WO2023205921A1 - 像素排列结构、显示面板、显示装置及掩膜板 - Google Patents

像素排列结构、显示面板、显示装置及掩膜板 Download PDF

Info

Publication number
WO2023205921A1
WO2023205921A1 PCT/CN2022/088686 CN2022088686W WO2023205921A1 WO 2023205921 A1 WO2023205921 A1 WO 2023205921A1 CN 2022088686 W CN2022088686 W CN 2022088686W WO 2023205921 A1 WO2023205921 A1 WO 2023205921A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
basic
pixels
arrangement structure
Prior art date
Application number
PCT/CN2022/088686
Other languages
English (en)
French (fr)
Inventor
韦钦河
余兆伟
林爽
宋广军
何宇平
张洪斌
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/088686 priority Critical patent/WO2023205921A1/zh
Priority to CN202280000866.5A priority patent/CN117322162A/zh
Publication of WO2023205921A1 publication Critical patent/WO2023205921A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements

Definitions

  • the present disclosure belongs to the field of display technology, and specifically relates to a pixel arrangement structure, a display panel, a display device and a mask.
  • OLED Organic Light Emitting Diode, organic electroluminescence
  • OLED Organic Light Emitting Diode, organic electroluminescence
  • VR Virtual Reality, virtual reality
  • users have higher requirements for the display effect of display devices.
  • the present disclosure aims to provide a pixel arrangement structure, a display panel, a display device and a mask.
  • a first aspect of the present disclosure provides a pixel arrangement structure, which includes: a plurality of basic pixel units arranged in a first direction and/or a second direction, each of the basic pixel units including a first sub-pixel, a second sub-pixel, and a second sub-pixel. sub-pixels, third sub-pixels, fourth sub-pixels and fifth sub-pixels, wherein the first sub-pixel, the second sub-pixel and the third sub-pixel are sub-pixels with different colors, so The third sub-pixel, the fourth sub-pixel and the fifth sub-pixel are sub-pixels with the same color;
  • the first sub-pixel includes a first side and a second side that are opposite in the first direction, and a third side and a fourth side that are opposite in the second direction;
  • the second sub-pixel interval is disposed on a third side of the first sub-pixel
  • the third sub-pixel interval is disposed on a first side of the first sub-pixel
  • the fourth sub-pixel and the third sub-pixel are Five sub-pixels are arranged at intervals on the fourth side of the first sub-pixel, and the fourth sub-pixel is biased toward the first side, and the fifth sub-pixel is biased toward the second side.
  • the long axes of the fourth sub-pixel and the fifth sub-pixel are arranged obliquely with respect to the second direction, and the inclination angle is an acute angle.
  • the fourth sub-pixel and the fifth sub-pixel are mirror symmetrical with the long axis of the first sub-pixel as the axis of symmetry.
  • the long axis of the first sub-pixel is parallel to the second direction
  • the long axis of the second sub-pixel is parallel to the first direction
  • first sub-pixel, the second sub-pixel and the third sub-pixel have the same shape and inconsistent areas
  • the first sub-pixel, the second sub-pixel and the third sub-pixel have inconsistent shapes and inconsistent areas.
  • the area of the first sub-pixel is larger than the area of the second sub-pixel, and the area of the second sub-pixel is larger than the area of the third sub-pixel.
  • the third sub-pixel, the fourth sub-pixel and the fifth sub-pixel have the same shape and the same area.
  • the first direction is perpendicular to the second direction.
  • the first sub-pixel is a blue pixel
  • the second sub-pixel is a red pixel
  • the third sub-pixel, the fourth sub-pixel and the fifth sub-pixel are green pixels
  • the first sub-pixel is a red pixel
  • the second sub-pixel is a blue pixel
  • the third, fourth and fifth sub-pixels are green pixels.
  • the light-emitting layer corresponding to the fifth sub-pixel in the basic pixel unit, the third sub-pixel and the fourth sub-pixel in the basic pixel unit adjacent to the second side of the basic pixel unit is an integrated structure.
  • a second aspect of the present disclosure provides a display panel, which includes: any pixel arrangement structure provided by the embodiments of the present disclosure.
  • the display panel includes an active matrix organic light emitting diode display panel.
  • a third aspect of the present disclosure provides a display device, which includes the display panel according to any one of the embodiments of the present disclosure.
  • a fourth aspect of the present disclosure provides a mask set for producing any of the pixel arrangement structures provided by the embodiments of the present disclosure, which includes: a first mask plate, a second mask plate and a third mask plate.
  • Three mask plates wherein the first mask plate is provided with a plurality of first openings at intervals in the first direction and/or the second direction, and the first openings are used to form first sub-pixels; the third The two mask plates are provided with a plurality of second openings at intervals in the first direction and/or the second direction, and the second openings are used to form second sub-pixels; the third mask plate is provided with a plurality of second openings in the first direction and/or the second direction. Or a plurality of third openings are spaced apart in the second direction, and the third openings are used to form the third sub-pixel, the fourth sub-pixel and the fifth sub-pixel.
  • the fifth sub-pixel in the basic pixel unit and the third sub-pixel in the basic pixel unit adjacent to the second side of the basic pixel unit A pixel and a fourth sub-pixel are formed through one of said third openings.
  • Figure 1 is a schematic diagram of a pixel arrangement structure provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of a pixel arrangement structure provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of a pixel arrangement structure provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of a pixel arrangement structure provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic diagram of a pixel arrangement structure provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic structural diagram of a first mask provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic structural diagram of a second mask provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a third mask plate provided by an embodiment of the present disclosure.
  • 100-basic pixel unit 100A-first basic pixel unit, 100B-second basic pixel unit, 10-first sub-pixel, 201-first display pixel unit, 202-second display pixel unit, 203-third display Pixel unit, 20-second sub-pixel, 30-third sub-pixel, 40-fourth sub-pixel, 50-fifth sub-pixel, 11-first mask plate, 12-first opening, 21-second mask Membrane plate, 22-second opening, 31-third mask plate, 32-third opening.
  • the display effect of a display device can be improved by reducing the pixel size and pixel gap.
  • due to limitations of the manufacturing process it is difficult to break through the method of reducing the pixel size and pixel gap. For this reason, changing the pixel arrangement structure and sub-pixel rendering technology have become important means to improve resolution.
  • the OLED display panel is composed of multiple pixel repeating units.
  • Each pixel repeating unit includes three sub-pixels, namely R sub-pixel (red sub-pixel), G sub-pixel (green sub-pixel) and B sub-pixel (and blue sub-pixel). ).
  • R sub-pixel red sub-pixel
  • G sub-pixel green sub-pixel
  • B sub-pixel blue sub-pixel.
  • PPI Pixel Per Inch, pixel density unit
  • Embodiments of the present disclosure provide a pixel arrangement method that can increase pixel density and achieve higher PPI in the same space, making the display effect of the OLED display panel more delicate and without jagged edges; at the same time, the The aperture ratio of the large pixel unit reduces the pixel current density, thereby extending the service life of the OLED display panel.
  • Embodiments of the present disclosure provide a pixel arrangement structure.
  • the pixel arrangement structure includes a plurality of basic pixel units 100 arranged in the first direction and/or the second direction.
  • Each basic pixel unit 100 includes a first sub-pixel 10 and a second sub-pixel 20 . , the third sub-pixel 30, the fourth sub-pixel 40 and the fifth sub-pixel 50.
  • the basic pixel unit 100 is a repeating unit, that is, the basic pixel unit 100 is repeatedly arranged in the first direction and/or the second direction. It should be noted that the embodiment of the present disclosure does not limit the number of basic pixel units 100 in the first direction and the second direction. For example, in the first direction, the number of basic pixel units 100 may be 1, 2, or more; in the second direction, the number of basic pixel units 100 may be 1, 2, or more. The number of basic pixel units 100 in the first direction and the second direction may be equal or different.
  • the pixel arrangement structure of the present disclosure will be described below by taking an array formed by arranging four basic pixel units 100 in the first direction and three basic pixel units 100 in the second direction as an example.
  • the first sub-pixel 10, the second sub-pixel 20 and the third sub-pixel 30 are sub-pixels with different colors.
  • the third sub-pixel 30, the fourth sub-pixel The sub-pixel 40 and the fifth sub-pixel 50 are sub-pixels with the same color. In other words, the colors of the third, fourth and fifth sub-pixels 30, 40 and 50 are different from the colors of the first and second sub-pixels 10 and 20.
  • the first sub-pixel 10 is a first color sub-pixel
  • the second sub-pixel 20 is a second color sub-pixel
  • the third sub-pixel 30 is a third color sub-pixel
  • the second color sub-pixel The number ratio of color sub-pixels and third color sub-pixels is 1:1:3.
  • the first sub-pixel 10 includes first and second sides opposite in the first direction, and third and fourth sides opposite in the second direction.
  • the basic pixel unit 100 includes a first side and a second side that are opposite in the first direction, and a third side and a fourth side that are opposite in the second direction.
  • the first sub-pixel The first side of the pixel 10 is the lower side of the first sub-pixel 10
  • the second side of the first sub-pixel 10 is the upper side of the first sub-pixel 10
  • the third side of the first sub-pixel 10 is the first sub-pixel 10
  • the left side of the first sub-pixel 10 is the right side of the first sub-pixel 10 .
  • the first, second, third and fourth sides of the basic pixel unit 100 are understood to be the same as the first, second, third and fourth sides of the first sub-pixel 10 and are no longer used here. Repeat.
  • the second sub-pixels 20 are spaced on the third side of the first sub-pixel 10
  • the third sub-pixels 30 are spaced on the first side of the first sub-pixel 10
  • the fourth sub-pixel 40 and the first sub-pixel 10 are spaced apart.
  • the five sub-pixels 50 are all spaced apart on the fourth side of the first sub-pixel 10
  • the fourth sub-pixel 40 and the fifth sub-pixel 50 are spaced apart in the first direction.
  • the first sub-pixel 10 is located in the middle area of the basic pixel unit 100, and the second sub-pixel 20, the third sub-pixel 30, the fourth sub-pixel 40 and the fifth sub-pixel 50 are arranged in the first Around the sub-pixel 10, that is, the second sub-pixel 20 and the third sub-pixel 30 are respectively provided on the third side and the first side of the first sub-pixel 10, and the fourth sub-pixel 40 and the fifth sub-pixel 50 are provided on the third side.
  • the fourth subpixel 40 and the fifth subpixel 50 are spaced apart in the first direction, that is, the fourth subpixel 40 is biased toward the first side, and the fifth subpixel 50 is biased toward the second side, so that the fourth subpixel 40 and the fifth subpixel 50 are biased toward the second side.
  • the effective light-emitting areas of the fifth sub-pixels 50 do not interfere with each other.
  • the middle area is the area around the symmetrical center of the basic pixel unit 100 based on the area where the basic pixel unit 100 is located.
  • the symmetry center of the first sub-pixel 10 may coincide with the symmetry center of the basic pixel unit 100, or the distance from the symmetry center of the basic pixel unit 100 may be within a preset distance range.
  • the first sub-pixel 10 is arranged in the central area of the basic pixel unit 100, and the second sub-pixel 20, the third sub-pixel 30, the fourth sub-pixel 40 and the fifth sub-pixel 50 are distributed around the first sub-pixel 10, which can reduce the space occupied by the basic pixel unit 100, that is, more basic pixel units 100 can be arranged in a limited space while avoiding crosstalk between sub-pixels.
  • the long axes of the fourth sub-pixel 40 and the fifth sub-pixel 50 are tilted relative to the second direction, and the tilt angle is an acute angle.
  • the first sub-pixel 10, the second sub-pixel 20, the third sub-pixel 30, the fourth sub-pixel 40 and the fifth sub-pixel 50 have different lengths and widths
  • the long axis is set in the length direction, That is, the long axis is the axis of symmetry of the sub-pixel in the length direction
  • the short axis is set in the width direction, that is, the short axis is the axis of symmetry of the sub-pixel in the width direction.
  • the inclination angle of the long axis of the fourth sub-pixel 40 and the fifth sub-pixel 50 relative to the second direction is any angle between 0° and 90°.
  • the closer the inclination angle of the long axis of the fourth sub-pixel 40 and the fifth sub-pixel 50 to the second direction is to 45°, the more beneficial it is to reduce the size of the basic pixel unit 100.
  • the inclination angle of the long axis of the fourth sub-pixel 40 and the fifth sub-pixel 50 relative to the second direction is between 30° and 60°.
  • the inclination angle of the long axis of the fourth sub-pixel 40 and the fifth sub-pixel 50 relative to the second direction is between 40° and 50°.
  • the long axis of the first sub-pixel 10 is arranged parallel to the second direction
  • the long axis of the second sub-pixel 20 is arranged parallel to the first direction
  • the long axis of the third sub-pixel 30 is parallel to the second direction.
  • the directions are arranged in parallel
  • the long axis of the fourth sub-pixel 40 and the fifth sub-pixel 50 is arranged obliquely to the second direction
  • the inclination angle between the long axis of the fourth sub-pixel 40 and the fifth sub-pixel 50 and the second direction is an acute angle
  • the long axes of the fourth sub-pixel 40 and the fifth sub-pixel 50 are neither parallel nor perpendicular to the second direction.
  • the inclination angle between the long axis of the two third sub-pixels arranged in the second direction and the second direction is an acute angle, which can not only reduce the length of the basic pixel unit 100 in the second direction, but also reduce the length of the basic pixel unit 100 in the second direction.
  • the length of the basic pixel unit 100 in the first direction thereby reducing the area occupied by the basic pixel unit 100, allowing more basic pixel units 100 to be arranged in a limited space, and increasing the aperture ratio of the basic pixel unit 100 , reducing the pixel current density, thereby increasing the service life of the display device.
  • the fourth sub-pixel 40 and the fifth sub-pixel 50 are mirror symmetrical with the long axis of the first sub-pixel 10 as the symmetry axis.
  • the fourth sub-pixel 40 and the fifth sub-pixel 50 are arranged in the second direction relative to the first sub-pixel 10, and are mirror images with the long axis of the first sub-pixel 10 as the axis of symmetry.
  • the symmetrical arrangement can avoid color difference between the first display pixel unit and the second display pixel unit, and can reduce the space occupied by the fourth sub-pixel 40 and the fifth sub-pixel 50 in the first direction.
  • the long axis of the first sub-pixel 10 is parallel to the second direction, and the long axis of the second sub-pixel 20 is parallel to the first direction.
  • the long axis of the first sub-pixel 10 is parallel to the second direction, that is, the long axes of the first sub-pixel 10 and the third sub-pixel 30 are both parallel to the second direction.
  • the first sub-pixel The opposite sides of the first sub-pixel 10 and the third sub-pixel 30 are parallel, which can reduce the gap between the first sub-pixel 10 and the third sub-pixel 30 in the first direction, making the first sub-pixel 10 and the third sub-pixel 30 more compact.
  • the large aperture ratio of the basic pixel unit 100 reduces the pixel current density, thereby increasing the service life of the display device.
  • the long axis of the second sub-pixel 20 is parallel to the first direction, that is, the long axis of the second sub-pixel 20 and the short axis of the first sub-pixel 10 are parallel to the first direction.
  • Such an arrangement can reduce The lengths of the first sub-pixel 10 and the second sub-pixel 20 in the second direction make the basic pixel unit 100 more compact in the second direction.
  • the opposite sides of the second sub-pixel 20 and the first sub-pixel 10 are parallel, which can reduce the gap between the first sub-pixel 10 and the second sub-pixel 20 in the second direction, so that the first sub-pixel 10
  • the second sub-pixel 20 is more compact in the second direction, increases the aperture ratio of the basic pixel unit 100, and reduces the pixel current density, thereby increasing the service life of the display device.
  • the shapes of the first sub-pixel 10 , the second sub-pixel 20 and the third sub-pixel 30 are consistent and the areas are inconsistent; or, the shapes of the first sub-pixel 10 , the second sub-pixel 20 and the third sub-pixel 30 are inconsistent. Inconsistent shapes and inconsistent areas.
  • the shape of the sub-pixel is the projected area of the sub-pixel on the substrate, where the substrate is a carrier used to carry the basic pixel unit 100 .
  • the shape of the sub-pixel can be any shape, but in the embodiment of the present disclosure, the shape of the sub-pixel is selected to have different lengths and widths.
  • the first sub-pixel 10, the second sub-pixel 20 and the third sub-pixel 30 have the same shape, but have different areas.
  • the first sub-pixel 10, the second sub-pixel 20 and the third sub-pixel 30 are all rectangular in shape, but the area of the first sub-pixel 10 is larger than that of the second sub-pixel 20, and the area of the second sub-pixel 20 is larger than that of the third sub-pixel 20. Subpixel 30.
  • the first sub-pixel 10 , the second sub-pixel 20 and the third sub-pixel 30 have inconsistent shapes and inconsistent areas, that is, both the shapes and areas are inconsistent.
  • the shape of the first sub-pixel 10 and the second sub-pixel 20 is a rectangle
  • the shape of the third sub-pixel 30 is an ellipse.
  • the area of the first sub-pixel 10 is larger than that of the second sub-pixel 20
  • the area of the second sub-pixel 20 is larger than that of the second sub-pixel 20.
  • the area is larger than the third sub-pixel 30.
  • the structure of the basic pixel unit 100 can be made more compact, and more basic pixel units can be arranged in the same space. 100, and increase the aperture ratio of the basic pixel unit 100 and reduce the pixel current density, thereby improving the service life of the display device.
  • the area of the first sub-pixel 10 is greater than the area of the second sub-pixel 20, and the area of the second sub-pixel 20 is greater than the area of the third sub-pixel 30.
  • the area of the sub-pixel refers to the area of the projection of the sub-pixel on the substrate.
  • the first sub-pixel 10 is arranged in the middle area of the basic pixel unit 100, the second sub-pixel 20 and the third sub-pixel 30 are arranged around the first sub-pixel 10, and the area of the first sub-pixel 10 is larger than that of the first sub-pixel 10.
  • the second sub-pixel 20 is disposed below the first sub-pixel 10 .
  • the area of the second sub-pixel 20 is smaller than the area of the first sub-pixel 10 but larger than the area of the third sub-pixel 30 .
  • the shapes and sizes of the fourth sub-pixel 40 and the fifth sub-pixel 50 are the same as those of the third sub-pixel 30, which will not be described again here.
  • the areas of the first sub-pixel 10 and the second sub-pixel 20 are larger than the area of the third sub-pixel 30, which is beneficial to sub-pixel rendering, thereby improving the display effect of the display panel.
