JP3986154B2 - Silicon nitride filler and semiconductor sealing resin composition - Google Patents

Silicon nitride filler and semiconductor sealing resin composition Download PDF

Info

Publication number
JP3986154B2
JP3986154B2 JP07587698A JP7587698A JP3986154B2 JP 3986154 B2 JP3986154 B2 JP 3986154B2 JP 07587698 A JP07587698 A JP 07587698A JP 7587698 A JP7587698 A JP 7587698A JP 3986154 B2 JP3986154 B2 JP 3986154B2
Authority
JP
Japan
Prior art keywords
resin composition
silicon nitride
powder
filler
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07587698A
Other languages
Japanese (ja)
Other versions
JPH11268903A (en
Inventor
宮木直哉
和田徹也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP07587698A priority Critical patent/JP3986154B2/en
Publication of JPH11268903A publication Critical patent/JPH11268903A/en
Application granted granted Critical
Publication of JP3986154B2 publication Critical patent/JP3986154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、窒化珪素質からなる樹脂等の充填材及びそれを用いた半導体封止用樹脂組成物に関する。すなわち、樹脂組成物に優れた流動性と高熱伝導性を具備させ、成形時の金型摩耗を低減した窒化珪素質の充填材、それを用いた半導体封止用樹脂組成物に関するものである。
【0002】
【従来の技術】
半導体の封止は、硬化剤等を含むエポキシ系樹脂に溶融シリカ、アルミナ等の酸化物系無機質粉末からなる充填材を混合、混練して得られる樹脂組成物を加熱等の操作で硬化させることにより行われてきた。樹脂組成物の硬化体である封止材は、半導体素子の機能を生かすために低熱膨張性、高熱伝導性、耐熱性、耐湿性、低放射線等の様々な特性をバランス良く満足していることが必要である。樹脂組成物を素子の上に充填して封止する際に、信号を伝えるワイヤーが断線、またはワイヤーどうしが接触しないように、高流動性の樹脂組成物が必要とされ、開発されてきた。
一方、音声出力用や定電圧電源用に使用されるパワ−ICの封止には溶融シリカよりも熱伝導性に優れる結晶性シリカとエポキシ樹脂とからなる樹脂組成物が使用されているが、パワ−ICにおいても高集積化が進み、単位面積当たりの発熱量が増加してきており、熱伝導性のより良好な樹脂封止材が要求されている。
【0003】
前記樹脂組成物に用いられる充填材について、その特性改善例として、例えば特開昭60−51613号公報には、1〜100μmの球状シリカ粉の表面にシランカップリング材を付着させることで樹脂に対する分散性を向上させる方法が開示されている。また、特開昭62−24154号公報には、石英ガラスの粉末を火炎中にて溶融し、球状の粉末を得て、これにより高充填性高流動性を達成している。更に特開昭63−282146号公報では、充填材の粒度構成を適正化することにより高充填性を達成している。そして、これらの技術を組み合わせることにより、従来樹脂に対する無機質充填材の充填率が75〜80重量%であったものが、最近では90重量%近くにも達している。
【0004】
一方、半導体素子で発生する熱を効率よく逃がすために、封止材にも4w/m・K以上の高熱伝導性が一層要求されてきている。この対策として石英ガラスでは前述のように充填量を増やすことで、特性を向上してきた。しかし石英ガラスの熱伝導率は1〜5W/m・Kと低く、これを用いて得られる樹脂組成物の熱伝導性の向上は2.4w/m・Kと限界があった。更に、充填量が増えれば成形時に使用される金型の摩耗が激しくなると言う問題もあった。熱伝導性の向上のために特開昭61−285247号公報、特開昭62−43415号公報、特開昭63−179920号公報では石英ガラスよりも熱伝導率の高い窒化珪素を充填材として使用し、且つ/又は特定の粒度配合をすることによって熱伝導性の向上を図っている。特開平1−115940号公報では、サイアロン、シリコンオキシナイトライドを利用する方法が、また特開平6−24715号公報では、窒化アルミニウム粉末を充填材として利用する方法が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、これらの高熱伝導絶縁性無機質材料は、充填性が低く、その結果得られる樹脂組成物は期待したほどの高流動性,高熱伝導性を有していないという問題があるし、窒化アルミニウムを用いる時には、半導体封止樹脂中に浸入した水分が窒化アルミニウムの表面と反応、多量のアンモニアを発生し、これが水に溶解して半導体デバイスの電極を腐蝕したり、リ−ク不良を発生したりする。
【0006】
