WO2019041943A1 - 像素结构、掩膜版及显示装置 - Google Patents

像素结构、掩膜版及显示装置 Download PDF

Info

Publication number
WO2019041943A1
WO2019041943A1 PCT/CN2018/090149 CN2018090149W WO2019041943A1 WO 2019041943 A1 WO2019041943 A1 WO 2019041943A1 CN 2018090149 W CN2018090149 W CN 2018090149W WO 2019041943 A1 WO2019041943 A1 WO 2019041943A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
pixel group
group
pixels
Prior art date
Application number
PCT/CN2018/090149
Other languages
English (en)
French (fr)
Inventor
余珺
胡小叙
叶訢
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Priority to KR1020197026161A priority Critical patent/KR102336925B1/ko
Priority to EP18850266.0A priority patent/EP3678183A4/en
Priority to US16/330,494 priority patent/US11309357B2/en
Priority to JP2019547083A priority patent/JP6963625B2/ja
Publication of WO2019041943A1 publication Critical patent/WO2019041943A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components

Definitions

  • the present application relates to the field of display technologies, and in particular, to a pixel structure, a mask, and a display device.
  • the OLED (Organic Light-Emitting Diode) display technology has self-illuminating characteristics, and has the advantages of large viewing angle of the display screen and energy saving, and has been widely used in mobile phones, digital video cameras, DVD players, and individuals.
  • digital assistants PDAs
  • laptops car stereos and televisions.
  • each pixel unit Pixel includes R (red) sub-pixel 101, G (green) sub-pixel 103, and B (blue) sub-pixel 105, R, G, B sub-pixels arranged in a line. All are sub-pixels, and all sub-pixels are equal in size, and the ratio of R, G, and B sub-pixels is 1:1:1.
  • the industry generally refers to this type of pixel structure as Real RGB.
  • the pixel structure shown in FIG. 1A generally needs to be implemented by vapor deposition using a high-precision metal mask (FMM) as shown in FIG. 1B.
  • the FMM includes a shielding region 107 and a plurality of vapor deposition openings 108, the same
  • the occlusion area between the two vapor deposition openings 108 adjacent to the column is referred to as a bridge.
  • FMM generally has the limitation of minimum opening.
  • the sub-pixels of different colors in the evaporation process have the limitation of the opening pitch.
  • the preparation of the OLED pixel structure is inevitably limited by the FMM opening and the precision of the evaporation process, and the pixel structure shown in FIG. 1A In the case where the pixel density is higher than 300 PPI (Pixel Per Inch), the current FMM process is very difficult to implement and cannot meet the high PPI development requirements of the OLED display device.
  • PPI Pixel Per Inch
  • the inventors have found through research that the traditional RGB pixel structure can not meet the requirements of high PPI display effect at the same time. Based on this, it is an object of the present application to provide a pixel structure, a mask, and a display device capable of achieving a high PPI.
  • the present application provides a pixel structure including a plurality of large groups of pixels arranged in an array, each of the large groups of pixels including a first pixel group and a first set adjacent to each other and offset from each other a two-pixel group, the first pixel group and the second pixel group each include a first sub-pixel group, a second sub-pixel group, and a third sub-pixel group, three different color sub-pixel groups, each of the The sub-pixel group includes four sub-pixels of the same color.
  • the first pixel group and the second pixel group are adjacently disposed in a first direction and are offset from each other in a second direction perpendicular to the first direction .
  • the first direction is a row direction
  • the second direction is a column direction
  • the first direction is a column direction
  • the second direction is a row direction
  • three groups of different color sub-pixel groups in the first pixel group and the second pixel group are repeatedly arranged in the second direction in the same order.
  • three groups of different color sub-pixel groups in the first pixel group and the second pixel group are repeatedly arranged in the second direction in different orders.
  • four sub-pixels of the same color in each of the sub-pixel groups are arranged in an array of two rows and two columns in the first direction and the second direction.
  • the shape and size of the four sub-pixels of the same color in each sub-pixel group are the same, and when the height of the second pixel group in the second direction is lower than the first pixel group The height of the second direction, in the same large group of pixels, the center line of the first color sub-pixel group of the second pixel group in the second direction and the first pixel group The boundary line between the sub-pixel group of the second color and the sub-pixel group of the third color coincides.
  • the first pixel group of the first color group has a center line in the second direction and a second line in the second pixel group The boundary line between the sub-pixel group of the color and the sub-pixel group of the third color coincides.
  • each of the large groups of pixels is divided into at least one pixel unit, and each pixel unit includes three sub-pixels of different colors.
  • none of the first sub-pixel group and the second sub-pixel group are shared.
  • At least one of the first sub-pixel group and/or the second sub-pixel group is shared to form a corresponding pixel unit.
  • a part of the pixel unit is used to implement left eye display, and another part of the pixel unit is used to implement right eye display.
  • the present application also provides a mask for fabricating any of the above pixel structures.
  • one evaporation opening of the mask corresponds to at least two sub-pixels of the same color.
  • the application also provides a display device comprising any of the above pixel structures.
  • the pixel structure comprises a plurality of large groups of pixels arranged in an array, each of the large groups of pixels comprising a first pixel group and a second group respectively arranged in a first direction and comprising three sub-pixel groups different in color.
  • a pixel group, the first pixel group and the second pixel group are mutually offset, each sub-pixel group includes four sub-pixels of the same color, and one evaporation opening of the mask corresponds to at least two sub-pixels of the same color, so
  • the sub-pixel groups of the same color are arranged in a regular alternating manner, which can increase the strength of the mask, reduce the difficulty of the evaporation mask manufacturing process and the evaporation process, facilitate the fabrication of small-sized sub-pixels, and improve the display device.
  • PPI PPI
  • Each sub-pixel group includes four sub-pixels of the same color, and the corresponding pixel units can be divided according to different display requirements, so that each pixel unit is
  • the sub-pixels including three colors, when the three colors are red, green, and blue, can achieve different gray levels and color combinations by adjusting the display ratios of red, green, and blue, thereby realizing the true meaning.
  • Full color display wide range of applications.
  • 1A is a schematic diagram of a pixel structure arrangement of an OLED display panel in the prior art
  • FIG. 1B is a schematic view of an FMM corresponding to FIG. 1A;
  • FIGS. 2A to 2H are schematic diagrams showing the arrangement of pixel structures of a specific embodiment of the present application.
  • FIG. 3 is a schematic diagram of an FMM according to a specific embodiment of the present application.
  • 4A to 4H are schematic diagrams showing division of a pixel unit according to a specific embodiment of the present application.
  • an embodiment of the present application provides a pixel structure including a plurality of large groups of pixels 20 arranged in an array, each of the large groups of pixels 20 including adjacent ones arranged in the X direction (first direction) ( That is, the first pixel group 21 and the second pixel group 22 which are arranged in the column direction and are mutually misaligned in the Y direction (the second direction), the first pixel group 21 and the second pixel group 22 are mutually misaligned in the Y direction means
  • the tops of the one pixel group 21 and the second pixel group 22 in the Y direction are not equal, for example, the height of the first pixel group 21 in the Y direction is higher than the height of the second pixel group 22 in the Y direction, so that the second The pixel group 22 is displaced downward relative to the first pixel group 21 as shown in FIG.
  • the pixel structure of the present embodiment substantially includes a plurality of pixel group columns arranged in the Y direction by the first pixel group 21 and a plurality of pixel group columns arranged in the Y direction by the second pixel group 22, the first pixel The pixel group columns formed by the group 21 in the Y direction and the pixel group columns formed by the second pixel group 22 in the Y direction are alternately arranged in the X direction, and the adjacent two pixel group columns are shifted from each other.
  • the sub-pixels in all the odd-numbered pixel group columns are arranged in the same manner, and the sub-pixels in the even-numbered column pixel group are arranged in the same manner, but the odd-numbered pixel group column and the even-numbered column pixel group column have the same color.
  • the sub-pixel groups are not aligned up and down, but are shifted (shifted) from each other.
  • the first pixel group 21 and the second pixel group 22 each include a first sub-pixel group 201, a second sub-pixel group 202, and a third sub-pixel group 203 with three different color sub-pixel groups, and the three colors may be red (R). , green (G), and blue (B), and the arrangement order of the first sub-pixel group 201, the second sub-pixel group 202, and the third sub-pixel group 203 in the first pixel group 21 and the second pixel group 22
  • each sub-pixel group includes four sub-pixels of the same color, and the four sub-pixels are identical in shape and size, and An array arranged in two rows and two columns.
  • the four sub-pixels in the first sub-pixel group 201 are all red sub-pixels, denoted as R, and the four sub-pixels in the second sub-pixel group 202 are all green sub-pixels, denoted as G, and the fourth sub-pixel group 203 is four.
  • Each sub-pixel is a blue sub-pixel, denoted as B, and four R, four G, and four B are respectively 2 ⁇ 2 arrays.
  • the order of the three color-matched sub-pixel groups in the first pixel group 21 in the Y direction may be the first sub-pixel group 201 and the second sub-pixel group. 202 and a third sub-pixel group 203.
  • the order of the three sub-pixel groups in the second pixel group 22 in the Y direction may be the third sub-pixel group 203, the first sub-pixel group 201, and the second sub-pixel group 202, as shown in FIG. 2A. 2B and 2H; may also be the third sub-pixel group 203, the second sub-pixel group 202, and the first sub-pixel group 201, as shown in FIG.
  • the group 203 and the first sub-pixel group 201 are as shown in FIG. 2D; and may be the second sub-pixel group 202, the first sub-pixel group 201, and the third sub-pixel group 203, as shown in FIG. 2E; a sub-pixel group 201, a third sub-pixel group 203, and a second sub-pixel group 202, as shown in FIG. 2F; or a first sub-pixel group 201, a second sub-pixel group 202, and a third sub-pixel group 203, As shown in Figure 2G.
  • the sub-pixel group of the first color of the second pixel group 22 is in the Y direction.
  • the upper line (the dotted line between the two lines B in FIG. 2A) and the boundary line between the other two color sub-pixel groups of the first pixel group 21 (as shown in FIG. 2A between 4 R and 4 G) The solid line) is coincident; referring to FIG.
  • the first color sub-pixel group of the first pixel group 21 is The boundary between the center line in the Y direction (the dotted line between the two rows R in FIG. 2B) and the sub-pixel group of the other two colors of the second pixel group 22 (as shown in FIG. 2B for 4 B and 4 R)
  • the solid lines are overlapped, thereby realizing the misalignment of the first pixel group 21 with respect to the second pixel group 22, which is advantageous for dividing the sub-pixels included in the first pixel group 21 and the sub-pixels in the second pixel group 22
  • the division of the pixel units of the pixel achieves a high PPI. In addition, it is also beneficial to reduce the difficulty of making masks.
  • the size of the sub-pixels of various colors can be adaptively adjusted according to the life of each sub-pixel.
  • all the sub-pixels have the same shape and size, so that the same mask can be used to divide the three sub-pixels into three colors to minimize the cost.
  • the sub-pixels of the two colors have the same shape and size, and the sub-pixels of the other color are different in shape and size from the sub-pixels of the two colors, so that the same mask can be used to divide Two evaporations are performed to make the sub-pixels of the two colors to save cost; or, the sub-pixels of the three colors have the same shape, but the sizes are not completely the same, for example, in the same large group of pixels, the sub-pixel
  • the shapes of R, G, and B are all strips, and the strips may be a rectangular rectangle, a rounded rectangle, and a notched rectangle (at least one of the four rectangular corners is not a right angle and a rounded corner), and the strip corresponds to The aspect ratio of the rectangle can be 1:1, 2:1, 3:1, 3:2 or 4:3 to facilitate optimization of the wiring space.
  • the dimensions of the sub-pixels R and B are exactly the same, and the size of the sub-pixel G (for example, the width of a rectangle) is larger or smaller than the size
  • the shape of the sub-pixel G, the sub-pixel R, and the sub-pixel B may also be a rectangle-like or a rectangle-like shape, such as an approximately rectangular or approximately square trapezoid, and the trapezoid may be an isosceles trapezoid or a non-isosceles trapezoid, and may be a positive trapezoid.
  • the trapezoid is an isosceles trapezoid
  • the difference in size between the upper base and the lower base of the isosceles trapezoid is less than 10% of the length of the lower base
  • the waist and the upper side of the isosceles trapezoid are The angle between the waist and the lower base is greater than 80 degrees and less than 90 degrees
  • the shape of the sub-pixel G, the sub-pixel R and the sub-pixel B is substantially The square shape (within the allowable deviation range) still achieves a better arrangement.
  • the pixel structure formed by arranging the large groups of pixels in FIG. 2A to FIG. 2G in a matrix may be counterclockwise or clockwise 90 degrees, or may be rotated 180 degrees.
  • a pixel structure as shown in FIG. 2H is obtained.
  • the pixel structure includes a plurality of large groups of pixels 20 arranged in an array, each of the large groups of pixels 20 including adjacent pixels arranged in the Y direction (ie, arranged in rows) and respectively including sub-pixels of three colors of RGB.
  • first pixel group 21 may include a first sub-pixel group 201, a second sub-pixel group 202, and a third sub-pixel group arranged in the X direction
  • the second pixel group 22 may include a third sub-pixel group 203, a first sub-pixel group 201, and a second sub-pixel group 202 that are sequentially arranged in the X direction; each sub-pixel group includes four colors of the same and is 2
  • the sub-pixels arranged in the ⁇ 2 array, that is, the sub-pixels in the first pixel group 21 are arranged in an array of two rows and six columns (RR GG BB/RR GG BB).
  • the position of the sub-pixel group of the three colors in the second pixel group 22 is different from that of the first pixel group 21, and is also an array of two rows and six columns (BB RR GG/BB RR GG).
  • the second pixel group 22 is shifted to the right with respect to the first pixel group 21, and the gap between the first column (BB) sub-pixel and the second column sub-pixel (BB) of the second pixel group 22
  • a gap between the center line in the Y direction and the second column sub-pixel (RR) and the third column sub-pixel (GG) of the first pixel group 21 coincides in the center line in the X direction.
  • Such a pixel structure substantially includes a plurality of pixel group rows sequentially arranged by the first pixel group 21 in the X direction and a plurality of pixel group rows sequentially arranged by the second pixel group 22 in the X direction, the first pixel
  • the pixel group rows formed by the group 21 in the X direction and the pixel group rows formed by the second pixel group 22 in the X direction are alternately repeatedly arranged in the Y direction, and the adjacent two rows of pixel group rows are shifted from each other.
  • the sub-pixels in all the odd-line pixel group rows are arranged in the same manner, and the sub-pixels in the even-numbered row pixel group rows are arranged in the same manner, whereas the odd-numbered pixel group rows and the even-numbered row pixel group rows have the same color.
  • the sub-pixel groups are not aligned up and down, but are shifted (shifted) from each other.
  • each sub-pixel includes a light-emitting area (display area) and a non-light-emitting area (non-display area), and the light-emitting area of each sub-pixel includes a cathode, an anode, and An electroluminescent layer (also known as an organic emissive layer) is positioned between the cathode and the anode for generating a predetermined color of light for display.
  • An electroluminescent layer also known as an organic emissive layer
  • the pixel structure of the present application typically requires a three-time evaporation process to form an electroluminescent layer of a corresponding color (eg, red, green, or blue) in the light-emitting regions of the corresponding sub-pixels, respectively.
  • a corresponding color eg, red, green, or blue
  • FIG. 3 is a schematic diagram of an FMM for sub-pixel evaporation of a certain color corresponding to the pixel structure shown in FIG. 2A.
  • the mask has a plurality of vapor deposition openings 301, each of which corresponds to at least two sub-pixels of the same color, for example, each of the vapor deposition openings 301 corresponds to four corresponding positions in FIG. 2A.
  • Sub-pixels of the same color ie, one sub-pixel group of the first pixel group 21 or the second pixel group 22), since the sub-pixel groups of the same color in the odd-numbered column group column and the even-numbered column pixel group column in FIG.
  • the vapor deposition openings 301 on the vapor deposition mask (for example, FMM) for forming sub-pixel groups of the same color are also staggered, and thus Increasing the strength of the FMM, avoiding problems such as warping and fracture of the FMM, and reducing the defects of vapor deposition quality such as blooming and offset of the vapor deposition film.
  • the sub-pixel groups of the three colors are arranged in the same manner, so that the sub-pixels of the three colors can share the same by using a mask to achieve evaporation, thereby saving cost. .
  • each sub-pixel group can share one evaporation opening 301, thereby reducing space occupation, increasing the aperture ratio to increase the PPI, or making the existing opening larger without increasing the opening. Some help reduce the difficulty of the process. It should be noted that when one vapor deposition opening 301 of the mask corresponds to two sub-pixels of the same color, all sub-pixel groups of the same color may be formed by multiple corresponding offsets and evaporation.
  • the pixel structure of the present application is arranged in an array of "pixel group 20", and the first adjacent pixel group 21 and the second pixel group 22 are misaligned with each other, and the structure thereof is opposite to the conventional pixel structure shown in FIG. 1A.
  • a large change has occurred, so the division of the pixel unit (or the display driving method) also changes, and each of the divided pixel units includes sub-pixels of three colors to realize full-color display.