  • the third sub-pixel 30 , the fourth sub-pixel 40 and the fifth sub-pixel 50 have the same shape and the same area; or, the third sub-pixel 30 , the fourth sub-pixel 40 and the fifth sub-pixel 50 have the same shape.
  • the shapes are inconsistent and the areas are consistent; or the third sub-pixel 30 , the fourth sub-pixel 40 and the fifth sub-pixel 50 are inconsistent in shape and inconsistent in area.
  • the shape of the third sub-pixel 30 is the shape of the projection of the third sub-pixel 30 on the substrate.
  • the shape of the third sub-pixel 30 may be a rectangle, a rounded rectangle (a rectangle with four rounded corners), or an ellipse. Or other shapes where the long and short axes are not the same length.
  • the third sub-pixel 30 , the fourth sub-pixel 40 and the fifth sub-pixel 50 in the basic pixel unit 100 may have the same shape and the same area. As shown in Figures 1 and 2, the shapes of the third sub-pixel 30, the fourth sub-pixel 40 and the fifth sub-pixel 50 are all rectangular, and the third sub-pixel 30, the fourth sub-pixel 40 and the fifth sub-pixel The areas 50 are all the same, that is, the third sub-pixel 30 , the fourth sub-pixel 40 and the fifth sub-pixel 50 are the same sub-pixels, but are located at different locations.
  • the third sub-pixel 30 , the fourth sub-pixel 40 and the fifth sub-pixel 50 in the basic pixel unit 100 may have inconsistent shapes but consistent areas.
  • the shape of the third sub-pixel 30 is a rounded rectangle, and the shapes of the fourth sub-pixel 40 and the fifth sub-pixel 50 are elliptical.
  • the area of the third sub-pixel 30 is different from that of the fourth sub-pixel 40 and the fifth sub-pixel 30 .
  • Pixel 50 has a different area.
  • the shape of the third sub-pixel 30 is a rounded rectangle
  • the fourth sub-pixel 40 and the fifth sub-pixel 50 are a right-angled rectangle
  • the shapes of the third sub-pixel 30, the fourth sub-pixel 40 and the fifth sub-pixel 50 are The areas are different from each other.
  • the shapes and areas of the third sub-pixel 30 , the fourth sub-pixel 40 and the fifth sub-pixel 50 in the basic pixel unit 100 are different.
  • the shape of the third sub-pixel 30 is a rounded rectangle
  • the shape of the fourth sub-pixel 40 is an ellipse
  • the fifth sub-pixel 50 is a right-angled rectangle.
  • the third sub-pixel 30, the fourth sub-pixel 40 and the fifth sub-pixel 30 are in the shape of a right-angled rectangle.
  • the areas of the sub-pixels 50 are different from each other.
  • the shapes and areas of the third sub-pixel 30 , the fourth sub-pixel 40 and the fifth sub-pixel 50 may be the same or different.
  • the shape and area of the pixel 50 can change the compactness of the basic pixel unit 100, thereby adjusting the area of the basic pixel unit 100, thereby changing the PPI of the display panel.
  • each basic pixel unit includes a first sub-pixel 10, a second sub-pixel 20, a third sub-pixel 30, a fourth sub-pixel 40 and a fifth sub-pixel 50, and the first sub-pixel 10,
  • the second sub-pixel 20, the third sub-pixel 30, the fourth sub-pixel 40 and the fifth sub-pixel 50 are all elliptical in shape.
  • the first sub-pixel 10 , the second sub-pixel 20 and the third sub-pixel 30 have different sizes
  • the third sub-pixel 30 , the fourth sub-pixel 40 and the fifth sub-pixel 50 have the same size.
  • the long axis of the ellipse is the long axis of the sub-pixel
  • the short axis of the ellipse is the short axis of the sub-pixel.
  • the long axis of the first sub-pixel 10 is parallel to the second direction, and the short axis of the first sub-pixel 10 is parallel to the first direction.
  • the second sub-pixel 20 is disposed on the third side of the first sub-pixel 10, and the long axis of the second sub-pixel 20 is parallel to the first direction, and the short axis of the second sub-pixel 20 is parallel to the second direction.
  • the third sub-pixel 30 is disposed on the first side of the first sub-pixel 10, and the long axis of the third sub-pixel 30 is parallel to the second direction, and the short axis of the third sub-pixel 30 is parallel to the first direction.
  • the fourth sub-pixel 40 and the fifth sub-pixel 50 are arranged on the fourth side of the first sub-pixel 10, and the long axes of the fourth sub-pixel 40 and the fifth sub-pixel 50 are arranged obliquely with respect to the second direction, and the inclination angle is acute angle.
  • the fourth subpixel 40 is located on the fourth side of the first subpixel 10 and is offset toward the first side.
  • the fifth subpixel 50 is located on the fourth side of the first subpixel 10 and is offset toward the second side.
  • the pixel arrangement structure shown in FIG. 3 except for the first sub-pixel 10 , the second sub-pixel 20 , the third sub-pixel 30 and the fourth sub-pixel 40 Except for the difference in shape and size of the fifth sub-pixel 50, other structures are the same and will not be described again.
  • each basic pixel unit includes a first sub-pixel 10, a second sub-pixel 20, a third sub-pixel 30, a fourth sub-pixel 40 and a fifth sub-pixel 50, and the first sub-pixel 10.
  • the shapes of the second sub-pixel 20, the third sub-pixel 30, the fourth sub-pixel 40 and the fifth sub-pixel 50 are all hexagonal.
  • the first sub-pixel 10 , the second sub-pixel 20 and the third sub-pixel 30 have different sizes, and the third sub-pixel 30 , the fourth sub-pixel 40 and the fifth sub-pixel 50 have the same size.
  • the lengths of the six sides of the hexagon may be the same or different.
  • the lengths of two symmetrical sides of a hexagon are greater than the lengths of the other two symmetrical sides.
  • the long side of the hexagon is the long axis of the sub-pixel
  • the short side of the hexagon is the short axis of the sub-pixel.
  • the long axis of the first sub-pixel 10 is parallel to the second direction, and the short axis of the first sub-pixel 10 is parallel to the first direction.
  • the second sub-pixel 20 is disposed on the third side of the first sub-pixel 10, and the long axis of the second sub-pixel 20 is parallel to the first direction, and the short axis of the second sub-pixel 20 is parallel to the second direction.
  • the third sub-pixel 30 is disposed on the first side of the first sub-pixel 10, and the long axis of the third sub-pixel 30 is parallel to the second direction, and the short axis of the third sub-pixel 30 is parallel to the first direction.
  • the fourth sub-pixel 40 and the fifth sub-pixel 50 are arranged on the fourth side of the first sub-pixel 10, and the long axes of the fourth sub-pixel 40 and the fifth sub-pixel 50 are arranged obliquely with respect to the second direction, and the inclination angle is acute angle.
  • the fourth subpixel 40 is located on the fourth side of the first subpixel 10 and is offset toward the first side.
  • the fifth subpixel 50 is located on the fourth side of the first subpixel 10 and is offset toward the second side.
  • the pixel arrangement structure shown in FIG. 4 except for the first sub-pixel 10 , the second sub-pixel 20 , the third sub-pixel 30 and the fourth sub-pixel 40 Except for the difference in shape and size of the fifth sub-pixel 50, other structures are the same and will not be described again.
  • each basic pixel unit includes a first sub-pixel 10, a second sub-pixel 20, a third sub-pixel 30, a fourth sub-pixel 40 and a fifth sub-pixel 50, and the first sub-pixel 10.
  • the shapes of the second sub-pixel 20, the third sub-pixel 30, the fourth sub-pixel 40 and the fifth sub-pixel 50 are all octagonal.
  • the first sub-pixel 10 , the second sub-pixel 20 and the third sub-pixel 30 have different sizes, and the third sub-pixel 30 , the fourth sub-pixel 40 and the fifth sub-pixel 50 have the same size.
  • the lengths of the eight sides of the octagon may be the same or different.
  • the lengths of two symmetrical sides of an octagon are greater than the lengths of the other three symmetrical sides.
  • the long side of the octagon is the long axis of the sub-pixel
  • the short side of the octagon is the short axis of the sub-pixel.
  • the long axis of the first sub-pixel 10 is parallel to the second direction, and the short axis of the first sub-pixel 10 is parallel to the first direction.
  • the second sub-pixel 20 is disposed on the third side of the first sub-pixel 10, and the long axis of the second sub-pixel 20 is parallel to the first direction, and the short axis of the second sub-pixel 20 is parallel to the second direction.
  • the third sub-pixel 30 is disposed on the first side of the first sub-pixel 10, and the long axis of the third sub-pixel 30 is parallel to the second direction, and the short axis of the third sub-pixel 30 is parallel to the first direction.
  • the fourth sub-pixel 40 and the fifth sub-pixel 50 are arranged on the fourth side of the first sub-pixel 10, and the long axes of the fourth sub-pixel 40 and the fifth sub-pixel 50 are arranged obliquely with respect to the second direction, and the inclination angle is acute angle.
  • the fourth subpixel 40 is located on the fourth side of the first subpixel 10 and is offset toward the first side.
  • the fifth subpixel 50 is located on the fourth side of the first subpixel 10 and is offset toward the second side.
  • the pixel arrangement structure shown in FIG. 5 except for the first sub-pixel 10 , the second sub-pixel 20 , the third sub-pixel 30 and the fourth sub-pixel 40 Except for the difference in shape and size of the fifth sub-pixel 50, other structures are the same and will not be described again.
  • Figures 3 to 5 show elliptical, hexagonal, and octagonal sub-pixels
  • the embodiments of the present disclosure are not limited thereto, and the shapes of the sub-pixels can also adopt other different shapes. , this application will not list them one by one.
  • the shapes of the sub-pixels in each pixel arrangement are the same, that is, the first sub-pixel 10, the second sub-pixel 20, the third sub-pixel 30, and the fourth sub-pixel. 40 and the fifth sub-pixel 50 are both rounded rectangles, ellipses, hexagons or octagons, but this does not mean that the shapes of the sub-pixels in each pixel arrangement must be the same.
  • the shape of each sub-pixel in each pixel arrangement may be different.
  • the shape of the first sub-pixel 10 and the second sub-pixel 20 is a rounded rectangle