即ち、窒化珪素粉末を充填材として単独で用いる場合には、充填性、流動性、熱伝導性、或いは耐湿性等での課題が解決されずにあった。本発明は上記状況に鑑みてなされたもので、本発明の目的は、高充填しても高流動性の樹脂組成物が得られ、前記樹脂組成物が硬化した時には高熱伝導性を有していて、半導体封止用に好適な封止材が容易に得られるような充填材を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は、2種の窒化珪素粉末を組み合わせて樹脂に充填した場合の充填性、又、得られる樹脂組成物の流動性及びその硬化体の熱伝導性に与える影響を調べた結果、窒化珪素質粉末が特定の粒度分布と嵩比重、タップ密度とすることにより、更には窒化珪素質粉末を角の取れた丸みを帯びた粒子とすることにより、樹脂中に高充填され、得られる樹脂組成物が高流動性を有し、その硬化体が高熱伝導性を示すことを見出し、本発明に至ったものである。
【0008】
即ち、本発明は、粒径が4〜192μmを60〜90重量%、粒径が4μm未満を40〜10重量%含有し、1μm以下の粒子の含有量が10重量%以下、嵩密度が0.90(g/cm)以上、且つ、タップ密度が1.80(g/cm)以上である窒化珪素質充填材である。
【0009】
さらに45μm以上の粒子の真円度が0.8以上である窒化珪素質充填材であり、上記の充填材を含有してなる半導体封止用樹脂組成物である。
【0010】
【発明の実施の形態】
本発明における窒化珪素質粉末は、それらの粉末を構成する粒子内部の構造、即ち結晶性の程度、或いは結晶の大きさ、それらの凝集程度等に制限されるものではないが、結晶構造に就いては、熱伝導性に優れるβ型の方が好ましい。また、粉末を構成する粒子の形状については、樹脂への充填性と得られる樹脂組成物の流動性に一層優れるという理由から破砕状から角の取れた、より具体的には嵩密度で0.90(g/cm3)以上、且つ、タップ密度で1.80(g/cm3)以上、更に好ましくは嵩密度で1.00(g/cm3)以上、且つ、タップ密度で1.85(g/cm3)以上のものである。嵩密度及びタップ密度が上述の値よりも低くなって充填性が悪くなった場合は、樹脂組成物の流動性が低下するばかりでなく、その硬化体の熱伝導性も低下する。又、これらの値の上限に就いて特定するものではないが、生産性との兼ね合いで判断されるべきものである。更に、粒子形状は画像解析法で測定される真円度が0.80以上のものが好ましく、更に好ましくは0.85以上である。球形度が0.80よりも低くなると、充填性が悪くなり、樹脂組成物の流動性が低下するばかりでなく、その硬化体の熱伝導性も低下する。
【0011】
前記窒化珪素質粉末の製法としては、金属シリコンの直接窒化法、酸化物還元法、気相合成法、イミド熱分解法等が知られているが、本発明においてはいずれの方法で得られたものも用いることができる。又、前記方法で得られた粉末を成形、或いは更に焼結して得られる成形体を粉砕したものであっても構わない。更に、前記の窒化珪素は、耐湿性向上のために、該表面を酸化膜や有機膜等で被覆したものであっても良い。
【0012】
本発明の粒子の他、窒化物系粉末及び/又は金属酸化物を本発明の流動性と熱伝導性のバランスを損なわない範囲内で添加することはさしつかえない。金属酸化物としては、シリカ、アルミナ、ジルコニア、チタニア、カルシア、マグネシアの群から選ばれた1種以上、或いは前記金属酸化物の複化合物、例えばムライト、スピネル、フォルステライト、ステアタイト等を用いることができる。
すなわち本発明で言う窒化珪素質粉末はシリコンと窒素の合計量が70重量%以上であり、X線回折法で主成分がα、β窒化珪素又はサイアロンである。
【0013】
本発明の充填材は、窒化珪素質粉末及び窒化物系粉末、金属酸化物粉末以外の第三成分の添加を制限するものではない。例えば、着色を目的としてカーボンブラックや顔料を、樹脂の耐久性向上を目的にいろいろな安定剤を、或いはコスト低減を目的として安価な無機充填材を、物性を損なわない程度に適宜添加することが許容される。
【0014】
前記窒化珪素の粉末を構成する粒子の角を取る方法に関しては、乾式、湿式等の従来公知の方法によれば良く、その製法を限定するものではないが、湿式法で実施した方が、表面に緻密な酸化膜が構成され耐加水分解性に優れる。
【0015】
窒化珪素質粉末の粒径4〜192μmの占める割合は、60〜90重量%であり、好ましくは70%〜90重量%である。60重量%未満では成形時の流動性が悪くなり、得られる樹脂組成物の硬化体の熱伝導性が十分には向上しない。95重量%を越える割合となると、樹脂への充填性が悪くなり、更に成形時の流動性をも悪くする。
【0016】
また、最大粒子径が200μm未満であり、且つ、平均粒径が6μm以上50μm以下の範囲であることが重要である。200μm以上の粒子が存在すると、得られる樹脂組成物を成形するに際し、金型の摩耗が大きくなると共にゲ−ト詰まりによる成形不良が発生する。そして、粒径が6μmより小さくなると粉末表面積が増えるので、前述の耐湿性に問題が生じると共に、得られる樹脂組成物の粘度の上昇が著しく、樹脂中への均一分散ができないばかりでなく、充填が困難となる傾向があるし、余りにも小さな粒度の場合には熱伝達が悪い粒子界面の数が多くなるためか高充填しても樹脂組成物の熱伝導性が向上しない傾向がある。すなわち、1μm以下の超微粉は10重量%と以下とするのが望ましい。1μm以下は耐湿性の観点から酸化物で構成するのが望ましい。一方、平均粒径が50μmを越えて大きくなると、得られる樹脂組成物の流動性が悪くなると共に金型摩耗が激しくなる。
【0017】
【実施例】
