TWI772136B - 用於助力型電動自行車的踩踏狀況感測裝置 - Google Patents

用於助力型電動自行車的踩踏狀況感測裝置 Download PDF

Info

Publication number
TWI772136B
TWI772136B TW110128783A TW110128783A TWI772136B TW I772136 B TWI772136 B TW I772136B TW 110128783 A TW110128783 A TW 110128783A TW 110128783 A TW110128783 A TW 110128783A TW I772136 B TWI772136 B TW I772136B
Authority
TW
Taiwan
Prior art keywords
force
signal
fixed
conductive
circuit board
Prior art date
Application number
TW110128783A
Other languages
English (en)
Other versions
TW202306832A (zh
Inventor
發明人放棄姓名表示權
Original Assignee
楊紫菱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楊紫菱 filed Critical 楊紫菱
Priority to TW110128783A priority Critical patent/TWI772136B/zh
Priority to CN202210703617.4A priority patent/CN115703526A/zh
Application granted granted Critical
Publication of TWI772136B publication Critical patent/TWI772136B/zh
Publication of TW202306832A publication Critical patent/TW202306832A/zh

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Automatic Cycles, And Cycles In General (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

一種踩踏狀況感測裝置包含:一固定模組,用於固定至一助力型電動自行車的一車架;一前齒盤模組,受一騎乘者踩踏而轉動,並且可轉動地機械連接至固定模組;一力感測器,設置於前齒盤模組上,並偵測騎乘者的踩踏出力狀況而產生一數位信號;以及一固定端處理電路,設置於固定模組,並且可電連接至轉動中的力感測器,對力感測器供電,並接收到對應數位信號所形成的多個轉接產生的脈衝信號,並將此等轉接產生的脈衝信號處理成一輸出信號,使輸出信號可傳送給助力型電動自行車的一控制器來驅動助力型電動自行車。

Description

用於助力型電動自行車的踩踏狀況感測裝置
本發明是有關於一種用於助力型電動自行車的踩踏狀況感測裝置,且特別是有關於一種可感測助力型電動自行車在騎乘中的踏力及踏速(與踏頻相關)的踩踏狀況感測裝置,藉此可控制電動自行車的驅動馬達輸出適當的輔助動力。
自行車是一種交通工具,且兼備健身、輕便、不污染環境的特性,使得自行車工業歷久不衰,尤以先進國家更是開闢自行車專用道予以提倡。自行車的產品發展越來越多樣化,為使自行車作為交通工具,除了輕便特點外,更希望具有快速騎行、省力的功能,故有助力型電動自行車的問世。
助力型電動自行車的傳動系統包含一電動馬達提供輔助動力的來源,可以協助騎乘者行經阻力不易克服的路面,馬達動力與騎乘者的踏力會加成到驅動輪上,驅動助力型電動自行車前進,如此可達到節省體力的目的。
為能配合路面的狀况使馬達調整輸出動力,可在踏力傳遞路徑上設一踏力感測機構,以感測騎乘者施加於踏板上的力量與踏速是否增大,根據感測結果可控制馬達的輸出動力以減輕騎乘者的施力。
雖然有一種習知的功率計使用無線傳輸的方式,有機會可以被使用來傳輸踏力的信號,但因為除了需在轉動件上另外安裝電池以外,無線信號傳輸會有延遲,造成騎乘者的感受不即時,因此,這種功率計並不適合應用在助力型電動自行車中,僅適用於計算運動時所消耗的累積熱量。
另一種扭力感測器設置在自行車的大齒盤中,可以使用多個彈簧配合光柵或磁通偵測相位差來達成,但是需要足夠的彈簧形變才能提供足夠的扭力解析度,但太大的彈簧形變會使得騎乘者會有間歇的踏空感,為避免踏空感,目前市場上此類產品具有踏力解析度不佳的問題。
又另一種感測器安裝在自行車車架的吊耳中,此吊耳中間有個細長的溝貫穿以降低吊耳強度,故當後輪的軸心受到鏈條拉力時可以使吊耳變形並擠壓感測器,偵側擠壓量即可輸出電壓變化量。故,為了搭配此種感測器,必須修改車架的後勾爪,以配合吊耳。此外,以力學角度而言,無論左右腳的施力均透過鏈條傳遞至後輪的軸心,因此可以量測來自雙腳的踏力。然而,鏈條傳遞的力量會與齒比有關,故還要知道目前的齒比才能正確計算出踩踏力,此為其缺失。
又另一種感測器裝設在五通管的軸心,需要複雜的工藝設計。有的技術需要將軸心磁化,或將固定於心軸的鐵環蝕刻,讓心軸受力時產生磁通變化,再藉由兩組感應線圈感測因磁阻變化造成的電流差異,進而推得踏力狀態。此設計工藝生產成本較高;且有的技術只能達成單邊踩踏力量測,造成失真現象,騎乘感覺不佳。
因此,本發明的一個目的是提供一種用於助力型電動自行車的踩踏狀況感測裝置,其不但容易安裝及改裝,更具有即時感測並傳遞踩踏狀況感測信號的特點,藉此可控制驅動馬達輸出適當的輔助動力。
為達上述目的,本發明提供一種踩踏狀況感測裝置,包含:一固定模組,用於固定至一助力型電動自行車的一車架;一前齒盤模組,受一騎乘者踩踏而轉動,並且可轉動地機械連接至固定模組;一力感測器,設置於前齒盤模組上,並偵測騎乘者的踩踏出力狀況而產生一數位信號;以及一固定端處理電路,設置於固定模組,並且可電連接至轉動中的力感測器以接收到對應數位信號所形成的多個轉接產生的脈衝信號,並將此等轉接產生的脈衝信號處理成一輸出信號,使輸出信號可傳送給助力型電動自行車的一控制器來驅動助力型電動自行車。
依據上述實施樣態,此等轉接產生的脈衝信號可以包含一第一脈衝信號、一第二脈衝信號、一第三脈衝信號及一第四脈衝信號。固定端處理電路可以包含:一OR電路,將此等第一至第四脈衝信號作OR處理,以獲得一還原過的數位脈衝信號;一低通濾波器,將此等第一至第四脈衝信號作低通濾波處理,以獲得第一至第四低通濾波信號;以及一MCU,接收並處理還原過的數位脈衝信號及此等第一至第四低通濾波信號,並依據還原過的數位脈衝信號及此等第一至第四低通濾波信號產生輸出信號。
藉由上述實施例的踩踏狀況感測裝置,可以直接反應騎乘者騎乘自行車的踩踏狀況,讓騎乘者的騎乘感受真實且即時,且將類比感測信號放大後產生數位信號利用轉動式接觸的有線連接的方式將數位信號傳輸到固定模組,不但沒有延遲,且數位信號即使因轉動式的有線連接造成短暫的斷路或水氣短路被破壞,也可經由MCU經由信號處理而恢復,可以 真實且即時反應騎乘者的踩踏狀況來輔助驅動電動自行車。另外,由於踩踏狀況感測裝置不是安裝於車架的主軸中,所以安裝維修也相當容易。
為讓本發明的上述內容能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。
A1,A2:機械角度
AX:軸線
S1:類比感測信號
S2:數位信號
S2':還原過的數位脈衝信號
S3:輸出信號
S31:扭力信號
S32:踏頻信號
SC,SC1,SC2:螺絲
SF:轉接產生的脈衝信號
SF1:第一脈衝信號
SF2:第二脈衝信號
SF3:第三脈衝信號
SF4:第四脈衝信號
SL1:第一低通濾波信號
SL2:第二低通濾波信號
SL3:第三低通濾波信號
SL4:第四低通濾波信號
SV:墊圈
V-:負極
V+:正極
10:固定模組
11:第一盤
11A:第一側
11B:第二側
11D:軸承固定座
11H:開孔
11P:外周緣
11R:凸緣
12:固定端電路板
12A:第一側
12B:第二側
12C:導電區塊
12H:開孔
13:導電滾珠
14:導電套筒
15:彈性導電結構
15D,15D1,15D2,15D3,15D4:中圈導電結構
15E:內圈導電結構
15F:外圈導電結構
16:導電彈簧
17:軸承
20:力感測元件
30:前齒盤模組
31:轉接盤
31A:第一側
31C:盤體
31D:施力元件
31D1:第一部分
31D2:第二部分
31D3:孔
31D4:內縮區
31D5:第一間隙
31D6:第二間隙
31D7:孔
31D8:第三部分
31D9:圓環
31D10:孔
31D11:缺口
31D12:圓形開口
31D13:攻牙螺絲孔
31E:抗力元件
31G:長孔
31I:貫孔
31J:貫孔
31L:長孔
32:第二盤
32C:空間
32H:耳部
32P:內周緣
33:轉動端電路板
33A:第一側
33B:第二側
33C:導電結構
33D:中圈導電線路
33E:內圈導電線路
33F:外圈導電線路
50:力感測器
60:轉動端處理電路
61:信號放大電路
62:MCU
70:固定端處理電路
71:低通濾波器
72:OR電路
73:MCU
100:踩踏狀況感測裝置
200:助力型電動自行車
210:車架
220:控制器
230:齒盤
240:曲柄
241:固定爪
250:驅動馬達
〔圖1A〕顯示依據本發明較佳實施例的用於助力型電動自行車的踩踏狀況感測裝置的方塊圖。
〔圖1B〕顯示〔圖1A〕的固定端處理電路的工作示意圖。
〔圖2〕顯示多個脈衝信號的時序圖。
〔圖3〕顯示〔圖1A〕的踩踏狀況感測裝置的側面分解示意圖。
〔圖4〕顯示踩踏狀況感測裝置的爆炸示意圖。
〔圖5〕顯示踩踏狀況感測裝置的組合示意圖。
〔圖6A〕顯示〔圖5〕的驅動機構模組的立體圖。
〔圖6B〕顯示〔圖6A〕的被驅動機構模組的施力元件的局部剖面圖。
〔圖6C〕顯示〔圖5〕的被驅動機構模組的立體圖。
〔圖6D〕顯示〔圖5〕的固定模組的立體圖。
〔圖7〕顯示第一盤的前視圖。
〔圖8〕顯示轉動端電路板的前視圖。
〔圖9〕顯示踩踏狀況感測裝置的另一例子的爆炸示意圖。
〔圖10〕與〔圖11〕顯示〔圖9〕的踩踏狀況感測裝置的局部立體圖。
本發明主要是利用量測自行車上的轉動模組或轉動結構上的受力狀態,直接反應騎乘者騎乘自行車的踩踏狀況,讓騎乘者的騎乘感受不受到影響,且將類比感測信號放大後產生數位信號利用轉動式接觸的有線連接的方式將數位信號傳輸到固定模組,讓固定模組接收多個脈衝信號作處理而產生輸出信號,來給電動自行車的控制器驅動電動自行車前進,不但沒有延遲,且可以真實且即時反應騎乘者的踩踏狀況來輔助驅動電動自行車。
圖1A顯示依據本發明較佳實施例的用於助力型電動自行車的踩踏狀況感測裝置的方塊圖。圖1B顯示圖1A的固定端處理電路的工作示意圖。圖2顯示多個脈衝信號的時序圖。如圖1A、圖1B與圖2所示,本實施例提供一種踩踏狀況感測裝置100,用於一助力型電動自行車200,其包含一控制器220及一驅動馬達250。踩踏狀況感測裝置100包含一固定模組10、一前齒盤模組30與一力感測器50(後兩者都屬於轉動端)以及一固定端處理電路70。踩踏狀況感測裝置100感測騎乘者的踩踏出力狀況,而產生一輸出信號S3。驅動馬達250電連接至控制器220。控制器220依據輸出信號S3而以對應的扭力及對應的踏頻來驅動驅動馬達250。
固定模組10用於固定至助力型電動自行車200的一車架210。前齒盤模組30受一騎乘者踩踏而轉動(例如是繞著軸線AX轉動),並且可轉動地機械連接至固定模組10。力感測器50設置於前齒盤模組30上,並偵測騎乘者的踩踏狀況而產生一數位信號S2。固定端處理電路70設置於固定模組10上,並且可電連接至轉動中的力感測器50,由於是採用可轉動的電連接方式,使得固定端處理電路70得以接收到轉動端的對應數位信號S2所形成的多個轉接產生的脈衝信號SF,並將轉接產生的脈衝信號SF處 理成輸出信號S3。輸出信號S3用於傳送給控制器220來驅動助力型電動自行車200行進。於本實施例中,力感測器50包含一力感測元件20及一轉動端處理電路60。轉動端處理電路60包含一信號放大電路61及一微控制單元(Microcontroller Unit,MCU)62,信號放大電路61電連接至力感測元件20,並依據力感測元件20的性質變化產生一類比感測信號S1,譬如,力感測元件20為應變規,其受力時會變形而使電阻值改變,通過信號放大電路61來讀取並進行放大處理,可以產生類比感測信號S1,MCU62電連接至信號放大電路61,並將類比感測信號S1進行編碼處理成數位信號S2,譬如是脈衝寬度調變(Pulse Width Modulation,PWM)信號、脈衝頻率調變(Pulse Frequency Modulation,PFM)信號、通用非同步收發傳輸器(Universal Asynchronous Receiver/Transmitter,UART)信號或其他可以進行單線傳信量值的數位信號。
於本實施例中,如圖1A所示,前齒盤模組30上設置有外圈導電線路33F、內圈導電線路33E及中圈導電線路33D(實際結構將說明於後),分別通過固定模組10的外圈導電結構15F、內圈導電結構15E及中圈導電結構15D(在圖1B與圖8分別標示為15D1、15D2、15D3、15D4)而可轉動地電連接至固定端處理電路70,藉此可以將數位信號S2,透過中圈導電結構15D的不同擺放位置轉接產生不同相位的脈衝信號SF傳輸至固定端處理電路70。於此實施例中,固定模組10包含一固定端電路板12,固定端電路板12的正極V+電連接至外圈導電結構15F,固定端電路板12的負極V-電連接至內圈導電結構15E,用以對轉動端的力感測器50供電(內外圈導電結構的正負電對調供電亦可)。轉動端的數位信號S2則通過4個中圈導電結構15D1至15D4輸出4個脈衝信號SF1至SF4回傳給固定端處理 電路70。
如圖1B與圖2所示,通過中圈導電線路33D及中圈導電結構15D1、15D2、15D3及15D4傳送而轉接產生的脈衝信號SF分別包含一第一脈衝信號SF1、一第二脈衝信號SF2、一第三脈衝信號SF3及一第四脈衝信號SF4,彼此的信號來源均為同為轉動端的數位信號S2,但藉由中圈導電結構15D1、15D2、15D3、15D4擺設在不同位置而產生如圖2的固定相位差的關係,譬如是具有90度的相位差(但並非將本發明限制於此)。利用中圈導電結構15D1至15D4的擺設位置(參見圖8)產生圖2的第一至第四脈衝信號SF1至SF4。固定端處理電路70包含一OR電路72、一低通濾波器(Low Pass Filter,LPF)71及一MCU 73。於一例子中,OR電路72可以由四個二極體來實現,OR電路72將第一至第四脈衝信號SF1至SF4作OR處理,以獲得一還原過代表扭力值的數位脈衝信號S2'。可以理解的是,無論哪個脈衝信號SF都只有一半的時間有信號值,所以四個脈衝信號SF作OR計算起來,使得同一時間就能同時有兩個脈衝信號SF提供脈波信號。兩個脈衝信號SF並聯同時提供信號的優點在於:以下使用的導電滾珠13(圖4)並非像電線直接相接的完全可靠導體,如此可降低信號傳輸失敗率,等於是同一時間有兩個導電滾珠13一起在接收代表扭力的數位信號S2。LPF 71將第一至第四脈衝信號SF1至SF4作低通濾波處理(濾除數位脈衝,留下四個具相位差的導通信號,其中LPF 71可採用例如圖1B的MCU 73外部的硬體電路,或跳過LPF 71直接輸入MCU 73內部,以程式演算法實現,以獲得第一至第四低通濾波信號SL1至SL4。MCU 73接收並處理還原過的數位脈衝信號S2'及第一至第四低通濾波信號SL1至SL4,並依據還原過的數位脈衝信號S2'及第一至第四低通濾波信號SL1至SL4產生輸出信號S3。 於一例子中,輸出信號S3可以包含一扭力信號S31及一踏頻信號S32。扭力信號S31可以依據還原過的數位脈衝信號S2'計算獲得,譬如MCU 73判讀數位脈衝信號S2'的脈波寬度,藉此計算出前齒盤模組30上的扭力值。此外,因信號S2'為數位信號,若因轉動式的有線連接造成短暫的斷路或水氣短路,MCU 73仍可進行判讀並做信號還原處理,將信號S2’儘可能還原成原始信號S2,避免扭力信號失真。此外,MCU 73通過第一至第四低通濾波信號SL1至SL4的兩個相位差90度的信號間之換相週期(譬如比對SL1與SL2或比對SL3與SL4,兩組取其一即可),即可求出踏頻信號S32(包含相關於轉速的踩踏頻率與方向資訊)。若因轉動式的有線連接造成短暫的接觸斷路或水氣短路,MCU 73仍可做判讀,避免誤判轉速或踏頻。
圖3顯示圖1A的踩踏狀況感測裝置的側面分解示意圖。圖4顯示踩踏狀況感測裝置的爆炸示意圖。如圖3與圖4所示,固定模組10更包含一第一盤11以及多個彈性導電結構15。第一盤11具有相背對的一第一側11A及一第二側11B。固定端電路板12具有相背對的一第一側12A及一第二側12B。固定端電路板12的第二側12B固定於第一盤11的第一側11A。此等彈性導電結構15將固定端電路板12的第二側12B的多個導電區塊12C電連接至前齒盤模組30的一轉動端電路板33,用以接收力感測器50產生的數位信號S2,傳輸轉接產生的脈衝信號SF給固定端處理電路70處理判讀,以及讓電源端的正極V+與負極V-從固定端電路板12傳導到轉動端電路板33,對力感測器50供電。
各彈性導電結構15包含一導電套筒14、導電滾珠13以及一導電彈簧16。導電套筒14插入並固定於第一盤11中。導電滾珠13設置於導電套筒14中,並且可相對於導電套筒14滾動,且被導電套筒14或第 一盤11的結構限制於導電套筒14中而不會掉出。導電彈簧16設置於導電套筒14中,並頂抵於固定端電路板12,對導電滾珠13朝轉動端電路板33的方向加壓,但是導電滾珠13會被上述的結構限制住。導電套筒14及/或導電彈簧16可以直接電連接至固定端電路板12的固定接點。
前齒盤模組30包含一轉接盤31、一第二盤32以及轉動端電路板33。轉接盤31將助力型電動自行車200的一齒盤230轉接至助力型電動自行車200的一曲柄240。轉接盤31包含一盤體31C、一施力元件31D及一抗力元件31E。若將盤體31C的外緣直接製作成鏈齒齒形,則盤體31C則同時具齒盤230功能,而齒盤230即可直接省略。也可如常見變速車的曲柄一般,將二片以上不同大小的齒盤230平行鎖固到轉接盤31上,達到前齒盤換檔變速目的。本實施例中,曲柄240受騎乘者踩踏使得轉接盤31與齒盤230一起轉動。第二盤32可轉動地連接至第一盤11,並且固定於轉接盤的盤體31C。轉動端電路板33固定於第二盤32,第二盤32再固定至轉接盤的盤體31C。於本實施例中,轉動端處理電路60設置於轉動端電路板33上,其中固定端電路板12與轉動端電路板33分別設置於第一盤11的兩側,且多個彈性導電結構15將固定端電路板12的第二側12B可轉動地電連接至轉動端電路板33。固定端電路板12與第一盤11容納於第二盤32與轉動端電路板33之間的一空間32C中。
於本實施例中,轉動端處理電路60設置於轉動端電路板33的一第一側33A上,曲柄240包含多個固定爪241,螺絲SC將固定爪241定位於轉接盤31的一第一側31A上,使固定爪241與轉接盤31同圓心,但並非完全鎖死,螺絲SC與固定爪241同時具間隙,在抗力元件31E未安裝時,使得施力元件31D可相對於盤體31C的共同主軸具有同心圓周移動 的自由度,以預留安裝置入抗力元件31E後,給施力元件31D形變的空間。齒盤230固定於轉接盤31。齒盤230的個數不限於一個。此外,如圖3所示,第一盤11具有一開孔11H,以讓曲柄240的主軸(未顯示)穿過,而固定端電路板12的一開孔12H套住第一盤11的一凸緣11R,以方便組裝定位用。
圖5顯示踩踏狀況感測裝置的組合示意圖。如圖3至圖5所示,轉動端電路板33的第一側33A固定於第二盤32,第二盤32再固定至盤體31C。施力元件31D固定於曲柄240的固定爪241。抗力元件31E連接於盤體31C,譬如是通過軸孔配合的方式而部分插入於盤體31C的一貫孔(長孔)31I。曲柄240受騎乘者踩踏,通過固定爪241使施力元件31D對抗力元件31E施力,而使施力元件31D變形。於本實施例中,螺絲SC1穿過施力元件31D的一孔(被遮蔽而未顯示)以及盤體31C的一長孔31G而鎖固在曲柄240上,且第二盤32的耳部32H固定於盤體31C的耳部31H。
踩踏狀況感測裝置100可以分成三個模組來說明,這三個模組包含驅動機構模組、被驅動機構模組及固定模組。圖6A顯示圖5的驅動機構模組的立體圖。圖6B顯示圖6A的被驅動機構模組的施力元件的局部剖面圖。如圖5至圖6B所示,驅動機構模組包含曲柄240、施力元件31D與螺絲SC1。施力元件31D具有一第一部分31D1及一第二部分31D2,兩者可藉由鉚釘、螺絲等固定元件(未顯示)穿過第一部分31D1的孔31D7及第二部分31D2的孔31D3而固定在一起,第二部分31D2上設置有力感測元件20。第二部分31D2具有貫孔31J,抗力元件31E容置於貫孔31J中,當對踏板出力,使驅動機構模組帶動被驅動機構模組時,會使施力元件31D相對於盤體31C同心圓周產生微小形變行程,該形變行程會隨踏力大小成 正比關係,並反應於力感測元件20的形變上。力感測元件20設置於施力元件31D上,並依據施力元件31D的變形而產生性質變化。於一例子中,力感測元件20為彎曲型應變規,譬如是電阻式應變規,設置於施力元件31D的第二部分31D2的側壁,且於變形後產生電阻值變化。螺絲SC1通過第一部分31D1的孔而將第一部分31D1固定至固定爪241。在曲柄240受踩踏後,固定爪241通過螺絲SC1將力傳送到第一部分31D1與第二部分31D2,第二部分31D2再將力傳送到抗力元件31E,此時第二部分31D2會變形,使得力感測元件20可以依據變形而產生性質變化。施力元件31D的第二部分31D2可選擇性地設置有一第一間隙31D5及一第二間隙31D6來將貫孔31J連通至外界以提供允許貫孔31J變形的自由度及極限,或者第二部分31D2亦可更設有一內縮區31D4,以調整貫孔31J變形的特性。雖然以上是以施力元件31D包含兩個部分來作說明,但是並未將本發明限制於此,因為這兩個部分亦可以被合成一個部分或拆成更多部分,只要能在踩踏過程中變形即可。
可以理解的是,於其他例子中,力感測元件20可以固定於曲柄240上,或固定於盤體31C上,或固定於抗力元件31E上,只要可以偵測騎乘者的踩踏狀況產生的變形即可。或者,可以同時採用彎曲及拉伸型應變規,以兩個變形信號進行校正及溫度補償,讓力的感測更精準。
圖6C顯示圖5的被驅動機構模組的立體圖。如圖6A與6C所示,抗力元件31E連接至盤體31C的貫孔31I,將力傳遞至盤體31C,使得力可以傳遞至齒盤230,進而帶動自行車前進。
圖6D顯示圖5的固定模組10的立體圖。如圖6D與6C所示,固定模組10的第一盤11、固定端電路板12及軸承17,是可相對第二 盤32轉動地容置於第二盤32中,以達成信號傳輸的效果。最後,輸出信號S3可以從固定端電路板12以信號接頭輸出。
圖7顯示第一盤的前視圖。如圖3與圖7所示,踩踏狀況感測裝置100更包含三個軸承17,設置於第一盤11的一外周緣11P與第二盤32的一內周緣32P之間,以提供使第一盤11與第二盤32相對轉動的平順度。於本例子中,三個軸承17分別設置於第一盤11的外周緣11P的三個軸承固定座11D上。當然,於其他例子中,三個軸承17也可以設置於第二盤32的內周緣32P的軸承固定座上。
圖8顯示轉動端電路板的前視圖。如圖8、圖7、圖1A、圖1B與圖2所示,此些彈性導電結構15包含多個中圈導電結構15D、一個或多個(至少一個)內圈導電結構15E及一個或多個(至少一個)外圈導電結構15F。多個外圈導電結構15F與多個內圈導電結構15E可以防止單一導電結構因接觸不良而引發的錯誤狀況。轉動端電路板33包含構成導電結構33C的多個中圈導電線路33D、內圈導電線路33E及外圈導電線路33F。隨著固定模組10與前齒盤模組30的相對轉動,此些中圈導電線路33D斷斷續續通電連接至此些中圈導電結構15D(分別標示為15D至15D4),用以傳輸轉接產生的脈衝信號SF。內圈導電線路33E恆久電連接至此些內圈導電結構15E,且外圈導電線路33F恆久電連接至此些外圈導電結構15F,以作為持續對力感測器50的轉動端處理電路60的正負極供電用。可以理解的是,圖8的導電線路及導電結構僅為一個示意的例子,並非將本發明限制於此,因為也可有其他的實施方式。
於本例子中,圖7與圖8的機械角度A1造成180度的電氣角度,故可使第一與第三低通濾波信號SL1與SL3具有180度的相位差, 使第二與第四低通濾波信號SL2與SL4具有180度的相位差;圖7的機械角度A2造成90度的電氣角度,故可使第一與第二低通濾波信號SL1與SL2具有90度的相位差,使第三與第四低通濾波信號SL3與SL4具有90度的相位差,其中圖8的單一中圈導電線路33D的延伸角度等於180/(中圈導電線路33D的數量),也就是等於18度。上述機構設計,是可以獲得圖2的相關信號的一種實施方式。另一方面,相鄰中圈導電結構15D的弧狀跨距等於相鄰中圈導電線路33D的弧狀斷開距離,使得相鄰的中圈導電結構15D1與15D3的其中一個(15D3)脫離一個中圈導電線路33D時,另一個(15D1)接觸到另一個中圈導電線路33D。以轉動端電路板33相對固定模組10逆時針旋轉至圖8之位置為例作說明,兩對中圈導電線路33D位於接近對面的位置,使得中圈導電結構15D1落於與中圈導電線路33D接觸通電的位置,而中圈導電結構15D4則落於即將從與中圈導電線路33D接觸通電的狀態轉為斷電的狀態;而中圈導電結構15D2落於與中圈導電線路33D斷電的位置、中圈導電結構15D3則落於即將從與中圈導電線路33D斷電的狀態轉為接觸通電的狀態。可以理解的是,雖然以10個中圈導電線路33D作為例子來說明,但是於其他例子中可以使用其他數目的中圈導電線路33D。雖然以上利用一個例子說明前齒盤模組30可轉動地機械連接至固定模組10以及固定端處理電路70可轉動地電連接至力感測器50,但並未將本發明限制於此。
圖9顯示踩踏狀況感測裝置的另一例子的爆炸示意圖。圖10與圖11顯示圖9的踩踏狀況感測裝置的局部立體圖。如圖9至圖11所示,本例子類似於圖4,差異點在於施力元件31D以及曲柄240。施力元件31D包含:連接至曲柄240的第一部分31D1;一第二部分31D2及一第三 部分31D8,兩者固定至第一部分31D1,第二部分31D2局部容納於第三部分31D8的一缺口31D11中;以及一圓環31D9。圓環31D9容納於第三部分31D8與第二部分31D2共同界定的一圓形開口31D12中,以定位第三部分31D8與第二部分31D2和盤體31C對準共同中心用。另外,螺絲SC2穿過盤體31C的長孔31L(有預留一個給應變規變形的行程)而與第三部分31D8的孔31D10中的墊圈SV固定,螺絲SC2穿過盤體31C的貫通的長孔31L而與攻牙螺絲孔31D13中的螺牙固定,抗力元件31E可以輕易組裝至貫孔31I中以得到在對踏板施力時,於施力元件31D產生輕微變形的目的。抗力元件31E與第二部分31D2的結構及連接關係與圖6A和圖6B相同。於本例中,可以將第一部分31D1直接鉚接到無爪的曲柄240,而不用帶爪的曲柄,更方便大量生產,且成本較低。
藉由上述實施例的踩踏狀況感測裝置,可以直接反應騎乘者騎乘自行車的踩踏狀況,讓騎乘者的騎乘感受真實且即時,且將類比感測信號放大後產生數位信號利用轉動式的有線連接的方式將數位信號傳輸到固定模組,不但沒有延遲,且可以真實且即時反應騎乘者的踩踏狀況來輔助驅動電動自行車。另外,由於踩踏狀況感測裝置不是安裝於車架的主軸中,所以安裝維修也相當容易。再者,整個踩踏狀況感測裝置的模組化設計,使用者或廠商都可以購買此模組化套件來輕易地自行改裝。
在較佳實施例的詳細說明中所提出的具體實施例僅用以方便說明本發明的技術內容,而非將本發明狹義地限制於上述實施例,在不超出本發明的精神及申請專利範圍的情況下,所做的種種變化實施,皆屬於本發明的範圍。
AX:軸線
S1:類比感測信號
S2:數位信號
S3:輸出信號
SF:轉接產生的脈衝信號
V-:負極
V+:正極
10:固定模組
12:固定端電路板
15D:中圈導電結構
15E:內圈導電結構
15F:外圈導電結構
20:力感測元件
30:前齒盤模組
33D:中圈導電線路
33E:內圈導電線路
33F:外圈導電線路
50:力感測器
60:轉動端處理電路
61:信號放大電路
62:MCU
70:固定端處理電路
100:踩踏狀況感測裝置
200:助力型電動自行車
210:車架
220:控制器
250:驅動馬達

Claims (8)

  1. 一種踩踏狀況感測裝置,包含:一固定模組,用於固定至一助力型電動自行車的一車架;一前齒盤模組,受一騎乘者踩踏而轉動,並且可轉動地機械連接至該固定模組;一力感測器,設置於該前齒盤模組上,並偵測該騎乘者的踩踏出力狀況而產生一數位信號;以及一固定端處理電路,設置於該固定模組,並且可電連接至轉動中的該力感測器,對該力感測器供電,並接收到對應該數位信號所形成的多個轉接產生的脈衝信號,並將該等轉接產生的脈衝信號處理成一輸出信號,該輸出信號用於傳送給該助力型電動自行車的一控制器來驅動該助力型電動自行車,其中該固定模組包含:一第一盤,具有一第一側及一第二側;一固定端電路板,具有一第一側及一第二側,其中該固定端電路板的該第二側固定於該第一盤的該第一側;以及多個彈性導電結構,將該固定端電路板的該第二側的多個導電區塊電連接至該前齒盤模組的一轉動端電路板,以傳輸該等轉接產生的脈衝信號;其中該前齒盤模組包含:一轉接盤,將該助力型電動自行車的一齒盤轉接至該助力型電動自行車的一曲柄,該曲柄受該騎乘者踩踏使得轉接盤與該齒盤一起轉動; 一第二盤,可轉動地連接至該第一盤,並且固定於轉接盤;以及該轉動端電路板,固定於該第二盤,其中該力感測器的一轉動端處理電路設置於該轉動端電路板上,該固定端電路板與該轉動端電路板分別設置於該第一盤的兩側,該多個彈性導電結構將該固定端電路板的該第二側可轉動地電連接至該轉動端電路板;其中該等彈性導電結構包含多個中圈導電結構、至少一內圈導電結構及至少一外圈導電結構,該轉動端電路板包含多個中圈導電線路、一內圈導電線路及一外圈導電線路,其中隨著該固定模組與該前齒盤模組的相對轉動,該等中圈導電線路斷斷續續通電連接至該等中圈導電結構,以傳輸該等轉接產生的脈衝信號,其中該內圈導電線路恆久電連接至該至少一內圈導電結構,且該外圈導電線路恆久電連接至該至少一外圈導電結構,以從該固定端處理電路對該轉動端處理電路供電。
  2. 如請求項1所述的踩踏狀況感測裝置,其中該等轉接產生的脈衝信號包含一第一脈衝信號、一第二脈衝信號、一第三脈衝信號及一第四脈衝信號,其中該固定端處理電路包含:一OR電路,將該等第一至第四脈衝信號作OR處理,以獲得一還原過的數位脈衝信號;一低通濾波器,將該等第一至第四脈衝信號作低通濾波處理,以獲得第一至第四低通濾波信號;以及一MCU,接收並處理該還原過的數位脈衝信號及該等第一至第四低通濾波信號,並依據該還原過的數位脈衝信號及該等第一至第四低通濾波信號產生該輸出信號,其中該輸出信號包含一扭力信號及一踏頻信號,該MCU依據該還原過的數位脈衝信號計算獲得該 扭力信號,且該MCU通過該等第一至第四低通濾波信號求出該踏頻信號。
  3. 如請求項1所述的踩踏狀況感測裝置,其中該力感測器包含:一力感測元件;一信號放大電路,電連接至該力感測元件,並依據該力感測元件的性質變化產生一類比感測信號;以及一MCU,電連接至該信號放大電路,並將該類比感測信號處理成該數位信號。
  4. 如請求項1所述的踩踏狀況感測裝置,其中各該彈性導電結構包含:一導電套筒,插入該第一盤中;一導電滾珠,設置於該導電套筒中;以及一導電彈簧,設置於該導電套筒中,並頂抵於該固定端電路板,對該導電滾珠朝該轉動端電路板的方向加壓。
  5. 如請求項1所述的踩踏狀況感測裝置,其中該轉接盤包含:一盤體;一施力元件,固定於該曲柄;及一抗力元件,連接於該盤體,其中該曲柄受該騎乘者踩踏,使該施力元件對該抗力元件施力,而使該施力元件產生變形,其中該力感測器的一力感測元件設置於該施力元件上,並依據該變形而產生性質變化。
  6. 如請求項5所述的踩踏狀況感測裝置,其中該施力元件具有可相對於該盤體同心圓周移動的自由度,該施力元件具有一貫孔,該抗力 元件容置於該貫孔中,且該抗力元件形成兩個間隙來連通該貫孔至外界,以提供允許該貫孔變形的自由度。
  7. 如請求項5所述的踩踏狀況感測裝置,其中該施力元件包含:一第一部分,連接至該曲柄;一第二部分及一第三部分,兩者固定至該第一部分,該第二部分局部容納於該第三部分的一缺口中;以及一圓環,容納於該第三部分與該第二部分共同界定的一圓形開口中,以定位該第三部分與該第二部分對準共同中心用。
  8. 如請求項1所述的踩踏狀況感測裝置,其中該固定端電路板與該第一盤容納於該第二盤與該轉動端電路板之間的一空間中。
TW110128783A 2021-08-04 2021-08-04 用於助力型電動自行車的踩踏狀況感測裝置 TWI772136B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110128783A TWI772136B (zh) 2021-08-04 2021-08-04 用於助力型電動自行車的踩踏狀況感測裝置
CN202210703617.4A CN115703526A (zh) 2021-08-04 2022-06-21 用于助力型电动自行车的踩踏状况感测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110128783A TWI772136B (zh) 2021-08-04 2021-08-04 用於助力型電動自行車的踩踏狀況感測裝置

Publications (2)

Publication Number Publication Date
TWI772136B true TWI772136B (zh) 2022-07-21
TW202306832A TW202306832A (zh) 2023-02-16

Family

ID=83439750

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110128783A TWI772136B (zh) 2021-08-04 2021-08-04 用於助力型電動自行車的踩踏狀況感測裝置

Country Status (2)

Country Link
CN (1) CN115703526A (zh)
TW (1) TWI772136B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107031784A (zh) * 2017-05-04 2017-08-11 深圳哥智行科技有限公司 自行车的牙盘式力矩传感装置
CN107600297A (zh) * 2017-10-23 2018-01-19 苏州捷诚科技有限公司 一种齿盘式无线能量信号传输力矩传感器系统
WO2018081996A1 (zh) * 2016-11-04 2018-05-11 北京轻客智能科技有限责任公司 扭矩感应装置及应用该扭矩感应装置的电动助力车
CN108313190A (zh) * 2018-03-14 2018-07-24 扬顶(天津)科技有限公司 一种电动助力自行车用链盘力矩传感器
CN109421883A (zh) * 2017-08-31 2019-03-05 雅迪科技集团有限公司 一种助力车的控制方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018081996A1 (zh) * 2016-11-04 2018-05-11 北京轻客智能科技有限责任公司 扭矩感应装置及应用该扭矩感应装置的电动助力车
CN107031784A (zh) * 2017-05-04 2017-08-11 深圳哥智行科技有限公司 自行车的牙盘式力矩传感装置
CN109421883A (zh) * 2017-08-31 2019-03-05 雅迪科技集团有限公司 一种助力车的控制方法及系统
CN107600297A (zh) * 2017-10-23 2018-01-19 苏州捷诚科技有限公司 一种齿盘式无线能量信号传输力矩传感器系统
CN108313190A (zh) * 2018-03-14 2018-07-24 扬顶(天津)科技有限公司 一种电动助力自行车用链盘力矩传感器

Also Published As

Publication number Publication date
CN115703526A (zh) 2023-02-17
TW202306832A (zh) 2023-02-16

Similar Documents

Publication Publication Date Title
JP5203939B2 (ja) トルク検出装置及び電動アシスト自転車
EP2578484B1 (en) Torque sensor assembly for a power-assisted bicycle
CN104276251A (zh) 一种电动车中轴力矩传感系统
US20150204695A1 (en) Power-assisted bicycle having sensor with multiple magnet positions and magnetic fluxes unevenly distributed in shell
WO2018081996A1 (zh) 扭矩感应装置及应用该扭矩感应装置的电动助力车
WO2012123802A1 (en) Wheel for pedal-assisted bikes
CN204110305U (zh) 一种电动车中轴力矩传感系统
CN108692844B (zh) 电力的飞轮扭力量测装置
WO2011026275A1 (zh) 电动自行车的速度踏力传感装置
CN108871639B (zh) 中轴力矩检测系统
WO2016177084A1 (zh) 一种助力骑行车助力控制装置、助力控制方法及其自动变速方法
CN108516042B (zh) 电动自行车动力输出控制系统
TWI772136B (zh) 用於助力型電動自行車的踩踏狀況感測裝置
US8689642B2 (en) Torque sensor
CN105318998B (zh) 电动车用新型力矩传感器
CN208053557U (zh) 一种可检测扭矩的助力脚踏车用牙盘组件
CN112644632A (zh) 电动助力自行车用双边线性扭矩中轴传感器
CN206623955U (zh) 自行车用牙盘式力矩传感器
JP3203473U (ja) トルクギア構造
CN101782446B (zh) 智能电动自行车后轴套式力矩传感装置
CN101561328B (zh) 电动助力自行车智能传感器
CN210310744U (zh) 一种自行车中轴力矩检测装置
JPWO2002076813A1 (ja) 回転速度センサー及び該センサーを備えた動力アシスト自転車
CN113636009A (zh) 助力自行车传动轴传感器
US20210102852A1 (en) Torque measuring device for a flywheel