  • the shape of the third sub-pixel 30, the fourth sub-pixel 40 and the fifth sub-pixel 50 is an ellipse.
  • the shape of the first sub-pixel 10 is a rounded rectangle
  • the shape of the second sub-pixel 20 is a rounded rectangle
  • the shapes of the third, fourth and fifth sub-pixels 30, 40 and 50 are hexagonal.
  • the first direction is perpendicular to the second direction, that is, the angle between the first direction and the second direction is 90°.
  • the angle between the first direction and the second direction can also be set as needed.
  • the angle between the first direction and the second direction is between 85° and 95°, that is, the first direction and the second direction are perpendicular or substantially perpendicular to each other. Being substantially perpendicular means that the first direction and the second direction are close to perpendicular. .
  • first direction and the second direction in the embodiment of the present disclosure are only to illustrate the arrangement of the basic pixel unit and each sub-pixel, and do not limit the specific directions of the first direction and the second direction. In fact, the first direction and the second direction are interchangeable.
  • the first sub-pixel 10 is a blue pixel
  • the second sub-pixel 20 is a red pixel
  • the third sub-pixel 30, the fourth sub-pixel 40 and the fifth sub-pixel 50 are green pixels
  • the first The sub-pixel 10 is a red pixel
  • the second sub-pixel 20 is a blue pixel
  • the third sub-pixel 30, the fourth sub-pixel 40 and the fifth sub-pixel 50 are green pixels.
  • the number ratio of blue (B) pixels, red (R) pixels and green (G) pixels is 1:1:3, or, the ratio of red (R) pixels, blue pixels
  • the number ratio of color (B) pixels and green (G) pixels is 1:1:3.
  • the pixel arrangement structure provided by the embodiments of the present disclosure has a larger number of green sub-pixels in each display pixel unit, and the green pixel has a higher aperture ratio, which can improve the brightness life of the display panel.
  • the first sub-pixel 10 , the second sub-pixel 20 , the third sub-pixel 30 and the fourth sub-pixel 40 in the first basic pixel unit 100A constitute a display pixel unit
  • the fifth sub-pixel, the first sub-pixel 10, the second sub-pixel 20 and the third sub-pixel 30 in the second basic pixel unit 100B constitute a display pixel unit, that is, the first sub-pixel 10, the second sub-pixel 20 and The third sub-pixel 30 realizes pixel sharing through sub-pixel rendering technology.
  • the pixel arrangement structure provided by the embodiments of the present disclosure is conducive to making the display effect of the display panel more delicate through sub-pixel rendering technology, and the edges have no jagged feeling.
  • the following description takes two first basic pixel units 100A and second basic pixel units 100B that are adjacently arranged in the first direction in FIG. 2 as an example.
  • the first sub-pixel 10, the second sub-pixel 20, the third sub-pixel 30 and the fourth sub-pixel 10 in the first basic pixel unit 100A constitute the first display pixel unit 201 (dashed line frame in the figure).
  • the first sub-pixel 10, the second sub-pixel 20, the fifth sub-pixel 50 in 100A and the third sub-pixel 30 in the adjacent second basic pixel unit 100B constitute the second display pixel unit 202 (dotted line frame in the figure ).
  • the first sub-pixel 10 and the second sub-pixel 20 in the first basic pixel unit 100A are shared by the first display pixel unit 201 and the second display pixel unit 202, and the fourth sub-pixel 40 in the first basic pixel unit 100A Independently applied to the first display pixel unit 201, the fifth sub-pixel 50 in the first basic pixel unit 100A is independently applied to the second display pixel unit 202.
  • the third sub-pixel 30 in the second basic pixel unit 100B is shared by two display pixel units, that is, the third sub-pixel 30 in the second basic pixel unit 100B is applied to the second display in the first basic pixel unit 100A.
  • the pixel unit 202 is also applied to the first display pixel unit 201 in the second basic pixel unit 100B.
  • the first sub-pixel 10 , the second sub-pixel 20 , the third sub-pixel 30 and the fourth sub-pixel 40 in the second basic pixel unit 100B constitute a third display pixel unit 203 .
  • the combination of sub-pixel rendering technology can be used to make the first sub-pixel 10 and the second sub-pixel 20 shared by two display pixel units, so that the third sub-pixel 30 can be shared by two other display pixel units, achieving
  • the number of display pixel units is twice the number of basic pixel units, allowing the display panel to achieve a higher PPI.
  • the light-emitting layer corresponding to the fifth sub-pixel in the basic pixel unit, the third sub-pixel and the fourth sub-pixel in the basic pixel unit adjacent to the second side of the basic pixel unit is an integrated structure.
  • the first basic pixel unit 100A and the second basic pixel unit 100B are two adjacent basic pixel units, and the second basic pixel unit 100B is located on the second side of the first basic pixel unit 100A.
  • the light-emitting layers corresponding to the fifth sub-pixel 50 in the first basic pixel unit 100A and the third sub-pixel 30 and the fourth sub-pixel 40 in the second basic pixel unit 100B have an integrated structure.
  • the fifth sub-pixel 50 in the first basic pixel unit 100A and the third sub-pixel 30 and the fourth sub-pixel 40 in the second basic pixel unit 100B use a mask. membrane plate, so that the light-emitting layers corresponding to the fifth sub-pixel 50 in the first basic pixel unit 100A and the third sub-pixel 30 and the fourth sub-pixel 40 in the second basic pixel unit 100B are integrated, which can simplify the manufacturing process. , and can reduce production costs.
  • An embodiment of the present disclosure also provides a display panel, which includes the pixel arrangement structure provided by the embodiment of the present disclosure.
  • the display panel includes an active matrix organic light-emitting diode display panel, that is, the sub-pixels may be active light-emitting devices such as organic light-emitting diodes.
  • the first sub-pixel and the second sub-pixel are shared by two display pixel units, and a third sub-pixel is shared by two display pixel units, which is beneficial to rendering through sub-pixels.
  • the technology can make the display effect of the display panel more delicate, without jagged edges, and can effectively utilize the space of the display panel, allowing the display panel to obtain a higher PPI.
  • the aperture ratio of the sub-pixel is increased and the current density of the sub-pixel is reduced, thereby increasing the service life of the display device.
  • An embodiment of the present disclosure also provides a display device, which includes the display panel provided by the embodiment of the present disclosure.
  • the display device can be used in mobile phones, computers, vehicle-mounted terminals, wearable terminals, VR and other fields.
  • the first sub-pixel and the second sub-pixel are shared by two display pixel units, and a third sub-pixel is shared by two display pixel units, it is beneficial to pass through Sub-pixel rendering technology can make the display effect of the display device more delicate, without jagged edges, and increase the aperture ratio of the sub-pixels, thereby reducing the sub-pixel current density and thereby increasing the service life of the display device.
  • the mask plate group includes: a first mask plate 11 , a second mask plate 21 and a third mask plate 31 , wherein the first mask plate 11 is in the first direction and/or the third mask plate 31 .
  • a plurality of first openings 12 are spaced in two directions, and the first openings 12 are used to form first sub-pixels; the second mask 21 is spaced in a plurality of second openings in the first direction and/or the second direction. 22.
  • the second opening 22 is used to form the second sub-pixel;
  • the third mask 31 is provided with a plurality of third openings 32 at intervals in the first direction and/or the second direction, and the third opening 32 is used to form the third sub-pixel.
  • Sub-pixel 30, fourth sub-pixel 40 and fifth sub-pixel 50 are used to form the third sub-pixel.
  • the first sub-pixel and the second sub-pixel are respectively produced by evaporation through the first mask 11 and the second mask 21, and the third sub-pixel 30 is produced by the third mask 31 through evaporation. , the fourth sub-pixel 40 and the fifth sub-pixel 50, thereby obtaining the pixel arrangement structure provided by the embodiment of the present disclosure.
  • the first mask plate 11 , the second mask plate 21 and the third mask plate 31 are precision metal mask plates.
  • corresponding sub-pixels are formed by evaporating organic light-emitting materials of different colors.
  • any arrangement of the third sub-pixels can reduce the opening of the third mask plate 31 while increasing the aperture ratio, thereby improving the resolution and lifespan of the display panel.
  • three adjacently arranged third sub-pixels in two adjacent basic pixel units are formed through a third opening.
  • the fifth sub-pixel 50 in the first basic pixel unit 100A and the third sub-pixel 30 and the fourth sub-pixel 40 in the second basic pixel unit 100B are three adjacent sub-pixels. Therefore, the The third opening 32 on the three mask plates is in a "Y" shape. During the evaporation process, a third opening 32 can be used to form the third sub-pixel 30, the fourth sub-pixel 40 and the fifth sub-pixel 50, thereby reducing the process difficulty and reducing the production cost; moreover, through the pixel definition of the display panel layer can distinguish three third sub-pixels.
  • adjacent sub-pixels in two adjacent basic pixel units 100 are formed using one opening, which simplifies the manufacturing process and reduces the manufacturing cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开提供一种像素排列结构、显示面板、显示装置及掩膜板,属于显示技术领域,解决显示率和寿命低的问题。像素排布结构包括:在第一方向和/或第二方向上设置的多个基本像素单元,每个基本像素单元包括五个子像素,其中,第一子像素、第二子像素和第三子像素为颜色互不相同的子像素,第三子像素、第四子像素和第五子像素为颜色相同的子像素;其中,第一子像素包括在第一方向上相对的第一侧和第二侧,以及在第二方向上相对的第三侧和第四侧;第二子像素间隔设置于第一子像素的第三侧,第三子像素间隔设置于第一子像素的第一侧,第四子像素和第五子像素均间隔设置于第一子像素的第四侧,且第四子像素和第五子像素在第一方向间隔设置。