  • the pixel structure of the present application can be used not only for 2D plane display, but also for 3D (stereoscopic or three-dimensional) display by means of time-sharing control.
  • the specific division manner of the pixel unit of the pixel structure of the present application is described in detail below by taking the pixel structure shown in FIG. 2A as an example.
  • each pixel group 20 can be divided into one pixel unit P10, that is, each pixel unit P10 includes a first pixel group 21 and a second pixel group 22 That is to say, each pixel unit P10 includes eight R sub-pixels, eight B sub-pixels, and eight G sub-pixels. Each pixel unit in the division manner of such a pixel unit includes three sub-pixels of RGB. The pixel can realize full-color display and can be used in the 2D display mode, and the number of sub-pixels is large, and the display effect is better.
  • each pixel group 20 can be divided into two pixel units, the first pixel group 21 is a pixel unit P11, and the second pixel group 22 is a pixel unit P12.
  • Each of the pixel units includes four R sub-pixels, four B sub-pixels, and four G sub-pixels, enabling full-color display, which can be used in a 2D display mode, and since the number of pixel units is the pixel unit shown in FIG. 4A The number is twice as large, so the display effect is further improved.
  • the pixel units P11 and P12 can be controlled to display time-divisionally, such that pixel units such as P11 (ie, pixel units formed by the first pixel group 21) divided in the pixel structure are used for left-eye display, and are divided into pixel structures.
  • a pixel unit such as P12 i.e., a pixel unit formed by the second pixel group 22 is used for right eye display, thereby enabling the pixel structure to be applied to VR and 3D display technologies.
  • each pixel group 20 can be divided into four pixel units, and the two columns of sub-pixels of the first pixel group 21 are respectively divided into pixel units P21 and P22, and the second pixel.
  • the two columns of sub-pixels of the group 22 are pixel units P23 and P24, each of which includes two R sub-pixels, two B sub-pixels and two G sub-pixels, which can realize full-color display and can be used in 2D display mode.
  • the display effect is further improved.
  • the pixel units P21 to P24 can be controlled to display time-divisionally, such that pixel units such as pixel units P21 and P23 divided in the pixel structure (including pixel units of the left column sub-pixel of each pixel group) are used for left-eye display, and Pixel units such as pixel units P22 and P24 divided in the pixel structure (including pixel units of the right column sub-pixel of each pixel group) are used for right-eye display, thereby enabling the pixel structure to be applied to VR and 3D display technologies. in.
  • a part of the sub-pixels of the first pixel group 21 and a part of the sub-pixels of the second pixel group 22 in each pixel large group 20 may be divided into one pixel unit.
  • each pixel unit P31 includes four Rs.
  • the sub-pixel, the four B sub-pixels, and the four G sub-pixels enable full-color display, which can be used in the 2D display mode, and at the same time, since the number of pixel units is twice the number of pixel units shown in FIG. 4A, the display effect is Further improve.
  • two R sub-pixels of the first pixel group 21 in each pixel group 20 (such as the second pixel group 21 in FIG. 4E) Two R sub-pixels of the row), two G sub-pixels (such as two G sub-pixels of the third row of the first pixel group 21 in FIG. 4E) and two B sub-pixels of the second sub-pixel group 22 (eg The two B sub-pixels of the first row of the second sub-pixel group 22 of FIG.
  • 4E are divided into one pixel unit P41, and the other two G sub-pixels of the first pixel group 21 in each pixel large group 20 are as 2 G sub-pixels of the fourth row of the first pixel group 21 in FIG. 4E, and two B sub-pixels of the second sub-pixel group 22 (such as two of the second row of the second sub-pixel group 22 in FIG. 4E)
  • the B sub-pixels and the two R sub-pixels of the second sub-pixel group 22 (such as the two R sub-pixels of the third row of the second sub-pixel group 22 in FIG.
  • each pixel is divided into one pixel unit P42, and each pixel is The other two B sub-pixels of the first pixel group 21 in the large group 20 (such as the two B sub-pixels of the fifth row of the first pixel group 21 in FIG. 4E) and the other two R sub-pixels of the second sub-pixel group 22 Pixel (eg 2 R sub-pixels of the fourth row of the second pixel group 22 in 4E) and two G sub-pixels of the second sub-pixel group 22 (such as the two G sub-pixels of the fifth row of the second pixel group 22 in FIG. 4E) ) is divided into one pixel unit P43.
  • Each pixel unit formed in this division mode includes two R sub-pixels, two B sub-pixels, and two G sub-pixels, which can realize full-color display, can be used in 2D display mode, and at the same time, due to the number of pixel units More than the number of pixel units shown in FIG. 4A, the display effect is further improved.
  • pixel units such as P41 (including pixel units including four sub-pixels in the first sub-pixel group 21) divided in the pixel structure are used for left-eye display, and are divided into pixel structures.
  • Pixel cells such as P42 and P43 pixel cells including two sub-pixels in the second sub-pixel group 22
  • are used for right-eye display thereby making the pixel structure applicable to VR and 3D display technologies.
  • two R sub-pixels and two G sub-pixels in the right column of the first pixel group 21 in each pixel large group 20 and two in the left column in the second pixel group 22 are selected.
  • the B sub-pixels are divided into one pixel unit P51, and two B sub-pixels in the right column of the first pixel group 21 in each pixel large group 20 and two R sub-pixels in the left column in the second pixel group 22 are divided.
  • the pixel and the two G sub-pixels are divided into one pixel unit P52.
  • each pixel unit includes two R sub-pixels, two G sub-pixels, and two B sub-pixels, which can realize full-color display, can be used in 2D display mode, and at the same time, due to pixel unit
  • the number of pixels is larger than that of the pixel unit shown in FIG. 4A, so the display effect is further improved.
  • one R sub-pixel of the right column of the first pixel group 21 in each pixel group 20 (such as the second row of the first pixel group 21 in FIG. 4G) a right R sub-pixel) and a G sub-pixel (such as the third row right G sub-pixel of the first pixel group 21 in FIG. 4G) and a B sub-pixel of the left column in the second pixel group 22 (as shown in FIG.
  • the first row of left B sub-pixels of the second pixel group 22 in 4G is divided into one pixel unit P61, and another G sub-pixel of the right column of the first pixel group 21 in each pixel large group 20 (as shown in the figure) 4th right G sub-pixel of the first pixel group 21 in 4G) and another B sub-pixel of the left column in the second pixel group 22 (such as the second row of the second pixel group 22 in FIG. 4G)
  • the B sub-pixel) and one R sub-pixel (as in the third row of the second pixel group 22 in FIG.
  • the left R sub-pixel are divided into one pixel unit P62, and the first pixel group 21 in each pixel large group 20
  • One B sub-pixel of the right column such as the second row R sub-pixel of the second row of the first pixel group 21 in FIG. 4G
  • another R sub-pixel with the left column of the second pixel group 22 eg
  • the fourth row left sub-pixel of the second pixel group 22 in FIG. 4G and one G sub-pixel (such as the fifth row left G sub-pixel of the second pixel group 22 in FIG. 4G) are divided into one pixel unit P63.
  • each pixel unit includes one R sub-pixel, one G sub-pixel and one B sub-pixel, which can realize full-color display, can be used in 2D display mode, and at the same time, due to the large number of pixel units The number of pixel units shown in FIGS. 4A to 4E is thus further improved.
  • each of the above embodiments there is no case where the sub-pixels are shared in each large group of pixels 20, that is, there is no case where two pixel units share the same sub-pixel.
  • at least one of the same plurality of pixel groups 20 is shared to form a corresponding pixel unit. For example, referring to FIG.
  • each pixel unit includes sub-pixels of three colors of RBG, which can realize full-color display and can be used in a 2D display mode, and at the same time, the number of pixel units is larger than that of FIG. 4A to FIG. 4G. The number of pixel units shown, so the display effect is further improved.
  • the display of each pixel unit is a result of mixing the content (color, brightness, etc.) of the driving display of each sub-pixel, and thus the display of each pixel unit is not only related to the type and number of sub-pixels constituting the pixel unit. It is also related to the combination form of the sub-pixels constituting the pixel unit, and the driving signals required for the sub-pixels of different combinations to form the pixel unit are also different. That is to say, after dividing the pixel structure into a plurality of pixel units, driving signals are provided for each of the sub-pixels according to the content that each pixel unit needs to display, so as to allocate corresponding brightness to them, and the pixel sharing mode can achieve the best.
  • the color mixing effect makes the display the best and also improves the resolution.
  • the above is only a specific sub-pixel sharing method, and it is also feasible to adopt other sharing methods.
  • the present application also provides a display device including the above-described pixel structure.
  • the display device may be any product or component having a display function, such as an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like. Since the display device of the present application includes the above-described pixel structure, the display uniformity is high and the display quality is good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供了一种像素结构、掩膜版及显示装置,所述像素结构包括呈阵列排列的若干像素大组,每一所述像素大组包括在第一方向上相邻设置且在与第一方向垂直的第二方向上相互错位的第一像素小组和第二像素小组,每个子像素组均包含四个颜色相同的子像素,相同颜色的子像素组呈有规律的交替排列,进而可以在制作相应的掩膜板时,至少两个颜色相同的子像素共用一个蒸镀开口,因此增加了掩膜板的强度,可降低蒸镀掩膜版制作工艺和蒸镀工艺的难度,有利于制作小尺寸的子像素,提高显示装置的PPI。

Description

像素结构、掩膜版及显示装置 技术领域
本申请涉及显示技术领域,特别涉及一种像素结构、掩膜版及显示装置。
背景技术
OLED(Organic Light-Emitting Diode,有机发光二极管)显示技术具有自发光的特性,因其具有显示屏幕可视角度大,并且能够节省电能的优势,已广泛应用于手机、数码摄像机、DVD机、个人数字助理(PDA)、笔记本电脑、汽车音响和电视等产品中。
目前,一种典型的OLED显示面板的像素结构采用像素并置(side-by-side)的方式排布,该side-by-side方式中,在一个像素(Pixel)范围内有红、绿、蓝(R、G、B)三个子像素(sub-pixel),每个子像素均呈长方形,且各自具有独立的有机发光元器件。具体地,如图1A所示,每个像素单元Pixel包括呈直线排列的R(红)子像素101、G(绿)子像素103以及B(蓝)子像素105,R、G、B子像素均为长方形,所有子像素大小相等,且R、G、B子像素的个数比为1:1:1,业界通常将该种像素结构称为Real RGB。
图1A所示的像素结构通常需要通常采用图1B所示的高精细金属掩膜版(Fine Metal Mask,FMM)进行蒸镀实现,该种FMM包括遮挡区107以及若干个蒸镀开口108,同一列相邻的两个蒸镀开口108之间的遮挡区称之为连接桥(bridge)。FMM一般有最小开口的限制,蒸镀工艺中不同颜色的子像素有开口间距的限制,制备OLED像素结构会不可避免地受到FMM开口以及蒸镀工艺精度的限制,而图1A所示的像素结构中,在像素密度高于300PPI(Pixel Per Inch,像素密度)时,目前的FMM工艺实现起来非常困难,不能满足OLED显示装置的高PPI发展要求。
发明内容
发明人经过研究发现,传统的RGB像素结构已不能同时满足产品高PPI显示效果的要求。基于此,本申请的目的在于提供一种像素结构、掩膜版及 显示装置,能够实现较高PPI。
为解决上述技术问题,本申请提供一种像素结构,所述像素结构包括呈阵列排列的多个像素大组,每一所述像素大组包括相邻设置且相互错位的第一像素小组和第二像素小组,所述第一像素小组和所述第二像素小组均包括第一子像素组、第二子像素组、第三子像素组这三种颜色不同的子像素组,每个所述子像素组包括四个颜色相同的子像素。
可选的,每一所述像素大组中,所述第一像素小组和所述第二像素小组在第一方向上相邻设置且在与所述第一方向垂直的第二方向上相互错位。
可选地,所述第一方向为行方向,所述第二方向为列方向,或者
所述第一方向为列方向,所述第二方向为行方向。
可选地,每一所述像素大组中,所述第一像素小组和所述第二像素小组中三种颜色不同的子像素组以相同的顺序沿所述第二方向重复排列。
可选地,每一所述像素大组中,所述第一像素小组和所述第二像素小组中三种颜色不同的子像素组以不同的顺序沿所述第二方向重复排列。
可选地,每个所述子像素组中的四个颜色相同的子像素在所述第一方向和所述第二方向上排列成两行两列的阵列。
可选地,每个子像素组中的四个颜色相同的子像素的形状和尺寸均相同,且当所述第二像素小组在所述第二方向上的高度低于所述第一像素小组在所述第二方向上的高度时,在同一所述像素大组中,所述第二像素小组的第一种颜色的子像素组在所述第二方向上的中线与所述第一像素小组中的第二种颜色的子像素组和第三种颜色的子像素组之间的交界线重合。
每个子像素组中的四个颜色相同的子像素的形状和尺寸均相同,当所述第二像素小组在所述第二方向上的高度高于所述第一像素小组在所述第二方向上的高度时,在同一所述像素大组中,所述第一像素小组的第一种颜色的子像素组在所述第二方向上的中线与所述第二像素小组中的第二种颜色的子像素组和第三种颜色的子像素组之间的交界线重合。
可选地,每个所述像素大组被划分为至少一个像素单元,每个像素单元均包括三种颜色不同的子像素。
可选地,同一所述像素大组中,所述第一子像素小组和所述第二子像素小组中无任何子像素被共用。
可选地,同一所述像素大组中,所述第一子像素小组和/或所述第二子像素小组中的至少一个子像素被共用而形成相应的像素单元。
可选地,在所形成的像素单元中,一部分所述像素单元用于实现左眼显示,另一部分所述像素单元用于实现右眼显示。
本申请还提供一种用于制造上述任一像素结构的掩膜版。
可选的,所述掩膜版的一个蒸镀开口对应至少两个颜色相同的子像素。
本申请还提供一种显示装置,包括上述任一像素结构。
与现有技术相比,本申请的技术方案具有以下有益效果:
1、所述像素结构包括呈阵列排列的若干像素大组,每一所述像素大组包括沿第一方向相邻设置的分别包括三种颜色不同的子像素组的第一像素小组和第二像素小组,所述第一像素小组和第二像素小组相互错位,每个子像素组均包含四个颜色相同的子像素,掩膜版的一个蒸镀开口对应至少两个颜色相同的子像素,因此保证了相同颜色的子像素组呈有规律的交替排列,可以增加掩膜板的强度,降低蒸镀掩膜版制作工艺和蒸镀工艺的难度,有利于制作小尺寸的子像素,提高显示装置的PPI;
2、该像素结构中三种颜色分布相对均匀,显示效果较佳,每个子像素组包括四个颜色相同的子像素,可以根据不同的显示要求来划分相应的像素单元,使得每个像素单元均包括三种颜色的子像素,当所述三种颜色为红、绿、蓝三基色时,通过调节红、绿、蓝的显示比例而达到不同的灰度和色彩组合,可以实现真正意义上的全色显示,适用范围广。
附图说明
图1A为现有技术中一种OLED显示面板的像素结构排布示意图;
图1B为对应图1A的一种FMM的示意图;
图2A至2H是本申请具体实施例的像素结构的排布示意图;
图3是本申请具体实施例的FMM的示意图;
图4A至4H是本申请具体实施例的像素单元的划分示意图。
具体实施方式
以下结合附图对本申请进行说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本申请实施例的目的,各个附图中只表示出了相应结构的一部分,而实际产品可依据实际显示需要作相应的变化。此外,本申请中所述第一行、第二行、第一列、第二列……均是为说明本申请而以图中所示为参考标准的,并非指实际产品中的行和列。
请参考图2A至2G,本申请一实施例提供一种像素结构,包括呈阵列排列的若干像素大组20,每一所述像素大组20包括沿X方向(第一方向)相邻设置(即按列排列)且在Y方向(第二方向)上相互错位的第一像素小组21和第二像素小组22,第一像素小组21和第二像素小组22在Y方向上相互错位是指第一像素小组21和第二像素小组22的Y方向上的顶部不等高,例如,第一像素小组21在Y方向上的高度高于第二像素小组22在Y方向上的高度,使得第二像素小组22相对第一像素小组21向下错位,如图2A所示;再例如第一像素小组21在Y方向上的高度低于第二像素小组22在Y方向上的高度,使得第二像素小组22相对第一像素小组21向上错位,如图2B所示。本实施例的像素结构实质上包括由第一像素小组21在Y方向上排列形成的多个像素组列和由第二像素小组22在Y方向上排列形成的多个像素组列,第一像素小组21在Y方向上形成的像素组列和第二像素小组22在Y方向上形成的像素组列在X方向上交替重复排列,且相邻两像素组列相互错位。换言之,所有奇数列像素组列中的子像素的排列方式相同,所述偶数列像素组列中的子像素的排列方式也相同,然而奇数列像素组列和偶数列像素组列中相同颜色的子像素组并非上下对准,而是相互错开(移位)排列。
第一像素小组21和第二像素小组22均包括第一子像素组201、第二子像素组202和第三子像素组203三种颜色不同的子像素组,三种颜色可以是红色(R)、绿色(G)和蓝色(B),且第一像素小组21和第二像素小组22 中,第一子像素组201、第二子像素组202和第三子像素组203的排列顺序可以相同(如图2H所示),也可以不同(如图2A至2G所示),每个子像素组中均包括颜色相同的四个子像素,这四个子像素的形状和尺寸均完全相同,并排列成两行两列的阵列。例如,第一子像素组201中四个子像素均为红色子像素,记为R,第二子像素组202中四个子像素均为绿色子像素,记为G,第三子像素组203中四个子像素均为蓝色子像素,记为B,且四个R、四个G、四个B分别呈2×2的阵列。
请参考图2A至2H,第一像素小组21中三种颜色不同的子像素组沿Y方向(在图2H中为X方向)的排列顺序可以为第一子像素组201、第二子像素组202和第三子像素组203。对应的,第二像素小组22中三种颜色不同的子像素组沿Y方向的排列顺序可以是第三子像素组203、第一子像素组201和第二子像素组202,如图2A、2B和2H所示;也可以是第三子像素组203、第二子像素组202和第一子像素组201,如图2C所示;还可以是第二子像素组202、第三子像素组203和第一子像素组201,如图2D所示;还可以是第二子像素组202、第一子像素组201和第三子像素组203,如图2E所示;还可以是第一子像素组201、第三子像素组203和第二子像素组202,如图2F所示;也可以是第一子像素组201、第二子像素组202和第三子像素组203,如图2G所示。
可选的,请参考图2A,当每个像素大组20中,第一像素小组21相对第二像素小组22向上错位时,第二像素小组22的第一种颜色的子像素组在Y方向上的中线(如图2A中两行B之间的虚线)与第一像素小组21的另两种颜色的子像素组间的交界线(如图2A中4个R和4个G之间的实线)重合;请参考图2B,当每个像素大组20中,第一像素小组21相对第二像素小组22向下错位时,第一像素小组21的第一种颜色的子像素组在Y方向上的中线(如图2B中两行R之间的虚线)与第二像素小组22的另两种颜色的子像素组间的交界线(如图2B中4个B和4个R之间的实线)重合,由此实现第一像素小组21相对第二像素小组22的错位,有利于划分出既包含第一像素小组21中的子像素,又包含第二像素小组22中的子像素的像素单元的划 分,实现高PPI。此外,还有利于降低掩膜版的制作难度。
需要说明的是,各种颜色的子像素的大小可根据每个子像素的寿命不同来进行适应性调整。优选的,同一所述像素大组中,所有的子像素的形状和尺寸均相同,从而可以采用同一张掩膜版来分三次蒸镀来制作三种颜色的子像素,以最大程度的降低成本;或者,其中两种颜色的子像素的形状和尺寸均相同,另一种颜色的子像素与所述两种颜色的子像素的形状和尺寸均不同,从而可以采用同一张掩膜版来分两次蒸镀来制作所述两种颜色的子像素,以节约成本;或者,三种颜色的子像素的形状相同,但尺寸不完全相同,例如,在同一所述像素大组中,子像素R、G、B的形状均为条状,所述条状可以是直角矩形、圆角矩形以及缺角矩形(四个矩形角中至少一个角不为直角和圆角),所述条状对应的矩形长宽比可以是1:1、2:1、3:1、3:2或4:3,以有利于优化布线空间,子像素R、B矩形的尺寸完全相同,子像素G的尺寸(例如矩形的宽)大于或小于子像素R的尺寸(例如矩形的宽)。
另外,可以理解的是,实际生产中,各种产品的实际形状(和尺寸)与设计形状(和尺寸)之间允许存在一定偏差。一般,只要产品的实际形状(和尺寸)在设计形状(和尺寸)允许的偏差范围内,便可以达到使用要求。比如,子像素G、子像素R和子像素B的形状也可以是类矩形或者类长方形,比如说近似长方形或者近似正方形的梯形,所述梯形可以是等腰梯形或者非等腰梯形,可以是正梯形、倒梯形、逆时针旋转90度的梯形或顺时针旋转90度的梯形。在优选方案中,该梯形为等腰梯形,该等腰梯形的上底边与下底边的尺寸差值小于下底边长度的10%,并且,该等腰梯形的腰与上底边的夹角大于90度且小于100度,以及,该等腰梯形的腰与下底边的夹角大于80度且小于90度,这样,子像素G、子像素R和子像素B的形状还是大致为方形(在允许的偏差范围内),仍可获得较佳的排布效果。
此外,根据实际设计和生产需要,可以将图2A至图2G中的像素大组按阵列排列所形成的像素结构逆时针或顺时针90度,当然,也可以是旋转180度。比如,将图2A逆时针旋转90度,则得到如图2H所示的像素结构。如图2H所示,该像素结构包括呈阵列排列的若干像素大组20,每个像素大组 20包括沿Y方向相邻设置(即按行排列)且分别包括RGB三种颜色不同的子像素组的第一像素小组21和第二像素小组22;其中,所述第一像素小组21可以包括沿X方向依次排列的第一子像素组201、第二子像素组202和第三子像素组203;所述第二像素小组22可以包括沿X方向依次排列的第三子像素组203、第一子像素组201和第二子像素组202;每个子像素组包括四个颜色相同且呈2×2阵列排列的子像素,即第一像素小组21中的子像素排列成两行六列的阵列(RR GG BB/RR GG BB)。第二像素小组22中的三个颜色的子像素组的位置不同于第一像素小组21,也是一个两行六列的阵列(BB RR GG/BB RR GG)。每个像素大组20中,第二像素小组22相对第一像素小组21向右错位,且第二像素小组22的第一列(BB)子像素和第二列子像素(BB)之间的间隙在Y方向上的中线与第一像素小组21的第二列子像素(RR)和第三列子像素(GG)之间的间隙在X方向上的中线重合。这种像素结构实质上包括由第一像素小组21在X方向上依次排列形成的多个像素组行和由第二像素小组22在X方向上依次排列形成的多个像素组行,第一像素小组21在X方向上形成的像素组行和第二像素小组22在X方向上形成的像素组行在Y方向上交替重复排列,且相邻两行像素组行相互错位。换言之,所有奇数行像素组行中的子像素的排列方式相同,所述偶数行像素组行中的子像素的排列方式也相同,然而奇数行像素组行和偶数行像素组行中相同颜色的子像素组并非上下对准,而是相互错开(移位)排列。
本申请各实施例的像素结构中,每个子像素(R\G\B)均包括发光区(显示区)和非发光区(非显示区),每个子像素的发光区中包括阴极、阳极和电致发光层(亦称为有机发射层),所述电致发光层位于阴极和阳极之间,用于产生预定颜色光线以实现显示。本申请的像素结构通常需要利用三次蒸镀工艺以分别在对应的子像素的发光区中形成对应颜色(如红色、绿色或蓝色)的电致发光层。
图3为对应图2A所示像素结构的一种用于某种颜色的子像素蒸镀的FMM的示意图。如图3所示,该掩膜版具有多个蒸镀开口301,每个蒸镀开口301至少对应两个颜色相同的子像素,例如每个蒸镀开口301对应于图2A 中相应位置的四个颜色相同的子像素(即第一像素小组21或第二像素小组22中一个子像素组),由于图2A中奇数列像素组列和偶数列像素组列上相同颜色的子像素组并非上下对准,而是相互错开(移位)排列,因而,用以形成同种颜色的子像素组的蒸镀掩膜版(例如,FMM)上的蒸镀开口301也是错开排布的,因此可增加FMM的强度,尽可能避免FMM发生翘由、断裂等问题,减少蒸镀膜层晕开、偏移等影响蒸镀品质的缺陷。当所有子像素的形状和尺寸均相同时,三种颜色的子像素组的排列方式相同,因此三种颜色的子像素可以通过偏位的方式共用一个掩膜板来实现蒸镀,以节约成本。其中,每个子像素组中的四个子像素可以共用一个蒸镀开口301,从而减少空间占用,可以增加开口率,以提高PPI,或者在不增加开口的情况下,把现有开口做的更大一些,有利于降低工艺难度。需要说明的是,当掩膜版的一个蒸镀开口301对应两个颜色相同的子像素时,同种颜色的所有子像素组可以通过多次相应的偏位并蒸镀形成。
本申请的像素结构以“像素大组20”为单位进行阵列排布,其内部相邻的第一像素小组21和第二像素小组22相互错位,其结构相对图1A所示的常规的像素结构发生了很大变化,故其像素单元的划分(或者说显示驱动方法)也会有所变化,且被划分出的各个像素单元均包括三种颜色的子像素,以实现全色显示。本申请的像素结构不仅可以用于2D平面显示,还可以进一步借助分时控制而用于3D(立体或三维)显示。下面以图2A中所示的像素结构为例,详细说明本申请像素结构的像素单元的具体划分方式。
请参考图4A,在本申请的一实施例中,可以将每个像素大组20划分为一个像素单元P10,即每个像素单元P10均包括一个第一像素小组21和一个第二像素小组22,也就是说每个像素单元P10均包括八个R子像素、八个B子像素和八个G子像素,这种像素单元的划分方式下的每个像素单元均包括RGB三种颜色的子像素,能够实现全色显示,可以用于2D显示模式,同时子像素的数量较多,显示效果较佳。
请参考图4B,在本申请的一实施例中,可以将每个像素大组20划分为两个像素单元,第一像素小组21为像素单元P11,第二像素小组22为像素单 元P12,每个像素单元均包括四个R子像素、四个B子像素和四个G子像素,能够实现全色显示,可以用于2D显示模式,同时由于像素单元的数量是图4A所示的像素单元数量的两倍,因此显示效果进一步提高。此外还可以控制像素单元P11和P12分时显示,使得像素结构中划分出来的P11这类像素单元(即由第一像素小组21形成的像素单元)用于左眼显示,而像素结构中划分出来的P12这类像素单元(即由第二像素小组22形成的像素单元)用于右眼显示,由此可以使得该像素结构能够应用于VR和3D显示技术中。
请参考图4C,在本申请的一实施例中,可以将每个像素大组20划分为四个像素单元,第一像素小组21的两列子像素分别划分为像素单元P21、P22,第二像素小组22的两列子像素为像素单元P23和P24,每个像素单元均包括两个R子像素、两个B子像素和两个G子像素,能够实现全色显示,可以用于2D显示模式,同时由于像素单元的数量是图4B所示的像素单元数量的两倍,因此显示效果进一步提高。此外还可以控制像素单元P21至P24分时显示,使得像素结构中划分出来的像素单元P21、P23这类像素单元(包含每个像素小组左侧列子像素的像素单元)用于左眼显示,而像素结构中划分出来的像素单元P22和P24这类像素单元(包含每个像素小组右侧列子像素的像素单元)用于右眼显示,由此可以使得该像素结构能够应用于VR和3D显示技术中。
在本申请的一个实施例中,可以将每个像素大组20中第一像素小组21的一部分子像素和第二像素小组22中的一部分子像素划分为一个像素单元。
例如,请参考图4D,将每个像素大组20中第一像素小组21和第二像素小组22相邻的两列子像素列划分为一个像素单元P31,每个像素单元P31均包括四个R子像素、四个B子像素和四个G子像素,能够实现全色显示,可以用于2D显示模式,同时由于像素单元的数量是图4A所示的像素单元数量的两倍,因此显示效果进一步提高。
再例如,请参考图4E,在本申请的一个实施例中,将每个像素大组20中的第一像素小组21的两个R子像素(如图4E中第一像素小组21的第二行的两个R子像素)、两个G子像素(如图4E中第一像素小组21的第三行的 两个G子像素)以及第二子像素组22的两个B子像素(如图4E的第二子像素组22的第一行的两个B子像素)划分为一个像素单元P41,将每个像素大组20中的第一像素小组21的另外两个G子像素(如图4E中第一像素小组21的第四行的两个G子像素)、第二子像素组22的两个B子像素(如图4E中第二子像素组22的第二行的两个B子像素)以及第二子像素组22的两个R子像素(如图4E中第二子像素组22的第三行的两个R子像素)划分为一个像素单元P42,将每个像素大组20中的第一像素小组21的另外两个B子像素(如图4E中第一像素小组21的第五行的两个B子像素)、第二子像素组22的另外两个R子像素(如图4E中第二像素小组22的第四行的两个R子像素)以及第二子像素组22的两个G子像素(如图4E中第二像素小组22的第五行的两个G子像素)划分为一个像素单元P43。这种划分方式下形成的每个像素单元均包括两个R子像素、两个B子像素和两个G子像素,能够实现全色显示,可以用于2D显示模式,同时由于像素单元的数量多于图4A所示的像素单元的数量,因此显示效果进一步提高。此外,还可以通过分时控制,使得像素结构中划分出来的P41这类像素单元(包含第一子像素组21中的四个子像素的像素单元)用于左眼显示,而像素结构中划分出来的P42、P43这类像素单元(包含第二子像素组22中的两个子像素的像素单元)用于右眼显示,由此可以使得该像素结构能够应用于VR和3D显示技术中。
再例如,请参考图4F,将每个像素大组20中的第一像素小组21右侧列的两个R子像素和两个G子像素与第二像素小组22中的左侧列的两个B子像素划分为一个像素单元P51,将每个像素大组20中的第一像素小组21右侧列的两个B子像素与第二像素小组22中的左侧列的两个R子像素和两个G子像素划分为一个像素单元P52。这种像素单元的划分方式下,每个像素单元均包括两个R子像素、两个G子像素和两个B子像素,能够实现全色显示,可以用于2D显示模式,同时由于像素单元的数量多于图4A所示的像素单元的数量,因此显示效果进一步提高。
请参考图4G,在本申请的一实施例中,将每个像素大组20中的第一像素小组21右侧列的一个R子像素(如图4G中第一像素小组21的第二行右侧 R子像素)和一个G子像素(如图4G中第一像素小组21的第三行右侧G子像素)与第二像素小组22中的左侧列的一个B子像素(如图4G中第二像素小组22的第一行左侧B子像素)划分为一个像素单元P61,将每个像素大组20中的第一像素小组21右侧列的另一个G子像素(如图4G中第一像素小组21的第三行右侧G子像素)与第二像素小组22中的左侧列的另一个B子像素(如图4G中第二像素小组22的第二行左侧B子像素)和一个R子像素(如图4G中第二像素小组22的第三行左侧R子像素)划分为一个像素单元P62,将每个像素大组20中的第一像素小组21右侧列的一个B子像素(如图4G中第一像素小组21的第二行右侧R子像素)和与第二像素小组22中的左侧列的另一个R子像素(如图4G中第二像素小组22的第四行左侧R子像素)和一个G子像素(如图4G中第二像素小组22的第五行左侧G子像素)划分为一个像素单元P63。这种像素单元的划分方式下,每个像素单元均包括一个R子像素、一个G子像素和一个B子像素,能够实现全色显示,可以用于2D显示模式,同时由于像素单元的数量多于图4A至4E所示的像素单元的数量,因此显示效果进一步提高。
在上述各实施例中,每个像素大组20中不存在子像素共用的情况,即不存在两个像素单元共用同一个子像素的情况。在本申请的其他实施例中,同一所述像素大组20中,至少有一个子像素被共用而形成相应的像素单元。例如,请参考图4H,每个像素大组20中,第一像素小组21的右侧列的两个G子像素共用第二像素小组22左侧列相邻的B和R子像素,从而形成两个像素单元P71、P72;第一像素小组21的右侧列两个B子像素也共用第二像素小组22左侧列相邻的G和R子像素,从而形成两个像素单元P73、P74。这种像素单元的划分方式下,每个像素单元均包括RBG三种颜色的子像素,能够实现全色显示,可以用于2D显示模式,同时由于像素单元的数量多于图4A至图4G所示的像素单元的数量,因此显示效果进一步提高。
需要说明的是,各个像素单元的显示是靠各个子像素的驱动显示的内容(颜色和亮度等)混合的结果,因此各个像素单元的显示不仅与构成该像素单元的子像素的类型和数量有关,也与构成该像素单元的子像素的组合形式 有关,不同组合形式的子像素构成像素单元所需要的驱动信号也不同。也就是说,在将像素结构划分为多个像素单元后,按照各像素单元所需要显示的内容为其中的各子像素提供驱动信号,以为他们分配相应的亮度,像素共用方式可达到最好的混色效果,使显示效果最佳,同时还可提高分辨率。当然,以上所举的只是一种具体的子像素共用方式,如果采用其他的共用方式也是可行的。
本申请还提供一种显示装置,其包括上述的像素结构。所述显示装置可以为OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。由于本申请的显示装置包括上述的像素结构,因此其显示均匀性高,显示质量好。
可以理解的是,以上实施方式仅仅是为了说明本申请的原理而采用的示例性实施方式,然而本申请并不局限于此。对于本领域内的普通技术人员而言,在不脱离本申请的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本申请的保护范围。

Claims (15)

  1. 一种像素结构,其中,所述像素结构包括呈阵列排列的多个像素大组,每一所述像素大组包括相邻设置且相互错位的第一像素小组和第二像素小组,所述第一像素小组和所述第二像素小组均包括第一子像素组、第二子像素组、第三子像素组这三种颜色不同的子像素组,每个所述子像素组包括四个颜色相同的子像素。
  2. 如权利要求1所述的像素结构,其中,每一所述像素大组中,所述第一像素小组和所述第二像素小组在第一方向上相邻设置且在与所述第一方向垂直的第二方向上相互错位。
  3. 如权利要求2所述的像素结构,其中,所述第一方向为行方向,所述第二方向为列方向,或者
    所述第一方向为列方向,所述第二方向为行方向。
  4. 如权利要求3所述的像素结构,其中,每一所述像素大组中,所述第一像素小组和所述第二像素小组中三种颜色不同的子像素组以相同的顺序沿所述第二方向重复排列。
  5. 如权利要求3所述的像素结构,其中,每一所述像素大组中,所述第一像素小组和所述第二像素小组中三种颜色不同的子像素组以不同的顺序沿所述第二方向重复排列。
  6. 如权利要求3所述的像素结构,其中,每个所述子像素组中的四个颜色相同的子像素在所述第一方向和所述第二方向上排列成两行两列的阵列。
  7. 如权利要求6所述的像素结构,其中,每个子像素组中的四个颜色相同的子像素的形状和尺寸均相同,且当所述第二像素小组在所述第二方向上的高度低于所述第一像素小组在所述第二方向上的高度时,在同一所述像素 大组中,所述第二像素小组的第一种颜色的子像素组在所述第二方向上的中线与所述第一像素小组中的第二种颜色的子像素组和第三种颜色的子像素组之间的交界线重合。
  8. 如权利要求6所述的像素结构,其中,每个子像素组中的四个颜色相同的子像素的形状和尺寸均相同,当所述第二像素小组在所述第二方向上的高度高于所述第一像素小组在所述第二方向上的高度时,在同一所述像素大组中,所述第一像素小组的第一种颜色的子像素组在所述第二方向上的中线与所述第二像素小组中的第二种颜色的子像素组和第三种颜色的子像素组之间的交界线重合。
  9. 如权利要求1所述的像素结构,其中,每个所述像素大组被划分为至少一个像素单元,每个像素单元均包括三种颜色不同的子像素。
  10. 如权利要求9所述的像素结构,其中,同一所述像素大组中,所述第一子像素小组和所述第二子像素小组中无任何子像素被共用。
  11. 如权利要求9所述的像素结构,其中,同一所述像素大组中,所述第一子像素小组和/或所述第二子像素小组中的至少一个子像素被共用而形成相应的像素单元。
  12. 如权利要求9至11中任一项所述的像素结构,其中,在所形成的像素单元中,一部分所述像素单元用于实现左眼显示,另一部分所述像素单元用于实现右眼显示。
  13. 一种用于制造权利要求1至12中任一项所述的像素结构的掩膜版。
  14. 如权利要求13所述的掩膜版,其中,所述掩膜版的一个蒸镀开口对应至少两个颜色相同的子像素。
  15. 一种显示装置,其中,所述显示装置包括权利要求1至12中任一项所述的像素结构。
PCT/CN2018/090149 2017-08-31 2018-06-06 像素结构、掩膜版及显示装置 WO2019041943A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197026161A KR102336925B1 (ko) 2017-08-31 2018-06-06 픽셀 구조, 마스크 및 디스플레이 디바이스
EP18850266.0A EP3678183A4 (en) 2017-08-31 2018-06-06 PIXEL STRUCTURE, MASK AND DISPLAY DEVICE
US16/330,494 US11309357B2 (en) 2017-08-31 2018-06-06 Pixel structure, mask and display device with pixel arrangements improving pixels per inch
JP2019547083A JP6963625B2 (ja) 2017-08-31 2018-06-06 画素構造、マスク及び表示デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721111100.7U CN207320118U (zh) 2017-08-31 2017-08-31 像素结构、掩膜版及显示装置
CN201721111100.7 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019041943A1 true WO2019041943A1 (zh) 2019-03-07

Family

ID=62384690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090149 WO2019041943A1 (zh) 2017-08-31 2018-06-06 像素结构、掩膜版及显示装置

Country Status (7)

Country Link
US (1) US11309357B2 (zh)
EP (1) EP3678183A4 (zh)
JP (1) JP6963625B2 (zh)
KR (1) KR102336925B1 (zh)
CN (1) CN207320118U (zh)
TW (1) TWM573448U (zh)
WO (1) WO2019041943A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207320118U (zh) * 2017-08-31 2018-05-04 昆山国显光电有限公司 像素结构、掩膜版及显示装置
TWI670546B (zh) * 2018-07-16 2019-09-01 友達光電股份有限公司 發光二極體顯示器
CN110838505B (zh) * 2018-08-15 2020-11-06 云谷(固安)科技有限公司 显示结构和显示装置
CN112216714A (zh) * 2019-07-09 2021-01-12 陕西坤同半导体科技有限公司 像素结构及其制备方法、掩膜版、显示面板及显示装置
CN110827706A (zh) * 2019-11-22 2020-02-21 武汉天马微电子有限公司 一种阵列基板、显示面板及显示装置
CN112929644A (zh) * 2019-12-05 2021-06-08 北京芯海视界三维科技有限公司 多视点裸眼3d显示屏、多视点裸眼3d显示设备
CN112929636A (zh) * 2019-12-05 2021-06-08 北京芯海视界三维科技有限公司 3d显示设备、3d图像显示方法
CN111403451A (zh) * 2020-03-26 2020-07-10 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法、掩膜板
CN111584576A (zh) * 2020-05-14 2020-08-25 深圳市华星光电半导体显示技术有限公司 显示面板
CN114495830B (zh) * 2020-11-12 2023-10-24 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
US11842684B2 (en) * 2020-12-09 2023-12-12 Boe Technology Group Co., Ltd. Display panel and method for driving the same, and display apparatus
CN116959334B (zh) * 2023-09-21 2023-12-12 长春希达电子技术有限公司 亚像素的排布结构、虚拟像素结构以及像素复用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169070A (ja) * 2008-01-16 2009-07-30 Sony Corp カラー画像表示装置、シャドーマスクおよびシャドーマスクを使用したカラー画像表示装置の製造方法
CN102263975A (zh) * 2010-12-31 2011-11-30 友达光电股份有限公司 立体显示器及其驱动方法
CN104319283A (zh) * 2014-10-27 2015-01-28 京东方科技集团股份有限公司 一种有机电致发光显示器件、其驱动方法及显示装置
CN105242436A (zh) * 2015-11-06 2016-01-13 上海天马有机发光显示技术有限公司 一种阵列基板、显示面板及显示装置
CN106297642A (zh) * 2016-10-28 2017-01-04 京东方科技集团股份有限公司 显示面板、显示模组及其驱动方法、驱动装置、显示设备
CN207320118U (zh) * 2017-08-31 2018-05-04 昆山国显光电有限公司 像素结构、掩膜版及显示装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI402539B (zh) 2003-12-17 2013-07-21 Semiconductor Energy Lab 顯示裝置和其製造方法
GB2437110B (en) * 2006-04-12 2009-01-28 Cambridge Display Tech Ltd Optoelectronic display and method of manufacturing the same
JP5403860B2 (ja) * 2006-10-10 2014-01-29 株式会社ジャパンディスプレイ カラー液晶表示装置
EP3480649B1 (en) * 2007-02-13 2021-08-25 Samsung Display Co., Ltd. Subpixel layouts and subpixel rendering methods for directional displays and systems
JP4582102B2 (ja) * 2007-03-08 2010-11-17 セイコーエプソン株式会社 発光装置およびその製造方法ならびに電子機器
TW200931363A (en) * 2008-01-10 2009-07-16 Ind Tech Res Inst Flat display panel
KR101542398B1 (ko) 2008-12-19 2015-08-13 삼성디스플레이 주식회사 유기 발광 장치 및 그 제조 방법
KR101065314B1 (ko) 2009-04-28 2011-09-16 삼성모바일디스플레이주식회사 유기 발광 디스플레이 장치
JP5630203B2 (ja) 2010-10-21 2014-11-26 セイコーエプソン株式会社 電気光学装置、および電子機器。
JP6053278B2 (ja) 2011-12-14 2016-12-27 三菱電機株式会社 2画面表示装置
US9614191B2 (en) 2013-01-17 2017-04-04 Kateeva, Inc. High resolution organic light-emitting diode devices, displays, and related methods
KR101979181B1 (ko) 2013-01-17 2019-05-15 카티바, 인크. 고해상도 유기 발광 다이오드 장치
TWI538191B (zh) * 2013-03-04 2016-06-11 群創光電股份有限公司 彩色有機發光二極體顯示裝置
KR101992434B1 (ko) * 2013-04-17 2019-06-25 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 구동 방법
JP6267981B2 (ja) 2014-02-04 2018-01-24 株式会社 オルタステクノロジー 表示装置用反射板、及びその製造方法
US9449373B2 (en) * 2014-02-18 2016-09-20 Samsung Display Co., Ltd. Modifying appearance of lines on a display system
CN104036710B (zh) * 2014-02-21 2016-05-04 北京京东方光电科技有限公司 像素阵列及其驱动方法、显示面板和显示装置
CN104050896A (zh) * 2014-05-19 2014-09-17 京东方科技集团股份有限公司 一种显示面板及其显示方法和显示装置
CN104103672B (zh) * 2014-07-02 2017-02-15 京东方科技集团股份有限公司 一种oled单元及其制作方法、oled显示面板、oled显示设备
KR101934088B1 (ko) 2014-07-31 2019-01-03 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
CN104332486A (zh) * 2014-10-29 2015-02-04 上海和辉光电有限公司 Oled像素排列结构
CN104600096B (zh) 2015-01-12 2018-03-30 上海天马有机发光显示技术有限公司 一种oled像素阵列结构及一种掩模板
CN104916661B (zh) * 2015-04-21 2018-09-11 京东方科技集团股份有限公司 像素结构、掩膜板、有机电致发光显示面板及显示装置
US20170032749A1 (en) * 2015-07-28 2017-02-02 Shenzhen China Star Optoelectronics Technology Co. Ltd. Liquid crystal display device
CN105425405B (zh) 2015-12-09 2019-02-12 京东方科技集团股份有限公司 一种3d显示面板组件、3d显示装置及其驱动方法
CN106449725A (zh) 2016-12-20 2017-02-22 上海天马有机发光显示技术有限公司 有机发光显示面板和有机发光显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169070A (ja) * 2008-01-16 2009-07-30 Sony Corp カラー画像表示装置、シャドーマスクおよびシャドーマスクを使用したカラー画像表示装置の製造方法
CN102263975A (zh) * 2010-12-31 2011-11-30 友达光电股份有限公司 立体显示器及其驱动方法
CN104319283A (zh) * 2014-10-27 2015-01-28 京东方科技集团股份有限公司 一种有机电致发光显示器件、其驱动方法及显示装置
CN105242436A (zh) * 2015-11-06 2016-01-13 上海天马有机发光显示技术有限公司 一种阵列基板、显示面板及显示装置
CN106297642A (zh) * 2016-10-28 2017-01-04 京东方科技集团股份有限公司 显示面板、显示模组及其驱动方法、驱动装置、显示设备
CN207320118U (zh) * 2017-08-31 2018-05-04 昆山国显光电有限公司 像素结构、掩膜版及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3678183A4 *

Also Published As

Publication number Publication date
KR20190110135A (ko) 2019-09-27
JP2020509415A (ja) 2020-03-26
CN207320118U (zh) 2018-05-04
KR102336925B1 (ko) 2021-12-08
US11309357B2 (en) 2022-04-19
JP6963625B2 (ja) 2021-11-10
EP3678183A1 (en) 2020-07-08
EP3678183A4 (en) 2020-09-02
US20210384267A1 (en) 2021-12-09
TWM573448U (zh) 2019-01-21

Similar Documents

Publication Publication Date Title
WO2019041943A1 (zh) 像素结构、掩膜版及显示装置
US11081530B2 (en) Pixel arrangement structure, display panel, mask component, and evaporation apparatus
TWI673862B (zh) 像素結構
US10971555B2 (en) Pixel structure and display apparatus
US10026785B2 (en) Pixel and contact arrangement for organic light emitting diode display device, and display apparatus
CN114355678B (zh) 显示基板和显示装置
TWI663592B (zh) 像素結構、掩膜板及顯示裝置
EP3203519B1 (en) Array substrate, method of manufacturing the array substrate using a mask plate and display device
US20170104040A1 (en) Pixel structure, display panel, and display apparatus
CN107086239A (zh) 像素结构及其制备方法和显示装置
WO2019153939A1 (zh) 像素排列结构、显示基板、显示装置和掩摸板
CN110364557B (zh) 像素排布结构及显示面板
US10798369B2 (en) Three-dimensional display device
WO2020143213A1 (zh) 像素结构、显示基板和显示装置
CN108510895B (zh) 像素结构、掩膜版及显示装置
WO2020001214A1 (zh) 一种像素显示模组以及制作像素显示模组的掩膜板
CN110364546B (zh) 一种有机发光二极管oled像素排列结构
CN108511482A (zh) 像素结构、掩膜版及显示装置
CN108172607B (zh) 一种像素结构、阵列基板及显示装置
WO2023205921A1 (zh) 像素排列结构、显示面板、显示装置及掩膜板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019547083

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197026161

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018850266

Country of ref document: EP

Effective date: 20200331