WO2019044252A1 - 水分量センサ及び路面状態検出装置 - Google Patents

水分量センサ及び路面状態検出装置 Download PDF

Info

Publication number
WO2019044252A1
WO2019044252A1 PCT/JP2018/027223 JP2018027223W WO2019044252A1 WO 2019044252 A1 WO2019044252 A1 WO 2019044252A1 JP 2018027223 W JP2018027223 W JP 2018027223W WO 2019044252 A1 WO2019044252 A1 WO 2019044252A1
Authority
WO
WIPO (PCT)
Prior art keywords
road surface
light
signal
water
processing unit
Prior art date
Application number
PCT/JP2018/027223
Other languages
English (en)
French (fr)
Inventor
弘貴 松浪
林 雅則
徹 馬場
渡部 祥文
則之 安池
貴司 中川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880055090.0A priority Critical patent/CN111051855B/zh
Priority to JP2019539055A priority patent/JP6788863B2/ja
Priority to EP18849537.8A priority patent/EP3677897B1/en
Priority to US16/641,599 priority patent/US11480520B2/en
Publication of WO2019044252A1 publication Critical patent/WO2019044252A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/02Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges

Definitions

  • the present invention relates to a moisture content sensor and a road surface state detecting device.
  • a moisture content sensor for example, an infrared moisture meter that measures the moisture content using absorption of infrared radiation by moisture is known (see, for example, Patent Document 1).
  • an object of the present invention is to provide a moisture content sensor and a road surface condition detecting device capable of enhancing the accuracy of detection results by suppressing the influence of a moving object moving on the road surface.
  • a moisture content sensor is a moisture content sensor that emits light to a road surface and detects the moisture content of the road surface based on reflected light from the road surface, A light emitting unit that emits toward the road surface a detection light including a first wavelength band whose absorption by water is larger than a predetermined value and a reference light including a second wavelength band whose absorption by water is less than the predetermined value; A first light receiving unit that receives detection light reflected by the road surface and converts it into a first electrical signal; a second light receiving unit that receives reference light reflected by the road surface; and converts it into a second electric signal; And an arithmetic processing unit that detects the amount of water contained in the road surface based on the signal ratio of the electrical signal and the second electrical signal, the arithmetic processing unit determining the signal strength of at least one of the first electrical signal and the second electrical signal Is within the predetermined range based on the reference value Based on the signal
  • a road surface state detecting device includes the moisture content sensor and a display unit for displaying information based on the moisture content detected by the moisture content sensor.
  • the water content sensor and the road surface condition detecting device can suppress the influence of the moving object moving on the road surface, and can improve the accuracy of the measurement result.
  • FIG. 1 is a schematic view showing a schematic configuration of a road surface state detecting device according to the embodiment.
  • FIG. 2 is a control block diagram of the road surface state detecting device according to the embodiment.
  • FIG. 3 is a schematic view showing the configuration of the water content sensor according to the embodiment and the road surface.
  • FIG. 4 is a block diagram showing a control configuration of the water content sensor according to the embodiment.
  • FIG. 5 is a diagram showing an absorption spectrum of water and water vapor.
  • FIG. 6 is an explanatory view showing a state where no vehicle is present immediately below the moisture content sensor according to the embodiment.
  • FIG. 7 is an explanatory view showing a state where the vehicle passes immediately below the moisture content sensor according to the embodiment.
  • FIG. 8 is a graph showing the signal intensity change of the second electric signal caused by the reference light according to the embodiment.
  • FIG. 9 is an image view serving as a reference for creating the risk level table of the embodiment.
  • each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
  • FIG. 1 is a schematic view showing a schematic configuration of a road surface state detecting device 100 according to the embodiment.
  • the road surface state detecting device 100 is provided for a pair of columns 200 and 201 installed in a roadside zone.
  • the road surface state detecting device 100 includes the water content sensor 1 and the display unit 110.
  • the moisture content sensor 1 is attached to a support 210 extending from the top of the column 200 to the top of the roadway.
  • the moisture content sensor 1 is an optical sensor that detects the moisture content on the road surface S of the roadway.
  • the moisture content sensor 1 is disposed so as to irradiate the reference light and the detection light toward the road surface S immediately below it.
  • the display unit 110 is installed on a support 201 disposed forward in the traveling direction relative to the support 200.
  • the display unit 110 is attached to a support unit 211 extended from the top of the support column 201 to the upper side of the roadway.
  • the display unit 110 is, for example, a bulletin board that displays various information.
  • FIG. 2 is a control block diagram of the road surface state detecting device 100 according to the embodiment.
  • the road surface state detecting device 100 is provided with a control unit 120 that controls the moisture content sensor 1 and the display unit 110.
  • the control unit 120 is configured of, for example, a microcontroller.
  • the control unit 120 is a non-volatile memory storing a processing program for controlling the moisture content sensor 1 and the display unit 110, a volatile memory as a temporary storage area for executing the program, an input / output port, a program And so on.
  • the control unit 120 causes the display unit 110 to display information based on the water content detected by the water content sensor 1. Thereby, the information based on the moisture content of the road surface S can be notified from the display unit 110 to the driver of the vehicle V traveling on the road.
  • FIG. 3 is a schematic view showing the configuration of the water content sensor 1 and the road surface S according to the embodiment.
  • FIG. 4 is a block diagram showing a control configuration of the water content sensor 1 according to the embodiment.
  • the water content sensor 1 is a water content sensor that emits light to the road surface S and detects the water content of the road surface S based on the reflected light from the road surface S.
  • the moisture content sensor 1 detects the amount of moisture contained in the road surface S existing with the space 3 separated.
  • the “water content included in the road surface S” includes the water accumulated on the road surface S and the water that has permeated the surface portion of the road surface S.
  • the moisture content sensor 1 includes a housing 10, a light emitting unit 20, a first light receiving module 30, a second light receiving module 40, a temperature sensor 60, and a signal processing circuit 50.
  • the housing 10 is a housing of the road surface state detecting device 100, and accommodates the light emitting unit 20, the first light receiving module 30, the second light receiving module 40, and the signal processing circuit 50.
  • the housing 10 is formed of a light shielding material. Thereby, it can suppress that external light injects in the housing
  • the housing 10 is formed of a resin material or a metal material having a light shielding property with respect to light received by the first light receiving module 30 and the second light receiving module 40.
  • a plurality of openings are provided in the outer wall of the housing 10, and the lens 21 of the light emitting unit 20 and the lens 31 of the first light receiving module 30 are attached to these openings.
  • the light emitting unit 20 emits, toward the road surface S, detection light including a first wavelength band whose absorption by water is larger than a predetermined value, and reference light including a second wavelength band whose absorption by water is smaller than a predetermined value. It is a department. Specifically, the light emitting unit 20 includes a lens 21 and a light source 22.
  • the lens 21 is a condensing lens that condenses the light emitted from the light source 22 on the road surface S.
  • the lens 21 is a resin-made convex lens, it is not restricted to this.
  • the light source 22 is a light emitting diode (LED) light source that includes a first wavelength band forming detection light and a second wavelength band forming reference light, and emits continuous light having a peak wavelength on the second wavelength band side.
  • the light source 22 is an LED light source made of a compound semiconductor.
  • FIG. 5 is a diagram showing an absorption spectrum of water and water vapor. As shown in FIG. 5, the moisture has absorption peaks at wavelengths of about 1450 nm and about 1940 nm. Water vapor has an absorption peak at a wavelength slightly lower than the absorption peak of water, specifically at a wavelength of about 1350 nm to about 1400 nm and about 1800 nm to about 1900 nm.
  • a wavelength band where the light absorbance of water is high is selected as the first wavelength band that forms detection light
  • a wavelength band where the absorbance of water is smaller than the first wavelength band is selected as the second wavelength band that makes reference light. select.
  • the average wavelength of the second wavelength band is made longer than the average wavelength of the first wavelength body.
  • the central wavelength defined by the central value of the wavelength which is the half value of the maximum transmittance of the optical band pass filter for example, the central wavelength of the first wavelength band is 1450 nm, and the central wavelength of the second wavelength band is 1700 nm Do.
  • the road surface S includes the detection light including the first wavelength band where the absorption by water is large, and the water
  • the reference light including the second wavelength band whose absorption by the light source is smaller than the first wavelength band is irradiated.
  • the first light receiving module 30 includes a lens 31, a first band pass filter 32, and a first light receiving unit 33.
  • the lens 31 is a condensing lens for condensing the reflected light reflected by the road surface S on the first light receiving unit 33.
  • the lens 31 is, for example, fixed to the housing 10 so that the focal point is located on the light receiving surface of the first light receiving unit 33.
  • the lens 31 is, for example, a convex lens made of resin, but is not limited to this.
  • the first band pass filter 32 is a band pass filter that extracts light of a first wavelength band from the reflected light. Specifically, the first band pass filter 32 is disposed between the lens 31 and the first light receiving unit 33, and the light path of the reflected light that passes through the lens 31 and is incident on the first light receiving unit 33. Provided in In addition, the first band pass filter 32 is disposed to be inclined with respect to the optical axis of the lens 31. Thereby, the first band pass filter 32 transmits the light of the first wavelength band and reflects the light of the other wavelength bands.
  • the first light receiving unit 33 is a light receiving element that receives the light of the first wavelength band reflected by the road surface S and transmitted through the first band pass filter 32 and converts the light into a first electric signal.
  • the first light receiving unit 33 photoelectrically converts the received light of the first wavelength band to generate a first electric signal according to the amount of light received (that is, the intensity).
  • the generated first electrical signal is output to the signal processing circuit 50.
  • the first light receiving unit 33 is, for example, a photodiode, but is not limited thereto.
  • the first light receiving unit 33 may be a phototransistor or an image sensor.
  • the second light receiving module 40 includes a second band pass filter 42 and a second light receiving unit 43.
  • the second band pass filter 42 is a band pass filter that extracts light of a second wavelength band from the light reflected by the first band pass filter 32. Specifically, the second band pass filter 42 is disposed between the first band pass filter 32 and the second light receiving unit 43, and transmits the first band pass filter 32 to the second light receiving unit 43. Provided on the optical path of the light incident on the Then, the second band pass filter 42 transmits light of the second wavelength band and absorbs light of the other wavelength bands.
  • the second light receiving unit 43 is a light receiving element that receives the light of the second wavelength band reflected by the road surface S and transmitted through the second band pass filter 42 and converts the light into a second electric signal.
  • the second light receiving unit 43 photoelectrically converts the received light of the second wavelength band to generate a second electric signal according to the amount (that is, the intensity) of the received light.
  • the generated second electrical signal is output to the signal processing circuit 50.
  • the second light receiving unit 43 is a light receiving element having the same shape as the first light receiving unit 33. That is, when the first light receiving unit 33 is a photodiode, the second light receiving unit 43 is also a photodiode.
  • the temperature sensor 60 is a temperature sensor that detects the temperature around the moisture content sensor 1. Specifically, the temperature sensor 60 is attached to the outer side surface of the housing 10 and detects the outside air temperature outside the housing 10. The temperature sensor 60 may be housed in the housing 10. The temperature sensor 60 is electrically connected to the arithmetic processing unit 56 of the signal processing circuit 50, and outputs the detection result to the arithmetic processing unit 56.
  • the signal processing circuit 50 controls the lighting of the light source 22 of the light emitting unit 20 and processes the first electrical signal and the second electrical signal output from the first light receiving unit 33 and the second light receiving unit 43 to obtain the moisture content. Is a circuit that calculates
  • the signal processing circuit 50 may be housed in the housing 10 or may be attached to the outer surface of the housing 10. Alternatively, the signal processing circuit 50 has a communication function such as wireless communication, and detects the first electrical signal from the first light receiving unit 33, the second electrical signal from the second light receiving unit 43, and the detection result from the temperature sensor 60. It may be received.
  • a communication function such as wireless communication
  • the signal processing circuit 50 includes a light source control unit 51, a first amplification unit 52, a second amplification unit 53, a first signal processing unit 54, a second signal processing unit 55, and an operation.
  • a processing unit 56 is provided.
  • the light source control unit 51 is configured of a drive circuit and a microcontroller.
  • the light source control unit 51 includes a non-volatile memory in which a control program of the light source 22 is stored, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor for executing the program, and the like.
  • the light source control unit 51 controls the light source 22 so that lighting and extinguishing of the light source 22 are repeated in a predetermined light emitting cycle. Specifically, the light source control unit 51 outputs a pulse signal of a predetermined frequency (for example, 1 kHz) to the light source 22 to turn on and off the light source 22 at a predetermined light emission cycle.
  • a predetermined frequency for example, 1 kHz
  • the first amplification unit 52 amplifies the first electric signal output from the first light receiving unit 33 and outputs the first electric signal to the first signal processing unit 54.
  • the first amplification unit 52 is an operational amplifier that amplifies the first electrical signal.
  • the first signal processing unit 54 is configured by a microcontroller.
  • the first signal processing unit 54 is a non-volatile memory in which a processing program for the first electric signal is stored, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor for executing the program, etc. Have.
  • the first signal processing unit 54 performs passband limitation on the first electric signal and corrects the phase delay due to the passband limitation, and then performs multiplication processing with the light emission cycle of the light source 22.
  • the process for the first electrical signal is a so-called lock-in amplifier process. Thereby, it is possible to suppress the noise based on disturbance light from the first electric signal.
  • the second amplification unit 53 amplifies the second electric signal output from the second light receiving unit 43 and outputs the second electric signal to the second signal processing unit 55.
  • the second amplification unit 53 is an operational amplifier that amplifies the second electrical signal.
  • the second signal processing unit 55 is configured by a microcontroller.
  • the second signal processing unit 55 includes a non-volatile memory storing a processing program for the second electric signal, a volatile memory as a temporary storage area for executing the program, an input / output port, a processor for executing the program, etc. Have.
  • the second signal processing unit 55 performs passband limitation on the second electric signal and corrects the phase delay due to the passband limitation, and then performs multiplication processing with the light emission cycle of the light source 22.
  • the process for the second electrical signal is a so-called lock-in amplifier process. Thereby, it is possible to suppress noise based on disturbance light from the second electrical signal.
  • the arithmetic processing unit 56 detects the moisture contained in the road surface S based on the first electrical signal output from the first light receiving unit 33 and the second electrical signal output from the second light receiving unit 43. Specifically, the arithmetic processing unit 56 detects the amount of water contained in the road surface S based on the ratio (signal ratio) of the voltage level of the first electrical signal to the voltage level of the second electrical signal. In the present embodiment, the arithmetic processing unit 56 generates the road surface S based on the first electrical signal processed by the first signal processing unit 54 and the second electrical signal processed by the second signal processing unit 55. Detect the amount of water contained. The specific water content detection process will be described later.
  • FIG. 6 is an explanatory view showing a state where the vehicle V is not present immediately below the water content sensor 1 according to the embodiment. This state is referred to as the first state.
  • FIG. 7 is an explanatory view showing a state where the vehicle V passes immediately below the moisture content sensor 1 according to the embodiment. This state is referred to as a second state.
  • the detection light and the reference light reciprocate in the distance L1 from the moisture content sensor 1 to the road surface S.
  • the detection light and the reference light reciprocate in the distance L2 from the moisture content sensor 1 to the vehicle V.
  • the optical paths of the detection light and the reference light are longer in the first state than in the second state. That is, each of the detection light and the reference light is weakened when returning to the moisture content sensor 1 in the first state than in the second state. Therefore, each of the first electric signal caused by the detection light and the second electric signal caused by the reference light has smaller signal intensity in the first state than in the second state.
  • FIG. 8 is a graph showing the signal intensity change of the second electric signal caused by the reference light according to the embodiment. Although the second electrical signal is illustrated in FIG. 8, substantially the same result is obtained for the first electrical signal. Further, although the signal intensity change is expressed as a pulse-like waveform in FIG. 8, actually, the waveform corresponds to the shape of the vehicle V.
  • the signal strength of the second electrical signal is small, and in the second state, the signal strength of the second electrical signal is large.
  • the vehicle V passes immediately below the moisture content sensor 1. That is, even if the second electric signal and the first electric signal in the second state are used for detection of the amount of water, it becomes inaccurate. From this, when the signal ratio which is the basis of the moisture content is determined, the second electric signal and the first electric signal having low reliability in the second state are excluded, and the reliability in the other state, that is, the first state
  • the signal ratio may be determined from the highly reliable second electrical signal and the first electrical signal.
  • a reference value for eliminating the second electrical signal in the second state is determined in advance. This reference value is smaller than the signal strength of the second electrical signal in the second state. Further, the range of ⁇ ⁇ is set as a predetermined range with reference to the reference value. The predetermined range is a range that does not include the signal strength of the second electrical signal in the second state.
  • the reference value is the intensity of the second electric signal in the first state when the moisture content sensor 1 is installed at a position separated by a distance L1 from the road surface S.
  • the signal strength E2 of the second electric signal in the second state and the signal strength E1 of the second electric signal in the first state are , It is estimated by the following (equation 2).
  • the signal strength E2 of the second electrical signal in the second state is about 23% larger than the signal strength E1 of the second electrical signal in the first state.
  • a range of ⁇ 20% of the reference value may be set as a predetermined range.
  • the reference value may be varied based on the detected signal ratio in order to correct the influence of the amount of moisture contained in the road surface S.
  • the arithmetic processing unit 56 specifies that the time zone is in the first state. On the other hand, when the signal strength of the second electric signal is out of the predetermined range, the arithmetic processing unit 56 specifies that the time zone is in the second state. The time zone in the second state is an out-of-range time zone in which the second electrical signal is out of the predetermined range. The arithmetic processing unit 56 calculates the out-of-range time zone, and calculates the frequency of the out-of-range time zone within a predetermined time. One out-of-range time zone indicates that one vehicle V has passed immediately below the moisture content sensor 1.
  • the frequency of the out-of-range time zone within the predetermined time indicates the traffic volume of the vehicle V within the predetermined time.
  • the "predetermined time” is a unit time for determining the traffic volume of the vehicle V, and may be a unit of minutes or a unit of time. Specifically, the predetermined time may be several minutes, ten minutes, 30 minutes, or several hours.
  • the case of determining whether the state is the first state or the second state is illustrated based on the signal strength of the second electric signal.
  • the reference light is less affected by water than the detection light.
  • the first electric signal caused by the detection light is affected by water, the signal intensity fluctuates regardless of the presence or absence of the vehicle V.
  • the second electric signal caused by the reference light the presence or absence of the vehicle V is truly reflected in the signal strength because it is not easily affected by water. That is, the second electric signal is more suitable for determining whether it is the first state or the second state.
  • determination whether it is a 1st state or a 2nd state determination whether it is a 1st state or a 2nd state, and it is also possible to use both a 1st electrical signal and a 2nd electrical signal.
  • the case where the signal strength of each of the first electrical signal and the second electrical signal is smaller in the first state than in the second state is exemplified.
  • the light absorptivity of the surface of the vehicle V is significantly larger than the light absorptivity of the road surface S.
  • the detection light and the reference light are largely absorbed by the surface of the vehicle V, the signal strengths of the first electrical signal and the second electrical signal are smaller in the second state than in the first state. In this case as well, it is desirable to determine the reference value and the predetermined range.
  • the arithmetic processing unit 56 is, for example, a microcontroller.
  • the arithmetic processing unit 56 has a non-volatile memory in which a signal processing program is stored, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor for executing the program, and the like.
  • the non-volatile memory of the arithmetic processing unit 56 stores a danger degree table and a temperature table.
  • the danger degree table is a table for determining the danger degree on the road surface S from the relationship between the out-of-range time zone and the moisture content.
  • FIG. 9 is an image view serving as a reference for creating the risk level table of the embodiment.
  • the out-of-range time zone is the time when the vehicle V passes immediately below the moisture content sensor 1.
  • This out-of-range time zone represents the speed of the vehicle V. That is, if the out-of-range time zone is short, the speed of the vehicle V is high, so the degree of danger is high. If the out-of-range time zone is long, the speed of the vehicle V is slow, so the degree of danger is low. In addition, when the amount of water is large, the road surface S is slippery, so the degree of danger is high.
  • FIG. 9 shows this relationship, and in the area divided by the dividing line L3, the shaded portion in FIG. 9 is a portion with a high degree of risk.
  • the risk level table is created based on the out-of-range time and the amount of water included in the high risk portion. Note that specific values of the risk level table can be obtained by various experiments, simulations, and the like.
  • the arithmetic processing unit 56 determines the degree of danger on the road surface S based on the danger degree table, the out-of-range time zone, and the detected amount of water.
  • the temperature table is a table for determining the temperature on the road surface S from the relationship between the frequency of the out-of-range time zone within a predetermined time and the temperature around the water content sensor 1 detected by the temperature sensor 60.
  • the frequency of the out-of-range time zone within the predetermined time indicates the traffic volume of the vehicle V within the predetermined time. If the frequency is high, the road surface temperature of the road surface S rises due to the friction due to the large traffic volume. That is, the temperature on the road surface S becomes higher than the temperature detected by the temperature sensor 60. On the other hand, if the frequency is low, the temperature rise on the road surface S is small because the traffic volume is small. That is, the temperature on the road surface S is approximately the same as the temperature detected by the temperature sensor 60.
  • the temperature table is created such that the temperature on the road surface S can be estimated from the temperature around the moisture content sensor 1 based on this relationship.
  • the specific values of the temperature table can be obtained by various experiments, simulations, and the like.
  • the arithmetic processing unit 56 estimates the temperature on the road surface S based on the temperature table, the frequency of the out-of-range time zone within the predetermined time, and the temperature detected by the temperature sensor 60. Further, the arithmetic processing unit 56 determines the state of water contained in the road surface S based on the estimated temperature on the road surface S.
  • the arithmetic processing unit 56 determines that the state of water contained in the road surface S is "solid", and if the temperature is greater than 0 degrees The state of water included in the road surface S is determined as "liquid”.
  • the arithmetic processing unit 56 outputs the degree of danger on the road surface S and the state of water from the input / output port to the control unit 120. Thereby, the control unit 120 controls the display unit 110 to cause the display unit 110 to display information based on the water content detected by the water content sensor 1.
  • the information based on the water content includes the degree of danger on the road surface S, the state of water, and the like.
  • the arithmetic processing unit 56 detects the amount of components contained in the road surface S by comparing the light energy Pd of the detection light contained in the reflected light with the light energy Pr of the reference light.
  • the light energy Pd corresponds to the intensity of the first electric signal output from the first light receiving unit 33
  • the light energy Pr corresponds to the intensity of the second electric signal output from the second light receiving unit 43.
  • the light energy Pd is represented by the following (Formula 3).
  • Pd0 is the light energy of the light of the first wavelength band forming the detection light among the light emitted by the light source 22.
  • Gd is a coupling efficiency (concentration factor) of the light of the first wavelength band to the first light receiving unit 33. Specifically, Gd corresponds to a ratio of a part of the light emitted by the light source 22 to be a part of the component diffused and reflected by the road surface S (that is, the detection light included in the reflected light).
  • Rd is the reflectance of the detection light by the road surface S.
  • Td is a transmittance of detection light by the first band pass filter 32.
  • Ivd is the light receiving sensitivity to the detection light contained in the reflected light in the first light receiving unit 33.
  • Aad is an absorptivity of the detection light by the component (moisture) contained in the road surface S, and is expressed by the following (Expression 4).
  • ⁇ a is a predetermined absorption coefficient, and specifically, the absorption coefficient of the detection light by the component (water).
  • Ca is a volume concentration of a component (moisture) contained in the road surface S.
  • D is a contribution thickness that is twice the thickness of the component that contributes to the absorption of the detection light.
  • Ca corresponds to the volume concentration included in the component of the road surface S .
  • D corresponds to the optical path length until reflection and exit from the road surface S.
  • Ca is the concentration of water contained in the liquid phase covering the road surface S.
  • D is a contribution thickness converted as an average thickness of the liquid phase which covers the road surface S.
  • ⁇ a ⁇ Ca ⁇ D corresponds to the amount of component (the amount of water) included in the road surface S. From the above, it can be seen that the light energy Pd corresponding to the intensity of the first electrical signal changes in accordance with the amount of water contained in the road surface S. In addition, since the absorbance of moisture is extremely small compared to moisture, it can be ignored.
  • the light energy Pr of the reference light incident on the second light receiving unit 43 is expressed by the following (Expression 5).
  • the reference light can be considered not to be substantially absorbed by the components contained in the road surface S, and therefore, as can be seen in comparison with (Equation 3), it corresponds to the absorptance by water Aad.
  • the term is not included in (Equation 5).
  • Pr0 is light energy of light of the second wavelength band forming the reference light among the light emitted by the light source 22.
  • Gr is a coupling efficiency (condensing ratio) of the reference light emitted from the light source 22 to the second light receiving unit 43.
  • Gr corresponds to the proportion of a portion of the reference light that becomes a part of the component diffused and reflected by the road surface S (that is, the reference light included in the reflected light).
  • Rr is the reflectance of the reference light by the road surface S.
  • Tr is the transmittance of the reference light by the second band pass filter 42.
  • Ivr is a light receiving sensitivity to the reflected light of the second light receiving unit 43.
  • the coupling efficiency Gd of the detection light and the coupling efficiency Gr of the reference light are It becomes almost equal. Further, since the detection light and the reference light have relatively close peak wavelengths, the reflectance Rd of the detection light and the reflectance Rr of the reference light are substantially equal.
  • Z is a constant term and is represented by (Expression 7).
  • the light energy Pd0 and Pr0 are each predetermined as an initial output of the light source 22. Further, the transmittance Td and the transmittance Tr are predetermined by the transmission characteristics of the first band pass filter 32 and the second band pass filter 42, respectively. The light receiving sensitivity Ivd and the light receiving sensitivity Ivr are predetermined by the light receiving characteristics of the first light receiving unit 33 and the second light receiving unit 43, respectively. Therefore, Z shown in (Expression 7) can be regarded as a constant.
  • the arithmetic processing unit 56 calculates the light energy Pd of the detection light based on the first electrical signal, and calculates the light energy Pr of the reference light based on the second electrical signal. Specifically, the signal level (voltage level) of the first electrical signal corresponds to the light energy Pd, and the signal level (voltage level) of the second electrical signal corresponds to the light energy Pr.
  • the arithmetic processing unit 56 can calculate the absorptivity Aad of the water contained in the road surface S based on (Expression 6).
  • the arithmetic processing unit 56 can calculate the water content based on (Expression 4).
  • the moisture content sensor 1 irradiates light to the road surface S at a minute time interval of, for example, 100 msec, and obtains the signal ratio of the first electric signal and the second electric signal to the road surface S each time. .
  • the signal ratio is determined a plurality of times in one time zone.
  • using the first electrical signal and the second electrical signal in the time zone of the second state results in an incorrect value, and therefore, using only the signal ratio in the time zone of the first state Detect the quantity.
  • the arithmetic processing unit 56 detects the amount of water based on the average value of a plurality of signal ratios obtained in the time zone of one first state. This can increase the accuracy of the detected water content.
  • the signal processing circuit 50 may be provided with a correction unit that corrects the first electric signal and the second electric signal so as to cancel the absorption by the water vapor.
  • the control unit 120 controls the water content sensor 1 to detect the water content on the road surface S.
  • the arithmetic processing unit 56 of the water content sensor 1 obtains the water content averaged in the time zone of the first state every time the first state is reached. Further, the arithmetic processing unit 56 determines the degree of danger on the road surface S based on the detected amount of water, the out-of-range time zone, and the degree-of-risk table.
  • the arithmetic processing unit 56 estimates the temperature on the road surface S based on the temperature table, the frequency of the out-of-range time zone within a predetermined time, and the temperature detected by the temperature sensor 60. Further, the arithmetic processing unit 56 determines the state of water contained in the road surface S based on the estimated temperature on the road surface S. The arithmetic processing unit 56 outputs the degree of danger on the road surface S and the state of water to the control unit 120.
  • the control unit 120 controls the display unit 110 to cause the display unit 110 to display information based on the amount of water detected by the water content sensor 1.
  • the information based on the water content includes the degree of danger on the road surface S, the state of water, the display content determined based on these, and the like.
  • the control unit 120 warns, for example, "during road surface freezing.
  • the display of alerting is displayed on the display unit 110.
  • the control unit 120 displays an alert display on the display unit 110, for example, "drop the speed.” Let If the determination result of the arithmetic processing unit 56 is that the degree of danger is "low”, the control unit 120 does not cause the display unit 110 to display an alert.
  • the water content detected by the water content sensor 1 may be displayed on the display unit 110.
  • the water content sensor 1 emits light to the road surface S and detects the water content of the road surface S based on the reflected light from the road surface S.
  • a light emitting unit 20 which emits, as light, detection light including a first wavelength band whose absorption is greater than a predetermined value and reference light including a second wavelength band whose absorption by water is equal to or less than a predetermined value toward the road surface S;
  • the first light receiving unit 33 receives the detection light reflected by the road surface S and converts it into a first electric signal
  • the second light receiving unit 43 receives the reference light reflected by the road surface S and converts it into a second electric signal
  • the arithmetic processing unit 56 for detecting the amount of water contained in the road surface S based on the signal ratio of the first electric signal and the second electric signal, the arithmetic processing unit 56 including the first electric signal and the second electric signal.
  • the signal strength of at least one of the signals is within a predetermined range
  • the arithmetic processing unit 56 also detects the amount of water based on the average value of the signal ratios when the signal strength of at least one of the first electrical signal and the second electrical signal is within a predetermined range.
  • the arithmetic processing unit 56 detects the amount of water based on the average value of the plurality of signal ratios obtained in the time zone in the first state, the accuracy of the detected amount of water is enhanced. be able to.
  • the arithmetic processing unit 56 detects the amount of water based on the signal ratio when the signal intensity of the second electric signal is within a predetermined range.
  • the arithmetic processing unit 56 determines the degree of danger on the road S based on the relationship between the out-of-range time zone in which the signal strength of at least one of the first electrical signal and the second electrical signal is out of the predetermined range and the moisture content.
  • the arithmetic processing unit 56 calculates the out-of-range time zone, and the danger level is calculated based on the out-of-range time zone, the detected water amount, and the danger level table. To judge.
  • the arithmetic processing unit 56 is provided with a temperature sensor 60 for detecting the temperature around the moisture content sensor 1, and at least one of the first electric signal and the second electric signal has a predetermined signal strength within a predetermined time.
  • the temperature table for judging the temperature on the road surface S from the relationship between the frequency and the temperature outside the range is provided, and the arithmetic processing unit 56 calculates the frequency and detects the frequency and the temperature sensor The temperature on the road surface S is estimated based on the temperature and the temperature table.
  • the temperature on the road surface S can be estimated based on the frequency and the temperature around the water content sensor 1 detected by the temperature sensor. For this reason, for example, the cost can be suppressed as compared with the case where a non-contact temperature sensor such as an infrared temperature sensor is adopted.
  • a non-contact temperature sensor such as an infrared temperature sensor
  • the arithmetic processing unit 56 determines the state of water contained in the road surface S based on the estimated temperature on the road surface S.
  • the slipperiness of the road surface S can be determined.
  • the road surface state detecting device 100 includes the water content sensor 1 described above, and a display unit 110 that displays information based on the water content detected by the water content sensor 1.
  • the light source 22 is an LED light source
  • the light source may be a semiconductor laser element or an organic EL element.
  • one light source 22 emits continuous light including the first wavelength band forming the detection light and the second wavelength band forming the reference light has been described as an example.
  • a plurality of light sources may be provided, one light source emitting detection light and the other light source emitting reference light.
  • the light source control unit 51, the first signal processing unit 54, the second signal processing unit 55, and the arithmetic processing unit 56 included in the signal processing circuit 50 are each formed by dedicated microcontrollers. Although described, the signal processing circuit may be implemented by one microcontroller as a whole.
  • the road surface state detecting device 100 can be installed at other facilities.
  • the road surface condition detecting device 100 can be installed at other facilities.
  • it can be installed in a commercial facility such as a shopping mall.
  • the condition of the road surface fluctuates due to water sprayed as an attraction, a beverage spilled by a person, etc., in addition to rain and snow.
  • the road surface condition detecting device 100 is installed in a commercial facility, it is possible to notify people in the commercial facility of the road surface condition.
  • a person moving on the road surface, a shopping cart, etc. may block the light from the water content sensor 1.
  • since the influence of the moving object passing immediately below the moisture content sensor 1 is suppressed in the case of the road surface state detecting device 100 described above, it is possible to accurately judge the road surface state.
  • the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment.
  • the form is also included in the present invention.

Abstract

水分量センサ(1)は、水による吸収が所定値よりも大きな第一波長帯を含む検知光と、水による吸収が所定値以下である第二波長帯を含む参照光とを、光として路面(S)に向けて発する発光部(20)と、路面(S)によって反射された検知光を受光し、第一電気信号に変換する第一受光部(33)と、路面(S)によって反射された参照光を受光し、第二電気信号に変換する第二受光部(43)と、第一電気信号及び第二電気信号の信号比に基づいて、路面(S)が含む水分量を検出する演算処理部(56)と、を備え、演算処理部(56)は、第一電気信号及び第二電気信号の少なくとも一方の信号強度が、基準値を基準とした所定の範囲内にある場合の信号比に基づいて、水分量を検出する。

Description

水分量センサ及び路面状態検出装置
 本発明は、水分量センサ及び路面状態検出装置に関する。
 従来、水分量センサとしては、例えば、水分による赤外線の吸収を利用して、水分量を測定する赤外線水分計が知られている(例えば、特許文献1参照)。
特開平5-118984号公報
 ところで、路面上の状態を検出するために、水分量センサで路面上の水分量を検出することも検討されるが、例えば路面上を走行する自動車などの移動体によって、赤外線が遮られることもあり、検出結果に正確性を欠くのが実状である。
 そこで、本発明の目的は、路面上を移動する移動体の影響を抑制して、検出結果の正確性を高めることができる水分量センサ及び路面状態検出装置を提供することである。
 上記目的を達成するため、本発明の一態様に係る水分量センサは、路面に対して光を発し、当該路面からの反射光に基づいて路面の水分量を検出する水分量センサであって、水による吸収が所定値よりも大きな第一波長帯を含む検知光と、水による吸収が前記所定値以下である第二波長帯を含む参照光とを光として路面に向けて発する発光部と、路面によって反射された検知光を受光し、第一電気信号に変換する第一受光部と、路面によって反射された参照光を受光し、第二電気信号に変換する第二受光部と、第一電気信号及び第二電気信号の信号比に基づいて、路面が含む水分量を検出する演算処理部と、を備え、演算処理部は、第一電気信号及び第二電気信号の少なくとも一方の信号強度が、基準値を基準とした所定の範囲内にある場合の信号比に基づいて、前記水分量を検出する。
 また、本発明の一態様に係る路面状態検出装置は、上記水分量センサと、水分量センサで検出された水分量に基づく情報を表示する表示部とを備える。
 本発明に係る水分量センサ及び路面状態検出装置は、路面上を移動する移動体の影響を抑制して、測定結果の正確性を高めることができる。
図1は実施の形態に係る路面状態検出装置の概略構成を示す模式図である。 図2は、実施の形態に係る路面状態検出装置の制御ブロック図である。 図3は、実施の形態に係る水分量センサの構成と路面とを示す模式図である。 図4は、実施の形態に係る水分量センサの制御構成を示すブロック図である。 図5は、水分と水蒸気との吸光スペクトルを示す図である。 図6は、実施の形態に係る水分量センサの直下に車両が存在していない状態を示す説明図である。 図7は、実施の形態に係る水分量センサの直下を車両が通過する状態を示す説明図である。 図8は、実施の形態に係る参照光を起因とした第二電気信号の信号強度変化を示すグラフである。 図9は、実施の形態の危険度テーブルを作成するための基準となるイメージ図である。
 以下では、本発明の実施の形態に係る水分量センサ及び路面状態検出装置について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態)
 [路面状態検出装置]
 まず、実施の形態に係る路面状態検出装置100について説明する。
 図1は実施の形態に係る路面状態検出装置100の概略構成を示す模式図である。図1に示すように、路面状態検出装置100は、路側帯に設置された一対の支柱200、201に対して設けられている。具体的には、路面状態検出装置100は、水分量センサ1と、表示部110とを備えている。
 水分量センサ1は、支柱200の上部から車道の上方に延び出された支持部210に対して取り付けられている。水分量センサ1は、車道の路面S上の水分量を検出する光学式のセンサである。水分量センサ1は、その直下の路面Sに向けて参照光及び検知光を照射するように配置されている。
 表示部110は、支柱200よりも進行方向の先方に配置された支柱201に設置されている。表示部110は、支柱201の上部から車道の上方に延び出された支持部211に対して取り付けられている。表示部110は、種々の情報を表示する例えば電光掲示板である。
 図2は、実施の形態に係る路面状態検出装置100の制御ブロック図である。図2に示すように、路面状態検出装置100には、水分量センサ1及び表示部110を制御する制御部120が設けられている。制御部120は、例えばマイクロコントローラで構成されている。制御部120は、水分量センサ1及び表示部110を制御するための処理プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを有する。具体的には、制御部120は、水分量センサ1で検出された水分量に基づく情報を表示部110に表示させる。これにより、車道上を走行する車両Vの運転者に対して、路面Sの水分量に基づく情報を表示部110から報知することができる。
 [水分量センサ]
 次に、実施の形態に係る水分量センサ1の概要について説明する。
 図3は、実施の形態に係る水分量センサ1の構成と路面Sとを示す模式図である。図4は、実施の形態に係る水分量センサ1の制御構成を示すブロック図である。
 水分量センサ1は、路面Sに対して光を発し、当該路面Sからの反射光に基づいて路面Sの水分量を検出する水分量センサである。
 本実施の形態では、図3及び図4に示すように、水分量センサ1は、空間3を隔てて存在する路面Sに含まれる水分量を検出する。「路面Sに含まれる水分量」は、路面S上に溜まった水分と、路面Sの表面部分に浸透した水分とを含む。
 水分量センサ1は、筐体10と、発光部20と、第一受光モジュール30と、第二受光モジュール40と、温度センサ60と、信号処理回路50とを備えている。
 以下では、水分量センサ1の各構成要素について詳細に説明する。
 [筐体]
 筐体10は、路面状態検出装置100における筐体であり、発光部20と、第一受光モジュール30と、第二受光モジュール40と、信号処理回路50とを収容している。筐体10は、遮光性の材料から形成されている。これにより、外光が筐体10内に入射するのを抑制することができる。具体的には、筐体10は、第一受光モジュール30と第二受光モジュール40とが受光する光に対して遮光性を有する樹脂材料又は金属材料から形成されている。
 筐体10の外壁には、複数の開口が設けられており、これらの開口に、発光部20のレンズ21と、第一受光モジュール30のレンズ31とが取り付けられている。
 [発光部]
 発光部20は、水による吸収が所定値よりも大きな第一波長帯を含む検知光と、水による吸収が所定値以下である第二波長帯を含む参照光とを路面Sに向けて発する発光部である。具体的には、発光部20は、レンズ21と、光源22とを備えている。
 レンズ21は、光源22が発した光を、路面Sに対して集光する集光レンズである。レンズ21は、樹脂製の凸レンズであるが、これに限らない。
 光源22は、検知光をなす第一波長帯と参照光をなす第二波長帯とを含み、ピーク波長が第二波長帯側にある連続した光を発するLED(Light Emitting Diode)光源である。具体的には、光源22は、化合半導体からなるLED光源である。
 図5は、水分と水蒸気との吸光スペクトルを示す図である。図5に示すように、水分は、約1450nm及び約1940nmの波長に吸収ピークを有する。水蒸気は、水分の吸収ピークよりやや低い波長、具体的には約1350nm~1400nm及び約1800nm~1900nmの波長に吸収ピークを有する。
 このため、検知光をなす第一波長帯としては、水の吸光度が高い波長帯を選択し、参照光をなす第二波長帯としては、第一波長帯よりも水の吸光度が小さい波長帯を選択する。そして、一例としては、第二波長帯の平均波長は、第一波長体の平均波長よりも長くする。また、光学的なバンドパスフィルタの最大透過率の半値である波長の中心値で定義される中心波長に関して、例えば第一波長帯の中心波長は1450nmとし、第二波長帯の中心波長は1700nmとする。
 このように、光源22が、第一波長帯と第二波長帯とを連続して含む光を照射するので、路面Sには、水による吸収が大きな第一波長帯を含む検知光と、水による吸収が第一波長帯よりも小さい第二波長帯を含む参照光が照射される。
 [第一受光モジュール]
 図3に示すように第一受光モジュール30は、レンズ31と、第一バンドパスフィルタ32と、第一受光部33とを備えている。
 レンズ31は、路面Sによって反射された反射光を第一受光部33に集光するための集光レンズである。レンズ31は、例えば、焦点が第一受光部33の受光面に位置するように筐体10に固定されている。レンズ31は、例えば、樹脂製の凸レンズであるが、これに限らない。
 第一バンドパスフィルタ32は、反射光から第一波長帯の光を抽出するバンドパスフィルタである。具体的には、第一バンドパスフィルタ32は、レンズ31と、第一受光部33との間に配置されており、レンズ31を透過して第一受光部33に入射する反射光の光路上に設けられている。また、第一バンドパスフィルタ32は、レンズ31の光軸に対して傾いて配置されている。これにより、第一バンドパスフィルタ32は、第一波長帯の光を透過するとともに、それ以外の波長帯の光を反射する。
 第一受光部33は、路面Sによって反射され、第一バンドパスフィルタ32を透過した第一波長帯の光を受光し、第一電気信号に変換する受光素子である。第一受光部33は、受光した第一波長帯の光を光電変換することで、当該光の受光量(すなわち、強度)に応じた第一電気信号を生成する。生成された第一電気信号は、信号処理回路50に出力される。第一受光部33は、例えば、フォトダイオードであるが、これに限定されない。例えば、第一受光部33は、フォトトランジスタ、又は、イメージセンサでもよい。
 [第二受光モジュール]
 第二受光モジュール40は、第二バンドパスフィルタ42と、第二受光部43とを備えている。
 第二バンドパスフィルタ42は、第一バンドパスフィルタ32で反射された光から第二波長帯の光を抽出するバンドパスフィルタである。具体的には、第二バンドパスフィルタ42は、第一バンドパスフィルタ32と、第二受光部43との間に配置されており、第一バンドパスフィルタ32を透過して第二受光部43に入射する光の光路上に設けられている。そして、第二バンドパスフィルタ42は、第二波長帯の光を透過し、かつ、それ以外の波長帯の光を吸収する。
 第二受光部43は、路面Sによって反射され、第二バンドパスフィルタ42を透過した第二波長帯の光を受光し、第二電気信号に変換する受光素子である。第二受光部43は、受光した第二波長帯の光を光電変換することで、当該光の受光量(すなわち、強度)に応じた第二電気信号を生成する。生成された第二電気信号は、信号処理回路50に出力される。第二受光部43は、第一受光部33と同形の受光素子である。つまり、第一受光部33がフォトダイオードである場合には、第二受光部43もフォトダイオードである。
 [温度センサ]
 温度センサ60は、水分量センサ1の周囲の温度を検出する温度センサである。具体的には、温度センサ60は、筐体10の外側面に取り付けられており、筐体10外の外気温を検出する。なお、温度センサ60は筐体10内に収容されていてもよい。温度センサ60は、信号処理回路50の演算処理部56に電気的に接続されており、検出結果を演算処理部56に出力する。
 [信号処理回路]
 信号処理回路50は、発光部20の光源22を点灯制御するとともに、第一受光部33及び第二受光部43から出力された第一電気信号及び第二電気信号を処理することで、水分量を演算する回路である。
 信号処理回路50は、筐体10に収容されていてもよく、又は、筐体10の外側面に取り付けられていてもよい。あるいは、信号処理回路50は、無線通信などの通信機能を有し、第一受光部33からの第一電気信号、第二受光部43からの第二電気信号及び温度センサ60からの検出結果を受信してもよい。
 具体的には、図4に示すように、信号処理回路50は、光源制御部51、第一増幅部52、第二増幅部53、第一信号処理部54、第二信号処理部55及び演算処理部56を備えている。
 光源制御部51は、駆動回路及びマイクロコントローラで構成される。光源制御部51は、光源22の制御プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを有する。
 光源制御部51は、光源22の点灯及び消灯が所定の発光周期で繰り返されるように、光源22を制御する。具体的には、光源制御部51は、所定の周波数(例えば、1kHz)のパルス信号を光源22に出力することで、光源22を所定の発光周期で点灯及び消灯させる。
 第一増幅部52は、第一受光部33が出力した第一電気信号を増幅して第一信号処理部54に出力する。具体的には、第一増幅部52は、第一電気信号を増幅するオペアンプである。
 第一信号処理部54は、マイクロコントローラで構成される。第一信号処理部54は、第一電気信号に対する処理プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを有する。第一信号処理部54は、第一電気信号に対して、通過帯域制限を行うとともに当該通過帯域制限による位相遅延を補正してから、光源22の発光周期との乗算処理を施す。この第一電気信号に対する処理は、いわゆるロックインアンプ処理である。これにより、外乱光に基づくノイズを第一電気信号から抑制することが可能である。
 第二増幅部53は、第二受光部43が出力した第二電気信号を増幅して第二信号処理部55に出力する。具体的には、第二増幅部53は、第二電気信号を増幅するオペアンプである。
 第二信号処理部55は、マイクロコントローラで構成される。第二信号処理部55は、第二電気信号に対する処理プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを有する。第二信号処理部55は、第二電気信号に対して、通過帯域制限を行うとともに当該通過帯域制限による位相遅延を補正してから、光源22の発光周期との乗算処理を施す。この第二電気信号に対する処理は、いわゆるロックインアンプ処理である。これにより、外乱光に基づくノイズを第二電気信号から抑制することが可能である。
 演算処理部56は、第一受光部33から出力された第一電気信号と、第二受光部43から出力された第二電気信号とに基づいて、路面Sが含む水分を検出する。具体的には、演算処理部56は、第一電気信号の電圧レベルと第二電気信号の電圧レベルとの比(信号比)に基づいて、路面Sが含む水分量を検出する。本実施の形態では、演算処理部56は、第一信号処理部54によって処理された第一電気信号と、第二信号処理部55によって処理された第二電気信号とに基づいて、路面Sが含む水分量を検出する。具体的な水分量の検出処理については後で説明する。
 ここで、水分量センサ1の直下に車両Vが存在しない場合と、水分量センサ1の直下を車両Vが通過する場合とでは、検知光及び参照光の信号強度に大きな違いが生ずる。図6は、実施の形態に係る水分量センサ1の直下に車両Vが存在していない状態を示す説明図である。この状態を第一状態と称す。また、図7は、実施の形態に係る水分量センサ1の直下を車両Vが通過する状態を示す説明図である。この状態を第二状態と称す。
 図6に示すように、第一状態では、水分量センサ1から路面Sまでの距離L1を検知光及び参照光が往復する。一方、図7に示すように、第二状態では水分量センサ1から車両Vまでの距離L2を検知光及び参照光が往復する。このように、第一状態の方が第二状態よりも、検知光及び参照光それぞれの光路が長くなる。つまり、第一状態の方が第二状態よりも、検知光及び参照光のそれぞれは、水分量センサ1に戻ったときに弱まっている。したがって、検知光を起因とした第一電気信号と、参照光を起因とした第二電気信号とのそれぞれは、第一状態の方が第二状態よりも信号強度が小さくなる。
 図8は、実施の形態に係る参照光を起因とした第二電気信号の信号強度変化を示すグラフである。図8では、第二電気信号を例示して図示しているが、第一電気信号においても概ね同様の結果となる。また、図8では、信号強度変化をパルス状の波形で表現したが、実際には、車両Vの形状に応じた波形となる。
 図8に示すように、第一状態では第二電気信号の信号強度は小さく、第二状態では第二電気信号の信号強度は大きい。上述したように、第二状態では、水分量センサ1の直下を車両Vが通過している。つまり、第二状態での第二電気信号及び第一電気信号を水分量の検出に用いたとしても不正確となってしまう。このことから、水分量の基となる信号比を求める際には、第二状態での信頼性の低い第二電気信号及び第一電気信号を排除し、それ以外、つまり第一状態での信頼性の高い第二電気信号及び第一電気信号から信号比を求めればよい。
 具体的には、第二状態での第二電気信号を排除するための基準値を予め決定しておく。この基準値は、第二状態での第二電気信号の信号強度よりも小さい値である。また、基準値を基準として、その±αの範囲を所定の範囲とする。所定の範囲は、第二状態での第二電気信号の信号強度を含まない範囲とする。
 ここで、基準値及び所定の範囲の一例について説明する。
 例えば、基準値は、路面Sから距離L1だけ離れた位置に水分量センサ1を設置した際の、第一状態における第二電気信号の強度とする。
 ここで、光の強度は、光源からの距離の2乗に反比例することが知られている。このため、第一状態における第二電気信号の強度E1と、第二状態における第二電気信号の強度E2との関係は、以下の(式1)で表される。
 (式1) E2=E1・L1/L2
 例えば、距離L1を5mとし、距離L2の最大値を4.5mとした場合には、第二状態における第二電気信号の信号強度E2と、第一状態における第二電気信号の信号強度E1は、以下の(式2)で推定される。
 (式2) E2/E1=L1/L2=5/4.5≒1.23
 このように、第二状態における第二電気信号の信号強度E2は、第一状態における第二電気信号の信号強度E1よりも23%ほど大きい値となる。この値に基づき、基準値に対して±20%の範囲を所定の範囲とすればよい。また、余裕を持たせて、基準値に対して±10%の範囲を所定の範囲とすることも可能である。
 なお、基準値は、路面Sが含む水分量による影響を補正するために、検出した信号比に基づいて変動させてもよい。
 その他、基準値及び所定の範囲については、種々の実験、シミュレーション、過去の第二電気信号の信号強度の履歴などによって適切な値を決定することが可能である。
 演算処理部56は、第二電気信号の信号強度が所定の範囲に収まっていれば、その時間帯が第一状態であったことを特定する。一方、演算処理部56は、第二電気信号の信号強度が所定の範囲外となる場合には、その時間帯が第二状態であったことを特定する。第二状態の時間帯は、第二電気信号が所定の範囲外となる範囲外時間帯である。演算処理部56は、範囲外時間帯を算出するとともに、所定の時間内において範囲外時間帯の頻度を算出する。1つの範囲外時間帯は、水分量センサ1の直下を車両Vが一台通過したことを示す。つまり、所定の時間内における範囲外時間帯の頻度は、所定の時間内での車両Vの通行量を示すこととなる。ここで「所定の時間」とは、車両Vの通行量を判断するための単位時間であり、分単位でも、時間単位でもよい。具体的には、所定の時間は数分間でもよいし、十数分間でもよいし、30分でもよいし、数時間であってもよい。
 また、本実施の形態では、第二電気信号の信号強度に基づいて、第一状態であるか第二状態であるかを判別する場合を例示した。これは、参照光の方が検知光よりも水の影響を受けにくいためである。具体的には、検知光を起因とした第一電気信号では、水の影響を受けるので、車両Vの有無に関係なく信号強度に変動が生じる。一方、参照光を起因とした第二電気信号では、水の影響を受けにくいために、車両Vの有無が如実に信号強度に反映される。つまり、第一状態であるか第二状態であるかの判別には、第二電気信号の方が適している。なお、第一状態であるか第二状態であるかの判別に、第一電気信号を用いることも可能であるし、第一電気信号及び第二電気信号の両者を用いることも可能である。
 上記した説明では、第一状態の方が第二状態よりも、第一電気信号及び第二電気信号のそれぞれの信号強度が小さくなる場合を例示した。しかしながら、車両V表面の光の吸収率が、路面Sの光の吸収率よりも大幅に大きい場合も存在する。この場合、車両Vの表面で検知光及び参照光が大きく吸収されるので、第二状態の方が第一状態よりも、第一電気信号及び第二電気信号のそれぞれの信号強度が小さくなる。この場合も考慮して、基準値及び所定の範囲を決定することが望ましい。
 演算処理部56は、例えば、マイクロコントローラである。演算処理部56は、信号処理プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを有する。
 演算処理部56の不揮発性メモリには、危険度テーブルと、温度テーブルとが記憶されている。
 危険度テーブルは、範囲外時間帯と、水分量との関係から路面S上の危険度を判断するためのテーブルである。図9は、実施の形態の危険度テーブルを作成するための基準となるイメージ図である。範囲外時間帯は、車両Vが水分量センサ1の直下を通過する時間である。この範囲外時間帯は車両Vの速度を表す。つまり、範囲外時間帯が短いと車両Vの速度が速いため危険度が高く、範囲外時間帯が長いと車両Vの速度が遅いため危険度は低い。また、水分量が多いと路面Sが滑りやすいため危険度が高く、水分量が少ないと路面Sが滑りにくいため危険度は低い。図9では、この関係性を示しており、分割線L3で分割された領域のうち、図9でおける網掛け部分を危険度の高い部分とする。危険度テーブルは、この危険度の高い部分に含まれる範囲外時間及び水分量に基づいて作成されている。なお、危険度テーブルの具体的な値は、各種の実験、シミュレーション等によって求められる。演算処理部56は、この危険度テーブルと、範囲外時間帯と、検出した水分量とに基づいて、路面S上の危険度を判断する。
 温度テーブルは、所定の時間内における範囲外時間帯の頻度と、温度センサ60が検出した水分量センサ1の周囲の温度との関係から、路面S上の温度を判断するためのテーブルである。上述したように、所定の時間内における範囲外時間帯の頻度は、所定の時間内での車両Vの通行量を示している。頻度が多いと、通行量も多いために、その摩擦によって路面Sの路面温度が高まる。つまり、温度センサ60が検出した温度よりも、路面S上では高温となる。一方、頻度が少ないと、通行量も少ないために路面Sの温度上昇も小さい。つまり、路面S上の温度は、温度センサ60が検出した温度と同程度となる。温度テーブルは、この関係性に基づいて、水分量センサ1の周囲の温度から路面S上の温度が推定できるように作成されている。なお、温度テーブルの具体的な値は、各種の実験、シミュレーション等によって求められる。演算処理部56は、この温度テーブルと、所定の時間内における範囲外時間帯の頻度と、温度センサ60の検出した温度とに基づいて、路面S上の温度を推定する。また、演算処理部56は、推定した路面S上の温度に基づいて、路面Sに含まれる水の状態を判断する。具体的には、演算処理部56は、推定した路面S上の温度が0度以下であれば、路面Sに含まれる水の状態を「固体」として判断し、当該温度が0度より大きければ、路面Sに含まれる水の状態を「液体」として判断する。
 演算処理部56は、路面S上の危険度と、水の状態とを、入出力ポートから制御部120に出力する。これにより、制御部120は、表示部110を制御して、水分量センサ1で検出された水分量に基づく情報を表示部110に表示させる。水分量に基づく情報には、路面S上の危険度、水の状態などが含まれる。
 [水分量の検出処理]
 続いて、演算処理部56による水分量の検出処理について説明する。
 本実施の形態では、演算処理部56は、反射光に含まれる検知光の光エネルギーPdと、参照光の光エネルギーPrとを比較することで、路面Sに含まれる成分量を検出する。なお、光エネルギーPdは、第一受光部33から出力される第一電気信号の強度に対応し、光エネルギーPrは、第二受光部43から出力される第二電気信号の強度に対応する。
 光エネルギーPdは、次の(式3)で表される。
 (式3) Pd=Pd0×Gd×Rd×Td×Aad×Ivd
 ここで、Pd0は、光源22が発した光のうち、検知光をなす第一波長帯の光の光エネルギーである。Gdは、第一波長帯の光の第一受光部33に対する結合効率(集光率)である。具体的には、Gdは、光源22が発した光のうち、路面Sで拡散反射される成分の一部(すなわち、反射光に含まれる検知光)になる部分の割合に相当する。
 Rdは、路面Sによる検知光の反射率である。Tdは、第一バンドパスフィルタ32により検知光の透過率である。Ivdは、第一受光部33における反射光に含まれる検知光に対する受光感度である。
 Aadは、路面Sに含まれる成分(水分)による検知光の吸収率あり、次の(式4)で表される。
 (式4) Aad=10-αa×Ca×D
 ここで、αaは、予め定められた吸光係数であり、具体的には、成分(水分)による検知光の吸光係数である。Caは、路面Sに含まれる成分(水分)の体積濃度である。Dは、検知光の吸収に寄与する成分の厚みの2倍である寄与厚みである。
 より具体的には、水分が均質に分散した路面Sでは、光が路面Sに入射し、反射して路面Sから出射する場合において、Caは、路面Sの成分に含まれる体積濃度に相当する。また、Dは、反射して路面Sから出射するまでの光路長に相当する。例えば、Caは、路面Sを覆っている液相に含まれる水分の濃度である。また、Dは、路面Sを覆っている液相の平均的な厚みとして換算される寄与厚みである。
 したがって、αa×Ca×Dは、路面Sに含まれる成分量(水分量)に相当する。以上のことから、路面Sに含まれる水分量に応じて、第一電気信号の強度に相当する光エネルギーPdが変化することが分かる。なお、水分と比べて湿気の吸光度は極端に小さいので、無視することができる。
 同様に、第二受光部43に入射する参照光の光エネルギーPrは、次の(式5)で表される。
 (式5) Pr=Pr0×Gr×Rr×Tr×Ivr
 本実施の形態では、参照光は、路面Sに含まれる成分によって実質的には吸収されないとみなすことができるので、(式3)と比較して分かるように、水分による吸収率Aadに相当する項は(式5)には含まれていない。
 (式5)において、Pr0は、光源22が発した光のうち、参照光をなす第二波長帯の光の光エネルギーである。Grは、光源22が発した参照光の第二受光部43に対する結合効率(集光率)である。具体的には、Grは、参照光のうち、路面Sで拡散反射される成分の一部(すなわち、反射光に含まれる参照光)になる部分の割合に相当する。Rrは、路面Sによる参照光の反射率である。Trは、第二バンドパスフィルタ42による参照光の透過率である。Ivrは、第二受光部43の反射光に対する受光感度である。
 本実施の形態では、光源22から照射される光、つまり、検知光と参照光とは、同軸かつ同スポットサイズで照射されるため、検知光の結合効率Gdと参照光の結合効率Grとは略等しくなる。また、検知光と参照光とはピーク波長が比較的近いので、検知光の反射率Rdと参照光の反射率Rrとが略等しくなる。
 したがって、(式3)と(式5)との比(信号比)を取ることにより、次の(式6)が導き出される。
 (式6) Pd/Pr=Z×Aad
 ここで、Zは、定数項であり、(式7)で示される。
 (式7) Z=(Pd0/Pr0)×(Td/Tr)×(Ivd/Ivr)
 光エネルギーPd0及びPr0はそれぞれ、光源22の初期出力として予め定められている。また、透過率Td及び透過率Trはそれぞれ、第一バンドパスフィルタ32及び第二バンドパスフィルタ42の透過特性により予め定められている。受光感度Ivd及び受光感度Ivrはそれぞれ、第一受光部33及び第二受光部43の受光特性により予め定められている。したがって、(式7)で示されるZは、定数とみなすことができる。
 演算処理部56は、第一電気信号に基づいて検知光の光エネルギーPdを算出し、第二電気信号に基づいて参照光の光エネルギーPrを算出する。具体的には、第一電気信号の信号レベル(電圧レベル)が光エネルギーPdに相当し、第二電気信号の信号レベル(電圧レベル)が光エネルギーPrに相当する。
 したがって、演算処理部56は、(式6)に基づいて、路面Sに含まれる水分の吸収率Aadを算出することができる。これにより、演算処理部56は、(式4)に基づいて水分量を算出することができる。
 ここで、水分量センサ1は、例えば100msecなどの微小な時間間隔で路面Sに対して光を照射して、その都度路面Sに対する第一電気信号及び第二電気信号の信号比を求めている。このため、第一状態の時間帯及び第二状態の時間帯では、それぞれひとつの時間帯内において複数回、信号比が求められる。上述したように、第二状態の時間帯での第一電気信号と第二電気信号を用いると不正確な値となってしまうので、第一状態の時間帯での信号比のみを用いて水分量を検出する。具体的には、演算処理部56は、一回の第一状態の時間帯内で得られた複数の信号比の平均値に基づいて、水分量を検出している。これにより、検出した水分量の確度を高めることができる。
 なお、空間3には湿気(水蒸気)も存在しているが、水蒸気によって検知光及び参照光が吸収される場合も想定される。この水蒸気による吸収分をキャンセルするように第一電気信号及び第二電気信号を補正する補正部を信号処理回路50に設けてもよい。
 [路面状態検出装置の動作]
 次いで、路面状態検出装置100の動作について説明する。まず制御部120は、水分量センサ1を制御して、路面S上の水分量を検出させる。このとき、水分量センサ1の演算処理部56は、第一状態となる毎に、当該第一状態の時間帯内で平均化した水分量を求めている。また、演算処理部56は、検出した水分量と、範囲外時間帯と、危険度テーブルとに基づいて、路面S上の危険度を判断する。一方、演算処理部56は、温度テーブルと、所定の時間内における範囲外時間帯の頻度と、温度センサ60の検出した温度とに基づいて、路面S上の温度を推定する。また、演算処理部56は、推定した路面S上の温度に基づいて、路面Sに含まれる水の状態を判断する。演算処理部56は、路面S上の危険度と、水の状態とを制御部120に出力する。
 制御部120は、表示部110を制御して、水分量センサ1で検出された水分量に基づく情報を表示部110に表示させる。水分量に基づく情報には、路面S上の危険度、水の状態、これらに基づき決定された表示内容などが含まれる。具体的には、演算処理部56の判断結果が、水の状態「固体」、危険度「高い」である場合には、制御部120は、例えば「路面凍結中。速度落とせ。」などと注意喚起の表示を表示部110に表示させる。演算処理部56の判断結果が、水の状態「液体」、危険度「高い」である場合には、制御部120は、例えば「速度落とせ。」などと注意喚起の表示を表示部110に表示させる。演算処理部56の判断結果が、危険度「低い」である場合には、制御部120は、表示部110に注意喚起の表示を行わせない。なお、水分量センサ1で検出された水分量を表示部110に表示させてもよい。
 [効果など]
 以上のように、本実施の形態によれば、路面Sに対して光を発し、当該路面Sからの反射光に基づいて路面Sの水分量を検出する水分量センサ1であって、水による吸収が所定値よりも大きな第一波長帯を含む検知光と、水による吸収が所定値以下である第二波長帯を含む参照光とを、光として路面Sに向けて発する発光部20と、路面Sによって反射された検知光を受光し、第一電気信号に変換する第一受光部33と、路面Sによって反射された参照光を受光し、第二電気信号に変換する第二受光部43と、第一電気信号及び第二電気信号の信号比に基づいて、路面Sが含む水分量を検出する演算処理部56と、を備え、演算処理部56は、第一電気信号及び第二電気信号の少なくとも一方の信号強度が、基準値を基準とした所定の範囲内にある場合の信号比に基づいて、水分量を検出する。
 これによれば、車両Vの通過の影響で、所定の範囲内に収まらなかった信頼性の低い信号比を排除することができる。これにより、水分量の検出には、所定の範囲内に収まった信頼性の高い信号比を用いることができる。したがって、路面S上を移動する車両Vの影響を抑制して、検出結果の正確性を高めることができる。
 また、演算処理部56は、第一電気信号及び第二電気信号の少なくとも一方の信号強度が、所定の範囲内にある場合の信号比の平均値に基づいて、水分量を検出する。
 これによれば、演算処理部56は、第一状態の時間帯内で得られた複数の信号比の平均値に基づいて、水分量を検出しているので、検出した水分量の確度を高めることができる。
 また、演算処理部56は、第二電気信号の信号強度が所定の範囲内にある場合の信号比に基づいて、前記水分量を検出する。
 これによれば、水の影響を受けにくい参照光を起因とした第二電気信号の信号強度が所定の範囲内にある場合の信号比に基づいて、水分量を検出することができる。
 また、演算処理部56には、第一電気信号及び第二電気信号の少なくとも一方の信号強度が所定の範囲外となる範囲外時間帯と水分量との関係から路面S上の危険度を判断するための危険度テーブルが備えられており、演算処理部56は、範囲外時間帯を算出して、当該範囲外時間帯と、検出した水分量と、危険度テーブルとに基づいて、危険度を判断する。
 これによれば、水分量と範囲外時間帯とに基づいて、路面Sに対する車両Vの現在の危険度を判断することができる。
 また、水分量センサ1の周囲の温度を検出する温度センサ60を備え、演算処理部56には、第一電気信号及び第二電気信号の少なくとも一方の信号強度が、所定の時間内において所定の範囲外となる頻度と温度との関係から路面S上の温度を判断するための温度テーブルが備えられており、演算処理部56は、頻度を算出して、当該頻度と、温度センサが検出した温度と、温度テーブルとに基づいて、路面S上の温度を推定する。
 これによれば、前記頻度と、温度センサが検出した水分量センサ1の周囲の温度とに基づいて、路面S上の温度を推定することができる。このため、例えば、赤外線温度センサなどの非接触式の温度センサを採用した場合と比べても、コストを抑制することができる。なお、路面Sの温度を検出するために、非接触式の温度センサを採用してもよい。
 また、演算処理部56は、推定した路面S上の温度に基づいて、当該路面Sに含まれる水の状態を判断する。
 これによれば、推定した路面S上の温度に基づいて、路面Sに含まれる水が、液体であるか固体であるかを判断することができる。したがって、路面Sの滑りやすさを判断することできる。
 また、本実施の形態に係る路面状態検出装置100は、上記の水分量センサ1と、水分量センサ1で検出された水分量に基づく情報を表示する表示部110とを備えている。
 これによれば、表示部110から水分量に基づく情報を報知することができる。したがって、報知された人は、水分量に関する対策を講じやすくなる。
 (その他)
 以上、本発明に係る水分量センサ1について、上記の実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
 例えば、上記実施の形態では、光源22がLED光源である場合を例示したが、光源は半導体レーザ素子又は有機EL素子などでもよい。
 また、上記実施の形態では、検知光をなす第一波長帯と参照光をなす第二波長帯とを含む連続した光を1つの光源22が発する場合を例示して説明した。しかしながら、複数の光源を設け、1つの光源が検知光を発し、他の光源が参照光を発するようにしてもよい。
 また、上記実施の形態では、信号処理回路50に備わる光源制御部51、第一信号処理部54、第二信号処理部55及び演算処理部56がそれぞれ専用のマイクロコントローラからなる場合を例示して説明したが、信号処理回路は、全体として1つのマイクロコントローラで実現されてもよい。
 また、上記実施の形態では、車道に対して路面状態検出装置100が設置された場合を例示した。しかし、路面状態検出装置100は、それ以外の施設に設置することも可能である。例えば、ショッピングモールなどの商業施設に設置することも可能である。商業施設内においては、雨、雪以外にも、アトラクションとして散布された水、人物がこぼした飲料などによって、路面の状態が変動する。このように、商業施設内に路面状態検出装置100を設置すれば、商業施設内にいる人々に路面状態を報知することが可能である。また、路面上を移動する人物、ショッピングカートなどが水分量センサ1からの光を遮ることがある。この場合においても、上記の路面状態検出装置100であれば、水分量センサ1の直下を通過する移動体の影響を抑制しているので、路面状態を正確に判断することが可能である。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
1 水分量センサ
20 発光部
33 第一受光部
43 第二受光部
56 演算処理部
60 温度センサ
100 路面状態検出装置
110 表示部
S 路面

Claims (7)

  1.  路面に対して光を発し、当該路面からの反射光に基づいて前記路面の水分量を検出する水分量センサであって、
     水による吸収が所定値よりも大きな第一波長帯を含む検知光と、水による吸収が前記所定値以下である第二波長帯を含む参照光とを、前記光として前記路面に向けて発する発光部と、
     前記路面によって反射された前記検知光を受光し、第一電気信号に変換する第一受光部と、
     前記路面によって反射された前記参照光を受光し、第二電気信号に変換する第二受光部と、
     前記第一電気信号及び前記第二電気信号の信号比に基づいて、前記路面が含む水分量を検出する演算処理部と、を備え、
     前記演算処理部は、前記第一電気信号及び前記第二電気信号の少なくとも一方の信号強度が、基準値を基準とした所定の範囲内にある場合の前記信号比に基づいて、前記水分量を検出する
     水分量センサ。
  2.  前記演算処理部は、前記第一電気信号及び前記第二電気信号の少なくとも一方の信号強度が、前記所定の範囲内にある場合の前記信号比の平均値に基づいて、前記水分量を検出する
     請求項1に記載の水分量センサ。
  3.  前記演算処理部は、前記第二電気信号の信号強度が前記所定の範囲内にある場合の前記信号比に基づいて、前記水分量を検出する
     請求項1または2に記載の水分量センサ。
  4.  前記演算処理部には、前記第一電気信号及び前記第二電気信号の少なくとも一方の信号強度が前記所定の範囲外となる範囲外時間帯と水分量との関係から前記路面上の危険度を判断するための危険度テーブルが備えられており、
     前記演算処理部は、前記範囲外時間帯を算出して、当該範囲外時間帯と、検出した前記水分量と、前記危険度テーブルとに基づいて、前記危険度を判断する
     請求項1~3のいずれか一項に記載の水分量センサ。
  5.  前記水分量センサの周囲の温度を検出する温度センサを備え、
     前記演算処理部には、前記第一電気信号及び前記第二電気信号の少なくとも一方の信号強度が、所定の時間内において前記所定の範囲外となる頻度と温度との関係から前記路面上の温度を判断するための温度テーブルが備えられており、
     前記演算処理部は、前記頻度を算出して、当該頻度と、前記温度センサが検出した温度と、前記温度テーブルとに基づいて、前記路面上の温度を推定する
     請求項1~4のいずれか一項に記載の水分量センサ。
  6.  前記演算処理部は、推定した前記路面上の温度に基づいて、当該路面に含まれる水の状態を判断する
     請求項5に記載の水分量センサ。
  7.  請求項1~6のいずれか一項に記載の水分量センサと、
     前記水分量センサで検出された前記水分量に基づく情報を表示する表示部とを備える
     路面状態検出装置。
PCT/JP2018/027223 2017-08-29 2018-07-20 水分量センサ及び路面状態検出装置 WO2019044252A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880055090.0A CN111051855B (zh) 2017-08-29 2018-07-20 含水量传感器以及路面状态检测装置
JP2019539055A JP6788863B2 (ja) 2017-08-29 2018-07-20 水分量センサ及び路面状態検出装置
EP18849537.8A EP3677897B1 (en) 2017-08-29 2018-07-20 Water content sensor and road surface state detection device
US16/641,599 US11480520B2 (en) 2017-08-29 2018-07-20 Water content sensor and road surface state detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-164435 2017-08-29
JP2017164435 2017-08-29

Publications (1)

Publication Number Publication Date
WO2019044252A1 true WO2019044252A1 (ja) 2019-03-07

Family

ID=65526248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027223 WO2019044252A1 (ja) 2017-08-29 2018-07-20 水分量センサ及び路面状態検出装置

Country Status (5)

Country Link
US (1) US11480520B2 (ja)
EP (1) EP3677897B1 (ja)
JP (1) JP6788863B2 (ja)
CN (1) CN111051855B (ja)
WO (1) WO2019044252A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732560B (zh) * 2020-05-19 2021-07-01 中華學校財團法人中華科技大學 水量感應地磚及其應用的氣象資訊監控系統
DE102022121272A1 (de) 2021-09-08 2023-03-09 Subaru Corporation Schätzvorrichtung und fahrzeug

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044252A1 (ja) * 2017-08-29 2019-03-07 パナソニックIpマネジメント株式会社 水分量センサ及び路面状態検出装置
CN113050186A (zh) * 2021-03-09 2021-06-29 复旦大学 非接触式路面状态监测系统

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127296A (ja) * 1982-01-25 1983-07-29 パトロマリサーチ有限会社 安全走行速度表示装置
JPH05118984A (ja) 1991-10-29 1993-05-14 Yokogawa Electric Corp 赤外線水分計
JPH06229917A (ja) * 1993-01-29 1994-08-19 Mazda Motor Corp 水分計測方法
JPH09269381A (ja) * 1996-03-29 1997-10-14 Nagoya Denki Kogyo Kk 路面状態判定方法
JP2000002772A (ja) * 1998-06-15 2000-01-07 Pub Works Res Inst Ministry Of Constr 路面状態判別装置
JP2001083078A (ja) * 1999-09-16 2001-03-30 Denso Corp 路面状況推定装置
JP2006017501A (ja) * 2004-06-30 2006-01-19 Japan Weather Association 路面温度予測システム、路面温度予測方法及び路面温度予測プログラム
JP2006046936A (ja) * 2004-07-30 2006-02-16 Sharp Corp 路面状態計測方法及び路面状態計測装置
JP2008128945A (ja) * 2006-11-24 2008-06-05 Sumitomo Electric Ind Ltd 路面状態検知装置
JP2011186940A (ja) * 2010-03-10 2011-09-22 Toshiba Corp 道路交通情報提供システム及び方法
JP2013168155A (ja) * 2013-02-26 2013-08-29 Sumitomo Electric Ind Ltd 光ビーコン
US20140049405A1 (en) * 2010-06-30 2014-02-20 Wabco Gmbh Device and Method for Outputting a Signal When There is a Hazardous Underlying Surface Under a Vehicle
WO2015008435A1 (ja) * 2013-07-17 2015-01-22 パナソニックIpマネジメント株式会社 分光装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015015B2 (ja) * 1979-06-29 1985-04-17 株式会社 レオ技研 路面水分検知装置
JPS59208442A (ja) 1983-05-12 1984-11-26 Fujitsu Ten Ltd 車両のブレーキ制御装置
JPS6022480Y2 (ja) 1984-07-19 1985-07-03 小糸工業株式会社 交通流安全制御装置
JP3297735B2 (ja) 1999-11-15 2002-07-02 独立行政法人産業技術総合研究所 湿潤度合い判定方法、湿潤度測定方法ならびに湿潤度測定装置
JP2003050198A (ja) 2001-08-03 2003-02-21 Omron Corp 路面判別装置及び路面判別センサ
JP4092494B2 (ja) * 2003-08-25 2008-05-28 山田技研株式会社 路面センサー及び路面の監視制御方法
JP4814655B2 (ja) 2006-03-02 2011-11-16 富士通株式会社 路面状態判定装置および路面状態判定方法
US20170096144A1 (en) * 2015-10-05 2017-04-06 Ford Global Technologies, Llc System and Method for Inspecting Road Surfaces
WO2019044252A1 (ja) * 2017-08-29 2019-03-07 パナソニックIpマネジメント株式会社 水分量センサ及び路面状態検出装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127296A (ja) * 1982-01-25 1983-07-29 パトロマリサーチ有限会社 安全走行速度表示装置
JPH05118984A (ja) 1991-10-29 1993-05-14 Yokogawa Electric Corp 赤外線水分計
JPH06229917A (ja) * 1993-01-29 1994-08-19 Mazda Motor Corp 水分計測方法
JPH09269381A (ja) * 1996-03-29 1997-10-14 Nagoya Denki Kogyo Kk 路面状態判定方法
JP2000002772A (ja) * 1998-06-15 2000-01-07 Pub Works Res Inst Ministry Of Constr 路面状態判別装置
JP2001083078A (ja) * 1999-09-16 2001-03-30 Denso Corp 路面状況推定装置
JP2006017501A (ja) * 2004-06-30 2006-01-19 Japan Weather Association 路面温度予測システム、路面温度予測方法及び路面温度予測プログラム
JP2006046936A (ja) * 2004-07-30 2006-02-16 Sharp Corp 路面状態計測方法及び路面状態計測装置
JP2008128945A (ja) * 2006-11-24 2008-06-05 Sumitomo Electric Ind Ltd 路面状態検知装置
JP2011186940A (ja) * 2010-03-10 2011-09-22 Toshiba Corp 道路交通情報提供システム及び方法
US20140049405A1 (en) * 2010-06-30 2014-02-20 Wabco Gmbh Device and Method for Outputting a Signal When There is a Hazardous Underlying Surface Under a Vehicle
JP2013168155A (ja) * 2013-02-26 2013-08-29 Sumitomo Electric Ind Ltd 光ビーコン
WO2015008435A1 (ja) * 2013-07-17 2015-01-22 パナソニックIpマネジメント株式会社 分光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3677897A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732560B (zh) * 2020-05-19 2021-07-01 中華學校財團法人中華科技大學 水量感應地磚及其應用的氣象資訊監控系統
DE102022121272A1 (de) 2021-09-08 2023-03-09 Subaru Corporation Schätzvorrichtung und fahrzeug

Also Published As

Publication number Publication date
US20200408676A1 (en) 2020-12-31
CN111051855A (zh) 2020-04-21
EP3677897A1 (en) 2020-07-08
US11480520B2 (en) 2022-10-25
EP3677897B1 (en) 2021-11-17
JPWO2019044252A1 (ja) 2020-03-26
EP3677897A4 (en) 2020-10-21
CN111051855B (zh) 2022-08-02
JP6788863B2 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6788863B2 (ja) 水分量センサ及び路面状態検出装置
US10712263B2 (en) Smoke detection using two different wavelengths of light and additional detection for measurement correction
NL2018484B1 (en) Method and device determining soiling of a shield
JP5951197B2 (ja) 自動車の外側の視界を検出するための方法及びセンサー・アレンジメント
CA2392705C (en) Smoke detector
US9140646B2 (en) Smoke detector with external sampling volume using two different wavelengths and ambient light detection for measurement correction
US20150293032A1 (en) Unit and method for optical non-contact oil detection
JP2016537647A5 (ja)
US20220082512A1 (en) Method and device determining soiling of a shield
KR101820760B1 (ko) 컨테이너 내의 액체의 레벨을 검출하기 위한 장치
JP2003254897A (ja) 雨滴及び光検出装置、及び、オートワイパー装置
KR20170115248A (ko) 다중 민감도 영역을 갖는 레인센서
JP6755105B2 (ja) 炎検知器
US20170089830A1 (en) Method for signal detection in a gas analysis system
KR20220103791A (ko) 특수 형상의 렌즈를 갖는 차량용 안개 검출기
JP6765039B2 (ja) 出射装置
JP2017161424A (ja) 光学式成分センサ
JP2010223683A (ja) 非接触式温度センサ
US9640682B2 (en) Device for emitting electromagnetic radiation
JP2019148454A (ja) 成分検知センサ
CN110312924B (zh) 干燥度传感器
JP2019148450A (ja) 成分検知センサ
JP2009042156A (ja) 光センサ装置
JPH07198341A (ja) 水膜測定装置
JP7254380B2 (ja) 出射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539055

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018849537

Country of ref document: EP

Effective date: 20200330