Description

像素排列结构、显示面板、显示装置及掩膜板 技术领域
本公开属于显示技术领域,具体涉及一种像素排列结构、显示面板、显示装置及掩膜板。
背景技术
OLED(Organic Light Emitting Diode,有机电致发光)显示技术具有色域广、响应速度快、视角宽、主动发光、柔性等特点,已经成为显示领域的主流产品,而且,逐渐向手机、车载、穿戴、VR(Virtual Reality,虚拟现实)等领域延伸,同时,用户对显示装置的显示效果有了更高的要求。
发明内容
本公开旨在提供一种像素排列结构、显示面板、显示装置及掩膜板。
本公开第一方面提供一种像素排布结构,其包括:在第一方向和/或第二方向上设置的多个基本像素单元,每个所述基本像素单元包括第一子像素、第二子像素、第三子像素、第四子像素和第五子像素,其中,所述第一子像素、所述第二子像素和所述第三子像素为颜色互不相同的子像素,所述第三子像素、第四子像素和第五子像素为颜色相同的子像素;
其中,所述第一子像素包括在所述第一方向上相对的第一侧和第二侧,以及在所述第二方向上相对的第三侧和第四侧;
所述第二子像素间隔设置于所述第一子像素的第三侧,所述第三子像素间隔设置于所述第一子像素的第一侧,所述第四子像素和所述第五子像素均间隔设置于所述第一子像素的第四侧,且所述第四子像素偏向于第一侧,所述第五子像素偏向于第二侧。
其中,所述第四子像素和所述第五子像素的长轴相对于所述第二方向倾斜设置,且倾斜角为锐角。
其中,所述第四子像素和所述第五子像素以所述第一子像素的长轴为对称轴呈镜像对称。
其中,所述第一子像素的长轴与所述第二方向平行,所述第二子像素的长轴与所述第一方向平行。
其中,所述第一子像素、所述第二子像素和所述第三子像素的形状一致且面积不一致;
或者,所述第一子像素、所述第二子像素和所述第三子像素的形状不一致且面积不一致。
其中,所述第一子像素的面积大于所述第二子像素的面积,所述第二子像素的面积大于所述第三子像素的面积。
其中,所述第三子像素、所述第四子像素和所述第五子像素的形状一致且面积一致。
其中,所述第一方向与所述第二方向相垂直。
其中,所述第一子像素为蓝色像素,所述第二子像素为红色像素,所述第三子像素、所述第四子像素和所述第五子像素为绿色像素;
或者,所述第一子像素为红色像素,所述第二子像素为蓝色像素,所述第三子像素、所述第四子像素和所述第五子像素为绿色像素。
其中,所述基本像素单元中的所述第五子像素、与所述基本像素单元第二侧相邻的基本像素单元中的第三子像素和第四子像素对应的发光层为一体结构。
本公开第二方面提供一种显示面板,其包括:本公开实施例提供的任意一种像素排布结构。
其中,所述显示面板包括有源矩阵有机发光二极体的显示面板。
本公开第三方面提供一种显示装置,其中,包括本公开实施例提供的任意一项所述的显示面板。
本公开第四方面提供一种用于制作本公开实施例提供的任一项所述的像素排布结构的掩膜板组,其中,包括:第一掩膜板、第二掩膜板和第三掩膜板,其中,所述第一掩膜板在第一方向和/或第二方向上间隔设置有多个第一开口,所述第一开口用于形成第一子像素;所述第二掩膜板在第一方向和/或第二方向上间隔设置有多个第二开口,所述第二开口用于形成第二子像素;所述第三掩膜板在第一方向和/或第二方向上间隔设置有多个第三开口,所述第三开口用于形成所述第三子像素、所述第四子像素和所述第五子像素。
其中,形成第一方向上排列的所述基本像素单元时,所述基本像素单元中的所述第五子像素、与所述基本像素单元第二侧相邻的基本像素单元中的第三子像素和第四子像素通过一个所述第三开口形成。
附图说明
附图用来提供对本公开的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开,并不构成对本公开的限制。通过参考附图对详细示例实施例进行描述,以上和其他特征和优点对本领域技术人员将变得更加显而易见。
图1为本公开实施例提供的一种像素排布结构示意图;
图2为本公开实施例提供的一种像素排布结构示意图;
图3为本公开实施例提供的一种像素排布结构示意图;
图4为本公开实施例提供的一种像素排布结构示意图;
图5为本公开实施例提供的一种像素排布结构示意图;
图6为本公开实施例提供的第一掩膜板的结构示意图;
图7为本公开实施例提供的第二掩膜板的结构示意图;
图8为本公开实施例提供的第三掩膜板的结构示意图。
其中附图标记为:
100-基本像素单元,100A-第一基本像素单元,100B-第二基本像素单元,10-第一子像素,201-第一显示像素单元,202-第二显示像素单元,203-第三显示像素单元,20-第二子像素,30-第三子像素,40-第四子像素,50-第五子像素,11-第一掩膜板,12-第一开口,21-第二掩膜板,22-第二开口,31-第三掩膜板,32-第三开口。
具体实施方式
为使本领域技术人员更好地理解本公开/实用新型的技术方案,下面结合附图和具体实施方式对本公开/实用新型作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在相关技术领域,可以通过减小像素尺寸和像素间隙的方式来提高显示装置的显示效果,然而,受制备工艺的限制,减小像素尺寸和像素间隙的方式很难突破。为此,通过改变像素排布结构和子像素渲染技术成为提高分辨率的重要手段。
OLED显示面板是由多个像素重复单元构成,每个像素重复单元包括三种子像素,即R子像素(红色子像素)、G子像素(绿色子像素)和B子像素(和蓝色子像素)。在有限的空间内排布的像素重复单元越多,即PPI(Pixel Per Inch,像素密度单位)越高,OLED显示面板的显示效果越好。
本公开实施例提供一种像素排布方式,该像素排布方式可以提高像素密度,在同等空间内达到更高的PPI,使得OLED显示面板的显示效果更细腻,边缘没有锯齿感;同时,增大像素单元的开口率,降低像素电流密度,进而延长OLED显示面板的使用寿命。
需要说明的是,附图中各部件的形状和大小不反映真实的比例,仅是为了示意性地说明本公开的内容。部件的形状是指该部件在衬底上的投影的形状。
本公开实施例提供一种像素排布结构。参阅图1和图2,像素排布结构包括在第一方向和/或第二方向上设置的多个基本像素单元100,每个基本像素单元100包括第一子像素10、第二子像素20、第三子像素30、第四子像素40和第五子像素50。
在本公开实施例中,基本像素单元100为重复单元,即在第一方向和/或第二方向上重复设置基本像素单元100。需要说明的是,本公开实施例对基本像素单元100在第一方向和第二方向上的数量不作限定。例如,在第一方向上,基本像素单元100的数量可以是1个、2个或更多个;在第二方向上,基本像素单元100的数量可以是1个、2个或更多个。基本像素单元100在第一方向和第二方向上的数量可以相等,也可以不等。
为了方便说明和理解本公开,下文以在第一方向上设置四个基本像素单元100、在第二方向上设置三个基本像素单元100形成的阵列为例说明本公开的像素排布结构。
在本公开实施例中,在每个基本像素单元100中,第一子像素10、第二子像素20和第三子像素30为颜色互不相同的子像素,第三子像素30、 第四子像素40和第五子像素50为颜色相同的子像素。换言之,第三子像素30、第四子像素40和第五子像素50的颜色与第一子像素10和第二子像素20的颜色不同。
在一些实施例中,第一子像素10为第一颜色子像素,第二子像素20为第二颜色子像素,第三子像素30为第三颜色子像素,第一颜色子像素、第二颜色子像素和第三颜色子像素的数量比为1:1:3。
在本公开实施例中,第一子像素10包括在第一方向上相对的第一侧和第二侧,以及在第二方向上相对的第三侧和第四侧。基本像素单元100包括在第一方向上相对的第一侧和第二侧,以及在第二方向上相对的第三侧和第四侧,读者正对图1和图2阅读时,第一子像素10的第一侧为第一子像素10的下侧,第一子像素10的第二侧为第一子像素10的上侧,第一子像素10的第三侧为第一子像素10的左侧,第一子像素10的第四侧为第一子像素10的右侧。基本像素单元100的第一侧、第二侧、第三侧和第四侧与第一子像素10的第一侧、第二侧、第三侧和第四侧的理解相同,在此不再赘述。
在本公开实施例中,第二子像素20间隔设置于第一子像素10的第三侧,第三子像素30间隔设置于第一子像素10的第一侧,第四子像素40和第五子像素50均间隔设置于第一子像素10的第四侧,且第四子像素40和第五子像素50在第一方向间隔设置。
如图1和图2所示,第一子像素10位于基本像素单元100的中间区域,第二子像素20、第三子像素30、第四子像素40和第五子像素50设置在第一子像素10的四周,即,第二子像素20和第三子像素30分别设置在第一子像素10的第三侧和第一侧,第四子像素40和第五子像素50设置在第一子像素10的第四侧。而且,第四子像素40和第五子像素50在第一方向间隔设置,即第四子像素40偏向于第一侧,第五子像素50偏向于第二侧,使得第四子像素40和第五子像素50的有效发光区域互不干扰。
其中,中间区域是以基本像素单元100所在区域为基准,在基本像素单 元100的对称中心的周围区域。在一些实施例中,第一子像素10的对称中心可以与基本像素单元100的对称中心重合,也可以与基本像素单元100的对称中心之间的距离在预设距离范围内。
如图1和图2所示,第一子像素10与周围的第二子像素20、第三子像素30、第四子像素40和第五子像素50均存在间隙,而且,第二子像素20、第三子像素30、第四子像素40和第五子像素50相互之间也存在间隙,因此,第一子像素10、第二子像素20、第三子像素30、第四子像素40和第五子像素50的发光相互之间互不干扰。而且,基本像素单元100之间存在间隙,因此,基本像素单元100之间的发光也互不干扰。
本公开实施例提供的像素排布结构中,将第一子像素10设置在基本像素单元100的中心区域,第二子像素20、第三子像素30、第四子像素40和第五子像素50分布于第一子像素10的四周,可以减小基本像素单元100所占空间,即在有限的空间内可以排布更多的基本像素单元100,同时避免子像素之间串扰。