以下本発明を実施例に基づいて説明する。破砕状窒化珪素粒子(平均粒径100μm)750gを5φアルミナボ−ル6150gでサンドイッチする形で密閉式5L容器に仕込み、その後水1100gを加えて内容物がこぼれないようにシ−ルした後蓋をする。この容器を回転台に設置し、120rpmで3時間処理する。その後ボ−ルと角取り窒化珪素粒子とを分別し、6kgの角取り窒化珪素に対し7.5%スラリ−濃度で攪拌機付き100Lポリ容器に80L仕込み、40分攪拌、10分静置した後水面側より60Lを排出する。残った20Lに水を加え再度80Lとして同様の操作を繰り返す。最終的に残った20Lをろ過、乾燥後150μmの篩いにて解砕し、日本ニュ−マチック工業(株)製MDSセパレ−タ−処理を行い、平均粒径5〜80μmの分級窒化珪素粉A、2〜5μmのB粉、1μm未満の粒子からなるC粉を分級して得た。それぞれの特性を表1に示す。また別途乾式振動ミルにより破砕粉Dを用意した。
【0018】
【表1】

Figure 0003986154
【0019】
窒化珪素質粉末A、B、C及びDを表2に示す配合で混合し、混合後の粉末特性を測定した。その結果を表2に示す。また表2に記載の混合粉末が60vol%を占める様に以下の樹脂配合と混合した。但し、窒化珪素、樹脂配合品の比重はそれぞれ 3.192(g/cm3)、1.20(g/cm3)と仮定した。
【0020】
Figure 0003986154
【0021】
【表2】
Figure 0003986154
【0022】
前記混合粉末を前ロール表面温度116℃〜121℃、後ロ−ル表面温度90℃〜96℃のミキシングロールを用いて5分30秒間加熱混練した後、冷却、粉砕して種々の樹脂組成物を得た。次に、樹脂組成物を用いて、スパイラルフロー及び成形体の熱伝導率を測定した。スパイラルフローは、スパイラルフロー金型を用いてEMMI−66(Epoxy Molding Material;Society of Plastic Industry)に準拠して測定した。成形温度は175℃、成形圧力は45kg/cm2で成形した。また、樹脂組成物硬化体の熱伝導率は、成形温度175℃、成形圧力65kg/cm2の成形条件で直径2.775cm、厚さ0.287cmの円盤を成形、175℃で5時間硬化させた後、平板直接法にて室温で測定した。結果を表3に示す。
【0023】
【表3】
Figure 0003986154
【0024】
本発明において、混合粉末の特性は以下に示す方法で測定した値である。平均粒径及び粒度構成は粉末試料0.3gを水に超音波分散し、レーザー回折式粒度分布測定装置(シーラスグラニュロメーター「モデル715」)によって測定される値である。
【0025】
嵩密度は、ホソカワミクロンパウダ−テスタ−PT−E型を使用し、試料を試料ホルダ−に振幅を加えながら徐々に容量100cm3のカップに自然落下させ、試料がカップの縁より円錐状に積み上がる迄充填する。その後カップ面の余分な粉をプレ−トを滑らせて除去した後次式によって算出される値である。
嵩密度=(カップ総重量−カップ空重量)/100 g/cm3
【0026】
タップ密度は、ホソカワミクロンパウダ−テスタ−PT−E型を使用し、試料を試料ホルダ−に振幅を加えながら徐々に容量100cm3のカップに自然落下させ、試料がカップの縁より円錐状に積み上がる迄カップを1回/secで3分間タップしつつ充填する。その後カップ面の余分な粉をプレ−トを滑らせて除去した後次式によって算出した。
タップ密度=(カップ総重量−カップ空重量)/100 g/cm3
【0027】
球形度は、SEM(走査型電子顕微鏡)及び画像解析装置を用いて測定する。SEMは日本電子(株)製JSM−T100型を用い、画像解析装置として日本アビオニクス(株)製を用いた。先ず充填材を45μm篩にて処理し、45μmオ−バ−となる粒子のSEM写真から対象とする粒子の投影面積(A)と周囲長(PM)を測定する。求める球形度は、周囲長(PM)に対応する真円の面積を(B)とするとA/Bとして表される。ここで、対象とする粒子の周囲長(PM)と同一の周囲長を持つ真円を推定すると、
PM=2πr ・・・・・ (1)
B=πr2 ・・・・・ (2)
であるから、
(1)式より、r=PM/2π ・・・・・ (3)
(2)式に(3)を代入して、
B=π×(PM/2π)2 ・・・・・ (4)
となり、
球形度=A/B=A×4π/(PM)2 ・・・・・ (5)
となる。
(5)式に実測値A及びPMを代入して個々の粒子の球形度を算出できる。
本発明においては、充填材の中で45μmを越えるような粒子を選択し、
1写真50ヶ程度の粒子に就いて球形度を測定し、この平均値を以て粒子の球形度とした。
【0028】
溶出アンモニア量及び溶出水のEC(電気伝導度)は純水80cc中に充填材8gを投入し、121℃で20時間処理した後、純水を加え100ccとした抽出液からそれぞれHORIBA製イオンクロマトグラフィ−DS−14型でアンモニア溶出量を、DIONEX製電気伝導度計DX−100でECを測定した。
【0029】
Fe含有量は金型摩耗度を計る目安で、ミキシングロ−ル時摩耗するFe量として、ミキシングロ−ル後の樹脂組成物中のFe含有量からミキシングロ−ル前の充填材単味中のFe含有量を引いた値であり、理学電機工業(株)製蛍光X線装置RIX−3000で測定された値である。
【0030】
【発明の効果】
実施例から、本発明に係る充填材を用いた樹脂組成物は、流動性に富み、しかも得られる硬化体の熱伝導率も高いという、優れた効果を有していることが明かである。即ち、本発明によれば、成形時の流動性が阻害されることなく、充填材が高度に充填された熱伝導率の高い樹脂組成物を容易に得ることができる為、例えば半導体封止用に用いて好適である。更に、溶出アンモニウムイオン量が少なくECが低い、また破砕状充填材に比較し金型の摩耗度合いも低減できるという効果、をも有している。[0001]
