WO2019044082A1 - 医用画像処理装置、方法およびプログラム - Google Patents

医用画像処理装置、方法およびプログラム Download PDF

Info

Publication number
WO2019044082A1
WO2019044082A1 PCT/JP2018/020700 JP2018020700W WO2019044082A1 WO 2019044082 A1 WO2019044082 A1 WO 2019044082A1 JP 2018020700 W JP2018020700 W JP 2018020700W WO 2019044082 A1 WO2019044082 A1 WO 2019044082A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical image
regions
correction amount
image
brain
Prior art date
Application number
PCT/JP2018/020700
Other languages
English (en)
French (fr)
Inventor
王 彩華
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019538979A priority Critical patent/JP6853369B2/ja
Publication of WO2019044082A1 publication Critical patent/WO2019044082A1/ja
Priority to US16/776,526 priority patent/US11164296B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0042Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration using histogram techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/94Dynamic range modification of images or parts thereof based on local image properties, e.g. for local contrast enhancement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • A61B2576/026Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain

Definitions

  • the present invention relates to a medical image processing apparatus, method, and program for correcting the density of a medical image.
  • Alzheimer's disease With the advent of the aging society, patients with dementia disease are increasing year by year. Dementia develops when brain atrophy progresses by accumulation of a protein called amyloid ⁇ in the brain and cognitive ability declines. There is no cure for dementia, so early detection of brain atrophy and early treatment to slow the progression of dementia are important for maintaining quality of life.
  • SPECT Single Photon Emission Computed Tomography
  • PET PET
  • CT images and MRI Magnetic Resonance Imaging
  • Information on the state of the brain has become available by means of MRI images acquired by the device. For example, reductions in blood flow and metabolism in localized areas of the brain can be found by using SPECT and PET images to determine changes over time in localized areas of the brain.
  • brain atrophy can be found by determining the volume of a specific region of the brain by MRI images and comparing temporal changes in volume. For example, according to Patent Document 1, alignment of two brain images different in shooting date and time is performed, and then each of the two brain images is divided into tissue areas (gray matter and white matter), and the amount of change is determined for each tissue area. A method for acquiring has been proposed.
  • Non-Patent Documents 1 and 2 there has been proposed a method of subjecting a patient's brain image to segmentation by aligning a standard brain image segmented according to Brodmann's brain map with the patient's brain image.
  • Patent Document 2 which region is responsible for which brain function (movement, language, perception, memory, vision, hearing, etc.) in the three-dimensional region of the cerebral cortex of the standard brain It is shown.
  • Non-Patent Documents 1 and 2 a method of dividing the brain image of a patient into regions and acquiring the amount of change in volume for each region.
  • Non-Patent Documents 1 and 2 first, the first brain image of the patient and the standard brain image are aligned, the first brain image is segmented, and the first brain image is compared with the first brain image.
  • the second brain image of the patient whose imaging date and time is new is aligned with the standard brain image of the patient to segment the second brain image. Then, the amount of change in volume between corresponding regions in the first brain image and the second brain image is acquired.
  • the atrophy rate of the whole brain of a normal subject is 1 to 3% a year, compared to less than 1% a year. For this reason, in the follow-up observation of Alzheimer's disease, it is necessary to accurately recognize which part of the brain is atrophy to what extent by comparing the MRI image acquired at the previous diagnosis and the latest MRI image.
  • the concentration non-uniformity is included in the MRI image, the atrophy of the obtained brain may be affected by the concentration non-uniformity and the calculation may not be performed accurately.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to make it possible to match the overall density of two medical images and to correct density unevenness.
  • a medical image processing apparatus comprises an image acquisition unit for acquiring a first medical image including a target site and a second medical image including the target site.
  • a division unit configured to divide a target site included in the first medical image and the second medical image into a plurality of mutually corresponding areas;
  • the correction amount for matching the density characteristics of each of the plurality of regions in the first medical image with the density characteristics of the corresponding regions in the second medical image is set for each of the plurality of regions in the first medical image
  • a first correction amount calculation unit that calculates as First other pixel values other than the first reference pixel included in each of the plurality of regions in the first medical image, and a first other pixel for each of the plurality of regions in the second medical image
  • a second correction amount calculation unit that calculates a second correction amount for matching the pixel value of the
  • first reference pixel and the “second reference pixel” may each be only one or plural.
  • a plurality of regions in the first and second medical images have different pixel values, ie, density values, for each pixel.
  • “Match the density characteristics of each of a plurality of regions in the first medical image and the density characteristics of the corresponding regions in the second medical image” means, for example, histogram analysis, average value of pixels, and It refers to making the concentrations of the corresponding two regions the same or similar by using a method of analysis by statistical values such as variance values or a known method.
  • the first correction amount calculation unit is configured to calculate the first histogram in each of the plurality of regions of the first medical image and the plurality of regions in the second medical image. And generating a second histogram in each of the plurality of regions of the first medical image and a second histogram in each of the plurality of regions of the second medical image.
  • the conversion parameter may be calculated as the first correction amount.
  • the second correction amount calculation unit may calculate the second correction amount by interpolation calculation for the first correction amount between a plurality of areas.
  • the interpolation operation may be a linear interpolation operation.
  • the first medical image and the second medical image may be MRI images.
  • the target site is a brain
  • the first medical image is a standard brain image
  • the second medical image is a brain image of a subject
  • the correction unit may correct the brain image of the subject.
  • the target region may be a brain
  • the first medical image and the second medical image may be brain images different in imaging time of the same subject.
  • the dividing unit may divide target portions included in the first medical image and the second medical image into equal regions.
  • Diviiding into equal regions includes not only dividing into completely equal regions, but also dividing into equal regions with some errors.
  • a medical image processing method acquires a first medical image including a target site and a second medical image including the target site. Dividing a target region included in the first medical image and the second medical image into a plurality of regions corresponding to each other; The correction amount for matching the density characteristics of each of the plurality of regions in the first medical image with the density characteristics of the corresponding regions in the second medical image is set for each of the plurality of regions in the first medical image A first correction amount between the pixel value of the first reference pixel included and the pixel value of the second reference pixel corresponding to the first reference pixel for each of the plurality of regions in the second medical image Calculated as First other pixel values other than the first reference pixel included in each of the plurality of regions in the first medical image, and a first other pixel for each of the plurality of regions in the second medical image Calculating a second correction amount for matching the pixel value of the corresponding second other pixel based on the first correction amount; At least one of the first medical image and the second medical image is
  • the medical image processing method according to the present invention may be provided as a program that causes a computer to execute.
  • Another medical image processing apparatus is a memory for storing instructions to be executed by a computer.
  • a processor configured to execute the stored instructions, the processor Acquiring a first medical image including a target site and a second medical image including the target site; Dividing a target region included in the first medical image and the second medical image into a plurality of regions corresponding to each other; The correction amount for matching the density characteristics of each of the plurality of regions in the first medical image with the density characteristics of the corresponding regions in the second medical image is set for each of the plurality of regions in the first medical image A first correction amount between the pixel value of the first reference pixel included and the pixel value of the second reference pixel corresponding to the first reference pixel for each of the plurality of regions in the second medical image Calculated as First other pixel values other than the first reference pixel included in each of the plurality of regions in the first medical image, and a first other pixel for each of the plurality of regions in the second medical image Calculating a second correction amount for matching the pixel value of the
  • target portions included in the first medical image and the second medical image are divided into a plurality of mutually corresponding regions, and density characteristics of each of the plurality of regions in the first medical image;
  • the pixel value of the first reference pixel included in each of the plurality of regions in the first medical image, and the correction value for matching the density characteristics of the corresponding region in the second medical image with each other, and the second medical It is calculated as a first correction amount between the pixel value of the second reference pixel corresponding to the first reference pixel for each of the plurality of regions in the image.
  • a first other pixel value other than the first reference pixel included in each of the plurality of regions in the first medical image, and a first other pixel value for each of the plurality of regions in the second medical image A second correction amount for matching the pixel value of the second other pixel corresponding to the pixel is calculated based on the first correction amount. Furthermore, at least one of the first medical image and the second medical image is corrected based on the first correction amount and the second correction amount. For this reason, even if the first medical image and the second medical image include unevenness of different pixel values, that is, uneven density, not only the overall density of the first medical image and the second medical image, but Uneven density can also be matched. Therefore, by using the corrected first medical image and second medical image, it is possible to accurately compare the target portions included in the first medical image and the second medical image.
  • a hardware configuration diagram showing an outline of a diagnosis support system to which a medical image processing apparatus according to an embodiment of the present invention is applied A diagram showing a schematic configuration of a medical image processing apparatus Figure for explaining the division of standard brain image Figure for explaining the division of brain image Flow chart showing processing performed in the first embodiment Flow chart showing processing performed in the second embodiment
  • FIG. 1 is a hardware configuration diagram showing an outline of a diagnosis support system to which a medical image processing apparatus according to an embodiment of the present invention is applied.
  • the medical image processing apparatus 1, the three-dimensional image capturing apparatus 2 and the image storage server 3 according to the present embodiment are connected in a communicable state via the network 4 There is.
  • the three-dimensional image capturing device 2 is a device that generates a three-dimensional image representing a region to be diagnosed as a medical image by capturing a region to be diagnosed of a patient who is a subject.
  • a CT device It is an MRI apparatus, a PET apparatus, and the like.
  • the medical image generated by the three-dimensional image capturing device 2 is transmitted to the image storage server 3 and stored.
  • the diagnosis target site of the patient who is the subject is the brain
  • the three-dimensional image capturing device 2 is the MRI device
  • the MRI image of the head including the brain of the subject is three-dimensional medical Generate as an image.
  • the image storage server 3 is a computer that stores and manages various data, and includes a large-capacity external storage device and software for database management.
  • the image storage server 3 communicates with other devices via a wired or wireless network 4 to transmit and receive image data and the like.
  • various data including image data of a medical image generated by the three-dimensional image capturing device 2 is acquired via a network, and stored and managed in a recording medium such as a large-capacity external storage device.
  • the storage format of image data and communication between devices via the network 4 are based on a protocol such as DICOM (Digital Imaging and Communication in Medicine).
  • DICOM Digital Imaging and Communication in Medicine
  • the medical image processing apparatus 1 is obtained by installing the medical image processing program of the present invention in one computer.
  • the computer may be a workstation or a personal computer directly operated by a doctor performing diagnosis, or a server computer connected with them via a network.
  • the medical image processing program is distributed by being recorded in a recording medium such as a digital versatile disc (DVD) or a compact disc read only memory (CD-ROM), and installed in a computer from the recording medium.
  • DVD digital versatile disc
  • CD-ROM compact disc read only memory
  • it is stored in a storage device of a server computer connected to a network or in a network storage in an accessible state from the outside, downloaded to a computer used by a doctor in response to a request, and installed.
  • FIG. 2 is a view showing a schematic configuration of a medical image processing apparatus realized by installing a medical image processing program in a computer.
  • the medical image processing apparatus 1 has a central processing unit (CPU) as a standard work station configuration. 11, a memory 12 and a storage 13 are provided. Further, a display 14 such as a liquid crystal display, and an input unit 15 such as a keyboard and a mouse are connected to the medical image processing apparatus 1.
  • CPU central processing unit
  • the storage 13 is formed of a storage device such as a hard disk or a solid state drive (SSD).
  • the storage 13 stores various information including a brain image B0 of a subject, a standard brain image Bs, and information necessary for processing, which are acquired from the image storage server 3 via the network 4.
  • the brain image B0 of the subject corresponds to the first medical image
  • the standard brain image Bs corresponds to the second medical image.
  • the standard brain image Bs is a three-dimensional brain image representing a brain having a standard shape and size and a standard density (pixel value), that is, a standard brain.
  • the standard brain image Bs may be generated by extracting a brain from a plurality of brain images acquired by photographing the heads of a plurality of healthy persons with a three-dimensional image capturing device, and averaging the extracted plurality of brains it can.
  • the standard brain image Bs may be created by computer graphics or the like.
  • the brain image of one healthy person may be used as a standard brain image Bs.
  • the memory 12 stores a medical image processing program.
  • the medical image processing program executes, as processing to be executed by the CPU 11, image acquisition processing for acquiring a brain image B0 and a standard brain image Bs of the subject, and a plurality of brains included in the brain image B0 and the standard brain image Bs.
  • Division processing for dividing into regions, correction amounts for matching the density characteristics of each of a plurality of regions in the brain image B0 with the concentration characteristics of the corresponding region in the standard brain image Bs First correction between the pixel value of the first reference pixel included in each and the pixel value of the second reference pixel corresponding to the first reference pixel for each of a plurality of regions in the standard brain image Bs
  • a first correction amount calculation process to be calculated as an amount, a first other pixel value other than the first reference pixel included in each of the plurality of regions in the brain image B0, and the standard brain image B Calculating a second correction amount for matching the pixel value of the second other pixel corresponding to the first other pixel for each of the plurality of regions in
  • a correction process for correcting the brain image B0 and a display control process for displaying the corrected brain image B0 on the display 14 are defined based on the correction amount calculation process of 2, the first correction amount and the second correction amount. .
  • the medical image processing apparatus 1 includes a plurality of processors or processing circuits that respectively perform image acquisition processing, division processing, first correction amount calculation processing, second correction amount calculation processing, correction processing, and display control processing. It may be
  • the image acquisition unit 21 acquires a brain image B0 of a subject and a standard brain image Bs from the image storage server 3.
  • the image acquiring unit 21 may acquire the brain image B0 and the standard brain image Bs from the storage 13.
  • what is stored in the image storage server 3 is a brain image B0 acquired by photographing the head of the subject, and also includes structures other than the brain such as a skull.
  • the dividing unit 22 divides the brain included in the brain image B0 and the standard brain image Bs into a plurality of mutually corresponding areas.
  • FIG. 3 is a diagram for explaining division of a standard brain image.
  • the standard brain image Bs is a three-dimensional image
  • FIG. 3 shows a slice image of one axial cross section in the standard brain image Bs.
  • a brain region is extracted in advance for the standard brain image Bs. Therefore, the division unit 22 generates a standard brain region image Bsr in which only the brain region in the standard brain image Bs is extracted.
  • the dividing unit 22 divides the standard brain region image Bsr into a plurality of small regions.
  • the small area corresponds to the area of the present invention.
  • the standard brain area image Bsr is a three-dimensional image
  • the standard brain area image Bsr is equally divided into four for each of three directions x, y, and z, and 64 standard brain area images Bsr are obtained.
  • Divided into small regions Csi (i 1 to 64) of At this time, the boundaries of the small regions may be adjusted so that the volumes of the small regions Csi become the same.
  • the number of divisions of the area is not limited to 64, and may be divided into any number.
  • the standard brain region image Bsr is divided equally in the above, it may be divided unevenly.
  • each small area Csi has a cubic shape, but it may be divided so as to have a rectangular solid shape. You may divide
  • the dividing unit 22 divides the brain region of the brain image B0 in the same manner as the standard brain image Bs.
  • FIG. 4 is a diagram for explaining division of a brain image.
  • the dividing unit 22 aligns the brain image B0 with the standard brain image Bs.
  • the standard brain image Bs is described as being aligned with the brain image B0, but the brain image B0 may be aligned with the standard brain image Bs.
  • the dividing unit 22 extracts landmarks from the brain image B0 and the standard brain image Bs.
  • the extraction of the landmark may be performed by template matching using, for example, a template representing the landmark, or may be performed by using a discriminator trained so as to discriminate the landmark included in the image.
  • the dividing unit 22 performs the first alignment so as to match the corresponding landmarks between the brain image B0 and the standard brain image Bs.
  • the first alignment is alignment by similarity transformation. Specifically, alignment is performed by translating, rotating, and resizing the standard brain image Bs.
  • the dividing unit 22 performs similarity transformation on the standard brain image Bs so as to maximize the correlation between the landmarks included in the standard brain image Bs and the corresponding landmarks included in the brain image B0, to obtain the first position. Make a match.
  • the dividing unit 22 After performing the first alignment using the landmark in this manner, the dividing unit 22 performs the second alignment using the entire region between the brain image B0 and the standard brain image Bs.
  • the second alignment is alignment by non-linear transformation.
  • alignment by nonlinear conversion alignment by converting a pixel position nonlinearly using functions, such as B spline and thin plate spline (Thin Plate Spline), is mentioned, for example.
  • the dividing unit 22 performs the second alignment by non-linearly converting each pixel position of the standard brain image Bs after the first alignment to a corresponding pixel position included in the brain image B0.
  • the dividing unit 22 thus aligns the standard brain image Bs with the brain image B0, and then applies the brain region of the standard brain image Bs to the brain image B0 to extract the brain region from the brain image B0. Generate an image B0r.
  • the extracted brain region may be extracted more accurately from the brain image B0 by using, for example, the graph cut method.
  • the dividing unit 22 divides the brain region image B0r into a plurality of regions in the same manner as the standard brain region image Bsr.
  • the first correction amount calculator 23 corrects the correction amount for matching the density characteristics of each of the plurality of small regions C0i in the brain image B0 with the density characteristics of the corresponding small region Csi in the standard brain image Bs.
  • a second reference pixel corresponding to the pixel value of the first reference pixel included in each of the plurality of small regions C0i in the image B0 and the first reference pixel for each of the plurality of small regions Csi in the standard brain image Bs It is calculated as a first correction amount between the pixel values of.
  • the density characteristics of each of the plurality of small areas C0i in the brain image B0 match the density characteristics of the corresponding small area Csi in the standard brain image Bs.
  • the first reference pixel is the central pixel of the small area C0i
  • the second reference pixel is the central pixel of the small area Cri.
  • the present invention is not limited to this.
  • the first correction amount calculator 23 calculates a histogram H0i of pixel values of a plurality of small areas C0i in the brain image B0 and a histogram Hsi of pixel values of a plurality of small areas Csi in the standard brain image Bs. Generate Then, between the corresponding small area C0i and small area Csi, a conversion parameter for causing the histogram H0i and the histogram Hsi to coincide with each other is calculated as a first correction amount.
  • the first correction amount calculation unit 23 matches each of the minimum value and the maximum value of the histogram H0i in the brain image B0 with the minimum value and the maximum value of the histogram Hsi in the standard brain image Bs, A first correction amount is calculated.
  • the minimum value of pixel values in the histogram H0i of the brain image B0 is S0min (i) and the maximum value is S0max (i)
  • the minimum value of pixel values in the histogram Hsi of the standard brain image Bs is Ssmin (i)
  • maximum Let the value be Srmax (i).
  • an arbitrary pixel value in the histogram H0i is S0 (i)
  • a pixel value S0 (i) corrected by the first correction amount is Sc0 (i).
  • the relationship shown in the following equation (1) is established.
  • Sc0 (i) Ssmin (i) + (S0 (i) -S0min (i)) * (Ssmax (i) -Ssmin (i)) / (S0max (i) -S0min (i)) (1)
  • Equation (1) is a linear transformation and can be represented by two transformation parameters a (i) and b (i), so equation (1) can be transformed into the following equation (2).
  • Sc0 (i) a (i) * S0 (i) + b (i) (2)
  • a (i) (Ssmax (i) -Ssmin (i)) / (S0max (i) -S0min (i))
  • b (i) Ssmin (i) -S0min (i) * (Ssmax (i) -Ssmin (i)) / (S0max (i) -S0min (i))
  • the first correction amount calculation unit 23 converts the conversion parameters a (i) and b (i) in the above equation (2) into the first reference pixel (that is, the central pixel of the small area C0i) for each small area C0i. It is calculated as a first correction amount between the pixel value of and the pixel value of the second reference pixel (that is, the central pixel of the small area Csi).
  • the density characteristic of the small area C0i matches the density characteristic of the corresponding small area Csi in the standard brain image Bs by correcting all the pixels of the small area C0i by the first correction amount calculated as described above. It can be done. However, since the first correction amount is calculated for each of the small regions C0i, if all pixels of each small region C0i are corrected by the first correction amount, a density difference appears at the boundary of the small regions C0i .
  • the second correction amount calculation unit 24 calculates a plurality of first reference pixel values other than the first reference pixel included in each of the plurality of small regions C0i in the brain image B0 and a plurality of reference brain images Bs.
  • a second correction amount for making the pixel values of the second other pixels corresponding to the first other pixels in each of the small regions Csi in the second region match is calculated based on the first correction amount.
  • the first reference pixel is the central pixel of the small area C0i and the second reference pixel is the central pixel of the small area Cri
  • the first other pixels are central pixels in the small area C0i
  • the other pixels are all pixels
  • the second other pixels are all pixels in the small area Cri except the central pixel corresponding to the first other pixel.
  • the first correction amount calculated by the first correction amount calculation unit 23 corresponds to the pixel value of the second reference pixel (that is, the small area Csi) with the pixel value of the first reference pixel (that is, the central pixel of the small area C0i).
  • a small area adjacent to the small area C0i to be corrected is Ckj (j is the number of small areas).
  • the number j of small regions depends on the location of the small regions in the brain image B0, with a minimum of 7 and a maximum of 26.
  • the second correction amount calculation unit 24 converts the conversion parameters a (i) and b (i) of the target small area C0i and the conversion parameters ak (j of the plurality of small areas Ckj adjacent to the target small area C0i. , Bk (j) are linearly interpolated, and conversion parameters ah (i) and bh (i) for the first other pixels other than the first reference pixel in the small region C0i to be corrected by the second correction Calculated as a quantity.
  • the second correction amount can be calculated by the above-described linear interpolation for the first other pixel between the small area C0i and the central pixel in the small area Ckj adjacent to the small area C0i.
  • the second correction amount may not be calculated by the above-described linear interpolation depending on the position of the first other pixel. If conversion parameters ah (i) and bh (i) for such first other pixels are calculated by extrapolation using the conversion parameters ak (j) and bk (j) of the adjacent small region Ckj. Good.
  • the correction unit 25 corrects the brain image B0 based on the first correction amount and the second correction amount. That is, in each of the small regions C0i of the brain image B0, the pixel values of the first reference pixel are corrected by the conversion parameters a (i) and b (i) which are the first correction amount. On the other hand, for the first other pixel, the pixel value is corrected by the conversion parameters ah (i) and bh (i) which are the second correction amount. Thereby, the correction unit 25 generates a corrected brain image Bf0.
  • the display control unit 26 displays the corrected brain image Bf0 on the display 14.
  • FIG. 5 is a flowchart showing the process performed in the first embodiment.
  • the image acquiring unit 21 acquires the brain image B0 and the standard brain image Bs of the subject (step ST1), and the dividing unit 22 corresponds to a plurality of brains included in the brain image B0 and the standard brain image Bs. Are respectively divided into the small area C0i and the small area Csi (step ST2).
  • the first correction amount calculation unit 23 calculates the pixel value of the first reference pixel included in each of the plurality of small areas C0i in the brain image B0 and the plurality of small areas Csi in the standard brain image Bs.
  • a first correction amount between the second reference pixel and the pixel value of the second reference pixel corresponding to the first reference pixel is calculated based on the histograms of the small area C0i and the small area Csi (step ST3).
  • the second correction amount calculation unit 24 determines the first other pixel values other than the first reference pixel included in each of the plurality of small regions C0i in the brain image B0, and the plurality of small in the standard brain image Bs. A second correction amount is calculated to match the pixel values of the second other pixel corresponding to the first other pixel in each of the regions Csi (step ST4).
  • the correction unit 25 corrects the brain image B0 based on the first correction amount and the second correction amount (step ST5), and the display control unit 26 displays the corrected brain image Bf0 on the display 14 (Step ST6), the process ends.
  • the brain included in the brain image B0 and the standard brain image Bs is divided into a plurality of small areas C0i and Csi, respectively, and the density characteristics of each of the plurality of small areas C0i in the brain image B0 And the correction value for matching the density characteristics of the corresponding small area Csi in the standard brain image Bs, the pixel value of the first small area C0i of the brain image B0, and the small area Csi of the standard brain image Bs.
  • the first reference pixel other than the first reference pixel of the small region C0i of the brain image B0, and the standard brain image Bs.
  • the second correction amount for making the pixel values of the second other pixels corresponding to the first other pixels of the small area Csi match is calculated based on the first correction amount. Then, based on the first correction amount and the second correction amount, the brain image B0 is corrected. For this reason, even if the brain image B0 includes unevenness of different pixel values, that is, density unevenness, not only the density of the whole brain image B0 but also the density unevenness of the brain image B0 is set to the standard brain image Bs. It can be matched to the concentration. Therefore, by using the corrected brain image B0, it is possible to accurately compare the brain image B0 with the standard brain image Bs.
  • the boundary of the small area C0i can be made inconspicuous in the corrected brain image Bf0 by calculating the second correction amount by interpolation calculation for the first correction amount between the plurality of small areas C0i.
  • the interpolation operation a linear interpolation operation, it is possible to make the boundary of the small region C0i less noticeable in the corrected brain image Bf0.
  • the brain image B0 as an MRI image, it is possible to correct uneven density caused by the device, which is included in the MRI image, due to the inhomogeneity in the static magnetic field and the imperfection in the gradient magnetic field.
  • the configuration of the medical image processing apparatus according to the second embodiment is the same as the configuration of the medical image processing apparatus according to the first embodiment shown in FIG. 2, and only the processing to be performed is different. Detailed description is omitted.
  • the first correction amount calculating unit 23 calculates the first correction amount using the histogram of the small area C0i and the small area Csi.
  • the first correction amount is calculated using the pixel values of the small area C0i and the small area Csi, specifically, the average value and the dispersion value of the pixel values, without using a histogram. The points are different from the first embodiment.
  • the first correction amount calculation unit 23 calculates the average value Msi and the variance value Vsi of the pixel values in the small area Csi for each small area Csi of the standard brain image Bs. Further, for each of the small regions C0i of the brain image B0, the average value M0i and the variance value V0i of the pixel values in the small region C0i are calculated. Although the average value and the variance value are representative values of pixel values, they may be intermediate values or the like.
  • the first correction amount calculation unit 23 performs the first correction process so that the average value M0i and the dispersion value V0i match the average value Msi and the dispersion value Vsi, respectively, between the corresponding small area C0i and the small area Csi. Calculate the correction amount.
  • the pixel value S0 (i) after correction by the first correction amount is Sc0 (i)
  • Equation (3) can be transformed into the following equation (4) because the equation (3) is a linear transformation and can be expressed by two transformation parameters e (i) and f (i).
  • Sc0 (i) e (i) * S0 (i) + f (i) (4)
  • e (i) Vsi / V0i
  • f (i) Msi-M0i * Vsi / V0i
  • the first correction amount calculation unit 23 converts the conversion parameters e (i) and f (i) in the above equation (4) into the first reference pixel (that is, the central pixel of the small area C0i) for each small area C0i. It is calculated as a first correction amount between the pixel value of and the pixel value of the second reference pixel (that is, the central pixel of the small area Csi).
  • the process performed by the second correction amount calculation unit 24 is the first embodiment except that the first correction amount is the conversion parameters e (i) and f (i). It is identical to the form. That is, the second correction amount calculation unit 24 converts the conversion parameters e (i) and f (i) of the target small area C0i and the conversion parameters ck of the plurality of small areas Ckj adjacent to the target small area C0i. (J), dk (j) are linearly interpolated, and conversion parameters eh (i), fh (i) for the first other pixels other than the first reference pixel in the small region C0i Calculated as the correction amount of
  • FIG. 6 is a flowchart showing the process performed in the second embodiment.
  • the image acquiring unit 21 acquires the brain image B0 and the standard brain image Bs of the subject (step ST11), and the dividing unit 22 corresponds to a plurality of brains included in the brain image B0 and the standard brain image Bs. Divided into the small area C0i and the small area Csi (step ST12).
  • the first correction amount calculation unit 23 calculates the pixel value of the first reference pixel included in each of the plurality of small areas C0i in the brain image B0 and the plurality of small areas Csi in the standard brain image Bs.
  • a first correction amount between the second reference pixel and the pixel value of the second reference pixel corresponding to the first reference pixel is calculated based on the pixel values of the small area C0i and the small area Csi (step ST13).
  • the second correction amount calculation unit 24 determines the first other pixel values other than the first reference pixel included in each of the plurality of small regions C0i in the brain image B0, and the plurality of small in the standard brain image Bs. A second correction amount is calculated to match the pixel values of the second other pixels corresponding to the first other pixels in each of the regions Csi (step ST14).
  • the correction unit 25 corrects the brain image B0 based on the first correction amount and the second correction amount (step ST15), and the display control unit 26 displays the corrected brain image B0 on the display 14 (Step ST16), the process ends.
  • the brain image B0 and the standard brain image Bs are acquired, and the brain image B0 is corrected so that the density of the brain image B0 matches the density of the standard brain image Bs.
  • the first brain image and the second brain image obtained at different imaging times for the same subject are acquired, and the density of one of the first brain image and the second brain image matches the density of the other.
  • the present invention can also be applied to the case where correction is made to In this case, in the first and second embodiments, the first brain image is replaced with the brain image B0, and the second brain image is replaced with the standard brain image Bs, as in the first embodiment. Can correct the brain image of
  • the MRI image of a test object is used as a medical image
  • the brain is used as the target site
  • the present invention is not limited to this, and any anatomical region included in the human body such as the heart, liver and lung may be used as the target site. Can.
  • the boundary of the regions is made inconspicuous in at least one of the corrected first medical image and the second medical image. can do.
  • the boundary of the region can be made less noticeable in at least one of the corrected first medical image and second medical image.
  • the first medical image and the second medical image as MRI images, it is possible to correct density unevenness caused by the apparatus due to inhomogeneity in static magnetic fields and imperfections in gradient magnetic fields included in MRI images be able to.
  • the target region is the brain
  • the first medical image is the standard brain image
  • the second medical image is the brain image of the subject
  • the brain image of the subject is corrected to standardize the density of the brain image of the subject. It is possible to match the brain image, and to correct density unevenness included in the brain image of the subject. Therefore, the comparison between the brain included in the brain image of the subject and the standard brain image can be performed with high accuracy.
  • brain images different in imaging time can be compared with high accuracy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Neurology (AREA)
  • Optics & Photonics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Nuclear Medicine (AREA)
  • Image Processing (AREA)

Abstract

医用画像処理装置、方法およびプログラムにおいて、2つの医用画像の全体の濃度を一致させることができ、かつ濃度ムラも補正できるようにする。分割部22が、脳画像B0および標準脳画像Bsに含まれる脳を、互いに対応する複数の領域に分割する。第1の補正量算出部23が、脳画像B0における複数の領域に含まれる第1の基準画素の画素値と、標準脳画像Bsにおける複数の小領域Csiについての第1の基準画素に対応する第2の基準画素の画素値との間の第1の補正量を算出する。第2の補正量算出部24が、脳画像B0における複数の領域の第1の基準画素以外の第1の他の画素値と、標準脳画像Bsにおける複数の領域の第1の他の画素に対応する第2の他の画素の画素値とを一致させるための第2の補正量を算出する。補正部25が、第1の補正量および第2の補正量に基づいて、脳画像B0を補正する。

Description

医用画像処理装置、方法およびプログラム
 本発明は、医用画像の濃度を補正する医用画像処理装置、方法およびプログラムに関するものである。
高齢化社会の到来により、認知症疾患の患者が年々増加している。認知症は脳にアミロイドβと呼ばれるタンパク質が蓄積することによって脳の萎縮が進行し、認知能力が低下することにより発症する。認知症の治療法は存在しないため、脳の萎縮を早期に発見し、認知症の進行を遅らせるための治療を早期に開始することが生活の質を維持する上で重要である。
 このような要望に応えるべく、近年、SPECT(Single Photon Emission Computed Tomography)およびPET(Positron Emission Tomography)等の核医学検査、並びにCT(Computerized Tomography)装置により取得されるCT画像およびMRI(Magnetic Resonance Imaging)装置により取得されるMRI画像によって脳の状態に関する情報が取得可能になってきている。例えば、脳の局所的な部位の血流および代謝の低下は、SPECTおよびPETの画像を用いて、脳の局所的な部位の経時的な変化を求めることにより発見することができる。
 一方、脳の萎縮については、MRI画像によって脳の特定部位の容積を求め、容積の経時的な変化を比較することにより発見することができる。例えば、特許文献1には、撮影日時が異なる2つの脳画像の位置合わせを行い、その後2つの脳画像のそれぞれを組織領域(灰白質および白質)に領域分割し、組織領域毎に変化量を取得する手法が提案されている。
 また、例えばブロードマンの脳地図にしたがって領域分割された標準脳画像と、患者の脳画像とを位置合わせして、患者の脳画像を領域分割する手法が提案されている(特許文献2参照)。ここで、ブロードマンの脳地図においては、標準脳の大脳皮質の3次元領域内において、どの領域がどの脳機能(運動、言語、知覚、記憶、視覚、および聴覚等)を司っているかが示されている。このように患者の脳画像を領域分割した上で、領域毎の容積の変化量を取得する手法が提案されている(非特許文献1,2)。非特許文献1,2に記載された手法においては、まず、患者の第1の脳画像と標準脳画像とを位置合わせして第1の脳画像を領域分割し、第1の脳画像よりも撮影日時が新しい患者の第2の脳画像と標準脳画像とを位置合わせして第2の脳画像を領域分割する。そして、第1の脳画像および第2の脳画像における対応する領域間における容積の変化量を取得している。
 しかしながら、MRI装置により取得されるMRI画像には、静的磁場における不均一性および傾斜磁場における不完全性による、装置に起因する濃度ムラが存在する。このような濃度ムラは装置により相違するのみならず、同じ装置で同じ撮影条件で撮影した2つの画像間において発生することもある。このような濃度ムラは、ある程度は許容されるものの、同一被検体についての経過観察を行うための撮影時期が異なる2つのMRI画像に濃度ムラが含まれると、経過を正確に判断することができなくなるおそれがある。
 とくに、被検体がアルツハイマー病の患者の場合、正常者の脳全体の萎縮率が年1%未満であるのに対して、年に1~3%である。このため、アルツハイマー病の経過観察においては、前回の診断時に取得したMRI画像と最新のMRI画像とを比較して、脳のどの部分がどの程度萎縮しているかを正確に認識する必要がある。しかしながら、MRI画像に濃度ムラが含まれていると、求められた脳の萎縮が濃度ムラに影響されて精度よく算出できないおそれがある。
 このため、2つのMRI画像のヒストグラムを算出し、2つのヒストグラムを一致させることにより、2つのMRI画像の濃度を一致させる手法が提案されている(特許文献3参照)。
特開2014-042684号公報 特開2011-010828号公報 特開2011-92438号公報
Subregional neuroanatomical change as a biomarker for Alzheimer's disease、Dominic Hollandら、Proceedings of the National Academy of Sciences、106巻、49号、20954-20959頁、2009/12/8 aBEAT: A Toolbox for Consistent Analysis of Longitudinal Adult Brain MRI、Yakang Daiら、Alzheimer's Disease Neuroimaging Initiative、April 3, 2013
 特許文献3に記載された手法を用いることにより、2つのMRI画像の全体の濃度を一致させることができる。しかしながら、画像に発生している濃度ムラは補正することができない。また、濃度ムラはMRI画像のみならず、CT画像等においても発生する可能性がある。
 本発明は上記事情に鑑みなされたものであり、2つの医用画像の全体の濃度を一致させることができ、かつ濃度ムラも補正できるようにすることを目的とする。
 本発明による医用画像処理装置は、対象部位を含む第1の医用画像および対象部位を含む第2の医用画像を取得する画像取得部と、
 第1の医用画像および第2の医用画像に含まれる対象部位を、互いに対応する複数の領域に分割する分割部と、
 第1の医用画像における複数の領域のそれぞれの濃度特性と、第2の医用画像における対応する領域の濃度特性とを一致させるための補正量を、第1の医用画像における複数の領域のそれぞれに含まれる第1の基準画素の画素値と、第2の医用画像における複数の領域のそれぞれについての第1の基準画素に対応する第2の基準画素の画素値との間の第1の補正量として算出する第1の補正量算出部と、
 第1の医用画像における複数の領域のそれぞれに含まれる第1の基準画素以外の第1の他の画素値と、第2の医用画像における複数の領域のそれぞれについての第1の他の画素に対応する第2の他の画素の画素値とを一致させるための第2の補正量を、第1の補正量に基づいて算出する第2の補正量算出部と、
 第1の補正量および第2の補正量に基づいて、第1の医用画像および第2の医用画像の少なくとも一方を補正する補正部とを備える。
 「第1の基準画素」および「第2の基準画素」は、それぞれ1つのみであってもよく、複数であってもよい。
 第1および第2の医用画像における複数の領域は、画素毎に異なる画素値、すなわち濃度値を有する。「第1の医用画像における複数の領域のそれぞれの濃度特性と、第2の医用画像における対応する領域の濃度特性とを一致させる」とは、例えば、後述する、ヒストグラム解析、画素の平均値および分散値等の統計値による解析の方法、または公知の方法を用いて、対応する2つの領域の濃度を同一または類似する状態とすることをいう。
 なお、本発明による医用画像処理装置においては、第1の補正量算出部は、第1の医用画像の複数の領域のそれぞれにおける第1のヒストグラムと、第2の医用画像の複数の領域のそれぞれにおける第2のヒストグラムとを生成し、第1の医用画像の複数の領域のそれぞれにおける第1のヒストグラムと、第2の医用画像の複数の領域のそれぞれにおける第2のヒストグラムとを一致させるための変換パラメータを、第1の補正量として算出するものであってもよい。
 また、本発明による医用画像処理装置においては、第2の補正量算出部は、複数の領域間における第1の補正量に対する補間演算により第2の補正量を算出するものであってもよい。この場合、補間演算は線形補間演算であってもよい。
 また、本発明による医用画像処理装置においては、第1の医用画像および第2の医用画像はMRI画像であってもよい。
 また、本発明による医用画像処理装置においては、対象部位は脳であり、第1の医用画像は標準脳画像であり、第2の医用画像は被検体の脳画像であり、
 補正部は、被検体の脳画像を補正するものであってもよい。
 また、本発明による医用画像処理装置においては、対象部位は脳であり、第1の医用画像および第2の医用画像は、同一被検体の撮影時期が異なる脳画像であってもよい。
 また、本発明による医用画像処理装置においては、分割部は、第1の医用画像および第2の医用画像に含まれる対象部位を、均等な領域に分割するものであってもよい。
 「均等な領域に分割する」とは、完全に均等な領域に分割することのみならず、多少の誤差を持って均等となるように分割することも含む。
 本発明による医用画像処理方法は、対象部位を含む第1の医用画像および対象部位を含む第2の医用画像を取得し、
 第1の医用画像および第2の医用画像に含まれる対象部位を、互いに対応する複数の領域に分割し、
 第1の医用画像における複数の領域のそれぞれの濃度特性と、第2の医用画像における対応する領域の濃度特性とを一致させるための補正量を、第1の医用画像における複数の領域のそれぞれに含まれる第1の基準画素の画素値と、第2の医用画像における複数の領域のそれぞれについての第1の基準画素に対応する第2の基準画素の画素値との間の第1の補正量として算出し、
 第1の医用画像における複数の領域のそれぞれに含まれる第1の基準画素以外の第1の他の画素値と、第2の医用画像における複数の領域のそれぞれについての第1の他の画素に対応する第2の他の画素の画素値とを一致させるための第2の補正量を、第1の補正量に基づいて算出し、
 第1の補正量および第2の補正量に基づいて、第1の医用画像および第2の医用画像の少なくとも一方を補正する。
 なお、本発明による医用画像処理方法をコンピュータに実行させるプログラムとして提供してもよい。
 本発明による他の医用画像処理装置は、コンピュータに実行させるための命令を記憶するメモリと、
 記憶された命令を実行するよう構成されたプロセッサとを備え、プロセッサは、
 対象部位を含む第1の医用画像および対象部位を含む第2の医用画像を取得し、
 第1の医用画像および第2の医用画像に含まれる対象部位を、互いに対応する複数の領域に分割し、
 第1の医用画像における複数の領域のそれぞれの濃度特性と、第2の医用画像における対応する領域の濃度特性とを一致させるための補正量を、第1の医用画像における複数の領域のそれぞれに含まれる第1の基準画素の画素値と、第2の医用画像における複数の領域のそれぞれについての第1の基準画素に対応する第2の基準画素の画素値との間の第1の補正量として算出し、
 第1の医用画像における複数の領域のそれぞれに含まれる第1の基準画素以外の第1の他の画素値と、第2の医用画像における複数の領域のそれぞれについての第1の他の画素に対応する第2の他の画素の画素値とを一致させるための第2の補正量を、第1の補正量に基づいて算出し、
 第1の補正量および第2の補正量に基づいて、第1の医用画像および第2の医用画像の少なくとも一方を補正する処理を実行する。
 本発明によれば、第1の医用画像および第2の医用画像に含まれる対象部位が、互いに対応する複数の領域に分割され、第1の医用画像における複数の領域のそれぞれの濃度特性と、第2の医用画像における対応する領域の濃度特性とを一致させるための補正量が、第1の医用画像における複数の領域のそれぞれに含まれる第1の基準画素の画素値と、第2の医用画像における複数の領域のそれぞれについての第1の基準画素に対応する第2の基準画素の画素値との間の第1の補正量として算出される。そして、第1の医用画像における複数の領域のそれぞれに含まれる第1の基準画素以外の第1の他の画素値と、第2の医用画像における複数の領域のそれぞれについての第1の他の画素に対応する第2の他の画素の画素値とを一致させるための第2の補正量が、第1の補正量に基づいて算出される。さらに、第1の補正量および第2の補正量に基づいて、第1の医用画像および第2の医用画像の少なくとも一方が補正される。このため、第1の医用画像および第2の医用画像がそれぞれ異なる画素値のムラ、すなわち濃度ムラを含んでいても、第1の医用画像および第2の医用画像の全体の濃度のみならず、濃度ムラも一致させることができる。したがって、補正された第1の医用画像および第2の医用画像を用いることにより、第1の医用画像および第2の医用画像に含まれる対象部位の比較を精度よく行うことができる。
本発明の実施形態による医用画像処理装置を適用した、診断支援システムの概要を示すハードウェア構成図 医用画像処理装置の概略構成を示す図 標準脳画像の分割を説明するための図 脳画像の分割を説明するための図 第1の実施形態において行われる処理を示すフローチャート 第2の実施形態において行われる処理を示すフローチャート
 以下、図面を参照して本発明の実施形態について説明する。図1は、本発明の実施形態による医用画像処理装置を適用した、診断支援システムの概要を示すハードウェア構成図である。図1に示すように、診断支援システムでは、本実施形態による医用画像処理装置1、3次元画像撮影装置2、および画像保管サーバ3が、ネットワーク4を経由して通信可能な状態で接続されている。
 3次元画像撮影装置2は、被検体である患者の診断対象となる部位を撮影することにより、その部位を表す3次元画像を医用画像として生成する装置であり、具体的には、CT装置、MRI装置、およびPET装置等である。3次元画像撮影装置2により生成された医用画像は画像保管サーバ3に送信され、保存される。なお、本実施形態においては、被検体である患者の診断対象部位は脳であり、3次元画像撮影装置2はMRI装置であり、被検体の脳を含む頭部のMRI画像を3次元の医用画像として生成する。
 画像保管サーバ3は、各種データを保存して管理するコンピュータであり、大容量外部記憶装置およびデータベース管理用ソフトウェアを備えている。画像保管サーバ3は、有線あるいは無線のネットワーク4を介して他の装置と通信を行い、画像データ等を送受信する。具体的には3次元画像撮影装置2で生成された医用画像の画像データを含む各種データをネットワーク経由で取得し、大容量外部記憶装置等の記録媒体に保存して管理する。なお、画像データの格納形式およびネットワーク4経由での各装置間の通信は、DICOM(Digital Imaging and Communication in Medicine)等のプロトコルに基づいている。なお、本実施形態においては、同一の被検体について、撮影日時が異なる複数の3次元の医用画像が画像保管サーバ3に保存されているものとする。また、画像保管サーバ3には、後述する標準脳画像の画像データも保存されているものとする。
 医用画像処理装置1は、1台のコンピュータに、本発明の医用画像処理プログラムをインストールしたものである。コンピュータは、診断を行う医師が直接操作するワークステーションまたはパーソナルコンピュータでもよいし、それらとネットワークを介して接続されたサーバコンピュータでもよい。医用画像処理プログラムは、DVD(Digital Versatile Disc)あるいはCD-ROM(Compact Disc Read Only Memory)等の記録媒体に記録されて配布され、その記録媒体からコンピュータにインストールされる。または、ネットワークに接続されたサーバコンピュータの記憶装置、もしくはネットワークストレージに、外部からアクセス可能な状態で記憶され、要求に応じて医師が使用するコンピュータにダウンロードされ、インストールされる。
 図2は、コンピュータに医用画像処理プログラムをインストールすることにより実現される医用画像処理装置の概略構成を示す図である。図2に示すように、医用画像処理装置1は、標準的なワークステーションの構成として、CPU(Central Processing Unit)
11、メモリ12およびストレージ13を備えている。また、医用画像処理装置1には、液晶ディスプレイ等のディスプレイ14、並びにキーボードおよびマウス等の入力部15が接続されている。
 ストレージ13は、ハードディスクまたはSSD(Solid State Drive)等のストレージデバイスからなる。ストレージ13には、ネットワーク4を経由して画像保管サーバ3から取得した、被検体の脳画像B0、標準脳画像Bsおよび処理に必要な情報を含む各種情報が記憶されている。なお、被検体の脳画像B0が第1の医用画像に、標準脳画像Bsが第2の医用画像にそれぞれ対応する。
 ここで、標準脳画像Bsとは、標準的な形状および大きさ、並びに標準的な濃度(画素値)を有する脳、すなわち標準脳を表す3次元の脳画像である。標準脳画像Bsは、複数の健常者の頭部を3次元画像撮影装置により撮影することにより取得した複数の脳画像から脳を抽出し、抽出した複数の脳を平均することにより生成することができる。また、標準脳画像Bsは、コンピュータグラフィックス等により作成されたものであってもよい。また、一人の健常者の脳画像を標準脳画像Bsとして用いてもよい。
 また、メモリ12には、医用画像処理プログラムが記憶されている。医用画像処理プログラムは、CPU11に実行させる処理として、被検体の脳画像B0および標準脳画像Bsを取得する画像取得処理、脳画像B0および標準脳画像Bsに含まれる脳を、互いに対応する複数の領域に分割する分割処理、脳画像B0における複数の領域のそれぞれの濃度特性と、標準脳画像Bsにおける対応する領域の濃度特性とを一致させるための補正量を、脳画像B0における複数の領域のそれぞれに含まれる第1の基準画素の画素値と、標準脳画像Bsにおける複数の領域のそれぞれについての第1の基準画素に対応する第2の基準画素の画素値との間の第1の補正量として算出する第1の補正量算出処理、脳画像B0における複数の領域のそれぞれに含まれる第1の基準画素以外の第1の他の画素値と、標準脳画像Bsにおける複数の領域のそれぞれについての第1の他の画素に対応する第2の他の画素の画素値とを一致させるための第2の補正量を、第1の補正量に基づいて算出する第2の補正量算出処理、第1の補正量および第2の補正量に基づいて、脳画像B0を補正する補正処理、並びに補正された脳画像B0をディスプレイ14に表示する表示制御処理を規定する。
 そして、CPU11がプログラムに従いこれらの処理を実行することにより、コンピュータは、画像取得部21、分割部22、第1の補正量算出部23、第2の補正量算出部24、補正部25および表示制御部26として機能する。なお、医用画像処理装置1は、画像取得処理、分割処理、第1の補正量算出処理、第2の補正量算出処理、補正処理および表示制御処理をそれぞれ行う複数のプロセッサまたは処理回路を備えるものであってもよい。
 画像取得部21は、被検体の脳画像B0および標準脳画像Bsを画像保管サーバ3から取得する。なお、脳画像B0および標準脳画像Bsが既にストレージ13に保存されている場合には、画像取得部21は、ストレージ13から脳画像B0および標準脳画像Bsを取得するようにしてもよい。ここで、本実施形態においては、画像保管サーバ3に保管されているのは被検体の頭部を撮影することにより取得した脳画像B0であり、頭蓋骨等の脳以外の構造物も含まれる。
 分割部22は、脳画像B0および標準脳画像Bsに含まれる脳を、互いに対応する複数の領域に分割する。まず、標準脳画像Bsの分割について説明する。図3は標準脳画像の分割を説明するための図である。なお、標準脳画像Bsは3次元画像であるが、図3においては、標準脳画像Bsにおける1つのアキシャル断面のスライス画像を示す。ここで、本実施形態においては、標準脳画像Bsについて、予め脳領域が抽出されている。このため、分割部22は、標準脳画像Bsにおける脳領域のみを抽出した標準脳領域画像Bsrを生成する。そして分割部22は、標準脳領域画像Bsrを複数の小領域に分割する。なお、小領域が本発明の領域に対応する。
 本実施形態において、標準脳領域画像Bsrは3次元画像であるため、x,y,zの3方向のそれぞれについて、標準脳領域画像Bsrを均等に4分割し、標準脳領域画像Bsrを64個の小領域Csi(i=1~64)に分割する。なお、この際、各小領域Csiの体積が同一となるように、小領域の境界を調整してもよい。また、領域の分割数は64に限定されるものではなく,任意の数に分割してもよい。また、上記では標準脳領域画像Bsrを均等に分割しているが、不均等に分割するものであってもよい。x,y,zの3方向のそれぞれについて、標準脳領域画像Bsrを均等に4分割することにより、各小領域Csiは立方体形状となるが、直方体形状となるように分割してもよく、任意の立体形状となるように分割してもよい。
 また、分割部22は、脳画像B0の脳領域を標準脳画像Bsと同様に分割する。図4は脳画像の分割を説明するための図である。脳画像B0を分割するために、分割部22は、脳画像B0を標準脳画像Bsと位置合わせする。本実施形態においては、標準脳画像Bsを脳画像B0に位置合わせするものとして説明するが、脳画像B0を標準脳画像Bsに位置合わせしてもよい。
 位置合わせのために、分割部22は、脳画像B0および標準脳画像Bsからランドマークを抽出する。ランドマークの抽出は、例えばランドマークを表すテンプレートを用いたテンプレートマッチングにより行ってもよく、画像に含まれるランドマークを判別するように学習がなされた判別器を用いることにより行ってもよい。分割部22は、脳画像B0および標準脳画像Bs間において、対応するランドマークを一致させるように第1の位置合わせを行う。本実施形態において、第1の位置合わせは相似変換による位置合わせである。具体的には、標準脳画像Bsを平行移動、回転および相似に拡大縮小することによる位置合わせである。分割部22は、標準脳画像Bsに含まれるランドマークと、脳画像B0に含まれる対応するランドマークとの相関が最大となるように、標準脳画像Bsを相似変換して、第1の位置合わせを行う。
 分割部22は、このようにランドマークを用いた第1の位置合わせを行った後、脳画像B0および標準脳画像Bs間での全領域を用いた第2の位置合わせを行う。本実施形態において、第2の位置合わせは非線形変換による位置合わせである。非線形変換による位置合わせとしては、例えばBスプラインおよびシンプレートスプライン(Thin Plate Spline)等の関数を用いて画素位置を非線形に変換することによる位置合わせが挙げられる。分割部22は、第1の位置合わせ後の標準脳画像Bsの各画素位置を、脳画像B0に含まれる対応する画素位置に非線形変換することにより、第2の位置合わせを行う。
 分割部22は、このようにして標準脳画像Bsを脳画像B0に位置合わせした後、標準脳画像Bsの脳領域を脳画像B0に適用して、脳画像B0から脳領域を抽出した脳領域画像B0rを生成する。なお、抽出した脳領域に対して、例えばグラフカット法等を用いて、脳画像B0からより正確に脳領域を抽出してもよい。
 そして分割部22は、脳領域画像B0rを、標準脳領域画像Bsrと同様に複数の領域に分割する。本実施形態において、標準脳領域画像Bsrは64個の小領域Csiに分割されている。このため、分割部22は、脳領域画像B0rを64個の小領域C0i(i=1~64)に分割する。なお、この際、各小領域C0iの体積が同一となるように、小領域の境界を調整してもよい。
 第1の補正量算出部23は、脳画像B0における複数の小領域C0iのそれぞれの濃度特性と、標準脳画像Bsにおける対応する小領域Csiの濃度特性とを一致させるための補正量を、脳画像B0における複数の小領域C0iのそれぞれに含まれる第1の基準画素の画素値と、標準脳画像Bsにおける複数の小領域Csiのそれぞれについての第1の基準画素に対応する第2の基準画素の画素値との間の第1の補正量として算出する。本実施形態においては、脳画像B0における複数の小領域C0iのそれぞれの濃度特性を、標準脳画像Bsにおける対応する小領域Csiの濃度特性と一致させるものとする。なお、本実施形態においては、第1の基準画素を小領域C0iの中心画素、第2の基準画素を小領域Criの中心画素とするが、これに限定されるものではない。
 まず、第1の補正量算出部23は、脳画像B0における複数の小領域C0iについての画素値のヒストグラムH0i、および標準脳画像Bsにおける複数の小領域Csiのそれぞれについての画素値のヒストグラムHsiを生成する。そして、対応する小領域C0iと小領域Csiとの間において、ヒストグラムH0iとヒストグラムHsiとを一致させるための変換パラメータを第1の補正量として算出する。具体的には、第1の補正量算出部23は、脳画像B0におけるヒストグラムH0iの最小値および最大値のそれぞれを、標準脳画像BsにおけるヒストグラムHsiの最小値および最大値に一致させるように、第1の補正量を算出する。
 ここで、脳画像B0のヒストグラムH0iにおける画素値の最小値をS0min(i)、最大値をS0max(i)とし、標準脳画像BsのヒストグラムHsiにおける画素値の最小値をSsmin(i)、最大値をSrmax(i)とする。また、ヒストグラムH0iにおける任意の画素値をS0(i)、第1の補正量により補正された画素値S0(i)をSc0(i)とする。この場合、下記の式(1)に示す関係が成立する。
 Sc0(i)=Ssmin(i)+(S0(i)-S0min(i))*(Ssmax(i)-Ssmin(i))/(S0max(i)-S0min(i)) (1)
 式(1)は線形変換であり、2つの変換パラメータa(i)、b(i)により表すことができるため、式(1)は下記の式(2)に変形することができる。
 Sc0(i)=a(i)*S0(i)+b(i) (2)
但し、a(i)=(Ssmax(i)-Ssmin(i))/(S0max(i)-S0min(i))
   b(i)=Ssmin(i)-S0min(i)*(Ssmax(i)-Ssmin(i))/(S0max(i)-S0min(i))
 第1の補正量算出部23は、小領域C0iのそれぞれについて、上記式(2)における変換パラメータa(i)、b(i)を、第1の基準画素(すなわち小領域C0iの中心画素)の画素値と、第2の基準画素(すなわち小領域Csiの中心画素)の画素値との間の第1の補正量として算出する。
 ここで、上述したように算出した第1の補正量によって、小領域C0iの全画素を補正することにより、小領域C0iの濃度特性を標準脳画像Bsにおける対応する小領域Csiの濃度特性と一致させることができる。しかしながら、第1の補正量は小領域C0iのそれぞれについて算出されているため、第1の補正量により各小領域C0iの全画素を補正すると、小領域C0iの境界において濃度差が出現してしまう。
 このために、第2の補正量算出部24は、脳画像B0における複数の小領域C0iのそれぞれに含まれる第1の基準画素以外の第1の他の画素値と、標準脳画像Bsにおける複数の小領域Csiのそれぞれについての第1の他の画素に対応する第2の他の画素の画素値とを一致させるための第2の補正量を、第1の補正量に基づいて算出する。なお、本実施形態においては、脳画像B0における第1の他の画素の画素値を、標準脳画像Bsにおける第2の他の画素の画素値に一致させるものとする。また、本実施形態においては、第1の基準画素は小領域C0iの中心画素、第2の基準画素は小領域Criの中心画素であるため、第1の他の画素は小領域C0iにおける中心画素以外の全ての画素であり、第2の他の画素は小領域Criにおける、第1の他の画素に対応する中心画素以外の全ての画素である。
 第1の補正量算出部23が算出した第1の補正量は、第1の基準画素(すなわち小領域C0iの中心画素)の画素値を、第2の基準画素(すなわち小領域Csi)の画素値に変換するための変換パラメータa(i),b(i)である。ここで、補正の対象となる小領域C0iに隣接する小領域をCkj(jは小領域の数)とする。小領域の数jは、脳画像B0における小領域の場所によって異なり、最小が7、最大が26である。第2の補正量算出部24は、対象となる小領域C0iの変換パラメータa(i)、b(i)と、対象となる小領域C0iに隣接する複数の小領域Ckjの変換パラメータak(j)、bk(j)とを線形補間し、対象となる小領域C0iの第1の基準画素以外の第1の他の画素についての変換パラメータah(i)、bh(i)を第2の補正量として算出する。
 なお、小領域C0iとこれに隣接する小領域Ckjにおける中心画素の間にある第1の他の画素については、上述した線形補間により第2の補正量を算出することができる。一方、脳画像B0において脳と背景との境界にある小領域C0iにおいては、第1の他の画素の位置によっては、上述した線形補間によって第2の補正量を算出できない場合がある。そのような第1の他の画素についての変換パラメータah(i)、bh(i)は、隣接する小領域Ckjの変換パラメータak(j)、bk(j)を用いた外挿により算出すればよい。
 補正部25は、第1の補正量および第2の補正量に基づいて、脳画像B0を補正する。すなわち、脳画像B0の小領域C0iのそれぞれにおいて、第1の基準画素については、第1の補正量である変換パラメータa(i)、b(i)により画素値を補正する。一方、第1の他の画素については、第2の補正量である変換パラメータah(i)、bh(i)により画素値を補正する。これにより、補正部25は補正済みの脳画像Bf0を生成する。
 表示制御部26は、補正済みの脳画像Bf0をディスプレイ14に表示する。
 次いで、第1の実施形態の動作について説明する。図5は第1の実施形態において行われる処理を示すフローチャートである。まず、画像取得部21が、被検体の脳画像B0および標準脳画像Bsを取得し(ステップST1)、分割部22が、脳画像B0および標準脳画像Bsに含まれる脳を、互いに対応する複数の小領域C0iおよび小領域Csiにそれぞれ分割する(ステップST2)。次いで、第1の補正量算出部23が、脳画像B0における複数の小領域C0iのそれぞれに含まれる第1の基準画素の画素値と、標準脳画像Bsにおける複数の小領域Csiのそれぞれについての第1の基準画素に対応する第2の基準画素の画素値との間の第1の補正量を、小領域C0iおよび小領域Csiのヒストグラムに基づいて算出する(ステップST3)。
 さらに、第2の補正量算出部24が、脳画像B0における複数の小領域C0iのそれぞれに含まれる第1の基準画素以外の第1の他の画素値と、標準脳画像Bsにおける複数の小領域Csiのそれぞれについての第1の他の画素に対応する第2の他の画素の画素値とを一致させるための第2の補正量を算出する(ステップST4)。次いで、補正部25が、第1の補正量および第2の補正量に基づいて脳画像B0を補正し(ステップST5)、表示制御部26が、補正された脳画像Bf0をディスプレイ14に表示し(ステップST6)、処理を終了する。
 このように、本実施形態においては、脳画像B0および標準脳画像Bsに含まれる脳を複数の小領域C0i、Csiにそれぞれに分割し、脳画像B0における複数の小領域C0iのそれぞれの濃度特性と、標準脳画像Bsにおける対応する小領域Csiの濃度特性とを一致させるための補正量を、脳画像B0の小領域C0i第1の基準画素の画素値と、標準脳画像Bsの小領域Csiの第2の基準画素の画素値との間の第1の補正量として算出し、脳画像B0の小領域C0iの第1の基準画素以外の第1の他の画素値と、標準脳画像Bsの小領域Csiの第1の他の画素に対応する第2の他の画素の画素値とを一致させるための第2の補正量を第1の補正量に基づいて算出する。そして、第1の補正量および第2の補正量に基づいて、脳画像B0を補正するようにした。このため、脳画像B0が異なる画素値のムラ、すなわち濃度ムラを含んでいても、脳画像B0の全体の濃度のみならず、濃度ムラも含めて、脳画像B0の濃度を標準脳画像Bsの濃度と一致させることができる。したがって、補正された脳画像B0を用いることにより、脳画像B0と標準脳画像Bsとの比較を精度よく行うことができる。
 また、複数の小領域C0i間における第1の補正量に対する補間演算によって第2の補正量を算出することにより、補正された脳画像Bf0において、小領域C0iの境界を目立たなくすることができる。とくに、補間演算を線形補間演算とすることにより、補正された脳画像Bf0において、小領域C0iの境界をより目立たないようにすることができる。
 また、脳画像B0をMRI画像とすることにより、MRI画像に含まれる、静的磁場における不均一性および傾斜磁場における不完全性による、装置に起因する濃度ムラを補正することができる。
 次いで、本発明の第2の実施形態について説明する。なお、第2の実施形態による医用画像処理装置の構成は、図2に示す第1の実施形態による医用画像処理装置の構成と同一であり、行われる処理のみが異なるため、ここでは装置についての詳細な説明は省略する。上記第1の実施形態においては、第1の補正量算出部23において、小領域C0iおよび小領域Csiのヒストグラムを用いて第1の補正量を算出している。第2の実施形態においては、ヒストグラムを用いることなく、小領域C0iおよび小領域Csiの画素値、詳細には画素値の平均値および分散値を用いて第1の補正量を算出するようにした点が、第1の実施形態と異なる。
 第2の実施形態においては、第1の補正量算出部23は、標準脳画像Bsの小領域Csiのそれぞれについて、小領域Csi内の画素値の平均値Msiおよび分散値Vsiを算出する。また、脳画像B0の小領域C0iのそれぞれについて、小領域C0i内の画素値の平均値M0iおよび分散値V0iを算出する。なお、平均値および分散値が画素値の代表値であるが、中間値等であってもよい。
 次いで、第1の補正量算出部23は、対応する小領域C0iと小領域Csiとの間において、平均値M0iおよび分散値V0iを平均値Msiおよび分散値Vsiにそれぞれ一致させるように第1の補正量を算出する。ここで、第1の補正量による補正後の画素値S0(i)をSc0(i)とすると、下記の式(3)に示す関係が成立する。
 Sc0(i)=Msi+(S0(i)-M0i)*Vsi/V0i (3)
 式(3)は線形変換であり、2つの変換パラメータe(i)、f(i)により表すことができるため、式(3)は下記の式(4)に変形することができる。
 Sc0(i)=e(i)*S0(i)+f(i) (4)
但し、e(i)=Vsi/V0i
   f(i)=Msi-M0i*Vsi/V0i
 第1の補正量算出部23は、小領域C0iのそれぞれについて、上記式(4)における変換パラメータe(i)、f(i)を、第1の基準画素(すなわち小領域C0iの中心画素)の画素値と、第2の基準画素(すなわち小領域Csiの中心画素)の画素値との間の第1の補正量として算出する。
 なお、第2の実施形態においては、第2の補正量算出部24が行う処理は、第1の補正量が変換パラメータe(i)、f(i)となる点を除いて第1の実施形態と同一である。すなわち、第2の補正量算出部24は、対象となる小領域C0iの変換パラメータe(i)、f(i)と、対象となる小領域C0iに隣接する複数の小領域Ckjの変換パラメータck(j)、dk(j)とを線形補間し、対象となる小領域C0iの第1の基準画素以外の第1の他の画素についての変換パラメータeh(i)、fh(i)を第2の補正量として算出する。
 次いで、第2の実施形態の動作について説明する。図6は第2の実施形態において行われる処理を示すフローチャートである。まず、画像取得部21が、被検体の脳画像B0および標準脳画像Bsを取得し(ステップST11)、分割部22が、脳画像B0および標準脳画像Bsに含まれる脳を、互いに対応する複数の小領域C0iおよび小領域Csiに分割する(ステップST12)。次いで、第1の補正量算出部23が、脳画像B0における複数の小領域C0iのそれぞれに含まれる第1の基準画素の画素値と、標準脳画像Bsにおける複数の小領域Csiのそれぞれについての第1の基準画素に対応する第2の基準画素の画素値との間の第1の補正量を、小領域C0iおよび小領域Csiの画素値に基づいて算出する(ステップST13)。
 さらに、第2の補正量算出部24が、脳画像B0における複数の小領域C0iのそれぞれに含まれる第1の基準画素以外の第1の他の画素値と、標準脳画像Bsにおける複数の小領域Csiのそれぞれについての第1の他の画素に対応する第2の他の画素の画素値とを一致させるための第2の補正量を算出する(ステップST14)。次いで、補正部25が、第1の補正量および第2の補正量に基づいて脳画像B0を補正し(ステップST15)、表示制御部26が、補正された脳画像B0をディスプレイ14に表示し(ステップST16)、処理を終了する。
 なお、上記第1および第2の実施形態においては、脳画像B0および標準脳画像Bsを取得し、脳画像B0の濃度を標準脳画像Bsの濃度と一致させるように脳画像B0を補正している。しかしながら、同一被検体についての撮影時期が異なる第1の脳画像および第2の脳画像を取得し、第1の脳画像および第2の脳画像のいずれか一方の濃度を、他方の濃度と一致させるように補正を行う場合にも、本発明を適用できる。この場合、上記第1および第2の実施形態において、第1の脳画像を脳画像B0、第2の脳画像を標準脳画像Bsと置き換えることにより、第1の実施形態と同様に、第1の脳画像を補正することができる。
 また、上記実施形態においては、被検体のMRI画像を医用画像として用いているが、CT画像、PET画像等、MRI画像以外の脳画像を用いてもよい。
 また、上記実施形態においては、対象部位として脳を用いているが、これに限定されるものではなく、心臓、肝臓および肺等の人体に含まれる任意の解剖学的領域を対象部位として用いることができる。
 以下、本実施形態の作用効果について説明する。
 複数の領域間における第1の補正量に対する補間演算により第2の補正量を算出することにより、補正された第1の医用画像および第2の医用画像の少なくとも一方において、領域の境界を目立たなくすることができる。
 とくに、補間演算を線形補間演算とすることにより、補正された第1の医用画像および第2の医用画像の少なくとも一方において、領域の境界をより目立たなくすることができる。
 第1の医用画像および第2の医用画像をMRI画像とすることにより、MRI画像に含まれる、静的磁場における不均一性および傾斜磁場における不完全性による、装置に起因する濃度ムラを補正することができる。
 対象部位を脳とし、第1の医用画像を標準脳画像とし、第2の医用画像を被検体の脳画像とし、被検体の脳画像を補正することにより、被検体の脳画像の濃度を標準脳画像に一致させることができ、かつ被検体の脳画像に含まれる濃度ムラを補正することができる。したがって、被検体の脳画像に含まれる脳と標準脳画像との比較を精度よく行うことができる。
 対象部位を脳とし、第1の医用画像および第2の医用画像を、同一被検体の撮影時期が異なる脳画像とすることにより、撮影時期が異なる脳画像の比較を精度よく行うことができる。
   1  医用画像処理装置
   2  3次元画像撮影装置
   3  画像保管サーバ
   4  ネットワーク
   11  CPU
   12  メモリ
   13  ストレージ
   14  ディスプレイ
   15  入力部
   21  画像取得部
   22  分割部
   23  第1の補正量算出部
   24  第2の補正量算出部
   25  補正部
   26  表示制御部
   C0i、Csi  小領域
   B0  脳画像
   B0r  脳領域画像
   Bs  標準脳画像
   Bsr  標準脳領域画像

Claims (10)

  1.  対象部位を含む第1の医用画像および前記対象部位を含む第2の医用画像を取得する画像取得部と、
     前記第1の医用画像および前記第2の医用画像に含まれる前記対象部位を、互いに対応する複数の領域に分割する分割部と、
     前記第1の医用画像における前記複数の領域のそれぞれの濃度特性と、前記第2の医用画像における対応する領域の濃度特性とを一致させるための補正量を、前記第1の医用画像における前記複数の領域のそれぞれに含まれる第1の基準画素の画素値と、前記第2の医用画像における前記複数の領域のそれぞれについての前記第1の基準画素に対応する第2の基準画素の画素値との間の第1の補正量として算出する第1の補正量算出部と、
     前記第1の医用画像における前記複数の領域のそれぞれに含まれる第1の基準画素以外の第1の他の画素値と、前記第2の医用画像における前記複数の領域のそれぞれについての前記第1の他の画素に対応する第2の他の画素の画素値とを一致させるための第2の補正量を、前記第1の補正量に基づいて算出する第2の補正量算出部と、
     前記第1の補正量および前記第2の補正量に基づいて、前記第1の医用画像および前記第2の医用画像の少なくとも一方を補正する補正部とを備えた医用画像処理装置。
  2.  前記第1の補正量算出部は、前記第1の医用画像の前記複数の領域のそれぞれにおける第1のヒストグラムと、前記第2の医用画像の前記複数の領域のそれぞれにおける第2のヒストグラムとを生成し、前記第1の医用画像の前記複数の領域のそれぞれにおける前記第1のヒストグラムと、前記第2の医用画像の前記複数の領域のそれぞれにおける前記第2のヒストグラムとを一致させるための変換パラメータを、前記第1の補正量として算出する請求項1に記載の医用画像処理装置。
  3.  前記第2の補正量算出部は、前記複数の領域間における前記第1の補正量に対する補間演算により前記第2の補正量を算出する請求項1または2に記載の医用画像処理装置。
  4.  前記補間演算は線形補間演算である請求項3に記載の医用画像処理装置。
  5.  前記第1の医用画像および前記第2の医用画像はMRI画像である請求項1から4のいずれか1項に記載の医用画像処理装置。
  6.  前記対象部位は脳であり、前記第1の医用画像は標準脳画像であり、前記第2の医用画像は被検体の脳画像であり、
     前記補正部は、前記被検体の脳画像を補正する請求項1から5のいずれか1項に記載の医用画像処理装置。
  7.  前記対象部位は脳であり、前記第1の医用画像および前記第2の医用画像は、同一被検体の撮影時期が異なる脳画像である請求項1から5のいずれか1項に記載の医用画像処理装置。
  8.  前記分割部は、前記第1の医用画像および前記第2の医用画像に含まれる前記対象部位を、均等な領域に分割する請求項1から7のいずれか1項に記載の医用画像処理装置。
  9.  対象部位を含む第1の医用画像および前記対象部位を含む第2の医用画像を取得し、
     前記第1の医用画像および前記第2の医用画像に含まれる前記対象部位を、互いに対応する複数の領域に分割し、
     前記第1の医用画像における前記複数の領域のそれぞれの濃度特性と、前記第2の医用画像における対応する領域の濃度特性とを一致させるための補正量を、前記第1の医用画像における前記複数の領域のそれぞれに含まれる第1の基準画素の画素値と、前記第2の医用画像における前記複数の領域のそれぞれについての前記第1の基準画素に対応する第2の基準画素の画素値との間の第1の補正量として算出し、
     前記第1の医用画像における前記複数の領域のそれぞれに含まれる第1の基準画素以外の第1の他の画素値と、前記第2の医用画像における前記複数の領域のそれぞれについての前記第1の他の画素に対応する第2の他の画素の画素値とを一致させるための第2の補正量を、前記第1の補正量に基づいて算出し、
     前記第1の補正量および前記第2の補正量に基づいて、前記第1の医用画像および前記第2の医用画像の少なくとも一方を補正する医用画像処理方法。
  10.  対象部位を含む第1の医用画像および前記対象部位を含む第2の医用画像を取得する手順と、
     前記第1の医用画像および前記第2の医用画像に含まれる前記対象部位を、互いに対応する複数の領域に分割する手順と、
     前記第1の医用画像における前記複数の領域のそれぞれの濃度特性と、前記第2の医用画像における対応する領域の濃度特性とを一致させるための補正量を、前記第1の医用画像における前記複数の領域のそれぞれに含まれる第1の基準画素の画素値と、前記第2の医用画像における前記複数の領域のそれぞれについての前記第1の基準画素に対応する第2の基準画素の画素値との間の第1の補正量として算出する手順と、
     前記第1の医用画像における前記複数の領域のそれぞれに含まれる第1の基準画素以外の第1の他の画素値と、前記第2の医用画像における前記複数の領域のそれぞれについての前記第1の他の画素に対応する第2の他の画素の画素値とを一致させるための第2の補正量を、前記第1の補正量に基づいて算出する手順と、
     前記第1の補正量および前記第2の補正量に基づいて、前記第1の医用画像および前記第2の医用画像の少なくとも一方を補正する手順とをコンピュータに実行させる医用画像処理プログラム。
PCT/JP2018/020700 2017-08-28 2018-05-30 医用画像処理装置、方法およびプログラム WO2019044082A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019538979A JP6853369B2 (ja) 2017-08-28 2018-05-30 医用画像処理装置、方法およびプログラム
US16/776,526 US11164296B2 (en) 2017-08-28 2020-01-30 Medical image processing apparatus, medical image processing method, and medical image processing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017163010 2017-08-28
JP2017-163010 2017-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/776,526 Continuation US11164296B2 (en) 2017-08-28 2020-01-30 Medical image processing apparatus, medical image processing method, and medical image processing program

Publications (1)

Publication Number Publication Date
WO2019044082A1 true WO2019044082A1 (ja) 2019-03-07

Family

ID=65527242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020700 WO2019044082A1 (ja) 2017-08-28 2018-05-30 医用画像処理装置、方法およびプログラム

Country Status (3)

Country Link
US (1) US11164296B2 (ja)
JP (1) JP6853369B2 (ja)
WO (1) WO2019044082A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113034389A (zh) * 2021-03-17 2021-06-25 武汉联影智融医疗科技有限公司 图像处理方法、装置、计算机设备和存储介质
JP7500360B2 (ja) 2020-09-11 2024-06-17 キヤノン株式会社 情報処理装置、情報処理方法、及びプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044082A1 (ja) * 2017-08-28 2019-03-07 富士フイルム株式会社 医用画像処理装置、方法およびプログラム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244224A (ja) * 1985-08-23 1987-02-26 富士写真フイルム株式会社 画像処理方法および装置
JP2001092948A (ja) * 1999-09-24 2001-04-06 Konica Corp 画像処理装置及び画像処理方法
JP2003065969A (ja) * 2001-08-22 2003-03-05 Dainippon Screen Mfg Co Ltd パターン検査装置および方法
US6584216B1 (en) * 1999-11-23 2003-06-24 The Trustees Of The University Of Pennsylvania Method for standardizing the MR image intensity scale
JP2005237441A (ja) * 2004-02-24 2005-09-08 Kokuritsu Seishin Shinkei Center 脳疾患の診断支援方法及び装置
JP2007068852A (ja) * 2005-09-08 2007-03-22 Hitachi Medical Corp 医用画像表示方法及び医用画像診断装置
JP2008099889A (ja) * 2006-10-19 2008-05-01 Hitachi Medical Corp 磁気共鳴イメージング装置、医用画像処理方法、プログラム及び医用画像表示システム
JP2011092438A (ja) * 2009-10-29 2011-05-12 Toshiba Corp 画像処理装置及び医用画像診断装置
JP2013215471A (ja) * 2012-04-11 2013-10-24 Fujifilm Corp 内視鏡システム、画像処理装置、画像処理方法、画像処理プログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2535942A1 (en) * 2003-08-21 2005-03-10 Ischem Corporation Automated methods and systems for vascular plaque detection and analysis
DE102004031864A1 (de) * 2004-07-01 2006-01-26 Huppertz, Hans-Jürgen, Dr.med. Verfahren zur verbesserten Erkennung von akuten Hirninfarkten in computertomographischen Aufnahmen
JP5355257B2 (ja) 2009-07-01 2013-11-27 株式会社東芝 医用画像表示装置および医用画像表示方法
JP5314614B2 (ja) * 2010-02-05 2013-10-16 富士フイルム株式会社 医用画像表示装置及び医用画像表示方法並びにプログラム
US9147239B2 (en) * 2011-12-23 2015-09-29 Stmicroelectronics S.R.L. Computing the mass of an object
JP6036009B2 (ja) 2012-08-28 2016-11-30 大日本印刷株式会社 医用画像処理装置、およびプログラム
US11232319B2 (en) * 2014-05-16 2022-01-25 The Trustees Of The University Of Pennsylvania Applications of automatic anatomy recognition in medical tomographic imagery based on fuzzy anatomy models
EP3392832A1 (en) * 2017-04-21 2018-10-24 General Electric Company Automated organ risk segmentation machine learning methods and systems
WO2019044082A1 (ja) * 2017-08-28 2019-03-07 富士フイルム株式会社 医用画像処理装置、方法およびプログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244224A (ja) * 1985-08-23 1987-02-26 富士写真フイルム株式会社 画像処理方法および装置
JP2001092948A (ja) * 1999-09-24 2001-04-06 Konica Corp 画像処理装置及び画像処理方法
US6584216B1 (en) * 1999-11-23 2003-06-24 The Trustees Of The University Of Pennsylvania Method for standardizing the MR image intensity scale
JP2003065969A (ja) * 2001-08-22 2003-03-05 Dainippon Screen Mfg Co Ltd パターン検査装置および方法
JP2005237441A (ja) * 2004-02-24 2005-09-08 Kokuritsu Seishin Shinkei Center 脳疾患の診断支援方法及び装置
JP2007068852A (ja) * 2005-09-08 2007-03-22 Hitachi Medical Corp 医用画像表示方法及び医用画像診断装置
JP2008099889A (ja) * 2006-10-19 2008-05-01 Hitachi Medical Corp 磁気共鳴イメージング装置、医用画像処理方法、プログラム及び医用画像表示システム
JP2011092438A (ja) * 2009-10-29 2011-05-12 Toshiba Corp 画像処理装置及び医用画像診断装置
JP2013215471A (ja) * 2012-04-11 2013-10-24 Fujifilm Corp 内視鏡システム、画像処理装置、画像処理方法、画像処理プログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7500360B2 (ja) 2020-09-11 2024-06-17 キヤノン株式会社 情報処理装置、情報処理方法、及びプログラム
CN113034389A (zh) * 2021-03-17 2021-06-25 武汉联影智融医疗科技有限公司 图像处理方法、装置、计算机设备和存储介质
CN113034389B (zh) * 2021-03-17 2023-07-25 武汉联影智融医疗科技有限公司 图像处理方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
JPWO2019044082A1 (ja) 2020-05-28
US20200175662A1 (en) 2020-06-04
US11164296B2 (en) 2021-11-02
JP6853369B2 (ja) 2021-03-31

Similar Documents

Publication Publication Date Title
KR101503940B1 (ko) 신경퇴행성 질환의 진단을 돕는 수단
US8811708B2 (en) Quantification of medical image data
EP2747658B1 (en) Method to compute and present brain amyloid in gray matter
US11164296B2 (en) Medical image processing apparatus, medical image processing method, and medical image processing program
US11158054B2 (en) Medical image processing apparatus, medical image processing method, and medical image processing program
JP6608110B2 (ja) 画像位置合わせ装置および方法並びにプログラム
JP2017189337A (ja) 画像位置合わせ装置および方法並びにプログラム
US10964074B2 (en) System for harmonizing medical image presentation
JP6785976B2 (ja) 脳画像正規化装置、方法およびプログラム
US20190019304A1 (en) Medical image processing apparatus, method, and program
US11315263B2 (en) Medical image processing apparatus, medical image processing method, and medical image processing program
US11216945B2 (en) Image processing for calculation of amount of change of brain
KR101593380B1 (ko) 영상 분석 장치, 및 장치를 이용하여 영상을 분석하는 방법
Li et al. Consistent 4D cortical thickness measurement for longitudinal neuroimaging study
JP6998760B2 (ja) 脳画像解析装置、脳画像解析方法、及び脳画像解析プログラム
US12033366B2 (en) Matching apparatus, matching method, and matching program
JP6765396B2 (ja) 医用画像処理装置、方法およびプログラム
JP6738003B1 (ja) Mri画像に基づく解剖学的部位の抽出装置,方法,プログラム
US11424022B2 (en) Method for processing brain images
JP2019141717A (ja) 画像位置合わせ装置および方法並びにプログラム
KR20150073542A (ko) 영상 분석 장치, 및 장치를 이용하여 영상을 분석하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538979

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851028

Country of ref document: EP

Kind code of ref document: A1