在一些实施例中,第四子像素40和第五子像素50的长轴相对于第二方向倾斜设置,且倾斜角为锐角。
在本公开实施例中,第一子像素10、第二子像素20、第三子像素30、第四子像素40和第五子像素50的长度和宽度不同,在长度方向上设置长轴,即长轴是子像素在长度方向上的对称轴;在宽度方向上设置短轴,即,短轴是子像素在宽度方向上的对称轴。
在一些实施例中,第四子像素40和第五子像素50的长轴相对于第二方向的倾角为0°至90°之间的任意角度。而且,第四子像素40和第五子像素50的长轴相对于第二方向的倾角越接近45°,越有利于减小基本像素单元100的尺寸。例如,第四子像素40和第五子像素50的长轴相对于第二方向的倾角为30°至60°之间。例如,第四子像素40和第五子像素50的长轴相对于第二方向的倾角为40°至50°之间。
如图1和图2所示,第一子像素10的长轴与第二方向平行设置,第二子像素20的长轴与第一方向平行设置,第三子像素30的长轴与第二方向平行设置,第四子像素40和第五子像素50的长轴与第二方向倾斜设置,而且,第四子像素40和第五子像素50的长轴与第二方向的倾角为锐角,换言之,第四子像素40和第五子像素50的长轴与第二方向不平行,也不垂直。
在本公开实施例中,第二方向上设置的两个第三子像素的长轴与第二方向的倾角为锐角,既可以减小基本像素单元100在第二方向上的长度,也可以减少基本像素单元100在第一方向上的长度,从而减小基本像素单元100所占区域的面积,使得在有限的空间排布更多的基本像素单元100,并增大基本像素单元100的开口率,降低像素电流密度,从而提高显示装置的使用寿命。
在一些实施例中,第四子像素40和第五子像素50以第一子像素10的长轴为对称轴呈镜像对称。
如图1和图2所示,第四子像素40和第五子像素50相对于第一子像素10排布在第二方向上,并以第一子像素10的长轴为对称轴呈镜像对称设置,可以避免第一显示像素单元和第二显示像素单元之间的色差,而且,可以减小第四子像素40和第五子像素50在第一方向上的占用的空间。
在一些实施例中,第一子像素10的长轴与第二方向平行,第二子像素20的长轴与第一方向平行。
如图1和图2所示,第一子像素10的长轴与第二方向平行,即,第一子像素10和第三子像素30的长轴均与第二方向平行,第一子像素10和第三子像素30相对的侧边平行,可以减少第一子像素10和第三子像素30在第一方向上的间隙,使得第一子像素10和第三子像素30更紧凑,增大基本像素单元100的开口率,降低像素电流密度,从而提高显示装置的使用寿命。
在本公开实施例中,第二子像素20的长轴与第一方向平行,即,第二子像素20的长轴与第一子像素10的短轴与第一方向平行,这样设置可以减 少第一子像素10和第二子像素20在第二方向上的长度,使得基本像素单元100在第二方向更紧凑。
在一些实施例中,第二子像素20与第一子像素10相对的侧边平行,可以减少第一子像素10和第二子像素20在第二方向上的间隙,使得第一子像素10和第二子像素20第二方向上更紧凑,并增大基本像素单元100的开口率,降低像素电流密度,从而提高显示装置的使用寿命。
在一些实施例中,第一子像素10、第二子像素20和第三子像素30的形状一致且面积不一致;或者,第一子像素10、第二子像素20和第三子像素30的形状不一致且面积不一致。
其中,子像素的形状为子像素在衬底上的投影面积,其中,衬底是用于承载基本像素单元100的载体。子像素的形状可以为任意形状,但在本公开实施例中,子像素的形状选择长度和宽度不同的形状。
在一些实施例中,第一子像素10、第二子像素20和第三子像素30的形状一致,但面积不一致。例如,第一子像素10、第二子像素20和第三子像素30的形状均为长方形,但第一子像素10的面积大于第二子像素20,第二子像素20的面积大于第三子像素30。
在一些实施例中,第一子像素10、第二子像素20和第三子像素30的形状不一致且面积不一致,即形状和面积均不一致。例如,第一子像素10和第二子像素20的形状为长方形,第三子像素30的形状为椭圆形,而且;第一子像素10的面积大于第二子像素20,第二子像素20的面积大于第三子像素30。
本公开实施例中,通过改变第一子像素10、第二子像素20和第三子像素30的形状和面积可以使基本像素单元100的结构更紧凑,在相同空间设置更多的基本像素单元100,并增大基本像素单元100的开口率,降低像素电流密度,从而提高显示装置的使用寿命。
在一些实施例中,第一子像素10的面积大于第二子像素20的面积,第 二子像素20的面积大于第三子像素30的面积。
其中,子像素的面积是指子像素在衬底的投影的面积。
在本公开实施例中,第一子像素10设置在基本像素单元100的中间区域,第二子像素20和第三子像素30环绕第一子像素10设置,第一子像素10的面积大于第二子像素20和第三子像素30。第二子像素20设置在第一子像素10的下方,第二子像素20的面积小于第一子像素10的面积,但大于第三子像素30的面积。
需要说明的是,在本公开实施例中,第四子像素40、第五子像素50的形状和大小与第三子像素30相同,在此不再赘述。
在本公开实施例中,第一子像素10和第二子像素20的面积大于第三子像素30的面积,有利于子像素渲染,从而提高显示面板的显示效果。
在一些实施例中,第三子像素30、第四子像素40和第五子像素50的形状一致且面积一致;或者,第三子像素30、第四子像素40和第五子像素50的形状不一致且面积一致;或者,第三子像素30、第四子像素40和第五子像素50的形状不一致且面积不一致。
其中,第三子像素30的形状为第三子像素30在衬底上的投影的形状,第三子像素30的形状可以是长方形、圆角长方形(四角为圆角的长方形)、椭圆形,或者其它长轴和短轴的长度不相同的形状。
在一些实施例中,在基本像素单元100中的第三子像素30、第四子像素40和第五子像素50的形状可以一致且面积一致。如图1和图2所示,第三子像素30、第四子像素40和第五子像素50的形状均为长方形,而且,第三子像素30、第四子像素40和第五子像素50的面积均相同,即第三子像素30、第四子像素40和第五子像素50是相同的子像素,只是设置位置不同。
在一些实施例中,在基本像素单元100中的第三子像素30、第四子像素40和第五子像素50的形状可以不一致但面积一致。例如,第三子像素 30的形状为圆角长方形,第四子像素40和第五子像素50的形状为椭圆形,然而,第三子像素30的面积与第四子像素40和第五子像素50的面积不同。再如,第三子像素30的形状为圆角长方形,第四子像素40和第五子像素50为直角长方形,而且,第三子像素30、第四子像素40和第五子像素50的面积互不相同。
在一些实施例中,在基本像素单元100中的第三子像素30、第四子像素40和第五子像素50的形状和面积均不相同。例如,第三子像素30的形状为圆角长方形,第四子像素40的形状为椭圆形,第五子像素50为直角长方形,而且,第三子像素30、第四子像素40和第五子像素50的面积互不相同。
在本公开实施例中,第三子像素30、第四子像素40和第五子像素50的形状和面积可以相同或不同,通过调整第三子像素30、第四子像素40和第五子像素50的形状和面积可以改变基本像素单元100的紧凑程度,从而调节基本像素单元100的面积,进而改变显示面板的PPI。
如图3所示,每个基本像素单元包括第一子像素10、第二子像素20、第三子像素30、第四子像素40和第五子像素50,而且,第一子像素10、第二子像素20、第三子像素30、第四子像素40和第五子像素50的形状均为椭圆形。第一子像素10、第二子像素20和第三子像素30的大小不同,第三子像素30、第四子像素40和第五子像素50的大小相同。需要说明的是,椭圆形的长轴为子像素的长轴,椭圆的短轴为子像素的短轴。
其中,第一子像素10的长轴与第二方向平行,第一子像素10的短轴与第一方向平行。第二子像素20设置在第一子像素10的第三侧,且第二子像素20的长轴与第一方向平行,第二子像素20的短轴与第二方向平行。第三子像素30设置在第一子像素10的第一侧,且第三子像素30的长轴与第二方向平行,第三子像素30的短轴与第一方向平行。第四子像素40和第五子像素50设置在第一子像素10的第四侧,且第四子像素40和第五子像素50的长轴相对于第二方向倾斜设置,且倾斜角为锐角。第四子像素40位于第 一子像素10的第四侧,且向第一侧偏离,第五子像素50位于第一子像素10的第四侧,且向第二侧偏离。
在图3示出的像素排布结构与图1和图2示出的像素排布结构相比,除第一子像素10、第二子像素20、第三子像素30、第四子像素40和第五子像素50的形状、大小存在不同外,其它结构相同,在此不再赘述。
如图4所示,每个基本像素单元包括第一子像素10、第二子像素20、第三子像素30、第四子像素40和第五子像素50,而且,第一子像素10、第二子像素20、第三子像素30、第四子像素40和第五子像素50的形状均为六边形。第一子像素10、第二子像素20和第三子像素30的大小不同,第三子像素30、第四子像素40和第五子像素50的大小相同。
在一些实施例中,六边形的六个边的长度可以相同,也可以不同。例如六边形的两个对称边的长度大于另外两个对称边的长度不同。需要说明的是,六边形的长边为子像素的长轴,六边形的短边为子像素的短轴。
其中,第一子像素10的长轴与第二方向平行,第一子像素10的短轴与第一方向平行。第二子像素20设置在第一子像素10的第三侧,且第二子像素20的长轴与第一方向平行,第二子像素20的短轴与第二方向平行。第三子像素30设置在第一子像素10的第一侧,且第三子像素30的长轴与第二方向平行,第三子像素30的短轴与第一方向平行。第四子像素40和第五子像素50设置在第一子像素10的第四侧,且第四子像素40和第五子像素50的长轴相对于第二方向倾斜设置,且倾斜角为锐角。第四子像素40位于第一子像素10的第四侧,且向第一侧偏离,第五子像素50位于第一子像素10的第四侧,且向第二侧偏离。
在图4示出的像素排布结构与图1和图2示出的像素排布结构相比,除第一子像素10、第二子像素20、第三子像素30、第四子像素40和第五子像素50的形状、大小存在不同外,其它结构相同,在此不再赘述。
如图5所示,每个基本像素单元包括第一子像素10、第二子像素20、 第三子像素30、第四子像素40和第五子像素50,而且,第一子像素10、第二子像素20、第三子像素30、第四子像素40和第五子像素50的形状均为八边形。第一子像素10、第二子像素20和第三子像素30的大小不同,第三子像素30、第四子像素40和第五子像素50的大小相同。
在一些实施例中,八边形的八个边的长度可以相同,也可以不同。例如八边形的两个对称边的长度大于另外三个对称边的长度不同。需要说明的是,八边形的长边为子像素的长轴,八边形的短边为子像素的短轴。
其中,第一子像素10的长轴与第二方向平行,第一子像素10的短轴与第一方向平行。第二子像素20设置在第一子像素10的第三侧,且第二子像素20的长轴与第一方向平行,第二子像素20的短轴与第二方向平行。第三子像素30设置在第一子像素10的第一侧,且第三子像素30的长轴与第二方向平行,第三子像素30的短轴与第一方向平行。第四子像素40和第五子像素50设置在第一子像素10的第四侧,且第四子像素40和第五子像素50的长轴相对于第二方向倾斜设置,且倾斜角为锐角。第四子像素40位于第一子像素10的第四侧,且向第一侧偏离,第五子像素50位于第一子像素10的第四侧,且向第二侧偏离。
在图5示出的像素排布结构与图1和图2示出的像素排布结构相比,除第一子像素10、第二子像素20、第三子像素30、第四子像素40和第五子像素50的形状、大小存在不同外,其它结构相同,在此不再赘述。
需要说明的是,虽然图3至图5示出了椭圆形、六边形和八边形的子像素,但本公开实施例并不觉限于此,子像素的形状也可以采用其它不同的形状,本申请对此不再一一列举。
还需要说明的是,在图1至图5中,每个像素排布中各个子像素的形状相同,即第一子像素10、第二子像素20、第三子像素30、第四子像素40和第五子像素50均为圆角长方形、椭圆形、六边形或八边形,但这并不表示每个像素排布中的子像素的形状必须相同。在一些实施例中,每个像素排布中各个子像素的形状可以不同。例如,第一子像素10和第二子像素20的 形状为圆角长方形,第三子像素30、第四子像素40和第五子像素50的形状为椭圆形。或者,第一子像素10的形状为圆角长方形,第二子像素20的形状为圆角长方形,第三子像素30、第四子像素40和第五子像素50的形状为六边形。
在一些实施例中,第一方向与第二方向相垂直,即第一方向与第二方向之间的夹角为90°。在实际应用中,第一方向和第二方向之间的夹角也可以根据需要设置。例如,第一方向和第二方向之间的夹角为85°至95°之间,即第一方向和第二方向相互垂直或大致垂直,大致垂直即为第一方向和第二方向接近垂直。
需要说明的是,本公开实施例中第一方向和第二方向仅是为了说明基本像素单元、各个子像素的排布方式,并不表示对第一方向和第二方向的具体指向进行限定。实际上,第一方向和第二方向可以互换。
在一些实施例中,第一子像素10为蓝色像素,第二子像素20为红色像素,第三子像素30、第四子像素40和第五子像素50为绿色像素,或者,第一子像素10为红色像素,第二子像素20为蓝色像素,第三子像素30、第四子像素40和第五子像素50为绿色像素。
在本公开实施例中,在整个显示面板内,蓝色(B)像素、红色(R)像素和绿色(G)像素的数量比为1:1:3,或者,红色(R)像素、蓝色(B)像素和绿色(G)像素的数量比为1:1:3。
本公开实施例提供的像素排布结构,每个显示像素单元中绿色子像素的数量较多,而且绿色像素的开口率较高,可以提高显示面板的亮度寿命。
在一些实施例中,第一基本像素单元100A中的第一子像素10、第二子像素20、第三子像素30和第四子像素40构成一个显示像素单元,第一基本像素单元100A中的第五子像素、第二基本像素单元100B中的第一子像素10、第二子像素20、第三子像素30构成一个显示像素单元,即第一子像素10、第二子像素20和第三子像素30通过子像素渲染技术实现像素共用。 本公开实施例提供的像素排布结构,有利于通过子像素渲染技术可以使显示面板的显示效果更细腻,而且,边缘没有锯齿感。
下面以图2中两个在第一方向上相邻设置的第一基本像素单元100A和第二基本像素单元100B为例进行说明。
第一基本像素单元100A中的第一子像素10、第二子像素20、第三子像素30以及第四子像素10构成第一显示像素单元201(图中虚线框),第一基本像素单元100A中的第一子像素10、第二子像素20、第五子像素50以及相邻的第二基本像素单元100B中的第三子像素30构成第二显示像素单元202(图中点线框)。其中,第一基本像素单元100A中的第一子像素10和第二子像素20由第一显示像素单元201和第二显示像素单元202共用,第一基本像素单元100A中的第四子像素40独立地应用于第一显示像素单元201,第一基本像素单元100A中的第五子像素50独立地应用于第二显示像素单元202。第二基本像素单元100B中的第三子像素30由两个显示像素单元共用,即,第二基本像素单元100B中的第三子像素30既应用于第一基本像素单元100A中的第二显示像素单元202,又应用于第二基本像素单元100B中的第一显示像素单元201。第二基本像素单元100B中的第一子像素10、第二子像素20、第三子像素30和第四子像素40构成第三显示像素单元203。
在本公开实施例中,利用子像素渲染技术结合可以使第一子像素10和第二子像素20被两个显示像素单元共用,使第三子像素30被另外两个显示像素单元共用,实现了显示像素单元的数量是基本像素单元的数量的两倍,从而使显示面板获得更高的PPI。
在一些实施例中,基本像素单元中的第五子像素、与基本像素单元第二侧相邻的基本像素单元中的第三子像素和第四子像素对应的发光层为一体结构。
如图2所示,第一基本像素单元100A和第二基本像素单元100B为相邻的两个基本像素单元,且第二基本像素单元100B位于第一基本像素单元 100A的第二侧。其中,第一基本像素单元100A中的第五子像素50与第二基本像素单元100B中的第三子像素30和第四子像素40对应的发光层为一体结构。
具体地,在制备像素排布结构的发光层时,第一基本像素单元100A中的第五子像素50与第二基本像素单元100B中的第三子像素30和第四子像素40采用一个掩膜板,使得第一基本像素单元100A中的第五子像素50与第二基本像素单元100B中的第三子像素30和第四子像素40对应的发光层为一体结构,既可简化制作工艺,又可降低制作成本。
本公开实施例还提供一种显示面板,该显示面板包括本公开实施例提供的像素排布结构。
在一些实施例中,显示面板包括有源矩阵有机发光二极体的显示面板,即子像素可以为有机发光二极体等主动发光器件。
在本公开实施例中,由于像素排布结构中,第一子像素和第二子像素被两个显示像素单元共用,一个第三子像素被两个显示像素单元共用,有利于通过子像素渲染技术可以使显示面板的显示效果更细腻,边缘没有锯齿感,而且,可以有效地利用显示面板的空间,使显示面板获得更高的PPI。同时,增大子像素的开口率,降低子像素电流密度,从而提高显示装置的使用寿命。
本公开实施例还提供一种显示装置,其包括本公开实施例提供的显示面板。该显示装置可以应用于手机、电脑、车载终端、穿戴终端、VR等领域。
在本公开实施例提供的显示装置,由于像素排布结构中,第一子像素和第二子像素被两个显示像素单元共用,一个第三子像素被两个显示像素单元共用,有利于通过子像素渲染技术可以使显示装置的显示效果更细腻,边缘没有锯齿感,而且,增大了子像素的开口率,从而降低子像素电流密度,进而提高显示装置的使用寿命。
本公开实施例还提供一种用于制作本公开实施例提供的像素排布结构的掩膜板组。参照图6至图8,掩膜板组包括:第一掩膜板11、第二掩膜板 21和第三掩膜板31,其中,第一掩膜板11在第一方向和/或第二方向上间隔设置有多个第一开口12,第一开口12用于形成第一子像素;第二掩膜板21在第一方向和/或第二方向上间隔设置有多个第二开口22,第二开口22用于形成第二子像素;第三掩膜板31在第一方向和/或第二方向上间隔设置有多个第三开口32,第三开口32用于形成第三子像素30、第四子像素40和第五子像素50。
本公开实施例通过第一掩膜板11和第二掩膜板21通过蒸镀方式分别制作第一子像素和第二子像素,第三掩膜板31通过蒸镀方式制作第三子像素30、第四子像素40和第五子像素50,从而获得本公开实施例提供的像素排布结构。
在一些实施例中,第一掩膜板11、第二掩膜板21和第三掩膜板31为精密金属掩膜板。在制备显示面板时,通过蒸镀不同颜色的有机发光材料形成对应的子像素。在第三掩膜板31的开口越小,单个第三子像素的面积越小,可以提高显示面板的分辨率。同时,第三掩膜板31的开口率越高,对应的子像素电流的密度越低,有利于提高显示面板的寿命。本公开实施例中,第三子像素的排布凡是,可以减小第三掩膜板31开口,同时提高开口率,从而提高显示面板的分辨率和寿命。
在一些实施例中,形成第一方向上排列的基本像素单元时,相邻两个基本像素单元中的三个相邻设置的第三子像素通过一个第三开口形成。
如图8所示,第一基本像素单元100A中的第五子像素50与第二基本像素单元100B中的第三子像素30和第四子像素40是相邻的三个子像素,因此,第三掩膜板上的第三开口32呈“Y”字形。在蒸镀过程中,可以利用一个第三开口32形成第三子像素30、第四子像素40和第五子像素50,从而降低工艺难度,以及降低制作成本;而且,通过显示面板的像素界定层即可区分三个第三子像素。
在本公开实施例中,将相邻的两个基本像素单元100中相邻的子像素利用一个开口形成,简化了制作工艺,降低了制作成本。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
可以理解的是,以上实施方式仅仅是为了说明本公开/实用新型的原理而采用的示例性实施方式,然而本公开/实用新型并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开/实用新型的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开/实用新型的保护范围。

Claims (15)

  1. 一种像素排布结构,其包括:在第一方向和/或第二方向上设置的多个基本像素单元,每个所述基本像素单元包括第一子像素、第二子像素、第三子像素、第四子像素和第五子像素,其中,所述第一子像素、所述第二子像素和所述第三子像素为颜色互不相同的子像素,所述第三子像素、第四子像素和第五子像素为颜色相同的子像素;
    其中,所述第一子像素包括在所述第一方向上相对的第一侧和第二侧,以及在所述第二方向上相对的第三侧和第四侧;
    所述第二子像素间隔设置于所述第一子像素的第三侧,所述第三子像素间隔设置于所述第一子像素的第一侧,所述第四子像素和所述第五子像素均间隔设置于所述第一子像素的第四侧,且所述第四子像素和所述第五子像素在第一方向间隔设置。
  2. 根据权利要求1所述的像素排布结构,其中,所述第四子像素和所述第五子像素的长轴相对于所述第二方向倾斜设置且倾斜角为锐角。
  3. 根据权利要求2所述的像素排布结构,其中,所述第四子像素和所述第五子像素以所述第一子像素的长轴所在的直线为对称轴呈镜像对称。
  4. 根据权利要求1所述的像素排布结构,其中,所述第一子像素的长轴与所述第二方向平行,所述第二子像素的长轴与所述第一方向平行。
  5. 根据权利要求1所述的像素排布结构,其中,所述第一子像素、所述第二子像素和所述第三子像素的形状一致且面积不一致;
    或者,所述第一子像素、所述第二子像素和所述第三子像素的形状不一致且面积不一致。
  6. 根据权利要求5所述的像素排布结构,其中,所述第一子像素的面积大于所述第二子像素的面积,所述第二子像素的面积大于所述第三子像素的面积。
  7. 根据权利要求1所述的像素排布结构,其中,所述第三子像素、所述第四子像素和所述第五子像素的形状一致且面积一致。
  8. 根据权利要求1-7任意一项所述的像素排布结构,其中,所述第一方向与所述第二方向相垂直。
  9. 根据权利要求1-7任意一项所述的像素排布结构,其中,所述第一子像素为蓝色像素,所述第二子像素为红色像素,所述第三子像素、所述第四子像素和所述第五子像素为绿色像素;
    或者,所述第一子像素为红色像素,所述第二子像素为蓝色像素,所述第三子像素、所述第四子像素和所述第五子像素为绿色像素。
  10. 根据权利要求1-7任意一项所述的像素排布结构,其中,所述基本像素单元中的所述第五子像素、与所述基本像素单元第二侧相邻的基本像素单元中的第三子像素和第四子像素对应的发光层为一体结构。
  11. 一种显示面板,其包括:权利要求1-10中任一项所述像素排布结构。
  12. 根据权利要求11所述的显示面板,其中,所述显示面板包括有源矩阵有机发光二极体的显示面板。
  13. 一种显示装置,其中,包括如权利要求11或12所述的显示面板。
  14. 一种用于制作权利要求1-10中任一项所述的像素排布结构的掩膜板组,其中,包括:第一掩膜板、第二掩膜板和第三掩膜板,其中,所述第一掩膜板在第一方向和/或第二方向上间隔设置有多个第一开口,所述第一开口用于形成第一子像素;所述第二掩膜板在第一方向和/或第二方向上间隔设置有多个第二开口,所述第二开口用于形成第二子像素;所述第三掩膜板在第一方向和/或第二方向上间隔设置有多个第三开口,所述第三开口用于形成第三子像素、第四子像素和第五子像素。
  15. 根据权利要求14所述的掩膜板组,其中,形成第一方向上排列的所述基本像素单元时,所述基本像素单元中的所述第五子像素、与所述基 本像素单元第二侧相邻的基本像素单元中的第三子像素和第四子像素通过一个所述第三开口形成。
PCT/CN2022/088686 2022-04-24 2022-04-24 像素排列结构、显示面板、显示装置及掩膜板 WO2023205921A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/088686 WO2023205921A1 (zh) 2022-04-24 2022-04-24 像素排列结构、显示面板、显示装置及掩膜板
CN202280000866.5A CN117322162A (zh) 2022-04-24 2022-04-24 像素排列结构、显示面板、显示装置及掩膜板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088686 WO2023205921A1 (zh) 2022-04-24 2022-04-24 像素排列结构、显示面板、显示装置及掩膜板

Publications (1)

Publication Number Publication Date
WO2023205921A1 true WO2023205921A1 (zh) 2023-11-02

Family

ID=88516544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088686 WO2023205921A1 (zh) 2022-04-24 2022-04-24 像素排列结构、显示面板、显示装置及掩膜板

Country Status (2)

Country Link
CN (1) CN117322162A (zh)
WO (1) WO2023205921A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105096754A (zh) * 2015-08-28 2015-11-25 厦门天马微电子有限公司 显示装置和子像素渲染方法
CN111863889A (zh) * 2020-07-07 2020-10-30 武汉华星光电半导体显示技术有限公司 像素排列结构、显示面板以及显示装置
CN113745299A (zh) * 2021-09-01 2021-12-03 武汉华星光电半导体显示技术有限公司 显示面板及移动终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105096754A (zh) * 2015-08-28 2015-11-25 厦门天马微电子有限公司 显示装置和子像素渲染方法
CN111863889A (zh) * 2020-07-07 2020-10-30 武汉华星光电半导体显示技术有限公司 像素排列结构、显示面板以及显示装置
CN113745299A (zh) * 2021-09-01 2021-12-03 武汉华星光电半导体显示技术有限公司 显示面板及移动终端

Also Published As

Publication number Publication date
CN117322162A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
CN215933610U (zh) 显示基板以及显示装置
WO2021008164A1 (zh) 像素排布结构、显示面板及显示装置
CN114355678B (zh) 显示基板和显示装置
US10062737B2 (en) OLED pixel arrangement structure and display device
US10971555B2 (en) Pixel structure and display apparatus
US11482575B2 (en) Display panel and display device
CN109148543B (zh) 一种像素结构及显示面板
TWI763475B (zh) 顯示面板
US20190131358A1 (en) Oled array substrate and manufacturing method thereof, and display device
US11164910B2 (en) Pixel structures with at least two sub-pixels having a same color
WO2019041943A1 (zh) 像素结构、掩膜版及显示装置
WO2022116730A1 (zh) 像素结构、精细金属掩膜板、显示装置和控制方法
TWI780694B (zh) 像素排布結構、顯示面板及顯示裝置
CN108565282B (zh) 显示面板及其显示方法、显示装置
CN110224016A (zh) 像素结构及显示面板
WO2020143213A1 (zh) 像素结构、显示基板和显示装置
WO2023109186A1 (zh) 像素排布结构、显示面板和显示装置
US11069749B2 (en) Pixel display module and mask for manufacturing the pixel display module
CN111987130A (zh) 一种显示面板、掩膜组件和显示装置
WO2022121401A1 (zh) 像素排布结构及显示面板
CN212412057U (zh) 一种显示面板、掩膜组件和显示装置
CN111384083B (zh) 像素排列结构、显示面板以及显示装置
WO2023205921A1 (zh) 像素排列结构、显示面板、显示装置及掩膜板
CN113257882B (zh) 显示基板和显示装置
CN115349174B (zh) 阵列基板和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000866.5

Country of ref document: CN