[Industrial application fields]
The present invention relates to a filler such as a resin composed of silicon nitride and a semiconductor sealing resin composition using the same. That is, the present invention relates to a silicon nitride filler having a resin composition having excellent fluidity and high thermal conductivity and reduced die wear during molding, and a resin composition for semiconductor encapsulation using the same.
[0002]
[Prior art]
For semiconductor encapsulation, a resin composition obtained by mixing and kneading a filler made of an oxide-based inorganic powder such as fused silica or alumina into an epoxy resin containing a curing agent or the like is cured by an operation such as heating. Has been done by. The sealing material, which is a cured product of the resin composition, satisfies various characteristics such as low thermal expansion, high thermal conductivity, heat resistance, moisture resistance, and low radiation in a balanced manner in order to make use of the function of the semiconductor element. is required. When a resin composition is filled on a device and sealed, a highly fluid resin composition is required and developed so that a wire that transmits a signal is not disconnected or the wires do not contact each other.
On the other hand, a resin composition composed of crystalline silica and epoxy resin, which has better thermal conductivity than fused silica, is used for sealing power ICs used for audio output and constant voltage power supplies. Also in power ICs, higher integration has progressed, and the amount of heat generated per unit area has increased, and a resin sealing material with better thermal conductivity is required.
[0003]
As an example of improving the characteristics of the filler used in the resin composition, for example, in JP-A-60-51613, a silane coupling material is attached to the surface of a spherical silica powder having a size of 1 to 100 μm. A method for improving dispersibility is disclosed. Japanese Patent Application Laid-Open No. 62-24154 discloses that a quartz glass powder is melted in a flame to obtain a spherical powder, thereby achieving high filling and high fluidity. Furthermore, in Japanese Patent Application Laid-Open No. 63-282146, high filling property is achieved by optimizing the particle size constitution of the filler. By combining these techniques, the conventional filler filling ratio of the inorganic resin to 75 to 80% by weight has recently reached nearly 90% by weight.
[0004]
On the other hand, in order to efficiently release the heat generated in the semiconductor element, the sealing material is further required to have a high thermal conductivity of 4 w / m · K or more. As a countermeasure, quartz glass has been improved in characteristics by increasing the filling amount as described above. However, the thermal conductivity of quartz glass is as low as 1 to 5 W / m · K, and the improvement in the thermal conductivity of the resin composition obtained using this has a limit of 2.4 w / m · K. Furthermore, there is a problem that if the filling amount is increased, wear of the mold used at the time of molding becomes severe. In order to improve the thermal conductivity, in Japanese Patent Laid-Open Nos. 61-285247, 62-43415, and 63-179920, silicon nitride having a higher thermal conductivity than quartz glass is used as a filler. The thermal conductivity is improved by using and / or blending with a specific particle size. JP-A-1-115940 proposes a method using sialon and silicon oxynitride, and JP-A-6-24715 proposes a method using aluminum nitride powder as a filler.
[0005]
[Problems to be solved by the invention]
However, these high heat conductive insulating inorganic materials have low filling properties, and the resulting resin composition has a problem that it does not have high fluidity and high heat conductivity as expected. When used, the moisture that has penetrated into the semiconductor sealing resin reacts with the surface of the aluminum nitride and generates a large amount of ammonia, which dissolves in the water and corrodes the electrodes of the semiconductor device or causes a leak failure. To do.
[0006]
That is, when silicon nitride powder is used alone as a filler, problems with filling properties, fluidity, thermal conductivity, moisture resistance, and the like have not been solved. The present invention has been made in view of the above circumstances, and an object of the present invention is to obtain a highly fluid resin composition even when highly filled, and has high thermal conductivity when the resin composition is cured. Thus, an object of the present invention is to provide a filler that can easily obtain a sealing material suitable for semiconductor sealing.
[0007]
[Means for Solving the Problems]
As a result of investigating the effect of filling two types of silicon nitride powders on a resin and filling the resin, the fluidity of the resulting resin composition and the effect on the thermal conductivity of the cured product, Resin that is obtained by filling the resin with a high particle size by making the silicon powder a specific particle size distribution, bulk specific gravity and tap density, and further making the silicon nitride powder into rounded particles with rounded corners. The present inventors have found that the composition has high fluidity and the cured product exhibits high thermal conductivity, and has led to the present invention.
[0008]
That is, the present invention contains 60 to 90% by weight of a particle size of 4 to 192 μm, 40 to 10% by weight of a particle size of less than 4 μm, a content of particles of 1 μm or less is 10% by weight or less, and a bulk density is 0 .90 (g / cm 3 ) or more and a silicon nitride filler having a tap density of 1.80 (g / cm 3 ) or more .
[0009]
Furthermore, it is a silicon nitride filler whose roundness of particles of 45 μm or more is 0.8 or more, and a semiconductor sealing resin composition containing the above filler.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The silicon nitride powder in the present invention is not limited to the internal structure of the particles constituting the powder, that is, the degree of crystallinity, the size of crystals, the degree of aggregation thereof, etc. In this case, the β type having excellent thermal conductivity is preferable. Further, the shape of the particles constituting the powder is rounded from the crushed shape because it is more excellent in the filling property to the resin and the fluidity of the resulting resin composition. 90 (g / cm 3 ) or more and a tap density of 1.80 (g / cm 3 ) or more, more preferably a bulk density of 1.00 (g / cm 3 ) or more and a tap density of 1.85. (G / cm 3 ) or more. When the bulk density and the tap density are lower than the above values and the filling property is deteriorated, not only the fluidity of the resin composition is lowered but also the thermal conductivity of the cured product is lowered. Moreover, although the upper limit of these values is not specified, it should be judged in consideration of productivity. Further, the particle shape preferably has a roundness measured by an image analysis method of 0.80 or more, more preferably 0.85 or more. When the sphericity is lower than 0.80, the filling property is deteriorated, not only the fluidity of the resin composition is lowered, but also the thermal conductivity of the cured product is lowered.
[0011]
As a method for producing the silicon nitride powder, a direct nitridation method of metal silicon, an oxide reduction method, a gas phase synthesis method, an imide pyrolysis method, and the like are known. Things can also be used. Moreover, you may grind | pulverize the molded object obtained by shape | molding the powder obtained by the said method, or also sintering. Further, the silicon nitride may be one whose surface is covered with an oxide film, an organic film or the like in order to improve moisture resistance.
[0012]
In addition to the particles of the present invention, nitride powders and / or metal oxides may be added within a range that does not impair the balance between fluidity and thermal conductivity of the present invention. As the metal oxide, one or more selected from the group consisting of silica, alumina, zirconia, titania, calcia, magnesia, or a complex compound of the metal oxide such as mullite, spinel, forsterite, steatite, etc. Can do.
That is, the silicon nitride powder referred to in the present invention has a total amount of silicon and nitrogen of 70% by weight or more, and the main component is α, β silicon nitride or sialon by X-ray diffraction.
[0013]
The filler of the present invention does not limit the addition of the third component other than the silicon nitride powder, the nitride-based powder, and the metal oxide powder. For example, carbon black and pigments may be added for the purpose of coloring, various stabilizers for the purpose of improving the durability of the resin, or inexpensive inorganic fillers for the purpose of reducing the cost, as appropriate as long as the physical properties are not impaired. Permissible.
[0014]
With respect to the method of taking the corners of the particles constituting the silicon nitride powder, it may be a conventionally known method such as a dry method or a wet method, and its production method is not limited. A dense oxide film is formed and excellent in hydrolysis resistance.
[0015]
The proportion of the silicon nitride powder with a particle size of 4 to 192 μm is 60 to 90% by weight, preferably 70% to 90% by weight. If it is less than 60% by weight, the fluidity at the time of molding deteriorates, and the thermal conductivity of the cured product of the resulting resin composition is not sufficiently improved. When the ratio exceeds 95% by weight, the filling property into the resin is deteriorated, and the fluidity at the time of molding is also deteriorated.
[0016]
In addition, it is important that the maximum particle size is less than 200 μm and the average particle size is in the range of 6 μm to 50 μm. When particles of 200 μm or more are present, when the resulting resin composition is molded, wear of the mold increases and molding defects due to gate clogging occur. And when the particle size is smaller than 6 μm, the surface area of the powder is increased, so that the above-mentioned moisture resistance is problematic, the viscosity of the resulting resin composition is remarkably increased and not only uniformly dispersed in the resin but also filled. If the particle size is too small, the thermal conductivity of the resin composition tends not to be improved even if the particle size is too high because the number of particle interfaces with poor heat transfer increases. That is, it is desirable that the ultrafine powder of 1 μm or less is 10% by weight or less. The thickness of 1 μm or less is preferably composed of an oxide from the viewpoint of moisture resistance. On the other hand, when the average particle size exceeds 50 μm, the fluidity of the resulting resin composition becomes worse and the mold wear becomes severe.
[0017]
【Example】
Hereinafter, the present invention will be described based on examples. Charge 750 g of crushed silicon nitride particles (average particle size 100 μm) with 6150 g of 5φ alumina balls into a sealed 5 L container, then add 1100 g of water and seal the contents to prevent spilling. To do. This container is placed on a turntable and processed at 120 rpm for 3 hours. After that, the ball and the chamfered silicon nitride particles are separated, and 80 L is charged into a 100 L plastic container equipped with a stirrer at a 7.5% slurry concentration with respect to 6 kg of chamfered silicon nitride, followed by stirring for 40 minutes and allowing to stand for 10 minutes. 60L is discharged from the water surface side. Water is added to the remaining 20 L, and the same operation is repeated with 80 L again. The final 20 L was filtered, dried and then crushed with a 150 μm sieve, and subjected to MDS separator treatment by Nippon Numatic Kogyo Co., Ltd., and classified silicon nitride powder A having an average particle size of 5 to 80 μm 2 to 5 μm B powder, C powder composed of particles less than 1 μm was obtained by classification. Each characteristic is shown in Table 1. Separately, crushed powder D was prepared by a dry vibration mill.
[0018]
[Table 1]
Figure 0003986154
[0019]
Silicon nitride powders A, B, C and D were mixed in the formulation shown in Table 2, and the powder characteristics after mixing were measured. The results are shown in Table 2. Moreover, it mixed with the following resin compounding so that the mixed powder of Table 2 might occupy 60 vol%. However, the specific gravity of silicon nitride and resin blend was assumed to be 3.192 (g / cm 3 ) and 1.20 (g / cm 3 ), respectively.
[0020]
Figure 0003986154
[0021]
[Table 2]
Figure 0003986154
[0022]
The mixed powder is kneaded by heating and kneading for 5 minutes and 30 seconds using a mixing roll having a front roll surface temperature of 116 ° C. to 121 ° C. and a rear roll surface temperature of 90 ° C. to 96 ° C., and then cooled and pulverized to obtain various resin compositions. Got. Next, the spiral conductivity and the thermal conductivity of the molded body were measured using the resin composition. The spiral flow was measured according to EMMI-66 (Epoxy Molding Material; Society of Plastic Industry) using a spiral flow mold. Molding was performed at a molding temperature of 175 ° C. and a molding pressure of 45 kg / cm 2 . The cured resin composition has a thermal conductivity of a disk having a diameter of 2.775 cm and a thickness of 0.287 cm under molding conditions of a molding temperature of 175 ° C. and a molding pressure of 65 kg / cm 2 , and cured at 175 ° C. for 5 hours. And then measured at room temperature by the flat plate direct method. The results are shown in Table 3.
[0023]
[Table 3]
Figure 0003986154
[0024]
In the present invention, the characteristics of the mixed powder are values measured by the following method. The average particle size and the particle size composition are values measured by a laser diffraction particle size distribution measuring device (Cirrus Granurometer “Model 715”) obtained by ultrasonically dispersing 0.3 g of a powder sample in water.
[0025]
For the bulk density, a Hosokawa micron powder tester-PT-E type was used. The sample was gradually dropped into a 100 cm 3 cup gradually while applying amplitude to the sample holder, and the sample was piled up conically from the edge of the cup. Fill up to. Then, after removing excess powder on the cup surface by sliding the plate, the value is calculated by the following formula.
Bulk density = (total cup weight−empty cup weight) / 100 g / cm 3
[0026]
The tap density is a Hosokawa micron powder tester-PT-E type, and the sample is naturally dropped gradually into a 100 cm3 cup while applying amplitude to the sample holder until the sample is piled up conically from the edge of the cup. Fill the cup while tapping at 1 time / sec for 3 minutes. Thereafter, excess powder on the cup surface was removed by sliding the plate, and then calculated according to the following formula.
Tap density = (total weight of cup−empty weight of cup) / 100 g / cm 3
[0027]
The sphericity is measured using an SEM (scanning electron microscope) and an image analyzer. The SEM used was JSM-T100 manufactured by JEOL Ltd., and Nippon Avionics Co., Ltd. was used as an image analyzer. First, the filler is treated with a 45 μm sieve, and the projected area (A) and the perimeter (PM) of the target particle are measured from the SEM photograph of the particle that is 45 μm over. The required sphericity is represented as A / B, where (B) is the area of a perfect circle corresponding to the perimeter (PM). Here, when a perfect circle having the same circumference as the circumference of the target particle (PM) is estimated,
PM = 2πr (1)
B = πr 2 (2)
Because
From equation (1), r = PM / 2π (3)
Substituting (3) into equation (2),
B = π × (PM / 2π) 2 (4)
And
Sphericality = A / B = A × 4π / (PM) 2 (5)
It becomes.
The sphericity of individual particles can be calculated by substituting the actual measurement values A and PM into the equation (5).
In the present invention, particles that exceed 45 μm in the filler are selected,
The sphericity of about 50 particles in one photograph was measured, and the average value was taken as the sphericity of the particles.
[0028]
The elution ammonia amount and EC (electric conductivity) of the elution water were charged with 8 g of filler in 80 cc of pure water, treated at 121 ° C. for 20 hours, and then extracted with pure water to make 100 cc from HORIBA ion chromatography. -DS-14 type, and ammonia was eluted, and EC was measured with DIONEX electric conductivity meter DX-100.
[0029]
The Fe content is a measure for the degree of wear of the mold, and the amount of Fe that wears during the mixing of the mixture is determined from the Fe content in the resin composition after the mixing of the mixture to the simpleness of the filler before the mixing of the mixing. This is a value obtained by subtracting the Fe content, and measured with a fluorescent X-ray apparatus RIX-3000 manufactured by Rigaku Corporation.
[0030]
【The invention's effect】
From the examples, it is clear that the resin composition using the filler according to the present invention has an excellent effect that it is rich in fluidity and has a high thermal conductivity of the obtained cured product. That is, according to the present invention, a resin composition having a high degree of thermal conductivity filled with a filler can be easily obtained without impeding the fluidity during molding. It is suitable for use. Further, it has an effect that the amount of eluted ammonium ions is small and EC is low, and the wear degree of the mold can be reduced as compared with the crushed filler.

Claims (3)

粒径が4〜192μmを60〜90重量%、粒径が4μm未満を40〜10重量%含有し、1μm以下の粒子の含有量が10重量%以下、嵩密度が0.90(g/cm)以上、且つ、タップ密度が1.80(g/cm)以上である窒化珪素質充填材。The particle size is 60 to 90% by weight of 4 to 192 μm, the particle size is 40 to 10% by weight of less than 4 μm, the content of particles of 1 μm or less is 10% by weight or less, and the bulk density is 0.90 (g / cm 3 ) A silicon nitride filler having a tap density of 1.80 (g / cm 3 ) or more. 45μm以上の粒子の真円度が0.8以上であることを特徴とする請求項1に記載の窒化珪素質充填材。The silicon nitride filler according to claim 1 , wherein the roundness of particles of 45 µm or more is 0.8 or more. 請求項1又は2に記載の充填材を含有してなることを特徴とする半導体封止用樹脂組成物。A resin composition for encapsulating a semiconductor, comprising the filler according to claim 1 .
JP07587698A 1998-03-24 1998-03-24 Silicon nitride filler and semiconductor sealing resin composition Expired - Fee Related JP3986154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07587698A JP3986154B2 (en) 1998-03-24 1998-03-24 Silicon nitride filler and semiconductor sealing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07587698A JP3986154B2 (en) 1998-03-24 1998-03-24 Silicon nitride filler and semiconductor sealing resin composition

Publications (2)

Publication Number Publication Date
JPH11268903A JPH11268903A (en) 1999-10-05
JP3986154B2 true JP3986154B2 (en) 2007-10-03

Family

ID=13588929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07587698A Expired - Fee Related JP3986154B2 (en) 1998-03-24 1998-03-24 Silicon nitride filler and semiconductor sealing resin composition

Country Status (1)

Country Link
JP (1) JP3986154B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4757778B2 (en) * 2006-11-10 2011-08-24 電気化学工業株式会社 Silicon nitride powder, production method and use thereof
JP6245602B2 (en) * 2013-10-21 2017-12-13 国立研究開発法人産業技術総合研究所 Silicon nitride filler, resin composite, insulating substrate, semiconductor encapsulant, method for producing silicon nitride filler
JP6941928B2 (en) * 2016-10-11 2021-09-29 日鉄ケミカル&マテリアル株式会社 Method for Producing Spherical Si3N4 Particles and Spherical Si3N4 Particles
CN109761205A (en) * 2019-03-18 2019-05-17 青岛瓷兴新材料有限公司 A kind of spherical beta silicon nitride powder of ultrapure low-activity, its manufacturing method and application
CN109761206A (en) * 2019-03-18 2019-05-17 青岛瓷兴新材料有限公司 A kind of spherical beta silicon nitride powder of high-purity low aluminium, its manufacturing method and application
WO2023210649A1 (en) * 2022-04-27 2023-11-02 株式会社燃焼合成 COLUMNAR PARTICLES OF β-SILICON NITRIDE, COMPOSITE PARTICLES, SINTERED SUBSTRATE FOR HEAT RADIATION, RESIN COMPOSITE, INORGANIC COMPOSITE, METHOD FOR PRODUCING COLUMNAR PARTICLES OF β-SILICON NITRIDE, AND METHOD FOR PRODUCING COMPOSITE PARTICLES

Also Published As

Publication number Publication date
JPH11268903A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
KR101505237B1 (en) Alumina powder, process for production of the same, and resin compositions containing the same
JP5081488B2 (en) Hexagonal boron nitride powder
US5935314A (en) Inorganic filler, epoxy resin composition, and semiconductor device
KR101406571B1 (en) Silica powder, method for production of the same, and composition using the same
CN108314456A (en) Boron nitride aggregate, Its Preparation Method And Use
EP1591419B1 (en) Fine silica particles
EP3915939A1 (en) Filler composition, silicone resin composition, and heat dissipation component
KR102649474B1 (en) Fused spherical silica powder and method for producing the same
JP3986154B2 (en) Silicon nitride filler and semiconductor sealing resin composition
JP3135926B2 (en) Epoxy resin encapsulant for molding semiconductor chips and method of manufacturing the same
JPH10120878A (en) Epoxy resin composition and semiconductor device
JP5795168B2 (en) Thermally conductive resin composition and semiconductor package
KR20090104000A (en) Amorphous silica powder, method for production thereof, and semiconductor sealing material
CN110475749A (en) Coated magnesium oxide particle and its manufacturing method and heat conductive resin composition
TWI753149B (en) powder mix
EP4269346A1 (en) Magnesium oxide powder, thermally conductive filler, resin composition, and production method for magnesium oxide powder
JP4040715B2 (en) Filler and semiconductor sealing resin composition
JP2007211252A (en) Semiconductor encapsulating epoxy resin composition using fly ash powder and semiconductor device using the same
JPS6296567A (en) Semiconductor sealing resin composition
JP3985028B2 (en) Production method of fly ash powder
JP2004039532A (en) Electric resistance adjusting material and resin composition using this electric resistance adjusting material
JPS6065041A (en) Inorganic sphere and composition thereof
JP6867539B1 (en) Amorphous silica powder and resin composition
WO2024029464A1 (en) Alumina powder, resin composition and method for producing alumina powder
EP4317058A1 (en) Aluminum nitride granular powder and resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees