JP7233657B2 - A hexagonal boron nitride single crystal, a composite material composition containing the hexagonal boron nitride single crystal, and a heat dissipating member formed by molding the composite material composition - Google Patents

A hexagonal boron nitride single crystal, a composite material composition containing the hexagonal boron nitride single crystal, and a heat dissipating member formed by molding the composite material composition Download PDF

Info

Publication number
JP7233657B2
JP7233657B2 JP2021100653A JP2021100653A JP7233657B2 JP 7233657 B2 JP7233657 B2 JP 7233657B2 JP 2021100653 A JP2021100653 A JP 2021100653A JP 2021100653 A JP2021100653 A JP 2021100653A JP 7233657 B2 JP7233657 B2 JP 7233657B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal
boron nitride
composite material
material composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021100653A
Other languages
Japanese (ja)
Other versions
JP2021143124A (en
Inventor
桂 池宮
正典 山崎
勝弥 手嶋
信行 是津
哲也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Shinshu University NUC
Original Assignee
Mitsubishi Chemical Corp
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019119520A external-priority patent/JP6905719B2/en
Application filed by Mitsubishi Chemical Corp, Shinshu University NUC filed Critical Mitsubishi Chemical Corp
Priority to JP2021100653A priority Critical patent/JP7233657B2/en
Publication of JP2021143124A publication Critical patent/JP2021143124A/en
Application granted granted Critical
Publication of JP7233657B2 publication Critical patent/JP7233657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明はc軸方向の成長が促進された六方晶窒化ホウ素単結晶及びその製造方法に関す
るものである。
The present invention relates to a hexagonal boron nitride single crystal with accelerated growth along the c-axis and a method for producing the same.

六方晶窒化ホウ素(h-BN)は熱伝導性、固体潤滑性、化学的安定性、そして耐熱性に優れるという特徴を備えていることから、電気・電子材料分野で多く利用されている。
近年、特に電気・電子分野では集積回路の高密度化に伴う発熱が大きな問題となっており、いかに熱を放熱するかが緊急の課題となっている。h-BNは、絶縁性であるにもかかわらず高い熱伝導性を有することから、このような放熱部材用熱伝導性フィラーとして注目を集めている。
Hexagonal boron nitride (h-BN) is widely used in the field of electrical and electronic materials because of its excellent thermal conductivity, solid lubricity, chemical stability, and heat resistance.
In recent years, especially in the electrical and electronic fields, heat generation accompanying high-density integrated circuits has become a serious problem, and how to dissipate heat has become an urgent issue. Since h-BN has high thermal conductivity in spite of its insulating properties, it is attracting attention as a thermally conductive filler for such heat dissipating members.

h-BNは板状結晶であり、その板面内(ab面内)は共有結合によって強く結合されているが、厚さ方向(c軸方向)はファンデルワールス力によって弱く結合されているに過ぎない。従って、板面内(通常、熱伝導率として250W/mK程度。)と厚さ方向(通常、熱伝導率として2~3W/mK程度。)とで、大きな熱伝導異方性が生じる。
一般に、板状結晶をフィラーとして樹脂などに配合して複合材組成物を作製する際、原料混合、プレス成形、射出成形などの過程に於いて、板状結晶の板面が特定方向に配向する現象が起こる。従って、h-BN板状結晶をフィラーとして樹脂などに配合して複合材組成物を作製する場合、得られた複合材組成物に対して、特定方向には高熱伝導だがそれに垂直な方向には低熱伝導というように、h-BN板状結晶の熱伝導異方性が転写されるという問題が生じる。
h-BN is a plate crystal, and the plate plane (in the ab plane) is strongly bonded by covalent bonds, but the thickness direction (c-axis direction) is weakly bonded by van der Waals force. Not too much. Therefore, a large anisotropy of thermal conductivity occurs in the plate surface (normally about 250 W/mK as thermal conductivity) and in the thickness direction (normally about 2 to 3 W/mK as thermal conductivity).
In general, when a composite material composition is produced by blending plate-like crystals as a filler into a resin or the like, the plate surface of the plate-like crystals is oriented in a specific direction during the process of raw material mixing, press molding, injection molding, and the like. phenomenon occurs. Therefore, when a composite material composition is produced by blending h-BN plate crystals as a filler in a resin or the like, the resulting composite material composition has high thermal conductivity in a specific direction, but in a direction perpendicular to it A problem arises in that the thermal conductivity anisotropy of h-BN plate crystals is transferred, such as low thermal conductivity.

従来、この様な熱伝導異方性の転写を防ぐために、h-BN板状結晶をあらかじめランダムな方向に凝集させてからフィラーとして用いる方法が検討されてきた(特許文献1、2、3、4参照)。しかし、このような凝集フィラーには、フィラー内に空隙を持つために複合材組成物への充填量が制約される、凝集フィラーを構成するh-BN板状結晶同士の界面におけるフォノン散乱によって熱伝導が阻害される、などの問題があった。 Conventionally, in order to prevent the transfer of such anisotropic thermal conductivity, a method has been studied in which h-BN plate crystals are previously aggregated in random directions and then used as a filler (Patent Documents 1, 2, 3, 4). However, such agglomerated filler has voids in the filler, which limits the filling amount of the composite material composition. There were problems such as inhibition of conduction.

仮に、「結晶c軸方向の最大厚さ/結晶ab面の最大幅」で定義されるアスペクト比が1に近いh-BN単結晶をフィラーとして用いることが出来れば、上述のような熱伝導異方性の転写は起こらない。また、この様なフィラーは内部に大きな空隙や結晶界面を持たないため、充填量の制約や熱伝導の阻害が緩和される。しかし、通常ではh-BN結晶のc軸方向の成長速度はab面の成長速度に比べて非常に小さいため、上記アスペクト比が1に近いh-BN単結晶を成長させる方法はこれまでに存在しなかった。また、板状h-BN単結晶の粉砕によって上記アスペクト比が1に近いh-BN単結晶を作製しようとしても、ファンデルワールス力によって弱く結合されているab面での劈開が起こり易く、得られる粉砕品も結局は板状h-BN結晶となってしまい易い事が予想される。
反対に、上記アスペクト比が1よりも大きなh-BN単結晶から上記アスペクト比が1に近いh-BN単結晶を作製することは、上記アスペクト比が1よりも大きなh-BN単結晶をab面で劈開すれば良いために容易である事が予想される。従って、h-BN結晶のc軸方向成長がab面成長よりも促進されたようなh-BN単結晶を、容易に製造する方法の確立が望まれてきた。
If an h-BN single crystal having an aspect ratio defined by "maximum thickness in the c-axis direction of the crystal/maximum width of the ab plane of the crystal" close to 1 can be used as a filler, the above-mentioned thermal conductivity difference No directional transfer occurs. In addition, since such a filler does not have large voids or crystal interfaces inside, restrictions on the filling amount and inhibition of heat conduction are alleviated. However, since the growth rate of the h-BN crystal in the c-axis direction is usually very small compared to the growth rate of the ab plane, a method for growing an h-BN single crystal with an aspect ratio close to 1 has existed so far. didn't. In addition, even if an h-BN single crystal having an aspect ratio close to 1 is produced by pulverizing a plate-like h-BN single crystal, cleavage is likely to occur at the ab planes, which are weakly bonded by the van der Waals force, resulting in It is expected that the pulverized product that is obtained is likely to eventually become plate-like h-BN crystals.
On the contrary, producing an h-BN single crystal having an aspect ratio close to 1 from an h-BN single crystal having an aspect ratio larger than 1 is ab It is expected to be easy because it is sufficient to cleave on the plane. Therefore, it has been desired to establish a method for easily producing an h-BN single crystal in which the c-axis growth of the h-BN crystal is promoted more than the ab plane growth.

特開2006-257392号公報JP 2006-257392 A 特表2008-510878号公報Japanese Patent Publication No. 2008-510878 特開平9-202663号公報JP-A-9-202663 WO2013/081061号パンフレットWO2013/081061 pamphlet WO2006/087982号パンフレットWO2006/087982 Pamphlet

Donev, Aleksandar, et al. "Improving the density of jammed disordered packings using ellipsoids." Science 303.5660 (2004): 990-993.Donev, Aleksandar, et al. "Improving the density of jammed disordered packings using ellipsoids." Science 303.5660 (2004): 990-993.

本発明は、上記問題点に鑑みてなされたものであり、上記アスペクト比が1に近いh-BN単結晶、具体的には上記アスペクト比が0.3以上のh-BN単結晶を提供することを目的とし、またこのような上記アスペクト比が0.3以上のh-BN単結晶を容易に製造することが可能な製造方法を提供することを目的とするものである。 The present invention has been made in view of the above problems, and provides an h-BN single crystal having an aspect ratio close to 1, specifically an h-BN single crystal having an aspect ratio of 0.3 or more. It is also an object of the present invention to provide a production method capable of easily producing such an h-BN single crystal having an aspect ratio of 0.3 or more.

本発明者らは、鋭意検討を重ねた結果、特定の窒化ホウ素原料を用い、かつリチウム塩をフラックスとして用いるフラックス法によって、上記アスペクト比が0.3以上となるh-BN単結晶を作製することが出来ることを見出した。従来においてもフラックスを用いたh-BN結晶の作製は行われてきたが、得られたh-BN結晶は板状であり、上記アスペクト比が1に近いh-BN単結晶を作製した例は存在しない(特許文献5参照)。本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。 As a result of extensive studies, the present inventors have found that h-BN single crystals having an aspect ratio of 0.3 or more are produced by a flux method using a specific boron nitride raw material and a lithium salt as a flux. I found that it is possible. Conventionally, h-BN crystals have been produced using flux, but the obtained h-BN crystals are plate-like, and there are no examples of producing h-BN single crystals with an aspect ratio close to 1. It does not exist (see Patent Document 5). The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1]結晶c軸方向の最大厚さ/結晶ab面の最大幅、で定義されるアスペクト比が0.3以上である六方晶窒化ホウ素単結晶。
[2]前記結晶ab面の最大幅が100nm以上である[1]に記載の六方晶窒化ホウ素単結晶。
[3]自形結晶または半自形結晶である[1]又は[2]に記載の六方晶窒化ホウ素単結晶。
[4]XRD解析において002面のピーク半値幅が0.4°以上の窒化ホウ素粉末とリチウム塩とを混合し、加熱するステップ、を有する、六方晶窒化ホウ素単結晶の製造方法。
[5]前記六方晶窒化ホウ素単結晶は、結晶ab面の最大幅が100nm以上である[4]に記載の製造方法。
[6]前記六方晶窒化ホウ素単結晶は、自形結晶または半自形結晶である[4]又は[5]に記載の製造方法。
[7][1]~[3]のいずれかに記載された六方晶窒化ホウ素単結晶、または[4]~[6]のいずれかに記載された製造方法により製造された六方晶窒化ホウ素単結晶、をマトリクスに配合させてなる、複合材組成物。
[8][7]に記載の複合材組成物を成形してなる、放熱部材。
[1] A hexagonal boron nitride single crystal having an aspect ratio defined by the maximum thickness in the crystal c-axis direction/the maximum width of the crystal ab plane of 0.3 or more.
[2] The hexagonal boron nitride single crystal according to [1], wherein the maximum width of the crystal ab plane is 100 nm or more.
[3] The hexagonal boron nitride single crystal according to [1] or [2], which is an automorphic or semi-automorphic crystal.
[4] A method for producing a hexagonal boron nitride single crystal, comprising a step of mixing a boron nitride powder having a peak half-value width of 0.4° or more on the 002 plane in XRD analysis with a lithium salt, followed by heating.
[5] The production method according to [4], wherein the hexagonal boron nitride single crystal has a crystal ab plane with a maximum width of 100 nm or more.
[6] The production method according to [4] or [5], wherein the hexagonal boron nitride single crystal is an automorphic crystal or a semi-automorphic crystal.
[7] The hexagonal boron nitride single crystal described in any one of [1] to [3], or the hexagonal boron nitride single manufactured by the manufacturing method described in any one of [4] to [6] A composite material composition comprising crystals incorporated in a matrix.
[8] A heat dissipating member obtained by molding the composite material composition according to [7].

本発明により、h-BN結晶のc軸方向成長が促進されたh-BN単結晶が提供される。本発明のh-BN単結晶を樹脂などのマトリクスに配合した複合材組成物は、従来のh-BN単結晶を用いた際の問題点である熱伝導異方性の転写は起こらない。また、本発明により提供されるh-BN単結晶は内部に大きな空隙や結晶界面を持たないため、充填量の制約や熱伝導の阻害が緩和される。すなわち、放熱部材用熱伝導性フィラーとして有用なh-BN単結晶が提供される。 The present invention provides an h-BN single crystal in which c-axis growth of the h-BN crystal is promoted. A composite material composition in which the h-BN single crystal of the present invention is incorporated in a matrix such as a resin does not cause transfer of anisotropic thermal conductivity, which is a problem when using a conventional h-BN single crystal. In addition, since the h-BN single crystal provided by the present invention does not have large internal voids or crystal interfaces, restrictions on filling amount and inhibition of heat conduction are alleviated. In other words, an h-BN single crystal useful as a thermally conductive filler for heat dissipating members is provided.

実施例1(h-BN原料粉末Aおよび試料A)のXRDパターンである。1 is an XRD pattern of Example 1 (h-BN raw material powder A and sample A). 実施例1(試料A)の電子線回折パターンである(図面代用写真)。1 is an electron beam diffraction pattern of Example 1 (Sample A) (photograph substituting for drawing). 実施例1(h-BN原料粉末A)のSEM像である(図面代用写真)。1 is an SEM image of Example 1 (h-BN raw material powder A) (photograph substituting for drawing). 実施例1(試料A)のSEM像である(図面代用写真)。1 is an SEM image of Example 1 (Sample A) (photograph substituting for drawing). 実施例1(試料A)のSEM像である(図面代用写真)。1 is an SEM image of Example 1 (Sample A) (photograph substituting for drawing). 比較例1(h-BN原料粉末Bおよび試料B)のXRDパターンである。1 is an XRD pattern of Comparative Example 1 (h-BN raw material powder B and sample B). 比較例1(h-BN原料粉末B)のSEM像である(図面代用写真)。1 is an SEM image of Comparative Example 1 (h-BN raw material powder B) (photograph substituting for drawing). 比較例1(試料B)のSEM像である(図面代用写真)。Fig. 2 is an SEM image of Comparative Example 1 (Sample B) (photograph substituting for drawing).

以下、本発明を詳細に説明するが、本発明の範囲は具体的な実施形態のみに限定されない。
本発明の実施形態に係る六方晶窒化ホウ素単結晶は、「結晶c軸方向の最大厚さ/結晶ab面の最大幅」で定義されるアスペクト比が0.3以上である。
上述のとおり、従来のh-BNは、主に結晶ab面を広げるように成長するため、熱伝導の異方性を有していた。しかしながら本実施形態に係るh-BN単結晶は、0.3以上の上記アスペクト比を持つ単結晶である。従って、そのままフィラーとして樹脂などのマトリクスに配合して複合材組成物を作製しても、複合材組成物内で配向しにくいため、複合材組成物に熱伝導異方性が生じない事が期待される。また、本実施形態に係るh-BN単結晶をフィラーとして用いた場合には、従来のh-BN凝集フィラーと異なりフィラー内に空隙が存在しないため、従来のh-BN凝集フィラーと比べて複合材組成物への充填量の制約が緩和される事が期待される。
Although the present invention will be described in detail below, the scope of the present invention is not limited only to specific embodiments.
The hexagonal boron nitride single crystal according to the embodiment of the present invention has an aspect ratio of 0.3 or more defined as "maximum thickness in crystal c-axis direction/maximum width of crystal ab plane".
As described above, conventional h-BN has anisotropy in thermal conductivity because it grows mainly by expanding the crystal ab plane. However, the h-BN single crystal according to this embodiment is a single crystal having the aspect ratio of 0.3 or more. Therefore, even if a composite material composition is produced by blending it as a filler in a matrix such as a resin, it is difficult to orient it in the composite material composition, so it is expected that thermal conductivity anisotropy will not occur in the composite material composition. be done. In addition, when the h-BN single crystal according to the present embodiment is used as a filler, unlike the conventional h-BN aggregated filler, there are no voids in the filler, so it is more complex than the conventional h-BN aggregated filler. It is expected that the restrictions on the filling amount in the material composition will be relaxed.

本実施形態に係るh-BN単結晶をフィラーとして用いた場合には、上記アスペクト比は1に近いほど複合材組成物中で配向しにくくなるが、1よりも僅かにずれた方がフィラー最大充填可能量は大きくなる。具体的には、フィラーを配向させることなくランダムに充填した際、フィラー最大充填可能量がアスペクト比1の場合よりも大きくなるのは、アスペクト比が0.3以上3.5以下(1を除く)の場合である(非特許文献1参照)。フィラー最大充填可能量は、アスペクト比が0.3以上0.6以下では単調増加し、0.6以上1以下では単調減少し、1以上1.5以下では単調増加し、1.5以上3.5以下で
は単調減少する(非特許文献1参照)。従って、配向しにくく、かつ、大きな最大充填可能量をもつフィラーとして好ましいアスペクト比は0.3以上であり、0.6以上がより好ましく、3.5以下であり、1.5以下がより好ましい。本明細書で規定するアスペクト比は、走査型電子顕微鏡を用いて測定された5万倍の画像から、自形および/または半自形の粒子を選択し、その粒子の結晶c軸方向の最大厚さ/結晶ab面の最大幅を実測することにより求めることができる。
When the h-BN single crystal according to the present embodiment is used as a filler, the closer the aspect ratio is to 1, the more difficult it is to orient in the composite material composition, but the slightly shifted from 1 is the maximum filler. Larger fill capacity. Specifically, when the filler is randomly filled without being oriented, the maximum filler filling amount is greater than when the aspect ratio is 1 because the aspect ratio is 0.3 or more and 3.5 or less (excluding 1 ) (see Non-Patent Document 1). The maximum fillable amount of filler monotonously increases when the aspect ratio is 0.3 or more and 0.6 or less, monotonously decreases when the aspect ratio is 0.6 or more and 1 or less, monotonically increases when 1 or more and 1.5 or less, and 1.5 or more and 3 It monotonically decreases below 0.5 (see Non-Patent Document 1). Therefore, the aspect ratio of the filler that is difficult to orient and has a large maximum fillable amount is preferably 0.3 or more, more preferably 0.6 or more, 3.5 or less, and more preferably 1.5 or less. . The aspect ratio defined in this specification is determined by selecting idiomorphic and/or semi-emorphic particles from an image of 50,000 times magnification measured using a scanning electron microscope, and determining the maximum It can be obtained by actually measuring the thickness/maximum width of the ab plane of the crystal.

本実施形態に係るh-BN単結晶は、結晶c軸方向への成長が促進された単結晶であり、結晶ab面の最大幅は、フィラーとして用いた場合のフィラー間の熱抵抗の効果を低く抑えるために100nm以上であることが好ましく、150nm以上であることがより好ましく、200nm以上であることが更に好ましい。一方で上限は特に限定されないが、通常200μm以下であり、好ましくは100μm以下であり、より好ましくは50μm以下であり、更に好ましくは10μm以下である。
また、結晶c軸方向の最大厚さは30nm以上であることが好ましく、100nm以上であることがより好ましく、200nm以上であることが更に好ましい。
h-BN単結晶のab面の最大幅、及び結晶c軸方向の最大厚さは、走査型電子顕微鏡(SEM)測定により得られた粒子1粒を拡大し、1粒の粒子を構成している一次粒子について、画像上で観察できる一次粒子の最大長である。
The h-BN single crystal according to the present embodiment is a single crystal whose growth in the crystal c-axis direction is promoted, and the maximum width of the crystal ab plane is the effect of thermal resistance between fillers when used as a filler. In order to keep the thickness low, the thickness is preferably 100 nm or more, more preferably 150 nm or more, and even more preferably 200 nm or more. On the other hand, the upper limit is not particularly limited, but is usually 200 μm or less, preferably 100 μm or less, more preferably 50 μm or less, and still more preferably 10 μm or less.
The maximum thickness in the crystal c-axis direction is preferably 30 nm or more, more preferably 100 nm or more, and even more preferably 200 nm or more.
The maximum width of the ab plane of the h-BN single crystal and the maximum thickness in the c-axis direction of the crystal are obtained by enlarging one grain obtained by scanning electron microscope (SEM) measurement, and constituting one grain. It is the maximum length of a primary particle that can be observed on an image.

本実施形態に係るh-BN結晶は単結晶であり、多結晶ではない。単結晶であるか多結晶であるかは、例えばX線回折測定、透過型電子顕微鏡(TEM)による電子線回折測定により把握できる。 The h-BN crystal according to this embodiment is a single crystal, not a polycrystal. Whether it is a single crystal or a polycrystal can be determined by, for example, X-ray diffraction measurement or electron beam diffraction measurement using a transmission electron microscope (TEM).

本実施形態に係るh-BN単結晶は、自形結晶または半自形結晶であることが好ましい。従って、外界からの妨害を受けながら成長した他形結晶に比べて結晶欠陥含有率が低いこと、そして、結晶欠陥による熱伝導率の低下が少ないことが期待される。ここで自形結晶とは結晶構造を反映した結晶面で囲まれた結晶のことであり、半自形結晶とは結晶の一部が結晶構造を反映した結晶面で囲まれた結晶のことであり、他形結晶とは結晶に結晶構造を反映した面が現れていない結晶のことである。例えば、フラックス結晶成長のはなし(日刊工業新聞社)の文献等に記載されている。
自形結晶、半自形結晶又は多形結晶であるかは、例えば走査型電子顕微鏡(SEM)測定により把握できる。
The h-BN single crystal according to this embodiment is preferably an automorphic crystal or a semi-automorphic crystal. Therefore, it is expected that the content of crystal defects is lower than that of polymorphic crystals grown while being disturbed from the outside, and that the reduction in thermal conductivity due to crystal defects is small. Here, automorphic crystals are crystals surrounded by crystal planes that reflect the crystal structure, and semi-automorphic crystals are crystals that are partly surrounded by crystal planes that reflect the crystal structure. A polymorphic crystal is a crystal that does not have faces that reflect the crystal structure. For example, it is described in a document such as the story of flux crystal growth (Nikkan Kogyo Shimbun).
Whether it is an automorphic crystal, a semi-automorphic crystal, or a polymorphic crystal can be grasped, for example, by scanning electron microscope (SEM) measurement.

本実施形態に係るh-BN単結晶は、例えば図4及び5に示される形状を有し、頂面及び底面が多角形の形状を有した角柱又は円柱形状と表すこともでき、また、頂面から底面に向けて断面積が変化する形状であると表すこともできる。更には樽型と称することもでき、また、弾丸型と称することもできる。 The h-BN single crystal according to the present embodiment has, for example, the shape shown in FIGS. It can also be expressed as a shape in which the cross-sectional area changes from the surface to the bottom surface. Furthermore, it can also be called a barrel shape, and can also be called a bullet shape.

本発明の別の実施形態はh-BN単結晶の製造方法であり、より具体的には、XRD解析において002面のピーク半値幅が0.4°以上の窒化ホウ素粉末とリチウム塩とを混合し、加熱するステップ、を有する、h-BN単結晶の製造方法である。このような製造方法により製造されたh-BN単結晶は、「結晶c軸方向の最大厚さ/結晶ab面の最大幅」で定義されるアスペクト比が0.3以上となる。 Another embodiment of the present invention is a method for producing an h-BN single crystal, more specifically, a boron nitride powder having a peak half-value width of 0.4 ° or more on the 002 plane in XRD analysis, and a lithium salt are mixed. and heating. The h-BN single crystal produced by such a production method has an aspect ratio of 0.3 or more defined as "maximum thickness in the crystal c-axis direction/maximum width of the crystal ab plane".

<原料BN粉末>
本実施形態で用いる原料BN粉末としては、市販のh-BN、市販のαおよびβ-BN、ホウ素化合物とアンモニアの還元窒化法により作製されたBN、ホウ素化合物とメラミンなどの含窒素化合物から合成されたBNなど何れも制限なく使用できるが、特にh-BNが好ましく用いられる。
h-BN結晶成長の観点からは、XRD解析において002面のピーク半値幅が0.4°以上の原料BN粉末を用いることが好ましく、0.5°以上であることが好ましい。XRD解析において002面のピーク半値幅が大きいこと、すなわちピークが比較的ブロードであることは、原料BN粉末に不純物が含まれることを意味し、結晶性が低いことを意味する。本実施形態では、このような結晶性が低い原料BN粉末を用いることが好ましい。
<Raw material BN powder>
The raw material BN powder used in the present embodiment includes commercially available h-BN, commercially available α and β-BN, BN prepared by a reduction nitridation method of a boron compound and ammonia, a boron compound and a nitrogen-containing compound such as melamine. Although any BN can be used without limitation, h-BN is particularly preferably used.
From the viewpoint of h-BN crystal growth, it is preferable to use raw material BN powder having a peak half-value width of 002 plane in XRD analysis of 0.4° or more, preferably 0.5° or more. A large peak half width of the 002 plane in the XRD analysis, that is, a relatively broad peak, means that the raw material BN powder contains impurities and that the crystallinity is low. In the present embodiment, it is preferable to use such raw material BN powder with low crystallinity.

不純物として、原料BN中に酸素がある程度存在することが好ましく、原料BN粉末として全酸素濃度が1質量%以上であるものを用いることが好ましい。また、通常30質量%以下である。全酸素濃度が上記範囲内であるBN粉末は、結晶が未発達のものが多いため、加熱処理により結晶が成長し易い。
原料BN粉末中の全酸素濃度は、より好ましくは3質量%以上であり、また、好ましくは10質量%以下、より好ましくは9質量%以下である。
原料BN粉末の全酸素濃度が上記下限未満の場合、BN自体の純度および結晶性が高いために結晶子の成長が十分になされず、逆に上記上限を超えると、加熱処理後も酸素濃度が高く複合材組成物の熱伝導性フィラーとして用いた際に高熱伝導化が図れなくなるため好ましくない。
As an impurity, oxygen is preferably present in the raw material BN to some extent, and it is preferable to use a raw material BN powder having a total oxygen concentration of 1% by mass or more. Moreover, it is usually 30% by mass or less. BN powders having a total oxygen concentration within the above range often have undeveloped crystals, and thus crystals are likely to grow by heat treatment.
The total oxygen concentration in the raw material BN powder is more preferably 3% by mass or more, preferably 10% by mass or less, and more preferably 9% by mass or less.
If the total oxygen concentration of the raw material BN powder is less than the lower limit, the crystallites do not grow sufficiently due to the high purity and crystallinity of the BN itself, and if it exceeds the upper limit, the oxygen concentration remains even after the heat treatment. When it is used as a thermally conductive filler for a composite material composition, it is not preferable because high thermal conductivity cannot be achieved.

<Li塩フラックス>
本実施形態では、フラックスとしてリチウム塩を用いる。リチウム塩としては特段限定されず、炭酸リチウム、水酸化リチウム,塩化リチウム、ヨウ化リチウム,フッ化リチウム,硝酸リチウム,硫酸リチウム,ホウ酸リチウム,モリブデン酸リチウム,およびそれらの混合物などがあげられる。好ましくは炭酸塩であり、Li2CO3などのリチウムを含む炭酸塩であれば何れも制限なく使用できる。
また、リチウム塩は融点が100℃以上のものが好ましく、400℃以上のものがより好ましい。
<Li salt flux>
In this embodiment, a lithium salt is used as the flux. The lithium salt is not particularly limited, and includes lithium carbonate, lithium hydroxide, lithium chloride, lithium iodide, lithium fluoride, lithium nitrate, lithium sulfate, lithium borate, lithium molybdate, and mixtures thereof. Carbonate is preferred, and any carbonate containing lithium such as Li 2 CO 3 can be used without limitation.
The lithium salt preferably has a melting point of 100° C. or higher, more preferably 400° C. or higher.

本実施形態では、上述のようにXRD解析において002面のピーク半値幅が0.4°以上の原料BN粉末を用い、リチウム塩をフラックスとして用いることで、上記アスペクト比が0.3以上のh-BN単結晶を製造することができるが、その理由について本発明者らは以下のように考えている。
一般にリチウム塩フラックス、特に炭酸リチウムフラックスは溶解度が高いため,高濃度のh-BNが溶媒に溶解している。一方で,高温度領域では分解して炭酸ガスを発生する。そのため,保持過程中に蒸発を駆動力とした結晶成長が始まり,結晶と溶液の固液界面近傍での溶質濃化層の形成をともなった擬一次元成長によりc軸方向に成長したh-BN単結晶が製造されたと考える。
In the present embodiment, as described above, by using a raw material BN powder having a peak half-value width of 0.4 ° or more on the 002 plane in the XRD analysis, and using a lithium salt as a flux, the aspect ratio is 0.3 or more h -BN single crystals can be produced, and the inventors consider the reason for this as follows.
Lithium salt fluxes in general, and lithium carbonate fluxes in particular, have high solubility, so a high concentration of h-BN is dissolved in the solvent. On the other hand, it decomposes in a high temperature range to generate carbon dioxide gas. Therefore, during the holding process, crystal growth started with the driving force of evaporation, and h-BN grew in the c-axis direction by quasi-one-dimensional growth accompanied by the formation of a solute-enriched layer near the solid-liquid interface between the crystal and the solution. Suppose a single crystal is produced.

<混合、加熱ステップ>
本実施形態では、原料BN粉末とリチウム塩とを混合する。原料BN粉末とリチウム塩との混合割合は特段限定されないが、混合物全量に対してリチウム塩を通常1mоl%以上含有させるが、好ましくは5mоl%以上、より好ましくは10mоl%以上、更に好ましくは15mоl%以上、特に好ましくは20mоl%以上含有させてもよく、殊更好ましくは25mоl%以上含有させてもよい。また、通常80mоl%以下含有させるが、好ましくは75mоl%以下、より好ましくは70mоl%以下、更に好ましくは65mоl%以下、特に好ましくは60mоl%以下含有させてもよい。
なお、原料BN粉末とリチウム塩に加え、本発明の効果に影響のない範囲でその他の材料を加えてもよい。その他の材料としては、例えば炭酸バリウム,炭酸ストロンチウム,炭酸マンガン,炭酸カルシウム,炭酸カリウム,炭酸ナトリウムなどの炭酸塩があげられる。
<Mixing and heating step>
In this embodiment, raw BN powder and lithium salt are mixed. The mixing ratio of the raw material BN powder and the lithium salt is not particularly limited, but the lithium salt is usually contained in an amount of 1 mol% or more based on the total amount of the mixture, preferably 5 mol% or more, more preferably 10 mol% or more, and still more preferably 15 mol%. As described above, the content may be particularly preferably 20 mol % or more, and particularly preferably 25 mol % or more. In addition, the content is usually 80 mol % or less, but it may be preferably 75 mol % or less, more preferably 70 mol % or less, still more preferably 65 mol % or less, and particularly preferably 60 mol % or less.
In addition to the raw material BN powder and lithium salt, other materials may be added as long as they do not affect the effects of the present invention. Other materials include carbonates such as barium carbonate, strontium carbonate, manganese carbonate, calcium carbonate, potassium carbonate and sodium carbonate.

混合した原料BN粉末とリチウム塩は加熱される。加熱温度は特段限定されないが、通常1000℃以上で行われる。加熱時間についても特段限定されないが、通常1時間以上、好ましくは5時間以上、また通常10時間以下で行われる。
なお、加熱は大気雰囲気下で行ってもよく、不活性ガス雰囲気下で行ってもよいが、窒素雰囲気下、アルゴン雰囲気下、ヘリウム雰囲気下等、不活性ガス雰囲気下で行うことが好ましい。また、原料は通常坩堝収容し、混合・加熱を行う。坩堝の材質は、原料BN粉末とリチウム塩と加熱温度において非反応である材質を用いることが好ましい。
The mixed raw BN powder and lithium salt are heated. The heating temperature is not particularly limited, but is usually 1000° C. or higher. The heating time is also not particularly limited, but is usually 1 hour or more, preferably 5 hours or more, and usually 10 hours or less.
The heating may be performed in an air atmosphere or an inert gas atmosphere, but is preferably performed in an inert gas atmosphere such as a nitrogen atmosphere, an argon atmosphere, or a helium atmosphere. Also, the raw materials are usually placed in a crucible and mixed and heated. The crucible is preferably made of a material that does not react with the raw material BN powder and the lithium salt at the heating temperature.

加熱後、h-BN単結晶は常温まで冷却されるが、冷却速度も特段限定されず、通常300℃/時間以下である。また通常5℃/時間以上である。
上述のような製造方法にて得られた本実施形態に係るh-BN単結晶は、得られた製造物全量に対して、通常1質量%以上、好ましくは、5重量%以上、より好ましくは10重量%以上、更に好ましくは、20重量%以上である。この量が少なすぎると、樹脂と複合化した際に、熱伝導の異方性が出やすくなる傾向がある。
また、得られたh-BNに対して、通常の板状h-BN、金属酸化物等の化合物を混ぜても良い。
After heating, the h-BN single crystal is cooled to room temperature, but the cooling rate is not particularly limited and is usually 300° C./hour or less. Moreover, it is usually 5° C./hour or more.
The h-BN single crystal according to the present embodiment obtained by the above-described production method is usually 1% by mass or more, preferably 5% by weight or more, more preferably 10% by weight or more, more preferably 20% by weight or more. If this amount is too small, there is a tendency that anisotropy in thermal conductivity tends to occur when compounded with a resin.
In addition, the obtained h-BN may be mixed with a compound such as an ordinary plate-like h-BN or a metal oxide.

<複合材組成物>
本発明の別の実施形態は、上記h-BN単結晶をマトリクスに配合させてなる、複合材
組成物である。
用いるマトリクスは熱伝導性が高いことが好ましく、マトリクスの熱伝導率は0.2W/mK以上であることが好ましく、特に0.22W/mK以上であることが好ましい。
なお、マトリクスの熱伝導率の測定方法は以下の装置を用いて、熱拡散率、比重、及び比熱を測定し、この3つの測定値を乗じることで熱伝導率を求める。
(1)熱拡散率:アイフェイズ社製 「アイフェイズ・モバイル 1u」
(2)比重:メトラー・トレド社製 「天秤 XS-204」(固体比重測定キット使用)
(3)比熱:セイコーインスツル社製 「DSC320/6200」
<Composite composition>
Another embodiment of the present invention is a composite composition comprising the above h-BN single crystal incorporated in a matrix.
The matrix to be used preferably has high thermal conductivity, and the thermal conductivity of the matrix is preferably 0.2 W/mK or more, particularly preferably 0.22 W/mK or more.
The thermal conductivity of the matrix is measured by measuring the thermal diffusivity, the specific gravity, and the specific heat using the following equipment, and multiplying these three measured values to obtain the thermal conductivity.
(1) Thermal diffusivity: “I-Phase Mobile 1u” manufactured by I-Phase
(2) Specific gravity: “Balance XS-204” manufactured by Mettler Toledo (using a solid specific gravity measurement kit)
(3) Specific heat: “DSC320/6200” manufactured by Seiko Instruments Inc.

マトリクスとしては通常樹脂が用いられ、硬化性樹脂、熱可塑性樹脂のいずれも制限なく用いることが出来る。硬化性樹脂としては、熱硬化性、光硬化性、電子線硬化性などの架橋可能なものであればよいが、耐熱性、吸水性、寸法安定性などの点で、熱硬化性樹脂が好ましく用いられる。
熱硬化性樹脂、熱硬化性樹脂としては、例えばWO2013/081061に例示されたものを用いることができる。このうち、熱硬化性樹脂を用いることが好ましく、特にエポキシ樹脂を用いることが好ましい。
エポキシ樹脂としては、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格及びジシクロペンタジエン骨格からなる群から選択された少なくとも1つの骨格を有するフェノキシ樹脂が好ましい。中でも、耐熱性がより一層高められることから、フルオレン骨格及び/又はビフェニル骨格を有するフェノキシ樹脂が特に好ましく、とりわけビルフェノールA骨格、ビスフェノールF骨格及びビフェニル骨格のうちの少なくとも1つ以上の骨格を有するフェノキシ樹脂であることが好ましい。
Resins are usually used as the matrix, and both curable resins and thermoplastic resins can be used without limitation. The curable resin may be any crosslinkable resin such as thermosetting, photo-curing, and electron beam curing, but thermosetting resins are preferred in terms of heat resistance, water absorption, dimensional stability, and the like. Used.
As the thermosetting resin and the thermosetting resin, for example, those exemplified in WO2013/081061 can be used. Among these, it is preferable to use a thermosetting resin, and it is particularly preferable to use an epoxy resin.
The epoxy resin is preferably a phenoxy resin having at least one skeleton selected from the group consisting of naphthalene skeleton, fluorene skeleton, biphenyl skeleton, anthracene skeleton, pyrene skeleton, xanthene skeleton, adamantane skeleton and dicyclopentadiene skeleton. Among them, a phenoxy resin having a fluorene skeleton and/or a biphenyl skeleton is particularly preferable because the heat resistance is further enhanced, and in particular, it has at least one skeleton of a virphenol A skeleton, a bisphenol F skeleton and a biphenyl skeleton. A phenoxy resin is preferred.

複合材組成物中のマトリクスの含有量は、通常2wt%以上、好ましくは5wt%以上、より好ましくは7wt%以上であり、通常70wt%以下、好ましくは60wt%以下、より好ましくは40wt%以下である。
また、複合材組成物中のh-BN単結晶の含有量は、通常30wt%以上、好ましくは40wt%以上、より好ましくは50wt%以上であり、通常99wt%以下、好ましくは98wt%以下、より好ましくは95wt%以下である。
The content of the matrix in the composite material composition is usually 2 wt% or more, preferably 5 wt% or more, more preferably 7 wt% or more, and usually 70 wt% or less, preferably 60 wt% or less, more preferably 40 wt% or less. be.
Further, the content of the h-BN single crystal in the composite material composition is usually 30 wt% or more, preferably 40 wt% or more, more preferably 50 wt% or more, usually 99 wt% or less, preferably 98 wt% or less, more Preferably, it is 95 wt% or less.

複合材組成物の調製には、有機溶剤を用いることができる。有機溶剤としては、アルコール系溶剤、芳香族系溶剤、アミド系溶剤、アルカン系溶剤、エチレングリコールエーテル及びエーテル・エステル系容易剤、プロピレングリコールエーテル及びエーテル・エステル系溶剤、ケトン系溶剤、エステル系溶剤の中から、樹脂の溶解性等を考慮して、好適に選択して用いることができる。
有機溶剤の具体例としては、WO2013/081061に例示されたものを用いることができる。
有機溶剤は、1種を単独で用いてもよく、2種以上を任意の組合せ及び比率で併用してもよい。
An organic solvent can be used to prepare the composite composition. Organic solvents include alcohol-based solvents, aromatic solvents, amide-based solvents, alkane-based solvents, ethylene glycol ethers and ether-ester-based facilitating agents, propylene glycol ethers and ether-ester-based solvents, ketone-based solvents, and ester-based solvents. Considering the solubility of the resin, etc., it can be suitably selected and used.
As specific examples of the organic solvent, those exemplified in WO2013/081061 can be used.
One organic solvent may be used alone, or two or more organic solvents may be used in any combination and ratio.

複合材組成物は、必要に応じて硬化剤を含有していてもよい。
硬化剤とは、エポキシ樹脂のエポキシ基等などの、マトリクスの架橋基間の架橋反応に寄与する物質を示す。
エポキシ樹脂においては、必要に応じて、エポキシ樹脂用の硬化剤、硬化促進剤が共に用いられる。
また、機能性の更なる向上を目的として、本発明の効果を損なわない範囲において、各種の添加剤(その他の添加剤)を含んでいてもよい。その他の添加剤としては、例えば、液晶性エポキシ樹脂等の、前記のマトリクスに機能性を付与した機能性樹脂、窒化アルミ
ニウム、窒化ケイ素、繊維状窒化ホウ素等の窒化物粒子、アルミナ、繊維状アルミナ、酸化亜鉛、酸化マグネシウム、酸化ベリリウム、酸化チタン等の絶縁性金属酸化物、ダイヤモンド、フラーレン等の絶縁性炭素成分、樹脂硬化剤、樹脂硬化促進剤、粘度調整剤、分散安定剤が挙げられる。
The composite composition may optionally contain a curing agent.
A curing agent refers to a substance that contributes to the cross-linking reaction between the cross-linking groups of the matrix, such as the epoxy group of an epoxy resin.
In epoxy resins, both curing agents and curing accelerators for epoxy resins are used as necessary.
Moreover, for the purpose of further improving the functionality, various additives (other additives) may be included within a range that does not impair the effects of the present invention. Other additives include, for example, functional resins imparting functionality to the matrix, such as liquid crystalline epoxy resins, nitride particles such as aluminum nitride, silicon nitride, and fibrous boron nitride, alumina, and fibrous alumina. , insulating metal oxides such as zinc oxide, magnesium oxide, beryllium oxide and titanium oxide, insulating carbon components such as diamond and fullerene, resin curing agents, resin curing accelerators, viscosity modifiers and dispersion stabilizers.

さらに、その他の添加剤としては、マトリクスとh-BN単結晶との接着性を向上させるための添加成分として、シランカップリング剤やチタネートカップリング剤等のカップリング剤、保存安定性向上のための紫外線防止剤、酸化防止剤、可塑剤、難燃剤、着色剤、分散剤、流動性改良剤等が挙げられる。 Furthermore, other additives include coupling agents such as silane coupling agents and titanate coupling agents as additive components for improving the adhesion between the matrix and the h-BN single crystal, and for improving storage stability. UV inhibitors, antioxidants, plasticizers, flame retardants, colorants, dispersants, fluidity improvers and the like.

その他、組成物中での各成分の分散性を向上させる、界面活性剤や、乳化剤、低弾性化剤、希釈剤、消泡剤、イオントラップ剤等を添加することもできる。
これらは、いずれも1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
添加剤の具体例については、WO2013/081061に例示されたものを用いることができ、添加量についてもWO2013/081061に記載の範囲とすることができる。
In addition, surfactants, emulsifiers, elasticity reducing agents, diluents, antifoaming agents, ion trapping agents, etc., which improve the dispersibility of each component in the composition, can also be added.
One of these may be used alone, or two or more of them may be used in any combination and ratio.
As specific examples of the additive, those exemplified in WO2013/081061 can be used, and the additive amount can also be within the range described in WO2013/081061.

複合材組成物の調製は、h-BN単結晶、マトリクス、溶剤およびその他の添加剤を分散・混合することを目的として、ペイントシェーカーやビーズミル、プラネタリミキサ、攪拌型分散機、自公転攪拌混合機、三本ロール、ニーダー、単軸又は二軸混練機等の一般的な混練装置などを用いて混合することが好ましい。
複合材組成物の各配合成分の混合順序も、反応や沈殿物が発生するなど特段の問題がない限り任意であり、組成物の構成成分のうち、何れか2成分又は3成分以上を予め混合し、その後に残りの成分を混合してもよいし、一度に全部を混合してもよい。
For the preparation of the composite material composition, for the purpose of dispersing and mixing the h-BN single crystal, matrix, solvent and other additives, paint shakers, bead mills, planetary mixers, stirring dispersers, rotation and revolution stirring mixers , a triple roll, a kneader, a single-screw or twin-screw kneader, or the like.
The mixing order of each compounding component of the composite material composition is arbitrary as long as there is no particular problem such as reaction or precipitation, and among the constituent components of the composition, any two or three components are mixed in advance and then the remaining ingredients, or all at once.

上記複合材組成物は、成形体とすることで放熱部材となり得る。
この成形体を成形する方法は、樹脂組成物の成形に一般に用いられる方法を用いることができる。
例えば、放熱シート用塗布液を所望の形状で、例えば、型へ充てんした状態で硬化させることによって成形することができる。このような成形体の製造法としては、射出成形法、射出圧縮成形法、押出成形法、及び圧縮成形法を用いることができる。
また、複合材組成物がエポキシ樹脂やシリコーン樹脂等の熱硬化性樹脂組成物を含む場合、成形体の成形、すなわち硬化は、それぞれの組成に応じた硬化温度条件で行うことができる。
The composite material composition can serve as a heat radiating member by forming a molded body.
As a method for molding this molded article, a method generally used for molding a resin composition can be used.
For example, the heat-dissipating sheet coating liquid can be shaped into a desired shape, for example, by curing the liquid while filling it in a mold. Injection molding, injection compression molding, extrusion molding, and compression molding can be used as methods for producing such molded articles.
Moreover, when the composite material composition contains a thermosetting resin composition such as an epoxy resin or a silicone resin, molding of the molded body, that is, curing can be performed under curing temperature conditions according to each composition.

また、複合材組成物が熱可塑性樹脂組成物を含む場合、成形体の成形は、熱可塑性樹脂の溶融温度以上の温度及び所定の成形速度や圧力の条件で行うことができる。また、複合材組成物を成形硬化した固形状の材料から所望の形状に削り出すことによって成形体を得ることもできる。 Further, when the composite material composition contains a thermoplastic resin composition, molding of the molded body can be performed at a temperature equal to or higher than the melting temperature of the thermoplastic resin and at a predetermined molding speed and pressure. Alternatively, a molded body can be obtained by cutting out a desired shape from a solid material obtained by molding and curing the composite material composition.

以下に、本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の例に限定されるものではない。
<測定方法>
・原料のピーク半値幅
原料のピーク半値幅は、X線(CuKα1)波長(λ )=1.54056Å(1Å=1×10-10m)を使用したX線回折測定の2θ=26.5付近に出現する(002)面ピ
ーク半価幅のことであり、下記式により求めた。半価幅(βo)はプロファイルフィッティング法(Peason-XII 関数又はPseud-Voigt関数)により算出し
、さらに、予め標準Siにより求めておいた装置由来の半価幅βiで補正して、半値幅βを求めた。

Figure 0007233657000001
・酸素濃度
原料BN粉末の全酸素濃度は、不活性ガス融解-赤外線吸収法により、株式会社堀場製作所製の酸素・窒素分析計を用いて測定することができる。
・XRDパターン
粉末X線回折測定は、PANalytical社製X線回折装置「X‘Pert Pro MPD」を用いた。BN原料または生成したBNを0.2mm深さのガラス試料板に表面が平滑になるように充填し、粉末X線回折測定を行った。
・アスペクト比
アスペクト比は、走査型電子顕微鏡(Zeiss Ultra55、加速電圧3kV)を用いて測定された5万倍の画像から、自形および/または半自形の粒子の結晶c軸方向の最大厚さ/結晶ab面の最大幅を実測することにより求めた。 Although the present invention will be described in more detail below, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
<Measurement method>
・Peak half width of raw material The peak half width of the raw material is 2θ = 26.5 in X-ray diffraction measurement using X-ray (CuKα 1 ) wavelength (λ) = 1.54056 Å (1 Å = 1 × 10 -10 m). It is the (002) plane peak half width appearing in the vicinity, and was obtained by the following formula. The half-value width (βo) is calculated by the profile fitting method (Peason-XII function or Pseud-Voigt function), and further corrected with the apparatus-derived half-value width βi obtained in advance using standard Si, and the half-value width β asked for
Figure 0007233657000001
· Oxygen concentration The total oxygen concentration of the raw material BN powder can be measured using an oxygen/nitrogen analyzer manufactured by Horiba, Ltd. by an inert gas fusion-infrared absorption method.
-XRD pattern Powder X-ray diffraction measurement was performed using an X-ray diffractometer "X'Pert Pro MPD" manufactured by PANalytical. The BN raw material or the produced BN was packed into a glass sample plate having a depth of 0.2 mm so as to have a smooth surface, and powder X-ray diffraction measurement was performed.
· Aspect ratio The aspect ratio is the maximum thickness in the crystal c-axis direction of idiomorphic and / or semi-idiomorphic particles from a 50,000-fold image measured using a scanning electron microscope (Zeiss Ultra 55, accelerating voltage 3 kV). It was obtained by actually measuring the height/maximum width of the ab plane of the crystal.

<実施例1>
原料h-BN粉末としては市販のh-BN原料粉末A(XRD解析(X線源:CuKα)において002面のピーク半値幅が0.67°、酸素濃度8質量%)を、リチウム塩としては市販のLi2CO3粉末(純度99.0%)を用いた。原料h-BN粉末と融点が723℃であるLi2CO3の量は、それぞれ50mol%とした。h-BN原料粉末AとLi2CO3を坩堝に入れ、窒素流通下、1000℃で5時間熱処理を行った。熱処理試料からフラックスを溶解除去(1M塩酸にて不純物を溶解)し、試料Aを得た。
図1にh-BN原料粉末Aおよび試料AのXRDパターンを示すが、試料Aのh-BNピークはh-BN原料粉末Aに比べて鋭くなっており(試料Aの002面のピーク半値幅は0.35°と、h-BN原料粉末Aのそれから48%減少している。)、試料Aの結晶性がh-BN原料粉末Aと比べて向上している事が判った。
図2に試料Aの電子線回折パターンを示すが、明確なスポットが得られており、試料Aは結晶性の高いh-BN単結晶であることが判った。
図3にh-BN原料粉末AのSEM像を示す。
図4および図5に試料AのSEM像を示すが、試料Aはh-BN原料粉末Aと異なる構造を持ち、アスペクト比は0.33~1.5の結晶が含有される事が判った。ab面の幅は、100~500nmであった。なお、SEM像には六方晶に特徴的な六角柱構造が見られるが、六角柱の底面がh-BNのab面に相当する。
<Example 1>
As the raw material h-BN powder, commercially available h-BN raw material powder A (peak half width of 002 plane in XRD analysis (X-ray source: CuKα) is 0.67 °, oxygen concentration is 8% by mass), and as a lithium salt Commercially available Li 2 CO 3 powder (purity 99.0%) was used. The amount of raw material h-BN powder and Li 2 CO 3 having a melting point of 723° C. was 50 mol % each. The h-BN raw material powder A and Li 2 CO 3 were placed in a crucible and heat-treated at 1000° C. for 5 hours under nitrogen flow. A sample A was obtained by dissolving and removing the flux from the heat-treated sample (impurities were dissolved with 1M hydrochloric acid).
FIG. 1 shows the XRD patterns of h-BN raw material powder A and sample A. The h-BN peak of sample A is sharper than that of h-BN raw material powder A (peak half width of 002 plane of sample A is 0.35°, which is 48% lower than that of the h-BN raw material powder A).
FIG. 2 shows the electron beam diffraction pattern of sample A. Clear spots were obtained, and sample A was found to be an h-BN single crystal with high crystallinity.
FIG. 3 shows an SEM image of h-BN raw material powder A. As shown in FIG.
SEM images of sample A are shown in FIGS. 4 and 5, and it was found that sample A had a different structure from h-BN raw material powder A and contained crystals with an aspect ratio of 0.33 to 1.5. . The width of the ab plane was 100-500 nm. The SEM image shows a hexagonal columnar structure characteristic of hexagonal crystals, and the bottom surface of the hexagonal column corresponds to the ab plane of h-BN.

<比較例1>
原料h-BN粉末としては市販のh-BN原料粉末B(XRD解析において002面のピーク半値幅が0.23°、酸素濃度0.4質量%)を、Li2CO3としては市販のLi2CO3粉末(純度99.0%)を用いた。原料h-BN粉末とLi2CO3の量は、それぞれ50mol%とした。h-BN原料粉末BとLi2CO3を坩堝に入れ、窒素流通下、1000℃で5時間熱処理を行った。熱処理試料からフラックスを溶解除去(1M塩酸にて不純物を溶解)し、試料Bを得た。
図6にh-BN原料粉末Bおよび試料BのXRDパターンを示すが、両者のh-BNピーク形状に大きな違いは見られず(試料Bの002面のピーク半値幅は0.20°であり、h-BN原料粉末Bのそれからは13%減少したに留まっている。)、試料Bの結晶性はh-BN原料粉末Bから大きくは向上していないことが判った。
図7にh-BN原料粉末BのSEM像を示す。
図8に試料BのSEM像を示すが、試料Bの形状はh-BN原料粉末Bと変わらず板状
のままであることが判った。また、試料Bのアスペクト比は0.2以下であった。
<Comparative Example 1>
As the raw material h-BN powder, commercially available h-BN raw material powder B (peak half width of 002 plane in XRD analysis: 0.23°, oxygen concentration: 0.4% by mass), and as Li 2 CO 3 , commercially available Li 2 CO 3 powder (purity 99.0%) was used. The amounts of raw material h-BN powder and Li 2 CO 3 were each 50 mol %. The h-BN raw material powder B and Li 2 CO 3 were placed in a crucible and heat-treated at 1000° C. for 5 hours under nitrogen flow. A sample B was obtained by dissolving and removing the flux from the heat-treated sample (impurities were dissolved with 1M hydrochloric acid).
FIG. 6 shows the XRD patterns of h-BN raw material powder B and sample B, and no significant difference was observed in the h-BN peak shapes of both (the peak half width of the 002 plane of sample B was 0.20 ° , only 13% less than that of the h-BN raw material powder B), and it was found that the crystallinity of the sample B was not significantly improved from that of the h-BN raw material powder B.
FIG. 7 shows an SEM image of the h-BN raw material powder B. As shown in FIG.
An SEM image of sample B is shown in FIG. 8, and it was found that the shape of sample B was the same as that of h-BN raw material powder B and remained plate-like. Moreover, the aspect ratio of the sample B was 0.2 or less.

<比較例2>
原料h-BN粉末としては市販のh-BN原料粉末Aを、フラックスとしては市販のBaCO3粉末(純度99.9%、融点911℃)を用いた。原料h-BN粉末とBaCO3の量は、それぞれ50mol%とした。h-BN原料粉末AとBaCO3を坩堝に入れ、
窒素流通下、1000℃で5時間熱処理を行った。熱処理試料からフラックスを溶解除去(1M塩酸にて不純物を溶解)し、試料Cを得た。SEM像から、試料Cの形状はh-BN原料粉末Aとほとんど変わらないことが判った。また、結晶c軸方向の最大厚さ/結晶ab面の最大幅、で定義されるアスペクト比を算出可能な結晶性を有していなかった。
<比較例3、4>
BaCO3粉末をMnCO3(純度99.9%、分解温度100℃)、CaCO3(純度
99.5%、融点825℃)に変更した以外は比較例2と同様にして、試料D及びEをそれぞれ得た。SEM像から、試料D及びEの形状はh-BN原料粉末Aとほとんど変わらないことが判った。また、結晶c軸方向の最大厚さ/結晶ab面の最大幅、で定義されるアスペクト比を算出可能な結晶性を有していなかった。
<Comparative Example 2>
A commercially available h-BN raw material powder A was used as the starting h-BN powder, and a commercially available BaCO 3 powder (99.9% purity, melting point 911° C.) was used as the flux. The amounts of raw material h-BN powder and BaCO 3 were each 50 mol %. Put the h-BN raw material powder A and BaCO 3 into a crucible,
Heat treatment was performed at 1000° C. for 5 hours under nitrogen flow. A sample C was obtained by dissolving and removing the flux from the heat-treated sample (impurities were dissolved with 1M hydrochloric acid). From the SEM image, it was found that the shape of sample C was almost the same as that of h-BN raw material powder A. In addition, it did not have a crystallinity that enabled calculation of the aspect ratio defined by the maximum thickness in the crystal c-axis direction/the maximum width of the crystal ab plane.
<Comparative Examples 3 and 4>
Samples D and E were prepared in the same manner as in Comparative Example 2 except that the BaCO 3 powder was changed to MnCO 3 (purity 99.9%, decomposition temperature 100°C) and CaCO 3 (purity 99.5%, melting point 825°C). Got each. From the SEM images, it was found that the shapes of samples D and E were almost the same as that of h-BN raw material powder A. In addition, it did not have a crystallinity that enabled calculation of the aspect ratio defined by the maximum thickness in the crystal c-axis direction/the maximum width of the crystal ab plane.

従って、本実施例によって結晶c軸方向の最大厚さ/結晶ab面の最大幅、で定義されるアスペクト比が0.3以上であり、結晶ab面の最大幅が100nm以上、自形結晶または半自形結晶のh-BN単結晶を製造することが出来たと言える。 Therefore, according to the present embodiment, the aspect ratio defined by the maximum thickness in the crystal c-axis direction/the maximum width of the crystal ab plane is 0.3 or more, and the maximum width of the crystal ab plane is 100 nm or more. It can be said that a semi-automorphic h-BN single crystal could be produced.

Claims (3)

結晶c軸方向の最大厚さ/結晶ab面の最大幅、で定義されるアスペクト比が0.3以上3.5以下(ただし、1.5以下を除く。)であり、自形結晶または半自形結晶である六方晶窒化ホウ素単結晶。 The aspect ratio defined by the maximum thickness in the crystal c-axis direction/maximum width of the crystal ab plane is 0.3 or more and 3.5 or less (excluding 1.5 or less), and the automorphic crystal or semi-crystalline A hexagonal boron nitride single crystal that is an automorphic crystal. 前記結晶c軸方向の最大厚さが100nm以上である、請求項に記載の六方晶窒化ホウ素単結晶。 2. The hexagonal boron nitride single crystal according to claim 1 , wherein the maximum thickness in the crystal c-axis direction is 100 nm or more. 請求項1又は2に記載された六方晶窒化ホウ素単結晶をマトリクスに配合させてなり、
前記六方晶窒化ホウ素単結晶の含有量が、40wt%以上99wt%以下である、複合材組成物。
The hexagonal boron nitride single crystal according to claim 1 or 2 is blended in a matrix,
A composite material composition, wherein the content of the hexagonal boron nitride single crystal is 40 wt % or more and 99 wt % or less.
JP2021100653A 2019-06-27 2021-06-17 A hexagonal boron nitride single crystal, a composite material composition containing the hexagonal boron nitride single crystal, and a heat dissipating member formed by molding the composite material composition Active JP7233657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021100653A JP7233657B2 (en) 2019-06-27 2021-06-17 A hexagonal boron nitride single crystal, a composite material composition containing the hexagonal boron nitride single crystal, and a heat dissipating member formed by molding the composite material composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019119520A JP6905719B2 (en) 2015-02-02 2019-06-27 Hexagonal boron nitride single crystal, composite material composition containing the hexagonal boron nitride single crystal, and heat-dissipating member formed by molding the composite material composition.
JP2021100653A JP7233657B2 (en) 2019-06-27 2021-06-17 A hexagonal boron nitride single crystal, a composite material composition containing the hexagonal boron nitride single crystal, and a heat dissipating member formed by molding the composite material composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019119520A Division JP6905719B2 (en) 2015-02-02 2019-06-27 Hexagonal boron nitride single crystal, composite material composition containing the hexagonal boron nitride single crystal, and heat-dissipating member formed by molding the composite material composition.

Publications (2)

Publication Number Publication Date
JP2021143124A JP2021143124A (en) 2021-09-24
JP7233657B2 true JP7233657B2 (en) 2023-03-07

Family

ID=77766981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021100653A Active JP7233657B2 (en) 2019-06-27 2021-06-17 A hexagonal boron nitride single crystal, a composite material composition containing the hexagonal boron nitride single crystal, and a heat dissipating member formed by molding the composite material composition

Country Status (1)

Country Link
JP (1) JP7233657B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076557A1 (en) 1996-08-06 2002-06-20 Faustinus Fauzi Process for producing boron nitride
JP2007308360A (en) 2006-04-20 2007-11-29 Jfe Steel Kk Hexagonal boron nitride powder
JP2010037123A (en) 2008-08-04 2010-02-18 Kaneka Corp Method for producing hexagonal boron nitride

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059702A (en) * 1996-08-09 1998-03-03 Otsuka Chem Co Ltd Boron nitride and its production
JPH1072205A (en) * 1996-08-29 1998-03-17 Otsuka Chem Co Ltd Fine disk-like hexagonal boron nitride powder and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076557A1 (en) 1996-08-06 2002-06-20 Faustinus Fauzi Process for producing boron nitride
JP2007308360A (en) 2006-04-20 2007-11-29 Jfe Steel Kk Hexagonal boron nitride powder
JP2010037123A (en) 2008-08-04 2010-02-18 Kaneka Corp Method for producing hexagonal boron nitride

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUMIYOSHI A.,Structural analysis of Li-intercalated hexagonal boron nitride,Journal of Solid State Chemistry,2012年,p.208-210
楠瀬尚史,炭化ホウ素を原料として用い合成した六方晶BN分散エポキシハイブリッド材料の熱伝導度,日本セラミックス協会秋季シンポジウム講演予稿集,日本,2012年09月12日,25th,ROMBUNNO.2E01

Also Published As

Publication number Publication date
JP2021143124A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
JP7455047B2 (en) Boron nitride aggregated particles, method for producing boron nitride aggregated particles, resin composition containing boron nitride aggregated particles, and molded article
JP6603965B2 (en) Hexagonal boron nitride single crystal and method for producing the same, composite composition containing the hexagonal boron nitride single crystal, and heat dissipation member formed by molding the composite composition
JP7334763B2 (en) Aluminum nitride-boron nitride composite aggregate particles and method for producing the same
JP6905719B2 (en) Hexagonal boron nitride single crystal, composite material composition containing the hexagonal boron nitride single crystal, and heat-dissipating member formed by molding the composite material composition.
KR100323941B1 (en) Boron nitride and process for preparing the same
JP6698953B2 (en) Boron nitride powder, method for producing the same, and heat dissipation member using the same
JP4750220B2 (en) Hexagonal boron nitride powder and method for producing the same
TWI507350B (en) Spherical aluminum nitride powder
JP6364883B2 (en) Boron nitride particles, boron nitride particle manufacturing method, heat-dissipating sheet coating solution containing boron nitride particles, heat-dissipating sheet containing boron nitride particles, and power device device
JP6500339B2 (en) Heat dissipation sheet, coating liquid for heat dissipation sheet, and power device
WO2020195298A1 (en) Method for producing granular boron nitride and granular boron nitride
TWI636958B (en) Low soda alpha alumina powder with excellent viscosity characteristics and preparation method thereof
JP7233657B2 (en) A hexagonal boron nitride single crystal, a composite material composition containing the hexagonal boron nitride single crystal, and a heat dissipating member formed by molding the composite material composition
WO2015105145A1 (en) Method for producing hexagonal boron nitride, and heat dissipation sheet
JP2013147403A (en) Metal compound-containing boron nitride and composite material composition containing the same
WO2024034604A1 (en) Method for producing granular boron nitride, and granular boron nitride
JP5987322B2 (en) Method for producing metal oxide-containing boron nitride
JP2015189609A (en) Method of producing boron nitride sheet
WO2024024604A1 (en) Highly pure spinel particles and production method therefor
WO2024048663A1 (en) Aluminum nitride powder and resin composition
JP7152003B2 (en) Highly thermally conductive inorganic filler composite particles and method for producing the same
WO2022186191A1 (en) Hexagonal boron nitride agglomerated particles, hexagonal boron nitride powder, resin composition, and resin sheet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230214

R150 Certificate of patent or registration of utility model

Ref document number: 7233657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150