JP5081488B2 - Hexagonal boron nitride powder - Google Patents

Hexagonal boron nitride powder Download PDF

Info

Publication number
JP5081488B2
JP5081488B2 JP2007103551A JP2007103551A JP5081488B2 JP 5081488 B2 JP5081488 B2 JP 5081488B2 JP 2007103551 A JP2007103551 A JP 2007103551A JP 2007103551 A JP2007103551 A JP 2007103551A JP 5081488 B2 JP5081488 B2 JP 5081488B2
Authority
JP
Japan
Prior art keywords
powder
side length
particles
less
long side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007103551A
Other languages
Japanese (ja)
Other versions
JP2007308360A (en
Inventor
和哉 藪田
孝久 越田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Mizushima Ferroalloy Co Ltd
Original Assignee
JFE Steel Corp
Mizushima Ferroalloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Mizushima Ferroalloy Co Ltd filed Critical JFE Steel Corp
Priority to JP2007103551A priority Critical patent/JP5081488B2/en
Publication of JP2007308360A publication Critical patent/JP2007308360A/en
Application granted granted Critical
Publication of JP5081488B2 publication Critical patent/JP5081488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、絶縁放熱材料等、熱伝導性が要求される用途に好適な六方晶窒化ホウ素粉末に関する。   The present invention relates to a hexagonal boron nitride powder suitable for applications requiring thermal conductivity, such as an insulating heat dissipation material.

六方晶窒化ホウ素(h−BN)粉末は、固体潤滑材料、絶縁放熱材料、化粧品等広い用途に用いられている。従来、このような六方晶窒化ホウ素粉末は、ホウ酸やホウ酸塩などのホウ素化合物と、尿素やアミンなどの窒素化合物とを、比較的低温で反応させて、結晶性の低い粗製h−BN粉末を得、これを、高温で加熱して結晶を成長させる方法で製造されるのが一般的である(例えば、特許文献1)。   Hexagonal boron nitride (h-BN) powder is used in a wide range of applications such as solid lubricating materials, insulating heat dissipation materials, and cosmetics. Conventionally, such a hexagonal boron nitride powder is obtained by reacting a boron compound such as boric acid or borate with a nitrogen compound such as urea or amine at a relatively low temperature to produce crude h-BN having low crystallinity. Generally, it is produced by a method of obtaining a powder and heating it at a high temperature to grow crystals (for example, Patent Document 1).

一方、h−BN粉末は、黒鉛と同様に層状構造をしており、(1)熱膨張係数がSiに近く、半導体材料であるSi基板に対する歪みが生じにくい、(2)誘電率が小さく、信号伝播遅延が小さい、(3)電気絶縁性が大きく、絶縁耐力に優れる、(4)アルミナの2〜3倍という高い絶縁性を有する等の優れた特性を有するため、半導体等の電子材料の分野において充填材としての需要が増加している。例えばh−BNをエポキシ樹脂やシリコンゴム等の樹脂材料に添加してなる熱伝導性(放熱性)および絶縁性の優れたシートやテープが注目されている。   On the other hand, h-BN powder has a layered structure similar to graphite, and (1) its thermal expansion coefficient is close to that of Si and is less likely to be distorted with respect to the Si substrate, which is a semiconductor material, (2) its dielectric constant is small, It has excellent characteristics such as low signal propagation delay, (3) high electrical insulation, excellent dielectric strength, and (4) high insulation of 2 to 3 times that of alumina. There is an increasing demand for fillers in the field. For example, a sheet or tape excellent in thermal conductivity (heat dissipation) and insulation obtained by adding h-BN to a resin material such as epoxy resin or silicon rubber has attracted attention.

このような用途にh−BN粉末を用いる場合、h−BN粉末の樹脂に対する置換率つまりh−BN粉末の充填性が熱伝導性を左右し、h−BN粉末の充填性を高くしてより高い熱伝導性を得ることが望まれている。   When h-BN powder is used for such applications, the substitution rate of h-BN powder with respect to the resin, that is, the filling property of h-BN powder affects the thermal conductivity, and the filling property of h-BN powder is increased. It is desired to obtain high thermal conductivity.

しかしながら、従来のh−BN粉末は充填性が十分とはいえず、h−BN粉末を樹脂に添加してなるシートやテープの熱伝導性が要求値を満足することが困難であるという問題がある。また、従来のh−BN粉末は誘電率が比較的高く、信号伝搬遅延が大きくなって、信頼性が低下するおそれがある。
特開平9−295801号公報
However, it cannot be said that the conventional h-BN powder has sufficient filling properties, and it is difficult to satisfy the required value for the thermal conductivity of a sheet or tape obtained by adding h-BN powder to a resin. is there. In addition, the conventional h-BN powder has a relatively high dielectric constant, and the signal propagation delay increases, which may reduce the reliability.
Japanese Patent Laid-Open No. 9-295801

本発明はかかる事情に鑑みてなされたものであって、充填性が高い六方晶窒化ホウ素粉末を提供することを目的とする。また、充填性が高いことに加えて誘電率の小さい六方晶窒化ホウ素粉末を提供することを目的とする。   This invention is made | formed in view of this situation, Comprising: It aims at providing the hexagonal boron nitride powder with high filling property. It is another object of the present invention to provide hexagonal boron nitride powder having a low dielectric constant in addition to high filling properties.

上記課題を解決するため、本発明は、粉末粒子の長辺長さ/短辺長さ比が15以下であり、長辺長さ/短辺長さ比が10以上の粉末粒子が全体の50%以下であり、炭化ホウ素を窒化した後、粉末中に含まれるCを除去することにより粉末中のC含有量を0.5mass%以下とし、粉末粒子の長辺長さ/短辺長さ比の平均値が10以下であり、粉末粒子の長辺長さが10μm以下であり、粉末粒子の長辺長さの平均値が4μm以下であり、粉末粒子が凝集して形成された2次粒子の投影面積が100μm 以上の凝集粒子の存在割合が面積比で5%以上であることを特徴とする六方晶窒化ホウ素粉末を提供する。 In order to solve the above-mentioned problems, the present invention has a powder particle having a long side length / short side length ratio of 15 or less and a total of 50 powder particles having a long side length / short side length ratio of 10 or more. %, And after nitriding boron carbide, C contained in the powder is removed so that the C content in the powder is 0.5 mass% or less, and the long side length / short side length ratio of the powder particles Is an average value of 10 or less, the long side length of the powder particles is 10 μm or less, the average value of the long side length of the powder particles is 4 μm or less, and the secondary particles formed by aggregation of the powder particles The present invention provides a hexagonal boron nitride powder characterized in that the proportion of aggregated particles having a projected area of 100 μm 2 or more is 5% or more by area ratio .

さらにまた、本発明に係る六方晶窒化ホウ素粉末において、粉末粒子が凝集して形成された2次粒子の投影面積が100μm以上の凝集粒子の最大長さ/最小長さ比の平均値が5以下であることが好ましい。 Furthermore, Te hexagonal boron nitride powder smell according to the present invention, the maximum length / minimum length ratio of the mean value of the projected area of 100 [mu] m 2 or more aggregated particles of secondary particles powder powder particles are formed by aggregation Is preferably 5 or less.

さらにまた、本発明に係る六方晶窒化ホウ素粉末において、炭化ホウ素を窒素雰囲気中、1800℃以上とした後、三酸化二ホウ素および/またはその前駆体を混合し、焼成してCを除去してC含有量を0.5mass%以下としたものであることが好ましい。  Furthermore, in the hexagonal boron nitride powder according to the present invention, boron carbide is brought to 1800 ° C. or higher in a nitrogen atmosphere, diboron trioxide and / or a precursor thereof are mixed, and baked to remove C. The C content is preferably 0.5 mass% or less.

本発明によれば、粉末粒子の長辺長さ/短辺長さ比が15以下であり、長辺長さ/短辺長さ比が10以上の粉末粒子が全体の50%以下であるので、従来よりも扁平で長い粒子が少なく、充填性を高めることができる。このため、充填材として用いた場合に熱伝導性を高めることができる。また、炭化ホウ素を窒化した後、粉末中に含まれるCを除去することにより粉末中のC含有量を0.5mass%以下としたので、誘電率が小さく、安定するため、信号伝搬遅延を小さくし、信頼性を高めることができるAccording to the present invention, the long side length / short side length ratio of the powder particles is 1 5 or less, is the total of 50% or less long side length / short side length ratio is more than 10 powder particles Therefore, there are fewer flat and longer particles than in the past, and the filling property can be improved. For this reason, when it uses as a filler, thermal conductivity can be improved. In addition, after nitriding boron carbide, C contained in the powder is removed so that the C content in the powder is 0.5 mass% or less, so that the dielectric constant is small and stable, so that the signal propagation delay is small. And reliability can be improved .

以下、本発明について具体的に説明する。
上記特許文献1等に開示された、ホウ酸やホウ酸塩などのホウ素化合物と、尿素やアミンなどの窒素化合物とを、比較的低温で反応させて、結晶性の低い粗製h−BN粉末を得、これを、高温で加熱して結晶を成長させる方法で得られたh−BN粉末は、その粒子が短辺長さ(C軸方向の粒子の厚さ)に比べて長辺長さ(最も長い部分の長さ)が長く、長辺長さ/短辺長さ比が大きく、長辺長さ自体も大きいため、充填性が十分ではなかった。
Hereinafter, the present invention will be specifically described.
A crude h-BN powder having low crystallinity is obtained by reacting a boron compound such as boric acid or borate and a nitrogen compound such as urea or amine, which are disclosed in Patent Document 1 and the like, at a relatively low temperature. The h-BN powder obtained by heating this at a high temperature to grow a crystal has a long side length (the length of the particle in the C-axis direction) compared to the short side length (the thickness of the particle in the C-axis direction). Since the longest part) is long, the ratio of the long side length / short side length is large, and the long side length itself is large, the filling property is not sufficient.

これに対して、本発明では、まず、粉末粒子の長辺長さ/短辺長さ比を20以下とする。すなわち、実質的に長辺長さ/短辺長さ比が20を超える粒子が存在しないことを特徴とする。このように、長辺長さ/短辺長さ比の大きいものが存在しないことにより、扁平で長さの長い粒子が少なく、粉末粒子の充填性を格段に高めることができる。好ましくは、粉末粒子の長辺長さ/短辺長さ比が15以下である。   In contrast, in the present invention, first, the long side length / short side length ratio of the powder particles is set to 20 or less. That is, there is substantially no particle having a long side length / short side length ratio exceeding 20. As described above, since there is no long side length / short side length ratio, there are few flat and long particles, and the powder particle filling property can be remarkably improved. Preferably, the long side length / short side length ratio of the powder particles is 15 or less.

また、粉末粒子の長辺長さ/短辺長さ比を20以下、好ましくは15以下を満たした上で、長辺長さ/短辺長さ比が10以上の粉末粒子の割合が全体の50%以下とすることが好ましい。このように、長辺長さ/短辺長さ比が10以上の粒子を少なくすることにより、充填性をより高めることができる。長辺長さ/短辺長さ比が10以上の粉末粒子の割合は、40%以下がより好ましく、30%以下が一層好ましい。   Further, the ratio of the long side length / short side length ratio of the powder particles is 20 or less, preferably 15 or less, and the ratio of the powder particles having the long side length / short side length ratio of 10 or more is 50% or less is preferable. Thus, the filling property can be further enhanced by reducing the number of particles having a long side length / short side length ratio of 10 or more. The ratio of powder particles having a long side length / short side length ratio of 10 or more is more preferably 40% or less, and even more preferably 30% or less.

また、粉末粒子の長辺長さ/短辺長さ比の平均値を10以下とすることによっても粉末の充填性を高めることができる。すなわち、このように規定することにより、長辺長さ/短辺長さ比が大きい粒子の割合が必然的に小さくなり、やはり、粉末粒子の充填性を高めることができる。好ましくは、粉末粒子の長辺長さ/短辺長さ比の平均値が9以下である。   The powder filling property can also be improved by setting the average value of the long side length / short side length ratio of the powder particles to 10 or less. That is, by defining in this way, the ratio of particles having a long side length / short side length ratio is inevitably reduced, and the powder particle filling property can be improved. Preferably, the average value of the long side length / short side length ratio of the powder particles is 9 or less.

粉末の充填性は、長辺長さ/短辺長さ比のみならず、長辺長さそのものの値によっても影響を受け、長辺長さを10μm以下とすることによっても充填性を高めることができる。すなわち、長辺長さが10μmを超えるものが存在する場合には、そのような長い粒子が密に充填することを妨げ、結果として充填密度が低くなってしまうが、このような長い粒子が存在しないことにより、高い充填密度を得ることができる。長辺長さのより好ましい値は7μm以下、さらに好ましくは5μm以下である。   The filling property of the powder is influenced not only by the ratio of the long side length / short side length but also by the value of the long side length itself, and the filling property is also improved by setting the long side length to 10 μm or less. Can do. That is, if there are those whose long side length exceeds 10 μm, such long particles are prevented from being densely packed, resulting in a low packing density, but such long particles are present. By not doing so, a high packing density can be obtained. A more preferable value of the long side length is 7 μm or less, more preferably 5 μm or less.

また、粉末粒子の長辺長さの平均値を4μm以下とすることによっても同様に、粉末粒子の充填性を高めることができる。長辺長さの平均値のより好ましい範囲は3μm以下である。   Similarly, by setting the average value of the long side lengths of the powder particles to 4 μm or less, the filling property of the powder particles can be improved. A more preferable range of the average value of the long side length is 3 μm or less.

以上は粉末粒子の性状を規定したものであるが、粉末粒子が凝集して形成された所定の大きさ以上の凝集粒の存在によっても粉末の充填性(充填密度)を高めることができる。すなわち、本発明では、また、SEMによる投影像の面積が100μm以上の凝集粒子が存在していることを特徴とする。この場合に、一般的には視野を1×10μm以上の範囲とすることが好ましい。 The above is the definition of the properties of the powder particles, but the powder filling property (packing density) can also be increased by the presence of aggregated particles having a predetermined size or more formed by aggregation of the powder particles. That is, the present invention is characterized in that there are aggregated particles having an area of a projected image by SEM of 100 μm 2 or more. In this case, it is generally preferable that the field of view is in the range of 1 × 10 5 μm 2 or more.

従来のh−BN粉末はこのような凝集粒子が実質的に存在しないため、凝集粒子により充填密度を上昇させることはできないが、本発明では、それ自体密度が高い凝集粒子が存在することにより、必然的に充填密度が高くなる。凝集粒子の面積を100μm以上としたのは、それより小さいと、充填密度を上昇させる効果が小さいからである。 Since the conventional h-BN powder has substantially no such agglomerated particles, the packing density cannot be increased by the agglomerated particles. However, in the present invention, the presence of agglomerated particles having a high density by itself, Inevitably, the packing density increases. The reason why the area of the agglomerated particles is 100 μm 2 or more is that if the area is smaller than that, the effect of increasing the packing density is small.

前記面積が100μm以上の凝集粒子の視野内での存在割合は、面積比で5%以上であることが好ましく、10%以上がさらに好ましい。また、そのような凝集粒子は、最大長さ/最小長さ比が平均値で5以下であることが好ましい。これは、扁平形状のものより最大長さ/最小長さ比が小さいもののほうが充填密度を高くする効果が大きいからである。 The ratio of the aggregated particles having an area of 100 μm 2 or more within the visual field is preferably 5% or more, more preferably 10% or more, in terms of area ratio. Further, such aggregated particles preferably have a maximum length / minimum length ratio of 5 or less on average. This is because the effect of increasing the packing density is greater when the maximum length / minimum length ratio is smaller than that of the flat shape.

以上の粉末粒子の性状や、凝集粒子の性状および存在割合等は、走査型電子顕微鏡(SEM)写真により把握することができる。具体的には、粉末粒子の性状については、粉末粒子の性状が把握できる倍率、例えば5000倍で撮影したSEM写真において、長辺および短辺を明確に把握できる粉末粒子を50個以上任意抽出して測定する。また、凝集粒子については、凝集粒子が明確に把握できる倍率、例えば200倍で撮影した、1×10μm以上の視野のSEM写真をコンピュータにより画像処理し、適宜のソフトウエアを用いて、面積が100μm以上の凝集粒子の個数、面積、およびその形状(最大長さおよび最小長さ等)を把握する。このようなソフトウエアとしては、市販の「イメージプロプラス」(商品名)を好適に用いることができる。 The properties of the above powder particles, the properties and the abundance ratio of the agglomerated particles, etc. can be grasped by a scanning electron microscope (SEM) photograph. Specifically, regarding the properties of the powder particles, 50 or more powder particles that can clearly grasp the long side and the short side are arbitrarily extracted in a SEM photograph taken at a magnification at which the property of the powder particles can be grasped, for example, 5000 times. To measure. As for the aggregated particles, SEM photographs of a field of view of 1 × 10 5 μm 2 or more taken at a magnification at which the aggregated particles can be clearly grasped, for example, 200 ×, are image-processed by a computer, and using appropriate software, The number, area, and shape (maximum length, minimum length, etc.) of aggregated particles having an area of 100 μm 2 or more are grasped. As such software, commercially available “Image Pro Plus” (trade name) can be suitably used.

以上のように、本発明では粉末粒子の長辺長さ/短辺長さ比に関する要件、粉末粒子の長辺の長さに関する要件、凝集粒子に関する要件を別個に規定するが、これら2以上を同時に満たしてもよく、これによって、より充填性の高いh−BN粉末を得ることができる。   As described above, in the present invention, the requirements on the long side length / short side length ratio of the powder particles, the requirements on the long side length of the powder particles, and the requirements on the aggregated particles are separately defined. They may be filled at the same time, whereby a h-BN powder having a higher filling property can be obtained.

本発明のh−BN粉末の製造方法は特に限定されないが、炭化ホウ素(BC)を出発原料とすることにより好適に製造することができる。好ましい製造方法としては、具体的には、炭化ホウ素を窒素雰囲気で焼成した後の生成物に、三酸化二ホウ素(無水ホウ酸)および/またはその前駆体を混合し、焼成して副生炭素を除去する方法が例示される。 The method of producing h-BN powder of the present invention is not particularly limited, it may be suitably prepared by boron carbide (B 4 C) as a starting material. Specifically, as a preferable production method, diboron trioxide (boric anhydride) and / or a precursor thereof are mixed with a product obtained by calcining boron carbide in a nitrogen atmosphere, and calcined to produce by-product carbon. The method of removing is illustrated.

この方法では、炭化ホウ素を窒素雰囲気で焼成して、以下の(1)式に基づいて窒化ホウ素粉末の生成を進行させるが、そのためには充分な温度および時間と窒素分圧を与える必要がある。
(1/2)BC+N → 2BN+(1/2)C …(1)
In this method, boron carbide is fired in a nitrogen atmosphere, and the generation of boron nitride powder proceeds based on the following formula (1). For this purpose, it is necessary to provide sufficient temperature, time, and nitrogen partial pressure. .
(1/2) B 4 C + N 2 → 2BN + (1/2) C (1)

熱力学的には(1)式の反応は発熱反応であり、窒素分圧が0.1MPaの条件で窒化ホウ素が生成するはずであるが、実際には、1800℃以下ではほとんど反応が進行しないため、1800℃以上の温度を必要とする。   Thermodynamically, the reaction of formula (1) is an exothermic reaction, and boron nitride should be generated under a condition where the nitrogen partial pressure is 0.1 MPa, but in reality, the reaction hardly proceeds at 1800 ° C. or lower. Therefore, a temperature of 1800 ° C. or higher is required.

炭化ホウ素粉末の粒径は、44μm以下であることが反応性の点から好ましい。粒径が44μmを超えるものは、上記(1)式の反応の完了が遅れることがあり、収率を低下させる。このような収率の低下を回避する観点からは、44μm以下の粒径の粉末を90質量%以上の範囲とすることが好ましい。   The particle size of the boron carbide powder is preferably 44 μm or less from the viewpoint of reactivity. When the particle size exceeds 44 μm, the completion of the reaction of the above formula (1) may be delayed, which lowers the yield. From the viewpoint of avoiding such a decrease in yield, it is preferable to set the powder having a particle size of 44 μm or less in a range of 90% by mass or more.

炭化ホウ素の焼成物に、三酸化二ホウ素および/またはその前駆体(以下、三酸化二ホウ素等ともいう)を混合する。その際に、ボールミルに溶媒を加えて湿式で行うこともできるが、V−ブレンダーのような乾式混合機を用いて行うことが好ましい。混合は均一状態になるまで実施される。具体的には、目視にて混合物が均質な灰色になればよい。   Diboron trioxide and / or a precursor thereof (hereinafter also referred to as diboron trioxide or the like) is mixed into the fired product of boron carbide. At that time, a solvent can be added to the ball mill to carry out a wet process, but it is preferable to use a dry mixer such as a V-blender. Mixing is performed until uniform. Specifically, it is sufficient that the mixture becomes a homogeneous gray color by visual observation.

三酸化二ホウ素の前駆体とは、加熱により三酸化二ホウ素になり得るホウ素化合物であり、具体的には、ホウ酸のアンモニウム塩、オルトホウ酸、メタホウ酸、四ホウ酸などである。三酸化二ホウ素およびその前駆体の中で、好ましいのは三酸化二ホウ素である。   The precursor of diboron trioxide is a boron compound that can be converted to diboron trioxide by heating, and specifically includes ammonium salt of boric acid, orthoboric acid, metaboric acid, tetraboric acid, and the like. Of the diboron trioxide and its precursors, preferred is diboron trioxide.

三酸化二ホウ素等の混合量は、炭化ホウ素の量によって決定される。すなわち、上記(1)式の反応により生成した炭素の全量を後述の(2)式の反応で消費し、除去することができる十分な量があれば良い。
C+B → B(ガス)+CO(ガス) …(2)
The mixing amount of diboron trioxide and the like is determined by the amount of boron carbide. That is, it suffices if there is a sufficient amount that can be consumed and removed by the reaction of the later-described formula (2) of the total amount of carbon generated by the reaction of the formula (1).
C + B 2 O 3 → B 2 O 2 (gas) + CO (gas) (2)

副生炭素を除去する焼成では、上記(2)式の反応により、副生炭素が一酸化炭素に酸化され、除去される。   In the calcination for removing the by-product carbon, the by-product carbon is oxidized to carbon monoxide and removed by the reaction of the above formula (2).

上記(2)式の反応は1500℃以上で進行し、三酸化二ホウ素の蒸発は1600℃以上で進行する。両者ともガスを生成するので、発生ガスの効果的な除去により、反応と蒸発を効果的に進行させることができる。さらに反応を進めるためには、窒素ガスの流量を増加させ、発生する一酸化炭素、無水次ホウ酸(B)ガス、三酸化二ホウ素(B)ガスを積極的に系外へ排出すると一層効果的である。 The reaction of the above formula (2) proceeds at 1500 ° C. or higher, and the evaporation of diboron trioxide proceeds at 1600 ° C. or higher. Since both generate gas, the reaction and evaporation can be effectively advanced by the effective removal of the generated gas. In order to further proceed the reaction, the flow rate of nitrogen gas is increased, and the generated carbon monoxide, anhydrous boric acid (B 2 O 2 ) gas, and diboron trioxide (B 2 O 3 ) gas are actively used. It is more effective when discharged outside.

本発明において、炭化ホウ素を出発物質として六方晶窒化ホウ素粉末を製造する場合、製品である項充填性六方晶窒化ホウ素粉末に不可避不純物としてカーボン(C)が混入する。カーボンは導電性物質であるため誘電率に影響し、カーボンが多すぎると誘電率が上昇して信号伝搬遅延をもたらしてしまう。このため、カーボン(C)の含有量は0.5mass%以下であることが好ましく、さらに0.2mass%以下であることが好ましい。   In the present invention, when producing hexagonal boron nitride powder using boron carbide as a starting material, carbon (C) is mixed as an inevitable impurity in the term-filling hexagonal boron nitride powder as a product. Since carbon is a conductive substance, it affects the dielectric constant, and if there is too much carbon, the dielectric constant rises, resulting in signal propagation delay. For this reason, the content of carbon (C) is preferably 0.5 mass% or less, and more preferably 0.2 mass% or less.

以下、本発明の実施例について説明する。
市販の純度98質量%の炭化ホウ素粉末を44μmの篩にかけ、篩を通過した101.8gの原料粉末を内径90mm、高さ100mmのカーボンるつぼに投入し、窒素雰囲気中、2000℃で10時間焼成した。焼成生成物の量は176.6gであった。
Examples of the present invention will be described below.
Commercially available boron carbide powder with a purity of 98% by mass is passed through a 44 μm sieve, 101.8 g of the raw material powder passed through the sieve is put into a carbon crucible having an inner diameter of 90 mm and a height of 100 mm, and baked at 2000 ° C. for 10 hours in a nitrogen atmosphere. did. The amount of the fired product was 176.6 g.

焼成生成物の中から69.3gをとり、市販の三酸化二ホウ素35.2gと混合した。この際の混合は、内容積1LのV−ブレンダーを用い、1Hzの条件で30分間回転することにより行った。   From the calcined product, 69.3 g was taken and mixed with 35.2 g of commercially available diboron trioxide. The mixing at this time was performed by rotating for 30 minutes under the condition of 1 Hz using a V-blender having an internal volume of 1 L.

得られた粉末状混合物を、内径90mm、高さ100mmのカーボンるつぼに装入し、窒素気流中、2000℃で10時間焼成して、第二焼成生成物を得た。この第二焼成生成物は、白色凝集体であり、粉砕後にX線回折に供した結果、図1に示すように、ほぼ完全にh−BNとなっていることが確認された。また、粉末の炭素含有量を管状電気抵抗炉(株式会社島津製作所製)を用いて赤外線吸収法により測定し、酸素含有量を、ON同時分析装置(株式会社堀場製作所製;EMGA−550型)を用いて不活性ガス−インパルス加熱融解熱伝導度検出法により測定した。その結果、酸素含有量が0.2質量%、炭素含有量が0.01質量%と微量であり、高純度のh−BNが得られたことが確認された。   The obtained powdery mixture was placed in a carbon crucible having an inner diameter of 90 mm and a height of 100 mm and baked at 2000 ° C. for 10 hours in a nitrogen stream to obtain a second baked product. This second baked product was a white aggregate, and as a result of being subjected to X-ray diffraction after pulverization, it was confirmed that it was almost completely h-BN as shown in FIG. Moreover, the carbon content of the powder was measured by an infrared absorption method using a tubular electric resistance furnace (manufactured by Shimadzu Corporation), and the oxygen content was measured using an ON simultaneous analyzer (manufactured by Horiba, Ltd .; model EMGA-550). Was measured by an inert gas-impulse heating melting thermal conductivity detection method. As a result, it was confirmed that the oxygen content was as small as 0.2% by mass and the carbon content was as small as 0.01% by mass, and high-purity h-BN was obtained.

このようにして得られたh−BN粉末について5000倍のSEM写真を撮影した。この際の異なる4つの視野のSEM像を図2に示す。このようなSEM写真から、長辺(最も長い部分)および短辺(厚さ方向)を明確に把握できる粉末粒子を68個任意に抽出して、それらの短辺長さ、長辺長さ、長辺長さ/短辺長さ比を測定した。その結果を表1に示す。   A 5000-times SEM photograph of the h-BN powder thus obtained was taken. FIG. 2 shows SEM images of four different fields of view at this time. From such SEM photographs, 68 powder particles that can clearly grasp the long side (longest part) and the short side (thickness direction) are arbitrarily extracted, and the short side length, the long side length, The long side length / short side length ratio was measured. The results are shown in Table 1.

Figure 0005081488
Figure 0005081488

表1に示すように、長辺長さ/短辺長さ比の最も大きいものは14.6であり、この値が10以上のものの割合は25%であった。また、長辺長さ/短辺長さ比の平均値は8.2であった。長辺長さ自体の値としては、最も長いものが4.96μmであり、平均が2.78μmであった。すなわち、本発明の範囲を満たすh−BN粉末が得られていることが確認された。   As shown in Table 1, the largest long side length / short side length ratio was 14.6, and the ratio of those having a value of 10 or more was 25%. Moreover, the average value of long side length / short side length ratio was 8.2. As the value of the long side length itself, the longest one was 4.96 μm, and the average was 2.78 μm. That is, it was confirmed that h-BN powder satisfying the scope of the present invention was obtained.

比較のため、従来のホウ酸やホウ酸塩などのホウ素化合物と、尿素やアミンなどの窒素化合物とを、比較的低温で反応させて、結晶性の低い粗製h−BN粉末を得、これを、高温で加熱して結晶を成長させる方法で得られた粉末についても、同様に5000倍のSEM写真を撮影した。この際の異なる4つの視野のSEM像を図3に示す。このようなSEM写真から、長辺(最も長い部分)および短辺(厚さ方向)を明確に把握できる粉末粒子を72個任意に抽出して、それらの短辺長さ、長辺長さ、長辺長さ/短辺長さ比を測定した。その結果を表2に示す。   For comparison, a conventional boron compound such as boric acid or borate and a nitrogen compound such as urea or amine are reacted at a relatively low temperature to obtain a crude h-BN powder having low crystallinity. Similarly, a 5000 times SEM photograph was taken with respect to the powder obtained by heating at a high temperature to grow crystals. FIG. 3 shows SEM images of four different fields of view at this time. From such SEM photographs, 72 powder particles that can clearly grasp the long side (longest part) and the short side (thickness direction) are arbitrarily extracted, and the short side length, the long side length, The long side length / short side length ratio was measured. The results are shown in Table 2.

Figure 0005081488
Figure 0005081488

表2に示すように、長辺長さ/短辺長さ比の最も大きいものは25.3であり、この値が10以上のものの割合は71%であった。また、長辺長さ/短辺長さ比の平均値は12.5であった。長辺長さ自体の値としては、最も長いものが15.54μmであり、平均が5.88μmであった。   As shown in Table 2, the largest long side length / short side length ratio was 25.3, and the ratio of those having a value of 10 or more was 71%. The average value of the long side length / short side length ratio was 12.5. As the value of the long side length itself, the longest one was 15.54 μm, and the average was 5.88 μm.

これら図、表を比較すると、本発明例では、長辺長さ/短辺長さ比が15以上のものが全く存在せず、その値が10以上の割合も、その平均値も小さく、長辺長さ自体も小さいのに対して、比較例は長辺長さ/短辺長さ比が20以上のものが存在し、その平均値も大きく、長辺長さ自体も大きいことがわかる。このため、SEM写真において両者の明確な相違を認識することができる。   Comparing these figures and tables, in the example of the present invention, there is no long side length / short side length ratio of 15 or more, the ratio is 10 or more, the average value is small, It can be seen that while the side length itself is small, the comparative example has a long side length / short side length ratio of 20 or more, the average value is large, and the long side length itself is large. For this reason, a clear difference between the two can be recognized in the SEM photograph.

次に、上記本発明例のh−BN粉末の凝集粒子について調査した。
200倍で撮影したSEM写真(原図)から解析部を切り取り、凝集粒子がチャージアップのため白っぽくなっていることを利用して、その色調により凝集粒子を把握し、コンピュータによる画像処理で、その中で面積が100μm以上のものを抽出してその部分を白く他の部分は黒くし、市販のソフトウエアである「イメージプロプラス」(商品名)を用いて、面積が100μm以上の凝集粒子の数、面積、およびその形状(最大長さおよび最小長さ)を把握した。なお、解析部の大きさ(視野)は、355μm×580μmとした。このような操作を#1〜10までの10個の視野で行った。その結果を表3に示す。また、これらのうちの#1、#5、#10について、それぞれ(a)元の200倍のSEM写真(原図)、(b)その中の解析部のSEM写真、(c)解析部を画像処理したものを図4〜6に示す。
Next, the agglomerated particles of the above-described h-BN powder of the present invention were investigated.
The analysis part is cut out from the SEM photograph (original drawing) taken at 200 times, and the aggregated particles are made whitish due to the charge-up, and the aggregated particles are grasped by the color tone. in area white the other part the part to extract 100 [mu] m 2 or more of the blackened, using a commercially available software "image Pro plus" (trade name), area of 100 [mu] m 2 or more aggregated particles The number, area, and shape (maximum length and minimum length) of the Note that the size (field of view) of the analysis unit was 355 μm × 580 μm. Such an operation was performed in 10 fields of view from # 1 to # 10. The results are shown in Table 3. Also, for # 1, # 5, and # 10 of these, (a) 200 times original SEM photograph (original drawing), (b) SEM photograph of analysis section therein, (c) analysis section image What was processed is shown in FIGS.

Figure 0005081488
Figure 0005081488

表3および図4〜6に示すように、本発明例のh−BN粉末は面積が100μm以上の凝集粒子が存在しており、このような凝集粒子の視野内での面積比が8.6〜19.7%と全て5%を超える値を示し、かつ大部分が10%を超える値を示していた。また、最大長さ/最小長さ比の値も全て平均値で5以下であった。 As shown in Table 3 and FIGS. 4 to 6, the h-BN powder of the example of the present invention has aggregated particles having an area of 100 μm 2 or more, and the area ratio of such aggregated particles in the field of view is 8. 6 to 19.7%, all showing values exceeding 5%, and most showed values exceeding 10%. The maximum length / minimum length ratio values were all 5 or less on average.

なお、比較例のh−BN粉末については、200倍で撮影したSEM写真からは、100μm以上の凝集粒子が見られなかった。 In addition, about the h-BN powder of the comparative example, the aggregate particle | grains of 100 micrometers 2 or more were not seen from the SEM photograph image | photographed by 200 time.

次に、本発明例のh−BN粉末および比較例のh−BN粉末を用いて、樹脂との複合シートを作製した。樹脂としては、エポキシ樹脂「エピコート807」(ジャパンエポキシレジン社製)を用い、硬化剤としては、変性脂環族アミングレード「エピキュア113」(ジャパンエポキシレジン社製)を用いた。脱泡できる流動性の確保という観点からシートのh−BN粉末置換率(充填率)を求めた結果、比較例では33質量%程度であったのに対し、本発明例では50質量%にも達しており、本発明例が比較例に比べて著しく良好な充填性を有していることが確認された。これらシートの熱伝導率を比較したところ、比較例のh−BN粉末を用いたシートが1.2W/m・Kであったのに対し、本発明例のh−BN粉末を用いたシートは1.75W/m・Kとなり、熱伝導率が46%も上昇することが確認された。   Next, a composite sheet with a resin was prepared using the h-BN powder of the present invention example and the h-BN powder of the comparative example. Epoxy resin “Epicoat 807” (manufactured by Japan Epoxy Resin Co., Ltd.) was used as the resin, and modified alicyclic amine grade “Epicure 113” (manufactured by Japan Epoxy Resin Co., Ltd.) was used as the curing agent. As a result of obtaining the h-BN powder substitution rate (filling rate) of the sheet from the viewpoint of ensuring the fluidity that can be degassed, it was about 33% by mass in the comparative example, whereas it was about 50% by mass in the present invention example. Thus, it was confirmed that the examples of the present invention have remarkably good filling properties as compared with the comparative examples. When the thermal conductivity of these sheets was compared, the sheet using the h-BN powder of the comparative example was 1.2 W / m · K, whereas the sheet using the h-BN powder of the present invention example was It was 1.75 W / m · K, and it was confirmed that the thermal conductivity increased by 46%.

次に、BCを出発物質としてBNを製造する場合に、製品である高充填性BN粉体に不可避不純物として存在するカーボン(C)の影響を調査するために、カーボン含有量の異なるBN粉末を用いて、電気的な性質に及ぼす影響について調べた。 Next, in the case of producing BN using B 4 C as a starting material, in order to investigate the influence of carbon (C) present as an inevitable impurity in the highly filled BN powder as a product, BN having different carbon contents The influence on electrical properties was investigated using powder.

本発明のh−BN粉末の製造に際し、チャンスを変えて表4に示す試験材を準備した。これらの試験材を用い、エポキシ樹脂に質量比で60:40に配合し、体積抵抗値と誘電率を測定した。その結果を表5に示す。   When producing the h-BN powder of the present invention, test materials shown in Table 4 were prepared with different opportunities. Using these test materials, the epoxy resin was blended at a mass ratio of 60:40, and the volume resistance value and the dielectric constant were measured. The results are shown in Table 5.

本来的には粉末試料自体の誘電率を測定するべきであるが、成形しないと電極の取り付け等ができないので、樹脂にBN粉末を分散させた試料を作製して計測した。樹脂に均一に分散されているかどうかは、表5の直流特性から体積抵抗率の測定で確認した。その結果、BN粉末に不純物としてカーボンが1%以上含まれていても、1×1014Ω・cm以上の値を示し、絶縁物であることを示したことから、エポキシ樹脂に健全に分散していることがわかった。 Originally, the dielectric constant of the powder sample itself should be measured. However, since the electrode cannot be attached unless it is molded, a sample in which BN powder is dispersed in a resin was prepared and measured. Whether or not the resin is uniformly dispersed was confirmed by measuring the volume resistivity from the direct current characteristics shown in Table 5. As a result, even if 1% or more of carbon was contained as an impurity in the BN powder, it showed a value of 1 × 10 14 Ω · cm or more, indicating that it was an insulator. I found out.

一方、交流での測定では、カーボン含有量が0.5mass%以下であれば誘電率εが4.0以下となり良好な性質を示した。内存する導電性物質の影響を受け、カーボン含有量が多くなるにつれて誘電率が大きくなることが予想され、誘電率の小さいh−BN粉末を安定的に製造するには、カーボン含有量を0.5mass%以下にすることが好ましいことが分かった。   On the other hand, in the alternating current measurement, when the carbon content was 0.5 mass% or less, the dielectric constant ε was 4.0 or less, indicating good properties. The dielectric constant is expected to increase as the carbon content increases due to the influence of the inherent conductive material. In order to stably produce h-BN powder having a low dielectric constant, the carbon content is reduced to 0. It turned out that it is preferable to set it as 5 mass% or less.

試料の作製に際しては、エポキシ樹脂に硬化剤を混合し、所定量の六方晶窒化ホウ素粉末を5分間混合し、1分脱泡し、試料とした。エポキシ樹脂としては、ジャパンエポキシレジン製:エピコート807を用い、硬化樹脂としては、ジャパンエポキシレジン製:エピキュア113を用いた。   In preparing the sample, a curing agent was mixed with the epoxy resin, a predetermined amount of hexagonal boron nitride powder was mixed for 5 minutes, and defoamed for 1 minute to prepare a sample. As an epoxy resin, Japan Epoxy Resin: Epicoat 807 was used, and as a cured resin, Japan Epoxy Resin: EpiCure 113 was used.

体積抵抗率は直流三端子法(JIS C2141)で、室温(26℃、湿度40%)、大気中で評価した。誘電率は二端子法で室温(26℃、湿度42%)、大気中、周波数1MHzで評価した。   The volume resistivity was evaluated by a direct current three terminal method (JIS C2141) at room temperature (26 ° C., humidity 40%) and in the atmosphere. The dielectric constant was evaluated by a two-terminal method at room temperature (26 ° C., humidity 42%), in the atmosphere, and at a frequency of 1 MHz.

Figure 0005081488
Figure 0005081488

Figure 0005081488
Figure 0005081488

本発明の六方晶窒化ホウ素粉末は、充填性が高いことから、樹脂材料に添加して熱伝導性(放熱性)および絶縁性の優れたシートやテープとする充填材の用途に適しているが、固体潤滑材料、化粧品、耐火物等の他の種々の用途にも利用可能である。   Since the hexagonal boron nitride powder of the present invention has high filling properties, it is suitable for use as a filling material that is added to a resin material to form a sheet or tape excellent in thermal conductivity (heat dissipation) and insulation. It can also be used for various other applications such as solid lubricating materials, cosmetics, and refractories.

本発明例のh−BN粉末のX線回折チャート。The X-ray-diffraction chart of the h-BN powder of the example of this invention. 本発明例のh−BN粉末の5000倍のSEM写真。The SEM photograph of 5000 times the h-BN powder of the example of the present invention. 比較例のh−BN粉末の5000倍のSEM写真。The SEM photograph of 5000 times the h-BN powder of a comparative example. 本発明例のうち#1の200倍のSEM写真、その中の解析部のSEM写真、解析部を画像処理したものを示す図。The figure which shows what processed the SEM photograph of the 200 times SEM photograph of # 1, the SEM photograph of the analysis part, and the analysis part in the example of the present invention. 本発明例のうち#5の200倍のSEM写真、その中の解析部のSEM写真、解析部を画像処理したものを示す図。The figure which shows the SEM photograph of # 200 of # 5 in the example of this invention, the SEM photograph of the analysis part in it, and the thing which image-processed the analysis part. 本発明例のうち#10の200倍のSEM写真、その中の解析部のSEM写真、解析部を画像処理したものを示す図。The figure which shows what carried out the image process of the SEM photograph of 200 times as many as # 10 among the examples of this invention, the SEM photograph of the analysis part in it, and the analysis part.

Claims (3)

粉末粒子の長辺長さ/短辺長さ比が15以下であり、長辺長さ/短辺長さ比が10以上の粉末粒子が全体の50%以下であり、炭化ホウ素を窒化した後、粉末中に含まれるCを除去することにより粉末中のC含有量を0.5mass%以下とし、粉末粒子の長辺長さ/短辺長さ比の平均値が10以下であり、粉末粒子の長辺長さが10μm以下であり、粉末粒子の長辺長さの平均値が4μm以下であり、粉末粒子が凝集して形成された2次粒子の投影面積が100μm 以上の凝集粒子の存在割合が面積比で5%以上であることを特徴とする六方晶窒化ホウ素粉末。 After the long side length / short side length ratio of the powder particles is 15 or less, the powder particles having a long side length / short side length ratio of 10 or more are 50% or less of the total, and after nitriding boron carbide The C content in the powder is reduced to 0.5 mass% or less by removing C contained in the powder, and the average value of the long side length / short side length ratio of the powder particles is 10 or less. The long side length of the agglomerated particles is 10 μm or less, the average value of the long side lengths of the powder particles is 4 μm or less, and the projected area of the secondary particles formed by agglomeration of the powder particles is 100 μm 2 or more. A hexagonal boron nitride powder having an area ratio of 5% or more in area ratio . 粉末粒子が凝集して形成された2次粒子の投影面積が100μm以上の凝集粒子の最大長さ/最小長さ比の平均値が5以下であることを特徴とする請求項1に記載の六方晶窒化ホウ素粉末。 The projected area of the secondary particles of the powder particles are formed by aggregation of claim 1, wherein the average value of the maximum length / minimum length ratio of 100 [mu] m 2 or more aggregated particles is 5 or less Hexagonal boron nitride powder. 炭化ホウ素を窒素雰囲気中、1800℃以上とした後、三酸化二ホウ素および/またはその前駆体を混合し、焼成してCを除去してC含有量を0.5mass%以下としたものであることを特徴とする請求項1または請求項2に記載の六方晶窒化ホウ素粉末。 After boron carbide is heated to 1800 ° C. or higher in a nitrogen atmosphere, diboron trioxide and / or a precursor thereof are mixed and baked to remove C to make the C content 0.5 mass% or less. The hexagonal boron nitride powder according to claim 1 or 2 , characterized by the above.
JP2007103551A 2006-04-20 2007-04-11 Hexagonal boron nitride powder Active JP5081488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007103551A JP5081488B2 (en) 2006-04-20 2007-04-11 Hexagonal boron nitride powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006116895 2006-04-20
JP2006116895 2006-04-20
JP2007103551A JP5081488B2 (en) 2006-04-20 2007-04-11 Hexagonal boron nitride powder

Publications (2)

Publication Number Publication Date
JP2007308360A JP2007308360A (en) 2007-11-29
JP5081488B2 true JP5081488B2 (en) 2012-11-28

Family

ID=38841570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007103551A Active JP5081488B2 (en) 2006-04-20 2007-04-11 Hexagonal boron nitride powder

Country Status (1)

Country Link
JP (1) JP5081488B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123788A1 (en) 2016-12-28 2018-07-05 Showa Denko K.K. Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
WO2018124126A1 (en) 2016-12-28 2018-07-05 昭和電工株式会社 Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
US10781352B2 (en) 2015-09-03 2020-09-22 Showa Denko K.K. Powder of hexagonal boron nitride, process for producing same, resin composition, and resin sheet

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102574684B (en) * 2009-10-09 2015-04-29 水岛合金铁株式会社 Hexagonal boron nitride powder and method for producing same
JP5225303B2 (en) * 2010-03-03 2013-07-03 三菱電機株式会社 Manufacturing method of heat conductive sheet
JP5883253B2 (en) * 2011-09-01 2016-03-09 デンカ株式会社 Hexagonal boron carbonitride, production method and composition thereof
JP2013147403A (en) * 2012-01-23 2013-08-01 Mitsubishi Chemicals Corp Metal compound-containing boron nitride and composite material composition containing the same
CN105308125B (en) 2013-06-14 2017-12-19 三菱电机株式会社 Compositions of thermosetting resin, the manufacture method of heat conductive sheet and power module
JP6519876B2 (en) 2014-01-08 2019-05-29 デンカ株式会社 Method of manufacturing hexagonal boron nitride, and method of manufacturing heat dissipation sheet
MY195160A (en) * 2014-02-05 2023-01-11 Mitsubishi Chem Corp Agglomerated Boron Nitride Particles, Production Method for Agglomerated Boron Nitride Particles, Resin Composition Including Agglomerated Boron Nitride Particles, Moulded Body, And Sheet
CN105732118B (en) * 2014-12-11 2020-03-24 深圳光峰科技股份有限公司 Diffuse reflection material, diffuse reflection layer, wavelength conversion device and light source system
KR20160077237A (en) * 2014-12-15 2016-07-04 오씨아이 주식회사 Method of manufacturing boron nitride agglomerate powder
JP6603965B2 (en) * 2015-02-02 2019-11-13 三菱ケミカル株式会社 Hexagonal boron nitride single crystal and method for producing the same, composite composition containing the hexagonal boron nitride single crystal, and heat dissipation member formed by molding the composite composition
JP6905719B2 (en) * 2015-02-02 2021-07-21 三菱ケミカル株式会社 Hexagonal boron nitride single crystal, composite material composition containing the hexagonal boron nitride single crystal, and heat-dissipating member formed by molding the composite material composition.
JP6516553B2 (en) * 2015-05-14 2019-05-22 株式会社トクヤマ Hexagonal boron nitride powder
US20180354792A1 (en) * 2016-02-22 2018-12-13 Showa Denko K.K. Hexagonal boron nitride powder, production method therefor, resin composition and resin sheet
EP3696140B1 (en) * 2017-10-13 2021-07-21 Denka Company Limited Boron nitride powder, method for producing same, and heat-dissipating member produced using same
JP7233657B2 (en) * 2019-06-27 2023-03-07 三菱ケミカル株式会社 A hexagonal boron nitride single crystal, a composite material composition containing the hexagonal boron nitride single crystal, and a heat dissipating member formed by molding the composite material composition
JP7317737B2 (en) * 2020-01-24 2023-07-31 デンカ株式会社 Hexagonal boron nitride powder and raw material composition for sintered body
JP7356364B2 (en) * 2020-01-24 2023-10-04 デンカ株式会社 Hexagonal boron nitride powder and method for producing hexagonal boron nitride powder
WO2021200877A1 (en) 2020-03-31 2021-10-07 デンカ株式会社 Aggregated boron nitride particles and method for producing same
WO2023048149A1 (en) 2021-09-27 2023-03-30 Jfeミネラル株式会社 Hexagonal boron nitride filler powder

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2633279A1 (en) * 1988-06-27 1989-12-29 Rhone Poulenc Chimie NEW BORON NITRIDE MATERIAL, PROCESS FOR PREPARING THE SAME AND USE THEREOF AS REINFORCING AGENT
FR2655638A1 (en) * 1989-12-08 1991-06-14 Rhone Poulenc Chimie HIGH PURITY MONODISPERSE HEXAGON BORON NITRIDE AGAINST METALS AND OXYGEN AND PROCESS FOR PREPARING THE SAME
JPH1072205A (en) * 1996-08-29 1998-03-17 Otsuka Chem Co Ltd Fine disk-like hexagonal boron nitride powder and its production
JPH1059702A (en) * 1996-08-09 1998-03-03 Otsuka Chem Co Ltd Boron nitride and its production
JP3654743B2 (en) * 1997-07-01 2005-06-02 電気化学工業株式会社 Heat dissipation spacer
JPH1160215A (en) * 1997-08-04 1999-03-02 Shin Etsu Chem Co Ltd Highly fillable boron nitride powder-aggregated material, production thereof and production of isotropic boron nitride formed material
US7494635B2 (en) * 2003-08-21 2009-02-24 Saint-Gobain Ceramics & Plastics, Inc. Boron nitride agglomerated powder
JP2006002076A (en) * 2004-06-18 2006-01-05 Suzuka Fuji Xerox Co Ltd Thermally conductive elastic material
JP4307451B2 (en) * 2006-01-18 2009-08-05 電気化学工業株式会社 Boron nitride powder, production method and use thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10781352B2 (en) 2015-09-03 2020-09-22 Showa Denko K.K. Powder of hexagonal boron nitride, process for producing same, resin composition, and resin sheet
WO2018123788A1 (en) 2016-12-28 2018-07-05 Showa Denko K.K. Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
WO2018124126A1 (en) 2016-12-28 2018-07-05 昭和電工株式会社 Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
KR20190082952A (en) 2016-12-28 2019-07-10 쇼와 덴코 가부시키가이샤 Hexavalent boron nitride powder, production method thereof, resin composition and resin sheet
KR20190082951A (en) 2016-12-28 2019-07-10 쇼와 덴코 가부시키가이샤 Hexavalent boron nitride powder, production method thereof, resin composition and resin sheet
US11305993B2 (en) 2016-12-28 2022-04-19 Showa Denko K.K. Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
US11577957B2 (en) 2016-12-28 2023-02-14 Showa Denko K.K. Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet

Also Published As

Publication number Publication date
JP2007308360A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP5081488B2 (en) Hexagonal boron nitride powder
JP4750220B2 (en) Hexagonal boron nitride powder and method for producing the same
JP3461651B2 (en) Hexagonal boron nitride powder and its use
TWI698409B (en) Thermally conductive resin composition
JP5686748B2 (en) Method for producing spherical aluminum nitride powder and spherical aluminum nitride powder obtained by the method
EP2623458B1 (en) Method for manufacturing spherical aluminum nitride powder
JP6950148B2 (en) Aluminum Nitride-Boron Nitride Composite Agglomerated Particles and Their Manufacturing Methods
WO2020195298A1 (en) Method for producing granular boron nitride and granular boron nitride
JP3533532B2 (en) Large particle size aluminum nitride powder and method for producing the same
JP7140939B2 (en) Boron nitride powder and method for producing boron nitride powder
JP2583261B2 (en) filler
JP3685629B2 (en) Borate particles, method for producing inorganic powder containing the particles, and use thereof
JP7316249B2 (en) Method for producing spherical aluminum nitride powder
WO2021100617A1 (en) Hexagonal boron nitride powder
JP2022178471A (en) Boron nitride powder, method of producing boron nitride powder, and resin composition
JP7343734B1 (en) Powder, powder manufacturing method, and heat dissipation sheet
WO2024203302A1 (en) Boron nitride powder and method for producing boron nitride powder
JP7458523B2 (en) Boron Nitride Powder
WO2024202726A1 (en) Silicon nitride powder and resin composition using same
WO2024048663A1 (en) Aluminum nitride powder and resin composition
JP2023147855A (en) boron nitride powder
TW202330393A (en) Hexagonal boron nitride filler powder
WO2024202729A1 (en) Silicon nitride powder and resin composition using same
JP2024022830A (en) Boron nitride powder and method for producing boron nitride powder
JP2023049232A (en) Production method of spherical aluminum nitride powder

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5081488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250