WO2019042373A1 - 一种助力车的控制方法及系统 - Google Patents
一种助力车的控制方法及系统 Download PDFInfo
- Publication number
- WO2019042373A1 WO2019042373A1 PCT/CN2018/103327 CN2018103327W WO2019042373A1 WO 2019042373 A1 WO2019042373 A1 WO 2019042373A1 CN 2018103327 W CN2018103327 W CN 2018103327W WO 2019042373 A1 WO2019042373 A1 WO 2019042373A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- torque value
- mcu
- rotating member
- controller
- value
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62M—RIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
- B62M6/00—Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
- B62M6/40—Rider propelled cycles with auxiliary electric motor
- B62M6/45—Control or actuating devices therefor
- B62M6/50—Control or actuating devices therefor characterised by detectors or sensors, or arrangement thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62M—RIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
- B62M6/00—Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
- B62M6/40—Rider propelled cycles with auxiliary electric motor
- B62M6/45—Control or actuating devices therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/20—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
- G01L1/22—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/22—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/22—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
- G01L5/225—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to foot actuated controls, e.g. brake pedals
Definitions
- the invention relates to the field of electric bicycles, in particular to a control method for a bicycle and a control system for the bicycle.
- the electric bicycle is a personal vehicle that not only has the lightness and convenience of the bicycle, but also effectively compensates for the burden of the bicycle uphill, headwind, and load.
- the control technology of the electric bicycle is closely related to the riding experience of the rider, so the control technology of the electric bicycle has research and use value.
- the rear hook sensor To collect the torque value generated by the person stepping on the pedal to realize the power output control of the driving device.
- the rear hook sensor is disposed at the rear end of the bicycle, and the force of the pedaling of the person needs to be transmitted to the sensor through the crank, the sprocket and the chain, and the intermediate passage is excessive, causing the induction torque value to be inaccurate and the test to be delayed.
- the power output control of the bicycle drive device has poor precision, slow response, and reduced rider riding experience.
- the technical problem to be solved by the present invention is to provide a control method for a booster car to improve the control precision and response speed of the booster car.
- the embodiment of the invention also provides a control system for the bicycle, which is used to ensure the implementation and application of the above method.
- an embodiment of the present invention discloses a control method of a bicycle, the assisting vehicle includes a deformation sensor, a rotating member, a fixing member, a controller, and a driving device, and the deformation sensor includes a strain gauge; the control method includes :
- the deformation sensor acquires a resistance change amount of the strain gauge and sends the resistance value to the rotating member; wherein the strain gauge generates a resistance value change in a process of the pedal force of the bicycle;
- the rotating member obtains a stepping torque value according to the resistance value change amount and sends the value to the fixing member;
- the fixing member receives the stepping torque value and sends the value to the controller
- the controller controls the driving device to output an assist force according to the stepping torque value.
- the rotating member includes an A/D converter, a first micro control unit MCU, and a first wireless communication module; and the rotating member obtains a stepping torque value according to the resistance change amount and transmits the value to the fixing member.
- the steps include:
- the A/D converter obtains the resistance change digital signal according to the resistance change amount, and sends the digital signal to the first MCU;
- the first MCU obtains a stepping torque value according to the resistance value digital signal, and sends the stepping torque value to the fixing component by the first wireless communication module.
- the fixing component comprises a second wireless communication module and a second MCU; the step of the fixing component receiving the pedaling torque value and transmitting to the controller comprises:
- the second wireless communication module receives the stepping torque value and sends the value to the second MCU;
- the second MCU receives the stepping torque value and sends it to the controller.
- the communication scheme of the first wireless communication module and the second wireless communication module comprises: 2.4G wireless communication or 868M wireless communication.
- the fixing member further comprises a Hall sensor
- the rotating member further comprises at least one magnetic steel near one side of the fixing member
- the stepping torque value is received by the second MCU and sent to the control Before the device, it also includes:
- the Hall sensor obtains the cadence of the pedal of the assisting vehicle and sends it to the second MCU;
- the second MCU determines a riding state according to the stepping torque value and the cadence frequency, and sends the state to the controller;
- the controller controls the output of the driving device according to the stepping torque value, including:
- the controller controls the driving device to output an assist according to the riding state.
- the riding state includes an uphill state, an acceleration state, a downhill state, and a normal driving state;
- the controller controls the driving device to output the assist according to the riding state, including:
- the controller controls the driving device to increase an output assist when the riding state is an uphill or an accelerated state
- the controller controls the driving device to reduce output assist when the riding state is a downhill state
- the controller controls the driving device to maintain the current output assisting force when the riding state is a normal driving state.
- an embodiment of the present invention further provides a control system for a bicycle, the assisting vehicle includes a deformation sensor, a rotating member, a fixing member, a controller, and a driving device, the deformation sensor includes a strain gauge; and the control system includes:
- the deformation sensor is configured to acquire a resistance change amount of the strain gauge and send the same to the rotating member; wherein the strain gauge generates a resistance value change in a process of the pedal force of the bicycle;
- the rotating member is configured to obtain a stepping torque value according to the resistance value change amount and send the same to the fixing member;
- the fixing member is configured to receive the stepping torque value and send the value to the controller
- the controller is configured to control the output of the driving device according to the stepping torque value.
- the rotating member comprises an A/D converter, a first micro control unit MCU and a first wireless communication module;
- the A/D converter is configured to obtain the resistance change digital signal according to the resistance change amount, and send the digital signal to the first MCU;
- the first MCU is configured to calculate a stepping torque value according to the resistance value digital signal, and send the stepping torque value to the fixing component by using the first wireless communication module.
- the fixing component comprises a second wireless communication module and a second MCU;
- the second wireless communication module is configured to receive the stepping torque value and send the value to the second MCU;
- the second MCU is configured to receive the stepping torque value and send the value to the controller.
- the rotating member further includes a first wireless power supply module, and the first wireless power supply module includes a chip that controls receiving wireless power supply and a receiving coil;
- the fixing component further includes a second wireless power supply module, and the second wireless power supply module includes a chip for controlling wireless power transmission and a transmitting coil;
- the first wireless power supply module provides a working voltage for the rotating component
- the second wireless power supply module provides a working voltage for the first wireless power supply module
- the rotating member further includes a battery power supply unit that supplies an operating voltage to the rotating member.
- the deformation sensor comprises a central shaft, a torsion bar and a claw disk; the torsion bar is provided with the strain gauge; the central shaft is fixedly connected to the claw disk by the torsion bar, the strain gauge Electrically coupled to the rotating member.
- the deformation sensor comprises a claw disk, the claw disk comprises an inner ring, an outer ring and a connecting beam, and the inner ring and the outer ring are connected by at least two connecting beams; the strain gauge Attached to at least one connecting beam, the strain gauge is electrically connected to the rotating member.
- the deformation sensor comprises a crank, and the crank is provided with a strain gauge, and the strain gauge is electrically connected to the rotary member.
- the fixture further includes a peripheral interface for compatibility with the handle and the code table.
- the fixing component further comprises a Bluetooth module, and the Bluetooth module is configured to communicate with the mobile terminal.
- the embodiment of the invention has the following advantages:
- the embodiment of the invention provides a control method for a bicycle, which generates a pedaling moment when the pedal of the bicycle is subjected to a force, and the stepping torque induces deformation of the strain gauge in the deformation sensor to generate a resistance change during the transmission process, and the deformation sensor Obtaining the resistance change amount and sending it to the rotating member; the rotating member calculates the stepping torque value according to the resistance value change amount and sends it to the controller through the fixing member; finally, the controller controls the driving device output assisting force according to the stepping torque value;
- the stepping torque value control power output has the advantages of high precision and fast response, which can improve the rider's riding experience.
- FIG. 1 is a flow chart showing the steps of a method for controlling a bicycle according to an embodiment of the present invention
- FIG. 2 is a flow chart showing the control steps of the rotating member in the control method of the bicycle according to the embodiment of the present invention
- FIG. 3 is a flow chart showing the control steps of the fixing member in the control method of the bicycle according to the embodiment of the present invention.
- FIG. 4 is a flow chart showing control steps of a fixing member in another control method of a bicycle according to an embodiment of the present invention.
- FIG. 5 is a structural block diagram of a control system for a bicycle according to an embodiment of the present invention.
- FIG. 6 is a structural block diagram of a rotating member in a control system of a bicycle according to an embodiment of the present invention.
- FIG. 7 is a structural block diagram of a fixing member in a control system of a bicycle according to an embodiment of the present invention.
- FIG. 8 is a structural block diagram of a wireless power supply module in a rotating member and a fixing member in a control system of a bicycle according to an embodiment of the present invention
- FIG. 9 is a schematic structural view of a first type of deformation sensor in a control system of a bicycle according to an embodiment of the present invention.
- FIG. 10 is a schematic structural view of a first type of deformation sensor in a control system of a bicycle according to an embodiment of the present invention
- FIG. 11 is a structural diagram of a second deformation sensor in a bicycle control system according to an embodiment of the present invention.
- FIG. 12 is a schematic structural view of a third deformation sensor in a bicycle control system according to an embodiment of the present invention.
- connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected or indirectly connected through an intermediate medium. The specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
- FIG. 1 is a flow chart showing the steps of a method for controlling a bicycle according to an embodiment of the present invention.
- the assisting vehicle includes a deformation sensor, a rotating member, a fixing member, a controller and a driving device.
- the deformation sensor includes a strain gauge; and specifically includes the following steps:
- Step 101 The deformation sensor acquires the resistance change amount of the strain gauge and sends it to the rotating member; wherein the strain gauge generates a resistance change during the pedal force of the bicycle.
- the strain gauge of the deformation sensor may be located on the torsion bar connecting the central axis of the bicycle and the claw plate, or may be located on the connecting beam of the power steering claw disk, or may be located on the crank of the moped.
- a pedaling moment is generated.
- the pedaling moment is transmitted through the pedal, the crank, the middle shaft and the claw disk.
- the crank, the torsion bar on the middle shaft and the claw plate connecting beam are deformed, and the strain at the corresponding position is generated.
- the resistance is changed when the sheet senses the deformation.
- the deformation sensor acquires the amount of change in resistance of the strain gauge and sends it to the rotating member.
- Step 102 The rotating member obtains the pedaling torque value according to the resistance change amount and sends it to the fixing member.
- the rotary part of the bicycle can receive the change of the resistance value sent by the deformation sensor through the analog-to-digital converter, and convert it into a corresponding digital signal; and then send the digital value of the resistance change quantity to the MCU of the rotating part (Microcontroller) Unit, micro control unit or other microcomputer, the value of the pedaling torque is calculated by the MCU or other microcomputer; and the value of the pedaling torque is sent to the fixture by wireless communication.
- MCU of the rotating part (Microcontroller) Unit, micro control unit or other microcomputer the value of the pedaling torque is calculated by the MCU or other microcomputer; and the value of the pedaling torque is sent to the fixture by wireless communication.
- Step 103 The fixture receives the pedaling torque value and sends it to the controller.
- the fixing component of the moped can receive the value of the pedaling torque sent by the rotating component through wireless communication; the fixing component can directly send the value of the pedaling torque to the controller, and can also be sent to the moped through the MCU of the fixing component or other microcomputer. Controller.
- Step 104 The controller controls the driving device to output the assist according to the stepping torque value.
- the controller can be placed on the fixture and can be placed separately from the fixture.
- the controller receives the value of the pedaling torque sent by the fixture and controls the linear output of the motor output of the driving device with the stepping torque value.
- the linear relationship between the pedaling torque value and the output assisting force can be preset by trial and error.
- the embodiment of the invention provides a control method for a bicycle, which generates a pedaling moment when the pedal of the bicycle is subjected to a force, and the stepping torque induces deformation of the strain gauge in the deformation sensor to generate a resistance change during the transmission process, and the deformation sensor Obtaining the resistance change amount and sending it to the rotating member; the rotating member calculates the stepping torque value according to the resistance value change amount and sends it to the controller through the fixing member; finally, the controller controls the driving device output assisting force according to the stepping torque value;
- the stepping torque value control power output has the advantages of high precision and fast response, which can improve the rider's riding experience.
- the rotating member may include an A/D (analogue to digital analog-to-digital converter) converter, a first micro control unit MCU, and a first wireless communication module.
- A/D analog to digital analog-to-digital converter
- Step 201 The A/D converter obtains a digital signal of the resistance change amount according to the change amount of the resistance value, and sends the digital signal to the first MCU.
- the A/D converter receives the change amount of the resistance value sent by the deformation sensor in the above step 101, and converts the analog signal into a digital signal, and then sends it to the SPI (Serial Peripheral Interface).
- SPI Serial Peripheral Interface
- Step 202 The first MCU obtains a stepping torque value according to the resistance value digital signal, and sends the pedaling torque value to the fixing component through the first wireless communication module.
- the first MCU obtains the value of the pedaling torque by looking up the table according to the digital signal of the received resistance change amount, and sends the value to the first wireless communication module through the SPI serial peripheral interface, and the first wireless communication module will The value of the pedaling torque is sent to the fixture.
- the first MCU is pre-stored with a table corresponding to the correspondence between the digital signal of the resistance change amount obtained by the trial and the stepping torque value.
- the communication scheme in which the first wireless communication module transmits the pedaling torque value to the fixture may be 2.4G wireless communication or 868M wireless communication.
- the fixing component may include a second wireless communication module and a second MCU.
- the foregoing step 103 may include:
- Step 301 The second wireless communication module receives the stepping torque value and sends the value to the second MCU.
- the second wireless communication module receives the stepping torque value sent by the rotating component in step 102, or the stepping torque value sent by the first wireless communication module in step 202, and sends the value to the first step through the SPI serial peripheral interface.
- the communication scheme between the second wireless communication module and the first wireless communication module of the rotating member may be 2.4G wireless communication or 868M wireless communication.
- Step 302 The second MCU receives the stepping torque value and sends it to the controller.
- the second MCU can send the received stepping torque value to the controller through a UART (Universal Asynchronous Receiver/Transmitter) or 485 communication.
- UART Universal Asynchronous Receiver/Transmitter
- the fixing member may further include a Hall sensor, and the rotating member may further include at least one magnetic steel adjacent to the fixing member; and referring to FIG. 4, the above step 103 may include:
- Step 401 When the magnetic steel of the rotating member is aligned with the Hall sensor, the Hall sensor obtains the cadence of the bicycle pedal and sends it to the second MCU.
- the magnetic steel when the rotating member rotates, the magnetic steel is aligned with the Hall sensor when passing through the Hall sensor; when the magnetic steel is aligned with the Hall sensor, the Hall sensor is calculated by detecting the rotational speed of the magnetic steel.
- the pedal frequency of the bicycle pedal is sent to the second MCU.
- Step 402 The second wireless communication module receives the stepping torque value and sends the value to the second MCU.
- the second wireless communication module receives the stepping torque value sent by the rotating component in step 102, or the stepping torque value sent by the first wireless communication module in step 202, and sends the value to the first step through the SPI serial peripheral interface.
- the communication scheme between the second wireless communication module and the first wireless communication module of the rotating member may be 2.4G wireless communication or 868M wireless communication.
- Step 403 The second MCU determines the riding state according to the pedaling torque value and the cadence frequency and sends the state to the controller.
- the second MCU can determine the riding state of the moped according to the pedaling torque value and the cadence sent by the Hall sensor according to the following rules, for example, reducing the cadence and increasing the pedaling moment, that is, the ascending state; And increase the pedaling moment, that is, the acceleration state; reduce the cadence and reduce the pedaling torque or the zero cadence zero pedaling moment, that is, the downhill state; the cadence and the pedaling torque are relatively stable, that is, the normal driving state.
- the second MCU sends the determined riding state to the controller via UART or 485 communication.
- the step 104 may specifically be: the controller controls the driving device to output the assist according to the riding state.
- the controller may control the motor output assist of the driving device according to the riding state determined by the second MCU, for example, when the riding state is an uphill or acceleration state, the controller controls the driving device to increase. Outputting a boost; the controller controls the driving device to reduce an output assist when the riding state is a downhill state; the controller controls the driving device to remain when the riding state is a normal running state The current output boost is unchanged.
- step 104 the controller continuously obtains the real-time vehicle speed of the moped and compares the real-time vehicle speed with the preset safety vehicle speed; when the real-time vehicle speed is less than the preset safety At the vehicle speed, step 104 is normally performed; when the real-time vehicle speed is greater than or equal to the preset safe vehicle speed, the controller controls the driving device to stop outputting the assisting force.
- FIG. 5 there is shown a structural block diagram of a control system for a bicycle, which includes a deformation sensor 501, a rotating member 502, a fixing member 503, a controller 504, and a driving device 505.
- the deformation sensor 501 includes strain.
- the control system may specifically include:
- the deformation sensor 501 is configured to acquire the resistance change amount of the strain gauge and send it to the rotating member 502; wherein the strain gauge generates a resistance change during the pedaling force of the bicycle.
- the rotating member 502 is configured to obtain a stepping torque value according to the resistance change amount and send it to the fixing member 503;
- the fixing member 503 is configured to receive the pedaling torque value and send it to the controller 504;
- the controller 504 is configured to control the output of the driving device 505 according to the stepping torque value.
- the rotating member 502 may further include an A/D converter 601, a first micro control unit MCU 602, and a first wireless communication module 603;
- the A/D converter 601 is configured to obtain a resistance change digital signal according to the resistance change amount, and send the digital signal to the first MCU 602.
- the first MCU 602 is configured to calculate a stepping torque value according to the resistance change digital signal, and send the stepping torque value to the fixing component 503 by using the first wireless communication module 603.
- the fixing member 503 may include a second wireless communication module 701 and a second MCU 702;
- the second wireless communication module 701 is configured to receive the stepping torque value and send the value to the second MCU 702.
- the second MCU 702 is configured to receive the pedaling torque value and send it to the controller 504.
- the communication scheme between the first wireless communication module 603 and the second wireless communication module 701 may be 2.4G wireless communication or 868M wireless communication.
- the rotating member 502 may further include a first wireless power supply module 801, the first wireless power supply module 801 includes a chip for controlling wireless power reception and a receiving coil; the fixing member 503 may further include The second wireless power supply module 802 includes a chip that controls the wireless power supply and a transmitting coil.
- the first wireless power supply module 801 provides a working voltage for the rotating component, and the second wireless power supply module 802 is the first wireless power supply module. Provide working voltage.
- the wireless power supply technology is adopted for the rotating member, which avoids the disadvantages of system reliability caused by the winding of the line during the rotation process of the wired power supply mode.
- the rotating member 502 may further include a battery powered unit that provides an operating voltage to the rotating member.
- the power supply unit of the rotating component is powered by the battery power supply unit, and the disadvantages of the system reliability caused by the winding of the line during the rotation process of the wired power supply mode are also avoided.
- the deformation sensor 501 may further include a central axis a1, a torsion bar a2, and a claw disk a3; the torsion bar a2 is provided with a strain gauge; and the central axis a1 is passed through the torsion bar.
- the a2 is fixedly coupled to the claw plate a3, and the strain gauge is electrically connected to the rotating member 502.
- the deformation sensor 501 may further include a claw disk including an inner ring b1, an outer ring b2, and a connecting beam b3, and at least two between the inner ring b1 and the outer ring b2.
- the connecting beams b3 are connected; the strain gauges b4 are attached to at least one connecting beam b3, and the strain gauges b4 are electrically connected to the rotating members 502.
- the deformation sensor 501 may further include a crank c1.
- the crank c1 is provided with a strain gauge c2, and the strain gauge c2 is electrically connected to the rotating member 502.
- the fixture 503 can also include a peripheral interface for compatibility with the handle and the code table.
- the fixing member 503 may further include a Bluetooth module for communicating with the mobile terminal.
- the Bluetooth module can be connected to the mobile APP (Application), for example, by connecting with the self-developed mobile APP of the company, and functions such as shifting and switching lights can be realized.
- the description is relatively simple, and the relevant parts can be referred to the description of the method embodiments.
- embodiments of the embodiments of the invention may be provided as a method, apparatus, or computer program product.
- embodiments of the invention may be in the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
- embodiments of the invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
- Embodiments of the invention are described with reference to flowchart illustrations and/or block diagrams of methods, terminal devices (systems), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
- These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing terminal device to produce a machine such that instructions are executed by a processor of a computer or other programmable data processing terminal device
- Means are provided for implementing the functions specified in one or more of the flow or in one or more blocks of the flow chart.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing terminal device to operate in a particular manner, such that instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the instruction device implements the functions specified in one or more blocks of the flow or in a flow or block diagram of the flowchart.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Mechanical Control Devices (AREA)
- Motorcycle And Bicycle Frame (AREA)
Abstract
一种助力车的控制方法及控制系统,助力车包括形变传感器(501)、旋转件(502)、固定件(503)、控制器(504)和驱动装置(505),形变传感器(501)包括应变片;形变传感器(501)获取应变片的阻值变化量并发送给旋转件(502),其中,应变片在助力车的脚踏受力的过程中产生阻值变化;旋转件(502)根据阻值变化量,获得踩踏力矩值并发送给固定件(503);固定件(503)接收踩踏力矩值并发送给控制器(504);控制器(504)根据踩踏力矩值控制驱动装置(505)输出助力;该控制方法具有精度高、响应速度快等优点,可以提高骑行者的骑行体验。
Description
本发明涉及电动助力车领域,特别是涉及一种助力车的控制方法及一种助力车的控制系统。
电动助力车是一种既拥有自行车的轻巧和便捷性,又能够有效弥补自行车上坡、逆风、载物时的负担感的个人交通工具。而电动助力车的控制技术与骑行者的骑行体验密切相关,因此电动助力车的控制技术具有研究和使用价值。
现有的电动助力车控制技术大多是通过后钩爪传感器采集人踩脚踏产生的力矩值,实现对驱动装置的助力输出控制。然而后钩爪传感器设置在自行车后端,人踩脚踏的力量需要经过曲柄、链轮和链条才能传递给此传感器,中间经过的环节过多,造成感应力矩值不精准而且测试会有延迟,导致助力车驱动装置的助力输出控制精度差,响应速度慢,骑行者的骑行体验降低。
因此,目前需要本领域技术人员迫切解决的一个技术问题就是:提供一种助力车的控制方法及系统,以提高助力车的控制精度和响应速度。
发明内容
本发明要解决的技术问题是提供一种助力车的控制方法,以提高助力车的控制精度和响应速度。
本发明实施例还提供了一种助力车的控制系统,用以保证上述方法的实现及应用。
为了解决上述问题,本发明实施例公开了一种助力车的控制方法,所述助力车包括形变传感器、旋转件、固定件、控制器和驱动装置,所述形变传感器包括应变片;所述控制方法包括:
所述形变传感器获取所述应变片的阻值变化量并发送给所述旋转件;其中,所述应变片在所述助力车的脚踏受力的过程中产生阻值变化;
所述旋转件根据所述阻值变化量,获得踩踏力矩值并发送给所述固定件;
所述固定件接收所述踩踏力矩值并发送给所述控制器;
所述控制器根据所述踩踏力矩值控制所述驱动装置输出助力。
优选地,所述旋转件包括A/D转换器、第一微控制单元MCU以及第一无线通信模块;所述旋转件根据所述阻值变化量,获得踩踏力矩值并发送给所述固定件的步骤包括:
所述A/D转换器根据所述阻值变化量,得到所述阻值变化量数字信号,并发送给所述第一MCU;
所述第一MCU根据所述阻值变化量数字信号,得到踩踏力矩值,并通过所述第一无线通信模块将所述踩踏力矩值发送给所述固定件。
优选地,所述固定件包括第二无线通信模块以及第二MCU;所述固定件接收所述踩踏力矩值并发送给所述控制器的步骤包括:
所述第二无线通信模块接收所述踩踏力矩值,并发送给所述第二MCU;
所述第二MCU接收所述踩踏力矩值并发送给所述控制器。
优选地,所述第一无线通信模块和所述第二无线通信模块的通信方案包括:2.4G无线通信或868M无线通信。
优选地,所述固定件还包括霍尔传感器,所述旋转件靠近所述固定件的一侧还包括至少一个磁钢;在所述第二MCU接收所述踩踏力矩值并发送给所述控制器之前,还包括:
当所述旋转件的磁钢与所述霍尔传感器对正时,所述霍尔传感器获得所述助力车脚踏的踏频,并发送给所述第二MCU;
所述第二MCU接收所述踩踏力矩值并发送给所述控制器,包括:
所述第二MCU根据所述踩踏力矩值和所述踏频,确定骑行状态并发送给所述控制器;
所述控制器根据所述踩踏力矩值控制所述驱动装置输出助力,包括:
所述控制器根据所述骑行状态控制所述驱动装置输出助力。
优选地,所述骑行状态包括:上坡状态、加速状态、下坡状态以及正常 行驶状态;
所述控制器根据所述骑行状态控制所述驱动装置输出助力,包括:
当所述骑行状态为上坡或加速状态时,所述控制器控制所述驱动装置增加输出助力;
当所述骑行状态为下坡状态时,所述控制器控制所述驱动装置减少输出助力;
当所述骑行状态为正常行驶状态时,所述控制器控制所述驱动装置保持当前输出助力不变。
相应的,本发明实施例还提供了一种助力车的控制系统,所述助力车包括形变传感器、旋转件、固定件、控制器和驱动装置,所述形变传感器包括应变片;所述控制系统包括:
所述形变传感器,用于获取所述应变片的阻值变化量并发送给所述旋转件;其中,所述应变片在所述助力车的脚踏受力的过程中产生阻值变化;
所述旋转件,用于根据所述阻值变化量,获得踩踏力矩值并发送给所述固定件;
所述固定件,用于接收所述踩踏力矩值并发送给所述控制器;
所述控制器,用于根据所述踩踏力矩值控制所述驱动装置输出助力。
优选地,所述旋转件包括A/D转换器、第一微控制单元MCU以及第一无线通信模块;
所述A/D转换器,用于根据所述阻值变化量,得到所述阻值变化量数字信号,并发送给所述第一MCU;
所述第一MCU,用于根据所述阻值变化量数字信号,计算得到踩踏力矩值,并通过所述第一无线通信模块将所述踩踏力矩值发送给所述固定件。
优选地,所述固定件包括第二无线通信模块以及第二MCU;
所述第二无线通信模块,用于接收所述踩踏力矩值,并发送给所述第二MCU;
所述第二MCU,用于接收所述踩踏力矩值并发送给所述控制器。
优选地,所述旋转件还包括第一无线供电模块,所述第一无线供电模块 包括控制接收无线供电的芯片以及接收线圈;
所述固定件还包括第二无线供电模块,所述第二无线供电模块包括控制发射无线供电的芯片以及发射线圈;
其中所述第一无线供电模块为所述旋转件提供工作电压,所述第二无线供电模块为所述第一无线供电模块提供工作电压。
优选地,所述旋转件还包括电池供电单元,所述电池供电单元为所述旋转件提供工作电压。
优选地,所述形变传感器包括中轴、扭杆以及爪盘;所述扭杆上设置有所述应变片;所述中轴通过所述扭杆与所述爪盘固定连接,所述应变片与所述旋转件电连接。
优选地,所述形变传感器包括爪盘,所述爪盘包括内圈、外圈和连接梁,所述内圈与所述外圈之间通过至少两个所述连接梁连接;所述应变片贴设在至少一根连接梁上,所述应变片与所述旋转件电连接。
优选地,所述形变传感器包括曲柄,所述曲柄上设置有应变片,所述应变片与所述旋转件电连接。
优选地,所述固定件还包括外设接口,所述外设接口用于兼容转把和码表。
优选地,所述固定件还包括蓝牙模块,所述蓝牙模块用于与移动终端通讯。
与背景技术相比,本发明实施例具有以下优点:
本发明实施例提供了一种助力车的控制方法,当助力车的脚踏受力时产生踩踏力矩,踩踏力矩在传输的过程中使形变传感器中的应变片感应到形变进而产生阻值变化,形变传感器获取阻值变化量并发送给旋转件;旋转件根据阻值变化量,计算得到踩踏力矩值并通过固定件发送给控制器;最终由控制器根据踩踏力矩值控制驱动装置输出助力;此方法根据踩踏力矩值控制助力输出具有精度高、响应速度快等优点,可以提高骑行者的骑行体验。
图1是本发明实施例一种助力车控制方法的步骤流程图;
图2是本发明实施例一种助力车控制方法中旋转件的控制步骤流程图;
图3是本发明实施例一种助力车控制方法中固定件的控制步骤流程图;
图4是本发明实施例另一种助力车控制方法中固定件的控制步骤流程图;
图5是本发明实施例一种助力车控制系统的结构框图;
图6是本发明实施例一种助力车控制系统中旋转件的结构框图;
图7是本发明实施例一种助力车控制系统中固定件的结构框图;
图8是本发明实施例一种助力车控制系统中旋转件和固定件中无线供电模块的结构框图;
图9是本发明实施例一种助力车控制系统中第一种形变传感器从第一角度观察的结构示意图;
图10是本发明实施例一种助力车控制系统中第一种形变传感器从第二角度观察的结构示意图;
图11是本发明实施例一种助力车控制系统中第二种形变传感器的结构示图;
图12是本发明实施例一种助力车控制系统中第三种形变传感器的结构示意图。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。以下实施例用于说明本发明,但不用来限制本发明的范围。
在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的机或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是 可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
参照图1示出了本发明实施例一种助力车控制方法的步骤流程图,助力车包括形变传感器、旋转件、固定件、控制器和驱动装置,形变传感器包括应变片;具体可以包括如下步骤:
步骤101:形变传感器获取应变片的阻值变化量并发送给旋转件;其中,应变片在助力车的脚踏受力的过程中产生阻值变化。
在实际应用中,形变传感器的应变片可以位于连接助力车的中轴和爪盘的扭杆上,还可以位于助力车爪盘的连接梁上,还可以位于助力车的曲柄上。当助力车的脚踏受力时产生踩踏力矩,踩踏力矩通过脚踏、曲柄、中轴以及爪盘传输,传输过程中曲柄、中轴上的扭杆以及爪盘连接梁发生形变,相应位置的应变片感应到形变会发生阻值变化。形变传感器获取应变片的阻值变化量并发送给旋转件。
步骤102:旋转件根据阻值变化量,获得踩踏力矩值并发送给固定件。
在实际应用中,助力车的旋转件可以通过模数转换器接收形变传感器发送的阻值变化量,并转换为相应的数字信号;再将该阻值变化量数字信号发送给旋转件的MCU(Microcontroller Unit,微控制单元)或者其它微型计算机,由MCU或者其它微型计算机计算得到踩踏力矩值;再通过无线通信将踩踏力矩值发送给固定件。
步骤103:固定件接收踩踏力矩值并发送给控制器。
在实际应用中,助力车的固定件可以通过无线通信接收旋转件发送的踩踏力矩值;固定件可以将该踩踏力矩值直接发送给控制器,还可以通过固定件的MCU或者其它微型计算机发送给助力车的控制器。
步骤104:控制器根据踩踏力矩值控制驱动装置输出助力。
在实际应用中,控制器可以设置在固定件上,还可以与固定件分开设置。由控制器接收固定件发送的踩踏力矩值,并控制驱动装置的电机输出随踩踏力矩值线性增加的助力,其中踩踏力矩值与输出助力之间的线性关系可以通 过反复试验预先设定。
本发明实施例提供了一种助力车的控制方法,当助力车的脚踏受力时产生踩踏力矩,踩踏力矩在传输的过程中使形变传感器中的应变片感应到形变进而产生阻值变化,形变传感器获取阻值变化量并发送给旋转件;旋转件根据阻值变化量,计算得到踩踏力矩值并通过固定件发送给控制器;最终由控制器根据踩踏力矩值控制驱动装置输出助力;此方法根据踩踏力矩值控制助力输出具有精度高、响应速度快等优点,可以提高骑行者的骑行体验。
在本发明的另一个实施例中,旋转件可以包括A/D(analogue to digital模数转换器)转换器、第一微控制单元MCU以及第一无线通信模块,参照图2,上述步骤102还可以包括:
步骤201:A/D转换器根据阻值变化量,得到阻值变化量数字信号,并发送给第一MCU。
在实际应用中,A/D转换器接收上述步骤101中形变传感器发送的阻值变化量,并将该模拟信号转换为数字信号,再通过SPI(Serial Peripheral Interface,串行外设接口)发送给第一MCU。
步骤202:第一MCU根据阻值变化量数字信号,得到踩踏力矩值,并通过第一无线通信模块将踩踏力矩值发送给固定件。
在实际应用中,第一MCU根据接收到的阻值变化量数字信号,通过查表获得踩踏力矩值,并通过SPI串行外设接口发送给第一无线通信模块,第一无线通信模块再将踩踏力矩值发送给固定件。其中第一MCU中预存储有根据反复试验得到的阻值变化量数字信号与踩踏力矩值之间对应关系的表格。
可选地,第一无线通信模块将踩踏力矩值发送给固定件的通信方案可以是2.4G无线通信或868M无线通信。
在本发明的另一个实施例中,固定件可以包括第二无线通信模块以及第二MCU,参照图3,上述步骤103可以包括:
步骤301:第二无线通信模块接收踩踏力矩值,并发送给第二MCU。
在实际应用中,第二无线通信模块接收上述步骤102中旋转件发送的踩 踏力矩值,或者上述步骤202中第一无线通信模块发送的踩踏力矩值,并通过SPI串行外设接口发送给第二MCU。
可选地,第二无线通信模块与旋转件的第一无线通信模块之间的通信方案可以是2.4G无线通信或868M无线通信。
步骤302:第二MCU接收踩踏力矩值并发送给控制器。
在实际应用中,第二MCU可以将接收到的踩踏力矩值通过UART(Universal Asynchronous Receiver/Transmitter,通用异步收发传输器)或者485通信发送给控制器。
在本发明的另一个实施例中,固定件还可以包括霍尔传感器,旋转件靠近所述固定件的一侧还可以包括至少一个磁钢;参照图4,上述步骤103可以包括:
步骤401:当旋转件的磁钢与霍尔传感器对正时,霍尔传感器获得助力车脚踏的踏频,并发送给第二MCU。
在实际应用中,当旋转件转动时,磁钢在经过霍尔传感器时与霍尔传感器对正;当磁钢与霍尔传感器对正时,霍尔传感器通过检测磁钢的旋转速度,计算得到助力车脚踏的踏频并发送给第二MCU。
步骤402:第二无线通信模块接收踩踏力矩值,并发送给第二MCU。
在实际应用中,第二无线通信模块接收上述步骤102中旋转件发送的踩踏力矩值,或者上述步骤202中第一无线通信模块发送的踩踏力矩值,并通过SPI串行外设接口发送给第二MCU。
可选地,第二无线通信模块与旋转件的第一无线通信模块之间的通信方案可以是2.4G无线通信或868M无线通信。
步骤403:第二MCU根据踩踏力矩值和踏频,确定骑行状态并发送给控制器。
在实际应用中,第二MCU可以根据该踩踏力矩值以及霍尔传感器发送的踏频,按照以下规则确定助力车的骑行状态,例如:降低踏频并提高踩踏力矩即上坡状态;提高踏频并提高踩踏力矩即加速状态;降低踏频并降低踩踏力矩或零踏频零踩踏力矩即下坡状态;踏频和踩踏力矩相对稳定即正常行 驶状态。第二MCU通过UART或者485通信将确定的骑行状态发送给控制器。
在上述实施例执行过程中,当确定了骑行状态并发送给控制器之后,步骤104具体可以是:控制器根据骑行状态控制驱动装置输出助力。
具体地,控制器可以根据上述第二MCU确定的骑行状态控制驱动装置的电机输出助力,例如:当所述骑行状态为上坡或加速状态时,所述控制器控制所述驱动装置增加输出助力;当所述骑行状态为下坡状态时,所述控制器控制所述驱动装置减少输出助力;当所述骑行状态为正常行驶状态时,所述控制器控制所述驱动装置保持当前输出助力不变。
在本发明的一种优选实施例中,在执行步骤104的过程中,控制器持续获取助力车的实时车速,并将实时车速与预设的安全车速作对比判断;当实时车速小于预设的安全车速时,正常执行步骤104;当实时车速大于或等于预设的安全车速时,控制器控制驱动装置停止输出助力。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明实施例并不受所描述的动作顺序的限制,因为依据本发明实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明实施例所必须的。
参照图5,示出了本发明实施例一种助力车的控制系统的结构框图,助力车包括形变传感器501、旋转件502、固定件503、控制器504和驱动装置505,所述形变传感器501包括应变片;该控制系统具体可以包括:
形变传感器501,用于获取应变片的阻值变化量并发送给旋转件502;其中,应变片在助力车的脚踏受力的过程中产生阻值变化。
旋转件502,用于根据阻值变化量,获得踩踏力矩值并发送给固定件503;
固定件503,用于接收踩踏力矩值并发送给控制器504;
控制器504,用于根据踩踏力矩值控制驱动装置505输出助力。
在本发明的另一个实施例中,参照图6,旋转件502还可以包括A/D转 换器601、第一微控制单元MCU 602以及第一无线通信模块603;
A/D转换器601,用于根据阻值变化量,得到阻值变化量数字信号,并发送给第一MCU 602。
第一MCU 602,用于根据阻值变化量数字信号,计算得到踩踏力矩值,并通过第一无线通信模块603将所述踩踏力矩值发送给所述固定件503。
在本发明的另一个实施例中,参照图7,固定件503可以包括第二无线通信模块701以及第二MCU 702;
第二无线通信模块701,用于接收踩踏力矩值,并发送给第二MCU 702。
第二MCU 702,用于接收踩踏力矩值并发送给控制器504。
在本发明的优选实施例中,第一无线通信模块603与第二无线通信模块701之间的通信方案可以是2.4G无线通信或868M无线通信。
在本发明的另一个实施例中,参照图8,旋转件502还可以包括第一无线供电模块801,第一无线供电模块801包括控制接收无线供电的芯片以及接收线圈;固定件503还可以包括第二无线供电模块802,第二无线供电模块802包括控制发射无线供电的芯片以及发射线圈;其中第一无线供电模块801为旋转件提供工作电压,第二无线供电模块802为第一无线供电模块提供工作电压。
本实施例中,对旋转件采用无线供电技术,避免了有线供电方式存在的旋转过程中因线路缠绕而引起的系统可靠性下降等缺点。
在本发明的另一个实施例中,旋转件502还可以包括电池供电单元,所述电池供电单元为所述旋转件提供工作电压。
本实施例中对旋转件采用电池供电单元供电,也可以避免了有线供电方式存在的旋转过程中因线路缠绕而引起的系统可靠性下降等缺点。
在本发明的另一个实施例中,参照图9、图10,形变传感器501还可以包括中轴a1、扭杆a2以及爪盘a3;扭杆a2上设置有应变片;中轴a1通过扭杆a2与爪盘a3固定连接,应变片与旋转件502电连接。
在本发明的另一个实施例中,参照图11,形变传感器501还可以包括爪盘,爪盘包括内圈b1、外圈b2和连接梁b3,内圈b1与外圈b2之间通过至 少两个连接梁b3连接;应变片b4贴设在至少一根连接梁b3上,应变片b4与旋转件502电连接。
在本发明的另一个实施例中,参照图12,形变传感器501还可以包括曲柄c1,曲柄c1上设置有应变片c2,应变片c2与旋转件502电连接。
在本发明的另一个实施例中,固定件503还可以包括外设接口,外设接口用于兼容转把和码表。
在本发明的另一个实施例中,固定件503还可以包括蓝牙模块,蓝牙模块用于与移动终端通讯。
在实际应用中,通过蓝牙模块可以与手机APP(Application,应用)进行连接,例如与本公司自助研发的手机APP进行连接,可实现调档、开关灯等功能。
对于装置实施例而言,由于其部分实施例与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本发明实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本发明实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明实施例是参照根据本发明实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的 指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本发明所提供的一种助力车的控制方法和一种助力车的控制系统,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方 式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (16)
- 一种助力车的控制方法,其特征在于,所述助力车包括形变传感器、旋转件、固定件、控制器和驱动装置,所述形变传感器包括应变片;所述控制方法包括:所述形变传感器获取所述应变片的阻值变化量并发送给所述旋转件;其中,所述应变片在所述助力车的脚踏受力的过程中产生阻值变化;所述旋转件根据所述阻值变化量,获得踩踏力矩值并发送给所述固定件;所述固定件接收所述踩踏力矩值并发送给所述控制器;所述控制器根据所述踩踏力矩值控制所述驱动装置输出助力。
- 根据权利要求1所述的控制方法,其特征在于,所述旋转件包括A/D转换器、第一微控制单元MCU以及第一无线通信模块;所述旋转件根据所述阻值变化量,获得踩踏力矩值并发送给所述固定件的步骤包括:所述A/D转换器根据所述阻值变化量,得到所述阻值变化量数字信号,并发送给所述第一MCU;所述第一MCU根据所述阻值变化量数字信号,得到踩踏力矩值,并通过所述第一无线通信模块将所述踩踏力矩值发送给所述固定件。
- 根据权利要求2所述的控制方法,其特征在于,所述固定件包括第二无线通信模块以及第二MCU;所述固定件接收所述踩踏力矩值并发送给所述控制器的步骤包括:所述第二无线通信模块接收所述踩踏力矩值,并发送给所述第二MCU;所述第二MCU接收所述踩踏力矩值并发送给所述控制器。
- 根据权利要求3所述的控制方法,其特征在于,所述第一无线通信模块和所述第二无线通信模块的通信方案包括:2.4G无线通信或868M无线通信。
- 根据权利要求3所述的控制方法,其特征在于,所述固定件还包括霍尔传感器,所述旋转件靠近所述固定件的一侧还包括至少一个磁钢;在所述第二MCU接收所述踩踏力矩值并发送给所述控制器之前,还包括:当所述旋转件的磁钢与所述霍尔传感器对正时,所述霍尔传感器获得所 述助力车脚踏的踏频,并发送给所述第二MCU;所述第二MCU接收所述踩踏力矩值并发送给所述控制器,包括:所述第二MCU根据所述踩踏力矩值和所述踏频,确定骑行状态并发送给所述控制器;所述控制器根据所述踩踏力矩值控制所述驱动装置输出助力,包括:所述控制器根据所述骑行状态控制所述驱动装置输出助力。
- 根据权利要求5所述的控制方法,其特征在于,所述骑行状态包括:上坡状态、加速状态、下坡状态以及正常行驶状态;所述控制器根据所述骑行状态控制所述驱动装置输出助力,包括:当所述骑行状态为上坡或加速状态时,所述控制器控制所述驱动装置增加输出助力;当所述骑行状态为下坡状态时,所述控制器控制所述驱动装置减少输出助力;当所述骑行状态为正常行驶状态时,所述控制器控制所述驱动装置保持当前输出助力不变。
- 一种助力车的控制系统,其特征在于,所述助力车包括形变传感器、旋转件、固定件、控制器和驱动装置,所述形变传感器包括应变片;所述控制系统包括:所述形变传感器,用于获取所述应变片的阻值变化量并发送给所述旋转件;其中,所述应变片在所述助力车的脚踏受力的过程中产生阻值变化;所述旋转件,用于根据所述阻值变化量,获得踩踏力矩值并发送给所述固定件;所述固定件,用于接收所述踩踏力矩值并发送给所述控制器;所述控制器,用于根据所述踩踏力矩值控制所述驱动装置输出助力。
- 根据权利要求7所述的控制系统,其特征在于,所述旋转件包括A/D转换器、第一微控制单元MCU以及第一无线通信模块;所述A/D转换器,用于根据所述阻值变化量,得到所述阻值变化量数字信号,并发送给所述第一MCU;所述第一MCU,用于根据所述阻值变化量数字信号,计算得到踩踏力矩值,并通过所述第一无线通信模块将所述踩踏力矩值发送给所述固定件。
- 根据权利要求8所述的控制系统,其特征在于,所述固定件包括第二无线通信模块以及第二MCU;所述第二无线通信模块,用于接收所述踩踏力矩值,并发送给所述第二MCU;所述第二MCU,用于接收所述踩踏力矩值并发送给所述控制器。
- 根据权利要求9所述的控制系统,其特征在于,所述旋转件还包括第一无线供电模块,所述第一无线供电模块包括控制接收无线供电的芯片以及接收线圈;所述固定件还包括第二无线供电模块,所述第二无线供电模块包括控制发射无线供电的芯片以及发射线圈;其中所述第一无线供电模块为所述旋转件提供工作电压,所述第二无线供电模块为所述第一无线供电模块提供工作电压。
- 根据权利要求9所述的控制系统,其特征在于,所述旋转件还包括电池供电单元,所述电池供电单元为所述旋转件提供工作电压。
- 根据权利要求7所述的控制系统,其特征在于,所述形变传感器包括中轴、扭杆以及爪盘;所述扭杆上设置有所述应变片;所述中轴通过所述扭杆与所述爪盘固定连接,所述应变片与所述旋转件电连接。
- 根据权利要求7所述的控制系统,其特征在于,所述形变传感器包括爪盘,所述爪盘包括内圈、外圈和连接梁,所述内圈与所述外圈之间通过至少两个所述连接梁连接;所述应变片贴设在至少一根连接梁上,所述应变片与所述旋转件电连接。
- 根据权利要求7所述的控制系统,其特征在于,所述形变传感器包括曲柄,所述曲柄上设置有应变片,所述应变片与所述旋转件电连接。
- 根据权利要求7所述的控制系统,其特征在于,所述固定件还包括外设接口,所述外设接口用于兼容转把和码表。
- 根据权利要求7所述的控制系统,其特征在于,所述固定件还包括 蓝牙模块,所述蓝牙模块用于与移动终端通讯。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710769093.8A CN109421883B (zh) | 2017-08-31 | 2017-08-31 | 一种助力车的控制方法 |
CN201710769093.8 | 2017-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019042373A1 true WO2019042373A1 (zh) | 2019-03-07 |
Family
ID=65505157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/103327 WO2019042373A1 (zh) | 2017-08-31 | 2018-08-30 | 一种助力车的控制方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109421883B (zh) |
WO (1) | WO2019042373A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019123318A1 (de) * | 2019-08-30 | 2021-03-04 | Oechsler Ag | Vorrichtung und Verfahren zum Messen eines Drehmoments an einem Kurbeltrieb eines Fahrrads |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110595655B (zh) * | 2019-10-22 | 2024-10-18 | 广东高标智能科技股份有限公司 | 一种电动助力车扭矩检测装置及电动助力车 |
CN111924037B (zh) * | 2019-12-05 | 2022-04-05 | 南京溧水电子研究所有限公司 | 电动助力自行车爬坡补偿处理方法 |
TWI772136B (zh) * | 2021-08-04 | 2022-07-21 | 楊紫菱 | 用於助力型電動自行車的踩踏狀況感測裝置 |
CN114872823B (zh) * | 2022-05-13 | 2024-08-23 | 中电海康集团有限公司 | 一种助力电踏车控制方法、装置、结构、电子设备及存储介质 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000272575A (ja) * | 1999-03-26 | 2000-10-03 | Sunstar Eng Inc | 電動アシスト自転車 |
CN202728498U (zh) * | 2012-07-04 | 2013-02-13 | 南京东玫和创科技有限公司 | 一种电动自行车无线力矩传感器 |
CN202911903U (zh) * | 2012-09-05 | 2013-05-01 | 苏州科易特自动化科技有限公司 | 电动自行车智能助力控制器 |
EP2842857A1 (en) * | 2013-08-29 | 2015-03-04 | J.D Components Co., Ltd. | Treading force sensing mechanism for electric-assisted bicycle |
CN104709429A (zh) * | 2015-03-20 | 2015-06-17 | 北京轻客智能科技有限责任公司 | 助力自行车的动力控制方法 |
CN106043582A (zh) * | 2016-06-28 | 2016-10-26 | 北京轻客智能科技有限责任公司 | 力矩传感中置电机以及应用此电机的骑行装置 |
US20160362158A1 (en) * | 2015-06-10 | 2016-12-15 | Siral S.R.L. | Transmission for means of transport with torque measurement |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1268517C (zh) * | 2002-03-06 | 2006-08-09 | 李书贤 | 扭力侦测器 |
CN203020503U (zh) * | 2012-12-31 | 2013-06-26 | 中华汽车工业股份有限公司 | 电动自行车扭力传感装置 |
CN103661773B (zh) * | 2013-12-26 | 2016-04-06 | 苏州万佳电器有限公司 | 基于无线力矩检测的中置系统 |
ES2746100T3 (es) * | 2014-08-26 | 2020-03-04 | 4Iiii Innovations Inc | Medidor de energía adhesivamente acoplado para la medición de fuerza, par y potencia |
CN204895747U (zh) * | 2015-04-22 | 2015-12-23 | 苏州赛诺伊电动科技有限公司 | 一种电动助力车中置电机及其力矩检测装置 |
CN205675179U (zh) * | 2016-06-12 | 2016-11-09 | 南京壹佰克智能科技有限公司 | 一种用于电动助力自行车的电机及其智能控制系统 |
CN206327521U (zh) * | 2016-12-05 | 2017-07-14 | 普拖克公司 | 一种电动自行车系统 |
CN107031784A (zh) * | 2017-05-04 | 2017-08-11 | 深圳哥智行科技有限公司 | 自行车的牙盘式力矩传感装置 |
-
2017
- 2017-08-31 CN CN201710769093.8A patent/CN109421883B/zh active Active
-
2018
- 2018-08-30 WO PCT/CN2018/103327 patent/WO2019042373A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000272575A (ja) * | 1999-03-26 | 2000-10-03 | Sunstar Eng Inc | 電動アシスト自転車 |
CN202728498U (zh) * | 2012-07-04 | 2013-02-13 | 南京东玫和创科技有限公司 | 一种电动自行车无线力矩传感器 |
CN202911903U (zh) * | 2012-09-05 | 2013-05-01 | 苏州科易特自动化科技有限公司 | 电动自行车智能助力控制器 |
EP2842857A1 (en) * | 2013-08-29 | 2015-03-04 | J.D Components Co., Ltd. | Treading force sensing mechanism for electric-assisted bicycle |
CN104709429A (zh) * | 2015-03-20 | 2015-06-17 | 北京轻客智能科技有限责任公司 | 助力自行车的动力控制方法 |
US20160362158A1 (en) * | 2015-06-10 | 2016-12-15 | Siral S.R.L. | Transmission for means of transport with torque measurement |
CN106043582A (zh) * | 2016-06-28 | 2016-10-26 | 北京轻客智能科技有限责任公司 | 力矩传感中置电机以及应用此电机的骑行装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019123318A1 (de) * | 2019-08-30 | 2021-03-04 | Oechsler Ag | Vorrichtung und Verfahren zum Messen eines Drehmoments an einem Kurbeltrieb eines Fahrrads |
Also Published As
Publication number | Publication date |
---|---|
CN109421883A (zh) | 2019-03-05 |
CN109421883B (zh) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019042373A1 (zh) | 一种助力车的控制方法及系统 | |
TWI545055B (zh) | A central control system for bicycles | |
CN103863507B (zh) | 驱动单元及电动辅助自行车 | |
WO2018123161A1 (ja) | 電動補助システムおよび電動補助車両 | |
TWI473743B (zh) | Bicycle control device | |
TWI823915B (zh) | 人力驅動車用控制裝置 | |
US11383790B2 (en) | Human-powered vehicle control device | |
JP5450194B2 (ja) | 電動補助自転車 | |
JP2015505282A (ja) | ペダル駆動車両用の補助電動機の制御システム | |
TW201922580A (zh) | 人力驅動車輛用控制裝置 | |
CN108725682B (zh) | 助力车的动力控制系统 | |
US10604210B2 (en) | Human-powered vehicle control device | |
JP2018144780A (ja) | 電動補助車両 | |
TWI831960B (zh) | 人力驅動車用之控制裝置 | |
CN204184541U (zh) | 一种用于电动自行车的导电滑环 | |
US11377166B2 (en) | Human-powered vehicle control device | |
TW553870B (en) | Assist power controller in motor assisted bicycle | |
JP2017159867A (ja) | 電動アシスト自転車及びペダル踏力算出方法 | |
JP3203473U (ja) | トルクギア構造 | |
JP2004243920A (ja) | 電動補助車両の補助力制御装置 | |
JP3810130B2 (ja) | 電動モータ付き乗り物およびその制御方法 | |
JP2019064353A (ja) | 自転車用制御装置 | |
CN210707791U (zh) | 脚踏力感测装置及车辆中置电机系统 | |
WO2020042811A1 (zh) | 一种电动助力自行车中轴力矩传感器 | |
JP2019194061A (ja) | 人力駆動車用制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18851080 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18851080 Country of ref document: EP Kind code of ref document: A1 |