WO2019017435A1 - Silicate compound microparticles and method for producing same - Google Patents

Silicate compound microparticles and method for producing same Download PDF

Info

Publication number
WO2019017435A1
WO2019017435A1 PCT/JP2018/027107 JP2018027107W WO2019017435A1 WO 2019017435 A1 WO2019017435 A1 WO 2019017435A1 JP 2018027107 W JP2018027107 W JP 2018027107W WO 2019017435 A1 WO2019017435 A1 WO 2019017435A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
particle diameter
silicate compound
eucryptite
particles
Prior art date
Application number
PCT/JP2018/027107
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 博和
忠之 伊左治
谷本 健二
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2019017435A1 publication Critical patent/WO2019017435A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/22Magnesium silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to silicate compound fine particles and a method of producing the same.
  • the technique which utilizes amorphous silica fine particles as a filler of underfilling is also used. That is, a circuit mounted on a base material by wire bonding, flip chip bonding or the like is likely to be broken by a relatively small force because it is often fragile to external force or stress. Under the circumstances, it has been practiced to infiltrate a liquid curable resin (epoxy resin or the like) called an underfill between substrate parts to secure connection reliability.
  • a liquid curable resin epoxy resin or the like
  • an underfill between substrate parts to secure connection reliability.
  • an inorganic substance having a small CTE amorphous silica A technique of filling fine particles etc. as a filler is used.
  • amorphous silica exhibits a “positive” CTE although it has a small CTE compared to, for example, an epoxy resin.
  • ⁇ -eucryptite ( ⁇ -LiAlSiO 4 ), which is one of silicate compounds, is known as a material having a negative CTE, and it is considered to use it as a filler.
  • ⁇ -eucryptite in order to use ⁇ -eucryptite as a filler for sealing materials and underfilling, it is necessary to reduce the particle size and increase the dispersibility in the resin so that the resin can be filled at a high density.
  • the negative CTE is derived from the specific crystal structure of ⁇ -eucryptite, it is essential to have high crystallinity, particularly in underfilling applications.
  • the epoxy resin or the like may be filled with amorphous silica fine particles for the purpose of reducing the dielectric loss and exhibiting the insulating function.
  • magnesium-containing forsterite (Mg 2 SiO 4 ) or enstatite (MgSiO 3 ), which is one of silicate compounds, is known as a material having a small dielectric loss in a high frequency region and exhibiting high insulation.
  • Mg 2 SiO 4 magnesium-containing forsterite
  • MgSiO 3 enstatite
  • These compounds are used as materials for dielectric ceramics used in the microwave region, but to be used as a filler to reduce the dielectric loss of the resin, as in the case of ⁇ -eucryptite, the resin
  • Patent Document 1 describes that heat treatment at 1000 to 1400 ° C. is preferable when synthesizing single phase eucryptite.
  • a solution containing a water-soluble magnesium salt and colloidal silica is spray-dried and then fired at a temperature of 800 to 1000 ° C. in the air, so that the primary particle diameter by electron microscope observation is 1 without passing through the pulverizing step.
  • a method of producing forsterite fine particles in the range of ⁇ 200 nm is disclosed (see, for example, Patent Document 5).
  • Patent Document 3 since the obtained ⁇ -eucryptite is not excellent in crushing property and crushing property, when making the particle diameter smaller, it has to be crushed with strong energy. Similar to the above-mentioned Patent Document 1, when such pulverization is carried out, the particle shape is in the form of rectangular particles having irregular sizes and shapes, so that the dispersibility in the resin is lowered, and the filling amount is excessively limited. .
  • Patent Document 5 since the heat treatment causes strong fusion between particles, sufficient dispersibility in the resin can not be obtained. In order to improve the dispersibility, it is conceivable to reduce the particle size by wet pulverization or the like. However, similar to Patent Document 4, by undergoing such pulverization, the reduction of crystallinity and the formation of an amorphous phase occur, and the dielectric In some cases, the effect of reducing the loss can not be obtained sufficiently.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide silicate compound fine particles having a small particle diameter, excellent dispersibility in a resin, and high crystallinity, and a method for producing the same. .
  • the present inventors have crushed a silicate compound as a raw material to a particle diameter within a predetermined range, and then grind the finely divided particles at a relatively low temperature. It has been found that by firing in a temperature range, it is possible to produce silicate compound fine particles having a small particle size, excellent in dispersibility in a resin, and high crystallinity.
  • the present invention relates to fine particles of a silicate compound as described in any one of the following first to fourth aspects and a method for producing the same.
  • the ratio (d 50 / d S ) of the primary particle diameter (d S ) converted to spherical particles from the specific surface area by nitrogen adsorption method and the dispersed particle diameter (d 50 ) is 1.0 or more It is less than 3.0, and the crystallite diameter calculated from the X-ray diffraction peak belonging to the (102) plane of the ⁇ -eucryptite phase is 45 nm or more and 100 nm or less. .
  • the specific surface area measured by the nitrogen adsorption method and the primary particle diameter in terms of spherical particles (d S), and the dispersion particle diameter (d 50), of (the ratio d 50 / d S) is 1.0 or more It is less than 3.0, and the crystallite diameter calculated from the X-ray diffraction peak belonging to the (112) plane of the forsterite phase is 30 nm or more and 100 nm or less.
  • step (B) a step of firing at a temperature of 750 ° C. or more and less than 950 ° C. which is a method of producing fine particles of a silicate compound.
  • the method further comprises the step (C) of dispersing the fired fine particles such that the dispersed particle diameter (d 50 ) is in the range of 0.1 ⁇ m to 2.0 ⁇ m. It is a manufacturing method of the silicate compound fine particles as described in three viewpoints.
  • silicate compound fine particles having a small particle size, excellent dispersibility in a resin, and high crystallinity.
  • Such fine particles of the silicate compound of the present invention can be suitably used as a filler for semiconductor sealing materials and underfilling.
  • Electron microscope image of silicate compound particles according to Examples 1 and 2 Electron microscope image of fine particles of silicate compound according to Examples 3 and 4 Electron microscope image of silicate compound particles according to Comparative Examples 1 and 4
  • silicate compound fine particles according to the present invention and the method for producing the same will be described.
  • the following description shows one aspect of the present invention, and can be arbitrarily changed within the scope of the present invention.
  • the present invention relates to silicate compound fine particles and a method of producing the same.
  • the silicate compound is, for example, a compound used as a filler for a semiconductor sealing material or underfilling, and examples thereof include ⁇ -eucryptite and forsterite. Therefore, the modes for carrying out the present invention will be described in detail by dividing the case where the silicate compound is ⁇ -eucryptite and the case where it is forsterite.
  • Silicate compound ( ⁇ -eucryptite) fine particles are dispersed in primary particle diameter d S converted to spherical particles from specific surface area by nitrogen adsorption method, and dispersed A crystal calculated from an X-ray diffraction peak belonging to the (102) plane of the ⁇ -eucryptite phase which has a ratio (d 50 / d S ) of the particle diameter d 50 of 1.0 to less than 3.0.
  • the diameter is 45 nm or more and 100 nm or less.
  • Such ⁇ -eucryptite microparticles can be produced through a process including specific (A) steps and (B) steps. That is, in the step (A), the silicate compound as the raw material is pulverized to a small particle size (for example, the dispersed particle size d 50 is 0.1 ⁇ m or more and 2.0 ⁇ m or less). In the subsequent step (B), the fine particles pulverized in the previous step (A) are fired in a specific temperature range.
  • the temperature range in the step (B) is lower than the temperature range such as "sintering" in which a sintered body is obtained by sintering an aggregate of fine particles.
  • a sintering process for obtaining a sintered body of pulverized particles is often performed after the process of pulverizing the raw material.
  • a temperature range lower than the temperature for such sintering is set. Then, in relation to the temperature range in the step (B), it is determined in the above-mentioned step (A) whether or not the raw material is crushed to any particle size.
  • step (B) since sintering is performed in a specific temperature range lower than conventional sintering, it is possible to avoid that the particles are strongly fused.
  • the temperature range of the step (B) does not deviate from the temperature at which firing can be carried out, so in the step (B), an effect normally expected as firing, for example, an effect such as particle growth can be naturally obtained .
  • the lost crystallinity is recovered and improved by the subsequent firing in the step (B).
  • the temperature range of the step (B) it is possible to avoid that the particles are firmly fused. Therefore, when the fine particles are re-dispersed after firing, the fine particles can be easily crushed without giving strong energy.
  • the particles can be broken down with relatively weak energy, so there is no loss of crystallinity with the breaking up. Therefore, the fine particles pulverized to the small particle size in the (A) step recover crystallinity while undergoing the slight growth by the firing in the (B) step, and maintain the high crystallinity while still maintaining the small particle size. At the time of redispersion, it exhibits excellent dispersibility.
  • Such fine particles of the silicate compound of the present invention have a ratio (d 50 / d S ) of a primary particle diameter d S converted to a spherical particle from a specific surface area by a nitrogen adsorption method and a dispersed particle diameter d 50 of 1. It is 0 or more and less than 3.0.
  • the primary particle diameter d S converted to spherical particles is calculated by the reciprocal of the product of the specific surface area (surface area per unit mass) measured by the nitrogen adsorption method and the density of the silicate compound, as shown in the formula (1). it can.
  • the specific surface area by the nitrogen adsorption method can be measured according to a known method, and the density of the silicate compound can be derived based on the pycnometer method, the Archimedes method or the like.
  • d S n 1/1 (specific surface area (m 2 / g) density (g / m 3 )) (1) (Wherein, d S is the primary particle diameter converted to spherical particles and n is a constant)
  • the primary particle diameter d S converted to spherical particles represents the diameter of the primary particles regardless of the aggregation state of the fine particles in the dispersion medium. That is, according to the primary particle diameter d S converted to spherical particles, even when the fine particles are not much aggregated in the dispersion medium to become secondary particles, the same value as the value corresponding to the diameter of unaggregated primary particles A value will be obtained. Therefore, ideally, the value of the denominator of the ratio (d 50 / d S ) does not depend on the degree of aggregation or fusion of the fine particles in the dispersion medium.
  • the dispersed particle size d 50 is an average particle size when the dried fine particles are dispersed in a dispersion medium.
  • the particle diameter can be measured by various methods such as laser diffraction method, dynamic light scattering method and centrifugal sedimentation method, but in the present invention, the value measured by laser diffraction method is adopted as dispersed particle diameter as adopted in the examples.
  • d 50 As a dispersion medium, although water is mentioned typically, it does not specifically limit.
  • the dispersed particle size d 50 roughly corresponds to the secondary particle size.
  • the dispersed particle diameter d 50 has a value closer to the primary particle diameter d S converted to spherical particles. That is, the ratio (d 50 / d S ) approaches 1.0 as the degree of dispersion of the fine particles in the dispersion medium is higher.
  • the ratio (d 50 / d s ) is an indicator of the dispersibility of the particles and, from its principle, is 1.0 or more.
  • the ratio (d 50 / d S ) is close to 1.0 as in the silicate compound fine particles of the present invention, it means that the fine particles are well dispersed in the dispersion medium.
  • the ratio (d 50 / d S ) is less than 3.0 and the degree to which the fine particles are well dispersed in the dispersion medium is low, sufficient dispersibility in the resin can not be obtained. . If sufficient dispersibility in the resin can not be obtained, these fine particles can not be packed into the resin at a high density, so that the desired effect can not be obtained even when used as a filler.
  • the crystallite diameter calculated from the X-ray diffraction peak belonging to the (102) plane of the ⁇ -eucryptite phase is 45 nm or more and 100 nm or less. This type of X-ray diffraction peak can be measured by a known method.
  • the crystallite diameter is smaller than the above range, the original characteristics of the crystalline material can not be obtained. That is, with ⁇ -eucryptite, the effect of reducing CTE can not be obtained.
  • the crystallite diameter exceeds the above range, the progress of particle growth at the time of firing becomes remarkable, and it becomes difficult to maintain the diameter of the broken fine particles such that the diameter becomes small.
  • the crystallite diameter in the direction perpendicular to the diffractive surface is in the relationship of Formula (2) when it is expressed by 2 ⁇ (half width ⁇ , unit is Rad) corresponding to the peak width at half intensity.
  • L is the crystallite diameter
  • is the X-ray wavelength (0.154 nm)
  • K is the form factor constant.
  • 0.9 is used for K.
  • L K ⁇ / ( ⁇ ⁇ cos ⁇ ) (2)
  • the silicate compound (forsterite) fine particles of the present invention have a primary particle diameter d S converted to spherical particles from the specific surface area by a nitrogen adsorption method, a dispersed particle diameter d 50 , Ratio (d 50 / d S ) is 1.0 or more and less than 3.0, and the crystallite diameter calculated from the X-ray diffraction peak belonging to the (112) plane of the forsterite phase is 30 nm or more and 100 nm or less .
  • Such forsterite fine particles can also be produced through processes including the steps (A) and (B), as in the case of the ⁇ -eucryptite fine particles. Even if the crystallinity of the silicate compound is lost by the pulverization of the raw material in the step (A), the lost crystallinity can be recovered and further improved by the subsequent firing of the step (B). In addition, according to the temperature range of the step (B), it is possible to avoid that the particles are firmly fused. Therefore, when the particles are redispersed after firing, the particles can be broken down with relatively weak energy, so that the crystallinity is not lost along with the crushing.
  • the fine particles pulverized to the small particle size in the (A) step recover crystallinity while undergoing the slight growth by the firing in the (B) step, and the high particle size still remains with the small particle size.
  • Such fine particles of the silicate compound of the present invention have a ratio (d 50 / d S ) of a primary particle diameter d S converted to a spherical particle from a specific surface area by a nitrogen adsorption method and a dispersed particle diameter d 50 of 1. It is 0 or more and less than 3.0.
  • the primary particle diameter d S and the dispersed particle diameter d 50 converted to spherical particles can be derived based on the same method as in the case of the ⁇ -eucryptite fine particles.
  • the ratio (d 50 / d S ) is in the range close to 1.0, it means that the fine particles are well dispersed in the dispersion medium.
  • the ratio (d 50 / d S ) is less than 3.0 and the degree to which the fine particles are well dispersed in the dispersion medium is low, sufficient dispersibility in the resin can not be obtained. In this case, since these fine particles can not be packed into the resin at high density, the desired effect can not be obtained even when used as a filler.
  • the crystallite diameter calculated from the X-ray diffraction peak belonging to the (112) plane of the forsterite phase is 30 nm or more and 100 nm or less. This type of X-ray diffraction peak can be measured by a known method.
  • the crystallite diameter calculated as described above is preferably 30 nm or more and 50 nm or less.
  • the crystallite diameter is in this range, it is easy to form fine particles of a silicate compound having a small particle diameter, excellent dispersibility in a resin, and high crystallinity.
  • the crystallite diameter is smaller than the above range, the original characteristics of the crystalline material can not be obtained. That is, in the forsterite, the effect of reducing the dielectric loss can not be obtained.
  • the crystallite diameter exceeds the above range, the progress of particle growth at the time of firing becomes remarkable, and it becomes difficult to maintain the diameter of the broken fine particles such that the diameter becomes small.
  • the crystallite diameter can be calculated by the above equation (2).
  • the silicate compound (raw material) is added so that the dispersed particle diameter d 50 is in the range of 0.1 ⁇ m to 2.0 ⁇ m. It has the process (A) which grind
  • the silicate compound used as a raw material can be manufactured by a well-known method in a process (A), and a commercial item can also be used.
  • a commercial item can also be used.
  • ⁇ -eucryptite one manufactured by the method described in WO 2016/117248, or FE-200 manufactured by Marusu Gakuen Co., Ltd. can be used.
  • forsterite one manufactured by the method described in WO2016 / 117248, or one manufactured by Marusu Gakuen Co., Ltd. can be used. Even if it is any silicate compound, you may use together what was manufactured and a commercial item.
  • the particle diameter to which the raw material is to be ground is related to the dispersed particle diameter d 50 of the silicate compound fine particles finally obtained through the next step (B). Therefore, when the dispersed particle diameter d 50 of the raw material pulverized in the step (A) exceeds 2.0 ⁇ m, the particle diameter of the finally obtained silicate compound also becomes large. On the other hand, when the dispersed particle diameter d 50 is reduced to less than 0.1 ⁇ m in the step (A), the particles are likely to be firmly fused in the next step (B).
  • Examples of the method of pulverizing the raw material in the step (A) include wet pulverization such as a bead mill and dry pulverization such as a jet mill.
  • wet pulverization such as a bead mill and dry pulverization such as a jet mill.
  • wet grinding using a bead mill or the like as the dispersion medium, general-purpose materials such as water, isopropanol and methyl ethyl ketone can be used, but are not particularly limited.
  • wet grinding may be advantageous in some cases, but dry grinding may, of course, also be suitably employed.
  • the drying method may be, for example, vacuum drying with a vacuum dryer or the like, heat drying with a hot plate or the like, or lyophilization, but is not particularly limited.
  • the fine particles pulverized in the previous step (A) are fired at a temperature of 750 ° C. or more and less than 950 ° C. Even if the crystallinity of the silicate compound is lost by the pulverization of the raw material in the step (A), the lost crystallinity can be recovered and thus improved by the step (B), and the crystallite The diameter and x-ray diffraction intensity can also be increased.
  • the firing temperature in the step (B) is lower than the above range, the effect of firing can not be obtained. For example, the crystallinity does not improve and the particles do not grow.
  • the firing temperature in the step (B) is larger than the above range, fusion between particles and particle growth significantly progress, and the silicate compound becomes coarse particles. In this case, fine particles of silicate compound having a ratio (d 50 / d S ) of less than 3.0 can not be obtained. Not only that, in order to grind such strongly fused coarse particles, strong energy is required, and as a result, a reduction in crystallite diameter accompanying the grinding can not be avoided.
  • the irregular and angular particle shape is changed to a rounded particle shape.
  • the firing method in the step (B) is not particularly limited as long as it can heat the silicate compound fine particles at a temperature of 750 ° C. or more and less than 950 ° C.
  • the baking time of the step (B) is, for example, 30 minutes to 20 hours, but other times may be possible.
  • the production conditions may be varied depending on the type of the silicate compound. For example, when the silicate compound is ⁇ -eucryptite, the firing temperature can be 800 ° C. or more and less than 950 ° C. Of course, even when the silicate compound is forsterite, the firing temperature can be 800 ° C. or more and less than 950 ° C.
  • the silicate compound fine particles of the present invention can be produced.
  • Such fine particles of the silicate compound of the present invention are in the form of roundness, and the dispersed particle diameter d S is within a small range (for example, within the range of 0.1 ⁇ m to 2.0 ⁇ m). There is.
  • the dispersed particle diameter d 50 is larger than the above range, and excellent dispersibility in the resin can be ensured as compared with fine particles of an irregular shaped angular shape (fine particles as shown in the prior art), and high density It becomes possible to fill.
  • the silicate compound fine particles of the present invention have higher crystallinity than the fine particles as shown in the prior art. Therefore, for example, if the silicate compound is ⁇ -eucryptite, sufficient effect to reduce CTE as a composite resin can be expected, and if the silicate compound is forsterite, dielectric loss as a composite resin is reduced. Sufficient effects can be expected. Therefore, any silicate compound can be suitably used as a filler for a semiconductor sealing material or underfilling.
  • the fine particles of the silicate compound calcined in the above-mentioned step (B) are dispersed (C) so that the dispersed particle diameter d 50 is in the range of 0.1 ⁇ m to 2.0 ⁇ m. It is preferable to have
  • the firing temperature in the previous step (B) is suppressed to a relatively low temperature range, strong aggregation and fusion between particles are avoided. Since fine particles can be broken down with relatively weak energy, reduction in crystallite diameter and decrease in X-ray diffraction intensity hardly occur in the step (C), and high crystallinity can be maintained.
  • the particles can be broken down while maintaining high crystallinity until the dispersed particle diameter d 50 is close to the particles (primary particles) that have been crushed in the previous step (A),
  • the fine particles after firing can be dispersed in a dispersion medium.
  • the ratio (d 50 / d S ) can be easily made less than 3.0.
  • Examples of the dispersion method in the step (C) include wet pulverization such as a bead mill and dry pulverization such as a jet mill, but are not particularly limited.
  • wet pulverization such as a bead mill
  • dry pulverization such as a jet mill
  • wet grinding such as bead milling
  • general-purpose dispersion media such as water, isopropanol and methyl ethyl ketone can be used, but this is not particularly limited.
  • the fine particles (baked powder) subjected to the previous step (B) are dispersed in a composite resin such as an epoxy resin, they may be directly dispersed, or may be dispersed in another dispersion medium and then mixed. May be In the case of dispersion in a resin, a three-roll mill or the like can be preferably used, but it is not particularly limited.
  • X-ray source Cu, voltage: 40 kV, current: 15 mA, step width: 0.01 °, scan rate: 5 ° / min, divergence angle slit (DS), using Rigaku X-ray diffractometer MiniFlex 600 0.625 °, scattering slit (SS); 8.0 mm, light receiving slit (RS); OPEN, incident solar slit; 2.5 °, light receiving solar slit; measured at 2.5 °, X-ray diffraction I got the data.
  • SS scattering slit
  • RS light receiving slit
  • OPEN incident solar slit
  • 2.5 ° light receiving solar slit
  • measured at 2.5 ° X-ray diffraction I got the data.
  • ⁇ X-ray diffraction intensity> The X-ray diffraction data of each sample was subjected to background processing with automatic setting using analysis software PDXL-2 to measure the X-ray diffraction intensity.
  • PDXL-2 analysis software
  • the dispersed particle diameter d 50 (dispersed particle diameter d 50 by laser diffraction method) was measured using a laser diffraction type particle size distribution measurement device Mastersizer 2000 manufactured by Malvern. In the measurement, pure water was used as a dispersion medium, and ultrasonic waves were irradiated for 1 minute.
  • a laser diffraction type particle size distribution measurement device Mastersizer 2000 manufactured by Malvern In the measurement, pure water was used as a dispersion medium, and ultrasonic waves were irradiated for 1 minute.
  • an average particle diameter calculated using a refractive index of 1.55 and an absorption coefficient (imaginary part) of 0.1 was employed.
  • For forsterite an average particle diameter calculated using a refractive index of 1.65 and an absorption coefficient (imaginary part) of 0.1 was employed.
  • the obtained mixture was subjected to an inlet temperature of 185 ° C., an atomizing air pressure of 0.14 MPa, an aspirator flow rate of 0.50 m 3 / min, using a spray dryer (Palvis Mini Spray GB 210-A, manufactured by Yamato Scientific Co., Ltd.). The mixture was dried under the conditions of a liquid transfer rate of 4 g / min to obtain a dry powder.
  • the outlet temperature at this time was 80 ⁇ 3 ° C.
  • the obtained dried powder was put in an alumina crucible and baked at a temperature of 850 ° C. for 5 hours in the atmosphere using a tabletop electric furnace to obtain 103 g of a white powder.
  • Primary particle diameter d S by nitrogen adsorption method 2.72Myuemu, dispersed particles size d 50 by a laser diffraction method was 11.2 .mu.m.
  • Example 1 40 g of ⁇ -eucryptite powder produced in Production Example 1, 160 g of isopropanol, and 900 g of ⁇ 0.5 mm zirconia beads were placed in a grinding container, and wet-milled under conditions of 1000 rpm using a bead mill apparatus Easy Nano RMB type manufactured by Imex. After grinding for 5 hours, the zirconia beads were removed and the slurry was recovered.
  • the slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until volatiles were eliminated to obtain a dry powder.
  • Primary particle diameter d S by a nitrogen adsorption method is 0.20 [mu] m, dispersed particles size d 50 by a laser diffraction method was 0.39 .mu.m.
  • the dried powder was put in an alumina sagger, heated to 850 ° C. at 3 ° C./min in a table electric furnace, and fired for 5 hours to obtain a fired powder.
  • the slurry was dried by the same method as described above to obtain a powder of ⁇ -eucryptite fine particles.
  • Primary particle diameter d S by a nitrogen adsorption method was 0.33 .mu.m
  • dispersed particles size d 50 by a laser diffraction method was 0.35 .mu.m. Further, when the particle morphology was observed with an electron microscope, rounded fine particles were confirmed.
  • Example 2 A slurry obtained by adding 100 g of the ⁇ -eucryptite powder produced in Production Example 1 to 400 g of isopropanol was prepared using a bead mill Ultra Apex Mill UAM 015 manufactured by Hiroshima Metal & Machinery Co., Ltd. The slurry was ground for 5 hours and 30 minutes under the condition of 5 m / sec in peripheral speed.
  • the slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until volatiles were eliminated to obtain a dry powder.
  • the primary particle diameter d S by the nitrogen adsorption method was 0.16 ⁇ m, and the dispersed particle diameter d 50 by the laser diffraction method was 0.30 ⁇ m.
  • the dried powder was put into an alumina sagger, heated to 850 ° C. at 3 ° C./min in a table electric furnace, and fired for 3 hours to obtain a fired powder.
  • the slurry was dried by the same method as described above to obtain a powder of ⁇ -eucryptite fine particles.
  • the primary particle diameter d S by the nitrogen adsorption method was 0.28 ⁇ m
  • the dispersed particle diameter d 50 by the laser diffraction method was 0.28 ⁇ m. Further, when the particle morphology was observed with an electron microscope, rounded fine particles were confirmed.
  • Example 3 40 g of commercially available ⁇ -eucryptite powder FE-200 (manufactured by Marusu Gakuen Co., Ltd.), 160 g of isopropanol, and 900 g of ⁇ 0.5 mm zirconia beads are placed in a grinding container, and a bead mill apparatus Easy Nano RMB type manufactured by Imex Co., Ltd. Wet grinding was performed under the conditions. After grinding for 5 hours, the zirconia beads were removed and the slurry was recovered.
  • the slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until volatiles were eliminated to obtain a dry powder.
  • the primary particle diameter d S by the nitrogen adsorption method was 0.19 ⁇ m, and the dispersed particle diameter d 50 by the laser diffraction method was 0.39 ⁇ m.
  • the dried powder was put in an alumina sagger, heated to 850 ° C. at 3 ° C./min in a table electric furnace, and fired for 5 hours to obtain a fired powder.
  • the slurry was dried by the same method as described above to obtain a powder of ⁇ -eucryptite fine particles.
  • Primary particle diameter d S by a nitrogen adsorption method was 0.34 .mu.m
  • dispersed particles size d 50 by a laser diffraction method was 0.42 .mu.m. Further, when the particle morphology was observed with an electron microscope, rounded fine particles were confirmed.
  • Example 4 40 g of forsterite powder produced in Production Example 2, 160 g of methanol, and 900 g of ⁇ 0.5 mm zirconia beads were placed in a grinding container, and wet ground under conditions of 1000 rpm using a bead mill apparatus Easy Nano RMB type manufactured by Imex. After grinding for 5 hours, the zirconia beads were removed and the slurry was recovered.
  • the slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until volatiles were eliminated to obtain a dry powder.
  • Primary particle diameter d S by a nitrogen adsorption method was 0.03 .mu.m
  • dispersed particles size d 50 by a laser diffraction method was 0.22 [mu] m.
  • the dried powder was put in an alumina sagger, heated to 900 ° C. at 3 ° C./min in a table-top electric furnace, and fired for 5 hours to obtain a fired powder.
  • the slurry was dried by the same method as described above to obtain a powder of forsterite fine particles.
  • Primary particle diameter d S by a nitrogen adsorption method was 0.07 .mu.m
  • dispersed particles size d 50 by a laser diffraction method was 0.19 .mu.m. Further, when the particle morphology was observed with an electron microscope, rounded fine particles were confirmed.
  • Comparative Example 1 The synthesis of ⁇ -eucryptite powder was performed in the same manner as in Production Example 1. 40 g of this ⁇ -eucryptite powder, 160 g of isopropanol, and 900 g of ⁇ 0.5 mm zirconia beads were placed in a crushing container, and wet-milled under conditions of 1000 rpm using a bead mill apparatus Easy Nano RMB type manufactured by Imex. After grinding for 5 hours, the zirconia beads were removed to obtain a slurry containing ⁇ -eucryptite fine particles.
  • Comparative Example 2 A slurry obtained by adding 100 g of the ⁇ -eucryptite powder produced in Production Example 1 to 400 g of isopropanol was prepared using a bead mill Ultra Apex Mill UAM 015 manufactured by Hiroshima Metal & Machinery Co., Ltd. The slurry was ground for 5 hours and 30 minutes under the condition of 5 m / sec in peripheral speed.
  • the slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until volatiles were eliminated to obtain a dry powder.
  • the primary particle diameter d S by the nitrogen adsorption method was 0.16 ⁇ m, and the dispersed particle diameter d 50 by the laser diffraction method was 0.30 ⁇ m. In addition, when the particle form was observed with an electron microscope, irregular and angular fine particles were confirmed.
  • Comparative Example 3 60 g of the ⁇ -eucryptite powder produced in Production Example 1, 240 g of isopropanol, and 1200 g of ⁇ 0.5 mm zirconia beads were placed in a grinding container, and wet ground under conditions of 1000 rpm using a bead mill apparatus Easy Nano RMB type manufactured by Imex. After grinding for 5 hours, the zirconia beads were removed to obtain a slurry containing ⁇ -eucryptite fine particles.
  • the slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until volatiles were eliminated to obtain a dry powder.
  • the primary particle diameter d S by the nitrogen adsorption method was 0.17 ⁇ m, and the dispersed particle diameter d 50 by the laser diffraction method was 0.32 ⁇ m.
  • the dried powder was put in an alumina sagger, heated to 700 ° C. at 3 ° C./min in a table-top electric furnace, and fired for 5 hours to obtain a fired powder.
  • irregular and angular fine particles were confirmed.
  • Comparative Example 4 A fired powder was obtained in the same manner as in Comparative Example 3 except that the temperature of the firing step was changed to 950 ° C.
  • the slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until volatiles were eliminated to obtain a dry powder.
  • Primary particle diameter d S by a nitrogen adsorption method was 0.95 .mu.m, dispersed particles size d 50 by a laser diffraction method is 78 .mu.m, was dispersed in a range of 0.1 [mu] m ⁇ 2.0 .mu.m.
  • irregular and angular fine particles were confirmed.
  • Comparative Example 5 40 g of forsterite powder produced in Production Example 2, 160 g of isopropanol, and 900 g of ⁇ 0.5 mm zirconia beads were placed in a grinding container, and wet ground under conditions of 1000 rpm using a bead mill apparatus Easy Nano RMB type manufactured by Imex. After grinding for 5 hours, the zirconia beads were removed to obtain a slurry containing forsterite fine particles.
  • the slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until volatiles were eliminated to obtain a dry powder.
  • Primary particle diameter d S by a nitrogen adsorption method is 0.03 .mu.m
  • the dispersed particles size d 50 by a laser diffraction method was 0.22 [mu] m.
  • the dried powder was put in an alumina sagger, heated to 700 ° C. at 3 ° C./min in a table-top electric furnace, and fired for 5 hours to obtain a fired powder.
  • irregular and angular fine particles were confirmed.
  • the fine particles of the silicate compound ( ⁇ -eucryptite) of Examples 1 to 3 each have a crystallite diameter of about 1.5 times (Example 1), after undergoing calcination (Step (B)), It was confirmed to grow 1.9 times (Example 2) and 1.5 times (Example 3).
  • Comparative Example 3 in which the firing temperature was 700 ° C., almost no particle growth was observed, and the particle growth was 1.1 times or less.
  • Comparative Example 4 in which the firing temperature was 950 ° C. it was confirmed that the particles grew up to about twice.
  • the ratio (d 50 / d) of the primary particle diameter d S converted to the spherical particle from the specific surface area by the nitrogen adsorption method and the dispersed particle diameter d 50 d S ) was 1.0 or more and less than 3.0, and the crystallite diameter calculated from the X-ray diffraction peak belonging to the (102) plane of the ⁇ -eucryptite phase was 45 nm or more and 100 nm or less.
  • the crystallite diameter is not less than 3.0 and is not less than 30 nm and not more than 100 nm, which is calculated from the X-ray diffraction peak belonging to the (112) plane of the forsterite phase.
  • the fine particles of the silicate compound of the present invention have a small particle diameter and are excellent in dispersibility in a resin, so that the resin can be filled at a higher density than in the past.
  • the fine particles of the silicate compound of the present invention have high crystallinity, the original characteristics of the material can be sufficiently exhibited. Therefore, for example, ⁇ -eucryptite fine particles can be suitably used as a filler for reducing CTE in applications such as semiconductor sealing materials and underfills.
  • it is a forsterite fine particle, it can be conveniently used as a filler for reducing a dielectric loss in uses, such as a semiconductor sealing material.

Abstract

These silicate compound microparticles have a ratio (d5 0 /ds) of dispersed particle diameter (d50) to primary particle diameter (ds) of at least 1.0 but less than 3.0, where d50 and ds are derived from conversion to spherical particles from the specific surface area measured by the nitrogen adsorption method. The particles also have a crystal particle diameter of 45 to 100 nm as calculated from the X-ray diffraction peak attributed to the (102) plane of the β-eucryptite phase.

Description

珪酸塩化合物微粒子及びその製造方法Silicate compound fine particles and method for producing the same
 本発明は、珪酸塩化合物微粒子及びその製造方法に関する。 The present invention relates to silicate compound fine particles and a method of producing the same.
 電子機器の普及に伴い、その主要部品であるプリント配線基板の需要が増大している。回路の高集積化や多層化が進むなか、基板の熱膨張係数(CTE:Coefficient of Thermal Exapansion)に対して半導体封止材料のCTEが大きくなると、回路破壊の原因になる。そこで、封止材料のCTEを低減させる目的で、該材料を構成するエポキシ樹脂等の耐熱性樹脂に、CTEの小さな無機物(非晶質シリカ微粒子等)をフィラーとして充填する技術が用いられている。 With the spread of electronic devices, the demand for printed wiring boards, which are the main components of the electronic devices, is increasing. When the CTE of the semiconductor sealing material increases with respect to the coefficient of thermal expansion (CTE) of the substrate while circuit integration and layering progress, circuit destruction will occur. Therefore, in order to reduce the CTE of the sealing material, a technique is used in which a heat-resistant resin such as an epoxy resin constituting the material is filled with an inorganic material (such as amorphous silica fine particles) having a small CTE as a filler. .
 上記のような封止材料のフィラーとしてだけでなく、非晶質シリカ微粒子を、アンダーフィリングのフィラーとして利用する技術も用いられている。すなわち、ワイヤーボンディングやフリップチップボンディング等で基材に実装された回路は、外力や応力に対して脆弱であるケースが多いため、比較的小さな力で破断しやすい。そこで、アンダーフィルと呼ばれる液状硬化性樹脂(エポキシ樹脂等)を基板部品間に浸透させ、接続信頼性を確保することが行われている。ここで、樹脂の熱膨張・収縮が原因となり、ボンディングの破壊が引き起こされる場合も予想されるため、このような樹脂の熱膨張・収縮を抑制する目的で、CTEの小さな無機物(非晶質シリカ微粒子等)をフィラーとして充填する技術が用いられている。 Not only as a filler of the above sealing materials, the technique which utilizes amorphous silica fine particles as a filler of underfilling is also used. That is, a circuit mounted on a base material by wire bonding, flip chip bonding or the like is likely to be broken by a relatively small force because it is often fragile to external force or stress. Under the circumstances, it has been practiced to infiltrate a liquid curable resin (epoxy resin or the like) called an underfill between substrate parts to secure connection reliability. Here, it is expected that thermal expansion and contraction of the resin may cause bond breakage, and therefore, for the purpose of suppressing such thermal expansion and contraction of the resin, an inorganic substance having a small CTE (amorphous silica A technique of filling fine particles etc. as a filler is used.
 ただ、このような非晶質シリカ微粒子を充填する技術にあっては、非晶質シリカは、例えばエポキシ樹脂に比べればそのCTEは小さい値であるものの、「正」のCTEを示すため、封止材料やアンダーフィリングの形成材料(エポキシ樹脂等を主成分としたコンポジットレジン)のCTEを効果的に低減させる点で改善の余地があった。 However, in the technology of filling such amorphous silica fine particles, amorphous silica exhibits a “positive” CTE although it has a small CTE compared to, for example, an epoxy resin. There is room for improvement in terms of effectively reducing the CTE of the stop material and the material for forming the underfill (composite resin containing epoxy resin or the like as the main component).
 ここで、珪酸塩化合物の一つであるβ-ユークリプタイト(β-LiAlSiO)は、負のCTEを有する物質として知られているため、これをフィラーとして利用することが考えられる。一方、封止材料やアンダーフィリングのフィラーとしてβ-ユークリプタイトを利用するには、樹脂に高密度で充填できるよう、粒子径を小さくし、かつ樹脂への分散性を高くする必要がある。また、負のCTEを示すのは、β-ユークリプタイトの特異的な結晶構造に由来するため、特にアンダーフィリングの用途では、高い結晶性を有することが不可欠となる。 Here, β-eucryptite (β-LiAlSiO 4 ), which is one of silicate compounds, is known as a material having a negative CTE, and it is considered to use it as a filler. On the other hand, in order to use β-eucryptite as a filler for sealing materials and underfilling, it is necessary to reduce the particle size and increase the dispersibility in the resin so that the resin can be filled at a high density. In addition, since the negative CTE is derived from the specific crystal structure of β-eucryptite, it is essential to have high crystallinity, particularly in underfilling applications.
 上記のようにCTEを低減させる目的とは別に、誘電損失を低減させて絶縁機能を発揮させる目的で、エポキシ樹脂等に非晶質シリカ微粒子を充填することもある。 In addition to the purpose of reducing the CTE as described above, the epoxy resin or the like may be filled with amorphous silica fine particles for the purpose of reducing the dielectric loss and exhibiting the insulating function.
 例えば、珪酸塩化合物の一つである、マグネシウムを含んだフォルステライト(MgSiO)やエンスタタイト(MgSiO)は、高周波領域における誘電損失が小さく、高い絶縁性を示す物質として知られている。これらの化合物は、マイクロ波領域で使用される誘電体セラミックスの材料として用いられているが、樹脂の誘電損失を低減させるフィラーとして利用するには、β-ユークリプタイトの場合と同様に、樹脂に高密度で充填できるよう、粒子径を小さくし、かつ樹脂への分散性を高くする必要がある。更に、高周波領域における誘電損失を小さくする上では、高い結晶性を有することが不可欠である。 For example, magnesium-containing forsterite (Mg 2 SiO 4 ) or enstatite (MgSiO 3 ), which is one of silicate compounds, is known as a material having a small dielectric loss in a high frequency region and exhibiting high insulation. There is. These compounds are used as materials for dielectric ceramics used in the microwave region, but to be used as a filler to reduce the dielectric loss of the resin, as in the case of β-eucryptite, the resin In order to be able to be packed at high density, it is necessary to reduce the particle size and increase the dispersibility in the resin. Furthermore, in order to reduce dielectric loss in a high frequency region, it is essential to have high crystallinity.
 以上の点に関して、LiO、Al及びSiOを出発原料とし、これらを所定のモル比で混合した後に熱処理する粉末合成法により、ユークリプタイトのセラミックフィラーを製造する方法が開示されている(例えば、特許文献1参照)。特許文献1には、単一相のユークリプタイトを合成する場合、1000~1400℃の熱処理が好ましいと記載されている。 With respect to the above points, a method of producing a ceramic filler of eucryptite by a powder synthesis method in which LiO 2 , Al 2 O 3 and SiO 2 are used as starting materials and these are mixed at a predetermined molar ratio and then heat treated is disclosed (See, for example, Patent Document 1). Patent Document 1 describes that heat treatment at 1000 to 1400 ° C. is preferable when synthesizing single phase eucryptite.
 また、LiCl、AlCl及びNaSiOの各水溶液を混合した後、沈殿又は析出させて微粒子を形成し、該微粒子を700~1300℃で熱処理させてユークリプタイトのフィラーを製造する方法が開示されている(例えば、特許文献2参照)。 Also disclosed is a method of mixing each aqueous solution of LiCl, AlCl and Na 2 SiO 3 to precipitate or precipitate to form fine particles, and heat treating the fine particles at 700 to 1300 ° C. to produce eucryptite filler. (See, for example, Patent Document 2).
 また、水溶性リチウム塩、水溶性アルミニウム塩及びコロイダルシリカを含有する溶液を噴霧乾燥し、その後大気中で焼成することにより600~1300℃の範囲でβ-ユークリプタイト微粒子を製造する方法が開示されている(例えば、特許文献3参照)。 Also disclosed is a method of producing β-eucryptite fine particles in the range of 600 to 1300 ° C. by spray-drying a solution containing a water-soluble lithium salt, a water-soluble aluminum salt and colloidal silica and then firing in air. (See, for example, Patent Document 3).
 また、Mg(OH)粉末又はMgO粉末と平均一次粒子径10μm以下のSiO粉末とを水中で混合粉砕し、スプレードライヤーによる噴霧乾燥後、1100℃で焼成した後、湿式粉砕及び噴霧乾燥を行うことにより、平均一次粒子径が0.05~0.15μmのフォルステライト粉末を製造する方法が開示されている(例えば、特許文献4参照)。 In addition, after mixing and grinding Mg (OH) 2 powder or MgO powder and SiO 2 powder with an average primary particle diameter of 10 μm or less in water, spray drying with a spray drier, and firing at 1100 ° C., wet grinding and spray drying A method of producing forsterite powder having an average primary particle diameter of 0.05 to 0.15 μm by carrying out the method is disclosed (see, for example, Patent Document 4).
 更に、水溶性マグネシウム塩及びコロイダルシリカを含有する溶液を噴霧乾燥した後、大気中で800~1000℃の温度で焼成することにより、粉砕工程を経ることなく、電子顕微鏡観察による一次粒子径が1~200nmの範囲のフォルステライト微粒子を製造する方法が開示されている(例えば、特許文献5参照)。 Furthermore, a solution containing a water-soluble magnesium salt and colloidal silica is spray-dried and then fired at a temperature of 800 to 1000 ° C. in the air, so that the primary particle diameter by electron microscope observation is 1 without passing through the pulverizing step. A method of producing forsterite fine particles in the range of ̃200 nm is disclosed (see, for example, Patent Document 5).
特開2008-255004号公報JP, 2008-255004, A 特開2014-131042号公報JP, 2014-131042, A 国際公開第2016/117248号International Publication No. 2016/117248 特開2003-327470号公報JP 2003-327470 A 国際公開第2015/146961号International Publication No. 2015/146961
 しかしながら、特許文献1では、ユークリプタイトを、比較的高温で熱処理して製造しているため、この熱処理に起因した、粒子同士の強固な凝集や融着が避けられなかった。この場合、粒子径の小さなフィラーを得るには、強いエネルギーで粉砕しなければならなかった。このような粉砕を経ると、大きさ及び形状が一定でない角形の粒子形態となるため、樹脂への分散性が低下し、充填量に過度な制限が生じていた。更に、粉砕に伴う結晶性の低下やアモルファス相の生成が起こり、コンポジットレジンとしてCTEを低減させる効果が十分に得られなくなる場合もあった。 However, in patent document 1, since eucryptite is heat-processed and manufactured at comparatively high temperature, the strong aggregation and melt | fusion of particle | grains which resulted from this heat processing were not avoided. In this case, in order to obtain a filler with a small particle size, it was necessary to grind it with strong energy. When such pulverization is carried out, since the particle shape is in the form of a square particle having an irregular size and shape, the dispersibility in the resin is lowered, and the filling amount is excessively limited. Furthermore, there is a case where the crystallinity is reduced and the formation of an amorphous phase occurs due to the pulverization, and the effect of reducing the CTE as a composite resin can not be sufficiently obtained.
 また、特許文献2では、LiClやAlClとNaSiOとの中和反応が生じるため、沈殿物又は析出物が生成し、各元素の分布が不均一になって、ユークリプタイトのフィラーを得るために必要な熱処理の温度が高くなるおそれがあった。熱処理の温度が高くなると、粒子同士の強固な凝集や融着が避けられず、樹脂への分散性が不十分になる可能性があった。また、ナトリウムイオンやリチウムイオンの一部を除去する工程が煩雑であった。そして、得られるユークリプタイトが正のCTEを有する結晶相(α相)との混相になる場合も避けられず、この場合、CTEを低減する効果が十分に得られなかった。 Moreover, in patent document 2, since the neutralization reaction of LiCl or AlCl and Na 2 SiO 3 occurs, precipitates or precipitates are formed, the distribution of each element becomes uneven, and the filler of eucryptite is formed. There was a possibility that the temperature of the heat treatment required to obtain it might become high. When the temperature of the heat treatment becomes high, strong aggregation and fusion between particles can not be avoided, and the dispersibility in the resin may be insufficient. Moreover, the process of removing a part of sodium ion and lithium ion was complicated. And, the case where the obtained eucryptite is mixed with the crystal phase (α phase) having a positive CTE can not be avoided, and in this case, the effect of reducing the CTE can not be sufficiently obtained.
 また、特許文献3では、得られるβ-ユークリプタイトが解砕性や粉砕性に優れないため、粒子径を小さくする際、強いエネルギーで粉砕しなければならなかった。上記の特許文献1と同様、このような粉砕を経ると、大きさ及び形状が一定でない角形の粒子形態となるため、樹脂への分散性が低下し、充填量に過度な制限が生じていた。 Further, in Patent Document 3, since the obtained β-eucryptite is not excellent in crushing property and crushing property, when making the particle diameter smaller, it has to be crushed with strong energy. Similar to the above-mentioned Patent Document 1, when such pulverization is carried out, the particle shape is in the form of rectangular particles having irregular sizes and shapes, so that the dispersibility in the resin is lowered, and the filling amount is excessively limited. .
 また、特許文献4では、フォルステライトを得るにあたり、焼成後に湿式粉砕する必要があった。このような粉砕を経ることで、結晶性の低下やアモルファス相の生成が起こり、誘電損失を低減させる効果が十分に得られなくなる場合があった。 Moreover, in patent document 4, in order to obtain forsterite, it was necessary to carry out wet grinding after baking. Through such pulverization, there is a case where the crystallinity is reduced and the formation of an amorphous phase occurs, and the effect of reducing the dielectric loss may not be sufficiently obtained.
 更に、特許文献5では、熱処理により粒子同士の強固な融着が生じるため、樹脂への十分な分散性が得られなかった。分散性を上げるには、湿式粉砕等により粒子径を小さくすることが考えられるが、特許文献4と同様、このような粉砕を経ることで、結晶性の低下やアモルファス相の生成が起こり、誘電損失を低減させる効果が十分に得られなくなる場合があった。 Furthermore, in Patent Document 5, since the heat treatment causes strong fusion between particles, sufficient dispersibility in the resin can not be obtained. In order to improve the dispersibility, it is conceivable to reduce the particle size by wet pulverization or the like. However, similar to Patent Document 4, by undergoing such pulverization, the reduction of crystallinity and the formation of an amorphous phase occur, and the dielectric In some cases, the effect of reducing the loss can not be obtained sufficiently.
 本発明はこのような事情に鑑みてなされたものであり、粒子径が小さく、樹脂への分散性に優れ、高い結晶性を有する珪酸塩化合物微粒子及びその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide silicate compound fine particles having a small particle diameter, excellent dispersibility in a resin, and high crystallinity, and a method for producing the same. .
 本発明者らは上記課題を解決するため鋭意研究を行った結果、原料となる珪酸塩化合物を所定範囲の粒子径に至るまで粉砕した後、この粉砕した微粒子を、比較的低温である特定の温度範囲で焼成することにより、粒子径が小さく、樹脂への分散性に優れ、高い結晶性を有する珪酸塩化合物微粒子を製造できることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have crushed a silicate compound as a raw material to a particle diameter within a predetermined range, and then grind the finely divided particles at a relatively low temperature. It has been found that by firing in a temperature range, it is possible to produce silicate compound fine particles having a small particle size, excellent in dispersibility in a resin, and high crystallinity.
 すなわち、本発明は、以下の第1観点~第4観点の何れか一つに記載の珪酸塩化合物微粒子及びその製造方法に関する。 That is, the present invention relates to fine particles of a silicate compound as described in any one of the following first to fourth aspects and a method for producing the same.
 第1観点としては、窒素吸着法による比表面積から球形粒子に換算した一次粒子径(d)と、分散粒子径(d50)と、の比(d50/d)が1.0以上3.0未満であり、β-ユークリプタイト相の(102)面に帰属するX線回折ピークから算出される結晶子径が45nm以上100nm以下であることを特徴とする珪酸塩化合物微粒子である。 As a first aspect, the ratio (d 50 / d S ) of the primary particle diameter (d S ) converted to spherical particles from the specific surface area by nitrogen adsorption method and the dispersed particle diameter (d 50 ) is 1.0 or more It is less than 3.0, and the crystallite diameter calculated from the X-ray diffraction peak belonging to the (102) plane of the β-eucryptite phase is 45 nm or more and 100 nm or less. .
 第2観点としては、窒素吸着法による比表面積から球形粒子に換算した一次粒子径(d)と、分散粒子径(d50)と、の(比d50/d)が1.0以上3.0未満であり、フォルステライト相の(112)面に帰属するX線回折ピークから算出される結晶子径が30nm以上100nm以下であることを特徴とする珪酸塩化合物微粒子である。 As the second aspect, the specific surface area measured by the nitrogen adsorption method and the primary particle diameter in terms of spherical particles (d S), and the dispersion particle diameter (d 50), of (the ratio d 50 / d S) is 1.0 or more It is less than 3.0, and the crystallite diameter calculated from the X-ray diffraction peak belonging to the (112) plane of the forsterite phase is 30 nm or more and 100 nm or less.
 第3観点としては、分散粒子径(d50)が0.1μm以上2.0μm以下の範囲内となるように珪酸塩化合物を粉砕する(A)工程と、前記粉砕した珪酸塩化合物の微粒子を750℃以上950℃未満の温度で焼成する(B)工程と、を有することを特徴とする珪酸塩化合物微粒子の製造方法である。 As a third aspect, in the step (A) of pulverizing the silicate compound so that the dispersed particle diameter (d 50 ) is in the range of 0.1 μm to 2.0 μm, and the fine particles of the pulverized silicate compound And (B) a step of firing at a temperature of 750 ° C. or more and less than 950 ° C., which is a method of producing fine particles of a silicate compound.
 第4観点としては、前記焼成した微粒子を、分散粒子径(d50)が0.1μm以上2.0μm以下の範囲内となるように分散させる(C)工程を更に有することを特徴とする第3観点に記載の珪酸塩化合物微粒子の製造方法である。 According to a fourth aspect, the method further comprises the step (C) of dispersing the fired fine particles such that the dispersed particle diameter (d 50 ) is in the range of 0.1 μm to 2.0 μm. It is a manufacturing method of the silicate compound fine particles as described in three viewpoints.
 本発明によれば、粒子径が小さく、樹脂への分散性に優れ、高い結晶性を有する珪酸塩化合物微粒子を提供できる。このような本発明の珪酸塩化合物微粒子は、半導体封止材料やアンダーフィリング等のフィラーとして好適に使用できる。 According to the present invention, it is possible to provide silicate compound fine particles having a small particle size, excellent dispersibility in a resin, and high crystallinity. Such fine particles of the silicate compound of the present invention can be suitably used as a filler for semiconductor sealing materials and underfilling.
実施例1及び2に係る珪酸塩化合物微粒子の電子顕微鏡画像Electron microscope image of silicate compound particles according to Examples 1 and 2 実施例3及び4に係る珪酸塩化合物微粒子の電子顕微鏡画像Electron microscope image of fine particles of silicate compound according to Examples 3 and 4 比較例1及び4に係る珪酸塩化合物微粒子の電子顕微鏡画像Electron microscope image of silicate compound particles according to Comparative Examples 1 and 4
 本発明に係る珪酸塩化合物微粒子及びその製造方法について説明する。以下の説明は、本発明の一態様を示すものであり、本発明の趣旨の範囲内で任意に変更できる。 The silicate compound fine particles according to the present invention and the method for producing the same will be described. The following description shows one aspect of the present invention, and can be arbitrarily changed within the scope of the present invention.
 本発明は、珪酸塩化合物微粒子及びその製造方法に関する。この珪酸塩化合物としては、例えば、半導体封止材料やアンダーフィリング等のフィラーとして利用される化合物であり、一例として、β-ユークリプタイトやフォルステライトが挙げられる。そこで、珪酸塩化合物がβ-ユークリプタイトである場合と、フォルステライトである場合と、に分けて、本発明を実施するための形態について詳述する。 The present invention relates to silicate compound fine particles and a method of producing the same. The silicate compound is, for example, a compound used as a filler for a semiconductor sealing material or underfilling, and examples thereof include β-eucryptite and forsterite. Therefore, the modes for carrying out the present invention will be described in detail by dividing the case where the silicate compound is β-eucryptite and the case where it is forsterite.
(1)珪酸塩化合物(β-ユークリプタイト)微粒子
 本発明の珪酸塩化合物(β-ユークリプタイト)微粒子は、窒素吸着法による比表面積から球形粒子に換算した一次粒子径dと、分散粒子径d50と、の比(d50/d)が1.0以上3.0未満であり、β-ユークリプタイト相の(102)面に帰属するX線回折ピークから算出される結晶子径が45nm以上100nm以下である。
(1) Silicate compound (β-eucryptite) fine particles The silicate compound (β-eucryptite) fine particles of the present invention are dispersed in primary particle diameter d S converted to spherical particles from specific surface area by nitrogen adsorption method, and dispersed A crystal calculated from an X-ray diffraction peak belonging to the (102) plane of the β-eucryptite phase which has a ratio (d 50 / d S ) of the particle diameter d 50 of 1.0 to less than 3.0. The diameter is 45 nm or more and 100 nm or less.
 このようなβ-ユークリプタイト微粒子は、特定の(A)工程及び(B)工程を含むプロセスを経て製造できる。すなわち、(A)工程で、原料となる珪酸塩化合物を、小さな粒子径(例えば、分散粒子径d50が0.1μm以上2.0μm以下)に至るまで粉砕する。その後の(B)工程で、先の(A)工程で粉砕した微粒子を、特定の温度範囲で焼成させる。 Such β-eucryptite microparticles can be produced through a process including specific (A) steps and (B) steps. That is, in the step (A), the silicate compound as the raw material is pulverized to a small particle size (for example, the dispersed particle size d 50 is 0.1 μm or more and 2.0 μm or less). In the subsequent step (B), the fine particles pulverized in the previous step (A) are fired in a specific temperature range.
 (B)工程での温度範囲は、微粒子の集合体を焼き固めて焼結体を得る「焼結」のような温度範囲に比べ、低い範囲である。従来一般に、原料を粉砕する工程の後には、粉砕した微粒子の焼結体を得る焼結工程を実施することが多い。しかし、(B)工程では、そのような焼結のための温度よりも低い温度範囲が設定されている。そして、その(B)工程での温度範囲と関連付け、上記の(A)工程において、如何なる粒子径に至るまで原料を粉砕するかが定まっている。 The temperature range in the step (B) is lower than the temperature range such as "sintering" in which a sintered body is obtained by sintering an aggregate of fine particles. Conventionally, in general, a sintering process for obtaining a sintered body of pulverized particles is often performed after the process of pulverizing the raw material. However, in the step (B), a temperature range lower than the temperature for such sintering is set. Then, in relation to the temperature range in the step (B), it is determined in the above-mentioned step (A) whether or not the raw material is crushed to any particle size.
 このように、(B)工程では、従来のような焼結よりも低い、特定の温度範囲で焼成するため、粒子同士が強固に融着することを回避できる。勿論、(B)工程の温度範囲は、焼成を実施できる温度から外れていないため、(B)工程においては、焼成として通常期待される効果、例えば粒子成長等の効果が当然得られることとなる。 As described above, in the step (B), since sintering is performed in a specific temperature range lower than conventional sintering, it is possible to avoid that the particles are strongly fused. Of course, the temperature range of the step (B) does not deviate from the temperature at which firing can be carried out, so in the step (B), an effect normally expected as firing, for example, an effect such as particle growth can be naturally obtained .
 上記ゆえ、(A)工程での原料の粉砕により、その珪酸塩化合物の結晶性が失われるとしても、その後の(B)工程の焼成で、失われた結晶性を回復させ、ひいては向上させることができる。その上で、(B)工程の温度範囲によれば、粒子同士が強固に融着することを回避できる。従って、焼成後に微粒子を再分散させる際、強いエネルギーを与えることなく、容易に微粒子を壊砕できる。 Therefore, even if the crystallinity of the silicate compound is lost by the pulverization of the raw material in the step (A), the lost crystallinity is recovered and improved by the subsequent firing in the step (B). Can. In addition, according to the temperature range of the step (B), it is possible to avoid that the particles are firmly fused. Therefore, when the fine particles are re-dispersed after firing, the fine particles can be easily crushed without giving strong energy.
 裏を返せば、比較的弱いエネルギーで微粒子を壊砕できるので、壊砕に伴い結晶性が失われることもない。故に、(A)工程で小さな粒子径に至るまで粉砕した微粒子が(B)工程の焼成により、結晶性を回復するとともに僅かな成長を経て、依然として小さな粒子径のままで、高い結晶性を保持しつつ、再分散時においては優れた分散性を発揮する。 In other words, the particles can be broken down with relatively weak energy, so there is no loss of crystallinity with the breaking up. Therefore, the fine particles pulverized to the small particle size in the (A) step recover crystallinity while undergoing the slight growth by the firing in the (B) step, and maintain the high crystallinity while still maintaining the small particle size. At the time of redispersion, it exhibits excellent dispersibility.
 このような本発明の珪酸塩化合物微粒子は、窒素吸着法による比表面積から球形粒子に換算した一次粒子径dと、分散粒子径d50と、の比(d50/d)が1.0以上3.0未満である。 Such fine particles of the silicate compound of the present invention have a ratio (d 50 / d S ) of a primary particle diameter d S converted to a spherical particle from a specific surface area by a nitrogen adsorption method and a dispersed particle diameter d 50 of 1. It is 0 or more and less than 3.0.
 球形粒子に換算した一次粒子径dは、式(1)に示す通り、窒素吸着法により測定した比表面積(単位質量あたりの表面積)と、珪酸塩化合物の密度と、の積の逆数により算出できる。窒素吸着法による比表面積は公知の方法に従って測定でき、珪酸塩化合物の密度は、ピクノメーター法やアルキメデス法等に基づいて導出できる。
  d=n・1/(比表面積(m/g)・密度(g/m))・・・(1)
 (式中、dは球形粒子に換算した一次粒子径であり、nは定数である)
The primary particle diameter d S converted to spherical particles is calculated by the reciprocal of the product of the specific surface area (surface area per unit mass) measured by the nitrogen adsorption method and the density of the silicate compound, as shown in the formula (1). it can. The specific surface area by the nitrogen adsorption method can be measured according to a known method, and the density of the silicate compound can be derived based on the pycnometer method, the Archimedes method or the like.
d S = n 1/1 (specific surface area (m 2 / g) density (g / m 3 )) (1)
(Wherein, d S is the primary particle diameter converted to spherical particles and n is a constant)
 この球形粒子に換算した一次粒子径dは、分散媒中の微粒子の凝集状態によらない、一次粒子の径を表している。つまり、球形粒子に換算した一次粒子径dによれば、分散媒中で微粒子が少なからず凝集して二次粒子となる場合でも、凝集していない一次粒子の径に相当する値と同様の値が得られることになる。従って、理想的には、比(d50/d)の分母の値は、分散媒中の微粒子の凝集や融着の度合いに依存しない。 The primary particle diameter d S converted to spherical particles represents the diameter of the primary particles regardless of the aggregation state of the fine particles in the dispersion medium. That is, according to the primary particle diameter d S converted to spherical particles, even when the fine particles are not much aggregated in the dispersion medium to become secondary particles, the same value as the value corresponding to the diameter of unaggregated primary particles A value will be obtained. Therefore, ideally, the value of the denominator of the ratio (d 50 / d S ) does not depend on the degree of aggregation or fusion of the fine particles in the dispersion medium.
 分散粒子径d50は、乾燥させた微粒子を分散媒に分散させたときの平均粒子径である。この粒子径は、レーザー回折法、動的光散乱法及び遠心沈降法等、種々の方法により測定できるが、本発明では、実施例でも採用した通り、レーザー回折法により測定した値を分散粒子径d50としている。分散媒としては、代表的には水が挙げられるが、特に限定されない。 The dispersed particle size d 50 is an average particle size when the dried fine particles are dispersed in a dispersion medium. The particle diameter can be measured by various methods such as laser diffraction method, dynamic light scattering method and centrifugal sedimentation method, but in the present invention, the value measured by laser diffraction method is adopted as dispersed particle diameter as adopted in the examples. d 50 As a dispersion medium, although water is mentioned typically, it does not specifically limit.
 分散媒中で微粒子が少なからず凝集して二次粒子となる場合、分散粒子径d50は、大まかには、その二次粒子径に相当する。分散媒中で粒子同士が強固に凝集又は融着している度合いが高いほど、比(d50/d)の分子である分散粒子径d50が大きくなり、その結果、比(d50/d)は大きくなる。逆に、分散媒中で微粒子が好適に分散する度合いが高いほど、分散粒子径d50は、球形粒子に換算した一次粒子径dに近い値となる。つまり、分散媒中で微粒子が好適に分散する度合いが高いほど、比(d50/d)が1.0に近づいていく。 In the case where the fine particles aggregate into secondary particles in the dispersion medium without much, the dispersed particle size d 50 roughly corresponds to the secondary particle size. The higher the degree to which the particles are strongly aggregated or fused in the dispersion medium, the larger the dispersed particle diameter d 50 which is a molecule of the ratio (d 50 / d S ), and as a result, the ratio (d 50 / d d S ) becomes large. Conversely, as the degree of dispersion of the fine particles in the dispersion medium is higher, the dispersed particle diameter d 50 has a value closer to the primary particle diameter d S converted to spherical particles. That is, the ratio (d 50 / d S ) approaches 1.0 as the degree of dispersion of the fine particles in the dispersion medium is higher.
 このように、比(d50/d)は、粒子の分散性の指標であり、その原理から1.0以上である。本発明の珪酸塩化合物微粒子のように、比(d50/d)が1.0に近い範囲では、分散媒中で微粒子が良好に分散していることを意味する。 Thus, the ratio (d 50 / d s ) is an indicator of the dispersibility of the particles and, from its principle, is 1.0 or more. When the ratio (d 50 / d S ) is close to 1.0 as in the silicate compound fine particles of the present invention, it means that the fine particles are well dispersed in the dispersion medium.
 一方、比(d50/d)が3.0以上のような、分散媒中で微粒子が良好に分散している度合いが低い場合、樹脂への十分な分散性が得られないこととなる。樹脂への十分な分散性が得られないと、これらの微粒子を樹脂に高密度に充填できないため、フィラーとして利用しても所望の効果が得られない。 On the other hand, when the ratio (d 50 / d S ) is less than 3.0 and the degree to which the fine particles are well dispersed in the dispersion medium is low, sufficient dispersibility in the resin can not be obtained. . If sufficient dispersibility in the resin can not be obtained, these fine particles can not be packed into the resin at a high density, so that the desired effect can not be obtained even when used as a filler.
 次に、本発明の珪酸塩化合物微粒子は、β-ユークリプタイト相の(102)面に帰属するX線回折ピークから算出される結晶子径が45nm以上100nm以下である。この種のX線回折ピークは、公知の手法により測定できる。 Next, in the silicate compound fine particles of the present invention, the crystallite diameter calculated from the X-ray diffraction peak belonging to the (102) plane of the β-eucryptite phase is 45 nm or more and 100 nm or less. This type of X-ray diffraction peak can be measured by a known method.
 β-ユークリプタイト相の最強線は、2θ=25°近傍の(102)面に帰属するX線回折ピークである。そこで、本発明では、このX線回折ピークからシェラーの式で算出される結晶子径が上記の範囲内としている。 The strongest line of the β-eucryptite phase is an X-ray diffraction peak belonging to the (102) plane near 2θ = 25 °. Therefore, in the present invention, the crystallite diameter calculated from the X-ray diffraction peak by the Scherrer formula is within the above range.
 結晶子径が上記の範囲より小さいと、結晶性材料が有する本来の特性が得られない。すなわち、β-ユークリプタイトでは、CTEを低減させる効果が得られない。一方、結晶子径が上記の範囲を超えると、焼成時の粒子成長の進行が著しくなるため、径が小さくなるように破壊した微粒子の該径を小さいままで維持するのが困難となる。 If the crystallite diameter is smaller than the above range, the original characteristics of the crystalline material can not be obtained. That is, with β-eucryptite, the effect of reducing CTE can not be obtained. On the other hand, when the crystallite diameter exceeds the above range, the progress of particle growth at the time of firing becomes remarkable, and it becomes difficult to maintain the diameter of the broken fine particles such that the diameter becomes small.
 なお、回折面に垂直方向の結晶子径は、強度半分のピーク幅に相当する2θ(半値幅β、単位はRad)で表すと、式(2)の関係にある。式中、Lは結晶子径、λはX線の波長(0.154nm)、Kは形状因子定数である。Kは、通常は0.9が用いられる。
 L=Kλ/(β・cosθ) ・・・ (2)
The crystallite diameter in the direction perpendicular to the diffractive surface is in the relationship of Formula (2) when it is expressed by 2θ (half width β, unit is Rad) corresponding to the peak width at half intensity. Where L is the crystallite diameter, λ is the X-ray wavelength (0.154 nm), and K is the form factor constant. Usually, 0.9 is used for K.
L = Kλ / (β · cos θ) (2)
(2)珪酸塩化合物(フォルステライト)微粒子
 本発明の珪酸塩化合物(フォルステライト)微粒子は、窒素吸着法による比表面積から球形粒子に換算した一次粒子径dと、分散粒子径d50と、の比(d50/d)が1.0以上3.0未満であり、フォルステライト相の(112)面に帰属するX線回折ピークから算出される結晶子径が30nm以上100nm以下である。
(2) Silicate Compound (Forsterite) Fine Particles The silicate compound (forsterite) fine particles of the present invention have a primary particle diameter d S converted to spherical particles from the specific surface area by a nitrogen adsorption method, a dispersed particle diameter d 50 , Ratio (d 50 / d S ) is 1.0 or more and less than 3.0, and the crystallite diameter calculated from the X-ray diffraction peak belonging to the (112) plane of the forsterite phase is 30 nm or more and 100 nm or less .
 このようなフォルステライト微粒子も、β-ユークリプタイト微粒子の場合と同様に、(A)工程及び(B)工程を含むプロセスを経て製造できる。(A)工程での原料の粉砕により、その珪酸塩化合物の結晶性が失われるとしても、その後の(B)工程の焼成で、失われた結晶性を回復させ、ひいては向上させることができる。その上で、(B)工程の温度範囲によれば、粒子同士が強固に融着することを回避できる。従って、焼成後に微粒子を再分散させる際、比較的弱いエネルギーで微粒子を壊砕できるので、壊砕に伴い結晶性が失われることもない。 Such forsterite fine particles can also be produced through processes including the steps (A) and (B), as in the case of the β-eucryptite fine particles. Even if the crystallinity of the silicate compound is lost by the pulverization of the raw material in the step (A), the lost crystallinity can be recovered and further improved by the subsequent firing of the step (B). In addition, according to the temperature range of the step (B), it is possible to avoid that the particles are firmly fused. Therefore, when the particles are redispersed after firing, the particles can be broken down with relatively weak energy, so that the crystallinity is not lost along with the crushing.
 この通り、(A)工程で小さな粒子径に至るまで粉砕した微粒子が、(B)工程の焼成により、結晶性を回復するとともに僅かな成長を経て、依然として小さな粒子径のままで、高い結晶性を保持しつつ、再分散時においては優れた分散性を発揮する。 As described above, the fine particles pulverized to the small particle size in the (A) step recover crystallinity while undergoing the slight growth by the firing in the (B) step, and the high particle size still remains with the small particle size. Exerts excellent dispersibility at the time of re-dispersion while maintaining the
 このような本発明の珪酸塩化合物微粒子は、窒素吸着法による比表面積から球形粒子に換算した一次粒子径dと、分散粒子径d50と、の比(d50/d)が1.0以上3.0未満である。球形粒子に換算した一次粒子径dや分散粒子径d50は、β-ユークリプタイト微粒子の場合と同様の手法に基づいて導出できる。 Such fine particles of the silicate compound of the present invention have a ratio (d 50 / d S ) of a primary particle diameter d S converted to a spherical particle from a specific surface area by a nitrogen adsorption method and a dispersed particle diameter d 50 of 1. It is 0 or more and less than 3.0. The primary particle diameter d S and the dispersed particle diameter d 50 converted to spherical particles can be derived based on the same method as in the case of the β-eucryptite fine particles.
 比(d50/d)が1.0に近い範囲では、分散媒中で微粒子が良好に分散していることを意味する。一方、比(d50/d)が3.0以上のような、分散媒中で微粒子が良好に分散している度合いが低い場合、樹脂への十分な分散性が得られない。この場合、これらの微粒子を樹脂に高密度に充填できないため、フィラーとして利用しても所望の効果が得られない。 When the ratio (d 50 / d S ) is in the range close to 1.0, it means that the fine particles are well dispersed in the dispersion medium. On the other hand, when the ratio (d 50 / d S ) is less than 3.0 and the degree to which the fine particles are well dispersed in the dispersion medium is low, sufficient dispersibility in the resin can not be obtained. In this case, since these fine particles can not be packed into the resin at high density, the desired effect can not be obtained even when used as a filler.
 次に、本発明の珪酸塩化合物微粒子は、フォルステライト相の(112)面に帰属するX線回折ピークから算出される結晶子径が30nm以上100nm以下である。この種のX線回折ピークは、公知の手法により測定できる。 Next, in the silicate compound fine particles of the present invention, the crystallite diameter calculated from the X-ray diffraction peak belonging to the (112) plane of the forsterite phase is 30 nm or more and 100 nm or less. This type of X-ray diffraction peak can be measured by a known method.
 フォルステライト微粒子にあっては、上記の通り算出される結晶子径が30nm以上50nm以下であることが好ましい。結晶子径がこの範囲であることで、粒子径が小さく、樹脂への分散性に優れ、高い結晶性を有する珪酸塩化合物微粒子となりやすい。 In the forsterite fine particles, the crystallite diameter calculated as described above is preferably 30 nm or more and 50 nm or less. When the crystallite diameter is in this range, it is easy to form fine particles of a silicate compound having a small particle diameter, excellent dispersibility in a resin, and high crystallinity.
 フォルステライト相の最強線は、2θ=36.5°近傍の(112)面に帰属するX線回折ピークである。そこで、本発明では、このX線回折ピークからシェラーの式で算出される結晶子径が上記の範囲内としている。 The strongest line of the forsterite phase is an X-ray diffraction peak belonging to the (112) plane near 2θ = 36.5 °. Therefore, in the present invention, the crystallite diameter calculated from the X-ray diffraction peak by the Scherrer formula is within the above range.
 結晶子径が上記の範囲より小さいと、結晶性材料が有する本来の特性が得られない。すなわち、フォルステライトでは、誘電損失を低減させる効果が得られない。一方、結晶子径が上記の範囲を超えると、焼成時の粒子成長の進行が著しくなるため、径が小さくなるように破壊した微粒子の該径を小さいままで維持するのが困難となる。 If the crystallite diameter is smaller than the above range, the original characteristics of the crystalline material can not be obtained. That is, in the forsterite, the effect of reducing the dielectric loss can not be obtained. On the other hand, when the crystallite diameter exceeds the above range, the progress of particle growth at the time of firing becomes remarkable, and it becomes difficult to maintain the diameter of the broken fine particles such that the diameter becomes small.
 なお、フォルステライトでも、β-ユークリプタイトの場合と同様、上記の式(2)により結晶子径を算出できる。 Incidentally, even in the case of forsterite, as in the case of β-eucryptite, the crystallite diameter can be calculated by the above equation (2).
(3)珪酸塩化合物微粒子の製造方法
 本発明の珪酸塩化合物微粒子の製造方法は、分散粒子径d50が0.1μm以上2.0μm以下の範囲内となるように珪酸塩化合物(原料)を粉砕する(A)工程と、この粉砕した珪酸塩化合物の微粒子を750℃以上950℃未満の温度で焼成する(B)工程と、を有する。以下、各工程について説明する。
(3) Method for Producing Silicate Compound Fine Particles In the method for producing silicate compound fine particles of the present invention, the silicate compound (raw material) is added so that the dispersed particle diameter d 50 is in the range of 0.1 μm to 2.0 μm. It has the process (A) which grind | pulverizes, and the process (B) which bakes the microparticles | fine-particles of this ground silicate compound at the temperature of 750 degreeC or more and less than 950 degreeC. Each step will be described below.
 (A)工程において、原料となる珪酸塩化合物は公知の方法で製造でき、また市販品も使用できる。例えば、β-ユークリプタイトでは、WO2016/117248に記載の方法で製造したもの、又は丸ス釉薬社製のFE-200を使用できる。また、フォルステライトでは、WO2016/117248に記載の方法で製造したもの、又は丸ス釉薬社製を使用できる。何れの珪酸塩化合物であっても、製造したものと市販品とを併用してもよい。 The silicate compound used as a raw material can be manufactured by a well-known method in a process (A), and a commercial item can also be used. For example, as β-eucryptite, one manufactured by the method described in WO 2016/117248, or FE-200 manufactured by Marusu Gakuen Co., Ltd. can be used. In addition, as forsterite, one manufactured by the method described in WO2016 / 117248, or one manufactured by Marusu Gakuen Co., Ltd. can be used. Even if it is any silicate compound, you may use together what was manufactured and a commercial item.
 (A)工程において、如何なる粒子径に至るまで原料を粉砕するかは、次の(B)工程を経て最終的に得られる珪酸塩化合物微粒子の分散粒子径d50に関連する。そのため、(A)工程で粉砕した原料の分散粒子径d50が2.0μmを超えると、その分、最終的に得られる珪酸塩化合物の粒子径も大きくなってしまう。一方、(A)工程で分散粒子径d50が0.1μm未満になるまで粉砕すると、次の(B)工程で粒子同士が強固に融着しやすくなる。 In the step (A), the particle diameter to which the raw material is to be ground is related to the dispersed particle diameter d 50 of the silicate compound fine particles finally obtained through the next step (B). Therefore, when the dispersed particle diameter d 50 of the raw material pulverized in the step (A) exceeds 2.0 μm, the particle diameter of the finally obtained silicate compound also becomes large. On the other hand, when the dispersed particle diameter d 50 is reduced to less than 0.1 μm in the step (A), the particles are likely to be firmly fused in the next step (B).
 (A)工程における原料の粉砕方法は、ビーズミル等の湿式粉砕やジェットミル等の乾式粉砕などが挙げられる。ビーズミル等の湿式粉砕では、分散媒は、水、イソプロパノール及びメチルエチルケトン等、汎用的なものを使用できるが、特に限定されない。乾燥のしやすさを鑑みれば、沸点の低い有機溶媒を用いることが望ましい。小さい粒子径に至るまで原料を粉砕するには、湿式粉砕の方が有利である場合があるが、勿論、乾式粉砕も好適に採用できる。 Examples of the method of pulverizing the raw material in the step (A) include wet pulverization such as a bead mill and dry pulverization such as a jet mill. In wet grinding using a bead mill or the like, as the dispersion medium, general-purpose materials such as water, isopropanol and methyl ethyl ketone can be used, but are not particularly limited. In view of the ease of drying, it is desirable to use an organic solvent having a low boiling point. In order to grind the raw material down to a small particle size, wet grinding may be advantageous in some cases, but dry grinding may, of course, also be suitably employed.
 粉砕方法が湿式粉砕の場合は、X線回折分析を行う前にスラリーを乾燥させ、粉末化させる必要がある。乾燥方法は、真空乾燥機等による減圧乾燥、ホットプレート等による加熱乾燥、凍結乾燥などが挙げられるが、特に限定されない。 When the grinding method is wet grinding, the slurry needs to be dried and powdered before X-ray diffraction analysis is performed. The drying method may be, for example, vacuum drying with a vacuum dryer or the like, heat drying with a hot plate or the like, or lyophilization, but is not particularly limited.
 次に、(B)工程では、先の(A)工程で粉砕した微粒子を750℃以上950℃未満の温度で焼成する。(A)工程での原料の粉砕により、その珪酸塩化合物の結晶性が失われるとしても、この(B)工程により、失われた結晶性を回復させ、ひいては向上させることができ、また結晶子径やX線回折強度も増大させることができる。 Next, in the step (B), the fine particles pulverized in the previous step (A) are fired at a temperature of 750 ° C. or more and less than 950 ° C. Even if the crystallinity of the silicate compound is lost by the pulverization of the raw material in the step (A), the lost crystallinity can be recovered and thus improved by the step (B), and the crystallite The diameter and x-ray diffraction intensity can also be increased.
 (B)工程での焼成温度が上記の範囲より低いと、焼成の効果が得られない。例えば、結晶性が向上せず、また粒子も成長しない。一方、(B)工程での焼成温度が上記の範囲より大きいと、粒子同士の融着や粒子成長が著しく進行し、珪酸塩化合物が粗大な粒子となる。この場合、比(d50/d)が3.0未満の珪酸塩化合物微粒子が得られない。それだけでなく、このように強固に融着した粗大な粒子を粉砕するには強いエネルギーが必要となり、結果として、粉砕に伴う結晶子径の低下が避けられない。 If the firing temperature in the step (B) is lower than the above range, the effect of firing can not be obtained. For example, the crystallinity does not improve and the particles do not grow. On the other hand, if the firing temperature in the step (B) is larger than the above range, fusion between particles and particle growth significantly progress, and the silicate compound becomes coarse particles. In this case, fine particles of silicate compound having a ratio (d 50 / d S ) of less than 3.0 can not be obtained. Not only that, in order to grind such strongly fused coarse particles, strong energy is required, and as a result, a reduction in crystallite diameter accompanying the grinding can not be avoided.
 更に、この(B)工程で、不定形で角張った粒子形態が、丸みを帯びた粒子形態に変化する。丸みを帯びた粒子形態を得やすくするには、(B)工程において、800℃以上950℃未満で焼成することが好ましい。 Furthermore, in the step (B), the irregular and angular particle shape is changed to a rounded particle shape. In order to easily obtain the rounded particle form, it is preferable to bake at 800 ° C. or more and less than 950 ° C. in the step (B).
 ただ、(B)工程における焼成方法は、珪酸塩化合物微粒子を750℃以上950℃未満の温度で加熱できれば特に限定されない。(B)工程の焼成時間は、例えば、30分~20時間であるが、これ以外の時間もあり得る。珪酸塩化合物の種類に応じて、製造条件を異ならせてもよい。例えば、珪酸塩化合物がβ-ユークリプタイトの場合には、焼成温度を800℃以上950℃未満とすることができる。勿論、珪酸塩化合物がフォルステライトの場合にも、焼成温度を800℃以上950℃未満とすることができる。 However, the firing method in the step (B) is not particularly limited as long as it can heat the silicate compound fine particles at a temperature of 750 ° C. or more and less than 950 ° C. The baking time of the step (B) is, for example, 30 minutes to 20 hours, but other times may be possible. The production conditions may be varied depending on the type of the silicate compound. For example, when the silicate compound is β-eucryptite, the firing temperature can be 800 ° C. or more and less than 950 ° C. Of course, even when the silicate compound is forsterite, the firing temperature can be 800 ° C. or more and less than 950 ° C.
 このような(A)工程及び(B)工程を含むプロセスを経ることで、本発明の珪酸塩化合物微粒子を製造できる。このような本発明の珪酸塩化合物微粒子は、丸みを帯びた形態に揃っている上、分散粒子径dが小さい範囲内(例えば、0.1μm以上2.0μm以下の範囲内)に収まっている。そのため、分散粒子径d50が上記の範囲より大きく、また不定形で角張った形態の微粒子(従来技術で示したような微粒子)と比べ、樹脂への優れた分散性を確保でき、高密度に充填することが可能となる。 Through the process including the step (A) and the step (B), the silicate compound fine particles of the present invention can be produced. Such fine particles of the silicate compound of the present invention are in the form of roundness, and the dispersed particle diameter d S is within a small range (for example, within the range of 0.1 μm to 2.0 μm). There is. As a result, the dispersed particle diameter d 50 is larger than the above range, and excellent dispersibility in the resin can be ensured as compared with fine particles of an irregular shaped angular shape (fine particles as shown in the prior art), and high density It becomes possible to fill.
 しかも、本発明の珪酸塩化合物微粒子によれば、従来技術で示したような微粒子と比べ、高い結晶性を有している。そのため、例えば、珪酸塩化合物がβ-ユークリプタイトであれば、コンポジットレジンとしてCTEを低減させる十分な効果が期待できるし、珪酸塩化合物がフォルステライトであれば、コンポジットレジンとして誘電損失を低減させる十分な効果が期待できる。故に、何れの珪酸塩化合物であっても、半導体封止材料やアンダーフィリング等のフィラーとして好適に使用できる。 In addition, the silicate compound fine particles of the present invention have higher crystallinity than the fine particles as shown in the prior art. Therefore, for example, if the silicate compound is β-eucryptite, sufficient effect to reduce CTE as a composite resin can be expected, and if the silicate compound is forsterite, dielectric loss as a composite resin is reduced. Sufficient effects can be expected. Therefore, any silicate compound can be suitably used as a filler for a semiconductor sealing material or underfilling.
 ここで、本発明は、上記の(B)工程で焼成した珪酸塩化合物の微粒子を、分散粒子径d50が0.1μm以上2.0μm以下の範囲内となるように分散させる(C)工程を有することが好ましい。 Here, in the present invention, the fine particles of the silicate compound calcined in the above-mentioned step (B) are dispersed (C) so that the dispersed particle diameter d 50 is in the range of 0.1 μm to 2.0 μm. It is preferable to have
 本発明では、先の(B)工程での焼成温度を比較的低い温度範囲に抑えていたため、粒子同士の強固な凝集や融着が回避されている。これにより、比較的弱いエネルギーで微粒子を壊砕できるので、(C)工程では、結晶子径の減少やX線回折強度の低下が起こりにくく、高い結晶性を維持できる。 In the present invention, since the firing temperature in the previous step (B) is suppressed to a relatively low temperature range, strong aggregation and fusion between particles are avoided. Since fine particles can be broken down with relatively weak energy, reduction in crystallite diameter and decrease in X-ray diffraction intensity hardly occur in the step (C), and high crystallinity can be maintained.
 比較的弱いエネルギーであっても、先の(A)工程での粉砕を経た微粒子(一次粒子)に近い分散粒子径d50となるまで、高い結晶性を維持しつつ微粒子を壊砕でき、故に、焼成後の微粒子を分散媒中に分散させることができる。(C)工程を経ることで、比(d50/d)を3.0未満にしやすくなる。 Even with relatively weak energy, the particles can be broken down while maintaining high crystallinity until the dispersed particle diameter d 50 is close to the particles (primary particles) that have been crushed in the previous step (A), The fine particles after firing can be dispersed in a dispersion medium. Through the step (C), the ratio (d 50 / d S ) can be easily made less than 3.0.
 (C)工程における分散方法は、ビーズミル等の湿式粉砕やジェットミル等の乾式粉砕などが挙げられるが、特に限定されない。ビーズミル等の湿式粉砕では、分散媒は、水、イソプロパノール及びメチルエチルケトン等、汎用的な分散媒を使用することができるが、これも特に限定されない。 Examples of the dispersion method in the step (C) include wet pulverization such as a bead mill and dry pulverization such as a jet mill, but are not particularly limited. In wet grinding such as bead milling, as the dispersion medium, general-purpose dispersion media such as water, isopropanol and methyl ethyl ketone can be used, but this is not particularly limited.
 なお、先の(B)工程を経た微粒子(焼成粉)を、エポキシ樹脂等のコンポジットレジンに分散させる場合、直接分散させてもよく、他の分散媒に分散させた後にこれを混合するようにしてもよい。樹脂への分散にあっては、三本ロールミル等を好ましく使用することができるが、特に限定されない。 When the fine particles (baked powder) subjected to the previous step (B) are dispersed in a composite resin such as an epoxy resin, they may be directly dispersed, or may be dispersed in another dispersion medium and then mixed. May be In the case of dispersion in a resin, a three-roll mill or the like can be preferably used, but it is not particularly limited.
 以下、実施例及び比較例を挙げて本発明を説明するが、本発明は、これらの例に限定されるものではない。実施例及び比較例中、各種の評価は、それぞれ以下の通り行った。 Hereinafter, the present invention will be described by way of examples and comparative examples, but the present invention is not limited to these examples. In Examples and Comparative Examples, various evaluations were performed as follows.
<X線回折分析>
 リガク社製X線回折装置MiniFlex600を用いて、X線源;Cu、電圧;40kV、電流;15mAとし、ステップ幅;0.01°、スキャン速度;5°/分、発散角スリット(DS);0.625°、散乱スリット(SS);8.0mm、受光スリット(RS);OPEN、入射ソーラースリット;2.5°、受光ソーラースリット;2.5°の条件で測定して、X線回折データを得た。
<X-ray diffraction analysis>
X-ray source: Cu, voltage: 40 kV, current: 15 mA, step width: 0.01 °, scan rate: 5 ° / min, divergence angle slit (DS), using Rigaku X-ray diffractometer MiniFlex 600 0.625 °, scattering slit (SS); 8.0 mm, light receiving slit (RS); OPEN, incident solar slit; 2.5 °, light receiving solar slit; measured at 2.5 °, X-ray diffraction I got the data.
<X線回折強度>
 各試料のX線回折データを、解析ソフトPDXL-2を用いて、自動設定によるバックグラウンド処理を実施し、X線回折強度を測定した。β-ユークリプタイトでは、2θ=25°近傍に出現する最強線(102)面の回折ピークの強度(単位はcounts)、フォルステライトでは2θ=36.5°近傍に出現する最強線(112)面の回折ピークの強度(単位はcounts)を採用した。
<X-ray diffraction intensity>
The X-ray diffraction data of each sample was subjected to background processing with automatic setting using analysis software PDXL-2 to measure the X-ray diffraction intensity. In β-eucryptite, the intensity of the diffraction peak of the strongest line (102) appearing near 2θ = 25 ° (unit: counts), and forsterite the strongest line appearing near 2θ = 36.5 ° (112) The intensity (in units of counts) of the diffraction peak of the surface was adopted.
<結晶子径の算出>
 各試料のX線回折データを、解析ソフトPDXL-2を用いて、自動設定によるバックグラウンド処理を実施し、シェラーの式に基づいて結晶子径を算出した。β-ユークリプタイトでは、(102)面に垂直方向の結晶子径、フォルステライトでは、(112)面に垂直方向の結晶子径を採用した。
<Calculation of crystallite diameter>
The X-ray diffraction data of each sample was subjected to background processing by automatic setting using analysis software PDXL-2, and the crystallite diameter was calculated based on Scherrer's equation. In β-eucryptite, the crystallite diameter in the direction perpendicular to the (102) plane was adopted, and in the case of forsterite, the crystallite diameter in the direction perpendicular to the (112) plane was adopted.
<レーザー回折法による分散粒子径の測定>
 マルバーン社製のレーザー回折式粒度分布測定装置マスターサイザー2000を用いて、分散粒子径d50(レーザー回折法による分散粒子径d50)を測定した。測定にあたり、分散媒として純水を用い、超音波を1分間照射した。β-ユークリプタイトでは、屈折率を1.55、吸収係数(虚数部)を0.1として算出される平均粒子径を採用した。フォルステライトでは屈折率を1.65、吸収係数(虚数部)を0.1として算出される平均粒子径を採用した。
<Measurement of dispersed particle size by laser diffraction method>
The dispersed particle diameter d 50 (dispersed particle diameter d 50 by laser diffraction method) was measured using a laser diffraction type particle size distribution measurement device Mastersizer 2000 manufactured by Malvern. In the measurement, pure water was used as a dispersion medium, and ultrasonic waves were irradiated for 1 minute. For β-eucryptite, an average particle diameter calculated using a refractive index of 1.55 and an absorption coefficient (imaginary part) of 0.1 was employed. For forsterite, an average particle diameter calculated using a refractive index of 1.65 and an absorption coefficient (imaginary part) of 0.1 was employed.
<一次粒子径の算出>
 カンタクローム社製のMONOSORBを用いて、窒素吸着法により珪酸塩化合物粉末の比表面積を測定した。そして、β-ユークリプタイトの密度を2.35、フォルステライトの密度を3.0として、球形粒子に換算したときの一次粒子径dを算出した。
<Calculation of primary particle diameter>
The specific surface area of the silicate compound powder was measured by a nitrogen adsorption method using MONOSORB manufactured by Kantachrome Corporation. Then, assuming that the density of β-eucryptite is 2.35 and the density of forsterite is 3.0, the primary particle diameter d S when converted to spherical particles is calculated.
[製造例1]
 WO2016/117248に記載の方法に基づき、以下の手順でβ-ユークリプタイト粉末を合成した。
Production Example 1
Based on the method described in WO 2016/117248, β-eucryptite powder was synthesized according to the following procedure.
<シュウ酸アルミニウム水溶液の製造>
 純水1469.6gにシュウ酸二水和物(関東化学社製、特級、99.5質量%)378.8g(3モル)を溶解し、シュウ酸水溶液を得た。得られたシュウ酸水溶液を撹拌しながら、乾燥水酸化アルミニウムゲル(協和化学社製、商品名;キョーワード200S、Al 53.3質量%)191.3g(1モル)を添加し、85℃で2時間加熱した。
<Production of aluminum oxalate aqueous solution>
378.8 g (3 moles) of oxalic acid dihydrate (special grade, 99.5% by mass, manufactured by Kanto Chemical Co., Inc.) was dissolved in 1469.6 g of pure water to obtain an oxalic acid aqueous solution. While stirring the obtained aqueous solution of oxalic acid, 191.3 g (1 mol) of dry aluminum hydroxide gel (Kyowa Chemical Co., Ltd., trade name; Kyoward 200 S, 53.3 mass% of Al 2 O 3 ) is added, Heat at 85 ° C. for 2 hours.
 加熱中に水分の一部が揮発したので純水45gを添加し、2039.2gに調整した。これをガラス濾紙(アドバンテック社製、GA-100)及び定量濾紙(アドバンテック社製、No.5C)に通液し、淡黄色透明のシュウ酸アルミニウム水溶液を得た。得られたシュウ酸アルミニウム水溶液の固形分濃度(Al換算)は5.00質量%であった。 Since part of the water was volatilized during heating, 45 g of pure water was added to adjust to 2039.2 g. The resultant was passed through glass filter paper (GA-100, manufactured by Advantec Co., Ltd.) and filter paper (No. 5C manufactured by Advantech Co., Ltd.) to obtain a pale yellow and transparent aqueous solution of aluminum oxalate. The solid content concentration (Al 2 O 3 conversion) of the obtained aqueous solution of aluminum oxalate was 5.00% by mass.
<シュウ酸リチウム水溶液の製造>
 純水819.1gに水酸化リチウム一水和物(関東化学社製、特級、98.0質量%)42.0g(1モル)を溶解し、シュウ酸二水和物(関東化学社製、特級、99.5質量%)63.0g(0.5モル)を添加し、室温下で10分撹拌することにより、シュウ酸リチウム水溶液を得た。得られたシュウ酸リチウム水溶液の固形分濃度(Li2O換算)は1.62質量%であった。
<Production of lithium oxalate aqueous solution>
Dissolve 42.0 g (1 mole) of lithium hydroxide monohydrate (special grade, 98.0 mass%, manufactured by Kanto Chemical Co., Ltd.) in 819.1 g of pure water, and oxalic acid dihydrate (manufactured by Kanto Chemical Co., Ltd.) The aqueous solution of lithium oxalate was obtained by adding 63.0 g (0.5 mol) of a special grade, 99.5 mass%) and stirring for 10 minutes at room temperature. The solid content concentration (in terms of Li 2 O) of the obtained aqueous solution of lithium oxalate was 1.62% by mass.
<β-ユークリプタイト粉末の製造>
 コロイダルシリカ(スノーテックス(登録商標)OXS、日産化学工業社製、シリカ濃度10.5質量%、透過型電子顕微鏡観察による一次粒子径5nm)572.2g(SiO 1モル)に、シュウ酸アルミニウム水溶液1019.6g(Al 0.5モル)及びシュウ酸リチウム水溶液924.1g(LiO 0.5モル)添加し、室温下で10分間撹拌して、混合液を得た。得られた混合液の比重は1.068、pHは2.0、電気伝導度は22.3mS/cmであった。
<Production of β-eucryptite powder>
Colloidal silica (Snowtex (registered trademark) OXS, Nissan Chemical Industries, Ltd., silica concentration 10.5 mass%, primary particle diameter 5 nm by transmission electron microscope observation) 572.2 g (SiO 2 1 mol), aluminum oxalate An aqueous solution of 1019.6 g (Al 2 O 3 0.5 mol) and an aqueous solution of lithium oxalate 924.1 g (Li 2 O 0.5 mol) were added, and the mixture was stirred at room temperature for 10 minutes to obtain a mixture. The specific gravity of the obtained mixed solution was 1.068, the pH was 2.0, and the electric conductivity was 22.3 mS / cm.
 得られた混合液を、スプレードライヤー(パルビスミニスプレーGB210-A型、ヤマト科学社製)を用いて、入口温度185℃、アトマイジングエアー圧力0.14MPa、アスピレーター流量0.50m/分、混合液の送液速度4g/分の条件で乾燥し、乾燥粉を得た。このときの出口温度は80±3℃であった。 The obtained mixture was subjected to an inlet temperature of 185 ° C., an atomizing air pressure of 0.14 MPa, an aspirator flow rate of 0.50 m 3 / min, using a spray dryer (Palvis Mini Spray GB 210-A, manufactured by Yamato Scientific Co., Ltd.). The mixture was dried under the conditions of a liquid transfer rate of 4 g / min to obtain a dry powder. The outlet temperature at this time was 80 ± 3 ° C.
 得られた乾燥粉300gをアルミナ坩堝に入れ、卓上電気炉を使用して大気中で850℃の温度で5時間焼成することにより、白色粉末103gを得た。得られた白色粉末をX線回折分析により同定したところ、β-ユークリプタイト単相であり、2θ=25°近傍に出現する最強線(102)面の回折ピーク強度は28054、結晶子径は52nmであった。窒素吸着法による一次粒子径dは2.72μm、レーザー回折法による分散粒子径d50は11.2μmであった。 300 g of the obtained dried powder was put in an alumina crucible and baked at a temperature of 850 ° C. for 5 hours in the atmosphere using a tabletop electric furnace to obtain 103 g of a white powder. When the obtained white powder is identified by X-ray diffraction analysis, it is a β-eucryptite single phase, and the diffraction peak intensity of the strongest line (102) surface appearing near 2θ = 25 ° is 28054, and the crystallite diameter is It was 52 nm. Primary particle diameter d S by nitrogen adsorption method 2.72Myuemu, dispersed particles size d 50 by a laser diffraction method was 11.2 .mu.m.
[製造例2]
 WO2015/146961に記載の方法に基づき、以下の手順でフォルステライト粉末を合成した。
Production Example 2
Forsterite powder was synthesized according to the following procedure based on the method described in WO2015 / 146961.
<クエン酸マグネシウム水溶液の製造>
 純水2058.8gにクエン酸一水和物(関東化学社製、特級、99.5質量%)253.5gを溶解し、10.0質量%クエン酸水溶液を得た。得られたクエン酸水溶液を撹拌しながら水酸化マグネシウム(関東化学社製、1級、95.0%)105.7gを添加し、室温下で1時間撹拌することにより、クエン酸マグネシウム水溶液を得た。得られたクエン酸マグネシウム水溶液の固形分濃度(MgO換算)は2.9質量%であった。
<Production of magnesium citrate aqueous solution>
In 2058.8 g of pure water, 253.5 g of citric acid monohydrate (special grade, 99.5 mass%, manufactured by Kanto Chemical Co., Ltd.) was dissolved to obtain a 10.0 mass% citric acid aqueous solution. While stirring the obtained citric acid aqueous solution, 105.7 g of magnesium hydroxide (Kanto Chemical Co., Ltd., first grade, 95.0%) is added, and stirring is carried out at room temperature for 1 hour to obtain a magnesium citric acid aqueous solution. The The solid content concentration (in terms of MgO) of the obtained aqueous solution of magnesium citrate was 2.9% by mass.
<フォルステライト粉末の製造>
 コロイダルシリカ(スノーテックス(登録商標)OXS、日産化学工業社製、シリカ濃度10.6質量%、電子顕微鏡観察による一次粒子径5nm)283.4gに純水1196.1gを混合後、製造例1で得られたクエン酸マグネシウム水溶液1334.8gを添加し、室温下で30分間撹拌して、混合液を得た。得られた混合液の比重は1.04、粘度は1.8mPa・s、pHは5.2であった。
<Production of forsterite powder>
After mixing 1196.1 g of pure water with 283.4 g of colloidal silica (Snowtex (registered trademark) OXS, manufactured by Nissan Chemical Industries, Ltd., silica concentration 10.6 mass%, primary particle diameter 5 nm by electron microscope observation), Production Example 1 The aqueous solution of 1334.8 g of the aqueous solution of magnesium citrate obtained in the above was added, and the mixture was stirred at room temperature for 30 minutes to obtain a mixture. The specific gravity of the obtained mixed solution was 1.04, the viscosity was 1.8 mPa · s, and the pH was 5.2.
 得られた混合液2500gをスプレードライヤー(パルビスミニスプレーGA-22型、ヤマト科学社製)を使用して、入口温度180℃、アトマイジングエアー圧力1.35kgf/cm、アスピレーター流量0.30m/分、混合液の送液速度5g/分の条件で乾燥した。このときの出口温度は80±2℃であり、99.6gの白色の乾燥粉を得た。 An inlet temperature of 180 ° C., an atomizing air pressure of 1.35 kgf / cm 2 , and an aspirator flow rate of 0.30 m using a spray dryer (Palvis Mini Spray GA-22, manufactured by Yamato Scientific Co., Ltd.). It dried on the conditions of 3 / minute and the sending speed of a liquid mixture 5 g / min. The outlet temperature at this time was 80 ± 2 ° C. to obtain 99.6 g of a white dry powder.
 得られた乾燥粉43.1gをアルミナ坩堝に入れ、卓上電気炉を使用して大気中で500℃の温度で2時間焼成し、次いで大気中で800℃の温度で2時間焼成することにより、白色粉末12.4gを得た。得られた白色粉末をX線回折分析により同定したところ、生成相はフォルステライトのほぼ単一相であり、2θ=36.5°近傍の最強線(112)面の回折ピーク強度は2808、結晶子径は35nmであった。窒素吸着法による一次粒子径dは0.11μm、レーザー回折法による分散粒子径d50は7.43μmであった。 43.1 g of the obtained dry powder is put in an alumina crucible and fired at a temperature of 500 ° C. in the atmosphere for 2 hours in the atmosphere using a tabletop electric furnace and then fired at a temperature of 800 ° C. in the atmosphere for 2 hours, 12.4 g of white powder was obtained. The white powder obtained was identified by X-ray diffraction analysis, and the product phase is almost single phase of forsterite, and the diffraction peak intensity of the strongest line (112) plane near 2θ = 36.5 ° is 2808, crystal The child diameter was 35 nm. Primary particle diameter d S by nitrogen adsorption method 0.11 .mu.m, dispersed particles size d 50 by a laser diffraction method was 7.43Myuemu.
[実施例1]
 製造例1で製造したβ-ユークリプタイト粉末40g、イソプロパノール160g、φ0.5mmジルコニアビーズ900gを粉砕容器に入れ、アイメックス社製のビーズミル装置イージーナノRMB型を用いて1000rpmの条件で湿式粉砕した。5時間粉砕した後にジルコニアビーズを除去し、スラリーを回収した。
Example 1
40 g of β-eucryptite powder produced in Production Example 1, 160 g of isopropanol, and 900 g of φ 0.5 mm zirconia beads were placed in a grinding container, and wet-milled under conditions of 1000 rpm using a bead mill apparatus Easy Nano RMB type manufactured by Imex. After grinding for 5 hours, the zirconia beads were removed and the slurry was recovered.
 次いで、このスラリーをナスフラスコに入れて、ロータリーエバポレーターを用いて10Torrで揮発分がなくなるまで乾燥して乾燥粉を得た。この乾燥粉をX線回折分析により同定したところ、β-ユークリプタイト単相であり、2θ=25°近傍に出現する最強線(102)面の回折ピーク強度は15361、結晶子径は40nmであった。窒素吸着法による一次粒子径dは0.20μmであり、レーザー回折法による分散粒子径d50は0.39μmであった。 The slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until volatiles were eliminated to obtain a dry powder. The dry powder is identified by X-ray diffraction analysis to be β-eucryptite single phase, and the intensity of the diffraction peak of the strongest line (102) surface appearing near 2θ = 25 ° is 15361, and the crystallite diameter is 40 nm. there were. Primary particle diameter d S by a nitrogen adsorption method is 0.20 [mu] m, dispersed particles size d 50 by a laser diffraction method was 0.39 .mu.m.
 この乾燥粉をアルミナ匣鉢に入れて、卓上電気炉により毎分3℃で850℃まで昇温し、5時間焼成して焼成粉を得た。得られた焼成粉をX線回折分析により同定したところ、β-ユークリプタイト単相であり、2θ=25°近傍に出現する最強線(102)面の回折ピーク強度は35714、結晶子径は61nmであった。 The dried powder was put in an alumina sagger, heated to 850 ° C. at 3 ° C./min in a table electric furnace, and fired for 5 hours to obtain a fired powder. The obtained calcined powder is identified by X-ray diffraction analysis to be β-eucryptite single phase, and the diffraction peak intensity of the strongest line (102) surface appearing near 2θ = 25 ° is 35714, and the crystallite diameter is It was 61 nm.
 次に、上記の焼成粉8g、イソプロパノール32g、φ1mmジルコニアビーズ85gを100ccプラスチック製容器に入れ、ヤマト科学社製ユニバーサルボールミルUB32に載せて200rpmで24h粉砕することにより、β-ユークリプタイト微粒子を含むスラリーを得た。 Next, 8 g of the above-mentioned calcined powder, 32 g of isopropanol and 85 g of φ1 mm zirconia beads are placed in a 100 cc plastic container, placed on a universal ball mill UB32 manufactured by Yamato Scientific Co., and crushed for 24 hours at 200 rpm to contain β-eucryptite fine particles. A slurry was obtained.
 前述と同様の方法によりスラリーを乾燥してβ-ユークリプタイト微粒子の粉末を得た。X線回折分析により同定したところ、β-ユークリプタイト単相であり、2θ=25°近傍に出現する最強線(102)面の回折ピーク強度は32843、結晶子径は59nmだった。窒素吸着法による一次粒子径dは0.33μmであり、レーザー回折法による分散粒子径d50は0.35μmであった。また、電子顕微鏡で粒子形態を観察したところ、丸みを帯びた微粒子が確認された。 The slurry was dried by the same method as described above to obtain a powder of β-eucryptite fine particles. As a result of identification by X-ray diffraction analysis, the diffraction peak intensity of the strongest line (102) surface which is a β-eucryptite single phase and appears near 2θ = 25 ° was 32843, and the crystallite diameter was 59 nm. Primary particle diameter d S by a nitrogen adsorption method was 0.33 .mu.m, dispersed particles size d 50 by a laser diffraction method was 0.35 .mu.m. Further, when the particle morphology was observed with an electron microscope, rounded fine particles were confirmed.
[実施例2]
 製造例1で製造したβ-ユークリプタイト粉末100gをイソプロパノール400gに添加したスラリーを、広島メタル&マシナリー社製のビーズミル装置ウルトラアペックスミルUAM015を用いてφ0.5mmジルコニアビーズ(充填率80%)、周速5m/secの条件で5時間30分粉砕し、スラリーを回収した。
Example 2
A slurry obtained by adding 100 g of the β-eucryptite powder produced in Production Example 1 to 400 g of isopropanol was prepared using a bead mill Ultra Apex Mill UAM 015 manufactured by Hiroshima Metal & Machinery Co., Ltd. The slurry was ground for 5 hours and 30 minutes under the condition of 5 m / sec in peripheral speed.
 次いで、このスラリーをナスフラスコに入れて、ロータリーエバポレーターを用いて10Torrで揮発分がなくなるまで乾燥して乾燥粉を得た。この乾燥粉をX線回折分析により同定したところ、β-ユークリプタイト単相であり、2θ=25°近傍に出現する最強線(102)面の回折ピーク強度は8931、結晶子径は31nmであった。窒素吸着法による一次粒子径dは0.16μmであり、レーザー回折法による分散粒子径d50は0.30μmであった。 The slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until volatiles were eliminated to obtain a dry powder. The dry powder is identified by X-ray diffraction analysis to be β-eucryptite single phase, and the intensity of the diffraction peak of the strongest line (102) surface appearing near 2θ = 25 ° is 8931, and the crystallite diameter is 31 nm. there were. The primary particle diameter d S by the nitrogen adsorption method was 0.16 μm, and the dispersed particle diameter d 50 by the laser diffraction method was 0.30 μm.
 この乾燥粉をアルミナ匣鉢に入れて、卓上電気炉により毎分3℃で850℃まで昇温し、3時間焼成して焼成粉を得た。得られた焼成粉をX線回折分析により同定したところ、β-ユークリプタイト単相であり、2θ=25°近傍に出現する最強線(102)面の回折ピーク強度は33394、結晶子径は58nmであった。 The dried powder was put into an alumina sagger, heated to 850 ° C. at 3 ° C./min in a table electric furnace, and fired for 3 hours to obtain a fired powder. The obtained calcined powder is identified by X-ray diffraction analysis to be β-eucryptite single phase, the diffraction peak intensity of the strongest line (102) surface appearing near 2θ = 25 ° is 33,394, and the crystallite diameter is It was 58 nm.
 次に、上記の焼成粉8g、イソプロパノール32g、φ1mmジルコニアビーズ85gを100ccプラスチック製容器に入れ、ヤマト科学社製ユニバーサルボールミルUB32に載せて200rpmで24h粉砕することにより、β-ユークリプタイト微粒子を含むスラリーを得た。 Next, 8 g of the above-mentioned calcined powder, 32 g of isopropanol and 85 g of φ1 mm zirconia beads are placed in a 100 cc plastic container, placed on a universal ball mill UB32 manufactured by Yamato Scientific Co., and crushed for 24 hours at 200 rpm to contain β-eucryptite fine particles. A slurry was obtained.
 前述と同様の方法によりスラリーを乾燥してβ-ユークリプタイト微粒子の粉末を得た。X線回折分析により同定したところ、β-ユークリプタイト単相であり、2θ=25°近傍に出現する最強線(102)面の回折ピーク強度は30718、結晶子径は60nmであった。窒素吸着法による一次粒子径dは0.28μmであり、レーザー回折法による分散粒子径d50は0.28μmであった。また、電子顕微鏡で粒子形態を観察したところ、丸みを帯びた微粒子が確認された。 The slurry was dried by the same method as described above to obtain a powder of β-eucryptite fine particles. As a result of identification by X-ray diffraction analysis, the diffraction peak intensity of the strongest line (102) plane which is a β-eucryptite single phase and appears near 2θ = 25 ° is 30718, and the crystallite diameter is 60 nm. The primary particle diameter d S by the nitrogen adsorption method was 0.28 μm, and the dispersed particle diameter d 50 by the laser diffraction method was 0.28 μm. Further, when the particle morphology was observed with an electron microscope, rounded fine particles were confirmed.
[実施例3]
 市販のβ-ユークリプタイト粉末FE-200(丸ス釉薬社製)40g、イソプロパノール160g、φ0.5mmジルコニアビーズ900gを粉砕容器に入れ、アイメックス社製のビーズミル装置イージーナノRMB型を用いて1000rpmの条件で湿式粉砕した。5時間粉砕した後にジルコニアビーズを除去し、スラリーを回収した。
[Example 3]
40 g of commercially available β-eucryptite powder FE-200 (manufactured by Marusu Gakuen Co., Ltd.), 160 g of isopropanol, and 900 g of φ 0.5 mm zirconia beads are placed in a grinding container, and a bead mill apparatus Easy Nano RMB type manufactured by Imex Co., Ltd. Wet grinding was performed under the conditions. After grinding for 5 hours, the zirconia beads were removed and the slurry was recovered.
 次いで、このスラリーをナスフラスコに入れて、ロータリーエバポレーターを用いて10Torrで揮発分がなくなるまで乾燥して乾燥粉を得た。この乾燥粉をX線回折分析により同定したところ、β-ユークリプタイト単相であり、2θ=25°近傍に出現する最強線(102)面の回折ピーク強度は14295、結晶子径は40nmであった。窒素吸着法による一次粒子径dは0.19μmであり、レーザー回折法による分散粒子径d50は0.39μmであった。 The slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until volatiles were eliminated to obtain a dry powder. The dry powder is identified by X-ray diffraction analysis to be β-eucryptite single phase, and the diffraction peak intensity of the strongest line (102) surface appearing near 2θ = 25 ° is 14295, and the crystallite diameter is 40 nm. there were. The primary particle diameter d S by the nitrogen adsorption method was 0.19 μm, and the dispersed particle diameter d 50 by the laser diffraction method was 0.39 μm.
 この乾燥粉をアルミナ匣鉢に入れて、卓上電気炉により毎分3℃で850℃まで昇温し、5時間焼成して焼成粉を得た。得られた焼成粉をX線回折分析により同定したところ、β-ユークリプタイト単相であり、2θ=25°近傍に出現する最強線(102)面の回折ピーク強度は32006、結晶子径は58nmであった。 The dried powder was put in an alumina sagger, heated to 850 ° C. at 3 ° C./min in a table electric furnace, and fired for 5 hours to obtain a fired powder. The obtained calcined powder is identified by X-ray diffraction analysis to be β-eucryptite single phase, and the diffraction peak intensity of the strongest line (102) surface appearing near 2θ = 25 ° is 32006, and the crystallite diameter is It was 58 nm.
 次に、上記の焼成粉8g、イソプロパノール32g、φ1mmジルコニアビーズ85gを100ccプラスチック製容器に入れ、ヤマト科学社製ユニバーサルボールミルUB32に載せて200rpmで24h粉砕することにより、β-ユークリプタイト微粒子を含むスラリーを得た。 Next, 8 g of the above-mentioned calcined powder, 32 g of isopropanol and 85 g of φ1 mm zirconia beads are placed in a 100 cc plastic container, placed on a universal ball mill UB32 manufactured by Yamato Scientific Co., and crushed for 24 hours at 200 rpm to contain β-eucryptite fine particles. A slurry was obtained.
 前述と同様の方法によりスラリーを乾燥してβ-ユークリプタイト微粒子の粉末を得た。X線回折分析により同定したところ、β-ユークリプタイト単相であり、2θ=25°近傍に出現する最強線(102)面の回折ピーク強度は25166、結晶子径は52nmであった。窒素吸着法による一次粒子径dは0.34μmであり、レーザー回折法による分散粒子径d50は0.42μmであった。また、電子顕微鏡で粒子形態を観察したところ、丸みを帯びた微粒子が確認された。 The slurry was dried by the same method as described above to obtain a powder of β-eucryptite fine particles. As a result of identification by X-ray diffraction analysis, the diffraction peak intensity of the strongest line (102) plane which is a β-eucryptite single phase and appears near 2θ = 25 ° was 25166, and the crystallite diameter was 52 nm. Primary particle diameter d S by a nitrogen adsorption method was 0.34 .mu.m, dispersed particles size d 50 by a laser diffraction method was 0.42 .mu.m. Further, when the particle morphology was observed with an electron microscope, rounded fine particles were confirmed.
[実施例4]
 製造例2で製造したフォルステライト粉末40g、メタノール160g、φ0.5mmジルコニアビーズ900gを粉砕容器に入れ、アイメックス社製のビーズミル装置イージーナノRMB型を用いて1000rpmの条件で湿式粉砕した。5時間粉砕した後にジルコニアビーズを除去し、スラリーを回収した。
Example 4
40 g of forsterite powder produced in Production Example 2, 160 g of methanol, and 900 g of φ 0.5 mm zirconia beads were placed in a grinding container, and wet ground under conditions of 1000 rpm using a bead mill apparatus Easy Nano RMB type manufactured by Imex. After grinding for 5 hours, the zirconia beads were removed and the slurry was recovered.
 次いで、このスラリーをナスフラスコに入れて、ロータリーエバポレーターを用いて10Torrで揮発分がなくなるまで乾燥して乾燥粉を得た。この乾燥粉をX線回折分析により同定したところ、フォルステライト単相であり、2θ=36.5°近傍の最強線(112)面の回折ピーク強度は1379、結晶子径は23nmであった。窒素吸着法による一次粒子径dは0.03μmであり、レーザー回折法による分散粒子径d50は0.22μmであった。 The slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until volatiles were eliminated to obtain a dry powder. The dry powder was identified by X-ray diffraction analysis to be a forsterite single phase, and the diffraction peak intensity of the strongest line (112) plane near 2θ = 36.5 ° was 1379, and the crystallite diameter was 23 nm. Primary particle diameter d S by a nitrogen adsorption method was 0.03 .mu.m, dispersed particles size d 50 by a laser diffraction method was 0.22 [mu] m.
 この乾燥粉をアルミナ匣鉢に入れて、卓上電気炉により毎分3℃で900℃まで昇温し、5時間焼成して焼成粉を得た。得られた焼成粉をX線回折分析により同定したところ、フォルステライト単相であり、2θ=36.5°近傍の最強線(112)面の回折ピーク強度は2450、結晶子径は31nmであった。 The dried powder was put in an alumina sagger, heated to 900 ° C. at 3 ° C./min in a table-top electric furnace, and fired for 5 hours to obtain a fired powder. The obtained calcined powder is identified by X-ray diffraction analysis to be a forsterite single phase, and the diffraction peak intensity of the strongest line (112) plane near 2θ = 36.5 ° is 2450, and the crystallite diameter is 31 nm. The
 次に、上記の焼成粉8g、イソプロパノール32g、φ1mmジルコニアビーズ85gを100ccプラスチック製容器に入れ、ヤマト科学社製ユニバーサルボールミルUB32に載せて200rpmで24h粉砕することにより、フォルステライト微粒子を含むスラリーを得た。 Next, 8 g of the above-mentioned calcined powder, 32 g of isopropanol and 85 g of φ1 mm zirconia beads are placed in a 100 cc plastic container, placed on a universal ball mill UB32 manufactured by Yamato Scientific Co., and crushed for 24 hours at 200 rpm to obtain a slurry containing fine forsterite particles. The
 前述と同様の方法によりスラリーを乾燥してフォルステライト微粒子の粉末を得た。X線回折分析により同定したところ、フォルステライト単相であり、2θ=36.5°近傍に出現する最強線(112)面の回折ピーク強度は2369、結晶子径は33nmであった。窒素吸着法による一次粒子径dは0.07μmであり、レーザー回折法による分散粒子径d50は0.19μmであった。また、電子顕微鏡で粒子形態を観察したところ、丸みを帯びた微粒子が確認された。 The slurry was dried by the same method as described above to obtain a powder of forsterite fine particles. As a result of identification by X-ray diffraction analysis, the diffraction peak intensity of the strongest line (112) plane which is forsterite single phase and appears near 2θ = 36.5 ° is 2369, and the crystallite diameter is 33 nm. Primary particle diameter d S by a nitrogen adsorption method was 0.07 .mu.m, dispersed particles size d 50 by a laser diffraction method was 0.19 .mu.m. Further, when the particle morphology was observed with an electron microscope, rounded fine particles were confirmed.
 [比較例1]
 β-ユークリプタイト粉末の合成は製造例1と同様に行った。このβ-ユークリプタイト粉末40g、イソプロパノール160g、φ0.5mmジルコニアビーズ900gを粉砕容器に入れ、アイメックス社製のビーズミル装置イージーナノRMB型を用いて1000rpmの条件で湿式粉砕した。5時間粉砕した後にジルコニアビーズを除去し、β-ユークリプタイト微粒子を含むスラリーを得た。
Comparative Example 1
The synthesis of β-eucryptite powder was performed in the same manner as in Production Example 1. 40 g of this β-eucryptite powder, 160 g of isopropanol, and 900 g of φ 0.5 mm zirconia beads were placed in a crushing container, and wet-milled under conditions of 1000 rpm using a bead mill apparatus Easy Nano RMB type manufactured by Imex. After grinding for 5 hours, the zirconia beads were removed to obtain a slurry containing β-eucryptite fine particles.
 次いで、このスラリーをナスフラスコに入れて、ロータリーエバポレーターを用いて10Torrで揮発分がなくなるまで乾燥して乾燥粉を調製した。X線回折分析により同定したところ、β-ユークリプタイト単相であり、2θ=25°近傍に出現する最強線(102)面の回折ピーク強度は15361、結晶子径は40nmであった。窒素吸着法による一次粒子径dは0.20μmであり、レーザー回折法による分散粒子径d50は0.39μmであった。また、電子顕微鏡で粒子形態を観察したところ、不定形で角張った微粒子が確認された。 The slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until free of volatiles to prepare a dry powder. As a result of identification by X-ray diffraction analysis, the diffraction peak intensity of the strongest line (102) plane which is a β-eucryptite single phase and appears near 2θ = 25 ° was 15361, and the crystallite diameter was 40 nm. Primary particle diameter d S by a nitrogen adsorption method is 0.20 [mu] m, dispersed particles size d 50 by a laser diffraction method was 0.39 .mu.m. In addition, when the particle form was observed with an electron microscope, irregular and angular fine particles were confirmed.
 [比較例2]
 製造例1で製造したβ-ユークリプタイト粉末100gをイソプロパノール400gに添加したスラリーを、広島メタル&マシナリー社製のビーズミル装置ウルトラアペックスミルUAM015を用いてφ0.5mmジルコニアビーズ(充填率80%)、周速5m/secの条件で5時間30分粉砕し、スラリーを回収した。
Comparative Example 2
A slurry obtained by adding 100 g of the β-eucryptite powder produced in Production Example 1 to 400 g of isopropanol was prepared using a bead mill Ultra Apex Mill UAM 015 manufactured by Hiroshima Metal & Machinery Co., Ltd. The slurry was ground for 5 hours and 30 minutes under the condition of 5 m / sec in peripheral speed.
 次いで、このスラリーをナスフラスコに入れて、ロータリーエバポレーターを用いて10Torrで揮発分がなくなるまで乾燥して乾燥粉を得た。この乾燥粉をX線回折分析により同定したところ、β-ユークリプタイト単相であり、2θ=25°近傍に出現する最強線(102)面の回折ピーク強度は8931、結晶子径は31nmであった。窒素吸着法による一次粒子径dは0.16μmであり、レーザー回折法による分散粒子径d50は0.30μmであった。また、電子顕微鏡で粒子形態を観察したところ、不定形で角張った微粒子が確認された。 The slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until volatiles were eliminated to obtain a dry powder. The dry powder is identified by X-ray diffraction analysis to be β-eucryptite single phase, and the intensity of the diffraction peak of the strongest line (102) surface appearing near 2θ = 25 ° is 8931, and the crystallite diameter is 31 nm. there were. The primary particle diameter d S by the nitrogen adsorption method was 0.16 μm, and the dispersed particle diameter d 50 by the laser diffraction method was 0.30 μm. In addition, when the particle form was observed with an electron microscope, irregular and angular fine particles were confirmed.
 [比較例3]
 製造例1で製造したβ-ユークリプタイト粉末60g、イソプロパノール240g、φ0.5mmジルコニアビーズ1200gを粉砕容器に入れ、アイメックス社製のビーズミル装置イージーナノRMB型を用いて1000rpmの条件で湿式粉砕した。5時間粉砕した後にジルコニアビーズを除去し、β-ユークリプタイト微粒子を含むスラリーを得た。
Comparative Example 3
60 g of the β-eucryptite powder produced in Production Example 1, 240 g of isopropanol, and 1200 g of φ 0.5 mm zirconia beads were placed in a grinding container, and wet ground under conditions of 1000 rpm using a bead mill apparatus Easy Nano RMB type manufactured by Imex. After grinding for 5 hours, the zirconia beads were removed to obtain a slurry containing β-eucryptite fine particles.
 次いで、このスラリーをナスフラスコに入れて、ロータリーエバポレーターを用いて10Torrで揮発分がなくなるまで乾燥して乾燥粉を得た。この乾燥粉をX線回折分析により同定したところ、β-ユークリプタイト単相であり、2θ=25°近傍に出現する最強線(102)面の回折ピーク強度は11149、結晶子径は35nmであった。窒素吸着法による一次粒子径dは0.17μmであり、レーザー回折法による分散粒子径d50は0.32μmであった。 The slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until volatiles were eliminated to obtain a dry powder. The dry powder is identified by X-ray diffraction analysis to be β-eucryptite single phase, and the intensity of the diffraction peak of the strongest line (102) surface appearing near 2θ = 25 ° is 11149, and the crystallite diameter is 35 nm. there were. The primary particle diameter d S by the nitrogen adsorption method was 0.17 μm, and the dispersed particle diameter d 50 by the laser diffraction method was 0.32 μm.
 この乾燥粉をアルミナ匣鉢に入れて、卓上電気炉により毎分3℃で700℃まで昇温し、5時間焼成して焼成粉を得た。得られた焼成粉をX線回折分析により同定したところ、β-ユークリプタイト単相であり、2θ=25°近傍に出現する最強線(102)面の回折ピーク強度は18786、結晶子径は37nmであり、結晶性の向上が不十分であった。また、電子顕微鏡で粒子形態を観察したところ、不定形で角張った微粒子が確認された。 The dried powder was put in an alumina sagger, heated to 700 ° C. at 3 ° C./min in a table-top electric furnace, and fired for 5 hours to obtain a fired powder. The obtained calcined powder is identified by X-ray diffraction analysis to be β-eucryptite single phase, and the diffraction peak intensity of the strongest line (102) surface appearing near 2θ = 25 ° is 18786, and the crystallite diameter is It was 37 nm and the improvement of crystallinity was insufficient. In addition, when the particle form was observed with an electron microscope, irregular and angular fine particles were confirmed.
 [比較例4]
 焼成工程の温度を950℃に変更した以外は比較例3と同様の方法で焼成粉を得た。得られた焼成粉をX線回折分析により同定したところ、β-ユークリプタイト単相であり、2θ=25°近傍に出現する最強線(102)面の回折ピーク強度は42042、結晶子径は69nmであった。
Comparative Example 4
A fired powder was obtained in the same manner as in Comparative Example 3 except that the temperature of the firing step was changed to 950 ° C. The obtained calcined powder is identified by X-ray diffraction analysis to be β-eucryptite single phase, and the diffraction peak intensity of the strongest line (102) surface appearing near 2θ = 25 ° is 42042, and the crystallite diameter is It was 69 nm.
 次に、上記の焼成粉8g、イソプロパノール32g、φ1mmジルコニアビーズ85gを100ccプラスチック製容器に入れ、ヤマト科学社製ユニバーサルボールミルUB32に載せて200rpmで24h粉砕することにより、β-ユークリプタイトを含むスラリーを得た。 Next, 8 g of the calcined powder, 32 g of isopropanol, and 85 g of φ1 mm zirconia beads are placed in a 100 cc plastic container, placed on a universal ball mill UB32 manufactured by Yamato Scientific Co., and crushed for 24 hours at 200 rpm to obtain a slurry containing β-eucryptite. I got
 次いで、このスラリーをナスフラスコに入れて、ロータリーエバポレーターを用いて10Torrで揮発分がなくなるまで乾燥して乾燥粉を得た。この乾燥粉をX線回折分析により同定したところ、β-ユークリプタイト単相であり、2θ=25°近傍に出現する最強線(102)面の回折ピーク強度は32008、結晶子径は64nmであった。窒素吸着法による一次粒子径dは0.95μmであり、レーザー回折法による分散粒子径d50は78μmであり、0.1μm~2.0μmの範囲に分散しなかった。また、電子顕微鏡で粒子形態を観察したところ、不定形で角張った微粒子が確認された。 The slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until volatiles were eliminated to obtain a dry powder. The dry powder is identified by X-ray diffraction analysis to be β-eucryptite single phase, and the diffraction peak intensity of the strongest line (102) surface appearing near 2θ = 25 ° is 32008, and the crystallite diameter is 64 nm. there were. Primary particle diameter d S by a nitrogen adsorption method was 0.95 .mu.m, dispersed particles size d 50 by a laser diffraction method is 78 .mu.m, was dispersed in a range of 0.1 [mu] m ~ 2.0 .mu.m. In addition, when the particle form was observed with an electron microscope, irregular and angular fine particles were confirmed.
 [比較例5]
 製造例2で製造したフォルステライト粉末40g、イソプロパノール160g、φ0.5mmジルコニアビーズ900gを粉砕容器に入れ、アイメックス社製のビーズミル装置イージーナノRMB型を用いて1000rpmの条件で湿式粉砕した。5時間粉砕した後にジルコニアビーズを除去し、フォルステライト微粒子を含むスラリーを得た。
Comparative Example 5
40 g of forsterite powder produced in Production Example 2, 160 g of isopropanol, and 900 g of φ 0.5 mm zirconia beads were placed in a grinding container, and wet ground under conditions of 1000 rpm using a bead mill apparatus Easy Nano RMB type manufactured by Imex. After grinding for 5 hours, the zirconia beads were removed to obtain a slurry containing forsterite fine particles.
 次いで、このスラリーをナスフラスコに入れて、ロータリーエバポレーターを用いて10Torrで揮発分がなくなるまで乾燥して乾燥粉を得た。この乾燥粉をX線回折分析により同定したところ、フォルステライト単相であり、2θ=36.5°近傍の最強線(112)面の回折ピーク強度は1379、結晶子径は23nmであった。窒素吸着法による一次粒子径dは0.03μmであり、レーザー回折法による分散粒子径d50が0.22μmであった。 The slurry was then placed in an eggplant flask and dried at 10 Torr using a rotary evaporator until volatiles were eliminated to obtain a dry powder. The dry powder was identified by X-ray diffraction analysis to be a forsterite single phase, and the diffraction peak intensity of the strongest line (112) plane near 2θ = 36.5 ° was 1379, and the crystallite diameter was 23 nm. Primary particle diameter d S by a nitrogen adsorption method is 0.03 .mu.m, the dispersed particles size d 50 by a laser diffraction method was 0.22 [mu] m.
 この乾燥粉をアルミナ匣鉢に入れて、卓上電気炉により毎分3℃で700℃まで昇温し、5時間焼成して焼成粉を得た。得られた焼成粉をX線回折分析により同定したところ、フォルステライト単相であり、2θ=36.5°近傍の最強線(112)面の回折ピーク強度は912、結晶子径24nmであり、結晶性の向上が不十分であった。また、電子顕微鏡で粒子形態を観察したところ、不定形で角張った微粒子が確認された。 The dried powder was put in an alumina sagger, heated to 700 ° C. at 3 ° C./min in a table-top electric furnace, and fired for 5 hours to obtain a fired powder. The obtained calcined powder is identified by X-ray diffraction analysis to be a forsterite single phase, the diffraction peak intensity of the strongest line (112) plane near 2θ = 36.5 ° is 912, and the crystallite diameter is 24 nm, The improvement in crystallinity was insufficient. In addition, when the particle form was observed with an electron microscope, irregular and angular fine particles were confirmed.
 上記の結果を、表1にまとめる。表中の「BET粒子径」は、「窒素吸着法による比表面積から球形粒子に換算した一次粒子径d」の略記である。また、実施例1~4に係る珪酸塩化合物微粒子の電子顕微鏡画像を図1及び2に示し、比較例1及び4に係る珪酸塩化合物微粒子の電子顕微鏡画像を図3に示す。 The above results are summarized in Table 1. “BET particle diameter” in the table is an abbreviation of “primary particle diameter d S converted to spherical particles from specific surface area by nitrogen adsorption method”. Further, electron microscope images of the silicate compound fine particles according to Examples 1 to 4 are shown in FIGS. 1 and 2, and electron microscope images of the silicate compound fine particles according to Comparative Examples 1 and 4 are shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ここで、実施例1~3の珪酸塩化合物(β-ユークリプタイト)微粒子は、焼成((B)工程)を経た後、それぞれ、結晶子径が約1.5倍(実施例1)、1.9倍(実施例2)及び1.5倍(実施例3)に成長することが確認された。一方、焼成温度を700℃とした比較例3では、ほぼ粒子成長がみられず、1.1倍以下の粒子成長であった。焼成温度が950℃とした比較例4では、約2倍まで粒子成長してしまうことが確認された。 Here, the fine particles of the silicate compound (β-eucryptite) of Examples 1 to 3 each have a crystallite diameter of about 1.5 times (Example 1), after undergoing calcination (Step (B)), It was confirmed to grow 1.9 times (Example 2) and 1.5 times (Example 3). On the other hand, in Comparative Example 3 in which the firing temperature was 700 ° C., almost no particle growth was observed, and the particle growth was 1.1 times or less. In Comparative Example 4 in which the firing temperature was 950 ° C., it was confirmed that the particles grew up to about twice.
 また、実施例4の珪酸塩化合物(フォルステライト)微粒子は、焼成((B)工程)を経た後、結晶子径が約1.3倍に成長することが確認された。一方、焼成温度を700℃とした比較例5では、ほぼ粒子成長がみられなかった。 Moreover, it was confirmed that the crystallite diameter of the silicate compound (forsterite) fine particles of Example 4 grows to about 1.3 times after passing through the firing (step (B)). On the other hand, in Comparative Example 5 in which the firing temperature was 700 ° C., almost no particle growth was observed.
 そして、実施例1~4の珪酸塩化合物微粒子は、電子顕微鏡により、丸みを帯びた粒子形態が観察されたのに対し、比較例1及び4では、不定形で角張った微粒子が観察された。 In the silicate compound fine particles of Examples 1 to 4, the rounded particle shape was observed by the electron microscope, whereas in Comparative Examples 1 and 4, the irregularly shaped angular fine particles were observed.
 以上の通り、実施例1~3のβ-ユークリプタイト微粒子は、窒素吸着法による比表面積から球形粒子に換算した一次粒子径dと、分散粒子径d50と、の比(d50/d)が1.0以上3.0未満であり、β-ユークリプタイト相の(102)面に帰属するX線回折ピークから算出される結晶子径が45nm以上100nm以下であった。 As described above, in the β-eucryptite fine particles of Examples 1 to 3, the ratio (d 50 / d) of the primary particle diameter d S converted to the spherical particle from the specific surface area by the nitrogen adsorption method and the dispersed particle diameter d 50 d S ) was 1.0 or more and less than 3.0, and the crystallite diameter calculated from the X-ray diffraction peak belonging to the (102) plane of the β-eucryptite phase was 45 nm or more and 100 nm or less.
 また、実施例4のフォルステライト微粒子は、窒素吸着法による比表面積から球形粒子に換算した一次粒子径dと、分散粒子径d50と、の(比d50/d)が1.0以上3.0未満であり、フォルステライト相の(112)面に帰属するX線回折ピークから算出される結晶子径が30nm以上100nm以下であった。 Moreover, forsterite particles of Example 4, the primary particle diameter d S in terms of spherical particles from the specific surface area by nitrogen adsorption method, the dispersed particle size d 50, of (the ratio d 50 / d S) of 1.0 The crystallite diameter is not less than 3.0 and is not less than 30 nm and not more than 100 nm, which is calculated from the X-ray diffraction peak belonging to the (112) plane of the forsterite phase.
 本発明の珪酸塩化合物微粒子は、粒子径が小さく、樹脂への分散性にも優れるため、樹脂に対して、従来よりも高密度に充填させることができる。しかも、本発明の珪酸塩化合物微粒子は、結晶性が高いため、その材料が有する本来の特性を十分に発揮できる。そのため、例えば、β-ユークリプタイト微粒子であれば、半導体封止材料やアンダーフィル等の用途において、CTEを低減させるためのフィラーとして好適に使用できる。また、フォルステライト微粒子であれば、半導体封止材料等の用途において、誘電損失を低減させるためのフィラーとして好適に使用できる。 The fine particles of the silicate compound of the present invention have a small particle diameter and are excellent in dispersibility in a resin, so that the resin can be filled at a higher density than in the past. In addition, since the fine particles of the silicate compound of the present invention have high crystallinity, the original characteristics of the material can be sufficiently exhibited. Therefore, for example, β-eucryptite fine particles can be suitably used as a filler for reducing CTE in applications such as semiconductor sealing materials and underfills. Moreover, if it is a forsterite fine particle, it can be conveniently used as a filler for reducing a dielectric loss in uses, such as a semiconductor sealing material.

Claims (4)

  1.  窒素吸着法による比表面積から球形粒子に換算した一次粒子径(d)と、分散粒子径(d50)と、の比(d50/d)が1.0以上3.0未満であり、
     β-ユークリプタイト相の(102)面に帰属するX線回折ピークから算出される結晶子径が45nm以上100nm以下であること
     を特徴とする珪酸塩化合物微粒子。
    The ratio (d 50 / d S ) of the primary particle diameter (d S ) converted to the spherical particles from the specific surface area by the nitrogen adsorption method and the dispersed particle diameter (d 50 ) is 1.0 or more and less than 3.0 ,
    A silicate compound fine particle characterized in that a crystallite diameter calculated from an X-ray diffraction peak belonging to the (102) plane of a β-eucryptite phase is 45 nm or more and 100 nm or less.
  2.  窒素吸着法による比表面積から球形粒子に換算した一次粒子径(d)と、分散粒子径(d50)と、の(比d50/d)が1.0以上3.0未満であり、
     フォルステライト相の(112)面に帰属するX線回折ピークから算出される結晶子径が30nm以上100nm以下であること
     を特徴とする珪酸塩化合物微粒子。
    (Ratio d 50 / d S ) of primary particle diameter (d S ) converted to spherical particles from specific surface area by nitrogen adsorption method and dispersed particle diameter (d 50 ) is 1.0 or more and less than 3.0 ,
    A silicate compound fine particle characterized in that a crystallite diameter calculated from an X-ray diffraction peak belonging to the (112) plane of the forsterite phase is 30 nm or more and 100 nm or less.
  3.  分散粒子径(d50)が0.1μm以上2.0μm以下の範囲内となるように珪酸塩化合物を粉砕する(A)工程と、
     前記粉砕した珪酸塩化合物の微粒子を750℃以上950℃未満の温度で焼成する(B)工程と、
     を有すること
     を特徴とする珪酸塩化合物微粒子の製造方法。
    (A) grinding the silicate compound so that the dispersed particle size (d 50 ) is in the range of 0.1 μm to 2.0 μm.
    (B) firing the pulverized fine particles of the silicate compound at a temperature of 750 ° C. or more and less than 950 ° C .;
    A method for producing silicate compound fine particles characterized by having:
  4.  前記焼成した微粒子を、分散粒子径(d50)が0.1μm以上2.0μm以下の範囲内となるように分散させる(C)工程を更に有すること
     を特徴とする請求項3に記載の珪酸塩化合物微粒子の製造方法。
    The silica according to claim 3, further comprising a step (C) of dispersing the fired fine particles such that the dispersed particle size (d 50 ) is in the range of 0.1 μm to 2.0 μm. Method of producing salt compound fine particles.
PCT/JP2018/027107 2017-07-20 2018-07-19 Silicate compound microparticles and method for producing same WO2019017435A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-141266 2017-07-20
JP2017141266 2017-07-20

Publications (1)

Publication Number Publication Date
WO2019017435A1 true WO2019017435A1 (en) 2019-01-24

Family

ID=65015200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027107 WO2019017435A1 (en) 2017-07-20 2018-07-19 Silicate compound microparticles and method for producing same

Country Status (2)

Country Link
TW (1) TW201908241A (en)
WO (1) WO2019017435A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024708A1 (en) * 2020-07-29 2022-02-03 京セラ株式会社 Electric power management server, and electric power management method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197311A (en) * 1989-12-25 1991-08-28 Tokuyama Soda Co Ltd Production of metallic oxide particle
JPH1179729A (en) * 1997-09-08 1999-03-23 Chichibu Onoda Cement Corp Production of wallastonite fine particle
WO2015146961A1 (en) * 2014-03-25 2015-10-01 日産化学工業株式会社 Production method for forsterite fine particles
WO2016021688A1 (en) * 2014-08-07 2016-02-11 日産化学工業株式会社 Silane-treated forsterite fine particles and production method therefor, and organic solvent dispersion of silane-treated forsterite fine particles and production method therefor
WO2016117248A1 (en) * 2015-01-22 2016-07-28 日産化学工業株式会社 METHOD FOR PRODUCING β-EUCRYPTITE FINE PARTICLES

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197311A (en) * 1989-12-25 1991-08-28 Tokuyama Soda Co Ltd Production of metallic oxide particle
JPH1179729A (en) * 1997-09-08 1999-03-23 Chichibu Onoda Cement Corp Production of wallastonite fine particle
WO2015146961A1 (en) * 2014-03-25 2015-10-01 日産化学工業株式会社 Production method for forsterite fine particles
WO2016021688A1 (en) * 2014-08-07 2016-02-11 日産化学工業株式会社 Silane-treated forsterite fine particles and production method therefor, and organic solvent dispersion of silane-treated forsterite fine particles and production method therefor
WO2016117248A1 (en) * 2015-01-22 2016-07-28 日産化学工業株式会社 METHOD FOR PRODUCING β-EUCRYPTITE FINE PARTICLES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SABERI, ALI ET AL.: "Synthesis and characterization of nanocrystalline forsterite through citrate-nitrate route", CERAMICS INTERNATIONAL, vol. 35, no. 4, 2009, pages 1705 - 1708, XP025967124 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024708A1 (en) * 2020-07-29 2022-02-03 京セラ株式会社 Electric power management server, and electric power management method

Also Published As

Publication number Publication date
TW201908241A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
TWI418512B (en) Process for preparing an aluminium oxide powder having a high alpha-al2o3 content
JP5771055B2 (en) Method for producing spherical alumina powder
JP5412109B2 (en) Nanoparticles comprising aluminum oxide and oxides of elements of first and second main groups of periodic table of elements and method for producing the same
KR101286825B1 (en) PROCESS FOR PRODUCING FINE α-ALUMINA PARTICLES
KR20070013213A (en) FINE alpha;-ALUMINA PARTICLE
JP2010150090A (en) alpha-ALUMINA POWDER
JP5427754B2 (en) Α-alumina for sapphire single crystal production
JP2007055888A (en) FINE alpha-ALUMINA PARTICLE
WO2018105699A1 (en) Zinc oxide powder for preparing zinc oxide sintered body with high strength and low thermal conductivity
JP6587070B2 (en) Process for producing β-eucryptite fine particles
WO2019017435A1 (en) Silicate compound microparticles and method for producing same
JP4046491B2 (en) Method for producing double oxide-coated magnesium oxide
KR102375076B1 (en) Method for producing heat-resistant aluminum hydroxide
KR101551616B1 (en) Preparing method for micro-platelet alumina
WO2020203710A1 (en) Spherical magnesium oxide, method for producing same, heat-conductive filler, and resin composition
JP4386046B2 (en) Method for producing fine α-alumina
JP2018165221A (en) Method for producing boehmite
KR100328943B1 (en) Method for preparing silica radome by slip casting process
JP6010843B2 (en) Method for producing particulate α-alumina
JP6032679B2 (en) Single-phase cubic barium titanate fine particles, dispersion containing the same, and method for producing the same
KR101579890B1 (en) METHOD FOR PREPARATION OF α-ALUMINA WITH HIGH DISPERSED NANOSIZE PARTICLES AND ELECTRICALLY INSULATED THERMAL CUNDUCTIVE ALUMINA SOL PREPARED THEREFROM
TW202229174A (en) Zirconia particles and method for producing zirconia particles
JPH0712927B2 (en) Method for producing easily sinterable alumina powder
TW202222700A (en) Tantalum oxide particle and method for producing tantalum oxide particle
KR100302229B1 (en) Method for producing silica radome using slip casting process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP