造粒粉同士が結合してしまい、球状の粒子を得ることができない。
When the granulated powder is produced only with Si powder, a reaction occurs from the surface of the granulated powder, and Si 3 N 4 generated by the reaction grows on the outer periphery of the granulated powder, so that the shape of the particles keeps the shape of the granulated powder. Without it, it becomes a distorted irregular shape.
In addition, since nitrogen in the atmospheric gas is required for the reaction, in order to nitrid the inside of the granulated powder to increase the nitriding ratio, it is necessary to treat the granulated powder for a long time or at a high temperature, and the granulated powders are separated from each other. It will be bonded and spherical particles cannot be obtained.
また、Si3N4粉末だけで造粒粉を作製した場合、焼結助剤を添加しなければSi3N4粉末同士の焼結は起こらず、強度の高い球状粒子が得られず、樹脂等と混合した際に容易に破壊されるため、球状粒子として使用することができない。
この場合、焼結助剤を添加して1700℃以上の高温で熱処理することにより、Si3N4粒子は緻密化して粒子の強度を高めることができるが、同時に造粒粉同士の焼結による固着が進むために、球状の粒子を得ることができない。
Further, when the granulated powder is prepared only from Si 3 N 4 powder, sintering of Si 3 N 4 powder does not occur unless a sintering aid is added, and high-strength spherical particles cannot be obtained. Since it is easily destroyed when mixed with the like, it cannot be used as spherical particles.
In this case, by adding a sintering aid and heat-treating at a high temperature of 1700 ° C. or higher, the Si 3 N 4 particles can be densified to increase the strength of the particles, but at the same time, by sintering the granulated powders with each other. Spherical particles cannot be obtained due to the progress of fixation.
Si粉末とSi3N4粉末を混合した造粒粉を用いた場合、造粒粉全部がSiで構成される場合よりも反応に必要な窒素量が少なくて済むため、造粒粉内部のSiの窒化反応が起こりやすく、造粒粉全体で反応が起こることにより、発熱反応による温度の不均一が低減され、均質な球状のSi3N4粒子を得ることができる。 When a granulated powder obtained by mixing Si powder and Si 3 N 4 powder is used, the amount of nitrogen required for the reaction is smaller than that when the entire granulated powder is composed of Si. Therefore, Si inside the granulated powder is required. likely to occur nitriding reaction of, by which the reaction takes place in the entire granulated powder, unevenness in temperature due to the exothermic reaction is reduced, it is possible to obtain a uniform spherical the Si 3 N 4 particles.
また、Si粉末とSi3N4粉末を混合した造粒粉を用いた場合、造粒粉の表面にもSiだけでなくSi3N4が存在するために、Siの窒化によるSi3N4の生成による表面の凹凸の形成が抑えられるとともに、Si3N4生成による隣接する造粒粉との固着も起こりにくくなるため、0.85〜1.00の高い円形度の球状Si3N4粒子を得ることが可能となる。 In the case of using the granulated powder obtained by mixing Si powder and Si 3 N 4 powder, due to the presence of Si 3 N 4 but also Si on the surface of the granulated powder, Si 3 N 4 by nitridation of Si Since the formation of surface irregularities due to the formation of Si 3 N 4 is suppressed and the adhesion to the adjacent granulated powder due to the formation of Si 3 N 4 is less likely to occur, a spherical Si 3 N 4 having a high circularity of 0.85 to 1.00 is less likely to occur. It becomes possible to obtain particles.
また、原料に微細なSi粉末を用いることにより、窒化反応が起こりやすくなり、窒化により生成するSi3N4により造粒粉内の粉末同士が結合して緻密な球状Si3N4粒子を得ることができる。 Further, by using fine Si powder as a raw material, a nitriding reaction is likely to occur, and the powders in the granulated powder are bonded to each other by Si 3 N 4 generated by nitriding to obtain dense spherical Si 3 N 4 particles. be able to.
これらの効果により、Si3N4の含有率が90wt%以上であり、円形度が0.85〜1.00であることを特徴とする、球状Si3N4粒子を得ることが可能となる。 Due to these effects, it becomes possible to obtain spherical Si 3 N 4 particles characterized in that the content of Si 3 N 4 is 90 wt% or more and the circularity is 0.85 to 1.00. ..
球状Si3N4粒子のSi3N4の含有比率は、90wt%以上とすることで、樹脂等と混合した際に高い熱伝導率を得ることができる。
Si3N4の含有比率が90wt%より少ない場合、未反応Siの熱伝導率が低いため、樹脂と混合した際の熱伝導率が低くなることから、球状Si3N4粒子のSi3N4の含有比率は90wt%以上であることが必要となる。
By setting the content ratio of Si 3 N 4 of the spherical Si 3 N 4 particles to 90 wt% or more, high thermal conductivity can be obtained when mixed with a resin or the like.
If the content ratio the Si 3 N 4 is less than 90 wt%, the thermal conductivity of unreacted Si is low, since the thermal conductivity when mixed with the resin is lowered, spherical Si 3 N 4 particles Si 3 N The content ratio of 4 needs to be 90 wt% or more.
球状Si3N4粒子のSi3N4の含有比率は、X線回折の分析により測定する。X線回折で測定する場合は、Si3N4、Siおよびその他の化合物のピークの積分面積比を計算することでSi3N4の含有比率を算出することが出来る。 Content ratio the Si 3 N 4 of the spherical Si 3 N 4 particles is measured by analysis of X-ray diffraction. When measuring by X-ray diffraction, the content ratio of Si 3 N 4 can be calculated by calculating the integrated area ratio of the peaks of Si 3 N 4, Si and other compounds.
球状Si3N4粒子の円形度は、0.85〜1.00の範囲とすることで、高い流動性が得られ、充填性の良いフィラーとして使用することができる。
円形度が0.85より低い場合は、いびつな形状の粒子が多く含まれることから、樹脂と混合した際の充填率を高くすることが困難となるため望ましくない。
円形度は、市販のフロー式粒子像分析装置により測定することができる。また、走査型電子顕微鏡(SEM)等の顕微鏡写真から画像解析処理ソフトウェアを用いて次のように求めることができる。球状Si3N4粒子のサンプルの写真を撮影し、シリカ粒子(二次元投影図)の面積、周囲長さを計測する。球状Si3N4粒子が真円であると仮定し、計測された面積を有する真円の円周を計算する。円形度=円周/周囲長さの式により、円形度を求める。円形度=1のときが、真円である。つまり、円形度が1に近いほど、真円に近いとされる。
By setting the circularity of the spherical Si 3 N 4 particles in the range of 0.85 to 1.00, high fluidity can be obtained and the spherical Si 3 N 4 particles can be used as a filler having good filling property.
When the circularity is lower than 0.85, it is not desirable because it contains many particles having a distorted shape and it becomes difficult to increase the filling rate when mixed with the resin.
The circularity can be measured by a commercially available flow-type particle image analyzer. Further, it can be obtained from a micrograph such as a scanning electron microscope (SEM) by using image analysis processing software as follows. A photograph of a sample of spherical Si 3 N 4 particles is taken, and the area and peripheral length of the silica particles (two-dimensional projection drawing) are measured. Assuming that the spherical Si 3 N 4 particles are a perfect circle, the circumference of the perfect circle having the measured area is calculated. The circularity is calculated by the formula of circularity = circumference / circumference length. A perfect circle is when the circularity is 1. That is, the closer the circularity is to 1, the closer to a perfect circle.
球状Si3N4粒子は、平均粒径(D50)が5〜150μmであることが望ましい。平均粒径が150μmを超えると、粒子の内部までSiが窒化するのに必要な窒素が侵入しにくくなることがあり、粒子の中心にSiが多く残った粒子になることがある。また、5μmより小さい粒子の場合、Siが窒化してSi3N4になる過程で他の粒子と焼結して凝集してしまいやすく(粒径が5μmより大きい粒子に比べて)、円形度を低下させてしまうことがある。
なお、ここでの平均粒径は、レーザー回折法による粒度分布測定により求めることが好ましい。
また、ここで言う平均粒径は、メディアン径と呼ばれるもので、レーザー回折法等の方法で粒径分布を測定して、粒径の頻度の累積が50%となる粒径を平均粒径(D50)とする。
It is desirable that the spherical Si 3 N 4 particles have an average particle size (D50) of 5 to 150 μm. If the average particle size exceeds 150 μm, it may be difficult for nitrogen required for Si to nitriding into the inside of the particles, and the particles may have a large amount of Si remaining in the center of the particles. Further, in the case of particles smaller than 5 μm, in the process of silicon nitride to Si 3 N 4 , they are likely to be sintered and aggregated with other particles (compared to particles having a particle size larger than 5 μm), and have a circularity. May be reduced.
The average particle size here is preferably obtained by measuring the particle size distribution by a laser diffraction method.
Further, the average particle size referred to here is called a median diameter, and the particle size is measured by a method such as a laser diffraction method, and the particle size at which the cumulative frequency of particle sizes is 50% is the average particle size (the average particle size). D50).
前述したように、本発明による球状Si3N4粒子は、Si粉末とSi3N4粉末を混合し、球状に造粒・乾燥した造粒粉を、窒化する方法により製造することができる。以下、本発明の球状Si3N4粒子の製造について工程順に説明する。 As described above, the spherical Si 3 N 4 particles according to the present invention can be produced by a method of mixing Si powder and Si 3 N 4 powder, and granulating and drying the granulated powder into a spherical shape by a method of nitriding. Hereinafter, the production of the spherical Si 3 N 4 particles of the present invention will be described in order of steps.
(原料)
本発明の球状Si3N4粒子は、原料であるSi粉末を10〜50wt%、Si3N4粉末を50〜90wt%の割合で混合して造粒することにより、Siの窒化を促進する効果が得られる。
Si粉末が10wt%より少ない場合、窒化反応により生成するSi3N4が少ないため、造粒粉の粒子同士を生成Si3N4により結合する効果が少なく、強度の高い球状Si3N4粒子を得ることができ難くなってくる。
また、Si粉末が50wt%より多い場合、Siの窒化反応が起こりにくくなってくる(得られるSi3N4粒子中のSi3N4含有率が少ない)ため、50wt%以下が好ましい。窒化する際の熱処理温度を1700℃よりも高く、あるいは保持時間を極端に長くすることにより、窒化反応を起こりやすくした場合、窒化による表面の凹凸が大きくなり、球状の粒子を得ることが困難である。また、Si粉末の割合が多いと、窒化によるSi3N4の生成により造粒粉同士が固着してしまうために、塊状のものしか得られなくなってしまう。
(material)
The spherical Si 3 N 4 particles of the present invention promote the silicon nitride of Si by mixing and granulating Si powder as a raw material at a ratio of 10 to 50 wt% and Si 3 N 4 powder at a ratio of 50 to 90 wt%. The effect is obtained.
When the amount of Si powder is less than 10 wt%, the amount of Si 3 N 4 produced by the silicon nitride reaction is small, so that the effect of binding the particles of the granulated powder to each other by the generated Si 3 N 4 is small, and the spherical Si 3 N 4 particles having high strength are small. It becomes difficult to obtain.
Further, when the amount of Si powder is more than 50 wt%, the nitriding reaction of Si is less likely to occur (the content of Si 3 N 4 in the obtained Si 3 N 4 particles is small), so 50 wt% or less is preferable. When the heat treatment temperature at the time of nitriding is higher than 1700 ° C. or the holding time is made extremely long to facilitate the nitriding reaction, the surface irregularities due to nitriding become large and it is difficult to obtain spherical particles. be. Further, if the ratio of the Si powder is large, the granulated powders are fixed to each other due to the formation of Si 3 N 4 by nitriding, so that only a lumpy powder can be obtained.
原料に用いるSi粉末は、平均粒径(D50)が0.1〜5μmのものを用いることが望ましい。平均粒径(D50)が0.1μmより小さいSi粉末を用いた場合、造粒・乾燥して得られる造粒粉中の充填率が低くなりやすい(微細粉では造粒粉中で不均一に凝集して空隙を過度に内包しやすくなる)ため、得られる球状Si3N4粒子に空孔が残りやすくなる。また、平均粒径(D50)が5μmより大きいSi粉末を用いた場合、(粒子が大きくなると単位体積あたりの粉体同士の接触点数(接触面積)が少なくなり、粒子間の接合強度が低くなるため)造粒粉の強度が低くなり、球状に造粒した造粒粉が壊れて、得られるSi3N4粒子の円形度が低下する場合がある、また、Si粉が窒化してSi3N4になる際、表面の凹凸が大きくなり、円形度が低くなるため、樹脂と混合する際の充填率を上げることが難しくなることがある。
Si粉末の平均粒径は、例えばレーザー回折法による粒度分布測定やSEMにより観察した粒子のサイズの測定により、メディアン径(D50)で測定する。
It is desirable that the Si powder used as a raw material has an average particle size (D50) of 0.1 to 5 μm. When Si powder having an average particle size (D50) smaller than 0.1 μm is used, the filling rate in the granulated powder obtained by granulation and drying tends to be low (fine powder is non-uniform in the granulated powder). (It tends to aggregate and excessively enclose voids), so that pores tend to remain in the obtained spherical Si 3 N 4 particles. Further, when Si powder having an average particle size (D50) larger than 5 μm is used (as the particles become larger, the number of contact points (contact areas) between the powders per unit volume decreases, and the bonding strength between the particles decreases. Therefore, the strength of the granulated powder may be lowered, the spherically granulated granulated powder may be broken, and the circularity of the obtained Si 3 N 4 particles may be reduced, and the Si powder may be nitrided to Si 3 When it becomes N 4 , the unevenness of the surface becomes large and the circularity becomes low, so that it may be difficult to increase the filling rate when mixing with the resin.
The average particle size of the Si powder is measured by the median diameter (D50), for example, by measuring the particle size distribution by a laser diffraction method or measuring the particle size observed by SEM.
また、原料に用いるSi3N4粉末は、平均粒径(D50)が0.1〜5μmのものを用いることが望ましい。平均粒径(D50)が0.1μmより小さいSi3N4粉末を用いた場合、造粒・乾燥して得られる造粒粉中の充填率が低くなりやすい(微細粉では造粒粉中で不均一に凝集して空隙を過度に内包しやすくなる)ため、得られる球状Si3N4粒子に空孔が残りやすくなる。また、平均粒径(D50)が5μmより大きいSi3N4粉末を用いた場合、(粒子が大きくなると単位体積あたりの粉体同士の接触点数(接触面積)が少なくなり、粒子間の接合強度が低くなるため)造粒粉の強度が低くなり、球状に造粒した造粒粉が壊れて、得られるSi3N4粒子の円形度が低下する場合があるため、樹脂と混合する際の充填率を上げることが難しくなることがある。
Si3N4粉末の平均粒径は、例えばレーザー回折法による粒度分布測定やSEMにより観察した粒子のサイズの測定により、メディアン径(D50)で測定する。
Further, it is desirable that the Si 3 N 4 powder used as a raw material has an average particle size (D50) of 0.1 to 5 μm. When Si 3 N 4 powder having an average particle size (D50) smaller than 0.1 μm is used, the filling rate in the granulated powder obtained by granulation / drying tends to be low (in the fine powder, in the granulated powder). It tends to aggregate non-uniformly and excessively enclose voids), so that pores tend to remain in the obtained spherical Si 3 N 4 particles. Further, when Si 3 N 4 powder having an average particle size (D50) larger than 5 μm is used (as the particles become larger, the number of contact points (contact areas) between the powders per unit volume decreases, and the bonding strength between the particles decreases. The strength of the granulated powder is reduced, and the spherically granulated granulated powder may be broken, resulting in a decrease in the circularity of the obtained Si 3 N 4 particles. It may be difficult to increase the filling rate.
The average particle size of the Si 3 N 4 powder is measured by the median diameter (D50), for example, by measuring the particle size distribution by a laser diffraction method or measuring the particle size observed by SEM.
(混合・造粒)
原料であるSi粉末とSi3N4粉末の混合は、均一に混合される混合方法であれば特にどのような方法を用いても良い。乾式混合もしくは水、アルコール、アセトン等の溶媒を用いた湿式混合で混合することができる。
(Mixing / Granulation)
Mixing Si powder and Si 3 N 4 powder as a raw material, may be used, especially any method as long as the mixing method which is uniformly mixed. It can be mixed by dry mixing or wet mixing using a solvent such as water, alcohol or acetone.
混合した粉末を球状に造粒する方法としては、スプレードライ、転動造粒、撹拌造粒、流動造粒などの方法を用いることができる。
特にスプレードライ法を用いた場合、大量の原料粉を効率良く球状に造粒することができる。スプレードライによる造粒を行う場合、水等の溶媒に分散剤やバインダ等の添加材を用いることにより、原料が均一に分散し、強度の高い造粒粉を得ることができる。
また、窒化により得られる球状Si3N4粒子は、造粒粉の粒径とほぼ同一かやや小さくなるため、造粒粉の粒径を制御することにより、所望の粒径の球状Si3N4粒子を得ることができる。
ここで、造粒粉は、過度に緻密ではなく、適度に空隙を内包することで、窒素含有ガスが内部に供給され、窒化反応が造粒粉の表面だけでなく、造粒粉内部でも反応が起こることにより、Si3N4含有率が90wt%以上の球状Si3N4粒子を得ることができる。
内包される空隙は、(造粒粉のバルク体積(内包する空隙を含む)を100体積%として、)30〜70体積%であることが望ましい。30体積%より空隙が少ない場合は、窒素含有ガスが十分に造粒粉の内部まで供給されずに、窒化反応が十分に起こり難くなり、Si3N4含有量の高い球状Si3N4粒子を得ることができないことがあるため、空隙は30体積%以上であることが好ましい。70体積%より空隙が多い場合は、造粒粉の強度が弱くなり、窒化する前にプロセスで造粒粉が破壊してしまったり、窒化した造粒粉に空隙が多く残ってしまう可能性があるため、熱伝導率の高い球状のSi3N4粒子を得ることが困難となる場合があるので、空隙は70体積%以下であることが好ましい。
空隙率は、水銀ポロシメータ(MICROMERITICS社製、AutoPore IV)で測定することができる。
As a method for granulating the mixed powder into a spherical shape, a method such as spray-drying, rolling granulation, stirring granulation, or fluid granulation can be used.
In particular, when the spray-drying method is used, a large amount of raw material powder can be efficiently granulated into spheres. When granulation is performed by spray-drying, by using an additive such as a dispersant or a binder in a solvent such as water, the raw materials are uniformly dispersed and a highly strong granulated powder can be obtained.
Further, spherical Si 3 N 4 particles obtained by nitriding, since substantially the same or slightly smaller and the particle size of the granulated powder, by controlling the particle size of the granulated powder, spherical Si 3 N of the desired particle size 4 particles can be obtained.
Here, the granulated powder is not excessively dense, and by appropriately containing voids, the nitrogen-containing gas is supplied to the inside, and the nitriding reaction reacts not only on the surface of the granulated powder but also inside the granulated powder. As a result, spherical Si 3 N 4 particles having a Si 3 N 4 content of 90 wt% or more can be obtained.
The included voids are preferably 30 to 70% by volume (assuming 100% by volume of the bulk volume of the granulated powder (including the included voids)). If the gap is less than 30 vol%, the nitrogen-containing gas is not supplied to the inside of the well granulated powder, nitriding reaction is hard to occur sufficiently, Si 3 N 4 content of high spherical Si 3 N 4 particles The void is preferably 30% by volume or more because it may not be possible to obtain. If there are more voids than 70% by volume, the strength of the granulated powder will be weakened, and there is a possibility that the granulated powder will be destroyed by the process before nitridement, or many voids will remain in the nitrided granulated powder. Therefore, it may be difficult to obtain spherical Si 3 N 4 particles having high thermal conductivity, so the voids are preferably 70% by volume or less.
The porosity can be measured with a mercury porosity meter (AutoPore IV, manufactured by MICROMERITICS).
(窒化処理)
また、球状に造粒したSiとSi3N4の造粒粉を高温で窒化することにより、Si3N4の含有比率が高い球状Si3N4粒子を得ることができる。
(Nitriding treatment)
Further, by nitriding the granulated powder of Si and Si 3 N 4 was granulated into spherical high temperature, it can be content ratio the Si 3 N 4 to obtain a high spherical Si 3 N 4 particles.
造粒粉中のSiを熱処理により窒化する場合、NH3ガスやN2ガスを用いることもできるが、安価かつ安全なN2ガスを窒素源としても、球状Si3N4粒子を得ることができる。
球状の造粒粉を窒素含有雰囲気中で、例えば1200〜1700℃の温度で熱処理を行うことにより、球状のSi3N4粒子を得ることができる。
1200℃より低い温度では、Siの窒化が起こりにくく、Si3N4の含有比率が低い粒子となるため望ましくない。1700℃より高い温度で熱処理した場合、窒化反応が急激に起こるため、粒子が結合してしまったり、造粒粉が破壊してしまい、球状の粒子を得ることが困難であるため、望ましくない。また、1700℃より高い温度ではSi3N4がSiとN2に分解し始める。これらの理由のため1700℃以下の温度で熱処理することが望ましい。
また、熱処理の温度等の条件は、造粒粉に含まれるSi粉末とSi3N4粉末の割合などによって、温度等を変えることにより目的とする球状のSi3N4粒子を得ることが可能となる。例えば、造粒粉中のSiの割合が高くなるほど、Si3N4の含有率90wt%以上を確保するために、熱処理温度は高めに設定する。例えば、原料であるSi粉末を40〜50wt%、Si3N4粉末を50〜60wt%の割合で混合して造粒した場合は、熱処理温度を1300℃以上とすることが好ましい。
When Si in the granulated powder is nitrided by heat treatment, NH 3 gas or N 2 gas can be used, but spherical Si 3 N 4 particles can be obtained even if an inexpensive and safe N 2 gas is used as a nitrogen source. can.
Spherical Si 3 N 4 particles can be obtained by heat-treating the spherical granulated powder in a nitrogen-containing atmosphere at a temperature of, for example, 1200 to 1700 ° C.
At a temperature lower than 1200 ° C., nitriding of Si is unlikely to occur, and the particles have a low content ratio of Si 3 N 4, which is not desirable. When the heat treatment is performed at a temperature higher than 1700 ° C., the nitriding reaction occurs rapidly, so that the particles are bonded or the granulated powder is destroyed, and it is difficult to obtain spherical particles, which is not desirable. Further, at a temperature higher than 1700 ° C., Si 3 N 4 begins to decompose into Si and N 2. For these reasons, it is desirable to heat treat at a temperature of 1700 ° C. or lower.
Further, as for the conditions such as the temperature of the heat treatment, it is possible to obtain the desired spherical Si 3 N 4 particles by changing the temperature or the like depending on the ratio of the Si powder and the Si 3 N 4 powder contained in the granulated powder. It becomes. For example, as the proportion of Si in the granulated powder increases, the heat treatment temperature is set higher in order to secure a Si 3 N 4 content of 90 wt% or more. For example, a Si powder as a raw material 40~50wt%, Si 3 N 4 if the powder was granulated by mixing in a ratio of 50~60Wt%, it is preferable that the heat treatment temperature 1300 ° C. or higher.
以上のように、本発明に係る球状Si3N4粒子は、平均粒径が0.1〜5μmのSi粉末を10〜50wt%と、平均粒径が0.1〜5μmのSi3N4粉末を50〜90wt%の割合で混合し、球状に造粒した粉末を、窒素含有雰囲気中で熱処理温度1100〜1500℃で窒化することにより、製造することができる。 As described above, the spherical Si 3 N 4 particles according to the present invention contain 10 to 50 wt% of Si powder having an average particle size of 0.1 to 5 μm and Si 3 N 4 having an average particle size of 0.1 to 5 μm. The powder can be produced by mixing the powder at a ratio of 50 to 90 wt% and nitriding the spherically granulated powder at a heat treatment temperature of 1100 to 1500 ° C. in a nitrogen-containing atmosphere.
本発明に係る球状Si3N4粒子は、Si3N4の含有率が90wt%以上であり、円形度が0.85〜1.00である。Si粉末とSi3N4粉末の粒径、配合に応じて、窒化処理の条件である温度と保持時間を適切に調整することにより、目的するSi3N4の含有率と円形度に調整することが可能となる。 The spherical Si 3 N 4 particles according to the present invention have a Si 3 N 4 content of 90 wt% or more and a circularity of 0.85 to 1.00. By appropriately adjusting the temperature and holding time, which are the conditions for nitriding, according to the particle size and composition of the Si powder and Si 3 N 4 powder, the content rate and circularity of the target Si 3 N 4 can be adjusted. It becomes possible.
また、本発明に係る球状Si3N4粒子は、好ましくは、平均粒径(D50)が5〜150μmであるが、得られる球状Si3N4粒子の粒径は、造粒粉の粒径により決まるため、造粒方法や造粒条件を調整して、造粒粉の粒径を変えることにより、目的とする粒径の球状Si3N4粒子を得ることが可能となる。 The spherical Si 3 N 4 particles according to the present invention preferably have an average particle size (D50) of 5 to 150 μm, but the obtained spherical Si 3 N 4 particles have a particle size of the granulated powder. Therefore, by adjusting the granulation method and the granulation conditions and changing the particle size of the granulated powder, it is possible to obtain spherical Si 3 N 4 particles having a target particle size.
以下、実施例及び比較例を示し、本発明をより具体的に説明する。ただし、本発明は下記の実施例に限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not construed as being limited to the following examples.
(実施例1)
粒径2μmのSi粉と粒径1.5μmのSi3N4粉を表1に示す配合で、PVA系バインダ、ポリカルボン酸系分散剤および水を添加してボールミルで混合したものをスプレードライにより造粒した。得られた造粒粉を窒素雰囲気中1300℃(8h保持)で加熱処理を行い、Si3N4粒子を得た。
(Example 1)
The Si 3 N 4 powder Si powder and the particle size 1.5μm particle size 2μm to the formulation shown in Table 1, spray drying a mixture in PVA binder, a ball mill with the addition of a polycarboxylic acid dispersant and water Granulated by. The obtained granulated powder was heat-treated at 1300 ° C. (holding for 8 hours) in a nitrogen atmosphere to obtain Si 3 N 4 particles.
得られたSi3N4粒子の平均粒径(D50)は、シーラス社製レーザー回折散乱式粒度分布測定装置「CILAS 920」により測定した。円形度は、Sysmex社製フロー式粒子像解析装置「FPIA−2100」を用いて測定した。
Si3N4の含有率は、リガク製X線回折装置「RINT−2500 TTR」によりX線回折パターンを測定した。Si3N4の含有比率の計算は、α−Si3N4(PDFカードNo.01−076−1407)、β−Si3N4(PDFカードNo.01−082−0697)、Si(PDFカードNo.00−005―0565)のピークの積分強度を測定し、その積分強度の合計値の比からSi3N4含有率を百分率計算した。
またSi窒化率は、原料中のSiのSi3N4の変換割合をX線回折で得られたSiおよびSi3N4の含有率から算出した。
The average particle size (D50) of the obtained Si 3 N 4 particles was measured by a laser diffraction / scattering type particle size distribution measuring device “CILAS 920” manufactured by CILAS. The circularity was measured using a flow-type particle image analyzer "FPIA-2100" manufactured by Sysmex Corporation.
The content of Si 3 N 4 was measured by measuring the X-ray diffraction pattern with the Rigaku X-ray diffractometer "RINT-2500 TTR". The calculation of the content ratio of Si 3 N 4 is α-Si 3 N 4 (PDF card No. 01-076-1407), β-Si 3 N 4 (PDF card No. 01-082-0697), Si (PDF card No. 01-082-0697). The integrated intensity of the peak of card No. 00-05-0565) was measured, and the Si 3 N 4 content was calculated as a percentage from the ratio of the total values of the integrated intensity.
The Si nitriding rate was calculated from the conversion ratio of Si 3 N 4 of Si in the raw material from the contents of Si and Si 3 N 4 obtained by X-ray diffraction.
本発明(発明例1〜5)による球状Si3N4粒子は、表1に示すとおり0.93〜0.96と高い円形度を示し、図1(例えばSi:30wt%、Si3N4:70%の造粒粉を1300℃で熱処理したサンプルの発明例3)のSEM写真ように球状の粒子が得られた。また、Si3N4含有率が90.6〜100wt%と高いものが得られた。
これに対し、比較例(比較例1〜3)の本発明の範囲外であるもの、例えばSiだけを造粒したもの(比較例1)では、図2のSEM写真に示すように粒子同士が固着してしまい、窒化する前の円形の形状を保った粒子を得ることはできなかった。これに対して本発明によるものは、その他の本発明による粒子も円形度が0.93〜0.96と球状の粒子を得られた。
The spherical Si 3 N 4 particles according to the present invention (Invention Examples 1 to 5) show a high circularity of 0.93 to 0.96 as shown in Table 1, and FIG. 1 (for example, Si: 30 wt%, Si 3 N 4). : Spherical particles were obtained as shown in the SEM photograph of Invention Example 3) of the sample obtained by heat-treating 70% of the granulated powder at 1300 ° C. Further, a high Si 3 N 4 content of 90.6 to 100 wt% was obtained.
On the other hand, in the case of the comparative example (Comparative Examples 1 to 3) outside the scope of the present invention, for example, the one in which only Si is granulated (Comparative Example 1), the particles are separated from each other as shown in the SEM photograph of FIG. It was stuck and it was not possible to obtain particles that maintained the circular shape before nitriding. On the other hand, as for the particles according to the present invention, spherical particles having a circularity of 0.93 to 0.96 were obtained as other particles according to the present invention.
一方、Si3N4だけを造粒したもの(比較例3)では、熱処理後の強度が低く、粒度分布を測定するために水に分散しただけで形状が崩れて、球形を保つことができない状態であった。 On the other hand, in the case where only Si 3 N 4 is granulated (Comparative Example 3), the strength after the heat treatment is low, and the shape collapses only by being dispersed in water to measure the particle size distribution, and the spherical shape cannot be maintained. It was in a state.
(実施例2)
実施例1と同じ原料を用いて、同様に作製した造粒粉を窒素雰囲気中1350〜1400℃(8h保持)で熱処理して、窒化ケイ素粒子を作製した。
本発明(発明例6〜9)による粒子は、円形度が0.92〜0.94と高い円形度を有し、Si3N4含有率が97.5wt%以上の球状Si3N4粒子が得られた。
これに対し、本発明の範囲外であるもの(比較例4〜7)、例えばSiだけを造粒したもの(比較例4)では、造粒粉の表面にSi3N4が生成し、造粒粉同士が固着してしまい、円形度の高い粒子を得ることができなかった。
(Example 2)
Using the same raw materials as in Example 1, the similarly prepared granulated powder was heat-treated in a nitrogen atmosphere at 1350 to 1400 ° C. (holding for 8 hours) to prepare silicon nitride particles.
Particles according to the present invention (Invention Examples 6-9), the degree of circularity has high circularity and 0.92~0.94, Si 3 N 4 content of 97.5 wt% or more of spherical Si 3 N 4 particles was gotten.
On the other hand, in the case of those outside the scope of the present invention (Comparative Examples 4 to 7), for example, those in which only Si is granulated (Comparative Example 4), Si 3 N 4 is generated on the surface of the granulated powder. The granules were stuck to each other, and it was not possible to obtain particles with a high degree of circularity.
(実施例3)
実施例1と同じ原料を用いて、同様に作製した造粒粉を窒素雰囲気中1100〜1800℃で熱処理して、窒化ケイ素粒子を作製した。
本発明(発明例10〜13)による粒子は、円形度が0.91〜0.94と高い円形度を有し、Si3N4含有率が90.7wt%以上の球状Si3N4粒子が得られた。
これに対し、本発明の範囲外である1100℃×72hで熱処理したもの(比較例8)では、窒化反応がほとんど起こらずSi3N4含有率が低い粒子しか得ることができなかった。また、1800℃で熱処理したもの(比較例9)は、Si3N4の分解が起こり、粒子の状態でサンプルを得ることが出来なかった。
(Example 3)
Using the same raw materials as in Example 1, the similarly prepared granulated powder was heat-treated at 1100 to 1800 ° C. in a nitrogen atmosphere to prepare silicon nitride particles.
Particles according to the present invention (Invention Examples 10 to 13), the degree of circularity has high circularity and 0.91~0.94, Si 3 N 4 content of 90.7wt% or more spherical Si 3 N 4 particles was gotten.
On the other hand, in the case of heat treatment at 1100 ° C. × 72 h, which is outside the range of the present invention (Comparative Example 8), almost no nitriding reaction occurred and only particles having a low Si 3 N 4 content could be obtained. Further, in the case of heat treatment at 1800 ° C. (Comparative Example 9), decomposition of Si 3 N 4 occurred, and a sample could not be obtained in the state of particles.
Claims (2)
ここで、前記Si 3 N 4 の含有率は、α−Si 3 N 4 (PDFカードNo.01−076−1407)、β−Si 3 N 4 (PDFカードNo.01−082−0697)、Si(PDFカードNo.00−005−0565)のX線回折ピークの積分強度を測定し、その積分強度の合計値の比から百分率計算することを特徴とする、球状Si3N4粒子。 Si is 3 content of N 4 or more 90 wt%, degree of circularity is 0.85 to 1.00, average particle size (D50) Ri 5~150μm der,
Here, the content of the Si 3 N 4 is α-Si 3 N 4 (PDF card No. 01-076-1407), β-Si 3 N 4 (PDF card No. 01-082-0697), Si. measuring the integrated intensity of the X-ray diffraction peaks of (PDF card Nanba00-005-0565), characterized that you percentages calculated from the ratio of the sum of the integrated intensity, spherical Si 3 N 4 particles.
前記の球状に造粒する方法がスプレードライ法によることを特徴とする、球状Si3N4粒子の製造方法。 Si powder is mixed at a ratio of 10 to 50 wt% and Si 3 N 4 powder at a ratio of 50 to 90 wt%, and the spherically granulated powder is nitrided at a heat treatment temperature of 1200 to 1700 ° C. in a nitrogen-containing atmosphere to obtain Si. To produce spherical Si 3 N 4 particles having a 3 N 4 content of 90 wt% or more and a circularity of 0.85 to 1.00 , and
A method for producing spherical Si 3 N 4 particles, wherein the method for granulating into spheres is a spray-drying method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016200002A JP6941928B2 (en) | 2016-10-11 | 2016-10-11 | Method for Producing Spherical Si3N4 Particles and Spherical Si3N4 Particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016200002A JP6941928B2 (en) | 2016-10-11 | 2016-10-11 | Method for Producing Spherical Si3N4 Particles and Spherical Si3N4 Particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018062429A JP2018062429A (en) | 2018-04-19 |
JP6941928B2 true JP6941928B2 (en) | 2021-09-29 |
Family
ID=61966420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016200002A Active JP6941928B2 (en) | 2016-10-11 | 2016-10-11 | Method for Producing Spherical Si3N4 Particles and Spherical Si3N4 Particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6941928B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7265137B2 (en) * | 2019-04-25 | 2023-04-26 | 日本製鉄株式会社 | Ceramic laminate manufacturing method and ceramic laminate manufactured by the method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6060909A (en) * | 1983-09-13 | 1985-04-08 | Mitsubishi Metal Corp | Manufacture of silicon nitride powder |
JP3986154B2 (en) * | 1998-03-24 | 2007-10-03 | 電気化学工業株式会社 | Silicon nitride filler and semiconductor sealing resin composition |
JP3827459B2 (en) * | 1998-12-14 | 2006-09-27 | 電気化学工業株式会社 | Silicon nitride powder and method for producing the same |
JP4618841B2 (en) * | 2000-03-21 | 2011-01-26 | 日本特殊陶業株式会社 | Silicon nitride bearing ball |
CN105776158B (en) * | 2015-09-14 | 2018-06-19 | 天津纳德科技有限公司 | The method that high sphericity beta-silicon nitride powder is directly prepared using hyperbar and additive |
-
2016
- 2016-10-11 JP JP2016200002A patent/JP6941928B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018062429A (en) | 2018-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109790027B (en) | Method for producing spherical aluminum nitride powder | |
JP4750220B2 (en) | Hexagonal boron nitride powder and method for producing the same | |
JP5602480B2 (en) | Method for producing alumina particles provided with AlN modified layer | |
JP2018048033A (en) | Method for producing spherical aluminum nitride powder | |
JP6639307B2 (en) | Spherical AlN particles and method for producing the same | |
US20180065852A1 (en) | Method for preparing a spherical aln granule | |
JP2017036190A (en) | Boron nitride aggregated particle composition, bn aggregated particle-containing resin composition and their compact, as well as production method of boron nitride aggregated particle | |
JP6639308B2 (en) | Spherical AlN particles, spherical AlN filler, and method for producing spherical AlN particles | |
JP5877684B2 (en) | Method for producing aluminum nitride sintered granules | |
JP6941928B2 (en) | Method for Producing Spherical Si3N4 Particles and Spherical Si3N4 Particles | |
JP4743387B2 (en) | Method for producing aluminum nitride powder | |
JP3706176B2 (en) | Aluminum nitride granules and method for producing the same | |
WO2014118993A1 (en) | Method for producing sintered aluminum nitride granules | |
JP2012121742A (en) | Method for producing spherical aluminum nitride powder | |
TWI579231B (en) | A method for preparing spherical aln granules | |
JP2008001536A (en) | Aluminum nitride-boron nitride composite powder and method for producing the same | |
TW201925082A (en) | A method for producing spherical silicon nitride powder using carbothermal reduction nitridation reaction to reduce an occurrence of excessive carbon residues | |
JP4844709B2 (en) | Method for producing silicon nitride powder | |
JP2006256941A (en) | Method for manufacturing silicon carbide powder | |
JP4958353B2 (en) | Aluminum nitride powder and method for producing the same | |
JP7149379B1 (en) | Spherical aluminum nitride powder and its production method | |
JPH0597523A (en) | Production of sintered aluminum nitride | |
JPH0459609A (en) | Production of aluminum nitride powder | |
JPS63297207A (en) | Production of aluminum nitride powder | |
JPS63265866A (en) | Production of aluminum nitride sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20181029 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200716 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200902 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210831 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210907 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6941928 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |