WO2019042382A1 - 智能铸造系统 - Google Patents

智能铸造系统 Download PDF

Info

Publication number
WO2019042382A1
WO2019042382A1 PCT/CN2018/103402 CN2018103402W WO2019042382A1 WO 2019042382 A1 WO2019042382 A1 WO 2019042382A1 CN 2018103402 W CN2018103402 W CN 2018103402W WO 2019042382 A1 WO2019042382 A1 WO 2019042382A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand
disposed
core
casting
zone
Prior art date
Application number
PCT/CN2018/103402
Other languages
English (en)
French (fr)
Inventor
彭凡
田学智
黄小东
孟庆文
杨志伟
李勇华
常涛
刘亚宾
杨军
Original Assignee
共享智能铸造产业创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710770722.9A external-priority patent/CN107570695B/zh
Priority claimed from CN201710770311.XA external-priority patent/CN107774976B/zh
Application filed by 共享智能铸造产业创新中心有限公司 filed Critical 共享智能铸造产业创新中心有限公司
Publication of WO2019042382A1 publication Critical patent/WO2019042382A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D47/00Casting plants
    • B22D47/02Casting plants for both moulding and casting

Definitions

  • the invention relates to the field of casting technology, and in particular to an intelligent casting system.
  • China is a veritable casting country with nearly 30,000 foundries and about 2 million employees.
  • the number of foundry companies in China is more than the total number of founding companies in the world, but the average output of enterprises is only 1117 tons.
  • the existing casting system has low average output, low added value of castings, large number of employees, low level of casting process, poor quality of castings, high energy consumption and raw material consumption, serious environmental pollution, harsh working environment, and casting process, such as Loading, unloading, transportation, etc. all need to be done manually, with low level of intelligence, high labor intensity, and low casting efficiency.
  • the arrangement of casting equipment is unreasonable, and the previous process to the latter process needs to cross other The process further reduces the casting efficiency.
  • the present application provides an intelligent casting system that solves the technical problems of low casting efficiency in the prior art, and has the advantages of high intelligence, reasonable layout, and high casting efficiency.
  • the technical solution provided by the present invention is in view of the above, the present application provides an intelligent casting system including a forming zone, a smelting casting zone, a sand processing zone, a finishing zone, and a logistics unit;
  • the forming zone comprises a plurality of 3D sand core printers and a truss transfer robot system arranged side by side in the longitudinal direction, the 3D sand core printer is used for printing a sand core, and the truss transfer robot system is further provided in the forming zone, The truss transfer robot system is used for gripping, moving and assembling the core;
  • the 3D sand core printer corresponding to the end of the transport direction of the sand core printed by the 3D sand core printer is provided with a work box buffer station for buffering the sand core;
  • the truss transfer robot system comprises a truss transfer robot and a work box cache line, a sand clearing station, a dip coating pool, a microwave drying device, a core wire and a sand core stereo library arranged from left to right under the truss transfer robot.
  • the truss transfer robot system is disposed in front of the 3D sand core printer for grasping the sand core from the work box buffer station for moving and assembling the core;
  • the smelting pouring zone abuts on the left side of the sand core stereoscopic library, and the smelting pouring zone, the sand processing zone and the finishing zone are arranged side by side in the longitudinal direction and are all arranged in front of the truss transfer robot system;
  • the smelting pouring zone is used for smelting molten iron, and the smelted molten iron is poured into the core package after the core of the forming zone;
  • the sand processing zone is disposed in front of the smelting pouring zone and located at the left of the sand core buffer The side is used for the sand falling treatment of the core package after casting and the removal of the riser of the casting;
  • the finishing area is arranged on the left side of the sand processing area and is arranged in the same row as the sand processing area, and is used for aging treatment, shot blasting, or successively on the casting after removing the riser.
  • the rough shot blasting, finishing, fine shot blasting, that is, the casting after removing the riser is subjected to surface treatment of the casting in the finishing zone, so that the surface of the casting is smooth, no crease or excess structure;
  • an energy supply unit is disposed on a side of the solid core of the sand core away from the microwave drying device, and the energy supply unit supplies power and gas to the molding zone, the smelting pouring zone, the sand processing zone, the finishing zone and the logistics unit. And monitoring, the energy supply unit is arranged perpendicular to the forming zone and the smelting casting zone;
  • the logistics unit includes a heavy-duty mobile robot and a light-load mobile robot, and the heavy-duty mobile robot performs the transport of the printing work box and the core package, and the light-load mobile robot is responsible for the transport of the casting.
  • the smelting pouring zone comprises an automatic dosing and dosing system, and an electric furnace and a pouring station for placing the core bag are arranged directly behind the dosing system, and the pouring station is arranged on the left side of the sand core buffer library. ;
  • a feeding spheroidizing treatment station and a baking bag are arranged in the left and right direction in the left and right direction away from the electric furnace side of the sand processing area, and the front side of the baking bag, the feeding spheroidizing processing station and the electric furnace are provided in the baking bag and An automatic pouring trolley that moves freely between electric furnaces, and an automatic pouring trolley can automatically pour a ladle.
  • the sand processing area includes a cooling buffer library and a flipping robot
  • the cooling buffer library side is disposed opposite to the electric furnace
  • the other side of the cooling buffer library is provided with a vibration falling machine
  • the turning robot is disposed in the vibration falling machine.
  • the flipping robot grabs and flips the sand core to the vibrating sand falling machine
  • the side of the vibration falling machine remote from the cooling buffer is provided with a gripping robot for removing the caster of the casting
  • the cooling buffer and the flipping robot The vibration falling machine and the gripping robot are arranged side by side, and the thermal regeneration device is arranged behind the cooling buffer library.
  • the finishing zone comprises at least one aging kiln arranged side by side, in the left and right direction, an aging kiln is arranged relative to the gripping robot, and a blasting blasting chamber is arranged on the side of the aging kiln away from the gripping robot.
  • the other side of the blasting chamber is provided with a casting buffer library
  • the rear side of the aging kiln is provided with a finishing room
  • a side of the finishing room away from the aging kiln is provided with a chain spray painting line, the light load
  • the mobile robot is placed in the walking area formed between the aging kiln and the chain paint line.
  • the upper part and the lower part of the ring-shaped shot blasting chamber are disposed at an upper part of the chain paint line, and the upper part of the chain-painting line and the lower part of the chain-painting line are in the front-back direction Set on the same side.
  • the smelting casting zone comprises an electric furnace for smelting iron water and a casting station for placing a core package, the casting station being disposed on the left side of the sand core buffer, the front side of the electric furnace and the pouring station
  • a trolley track is arranged on the aisle between the rear sides, and the trolley track is movably provided with an automatic pouring trolley, and the ladle of the automatic pouring trolley can be automatically poured into the core package, and the baking bag is arranged on the left side of the electric furnace.
  • the sand processing area includes a cooling buffer library and a flipping robot, the cooling buffer library is disposed directly behind the pouring station, and a vibration falling machine is disposed directly behind the cooling buffer library, and the turning robot is disposed in the vibration falling Immediately above the sand machine, the flipping robot grabs and flips the sand core to the vibration drop machine.
  • the finishing zone comprises a coarse blasting chamber arranged in order from right to left, a plurality of finishing robots arranged side by side in the longitudinal direction, and a fine shot blasting chamber, the coarse blasting chamber being arranged in the vibration falling sand
  • the finishing robot On the left side of the machine, the finishing robot carries the casting and inverts the casting; the painting line is disposed on the left side of the baking bag and behind the fine shot blasting chamber, and the painting line is provided with a passage communicating with the outside as a shipping passage.
  • the utility model further comprises a waste sand buffer library, wherein the sand cleaning station is provided with a recycling sand pool, an artificial sand blowing chamber is arranged between the sand cleaning station and the dip coating pool, and the artificial sand blowing chamber is used for cleaning the floating sand surface of the sand core surface.
  • a waste sand buffer library wherein the sand cleaning station is provided with a recycling sand pool, an artificial sand blowing chamber is arranged between the sand cleaning station and the dip coating pool, and the artificial sand blowing chamber is used for cleaning the floating sand surface of the sand core surface.
  • the same side of the 3D sand core printer is arranged side by side with a waste sand pool, a recovery sand pool and a reclaimed sand pool, and the recovery sand pool is connected to the recovery sand pool via the pipeline one, the artificial sand blowing chamber
  • the floating sand is stored in the waste sand storage tank, and the sand of the waste sand storage is sent to the waste sand buffer pool through the pipeline 2, and the waste sand buffer bank is provided with thermal regeneration equipment on the side of the waste sand buffer.
  • the doffing yarn is stored in the waste sand buffer library, and the sand in the waste sand buffer library is regenerated by the thermal regeneration equipment and sent to the reclaimed sand storage tank through the pipeline three, and the sand in the reclaimed sand storage tank and the recycled sand storage tank respectively Pipes 4 and 5 are sent to the sand inlet of each 3D sand core printer.
  • the truss transfer robot comprises: a lateral movement mechanism and a support assembly, the lateral movement mechanism is disposed on the support assembly, the horizontal movement mechanism is provided with a horizontal movement mechanism, and the horizontal movement mechanism is provided with a vertical moving mechanism, the vertical moving mechanism is provided with a clamping mechanism rotatable in a vertical direction, the clamping mechanism is for clamping a sand core; and the clamping mechanism is further provided with a flipping clamping portion
  • the inversion clamping portion is configured to clamp the sand core and invert the sand core in a horizontal direction;
  • the support assembly includes a plurality of first uprights and second uprights fixed to the foundation, the first uprights and the second uprights are disposed on the foundation, and the plurality of the first uprights and the plurality of the second uprights are respectively fixed There are mutually parallel support seats;
  • the lateral movement mechanism includes:
  • a lateral support block the two ends of the lateral support block are respectively provided with a lateral sliding seat, and the lateral sliding seat is slidably disposed on the support base;
  • the lateral movement mechanism further comprises:
  • first guide rail disposed on a side opposite to the support seat; the lateral sliding seat is slidably disposed on the first rail;
  • a drive mechanism is connected between the support base and the lateral sliding seat
  • the lateral drive mechanism includes:
  • a first driving motor disposed on one side of the lateral support block, the first driving motor is coupled to a rotating shaft, and the rotating shaft is supported on the lateral sliding seat;
  • the transmission is disposed on both sides of the rotating shaft
  • a first rack is disposed on the support base along a length of the support base and meshes with the first gear.
  • the horizontal movement mechanism comprises:
  • the second rail is horizontally disposed and perpendicular to the first rail
  • a horizontal driving mechanism is connected between the lateral support block and the horizontal sliding seat;
  • the horizontal drive mechanism includes:
  • a second rack disposed on one side of the lateral support block, the second rack being disposed along a sliding direction of the horizontal sliding seat;
  • the second driving motor is disposed on one side of the horizontal sliding seat, and the output shaft of the second driving motor is connected to the second gear; the second gear is drivingly connected to the second rack.
  • the vertical movement mechanism comprises:
  • a third rail disposed vertically on the lifting column, the lifting column being configured to vertically slide on the horizontal sliding seat along the third rail;
  • a lifting drive mechanism is connected between the lifting column and the horizontal sliding seat
  • the lifting drive mechanism includes:
  • a third rack disposed on the lifting column, the third rack meshing with the third gear.
  • the bottom of the lifting column is connected to the clamping mechanism by a rotating seat;
  • the rotating base comprises:
  • the rotating base is connected to a fourth driving motor for driving the rotating seat to rotate about its center of rotation.
  • the clamping mechanism comprises:
  • a housing the upper portion of the housing is connected to the lifting column by a rotating base;
  • Two independently movable grippers the gripper drive connection being coupled with a gripping drive mechanism
  • the opposite side of the gripper is provided with the inversion clamping portion, and the inversion clamping portion protrudes from a surface of the gripper toward one side;
  • the clamping drive mechanism comprises:
  • a driven pulley connected to the driving pulley by a belt drive
  • a horizontal drive seat is fitted over the lead screw, and a bottom of the horizontal drive base is fixedly coupled to the grip.
  • the inversion clamping portion is connected to the horizontal inversion mechanism, and comprises:
  • the driven gear is connected to the driving gear, and the rotating shaft of the driven gear is fixedly connected to the turning clamping portion.
  • the present application discloses an intelligent casting system in which a 3D sand core printer prints a sand core, the sand core is in a printing work box, and after the printing work box is transported by the logistics system, the truss transfer robot grasps the sand core, and the truss is grabbed. After the robot grabs the sand core, the sand core is driven by automatic sand cleaning, automatic dip coating, and microwave drying to complete the automatic core assembly. After the core is assembled, the heavy-duty mobile robot is transferred to the smelting pouring zone, and the molten casting zone is smelted.
  • the molten iron is poured into the core package to form a core package, and the core package is subjected to a falling sand treatment to obtain a casting, and the casting for removing the riser is transferred to the finishing area, and the casting part is subjected to shot blasting, finishing treatment and painting treatment.
  • the light-loading mobile robot is transported to the cache stereoscopic library for storage; in addition, the energy supply unit can supply, supply, and monitor the operation of each zone in the casting system; in the present invention, the casting process is performed in an orderly manner by the arrangement of the various processes. The distance between each adjacent process is short, the transportation is convenient, the labor intensity is low, and the casting efficiency is high; the invention can be applied to the casting work of the workpiece.
  • FIG. 1 is a schematic structural view of a general layout according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view 1 of a general layout structure according to another embodiment of the present invention.
  • FIG. 3 is a second schematic structural view of a second embodiment of the present invention.
  • Figure 4 is a front elevational view of the truss robot of the present invention.
  • Figure 5 is a perspective view of the truss robot of the present invention.
  • Figure 6 is a perspective view of the truss robot of the present invention.
  • Figure 7 is a perspective view of the three-dimensional structure of the truss robot of the present invention.
  • Figure 8 is a perspective structural view of the clamping mechanism of the present invention.
  • Figure 9 is a perspective view of the clamping mechanism of the present invention hiding the side of the housing and the grip;
  • Figure 10 is a side view of the clamping mechanism of the present invention.
  • Figure 11 is a D-D arrow view of Figure 9;
  • Figure 12 is a partial enlarged view A of the present invention.
  • Figure 13 is a partial enlarged view of the present invention B
  • Figure 14 is a partial enlarged view C of the present invention.
  • the casting system shown in Figures 1 and 4-15 comprises a forming zone 1, a smelting casting zone 2, a sand processing zone 3, a finishing zone 4, a painting line 5 and a logistics unit, and the forming zone 1 comprises a plurality of lengthwise directions.
  • 3D sand core printer 1a 3D sand core printer 1a arranged side by side for printing out the sand core 26
  • 3D sand core printer 1a printed by the 3D sand core printer 1a is provided in front of the 3D core printer 1a corresponding to the end of the transport direction end
  • the left side of the work box buffer station is provided with a sand clearing station 1f, a dip coating tank 1h, a microwave drying device 1c, a core wire 1b and a sand core buffer library 1d.
  • a truss transfer robot is arranged above the box buffer station, the sand clearing station 1f, the dip coating tank 1h, the microwave drying device 1c and the sand core buffer library 1d, and the truss transfer robot performs the grasping, moving and assembling of the sand core 26;
  • the pouring zone 2 is disposed on the left side of the sand core buffer 1d, the molten casting zone 2 is used for melting molten iron, and the molten molten iron is poured into the core package after the core of the forming zone 1;
  • the sand processing zone 3 is set in the melting
  • the front of the pouring zone 2 is located on the left side of the core buffer 1d, and the sand processing zone 3 is After the injection, the core package is subjected to sand falling treatment;
  • the finishing zone 4 is disposed on the left side of the sand treatment zone 3 and is disposed in the same row as the sand treatment zone 3, and the finishing zone 4 performs the coarse shot blast
  • the casting after fine shot blasting is sent to the painting line 5 for painting and drying;
  • the logistics unit includes the heavy-duty mobile robot 6 and the light-load mobile robot 15, and the heavy-duty mobile robot 6 performs printing.
  • the transfer of the work box and the core pack, the light load mobile robot 15 is responsible for the transfer of the casting.
  • the smelting pouring zone 2 includes an electric furnace 2c for smelting molten iron and a casting station 2a for placing the core package, the pouring worker The position 2a is disposed on the left side of the core buffer library 1d, and the trolley track 2b is disposed on the aisle between the front side of the electric furnace 2c and the rear side of the pouring station 2a, and the automatic pouring trolley 2d is movably disposed on the trolley track 2b,
  • the ladle of the pouring car 2d can be automatically poured into the core package, and the baking pot 2e is arranged on the left side of the electric furnace 2c;
  • the sand processing area 3 includes a cooling buffer 3c and a reversing robot 3a, and the cooling buffer 3c is disposed at the pouring station 2a.
  • a vibration falling machine 3b is disposed directly behind the cooling buffer bank 3c, and the turning robot 3a is disposed directly above the vibration falling machine 3b, and the turning robot 3a grasps and inverts the sand core 26 to the vibration falling machine 3b.
  • the finishing zone 4 includes a coarse shot blasting chamber 4a arranged in order from right to left, a plurality of finishing robots 4b and fine shot blasting chambers 4c arranged side by side in the longitudinal direction, and a coarse shot blasting chamber 4a.
  • the finishing robot 4b is disposed on the left side of the vibration falling machine 3b, and the finishing robot 4b carries the casting and the inversion; in order to facilitate the shipment, the painting line 5 is disposed on the left side of the baking bag 2e, behind the fine shot blasting chamber 4c, and the painting line 5 A passage communicating with the outside is provided as the shipping lane 5a.
  • the waste sand buffer library 7 is also included.
  • the floating sand used to clean the surface of the sand core 26, in the longitudinal direction, the same side of the 3D sand core printer 1a is arranged side by side with a waste sand bank 14, a recovery sand pool 12 and a reclaimed sand pool, and a recovery sand pool 1g via a pipe 10
  • the recycled sand storage 12 is connected, and the floating sand of the artificial sand blowing chamber 1i is stored in the waste sand storage 14 , and the sand of the waste sand storage 14 is sent to the waste sand buffer 7 through the pipe 2 9 , and the waste sand buffer 7 is provided on the side.
  • the thermal regeneration device 8 and the doffing processed by the vibration falling machine 3b are stored in the waste sand buffer bank 7, and the sand in the waste sand buffer bank 7 is regenerated by the thermal regeneration device 8 and sent to the regeneration through the pipeline 36
  • the sand in the reclaimed sand storage and recovery sand storage 12 is sent to the sand inlet of each 3D sand core printer 1a via the pipe 4 13 and the pipe 5 15 respectively.
  • the truss transfer robot includes:
  • a lateral movement mechanism 23 disposed on the support assembly 18 for horizontal movement along the support assembly 18;
  • a horizontal moving mechanism 24 disposed on the lateral movement mechanism 23 for horizontal movement along the lateral movement mechanism 23;
  • a vertical moving mechanism 20 is disposed on the horizontal moving mechanism 24 for lifting and lowering in the vertical direction on the horizontal moving mechanism 6;
  • the clamping mechanism 19 is rotatably disposed at the bottom of the vertical moving mechanism 20, and the clamping mechanism 19 is used for clamping the sand core 26;
  • the horizontal turning mechanism 1916 is disposed on the clamping mechanism 19, and when the clamping mechanism 19 holds the sand core 26, the turning mechanism 1916 is in contact with the sand core 26, and the turning mechanism 1916 is used to rotate along the center of the rotation Rotate to drive the sand core 26 to flip.
  • the moving direction of the lateral moving mechanism 23 is defined as the front-rear direction
  • the moving direction of the horizontal moving mechanism 24 is defined as the left-right direction
  • the moving direction of the vertical moving mechanism 20 is defined as the up-and-down direction.
  • the clamping mechanism 19 is moved in the front-rear direction by the lateral movement mechanism 23, the left-right direction is moved by the horizontal movement mechanism 24, the up-and-down direction is moved by the vertical movement mechanism 20, and the clamping mechanism 19 can be realized at the bottom of the vertical movement mechanism 20. Rotation, therefore, the clamping mechanism 19 has spatial freedom of movement and freedom of rotation in a Cartesian Cartesian coordinate system to achieve automated clamping of the core 26.
  • the support assembly 18 includes:
  • a plurality of first uprights 1801 and a plurality of second uprights 1802 are disposed on the foundation in a straight line;
  • the support bases 21 are respectively disposed at the tops of the first uprights 1801 and the second uprights 1802; the two support bases 21 are parallel to each other and horizontally disposed.
  • the first guide rail 2306 is disposed on the support base 21, and the first guide rail 2306 is disposed in parallel with the support base 21 for mounting the lateral movement mechanism 23.
  • the lateral movement mechanism 23 includes:
  • a lateral support block 2303 the left and right ends of the lateral support block 2303 are provided with a lateral sliding seat; the lateral sliding seat is supported on the first rail 2306 for moving back and forth along the first rail 2306;
  • a lateral drive mechanism is coupled between the support block 2303 and the support base 21.
  • the lateral drive mechanism includes:
  • a first rack 2305 is disposed on a side opposite to the support base 21, and the first rack 2305 is parallel to the first rail 2306;
  • the first driving motor 2302 is disposed on the lateral sliding seat, the output shaft of the first driving motor 2302 is coupled to the rotating shaft 2301, and the first gear 2304 is drivingly coupled to the left and right sides of the rotating shaft 2301; Gear 2304 meshes with first rack 2305.
  • the first driving motor 2302 drives the first gear 2304 to rotate
  • the first gear 2304 meshes with the first rack 2305 to drive the lateral support block 2303 to move along the extending direction of the support assembly 18, the first rail 2306 and the first rack 2305.
  • the first guide rail 2306 serves to improve the smoothness of the movement of the lateral movement mechanism 23.
  • the horizontal support block 2303 is provided with the horizontal movement mechanism 24 movable along the lateral support block 2303.
  • the horizontal movement mechanism 24 includes:
  • a second rail 2405 disposed on the lateral support block 2303, the second rail 2405 being horizontally disposed and perpendicular to the first rail 2306,
  • a horizontal sliding seat 2404 for moving left and right along the second rail 2405; a horizontal driving mechanism is connected between the horizontal sliding seat 2404 and the lateral supporting block 2303, and the horizontal driving mechanism is used for driving the horizontal sliding
  • the seat 2404 is horizontally moved on the lateral support block 2303.
  • the horizontal drive mechanism includes:
  • the second driving motor 2401 is fixedly disposed on the horizontal sliding seat 2404;
  • the second gear 2402 is drivingly connected to the output shaft of the second driving motor 2401;
  • the second rack 2403 is fixed to the lateral support block 2303 and parallel to the extending direction of the second rail 2405, and the second gear 2402 is engaged with the second rack 2403.
  • the second driving motor 2401 is configured to drive the second gear 2402 to rotate.
  • the second gear 2402 and the second rack 2403 engage to move the horizontal sliding seat 2404 along the second rail 2405.
  • the horizontal sliding mechanism 2404 is provided with the vertical moving mechanism 20, and the vertical moving mechanism 20 includes:
  • the third guide rail 2006 is vertically disposed on the lifting column 2004, and the lifting column 2004 can vertically slide on the horizontal sliding seat 2404 along the third guiding rail 2006;
  • the lifting column 2004 and the horizontal sliding seat 2404 are linked by a vertical drive mechanism.
  • the vertical drive mechanism includes:
  • the third driving motor 2001 is disposed on the horizontal sliding seat 2404;
  • the third rack 2003 is vertically disposed on the lifting column 2004, and the third rack 2003 meshes with the third gear 2002.
  • the third driving motor 2001 drives the third gear 2002 to rotate
  • the third driving motor 2001 is relatively fixed with the third gear
  • the third rack 2003 meshes with the third gear and moves in the vertical direction to drive the lifting column 2004 to move up and down.
  • a first cavity 2005 is disposed on the lifting column 2004, and the vertical driving mechanism is disposed in the first cavity 2005.
  • the bottom of the lifting column 2004 is connected to the clamping mechanism 19 via a rotating base 22, and the rotating base 22 is drivingly connected with a fourth driving motor 25 for driving the rotating base 22 to rotate around it.
  • the center rotates, and when the rotating base 22 rotates, the clamping mechanism 19 and the rotating base 22 rotate in synchronization with the same center of rotation.
  • the clamping mechanism 19 includes:
  • a housing 1901 above the housing 1901 is connected to the lifting column 2004 through a rotating seat 22;
  • Two independently movable grippers 1902 are disposed opposite to the housing 1901, and the opposite sides of the gripper 1902 are provided with a convex flipping clamping portion 1916;
  • a second cavity 214 is disposed in the housing 1901.
  • the second cavity 214 is provided with a clamping drive mechanism for driving the gripper 1902 to move toward or away from the back.
  • the clamping drive mechanism comprises:
  • the fifth driving motor 1904 is fixedly disposed in the second cavity 214,
  • the driving connection is on the output shaft of the fifth driving motor 1904;
  • the driven pulley 1911 is connected to the driving pulley 1913 via a belt 1912;
  • a lead screw 1915 that is coupled to the driven pulley 1911 and coaxial with the driven pulley 1911, and rotates at the same angular velocity as the driven pulley 1911 when the driven pulley 1911 rotates;
  • the horizontal transmission seat 1906 is sleeved on the screw rod 1915.
  • the bottom of the horizontal transmission seat 1906 is fixedly connected to the gripper 1902.
  • the horizontal transmission seat 1906 moves horizontally on the screw rod 1915 to drive the gripper.
  • the hand 1902 moves linearly in the axial direction of the lead screw 1915, and the two grippers 1902 move toward each other or move backwards.
  • the clamping rotary seat 216 clamps the sand core 26.
  • a slide rail 1907 is further disposed in the second cavity 214.
  • the slide rail 1907 is provided with a driven sliding seat 1905.
  • the bottom of the driven sliding seat 1905 is fixedly connected to the top of the gripper 1902.
  • the slide rail 1907 is parallel to the screw rod 217.
  • the inversion clamping portion 1916 is for contacting the sand core 26 when the jaw 202 holds the sand core 26 and can drive the core 26 to be turned over in the horizontal direction.
  • the flip nip 1916 is connected to the horizontal flip mechanism, and includes:
  • a sixth drive motor 1910 is disposed in the motor case 1903 located on the clamping jaw 202;
  • a driving gear 1909 is drivingly coupled to an output shaft of the sixth driving motor 1910;
  • the driven gear 1917 is coupled to the driving gear 1909, and the rotating shaft of the driven gear 1917 is coaxial with the clamping rotating seat 216.
  • the driven gear 1917 rotates, the rotating rotating seat 216 and the slave are clamped.
  • the moving gear 1917 rotates at the same angular velocity to drive the clamped core 26 to rotate.
  • the sixth drive motor 1910 stops outputting torque.
  • the device disclosed by the invention can complete the action of grasping, moving and automatically assembling the core 26; when the invention works, the 3D sand core printer 1a prints the sand core 26, and the sand core 26 is in the printing work box, and is overloaded.
  • the mobile robot 6 moves from the leftmost 3D core printer 1a. From the left to the right direction, the print work boxes printed by the respective 3D core printers 1a are placed in the print work box and sequentially cached on the heavy-duty mobile robot 6.
  • the heavy-duty mobile robot 6 moves to the rightmost 3D core printer 1a, the heavy-duty mobile robot 6 changes the traveling route, and the heavy-duty mobile robot 6 transports the print working box to the rear of the rightmost 3D core printer 1a.
  • the print work box is microwave-cured and buffered on the work box cache line 1e, and then transferred to the clearing station 1f by the heavy-duty mobile robot 6, and the truss transfer robot grabs the sand core 26, and the truss transfer robot
  • the sand core 26 is sequentially subjected to automatic sand cleaning, automatic dip coating, microwave drying, and automatic sand cleaning is completed on the sand cleaning station 1f, in order to blow off the floating sand on the surface of the sand core 26, after sand cleaning Sand core 26 It is transported to the artificial sand blowing chamber 1i, and the floating sand on the surface of the sand core 26 is blown off; the automatic dip coating is completed in the dip coating tank within 1 h, the microwave drying is completed by the microwave drying equipment 1c, and the sand core 26 after the microwave drying is completed.
  • the automatic core assembly is completed on the transfer tray by the truss transfer robot.
  • the core 26 after the core is called the core package, and the core package is placed on the transfer tray;
  • the working process of the truss transfer robot is specifically a driving motor 2302, the first driving motor 2302 drives the rotation of the rotating shaft 2301, the rotation of the rotating shaft 2301 drives the rotation of the first gear 2304, the first rack 2305 is fixed on the support base 21, and the first gear 2304 is along the first rack 2305 movement, the first gear 2304 drives the lateral support block 2303 to make a lateral linear movement, where the lateral linear movement refers to the movement along the length of the support seat 21, when the gripper 1902 is in the length direction of the sand core 26 that needs to be grasped
  • the first driving motor 2302 is closed; at this time, the adjusting gripper 1902 mechanism is perpendicular to the horizontal position in the longitudinal direction, the second driving motor 2401 is opened, and the second driving motor 2401 drives
  • the second rack 2403 is fixed on the lateral support block 2303, the second gear 2402 is rolled along the second rack 2403, and the second gear 2402 drives the horizontal sliding seat 2404 to move horizontally along the length of the lateral support block 2303.
  • the gripper 1902 corresponds to the position of the sand core 26 to be grasped in the front-rear direction
  • the second drive motor 2401 is closed. At this time, it is recognized whether the opposite sides of the two grippers 1902 are facing the opposite sides of the sand core 26 in the longitudinal direction.
  • the fourth driving motor 25 is turned on, and the fourth driving motor 25 drives the rotation of the gripper 1902 until the opposite sides of the two grippers 1902 are opposite to the two sides of the sand core 26, and the fourth driving motor 25 is turned off. At this time, it is necessary to identify whether the center of the flip nip 1916 is flush with the center of the sand core 26 in the height direction.
  • the third drive motor 2001 is turned on, and the third drive motor 2001 drives the rotation of the third gear 2002.
  • the third rack 2003 is fixed on the lifting column 2004, and the third driving motor 2001 is fixed to the horizontal sliding seat 2404 so that the position of the third gear 2002 in the height direction is fixed, and the third rack 2003 is in the third gear 2002.
  • the linear motion realizes the lifting and lowering of the inversion clamping portion 1916 until the inversion clamping portion 1916 is substantially flush with the center in the height direction of the sand core 26, and the third driving motor 2001 is closed; at this time, the sand core 26 needs to be clamped.
  • the fifth drive motor 1904 is opened, and the output shaft of the fifth drive motor 1904 drives the rotation of the driving pulley 1913.
  • the rotation of the driving pulley 1913 drives the rotation of the driven pulley 1911, and the rotation of the driven pulley 1911 drives the screw 1915.
  • the rotation of the screw 1915 drives the linear movement of the horizontal transmission seat 1906 in the longitudinal direction of the rotation shaft 2301.
  • the linear movement of the horizontal transmission seat 1906 drives the linear movement of the gripper 1902 to control the forward and reverse rotation of the fifth drive motor 1904.
  • the gripper 1902 moves toward or away from each other.
  • the flip grip 1916 clamps the sand core 26; when the clamped core 26 needs to be turned over, the sixth drive motor 1910 is opened.
  • the sixth driving motor 1910 drives the rotation of the driving gear 1909.
  • the rotation of the driving gear 1909 drives the rotation of the driven gear 1917.
  • the rotation of the driven gear 1917 drives the rotation of the rotating clamping portion 1916 to invert the clamping portion 1916.
  • the rotation drives the rotation of the sand core 26, and when the sand core 26 is turned over to the required angle, the sixth driving motor 1910 is closed; as can be seen from the working process of the above truss transfer robot, the sand core 26 is cleared by the arrangement of the truss transfer robot
  • the automatic transportation of the sand station 1f, the dip coating tank 1h and the microwave drying equipment 1c, the truss transfer robot completes the up, down, left and right, front and back and flipping movements of the sand core 26, loosens the sand core 26, and grabs another sand.
  • the core 26 completes the combination of the sand core 26 on the core wire 1b, and does not need to manually transport the sand core 26 to the corresponding process for sand treatment, and then the heavy-duty mobile robot 6 transports the transfer tray to the smelting pouring zone.
  • the transfer tray can also be transported to the core buffer library 1d by the truss transfer robot for buffering, in the smelting pouring area 2, the heavy-duty mobile robot 6 transports the transfer tray to the electric furnace 2c, and the automatic pouring trolley 2d transports the ladle to The baking bag 2e is baked, and the ladle after the baking is transferred to the electric furnace 2c by the automatic pouring car 2d, and the iron is automatically discharged into the ladle of the automatic pouring car 2d after the melting of the electric furnace 2c.
  • the injection car 2d casts molten iron into the core package, and the core package after pouring the molten iron is placed on the core package tray, and the heavy-duty mobile robot 6 transfers the core package tray to the cooling buffer bank 3c of the sand core 26 processing area for buffer cooling.
  • the heavy-duty robot transports the core package tray to the vibration drop machine 3b, and the reverse robot 3a flips the core package tray to invert the core package to the vibration falling machine 3b for falling sand, after falling sand
  • the sand can be sent to the waste sand buffer bank 7 through the pipeline, the core package of the finished sand is the casting, and the light-loading mobile robot 15 transports the tray containing the casting to the coarse shot blasting chamber 4a, and the coarse shot blasting chamber 4a is used for the casting.
  • the casting is transferred to the transfer finishing robot 4b to perform finishing work such as removing excess machining allowance, and the finished casting is transferred to the fine shot blasting chamber 4c by the light-loading mobile robot 15 for fine shot blasting.
  • the casting after fine shot blasting is transferred to the painting line 5 by the light-loading mobile robot 15 for painting and drying, and the dried casting is shipped from the shipping channel 5a; in addition, the sand cleared by the sand cleaning station 1f falls into Recycling sand pool 1g, artificial sand blowing chamber
  • the floating sand blown in the 1i is transferred to the waste sand storage tank 14 through the pipeline, and the sand in the waste sand storage tank 14 is transferred to the waste sand buffer storage tank 7 through the pipeline 36, and the sand in the recovery sand pool 1g is transported through the pipeline 2 to In the recycling sand magazine 12, the sand in the waste sand buffer bank 7 is transferred to the thermal regeneration equipment 8 for sand regeneration, and the regenerated
  • the sand in the 12 is transferred to the 3D core printer 1a through the pipe 4 to continue to be used, thereby saving resources; in the present invention, the casting process is carried out in an orderly manner by the arrangement of the respective processes, and the distance between the adjacent processes is short and the transportation is convenient.
  • the labor intensity is low, and the casting efficiency is improved; the structure of the truss transfer robot is compact, so that the sand core 26 automatically performs the operations of sand cleaning, dip coating, microwave drying and core assembly, and the degree of automation is high, thereby further improving the casting efficiency;
  • the waste sand is recycled, and the flow of all kinds of sand is transported in the pipeline to avoid the dust pollution generated by the sand during circulation; the invention can be applied to the casting work of the workpiece
  • the forming zone 1 comprises a truss transfer robot system and a plurality of 3D sand core printers 1a arranged side by side in the longitudinal direction, the 3D sand core printer 1a prints the sand core 26;
  • the truss transfer robot system comprises a truss
  • the transfer robot under the truss transfer robot, has a work box cache line 1k, a sand clearing station 1f, a dip coating tank 1h, a microwave drying device 1c and a sand core stereo library 1j, and a truss robot system is arranged in the 3D sand core from left to right.
  • the smelting pouring zone 2 performs molten iron smelting, and the smelted molten iron is poured into the core of the sand treated by the forming zone 1 to form a core package.
  • the smelting pouring zone 2 includes an automatic dosing and dosing system 2f, and a dosing system 2f
  • the electric furnace 2c is arranged directly behind the electric furnace 2c away from the sand processing zone 3, and the feeding spheroidizing processing station 2h and the baking bag 2e are arranged in the left-right direction, the baking bag 2e, the feeding spheroidizing processing station 2h.
  • On the front side of the electric furnace 2c there is an automatic pouring trolley 2d which is freely movable between the baking pan 2e and the electric furnace 2c, and the automatic pouring trolley 2d can automatically pour the ladle.
  • the sand processing zone 3 performs a sand falling treatment on the core package and a pouring riser removal process.
  • the sand processing zone 3 includes a cooling buffer bank 3c and a flipping robot 3a, and the cooling buffer bank 3c side is disposed opposite to the electric furnace 2c.
  • the other side of the cooling buffer bank 3c is provided with a vibration falling machine 3b, and the turning robot 3a is disposed directly above the vibration falling machine 3b, and the turning robot 3a grasps and flips the sand core 26 to the vibration falling machine 3b, away from the cooling buffer.
  • the vibration falling machine 3b of the library 3c there is a gripping robot for removing the caster of the casting, the cooling buffer 3c, the flipping robot 3a, the vibration falling sander 3b and the gripping robot are arranged side by side, and the rear of the cooling buffer 3c is arranged.
  • a thermal regeneration device 3e is provided.
  • the finishing zone 4 successively performs aging, shot blasting and painting treatment on the casting after removing the riser; specifically, the finishing zone 4 includes at least one aging kiln 4d arranged side by side, and in the left and right direction, an aging kiln 4d is opposite to the gripping piece
  • the manipulator is arranged, and the aging kiln 4D away from the gripping robot is provided with a ring blasting chamber 4f, the other side of the ring blasting chamber 4f is provided with a casting buffer library, and the rear side of the aging kiln 4d is provided with a finishing room 4g.
  • the 4g side of the finishing room away from the aging kiln 4d is provided with a chain painting line 4h, and the light-loading mobile robot 7 is disposed in the walking area formed between the aging kiln 4d and the chain painting line 4h.
  • the side of the sand core stereoscopic library 1j remote from the microwave drying device 1c is provided with an energy supply unit 51, and the energy supply unit 51 is given to the molding zone 1, the smelting pouring zone 2, the sand processing zone 3, and the finishing zone.
  • the logistics unit power supply, gas supply and monitoring, the energy supply unit 51 is arranged perpendicular to the molding zone 1 and the smelting pouring zone 2; the logistics unit comprises a heavy-duty mobile robot 6 and a light-load mobile robot 7, and the heavy-duty mobile robot 6 is responsible for the forming zone. 1. Transfer of the smelting pouring zone 2 and the sand processing zone 3 to the finishing zone 4, the light-loading mobile robot 7 is responsible for transporting the finished casting to the cached stereoscopic library 4d of the finishing zone 4 for storage.
  • the upper part and the lower part of the ring-shaped blasting chamber 4f are disposed at the upper part of the chain painting line 4h, and the upper part and the ring of the chain-painting line 4h are arranged.
  • the lower part of the chain paint line 4h is disposed on the same side in the front-rear direction.
  • This embodiment has the same truss transfer robot as shown in FIG. 4-15 in another embodiment; when the embodiment is working, the 3D core printer 1a prints the sand core 26, and the sand core 26 is printed in the printing work box.
  • the work box is transported by the heavy-duty mobile robot 6 to the work box cache line 1k, and the print work box is microwave-cured and buffered on the work box cache line 1k, and then transferred to the clearing station 1f by the heavy-duty mobile robot 6, and the truss transfer robot pairs
  • the sand core 26 is grasped, and the truss robot grabs the sand core 26 and then drives the sand core 26 to perform automatic sand cleaning, automatic dip coating, and microwave drying in sequence.
  • the automatic sand cleaning is completed on the sand cleaning station 1f, and the automatic dip coating is in The dip coating tank is completed within 1h, the microwave drying is completed by the microwave drying equipment 1c, and the sand core 26 after the microwave drying is automatically assembled on the transfer tray by the truss transfer robot.
  • the core after the core is completed.
  • the core package is placed on the transfer tray;
  • the working process of the truss transfer robot specifically opens the first drive motor 2302, and the first drive motor 2302 drives the rotation of the rotary shaft 2301, and the rotation of the rotary shaft 2301 drives the first
  • the rotation of the gear 2304, the first rack 2305 is fixed on the support base 21, the first gear 2304 moves along the first rack 2305, and the first gear 2304 drives the lateral support block 2303 to move in a lateral direction, where the lateral linear movement refers to Moving along the length of the support base 21, when the gripper 1902 is facing in the longitudinal direction of the sand core 26 that needs to be grasped, the first drive motor 2302 is closed; at this time, the adjustment gripper 1902 mechanism is perpendicular to the length.
  • the second driving motor 2401 In the horizontal position in the direction, the second driving motor 2401 is opened, the second driving motor 2401 drives the rotation of the second gear 2402, the second rack 2403 is fixed on the lateral supporting block 2303, and the second gear 2402 is along the second rack 2403. Rolling, the second gear 2402 drives the horizontal sliding seat 2404 to move horizontally along the length direction of the lateral supporting block 2303.
  • the gripper 1902 corresponds to the position of the sand core 26 to be grasped in the front-rear direction
  • the second driving motor 2401 is closed. At this time, it is recognized whether the opposite sides of the two grippers 1902 are facing the two sides in the longitudinal direction of the sand core 26.
  • the fourth drive motor 25 is turned on, and the fourth drive motor 25 drives the rotation of the gripper 1902 until two The opposite sides of the grip 1902 are opposite to the two sides of the core 26, and the fourth drive motor 25 is closed; at this time, it is necessary to identify whether the center of the flip nip 1916 is flush with the center of the core 26 in the height direction.
  • the third driving motor 2001 is turned on, the third driving motor 2001 drives the rotation of the third gear 2002, the third rack 2003 is fixed on the lifting column 2004, and the third driving motor 2001 is fixed on the horizontal sliding seat 2404.
  • the position of the third gear 2002 is fixed in the height direction, and the third rack 2003 moves up and down linearly under the action of the third gear 2002 to realize the lifting and lowering of the clamping rotating seat 1916 until the clamping rotating seat 1916 and the sand core 26 are clamped.
  • the center of the height direction is substantially flush, and the third driving motor 2001 is closed; at this time, the sand core 26 needs to be clamped to open the fifth driving motor 1904, and the output shaft of the fifth driving motor 1904 drives the driving pulley 1913.
  • Rotation, the rotation of the driving pulley 1913 drives the rotation of the driven pulley 1911, and the rotation of the driven pulley 1911 drives the rotation of the screw 1915.
  • the rotation of the screw 1915 drives the straight line of the horizontal transmission seat 1906 in the longitudinal direction of the rotating shaft 2301.
  • the linear movement of the horizontal drive base 1906 drives the linear movement of the gripper 1902, and controls the forward and reverse rotation of the fifth drive motor 1904 such that the two grippers 1902 move toward each other or move backwards.
  • the clamps 902 move toward each other.
  • the rotating base 1916 clamps the sand core 26; when the clamped sand core 26 needs to be turned over, the sixth driving motor 1910 is opened, the sixth driving motor 1910 drives the rotation of the driving gear 1909, and the driving of the driving gear 1909 drives the driven gear.
  • Sand processing is carried out in the corresponding process, and the transfer tray is transported by the heavy-duty mobile robot 6 to the smelting pouring area 2 after the core is assembled.
  • the transfer tray can also be transported by the truss robot to the sand core 26 stereo library 1f for buffering, smelting and pouring.
  • the heavy-duty mobile robot 6 transports the transfer tray to the electric furnace 2c, and the automatic pouring car 2d transports the ladle to the roasting device 2e for baking, and the ladle after the baking is transferred to the electric furnace 2d by the automatic pouring trolley 2d.
  • the dosing system 2f automatically adds ingredients according to the scheduling plan and process requirements, and the electric furnace 2c automatically smelts the ingredients. After the electric furnace 2c is smelted, the iron is poured into the ladle of the automatic pouring car 2d, and the automatic pouring car 2d is poured into the molten iron.
  • the core package In the core package, the core package is placed on the core package tray, and the heavy-duty mobile robot 6 transfers the core package tray to the cooling buffer bank 3c of the sand core 26 processing area for buffer cooling, and when the cooling time reaches the prescribed time, the overload is performed.
  • the robot transports the core package tray to the vibration drop machine 3b, and the reverse robot 3a flips the core package tray to invert the core package to the vibration drop machine 3b for falling sand, and the sand after falling sand It is sent to the thermal regeneration equipment 3e through the pipeline for sand regeneration.
  • the regenerated regeneration sand can also be sent to the 3D sand core printer 1a through the pipeline to save resources.
  • the core package of the finished sand is the casting, and the gripper robot grabs.
  • the ring-shaped shot blasting chamber 4f is subjected to shot blasting treatment, and the casting finished with the shot blasting treatment is transferred to the finishing room 4g by the light-loading mobile robot 7 for finishing, and the finished casting is transferred to the chain spray paint by the light-loading mobile robot 7.
  • the upper part of the line 4h is the upper part
  • the chain spray paint line 4h is used to clean the surface of the air gun of the casting, the dust is cleaned, the paint is sprayed and the drying is performed
  • the lower part of the moving robot 7 is the casting of the lower end of the chain spray paint line 4h.
  • the energy supply unit 51 can supply, supply, and monitor the operation of each zone in the casting system; in the present invention, the arrangement of the various processes makes the casting process orderly.
  • the distance between each adjacent process is short, the transportation is convenient, the labor intensity is low, and the casting efficiency is improved; the structure of the truss transfer robot is compact, so that the sand core 26 automatically performs the operations of sand cleaning, dip coating, microwave drying and core assembly, and automation The degree is high, and the casting efficiency is further improved; the invention can be applied to the casting work of the workpiece.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Devices For Molds (AREA)

Abstract

一种智能铸造系统,包括成型区(1)、熔炼浇注区(2)、砂处理区(3)、精整区(4)和物流单元;所述成型区包括若干个在长度方向上并排设置的3D砂芯打印机(1a)和桁架转运机器人系统,所述3D砂芯打印机用于打印出砂芯(26),所述桁架转运机器人系统用于进行砂芯的抓取、移动和组芯;熔炼浇注区用于进行铁水的熔炼,熔炼后的铁水浇注在经成型区组芯后的芯包内;精整区设置用于对去除浇冒口后的铸件依次进行时效处理、粗抛丸、精整、精抛丸处理;所述物流单元包括重载移动机器人(6)和轻载移动机器人(15),用于打印工作箱、组芯芯包和铸件的转运。所述智能铸造系统智能化程度高,布局合理,铸造效率高,解决了现有技术中铸造效率低下的技术问题。

Description

智能铸造系统
本申请要求于2017年08月31日提交中国专利局、申请号为201710770722.9、发明名称为“一种智能铸造系统”以及于同日提交中国专利局、申请号为201710770311.X、发明名称为“铸造系统”的两件中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及铸造技术领域,特别涉及一种智能铸造系统。
背景技术
我国是名副其实的铸造大国,铸造厂近3万家,从业人员约200万人,我国铸造企业数量比全世界铸造企业的总和还要多,但企业的平均产量仅1117吨。现有的铸造系统,平均产量低、铸件附加值低、从业人员队伍庞大、铸造工艺水平低、铸件的质量差、能耗和原材料消耗高、环境污染严重、作业环境恶劣,铸造工序中,诸如上料、下料、运输等工作都需要人工去完成,智能化水平低,劳动力强度很大,铸造效率低下;另外,铸造设备的排布不合理,前一个工序到后一个工序需跨过其它工序,进一步降低铸造效率。
发明内容
有鉴于此,本申请提供一种智能铸造系统,解决现有技术中铸造效率低下的技术问题,具有智能化程度高,布局合理,铸造效率高的优点。
为解决以上技术问题,本发明提供的技术方案是有鉴于此,本申请提供一种智能铸造系统,包括成型区、熔炼浇注区、砂处理区、精整区和物流单元;
所述成型区包括若干个在长度方向上并排设置的3D砂芯打印机和桁架转运机器人系统,所述3D砂芯打印机用于打印出砂芯,成型区内还设有桁架转运机器人系统,所述桁架转运机器人系统用于进行砂芯的抓取、 移动和组芯;
3D砂芯打印机打印出的砂芯的转运方向末端所对应的3D砂芯打印机正前方设有用来缓存砂芯的工作箱缓存站;
所述桁架转运机器人系统包括桁架转运机器人和所述桁架转运机器人下方从左往右依次设置的工作箱缓存线、清砂站、浸涂池、微波烘干设备、组芯线和砂芯立体库,所述桁架转运机器人系统设置在3D砂芯打印机的前方,用于从工作箱缓存站抓取砂芯实现移动和组芯;
所述熔炼浇注区紧靠在砂芯立体库的左侧,所述熔炼浇注区、砂处理区和精整区在长度方向上依次并排设置且均设置在桁架转运机器人系统的前方;
熔炼浇注区用于进行铁水的熔炼,熔炼后的铁水浇注在经成型区组芯后的芯包内;砂处理区所述砂处理区设置在熔炼浇注区的前方且位于砂芯缓存库的左侧,用于对浇注后的芯包进行落砂处理并对铸件进行浇冒口去除的处理;
精整区设置在砂处理区的左侧且与砂处理区同排设置,用于对去除浇冒口后的铸件依次进行时效处理、抛丸处理,或依次对去除浇冒口后的铸件依次进行粗抛丸、精整、精抛丸处理,也即去除浇冒口后的铸件在精整区进行铸件的表面处理,以使铸件表面光洁、无披缝或多余结构;
在左右方向上,远离微波烘干设备的砂芯立体库一侧设有供能单元,所述供能单元给成型区、熔炼浇注区、砂处理区、精整区和物流单元供电、供气和监控,供能单元垂直于成型区和熔炼浇注区布置;
所述物流单元包括重载移动机器人和轻载移动机器人,重载移动机器人进行打印工作箱和组芯芯包的转运,轻载移动机器人负责铸件的转运。
优选的,所述熔炼浇注区包括自动加配料的加配料系统,加配料系统的正后方设有电炉和用来放置芯包的浇注工位,所述浇注工位设置在砂芯缓存库左侧;
远离砂处理区的电炉一侧在左右方向上依次设置有喂丝球化处理站和烤包器,烤包器、喂丝球化处理站和电炉的正后侧设有可在烤包器和电炉间自由移动的自动浇注小车,自动浇注小车可自动浇注铁水包。
优选的,所述砂处理区包括冷却缓存库和翻转机械手,所述冷却缓存 库一侧相对电炉设置,冷却缓存库另一侧设有振动落砂机,所述翻转机械手设置在振动落砂机的正上方,翻转机械手抓取并翻转砂芯至振动落砂机上,远离冷却缓存库的振动落砂机一侧设有用来去除铸件浇冒口的抓件机械手,所述冷却缓存库、翻转机械手、振动落砂机及抓件机械手并排设置,冷却缓存库的后方设有热法再生设备。
优选的,所述精整区包括至少一个并排设置的时效窑,在左右方向上,一个时效窑相对抓件机械手设置,远离抓件机械手的时效窑一侧设有环链抛丸室,环链抛丸室另一侧设有铸件缓存库,所述时效窑的后侧设有精整房,在左右方向上,远离时效窑的精整房一侧设有环链喷漆线,所述轻载移动机器人设置在时效窑和环链喷漆线之间形成的行走区域内。
优选的,所述环链抛丸室的上件处和下件处均相对环链喷漆线的上件处设置,环链喷漆线的上件处与环链喷漆线的下件处在前后方向上同侧设置。
优选的,所述熔炼浇注区包括用来炼铁水的电炉和用来放置芯包的浇注工位,所述浇注工位设置在砂芯缓存库左侧,所述电炉前侧和浇注工位的后侧之间的过道上设有小车轨道,所述小车轨道上可移动地设有自动浇注小车,所述自动浇注小车的铁水包可自动浇注到芯包内,电炉左侧设有烤包器;所述砂处理区包括冷却缓存库和翻转机械手,所述冷却缓存库设置在浇注工位的正后方,冷却缓存库的正后方设有振动落砂机,所述翻转机械手设置在振动落砂机的正上方,翻转机械手抓取并翻转砂芯至振动落砂机上。
优选的,所述精整区包括从右向左依次排列的粗抛丸室、若干个在长度方向上并排设置的精整机器人和精抛丸室,所述粗抛丸室设置在振动落砂机的左侧,所述精整机器人进行铸件的搬运和翻转;喷漆线设置在烤包器的左侧、精抛丸室的后方,喷漆线设有与外界连通的通道作为出货通道。
优选的,还包括废砂缓存库,所述清砂站上设有回收砂池,清砂站与浸涂池之间设有人工吹砂室,人工吹砂室用来清理砂芯表面的浮砂,在长度方向上,所述3D砂芯打印机的同侧并排设置有废砂库、回收砂库和再生砂库,所述回收砂池经管道一与回收砂库连接,所述人工吹砂室的浮砂存至废砂库内,所述废砂库的砂子经管道二送至废砂缓存库内,所述废砂 缓存库一侧设有热法再生设备,经振动落砂机处理后的落纱存至废砂缓存库内,废砂缓存库中的砂子经热法再生设备再生处理后经管道三送至再生砂库内,所述再生砂库和回收砂库中的砂分别经管道四和管道五送至各个3D砂芯打印机的进砂口。
优选的,所述桁架转运机器人包括:横向移动机构和支撑组件,所述横向移动机构设置在所述支撑组件上,所述横向移动机构上设置有水平移动机构,所述水平移动机构上设置有竖直移动机构,所述竖直移动机构上设置有可沿竖直方向转动的夹紧机构,所述夹紧机构用于夹持砂芯;所述夹紧机构上还设置有翻转夹持部,所述翻转夹持部用于夹持砂芯并使所述砂芯沿水平方向翻转;
所述支撑组件包括若干固定于地基上的第一立柱和第二立柱,所述第一立柱和所述第二立柱设置于地基上,若干所述第一立柱和若干所述第二立柱分别固定有相互平行的支撑座;
所述横向移动机构包括:
横向支撑块,所述横向支撑块的两端分别设置有横向滑动座,所述横向滑动座可滑动的设置于所述支撑座上;
优选的,所述横向移动机构还包括:
第一导轨,设置于支撑座上相向的一侧;所述横向滑动座滑动设置于所述第一导轨上;
所述支撑座和所述横向滑动座之间传动连接有横向驱动机构;
所述横向驱动机构包括:
第一驱动电机,设置于所述横向支撑块的一侧,所述第一驱动电机传动连接有转轴,所述转轴支撑在所述横向滑动座上;
第一齿轮,传动设置于所述转轴的两侧;
第一齿条,沿着所述支撑座的长度方向设置于所述支撑座上,并与所述第一齿轮啮合。
优选的,所述水平移动机构包括:
设置于所述横向支撑块上的第二导轨;
滑动连接所述第二导轨的水平滑动座,所述水平滑动座具有沿着第二导轨移动的自由度;
所述第二导轨水平设置且与所述第一导轨垂直;
所述横向支撑块和所述水平滑动座之间传动连接有水平驱动机构;
所述水平驱动机构包括:
第二齿条,设置于横向支撑块的一侧,所述第二齿条沿着水平滑动座的滑动方向设置;
第二驱动电机,设置于水平滑动座的一侧,第二驱动电机的输出轴传动连接有第二齿轮;所述第二齿轮与第二齿条传动连接。
优选的,所述竖直移动机构包括:
竖直设置的升降柱,所述升降柱可滑动的连接于所述水平滑动座上;
第三导轨,竖直设置于所述升降柱上,所述升降柱用于沿着第三导轨在所述水平滑动座上竖直滑动;
所述升降柱和所述水平滑动座之间传动连接有升降驱动机构;
所述升降驱动机构包括:
设置于水平滑动座上的第三驱动电机;
传动连接所述第三驱动电机的第三齿轮;
设置于所述升降柱上的第三齿条,所述第三齿条与所述第三齿轮啮合。
优选的,所述升降柱的底部通过转动座连接所述夹紧机构;所述转动座包括:
所述转动座传动连接有第四驱动电机,所述第四驱动电机用于驱动转动座绕其回转中心转动。
优选的,所述夹紧机构包括:
壳体,所述壳体的上方通过转动座连接所述升降柱;
两个可独立移动的抓手,所述抓手传动连接有夹持驱动机构;
所述抓手相向的一侧设置有所述翻转夹持部,所述翻转夹持部凸出于所述抓手相向一侧的表面;
所述夹持驱动机构包括:
第五驱动电机,固定设置于所述第二腔体内,
主动带轮,传动连接在第五驱动电机的输出轴上;
从动带轮,通过皮带传动连接所述主动带轮;
丝杆,连接所述从动带轮并与所述从动带轮同轴,当从动带轮转动时 与所述从动带轮以相同的角速度旋转;
水平传动座套装在所述丝杆上,所述水平传动座的底部固定连接所述抓手。
优选的,所述翻转夹持部传动连接有水平翻转机构,包括:
第六驱动电机,设置于位于夹爪上的电机箱内;
主动齿轮,传动连接在所述第六驱动电机的输出轴上;
从动齿轮,传动连接所述主动齿轮,所述从动齿轮的转动轴与所述翻转夹持部固定连接。
本申请与现有技术相比,其详细说明如下:
本申请公开了一种智能铸造系统,其中,3D砂芯打印机打印出砂芯,砂芯在打印工作箱内,打印工作箱由物流系统转运后,由桁架转运机器人对砂芯进行抓取,桁架机器人抓取砂芯后带动砂芯依次进行自动清砂、自动浸涂、微波烘干后完成自动组芯,组芯后再由重载移动机器人转运至熔炼浇注区,熔炼浇注区熔炼铁水,并将铁水浇注到芯包内形成芯包,芯包进行落砂处理后得到铸件,去除浇冒口的铸件转运至精整区,精整区对铸件进行抛丸处理、精整处理和喷漆处理,经轻载移动机器人转运至缓存立体库进行存储;另外,供能单元可给铸造系统供能、供气并监控各个区的运行情况;本发明中通过各个工序的排布使得铸造工序有序进行,各个相邻工序的间隔距离短,运输方便,劳动力强度低,铸造效率高;本发明可应用于工件的铸造工作中。
附图说明
图1为本发明一实施例的总体布局结构示意图;
图2为本发明另一实施例的总体布局结构示意图一;
图3为本发明另一实施例的总体布局结构示意图二;
图4为本发明中桁架机器人的主视图;
图5为本发明中桁架机器人的立体结构图一;
图6为本发明中桁架机器人的立体结构图二;
图7为本发明中桁架机器人的立体结构图三;
图8为本发明中夹紧机构的立体结构图;
图9为本发明中夹紧机构隐藏掉壳体和抓手一侧的立体结构图;
图10为本发明中夹紧机构的侧视图;
图11为图9的D-D向视图;
图12为本发明的局部放大图A;
图13为本发明的局部放大图B;
图14为本发明的局部放大图C。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
如图1和图4-15所示的铸造系统,包括成型区1、熔炼浇注区2、砂处理区3、精整区4、喷漆线5和物流单元,成型区1包括若干个在长度方向上并排设置的3D砂芯打印机1a,3D砂芯打印机1a用于打印出砂芯26,3D砂芯打印机1a打印出的砂芯26的转运方向末端所对应的3D砂芯打印机1a正前方设有用来缓存砂芯26的工作箱缓存站,工作箱缓存站的左侧依次间隔设有清砂站1f、浸涂池1h、微波烘干设备1c、组芯线1b和砂芯缓存库1d,工作箱缓存站、清砂站1f、浸涂池1h、微波烘干设备1c和砂芯缓存库1d的上方设有桁架转运机器人,桁架转运机器人进行砂芯26的抓取、移动和组芯;熔炼浇注区2设置在砂芯缓存库1d的左侧,熔炼浇注区2进行铁水的熔炼,并将熔炼后的铁水浇注在经成型区1组芯后的芯包内;砂处理区3设置在熔炼浇注区2的前方且位于砂芯缓存库1d的左侧,砂处理区3对浇注后的芯包进行落砂处理;精整区4设置在砂处理区3的左侧且与砂处理区3同排设置,精整区4对去除浇冒口后的铸件依次进行粗抛丸、精整、精抛丸处理,精抛丸后的铸件被送至喷漆线5进行喷漆、烘干处理;物流单元包括重载移动机器人6和轻载移动机器人15,重载移动机器人6进行打印工作箱和组芯芯包的转运,轻载移动机器人15负责铸件的转运。
在本实施例中,为了实现铁水的熔炼、对砂芯26的浇注和铸件的生产, 熔炼浇注区2包括用来炼铁水的电炉2c和用来放置芯包的浇注工位2a,浇注工位2a设置在砂芯缓存库1d左侧,电炉2c前侧和浇注工位2a的后侧之间的过道上设有小车轨道2b,小车轨道2b上可移动地设有自动浇注小车2d,自动浇注小车2d的铁水包可自动浇注到芯包内,电炉2c左侧设有烤包器2e;砂处理区3包括冷却缓存库3c和翻转机械手3a,冷却缓存库3c设置在浇注工位2a的正后方,冷却缓存库3c的正后方设有振动落砂机3b,翻转机械手3a设置在振动落砂机3b的正上方,翻转机械手3a抓取并翻转砂芯26至振动落砂机3b上。
为了实现铸件的精整,精整区4包括从右向左依次排列的粗抛丸室4a、若干个在长度方向上并排设置的精整机器人4b和精抛丸室4c,粗抛丸室4a设置在振动落砂机3b的左侧,精整机器人4b进行铸件的搬运和翻转;为了方便出货,喷漆线5设置在烤包器2e的左侧、精抛丸室4c的后方,喷漆线5设有与外界连通的通道作为出货通道5a。
为了方便砂的传输,还包括废砂缓存库7,清砂站1f上设有回收砂池1g,清砂站1f与浸涂池1h之间设有人工吹砂室1i,人工吹砂室1i用来清理砂芯26表面的浮砂,在长度方向上,3D砂芯打印机1a的同侧并排设置有废砂库14、回收砂库12和再生砂库,回收砂池1g经管道一10与回收砂库12连接,人工吹砂室1i的浮砂存至废砂库14内,废砂库14的砂子经管道二9送至废砂缓存库7内,废砂缓存库7一侧设有热法再生设备8,经振动落砂机3b处理后的落纱存至废砂缓存库7内,废砂缓存库7中的砂子经热法再生设备8再生处理后经管道三16送至再生砂库内,再生砂库和回收砂库12中的砂分别经管道四13和管道五15送至各个3D砂芯打印机1a的进砂口。
为了实现砂芯26的自动抓取、清砂、浸涂和组芯,桁架转运机器人,包括:
支撑组件18,固定于基座上;
横向移动机构23,设置于支撑组件18上,用于沿着支撑组件18水平移动;
水平移动机构24,设置于所述横向移动机构23上,用于沿着横向移动机构23水平移动;
竖直移动机构20,设置于水平移动机构24上,用于在水平移动机构6上沿着竖直方向升降;
夹紧机构19,可转动的设置于竖直移动机构20的底部,所述夹紧机构19用于夹持砂芯26;
水平翻转机构1916,设置于夹紧机构19上,当所述夹紧机构19夹持砂芯26时,翻转机构1916与所述砂芯26接触,所述翻转机构1916用于沿着自身回转中心转动,带动砂芯26翻转。
在本实施例中,为了便于表述,将横向移动机构23的移动方向约定为前后方向,将水平移动机构24的移动方向约定为左右方向,将竖直移动机构20的移动方向约定为上下方向。夹紧机构19通过横向移动机构23实现前后方向移动,通过水平移动机构24实现左右方向移动,通过竖直移动机构20实现上下方向移动,且夹紧机构19可以在竖直移动机构20的底部实现转动,因此,夹紧机构19具有笛卡尔直角坐标系下的空间移动自由度和转动自由度,实现砂芯26的自动化夹持。
其中:
支撑组件18包括:
若干第一立柱1801和若干第二立柱1802,若干第一立柱1801和若干第二立柱1802均沿直线设置在地基上;
支撑座21,分别设置于第一立柱1801和第二立柱1802的顶部;两个支撑座21相互平行且水平设置。
第一导轨2306,设置于所述支撑座21上,所述第一导轨2306与支撑座21平行设置,用于搭载所述横向移动机构23。
横向移动机构23包括:
横向支撑块2303,所述横向支撑块2303的左右两端设置有横向滑动座;所述横向滑动座支撑在所述第一导轨2306上,用于沿着第一导轨2306前后移动;所述横向支撑块2303和所述支撑座21之间传动连接有横向驱动机构。
所述横向驱动机构包括:
第一齿条2305,设置于所述支撑座21相向的一侧,所述第一齿条2305与第一导轨2306平行;
第一驱动电机2302,设置于所述横向滑动座上,所述第一驱动电机2302的输出轴连接有转轴2301,所述转轴2301的左右两侧传动连接有第一齿轮2304;所述第一齿轮2304和第一齿条2305啮合。
当第一驱动电机2302驱动第一齿轮2304转动时,第一齿轮2304与第一齿条2305啮合带动横向支撑块2303沿着支撑组件18的延伸方向移动,第一导轨2306与第一齿条2305平行,第一导轨2306用于提高横向移动机构23移动的平稳性。
其中,所述横向支撑块2303上套装有可沿着横向支撑块2303移动的所述水平移动机构24。
水平移动机构24包括:
设置于横向支撑块2303上的第二导轨2405,所述第二导轨2405水平设置且垂直于所述第一导轨2306,
水平滑动座2404,用于沿着第二导轨2405左右移动;所述水平滑动座2404和所述横向支撑块2303之间传动连接有水平驱动机构,所述水平驱动机构用于驱动所述水平滑动座2404在横向支撑块2303上水平移动。
所述水平驱动机构包括:
第二驱动电机2401,固定设置于所述水平滑动座2404上;
第二齿轮2402,传动连接所述第二驱动电机2401的输出轴;
第二齿条2403,固定于所述横向支撑块2303上,并与所述第二导轨2405的延伸方向平行,所述第二齿轮2402啮合所述第二齿条2403。
所述第二驱动电机2401用于驱动第二齿轮2402转动,当第二齿轮2402转动时,所述第二齿轮2402与第二齿条2403啮合带动水平滑动座2404沿着第二导轨2405移动。
所述水平滑动座2404上设置有所述竖直移动机构20,所述竖直移动机构20包括:
竖直设置的升降柱2004,设置于水平滑动座2404上;
第三导轨2006,竖直设置于升降柱2004上,升降柱2004可以沿着第三导轨2006在所述水平滑动座2404上竖直滑动;
所述升降柱2004和所述水平滑动座2404之间通过竖直驱动机构传动链接。
所述竖直驱动机构包括:
第三驱动电机2001,设置于水平滑动座2404上;
第三齿轮2002,传动连接所述第三驱动电机2001;
第三齿条2003,竖直设置于升降柱2004上,所述第三齿条2003与第三齿轮2002啮合。当第三驱动电机2001驱动第三齿轮2002转动时,第三驱动电机2001与第三齿轮相对固定,第三齿条2003与第三齿轮啮合并竖直方向移动,驱动升降柱2004上下移动。
在所述升降柱2004上设置有第一腔体2005,所述竖直驱动机构设置于所述第一腔体2005内。
所述升降柱2004的底部通过转动座22连接有所述夹紧机构19,所述转动座22传动连接有第四驱动电机25,所述第四驱动电机25用于驱动转动座22绕其回转中心转动,当转动座22转动时,夹紧机构19与转动座22以相同的回转中心同步转动。
夹紧机构19包括:
壳体1901,所述壳体1901的上方通过转动座22连接所述升降柱2004;
两个可独立移动的抓手1902,相对设置于壳体1901的下方,所述抓手1902相向的一面设置有凸出的翻转夹持部1916;
所述壳体1901内设置有第二腔体214,所述第二腔体214内设置有用于驱动所述抓手1902相向或向背移动的夹持驱动机构。
所述夹持驱动机构包括:
第五驱动电机1904,固定设置于所述第二腔体214内,
主动带轮1913,传动连接在所述第五驱动电机1904的输出轴上;
从动带轮1911,通过皮带1912传动连接所述主动带轮1913;
丝杆1915,连接所述从动带轮1911并与所述从动带轮1911同轴,当从动带轮1911转动时与所述从动带轮1911以相同的角速度旋转;
水平传动座1906套装在所述丝杆1915上,所述水平传动座1906的底部固定连接所述抓手1902,当丝杆1915转动时,水平传动座1906在丝杆1915上水平移动,带动抓手1902在丝杆1915的轴向方向直线移动,2个抓手1902相向移动或相背移动,2个抓手202相向移动时,夹紧转动座216将砂芯26夹紧。
所述第二腔体214内还设置有滑轨1907,所述滑轨1907上套装有从动滑动座1905,所述从动滑动座1905的底部固定连接所述抓手1902的顶部。所述滑轨1907与所述丝杆217平行,当抓手1902在丝杆1915的轴向方向直线移动时,所述从动滑动座1905在所述滑轨1907上移动,用于保证所述抓手1902平移的平稳性。
所述翻转夹持部1916用于当夹爪202夹持砂芯26时,与所述砂芯26接触并可驱动所述砂芯26沿水平方向的回转中心翻转。
翻转夹持部1916传动连接有水平翻转机构,包括:
第六驱动电机1910,设置于位于夹爪202上的电机箱1903内;
主动齿轮1909,传动连接在所述第六驱动电机1910的输出轴上;
从动齿轮1917,传动连接所述主动齿轮1909,所述从动齿轮1917的转动轴与所述夹紧转动座216同轴,当从动齿轮1917转动时,夹紧转动座216与所述从动齿轮1917以相同的角速度转动,带动夹紧的砂芯26转动,当砂芯26翻转至一定角度时,第六驱动电机1910停止输出扭矩。
本发明所公开的设备可完成砂芯26的抓取、移动和自动组芯的动作;本发明工作时,3D砂芯打印机1a打印出砂芯26,砂芯26在打印工作箱内,重载移动机器人6从最左侧的3D砂芯打印机1a开始移动,从左往右方向上,各个3D砂芯打印机1a打印后的打印工作箱放置在打印工作箱依次缓存至重载移动机器人6上,重载移动机器人6移动至最右侧的3D砂芯打印机1a时,重载移动机器人6改变行走路线,重载移动机器人6将打印工作箱转运至最右侧3D砂芯打印机1a正后方的工作箱缓存线1e上,打印工作箱在工作箱缓存线1e上进行微波固化和缓存后由重载移动机器人6转运至清砂站1f上,桁架转运机器人对砂芯26进行抓取,桁架转运机器人抓取砂芯26后带动砂芯26依次进行自动清砂、自动浸涂、微波烘干,自动清砂是在清砂站1f上完成,为了吹掉砂芯26表面的浮砂,清砂后的砂芯26转运至人工吹砂室1i内,吹去砂芯26表面的浮砂;自动浸涂是在浸涂池1h内完成,微波烘干通过微波烘干设备1c完成,微波烘干后的砂芯26通过桁架转运机器人在转运托盘上完成自动组芯,为了描述的方便,组芯后的砂芯26称为芯包,芯包置于转运托盘上;桁架转运机器人的工作过程具体的为,打开第一驱动电机2302,第一驱动电机2302带动转 轴2301的转动,转轴2301的转动带动第一齿轮2304的转动,第一齿条2305固定在支撑座21上,第一齿轮2304沿着第一齿条2305运动,第一齿轮2304带动横向支撑块2303做横向直线移动,这里的横向直线移动指的是沿着支撑座21的长度方向移动,当抓手1902在需要抓取的砂芯26在长度方向上正对时,第一驱动电机2302关闭;此时,调节抓手1902机构垂直于长度方向上的水平位置,打开第二驱动电机2401,第二驱动电机2401带动第二齿轮2402的转动,第二齿条2403固连在横向支撑块2303上,第二齿轮2402沿着第二齿条2403滚动,第二齿轮2402带动水平滑动座2404沿着横向支撑块2303的长度方向水平移动,当抓手1902与需要抓取的砂芯26在前后方向的位置对应时,第二驱动电机2401关闭,此时,识别2个抓手1902相对侧面是否正对砂芯26长度方向上的两侧,若不正对,打开第四驱动电机25,第四驱动电机25带动抓手1902的转动,直到2个抓手1902的相对侧面与砂芯26的2个侧面正对,第四驱动电机25关闭;此时,需要识别翻转夹持部1916的中心是否与砂芯26在高度方向上的中心齐平,不对齐时,打开第三驱动电机2001,第三驱动电机2001带动第三齿轮2002的转动,第三齿条2003固定在升降柱2004上,第三驱动电机2001固连在水平滑动座2404上使得第三齿轮2002在高度方向的位置固定不动,第三齿条2003在第三齿轮2002的作用下做上下直线运动,实现翻转夹持部1916的升降,直到翻转夹持部1916与砂芯26的高度方向上的中心基本齐平为止,第三驱动电机2001关闭;此时,需要将砂芯26夹紧,打开第五驱动电机1904,第五驱动电机1904的输出轴带动主动带轮1913的转动,主动带轮1913的转动带动从动带轮1911的转动,从动带轮1911的转动带动丝杆1915的转动,丝杆1915的转动带动水平传动座1906在转轴2301长度方向上的直线移动,水平传动座1906的直线移动带动抓手1902的直线移动,控制第五驱动电机1904的正反转使得2个抓手1902相向移动或相背移动,2个抓手1902相向移动时,翻转夹持部1916将砂芯26夹紧;需要翻转夹紧后的砂芯26时,打开第六驱动电机1910,第六驱动电机1910带动主动齿轮1909的转动,主动齿轮1909的转动带动从动齿轮1917的转动,从动齿轮1917的转动带动翻转夹持部1916的转动,翻转夹持部1916的转动带动砂芯26的转动,当砂芯26翻转至需要的角度时, 第六驱动电机1910关闭;从以上桁架转运机器人的工作过程可以看出,通过桁架转运机器人的设置实现砂芯26在清砂站1f、浸涂池1h和微波烘干设备1c生产时的自动运输,桁架转运机器人完成砂芯26的上下、左右、前后和翻转的动作,松开砂芯26,去抓取另一个砂芯26,完成在组芯线1b上的砂芯26组合,不需要人工搬运砂芯26至对应的工序中进行砂处理,组芯后再由重载移动机器人6将转运托盘转运至熔炼浇注区2,转运托盘也可由桁架转运机器人将其搬运至砂芯缓存库1d上进行缓存,熔炼浇注区2中,重载移动机器人6将转运托盘转运至电炉2c前,自动浇注小车2d转运铁水包至烤包器2e进行烤包,烤包后的铁水包再由自动浇注小车2d转运至电炉2c前,电炉2c熔炼结束后出铁至自动浇注小车2d的铁水包内,自动浇注小车2d将铁水浇注到芯包内,浇注完铁水后的芯包放置在芯包托盘上,重载移动机器人6将芯包托盘转运至砂芯26处理区的冷却缓存库3c进行缓存冷却,当冷却时间达到规定的时间时,重载机器人将芯包托盘转运至振动落砂机3b前,翻转机械手3a翻转芯包托盘使芯包翻转到振动落砂机3b上进行落砂,落砂后的砂子可通过管道先送至废砂缓存库7内,落完砂的芯包为铸件,轻载移动机器人15将装有铸件的托盘转运至粗抛丸室4a,粗抛丸室4a对铸件做完粗抛丸处理后铸件被转运精整机器人4b上进行如去除多余加工余量等精整工作,精整后的铸件被轻载移动机器人15转运至精抛丸室4c内进行精抛丸,精抛丸后的铸件被轻载移动机器人15转运至喷漆线5上进行喷漆、烘干,烘干后的铸件从出货通道5a出货;另外,清砂站1f清理出来的砂子落入回收砂池1g内,人工吹砂室1i内吹下的浮砂经过管道移送至废砂库14内,废砂库14内的砂子经过管道三16移送至废砂缓存库7内,回收砂池1g中的砂子经过管道二9输送至回收砂库12内,废砂缓存库7内的砂子被移送至热法再生设备8中进行砂再生,再生后的再生砂经过管道三16移送至再生砂库内,再生砂库和回收砂库12内的砂子经过管道四13移送至各个3D砂芯打印机1a内继续使用,节约资源;本发明中通过各个工序的排布使得铸造工序有序进行,各个相邻工序的间隔距离短,运输方便,劳动力强度低,提高铸造效率;桁架转运机器人的结构紧凑,使砂芯26自动完成清砂、浸涂、微波烘干和组芯的动作,自动化程度高,进一步提高铸造效率;铸造过程中产生的废砂均被得 到回收利用,各类砂的流转均在管道中输送,避免砂在流通过程中产生的粉尘污染;本发明可应用于工件的铸造工作中。
在本申请的另一种实施例中:
如图2-图15所示,成型区1包括桁架转运机器人系统和若干个在长度方向上并排设置的3D砂芯打印机1a,3D砂芯打印机1a打印出砂芯26;桁架转运机器人系统包括桁架转运机器人,桁架转运机器人下方从左往右依次设有工作箱缓存线1k、清砂站1f、浸涂池1h、微波烘干设备1c和砂芯立体库1j,桁架机器人系统设置在3D砂芯打印机1a的前方;熔炼浇注区2在左右方向上紧靠砂芯立体库1j,熔炼浇注区2、砂处理区3和精整区4在长度方向上依次并排设置且均设置在桁架转运机器人系统的前方。
熔炼浇注区2进行铁水的熔炼,熔炼后的铁水浇注在经成型区1处理后的砂芯内形成芯包,具体的,熔炼浇注区2包括自动加配料的加配料系统2f,加配料系统2f的正后方设有电炉2c,远离砂处理区3的电炉2c一侧在左右方向上依次设置有喂丝球化处理站2h和烤包器2e,烤包器2e、喂丝球化处理站2h和电炉2c的正后侧设有可在烤包器2e和电炉2c间自由移动的自动浇注小车2d,自动浇注小车2d可自动浇注铁水包。
砂处理区3对芯包进行落砂处理并对铸件进行浇冒口去除的处理,具体的,砂处理区3包括冷却缓存库3c和翻转机械手3a,冷却缓存库3c一侧相对电炉2c设置,冷却缓存库3c另一侧设有振动落砂机3b,翻转机械手3a设置在振动落砂机3b的正上方,翻转机械手3a抓取并翻转砂芯26至振动落砂机3b上,远离冷却缓存库3c的振动落砂机3b一侧设有用来去除铸件浇冒口的抓件机械手,冷却缓存库3c、翻转机械手3a、振动落砂机3b及抓件机械手并排设置,冷却缓存库3c的后方设有热法再生设备3e。
精整区4对去除浇冒口后的铸件依次进行时效、抛丸和喷漆处理;具体的,精整区4包括至少一个并排设置的时效窑4d,在左右方向上,一个时效窑4d相对抓件机械手设置,远离抓件机械手的时效窑4d一侧设有环链抛丸室4f,环链抛丸室4f另一侧设有铸件缓存库,时效窑4d的后侧设有精整房4g,在左右方向上,远离时效窑4d的精整房4g一侧设有环链喷漆线4h,轻载移动机器人7设置在时效窑4d和环链喷漆线4h之间形成的行走区域内。
另外,在左右方向上,远离微波烘干设备1c的砂芯立体库1j一侧设有供能单元51,供能单元51给成型区1、熔炼浇注区2、砂处理区3、精整区4和物流单元供电、供气和监控,供能单元51垂直于成型区1和熔炼浇注区2布置;物流单元包括重载移动机器人6和轻载移动机器人7,重载移动机器人6负责成型区1、熔炼浇注区2以及砂处理区3至精整区4的转运,轻载移动机器人7负责将精整后的铸件转运至精整区4的缓存立体库4d进行存储。
为了提高轻载移动机器人7转运的方便性,环链抛丸室4f的上件处和下件处均相对环链喷漆线4h的上件处设置,环链喷漆线4h的上件处与环链喷漆线4h的下件处在前后方向上同侧设置。
本实施例具有与另一实施例中图4-15所示的相同的桁架转运机器人;本实施例工作时,3D砂芯打印机1a打印出砂芯26,砂芯26在打印工作箱内,打印工作箱由重载移动机器人6转运至工作箱缓存线1k,打印工作箱在工作箱缓存线1k上进行微波固化和缓存后由重载移动机器人6转运至清砂站1f上,桁架转运机器人对砂芯26进行抓取,桁架机器人抓取砂芯26后带动砂芯26依次进行自动清砂、自动浸涂、微波烘干,自动清砂是在清砂站1f上完成,自动浸涂是在浸涂池1h内完成,微波烘干通过微波烘干设备1c完成,微波烘干后的砂芯26通过桁架转运机器人在转运托盘上完成自动组芯,为了描述的方便,组芯后的砂芯26称为芯包,芯包置于转运托盘上;桁架转运机器人的工作过程具体的为,打开第一驱动电机2302,第一驱动电机2302带动转轴2301的转动,转轴2301的转动带动第一齿轮2304的转动,第一齿条2305固定在支撑座21上,第一齿轮2304沿着第一齿条2305运动,第一齿轮2304带动横向支撑块2303做横向直线移动,这里的横向直线移动指的是沿着支撑座21的长度方向移动,当抓手1902在需要抓取的砂芯26在长度方向上正对时,第一驱动电机2302关闭;此时,调节抓手1902机构垂直于长度方向上的水平位置,打开第二驱动电机2401,第二驱动电机2401带动第二齿轮2402的转动第二齿条2403固连在横向支撑块2303上,第二齿轮2402沿着第二齿条2403滚动,第二齿轮2402带动水平滑动座2404沿着横向支撑块2303的长度方向水平移动,当抓手1902与需要抓取的砂芯26在前后方向的位置对应时,第二驱动电 机2401关闭,此时,识别2个抓手1902相对侧面是否正对砂芯26长度方向上的两侧,若不正对,打开第四驱动电机25,第四驱动电机25带动抓手1902的转动,直到2个抓手1902的相对侧面与砂芯26的2个侧面正对,第四驱动电机25关闭;此时,需要识别翻转夹持部1916的中心是否与砂芯26在高度方向上的中心齐平,不对齐时,打开第三驱动电机2001,第三驱动电机2001带动第三齿轮2002的转动,第三齿条2003固定在升降柱2004上,第三驱动电机2001固连在水平滑动座2404上使得第三齿轮2002在高度方向的位置固定不动,第三齿条2003在第三齿轮2002的作用下做上下直线运动,实现夹紧转动座1916的升降,直到夹紧转动座1916与砂芯26的高度方向上的中心基本齐平为止,第三驱动电机2001关闭;此时,需要将砂芯26夹紧,打开第五驱动电机1904,第五驱动电机1904的输出轴带动主动带轮1913的转动,主动带轮1913的转动带动从动带轮1911的转动,从动带轮1911的转动带动丝杆1915的转动,丝杆1915的转动带动水平传动座1906在转轴2301长度方向上的直线移动,水平传动座1906的直线移动带动抓手1902的直线移动,控制第五驱动电机1904的正反转使得2个抓手1902相向移动或相背移动,2个抓手902相向移动时,夹紧转动座1916将砂芯26夹紧;需要翻转夹紧后的砂芯26时,打开第六驱动电机1910,第六驱动电机1910带动主动齿轮1909的转动,主动齿轮1909的转动带动从动齿轮1917的转动,从动齿轮1917的转动带动夹紧转动座1916的转动,夹紧转动座1916的转动带动砂芯26的转动,当砂芯26翻转至需要的角度时,第六驱动电机1910关闭;从以上桁架转运机器人的工作过程可以看出,通过桁架转运机器人的设置实现砂芯26在清砂站1f、浸涂池1h和微波烘干设备1c生产时的自动运输,桁架转运机器人完成砂芯26的上下、左右、前后和翻转的动作,松开砂芯26,去抓取另一个砂芯26,完成在转运托盘上的砂芯26组合,不需要人工搬运砂芯26至对应的工序中进行砂处理,组芯后再由重载移动机器人6将转运托盘转运至熔炼浇注区2,转运托盘也可由桁架机器人将其搬运至砂芯26立体库1f上进行缓存,熔炼浇注区2中,重载移动机器人6将转运托盘转运至电炉2c前,自动浇注小车2d转运铁水包至烤包器2e进行烤包,烤包后的铁水包再由自动浇注小车2d转运至电炉2c前,加配料系统2f按照排产计划和工 艺要求自动加配料,电炉2c对配料进行全自动熔炼,电炉2c熔炼结束后出铁至自动浇注小车2d的铁水包内,自动浇注小车2d将铁水浇注到芯包内,芯包放置在芯包托盘上,重载移动机器人6将芯包托盘转运至砂芯26处理区的冷却缓存库3c进行缓存冷却,当冷却时间达到规定的时间时,重载机器人将芯包托盘转运至振动落砂机3b前,翻转机械手3a翻转芯包托盘使芯包翻转到振动落砂机3b上进行落砂,落砂后的砂子可通过管道送至热法再生设备3e中进行砂再生,再生后的再生砂同样可经过管道送3D砂芯打印机1a内继续使用,节约资源,落完砂的芯包为铸件,抓件机械手抓取铸件上的浇冒口,浇冒口去除后的铸件放置在时效托盘4b上,重载移动机器人6将时效托盘4b转运至时效窑4d,时效窑4d对铸件做完时效处理后铸件被转运至环链抛丸室4f进行抛丸处理,抛丸处理结束的铸件被轻载移动机器人7转运至精整房4g内进行精整,精整后的铸件被轻载移动机器人7转运至环链喷漆线4h的上件处上件,环链喷漆线4h对铸件进行压缩空气的气枪表面灰尘清理、喷漆和烘干动作后下件,轻载移动机器人7将环链喷漆线4h的下件端的铸件转运至缓存立体库4d内进行存储;另外,供能单元51可给铸造系统供能、供气并监控各个区的运行情况;本发明中通过各个工序的排布使得铸造工序有序进行,各个相邻工序的间隔距离短,运输方便,劳动力强度低,提高铸造效率;桁架转运机器人的结构紧凑,使砂芯26自动完成清砂、浸涂、微波烘干和组芯的动作,自动化程度高,进一步提高铸造效率;本发明可应用于工件的铸造工作中。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (17)

  1. 一种智能铸造系统,其特征在于,包括成型区、熔炼浇注区、砂处理区、精整区和物流单元,所述成型区包括桁架机器人系统和若干个在长度方向上并排设置的3D砂芯打印机,所述3D砂芯打印机用于打印出砂芯;所述桁架机器人用于进行砂芯的抓取、移动和组芯,所述熔炼浇注区用于进行铁水的熔炼,熔炼后的铁水浇注在经成型区组芯后的芯包内,所述砂处理区用于对浇注后的芯包进行落砂处理并对铸件进行浇冒口去除的处理;所述精整区用于对去除浇冒口后的铸件进行表面处理;所述物流单元所述物流单元包括重载移动机器人和轻载移动机器人,重载移动机器人负责成型区、熔炼浇注区以及砂处理区至精整区的转运,轻载移动机器人负责打箱后的铸件搬运。
  2. 根据权利要求1所述的一种智能铸造系统,其特征在于,所述桁架机器人下方从左往右依次设有工作箱缓存线、清砂站、浸涂池、微波烘干设备和砂芯立体库,所述桁架机器人系统设置在3D砂芯打印机的前方;所述熔炼浇注区在左右方向上紧靠砂芯立体库,所述熔炼浇注区、砂处理区和精整区在长度方向上依次并排设置且均设置在桁架机器人系统的前方。
  3. 根据权利要求2所述的一种智能铸造系统,其特征在于,在左右方向上,远离微波烘干设备的砂芯立体库一侧设有供能单元,所述供能单元给成型区、熔炼浇注区、砂处理区、精整区和物流单元供电、供气和监控,供能单元垂直于成型区和熔炼浇注区布置。
  4. 根据权利要求1所述的智能铸造系统,其特征在于,所述熔炼浇注区包括自动加配料的加配料系统,加配料系统的正后方设有电炉,远离砂处理区的电炉一侧在左右方向上依次设置有喂丝球化处理站和烤包器,烤包器、喂丝球化处理站和电炉的正后侧设有可在烤包器和电炉间自由移动的自动浇注小车,自动浇注小车可自动浇注铁水包。
  5. 根据权利要求1所述的一种智能铸造系统,其特征在于,所述砂处理区包括冷却缓存库和翻转机械手,所述冷却缓存库一侧相对电炉设置,冷却缓存库另一侧设有振动落砂机,所述翻转机械手设置在振动落砂机的 正上方,翻转机械手抓取并翻转砂芯至振动落砂机上,远离冷却缓存库的振动落砂机一侧设有用来去除铸件浇冒口的抓件机械手,所述冷却缓存库、翻转机械手、振动落砂机及抓件机械手并排设置,冷却缓存库的后方设有热法再生设备。
  6. 根据权利要求1所述的一种智能铸造系统,其特征在于,所述精整区包括至少一个并排设置的时效窑,在左右方向上,一个时效窑相对抓件机械手设置,远离抓件机械手的时效窑一侧设有环链抛丸室,环链抛丸室另一侧设有铸件缓存库,所述时效窑的后侧设有精整房,在左右方向上,远离时效窑的精整房一侧设有环链喷漆线,所述轻载移动机器人设置在时效窑和环链喷漆线之间形成的行走区域内。
  7. 根据权利要求6所述的一种智能铸造系统,其特征在于,所述环链抛丸室的上件处和下件处均相对环链喷漆线的上件处设置,环链喷漆线的上件处与环链喷漆线的下件处在前后方向上同侧设置。
  8. 根据权利要求1所述的一种智能铸造系统,其特征在于,所述熔炼浇注区包括用来炼铁水的电炉和用来放置芯包的浇注工位,所述浇注工位设置在砂芯缓存库左侧,所述电炉前侧和浇注工位的后侧之间的过道上设有小车轨道,所述小车轨道上可移动地设有自动浇注小车,所述自动浇注小车的铁水包可自动浇注到芯包内,电炉左侧设有烤包器;所述砂处理区包括冷却缓存库和翻转机械手,所述冷却缓存库设置在浇注工位的正后方,冷却缓存库的正后方设有振动落砂机,所述翻转机械手设置在振动落砂机的正上方,翻转机械手抓取并翻转砂芯至振动落砂机上。
  9. 根据权利要求1所述的铸造系统,其特征在于,所述精整区包括从右向左依次排列的粗抛丸室、若干个在长度方向上并排设置的精整机器人和精抛丸室,所述粗抛丸室设置在振动落砂机的左侧,所述精整机器人进行铸件的搬运和翻转;喷漆线设置在烤包器的左侧、精抛丸室的后方,喷漆线设有与外界连通的通道作为出货通道。
  10. 根据权利要求2所述的智能铸造系统,其特征在于,还包括废砂缓存库,所述清砂站上设有回收砂池,清砂站与浸涂池之间设有人工吹砂室,人工吹砂室用来清理砂芯表面的浮砂,在长度方向上,所述3D砂芯打印机的同侧并排设置有废砂库、回收砂库和再生砂库,所述回收砂池经 管道一与回收砂库连接,所述人工吹砂室的浮砂存至废砂库内,所述废砂库的砂子经管道二送至废砂缓存库内,所述废砂缓存库一侧设有热法再生设备,经振动落砂机处理后的落纱存至废砂缓存库内,废砂缓存库中的砂子经热法再生设备再生处理后经管道三送至再生砂库内,所述再生砂库和回收砂库中的砂分别经管道四和管道五送至各个3D砂芯打印机的进砂口。
  11. 根据权利要求1-10任一项所述的智能铸造系统,其特征在于,所述桁架转运机器人包括:横向移动机构和支撑组件,所述横向移动机构设置在所述支撑组件上,所述横向移动机构上设置有水平移动机构,所述水平移动机构上设置有竖直移动机构,所述竖直移动机构上设置有可沿竖直方向转动的夹紧机构,所述夹紧机构用于夹持砂芯;所述夹紧机构上还设置有翻转夹持部,所述翻转夹持部用于夹持砂芯并使所述砂芯沿水平方向翻转;
    所述支撑组件包括若干固定于地基上的第一立柱和第二立柱,所述第一立柱和所述第二立柱设置于地基上,若干所述第一立柱和若干所述第二立柱分别固定有相互平行的支撑座;
    所述横向移动机构包括:
    横向支撑块,所述横向支撑块的两端分别设置有横向滑动座,所述横向滑动座可滑动的设置于所述支撑座上。
  12. 根据权利要求11所述的智能铸造系统,其特征在于,所述横向移动机构还包括:
    第一导轨,设置于支撑座上相向的一侧;所述横向滑动座滑动设置于所述第一导轨上;
    所述支撑座和所述横向滑动座之间传动连接有横向驱动机构;
    所述横向驱动机构包括:
    第一驱动电机,设置于所述横向支撑块的一侧,所述第一驱动电机传动连接有转轴,所述转轴支撑在所述横向滑动座上;
    第一齿轮,传动设置于所述转轴的两侧;
    第一齿条,沿着所述支撑座的长度方向设置于所述支撑座上,并与所述第一齿轮啮合。
  13. 根据权利要求11所述的智能铸造系统,其特征在于,所述水平移 动机构包括:
    设置于所述横向支撑块上的第二导轨;
    滑动连接所述第二导轨的水平滑动座,所述水平滑动座具有沿着第二导轨移动的自由度;
    所述第二导轨水平设置且与所述第一导轨垂直;
    所述横向支撑块和所述水平滑动座之间传动连接有水平驱动机构;
    所述水平驱动机构包括:
    第二齿条,设置于横向支撑块的一侧,所述第二齿条沿着水平滑动座的滑动方向设置;
    第二驱动电机,设置于水平滑动座的一侧,第二驱动电机的输出轴传动连接有第二齿轮;所述第二齿轮与第二齿条传动连接。
  14. 根据权利要求11所述智能铸造系统,其特征在于,所述竖直移动机构包括:
    竖直设置的升降柱,所述升降柱可滑动的连接于所述水平滑动座上;
    第三导轨,竖直设置于所述升降柱上,所述升降柱用于沿着第三导轨在所述水平滑动座上竖直滑动;
    所述升降柱和所述水平滑动座之间传动连接有升降驱动机构;
    所述升降驱动机构包括:
    设置于水平滑动座上的第三驱动电机;
    传动连接所述第三驱动电机的第三齿轮;
    设置于所述升降柱上的第三齿条,所述第三齿条与所述第三齿轮啮合。
  15. 根据权利要求14所述的智能铸造系统,其特征在于,所述升降柱的底部通过转动座连接所述夹紧机构;所述转动座包括:
    所述转动座传动连接有第四驱动电机,所述第四驱动电机用于驱动转动座绕其回转中心转动。
  16. 根据权利要求11所述智能铸造系统,其特征在于,所述夹紧机构包括:
    壳体,所述壳体的上方通过转动座连接所述升降柱;
    两个可独立移动的抓手,所述抓手传动连接有夹持驱动机构;
    所述抓手相向的一侧设置有所述翻转夹持部,所述翻转夹持部凸出于 所述抓手相向一侧的表面;
    所述夹持驱动机构包括:
    第五驱动电机,固定设置于所述第二腔体内,
    主动带轮,传动连接在第五驱动电机的输出轴上;
    从动带轮,通过皮带传动连接所述主动带轮;
    丝杆,连接所述从动带轮并与所述从动带轮同轴,当从动带轮转动时与所述从动带轮以相同的角速度旋转;
    水平传动座套装在所述丝杆上,所述水平传动座的底部固定连接所述抓手。
  17. 根据权利要求11所述的一种智能铸造系统,其特征在于,所述翻转夹持部传动连接有水平翻转机构,包括:
    第六驱动电机,设置于位于夹爪上的电机箱内;
    主动齿轮,传动连接在所述第六驱动电机的输出轴上;
    从动齿轮,传动连接所述主动齿轮,所述从动齿轮的转动轴与所述翻转夹持部固定连接。
PCT/CN2018/103402 2017-08-31 2018-08-31 智能铸造系统 WO2019042382A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710770722.9 2017-08-31
CN201710770311.X 2017-08-31
CN201710770722.9A CN107570695B (zh) 2017-08-31 2017-08-31 一种智能铸造系统
CN201710770311.XA CN107774976B (zh) 2017-08-31 2017-08-31 铸造系统

Publications (1)

Publication Number Publication Date
WO2019042382A1 true WO2019042382A1 (zh) 2019-03-07

Family

ID=65526214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103402 WO2019042382A1 (zh) 2017-08-31 2018-08-31 智能铸造系统

Country Status (1)

Country Link
WO (1) WO2019042382A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11858034B2 (en) 2020-03-11 2024-01-02 Jiangxi Nerin Equipment Co., Ltd. Casting and outputting system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101511507A (zh) * 2006-09-25 2009-08-19 爱信高丘株式会社 铸造品生产线装置
JP2010172955A (ja) * 2009-02-02 2010-08-12 Sintokogio Ltd 造型・鋳造ライン設備
CN102438775A (zh) * 2009-05-01 2012-05-02 I’Tecfm株式会社 铸件制品的制造方法及制造工厂
CN203541516U (zh) * 2013-10-30 2014-04-16 南车长江车辆有限公司 货车摇枕侧架冷却清理系统
CN204672953U (zh) * 2015-04-02 2015-09-30 宁夏共享模具有限公司 基于3d打印的铸造生产线
CN206367848U (zh) * 2016-12-29 2017-08-01 金石机器人常州股份有限公司 可搬运整摞轮胎的桁架机器人
CN206383269U (zh) * 2016-12-07 2017-08-08 烟台中科蓝德数控技术有限公司 一种适用于高速铁路无砟轨道板预埋套管自动安装机器人
DE102016201824A1 (de) * 2016-02-08 2017-08-10 Volkswagen Aktiengesellschaft Formenstrang-Gießanlage mit 3D-Drucker und Verfahren zur Serienfertigung von Gussteilen
CN107570695A (zh) * 2017-08-31 2018-01-12 宁夏共享模具有限公司 一种智能铸造系统
CN107774976A (zh) * 2017-08-31 2018-03-09 宁夏共享模具有限公司 铸造系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101511507A (zh) * 2006-09-25 2009-08-19 爱信高丘株式会社 铸造品生产线装置
JP2010172955A (ja) * 2009-02-02 2010-08-12 Sintokogio Ltd 造型・鋳造ライン設備
CN102438775A (zh) * 2009-05-01 2012-05-02 I’Tecfm株式会社 铸件制品的制造方法及制造工厂
CN203541516U (zh) * 2013-10-30 2014-04-16 南车长江车辆有限公司 货车摇枕侧架冷却清理系统
CN204672953U (zh) * 2015-04-02 2015-09-30 宁夏共享模具有限公司 基于3d打印的铸造生产线
DE102016201824A1 (de) * 2016-02-08 2017-08-10 Volkswagen Aktiengesellschaft Formenstrang-Gießanlage mit 3D-Drucker und Verfahren zur Serienfertigung von Gussteilen
CN206383269U (zh) * 2016-12-07 2017-08-08 烟台中科蓝德数控技术有限公司 一种适用于高速铁路无砟轨道板预埋套管自动安装机器人
CN206367848U (zh) * 2016-12-29 2017-08-01 金石机器人常州股份有限公司 可搬运整摞轮胎的桁架机器人
CN107570695A (zh) * 2017-08-31 2018-01-12 宁夏共享模具有限公司 一种智能铸造系统
CN107774976A (zh) * 2017-08-31 2018-03-09 宁夏共享模具有限公司 铸造系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11858034B2 (en) 2020-03-11 2024-01-02 Jiangxi Nerin Equipment Co., Ltd. Casting and outputting system

Similar Documents

Publication Publication Date Title
CN107774976B (zh) 铸造系统
CN107570695B (zh) 一种智能铸造系统
US10722942B2 (en) Multi-arm hanging rail type casting cleaning robot
CN104190912B (zh) 铸铁件在线自动精整装置及铸铁件在线自动精整方法
WO2014177035A1 (zh) 一种纵向金属板上下料与切割方法及其系统
CN110578155A (zh) 一种稀土冶炼自动生产线及其生产方法
CN109483014B (zh) 一种应用于环保容器喷嘴外表面的自动熔敷设备及方法
CN107639226B (zh) 一种铸件的柔性铸造系统
JPH09216049A (ja) アルミニウム合金鋳造体の製造方法および装置
CN109926574A (zh) 一种离心铸管的自动生产线和生产方式
CN107737915B (zh) 一种铸造成型生产系统
WO2019042382A1 (zh) 智能铸造系统
US4186793A (en) Automatic line for coated metal mould casting
CN210945815U (zh) 一种稀土冶炼生产线
CN204097001U (zh) 用于铸铁件精整装置的输送线的升降台及铸铁件精整装置
CN204209121U (zh) 铸铁件在线自动精整装置
CN108637208A (zh) 一种长铸件的渣包浇口自动去除装置
CN211248200U (zh) 3d打印工作箱装置及3d打印设备
CN208179278U (zh) 一种磨床上下料机械手
GB2569414A (en) Multi-arm hanging rail type casting cleaning robot
CN110861918A (zh) 一种用于耐火滑板砖生产的三轴桁架机械手搬运装置
US453056A (en) Casting-plant
CN219258818U (zh) 一种排气管与模具拆分工装
JPH10323752A (ja) 溶融金属容器用耐火物の交換方法及び溶融金属容器用耐火物の交換装置
CN218190643U (zh) 一种双向鱼竿拉漆机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851382

Country of ref document: EP

Kind code of ref document: A1