WO2021008164A1 - 像素排布结构、显示面板及显示装置 - Google Patents

像素排布结构、显示面板及显示装置 Download PDF

Info

Publication number
WO2021008164A1
WO2021008164A1 PCT/CN2020/081226 CN2020081226W WO2021008164A1 WO 2021008164 A1 WO2021008164 A1 WO 2021008164A1 CN 2020081226 W CN2020081226 W CN 2020081226W WO 2021008164 A1 WO2021008164 A1 WO 2021008164A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
pixels
arrangement structure
angle
Prior art date
Application number
PCT/CN2020/081226
Other languages
English (en)
French (fr)
Inventor
刘明星
韩冰
杨泽明
甘帅燕
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Publication of WO2021008164A1 publication Critical patent/WO2021008164A1/zh
Priority to US17/402,395 priority Critical patent/US20210376010A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different

Definitions

  • This application relates to the field of display technology, and in particular to a pixel arrangement structure, a display panel and a display device.
  • the resolution of the display device can be improved by reducing the size of pixels and reducing the spacing between pixels.
  • the reduction in the size of the pixels and the distance between the pixels also requires higher precision in the manufacturing process, which will increase the difficulty of the manufacturing process of the display panel and increase the manufacturing cost.
  • the sub-pixel rendering (Sup-Pixel Rendering, SPR) technology can take advantage of the difference in the resolution of sub-pixels of different colors by the human eye, and change the mode of defining a pixel by the conventional red, green, and blue sub-pixels.
  • SPR Spa-Pixel Rendering
  • this pixel arrangement structure is for the irregular edge area (for example, arc area) of the display area, and the sub-pixels on different rows form steps along the extending direction of the irregular edge area, so that the display panel can display images when displaying images. , The jaggedness of the image becomes more serious in the special-shaped area, which affects the display effect of the display panel.
  • a pixel arrangement structure including a plurality of identical units arranged in an array, each unit comprising a first pixel group and a second pixel group arranged adjacently along a first direction, the Both the first pixel group and the second pixel group include three sub-pixels with different colors, and a line connecting the centers of the three sub-pixels forms a first virtual triangle;
  • the arrangement structure of the second pixel group is the same as the arrangement structure of the first pixel group inverted by 180 degrees in the second direction;
  • the two sides of the first virtual triangle respectively form a first angle ⁇ and a second angle ⁇ with the first direction, and 30° ⁇ 60°, 30° ⁇ 60°;
  • the second direction and the first direction are perpendicular to each other.
  • the sub-pixels of the same color in the two pixel groups in each unit are staggered and arranged with each other.
  • the structure of this sub-pixel staggered arrangement is adopted to enlarge the same
  • the available distance between the openings of the sub-pixels can reduce the difficulty of the mask manufacturing process and the evaporation process, so that the size of the pixel group can be made smaller, which is beneficial to the manufacture of high-resolution display screens.
  • the distance between two adjacent sub-pixels of the same color is wider, which is conducive to the transmission of the network force, reduces the deformation of the mask (Mask), and also reduces the manufacturing process of the fine metal mask. And the difficulty of the evaporation process.
  • the connecting lines of the edges of the multiple sub-pixels located at the irregular edges (for example, arcs) of the display area and the tangents of the irregular edges tend to coincide or parallel, so that the edges of the multiple sub-pixels are connected.
  • the line is more smooth and close to the shape of the irregular edge, thereby reducing the jaggedness of the image at the irregular edge and improving the display effect of the display panel.
  • the pixel arrangement structure of the present application can make the sub-pixels located at the irregular edges of the display area include multiple colors, thereby avoiding the formation of color fringes at the edges of the display panel and improving the display effect of the display panel.
  • a pixel arrangement structure including a plurality of sub-pixel rows arranged in a second direction, each sub-pixel row including first sub-pixels and second sub-pixels arranged in sequence along the first direction repeatedly. Two sub-pixels and third sub-pixels;
  • the sub-pixels in the same row extending in the second direction have the same color; the even-numbered sub-pixel rows extending in the first direction have the same row in the second direction Sub-pixels of the same color; in two adjacent sub-pixel rows extending in the first direction, sub-pixels of the same color are arranged in different rows extending in the second direction;
  • the adjacent first sub-pixel and the second sub-pixel in the same sub-pixel row extending in the first direction are located on the center line of the nearest third sub-pixel in the adjacent sub-pixel row extending in the second direction On both sides
  • the line between the center of the adjacent first sub-pixel and the second sub-pixel on the same sub-pixel row extending along the first direction and the center of the third sub-pixel in the adjacent sub-pixel row forms a first virtual A triangle, where both sides of the first virtual triangle form a first angle ⁇ and a second angle ⁇ with the first direction, and 30° ⁇ 60°, 30° ⁇ 60°;
  • the second direction and the first direction are perpendicular to each other.
  • a display panel including the pixel arrangement structure described in the above implementation.
  • a display device including the display panel in the above-mentioned embodiment.
  • Fig. 1 is an arrangement schematic diagram of a pixel arrangement structure
  • FIG. 2 is a schematic plan view of a high-precision metal mask (Fine Metal Mask, FMM) corresponding to the pixel arrangement structure shown in FIG. 1;
  • Figure 3 is a schematic diagram of another pixel arrangement structure
  • FIG. 4 is a schematic diagram of the arrangement of another pixel arrangement structure
  • FIG. 5 is a schematic diagram of the arrangement of a pixel arrangement structure according to an embodiment of the application.
  • FIG. 6 is a schematic diagram of the simulated arrangement of the pixel arrangement structure shown in FIG. 5 in the irregular edge area of the display area;
  • FIG. 7 is a schematic diagram of the force exerted on the net of the FMM with the pixel arrangement structure shown in FIG. 5;
  • FIG. 8 is a schematic diagram of the arrangement of a pixel arrangement structure according to another embodiment of the application.
  • FIG. 9 is a schematic plan view of a special-shaped edge of a display area according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of the arrangement of edge display units according to an embodiment of the application.
  • RGB is the most common as the three primary colors.
  • OLED organic light-emitting diode
  • OLED evaporation technology uses the traditional RGB strip arrangement method for evaporation. Among them, the best display effect is the side-by-side method. Specifically, there are three sub-pixels (red, green, and blue (R, G, B)) in a pixel (Pixel) unit. Each sub-pixel is rectangular, and each has an independent organic light-emitting element.
  • Organic light-emitting components are formed by using vapor deposition film-forming technology through high-precision metal masks (Fine Metal Mask, FMM) to form corresponding pixel positions on an array substrate, wherein the high-precision metal mask
  • the film plate is usually referred to as a vapor deposition mask for short.
  • the technical focus of making OLED displays with high image resolution that is, the number of pixels per inch (Pixels Per Inch, PPI), lies in the fineness and mechanical stability of FMM and the arrangement of pixels.
  • the FMM mask should have as few problems as warpage and fracture as possible to avoid haloing, offset, etc. that affect the quality of the vapor deposition.
  • the arrangement of pixels is the main factor that determines whether the FMM is prone to warpage and fracture. That is, the arrangement of pixels and sub-pixels largely determines the mechanical performance of the FMM, and the mechanical performance of the FMM largely determines the quality of vapor deposition.
  • the pixel arrangement structure in the related art shown in FIG. 1 usually adopts the FMM shown in FIG. 2 for vapor deposition.
  • the FMM includes a plurality of vapor deposition openings B and shielding regions C, and two adjacent ones in the same row in the vertical direction
  • the shielding area between the evaporation openings B is called a bridge. Since the sub-pixels of the same color in the arrangement of Figure 1 are arranged up and down, the evaporation opening B of the FMM must also be arranged in alignment, which makes the connection bridge between the two longitudinally adjacent evaporation openings B (bridge) has the risk of breaking.
  • the evaporation opening B of the FMM needs to correspond to a predetermined pixel position.
  • the alignment space between the FMM and the sub-pixel area will be reduced, which may cause color lack or color mixing defects. If the width of the connecting bridge is increased, the size of the sub-pixels will be reduced, thereby affecting the aperture ratio of the OLED display screen, which is not conducive to the realization of high resolution.
  • FIG. 3 is an arrangement schematic diagram of another pixel arrangement structure in the related art
  • FIG. 4 is an arrangement schematic diagram of another pixel arrangement structure in the related art.
  • the pixel arrangement structure includes multiple rows of sub-pixel rows along the vertical direction. Each sub-pixel row is formed by a linear arrangement of sub-pixel R, sub-pixel G, and sub-pixel B. The sub-pixel B faces the sub-pixel R and the sub-pixel G in another adjacent sub-pixel row.
  • the pixel arrangement structure includes a plurality of units arranged in an array, and each unit includes a first row formed by sub-pixels R and G linearly arranged in a vertical direction, and a first row formed by sub-pixels B The second row.
  • the pixel arrangement structure of Fig. 3 and Fig. 4 can achieve high resolution
  • the sub-pixels R, sub-pixels G, and sub-pixels B are arranged in a row, adding array wiring The difficulty of FMM production and the difficulty of opening the net.
  • and the sub-pixels G are arranged in the same row, which also increases the difficulty of array wiring, and in the vertical direction, the spacing between the sub-pixels B is uneven, and some The two adjacent sub-pixels B are relatively close, which is not conducive to FMM network expansion and affects the display effect.
  • the notch is provided on the display screen, the camera, the earpiece, and the infrared sensor are arranged in the notch/hole area, and the notch/hole area is not used to display the picture.
  • the display area of this type of display screen has irregular edges.
  • a pixel group with lower brightness can be added to the edge area to change the sawtooth phenomenon, and the corresponding algorithm can be configured in the driver chip to control the brightness.
  • the edge aliasing phenomenon can be improved, the algorithm complexity becomes larger, which increases the difficulty of designing the driver chip.
  • the present application provides a pixel arrangement structure, a display panel and a display device, which can better improve the above problems.
  • FIG. 5 is a schematic diagram of the arrangement of a pixel arrangement structure according to an embodiment of the application
  • FIG. 6 is a schematic diagram of a simulated arrangement of the pixel arrangement structure shown in FIG. 5 in a special-shaped edge area of a display area
  • FIG. 7 is a diagram shown in FIG. 5
  • FIG. 8 is a schematic diagram of the arrangement of the pixel arrangement structure according to another embodiment of the application.
  • the pixel arrangement structure of an embodiment of the present application includes a plurality of identical units arranged in an array.
  • Each unit includes a first pixel group 1 and a second pixel group 2 that extend along the first direction 01 and are arranged adjacently.
  • the first pixel group 1 includes three sub-pixels of different colors, and the center of the three sub-pixels is connected The line forms a first virtual triangle.
  • each pixel group includes a first sub-pixel 12, a second sub-pixel 14 and a third sub-pixel 16 with different colors, and the colors of the three sub-pixels are respectively one of red, blue and green.
  • the first sub-pixels 12 and the second sub-pixels 14 may be arranged in the same row extending along the first direction 01, and the third sub-pixels 16 may be arranged adjacently and extending along the first direction 01. The other row, so that the center of the three sub-pixels are connected to form a first virtual triangle.
  • the first sub-pixel 12 and the second sub-pixel 14 in the first pixel group 1 and the third sub-pixel 16 in the second pixel group 2 are arranged along the first The same row extending in one direction 01.
  • the pixel arrangement structure may include a plurality of sub-pixel rows extending along the first direction 01.
  • Each sub-pixel row includes a first sub-pixel 12, a second sub-pixel 14 and a third sub-pixel 16 that are repeatedly and sequentially arranged.
  • the adjacent first sub-pixel 12 and the second sub-pixel 14 in the same sub-pixel row and the nearest third sub-pixel 16 in the adjacent sub-pixel row form a pixel group.
  • the sub-pixels in the pixel arrangement structure can be arranged in rows, the arrangement is more uniform, and the display effect is good.
  • each unit includes a first pixel group 1 and a second pixel group 2 arranged adjacently along a first direction 01, and the first pixel group 1 is flipped along a second direction 02
  • the arrangement structure after 180 degrees is the same as the arrangement structure of the second pixel group 2, and in the second direction 02, the arrangement structure of the pixel groups in the same row is the same.
  • each unit of the pixel arrangement structure may include a first pixel group and a second pixel group arranged adjacently along the second direction 02, and the first pixel group is flipped along the first direction 01
  • the arrangement structure after 180 degrees is the same as the arrangement structure of the second pixel group, and in the first direction 01, the arrangement structure of the pixel groups in the same row is the same.
  • the pixel groups can be arranged more compactly, thereby reducing the pixel pitch and increasing the image resolution, that is, the number of PPIs.
  • the line connecting the centers of the three sub-pixels in each pixel group forms a first virtual triangle, and the two sides of the first virtual triangle are respectively aligned with the first direction 01
  • one side of the triangle as the base and the other two sides as the sides.
  • the first pixel group 1 and the second pixel group 2 are arranged adjacently along the first direction 01, and the first pixel group 1 is turned 180 degrees along the second direction 02, and The arrangement structure of the second pixel group 2 is the same.
  • the base of the first virtual triangle is the side parallel to the first direction 01; the vertex of the first virtual triangle is the point opposite to the base; the sides of the first virtual triangle are the other two of the first virtual triangle side.
  • the base of the first virtual triangle formed by the sub-pixels in the first pixel group 1 and the second pixel group 2 is the side parallel to the first direction 01, that is, the third sub-pixel 16 In the first pixel group 1 and the second pixel group 2, the sides of the first virtual triangle formed by the sub-pixels are two sides that form a first angle ⁇ and a second angle ⁇ with the first direction 01. side.
  • the sub-pixels of different colors on each sub-pixel row in the first direction 01 are repeatedly arranged in sequence, and the two pixel groups in each unit have the same arrangement structure after being turned 180° in the second direction 02. , And two sides of a first virtual triangle formed by a line connecting the centers of the three sub-pixels in each pixel group form a first angle ⁇ and a second angle ⁇ with the first direction 01.
  • the connecting lines of the edges of the plurality of sub-pixels located at the irregular edge W (for example, the arc edge) of the display area and the tangent line of the irregular edge W tend to coincide or parallel, so that the multiple sub-pixels
  • the edge connection is more smooth and close to the shape of the irregular edge W, thereby reducing the jaggedness of the image at the irregular edge W, and improving the display effect of the display panel.
  • the pixel arrangement structure in the embodiment of the present application can make the sub-pixels located at the irregular edge W of the display area include multiple colors, thereby avoiding the formation of color fringes at the edges of the display panel and improving the display effect of the display panel. .
  • the shape and size of each sub-pixel and the center spacing of the sub-pixels in the pixel group will make the two sides of the virtual triangle and the first direction The angle between 01 will change. It is easy to understand that under the premise of the same display area area and the same number of high PPIs, for the pixel arrangement structure of the embodiment of the present application, for example, the first angle ⁇ and the second angle ⁇ are maintained in the range of 30° and 60° Inside, only by changing the shape and size of each sub-pixel and the spacing between sub-pixels, it is possible to effectively reduce the jaggedness of the irregular edges of the display area for different display areas. Compared with the pixel arrangement structure in related designs, the pixel arrangement structure of the present application is more convenient to be applied to products of different designs, thereby effectively reducing design and manufacturing costs.
  • the sub-pixels belonging to the same row extending along the second direction 02 have the same color. As shown in FIGS. 5 and 8, the centers of the sub-pixels of the same color in the same row of pixel groups extending in the second direction 02 are located on a straight line. In the second direction 02, in two adjacent sub-pixel rows extending along the first direction 01, the sub-pixels of the same color are staggered, that is, they are arranged in different rows extending along the second direction 02; and In the same sub-pixel row extending in the first direction 01, the adjacent first sub-pixel 12 and the second sub-pixel 14 are located at the center of the nearest third sub-pixel 16 extending in the second direction 02 in the adjacent sub-pixel row Both sides of the line.
  • the arrangement of sub-pixels in all odd-numbered rows extending along the first direction 01 is the same, and the arrangement of sub-pixels in all even-numbered rows is also the same.
  • the sub-pixels of the same color emit light.
  • the zones do not correspond up and down, but are arranged staggered.
  • the light-emitting areas of the sub-pixels in the same row of pixel groups extending along the second direction 02 correspond up and down.
  • the centers of all the first sub-pixels 12 are located on a straight line
  • the centers of all the second sub-pixels 14 are located on another line.
  • the centers of all third sub-pixels 16 are located on another straight line.
  • each pixel group (pixel) in the pixel arrangement structure is composed of three colors (RGB three colors), which can realize a true full-color display.
  • three-color sub-pixels are repeatedly arranged in sequence.
  • the pitch of the sub-pixels of the same color is wider.
  • the pixel arrangement structure of the present application has more uniform display in the first direction and the second direction, and the display effect is better.
  • the sub-pixels of the same color in the first pixel group and the second pixel group are staggered and arranged.
  • this structure of dislocation arrangement of sub-pixels enlarges the available distance between the openings of the same sub-pixels, and reduces the difficulty of mask production process and evaporation process, so the pixel group The size can be made smaller, which is conducive to the manufacture of high-resolution display screens.
  • the distance between two adjacent sub-pixels of the same color is relatively wide, which is beneficial to the transmission of the network force F, reduces the deformation of the mask, and also reduces the fine metal mask. Difficulty of film production process and evaporation process.
  • the centers of the sub-pixels of the same color in the same row of pixel groups extending in the second direction 02 are located on a straight line, and the array traces connected to the sub-pixels can be in a row, which facilitates the arrangement of the array traces and is beneficial to Reducing the distance between the anode via hole and the pixel definition layer reduces the difficulty of manufacturing the display panel, which is beneficial to the manufacture of high-resolution display screens.
  • the area of the sub-pixel B is larger than the area of the red sub-pixel R and The area of the green sub-pixel G.
  • the first sub-pixel 12 is green
  • the second sub-pixel 14 is red
  • the third sub-pixel 16 is blue
  • the opening area of the third sub-pixel 16 is larger than that of the first sub-pixel 12.
  • the area is larger than the opening area of the second sub-pixel 14.
  • the opening area of the first sub-pixel 12 may be equal to the opening area of the second sub-pixel 14, so that the pixel arrangement structure has a better display effect.
  • the aperture area of the first sub-pixel 12 and the aperture area of the second sub-pixel 14 may not be equal. In practical applications, the aperture area of each sub-pixel can be adjusted accordingly as needed.
  • the shapes of multiple sub-pixels are the same.
  • the shapes of the first sub-pixel 12, the second sub-pixel 14 and the third sub-pixel 16 may be triangles, quadrangles or other polygons, etc., which are not limited herein. In this way, it can be ensured that the pixel arrangement is more uniform, and the connection of the sub-pixel edges at the irregular edge W of the display area is smoother, thereby further reducing the jaggedness of the irregular edge W of the display area.
  • the shape of the sub-pixels may be a rhombus.
  • the arrangement of the sub-pixels in the pixel group can be more compact, which is beneficial to increase the aperture ratio of the display panel; on the other hand, the side of the sub-pixels They are all arranged at an angle with the first direction 01, and the side corresponding to each sub-pixel is more parallel to the side of the aforementioned first virtual triangle, which can further reduce the jaggedness of the irregular edge W of the display area and improve the display effect.
  • the center line extending along the second direction 02 of the third sub-pixel 16 in each pixel group coincides with the vertical line connecting the centers of the first sub-pixel 12 and the second sub-pixel 14.
  • the first virtual triangle can be made into an isosceles triangle, the first sub-pixel 12, the second sub-pixel 14 and the third sub-pixel 16 are evenly distributed, and the display effect is better.
  • the sub-pixels of the same color are arranged with M sub-pixels shifted, that is , The distance between the midpoints of the light-emitting regions of the two sub-pixels of the same color that are closest to each other in two adjacent rows.
  • the projection distance in the first direction 01 is the width of M sub-pixels; the same color that is the closest in the same row
  • the center line of the third sub-pixel 16 extending in the second direction 02 in the pixel group coincides with the vertical line connecting the center lines of the first sub-pixel 12 and the second sub-pixel 14 in adjacent rows, The display effect is better.
  • the sub-pixels of the same color are staggered
  • the size may not be strictly limited to M sub-pixels, that is, the vertical line of the line connecting the centers of the adjacent first sub-pixel 12 and the second sub-pixel 14 is along the line of the most adjacent third sub-pixel 16 in the adjacent row.
  • the center lines extending in the second direction 02 may be separated by a certain distance in the first direction 01.
  • the distance in the first direction 01 between any sub-pixel in each pixel group and a sub-pixel of the same color in a pixel group adjacent in the first direction 01 is the first distance
  • the distance between any sub-pixel and the sub-pixel of the same color in another pixel group adjacent in the second direction 02 is the second distance
  • the ratio of the first distance to the second distance is 2N/(N+1 ).
  • the distance in the first direction 01 between the first sub-pixel 12 in the first pixel group 1 and the first sub-pixel 12 in the second pixel group 2 adjacent in the first direction 01 is X
  • N 2, that is, between the first sub-pixel 12 in the third pixel group 3 and the first sub-pixel 12 in the adjacent fourth pixel group 4 in the first direction 01
  • the distance in the first direction 01 is X
  • the pixel group in a certain direction is equivalent to the (P+1)/P times pixel group in the real pixel arrangement structure, thereby improving the virtual resolution of the display device. rate.
  • P the 2 pixel groups in the first direction 01 realize the display effect of 3 pixel groups in the Real pixel arrangement structure.
  • a total of 780 pixel groups in the first direction 01 can achieve the display effect of 1280 pixel groups in the Real pixel arrangement structure, thereby increasing the virtual resolution of the display panel.
  • the arrangement of the sub-pixels is relatively uniform, which can make the connection between the edges of the multiple sub-pixels located at the irregular edge W (for example, arc) of the display area and the tangent line of the irregular edge W tend to overlap or be parallel, and further make more
  • the connection of the edges of the sub-pixels is more smooth and close to the shape of the irregular edge W, thereby reducing the jaggedness of the image at the irregular edge W and improving the display effect of the display panel.
  • the distance in the first direction 01 between any sub-pixel in each pixel group and a sub-pixel of the same color in a pixel group adjacent in the first direction 01 is the first distance, so The distance between the any sub-pixel in the pixel group and the sub-pixel of the same color in another pixel group adjacent in the second direction 02 is the second distance, and the ratio of the first distance to the second distance is 1: 1, that is, the aforementioned N is equal to 1.
  • the connection between the edges of the multiple sub-pixels located at the irregular edge W (for example, an arc) of the display area and the tangent of the irregular edge W tend to It is coincident or parallel to greatly reduce the jaggedness of the image at the edge W of the abnormal shape.
  • the centers of the sub-pixels of the same color in the same row of pixel groups extending along the second direction 02 are located on a straight line. Therefore, two adjacent pixel groups in the second direction 02 The distance between the sub-pixels of the same color is the center distance of the two sub-pixels.
  • the sub-pixels of the same color in two adjacent pixel groups are respectively located in two adjacent sub-pixel rows. Therefore, in the first direction 01, the sub-pixels in the two adjacent pixel groups
  • the distance in the first direction 01 between the sub-pixels of the same color is the distance between the center lines of the two.
  • the first direction 01 refers to the horizontal direction as shown in FIG. 5 or 8 and the second direction 02 refers to the vertical direction as shown in FIG. 5 or 8.
  • the first direction 01 is the longitudinal direction, that is, the vertical direction
  • the second direction 02 is the horizontal direction, that is, the horizontal direction, that is, the pixel arrangement structure of these embodiments is as shown in FIG. 5 or FIG.
  • the pixel arrangement structure is rotated by 90 degrees or 270 degrees.
  • the first direction 01 and the second direction 02 are perpendicular to each other.
  • FIG. 9 is a schematic plan view of a special-shaped edge of a display area according to an embodiment of this application.
  • FIG. 10 is a schematic diagram of an arrangement of edge display units according to an embodiment of this application.
  • the pixel arrangement structure further includes at least one edge display unit independent of the same unit arranged in the multiple arrays, and the edge display unit is arranged adjacent to the pixel group in the array unit and is adjacent to the display area.
  • the display panel has a contour line that can define an effective display area.
  • the effective display area may include an edge display area adjacent to the contour line and a main display area far from the contour line.
  • the aforementioned irregular edge display area refers to the contour in the edge display area.
  • the line is a special-shaped display area.
  • the edge display unit includes three sub-pixels with different colors. The center line of the three sub-pixels forms a second virtual triangle.
  • the two sides of the second virtual triangle form a third angle ⁇ 1 and a fourth angle with the first direction 01. ⁇ 2 .
  • the third angle ⁇ 1 is the angle formed by a side of the irregular edge of the second virtual triangle closer to the display area and the first direction 01, and the third angle ⁇ 1 is not equal to the first angle ⁇ or the second angle ⁇ .
  • Angle ⁇ is the angle formed by a side of the irregular edge of the second virtual triangle closer to the display area and the first direction 01, and the third angle ⁇ 1 is not equal to the first angle ⁇ or the second angle ⁇ .
  • the irregular edge of the display area is an arc. If the arc is more regular, that is, the cut angle of the arc does not change or the change is small, the first angle ⁇ is set equal to the second angle ⁇ (in the embodiment shown in FIG. 6) can effectively reduce the jaggedness of the irregular edge display area.
  • the cutting angle of the arc changes greatly. For example, in the embodiment shown in FIG. 9, the cutting angles ⁇ 1 and ⁇ 2 at different positions of the irregular edge of the display area are not equal.
  • the edge display The third angle ⁇ 1 formed by the two sides of the second virtual triangle formed by connecting the centers of the three sub-pixels in the unit and the first direction 01 is not equal to the first angle ⁇ or the second angle ⁇ .
  • the tangent lines at different positions of the irregular edge of the display area and the sub-pixels in the edge display unit and/or the line of the edge of the sub-pixel in the pixel group adjacent to the irregular edge tend to overlap or be parallel, so that multiple sub-pixel edges
  • the connection is more smooth and close to the shape of the irregular edge, thereby reducing the jaggedness of the image at the irregular edge and improving the display effect of the display panel.
  • the number of edge display units may be determined according to actual conditions, and the size of the third angle ⁇ 1 and the fourth angle ⁇ 2 of the second virtual triangle in at least one edge display unit may be determined according to actual conditions.
  • the pixel arrangement structure includes multiple edge display units, and the third angle ⁇ 1 of the second virtual triangle in the multiple edge display units may be the same or different from each other.
  • multiple edges The fourth angle ⁇ 2 of the display unit may be the same, or partially the same, or different from each other.
  • the fourth angle ⁇ 2 of the second virtual triangle may be equal to the first The first angle ⁇ and the second angle ⁇ of the virtual triangle, and the third angle ⁇ 1 of the second virtual triangle are not equal to the first angle ⁇ , the second angle ⁇ , and the fourth angle ⁇ 2 .
  • the display of other sub-pixels is not affected, the sub-pixels are arranged uniformly, and the tangent lines at different positions of the irregular edge of the display area are different from the edge of the sub-pixel in the edge display unit and/or the pixel group adjacent to the irregular edge. The lines tend to coincide or parallel to reduce the jagged feeling.
  • the bottom side of the second virtual triangle is the side opposite to the vertex of the second virtual triangle, and the side sides are the other two sides.
  • the vertex of the second virtual triangle is the center of the sub-pixels that form the vertex of the first virtual triangle in the adjacent pixel group in the edge display unit.
  • an embodiment of the present application further provides a display panel including the foregoing pixel arrangement structure.
  • the display panel may be an OLED light-emitting display panel, a liquid crystal display panel, a Micro LED, a quantum dot display panel, etc., which are not limited here.
  • the display panel further includes a pixel driving circuit (not shown) connected to the sub-pixels in a one-to-one correspondence.
  • the display panel further includes a data signal driving circuit, a scanning signal driving circuit, etc., which are arranged in the frame area, which is not limited herein.
  • one sub-pixel can be connected to one pixel driving circuit, and the sub-pixel can be used as the smallest unit for pixel sharing during display, thereby achieving high pixel virtual resolution.
  • the present application also provides a display device, which includes the display panel in the foregoing embodiment.
  • the display device can be applied to fields such as mobile phone terminals, bionic electronics, electronic skins, wearable devices, vehicle-mounted devices, Internet of Things devices, and artificial intelligence devices.
  • the above-mentioned display device may be a digital device such as a mobile phone, a tablet, a palmtop computer, an iPod, and a smart watch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种像素排布结构,包括多个阵列排布的相同单元,每一单元包括沿第一方向相邻排布的第一像素组和第二像素组,所述第一像素组和所述第二像素组均包括颜色不同的三个子像素,所述三个子像素的中心的连线形成第一虚拟三角形;每一所述第二像素组的排布结构与所述第一像素组沿第二方向翻转180度后的排布结构相同;所述第一虚拟三角形的两侧边分别与所述第一方向呈第一角度α和第二角度β,且30°≤α≤60°,30°≤β≤60°;所述第一方向为水平方向或竖向方向,所述第二方向与所述第一方向相互垂直。

Description

像素排布结构、显示面板及显示装置
相关申请
本申请要求2019年07月15日申请的,申请号为201910636552.4,名称为“像素排布结构、显示面板及显示装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及显示技术领域,特别是涉及一种像素排布结构、显示面板及显示装置。
背景技术
随着显示技术的不断发展,人们对于显示面板的分辨率的要求也越来越高。由于具有显示质量高等优点,高分辨率显示面板的应用范围也越来越广。通常,可通过减小像素的尺寸和减小像素间的间距来提高显示装置的分辨率。然而,像素的尺寸和像素间的间距的减少对制作工艺的精度要求也越来越高,从而会导致显示面板的制作工艺的难度的增加和制作成本的提高。
另一方面,子像素渲染(Sup-Pixel Rendering,SPR))技术可以利用人眼对不同颜色的子像素的分辨率的差异,改变常规的红、绿、蓝三色子像素定义一个像素的模式,通过不同像素间共享某些位置的分辨率不敏感的颜色的子像素,用相对较少的子像素数量,模拟实现相同的像素分辨率的表现能力,即提高了虚拟分辨率。但是,相关设计中,这种像素排布结构对于显示区域异形边缘区域(例如弧形区域),不同行上的子像素沿异形边缘区域的延伸方向形成阶梯状,从而使显示面板在显示图像时,在该异形区域处图像锯齿感加重,影响显示面板的显示效果。
发明内容
基于此,有必要提供一种像素排布结构及显示面板、显示装置,以降低显示区域边缘的锯齿感,提高显示效果。
根据本申请的一个方面,提供一种像素排布结构,包括多个阵列排布的相同单元,每 一单元包括沿第一方向相邻排布的第一像素组和第二像素组,所述第一像素组和所述第二像素组均包括颜色不同的三个子像素,所述三个子像素的中心的连线形成第一虚拟三角形;
所述第二像素组的排布结构与所述第一像素组沿第二方向翻转180度后的排布结构相同;
其中,所述第一虚拟三角形的两侧边分别与所述第一方向呈第一角度α和第二角度β,且30°≤α≤60°,30°≤β≤60°;
所述第二方向与所述第一方向相互垂直。
上述的像素排布结构,每个单元中的两个像素组中的相同颜色的子像素相互错开排布,在工艺条件相同的情况下,采用这种子像素错位排布的结构,扩大了各相同子像素的开口之间可以利用的距离,可降低掩膜板制作工艺和蒸镀工艺的难度,从而可以将像素组的尺寸做的更小,有利于实现高分辨率显示屏的制造。且在第一方向和第二方向上,相邻的两个同色子像素间距较宽,有利于张网力的传输,减少了掩膜板(Mask)的变形,同样降低了精细金属掩膜板制作工艺和蒸镀工艺的难度。
此外,随着相同单元阵列排布,可以使位于显示区域异形边缘(例如弧形)的多个子像素的边缘的连线与异形边缘的切线趋于重合或平行,从而使多个子像素边缘的连线更为圆滑而接近异形边缘的形状,进而降低在异形边缘处图像的锯齿感,提高显示面板的显示效果。本申请的像素排布结构,可以使位于显示区域异形边缘的子像素包括多种颜色,从而避免显示面板的边缘处形成彩边,提高显示面板的显示效果。
根据本申请的另一个方面,提供一种像素排布结构,包括多个沿第二方向排布的子像素排,每个子像素排包括沿第一方向重复地依次排列的第一子像素、第二子像素和第三子像素;
沿所述第一方向延伸的奇数子像素排中的在第二方向延伸的同一排的子像素颜色相同;沿所述第一方向上延伸的偶数子像素排的在第二方向延伸的同一排的子像素颜色相同;相邻的两个沿所述第一方向上延伸的子像素排中相同颜色的子像素排布在所述第二方向延伸的不同排中;
沿所述第一方向延伸的同一子像素排中相邻的第一子像素和第二子像素位于相邻子 像素排中最邻近的第三子像素的沿所述第二方向延伸的中心线的两侧;
其中,沿所述第一方向延伸的同一子像素排上相邻的第一子像素和第二子像素的中心与相邻子像素排中的第三子像素的中心的连线形成第一虚拟三角形,所述第一虚拟三角形的两侧边分别与所述第一方向呈第一角度α和第二角度β,且30°≤α≤60°,30°≤β≤60°;
所述第二方向与所述第一方向相互垂直。
根据本申请的又一个方面,提供一种显示面板,包括上述实施中所述的像素排布结构。
根据本申请的再一个方面,提供一种显示装置,包括上述实施例中的所述显示面板。
附图说明
图1为一种像素排布结构的排布示意图;
图2为对应于图1所示的像素排布结构的高精细金属掩膜板(Fine Metal Mask,FMM)的平面示意图;
图3为另一种像素排布结构的排布示意图;
图4为又一种像素排布结构的排布示意图;
图5为本申请一实施例的像素排布结构的排布示意图;
图6为图5所示的像素排布结构在显示区域的异形边缘区域的模拟排布示意图;
图7为图5所示的像素排布结构的FMM的张网受力示意图;
图8为本申请又一实施例的像素排布结构的排布示意图;
图9为本申请一实施例的显示区域的异形边缘的平面示意图;
图10为本申请一实施例的边缘显示单元的排布示意图。
具体实施方式
正如背景技术所述,目前的显示面板大多采用三色子像素作为基色来进行彩色显示,尤其是以RGB作为三基色最为普遍。有机发光二极管(organic light-emitting diode,OLED)屏体的彩色化方法有许多种,现在较为成熟并大量量产的OLED彩色化技术是OLED蒸镀技术。OLED蒸镀技术采用传统的RGB条状排布方式进行蒸镀。其中,显示画面效果最好 的是并置(side-by-side)的方式。具体的,在一个像素(Pixel)单元内有红、绿、蓝(R、G、B)三个子像素(sub-pixel)。每个子像素均呈长方形,且各自具有独立的有机发光元器件。有机发光元器件是利用蒸镀成膜技术,透过高精细金属掩膜版(Fine Metal Mask,FMM),在array(阵列)基板上相应的像素位置形成的,其中,所述高精细金属掩膜版通常简称为蒸镀掩膜版。制作高图像分辨率即每英寸的像素(Pixels Per Inch,PPI)数量的OLED显示屏的技术重点在于精细性及机械稳定性好的FMM以及像素的排布方式。具体而言,FMM掩膜板应尽量少地发生翘曲、断裂等问题,避免造成蒸镀膜层晕开、偏移等影响蒸镀品质。像素的排布方式是决定FMM是否容易发生翘曲和断裂的主要因素。即,像素及子像素的排布方式较大程度上决定FMM的机械性能,FMM的机械性能较大程度上决定蒸镀的品质。
图1所示的相关技术中的像素排布结构通常采用图2所示的FMM进行蒸镀,该种FMM包括多个蒸镀开口B和遮挡区C,竖向方向上同一排相邻的两个蒸镀开口B之间的遮挡区称之为连接桥(bridge)。由于图1的排布方式中相同颜色的子像素是上下对位设置的,因此FMM的蒸镀开口B也必须对位设置,这使得纵向相邻的两个蒸镀开口B之间的连接桥(bridge)具有断裂的风险。并且,FMM的蒸镀开口B需要对应于预定的像素位置,按照这一种像素排布方式,FMM和子像素区的对位空间会缩小,有可能产生缺色或混色的缺陷。若增加连接桥的宽度,则子像素的尺寸将缩小,从而影响OLED显示屏的开口率,不利于高分辨率的实现。
图3为相关技术中另一种像素排布结构的排布示意图;图4为相关技术中又一种像素排布结构的排布示意图。如图3所示,所述像素排布结构包括沿竖向方向的多排子像素排,每一子像素排由子像素R、子像素G和子像素B直线排列形成,每一子像素排中的子像素B正对另一相邻的子像素排中的子像素R和子像素G。如图4所示,像素排布结构包括阵列排布的多个单元,每一单元包括由子像素R、子像素G沿竖向方向直线排布形成的第一排,以及由子像素B形成的第二排,。图3和图4的像素排布结构,虽然可以实现高分辨率,但在图3的像素排布结构中,子像素R、子像素G、子像素B排布成一排,增加了阵列走线的难度以及FMM的制作和张网难度。图4的像素排布结构中,子像素R|和子像素G排布于同一排,同样增加了阵列走线的难度,且在竖向方向上,子像素B之间的间隔不均匀,一些相邻的两个子像素B距离较近,不利于FMM张网且影响显示效果。
与此同时,相关技术中,通过在显示屏上开槽/孔(Notch),在开槽/孔区域设置摄像头、听筒以及红外感应元件等,开槽/孔区域并不用来显示画面。该种显示屏的显示区域存在异形边缘,上述的三种像素排布结构中,在显示区域的异形边缘区域存在边缘锯齿现象。相关设计中可以通过在边缘区域加入亮度稍低的像素组,用以改变锯齿现象,在驱动芯片配置相应算法来控制亮度。然而,在配置算法的情况下,虽然可以改善边缘锯齿现象,但算法复杂度变大,增加了驱动芯片的设计难度。
为解决上述问题,本申请提供了一种像素排布结构、显示面板及显示装置,能够较佳地改善上述问题。
图5为本申请一实施例的像素排布结构的排布示意图;图6为图5所示的像素排布结构在显示区域的异形边缘区域的模拟排布示意图;图7为图5所示的像素排布结构的FMM的张网受力示意图;图8为本申请又一实施例像素排布结构的排布示意图。
参阅附图5、图6和图8,本申请一实施例的像素排布结构,包括多个阵列排布的相同的单元。每一单元包括沿第一方向01延伸且相邻排布的第一像素组1和第二像素组2,所述第一像素组1包括颜色不同的三个子像素,三个子像素的中心的连线形成第一虚拟三角形。具体地,每一像素组包括颜色不同的第一子像素12、第二子像素14和第三子像素16,三个子像素的颜色分别为红色、蓝色和绿色中的一种。在一些实施方式中,第一子像素12和第二子像素14可以排布在沿第一方向01延伸的同一排,第三子像素16可以排布在相邻的且沿第一方向01延伸的另一排,从而使三个子像素的中心连线形成第一虚拟三角形。
在其中一个实施例中,在每一单元中,第一像素组1中的第一子像素12和第二子像素14,与第二像素组2中的第三子像素16排布于沿第一方向01延伸的同一排。具体地,所述像素排布结构可以包括多个沿第一方向01延伸的子像素排。每个子像素排包括重复地依次排列的第一子像素12、第二子像素14和第三子像素16。同一子像素排中相邻的第一子像素12和第二子像素14,与相邻子像素排中的最邻近的第三子像素16形成一个像素组。这样,像素排布结构中的子像素可以排布成排,排布较为均匀,显示效果好。
每一单元中,第一像素组1沿第二方向02翻转180度后的排布结构与第二像素组2的排布结构相同。在其中一实施例中,如图5所示,每一单元包括沿第一方向01相邻排 布的第一像素组1和第二像素组2,第一像素组1沿第二方向02翻转180度后的排布结构与第二像素组2的排布结构相同,而在第二方向02上,同一排中的像素组的排布结构相同。相应地,在其中一些实施例中,像素排布结构的每一单元可以包括沿第二方向02相邻排布的第一像素组和第二像素组,第一像素组沿第一方向01翻转180度后的排布结构与第二像素组的排布结构相同,而在第一方向01上,同一排中的像素组的排布结构相同。如此,在像素排布结构中,像素组可以更紧凑的排列,从而减少像素间距,提高图像分辨率即PPI的数量。
如图5及图6所示,本申请的一实施例中,每个像素组中三个子像素的中心的连线形成第一虚拟三角形,第一虚拟三角形的两侧边分别与第一方向01呈第一角度α和第二角度β,且30°≤α≤60°,30°≤β≤60°。定义三角形的其中一边为底边,另外两条边则为侧边。本申请的实施例中,每一单元中,第一像素组1和第二像素组2沿第一方向01相邻排布,且第一像素组1沿第二方向02翻转180度后,与第二像素组2的排布结构相同。其中,第一虚拟三角形的底边为与第一方向01平行的边;第一虚拟三角形的顶点为与底边相对的点;第一虚拟三角形的侧边即为第一虚拟三角形的另外两条边。具体地,如图5和图6所示,第一像素组1和第二像素组2中子像素形成的第一虚拟三角形的底边为第一方向01平行的边,即第三子像素16的中心相对的边,第一像素组1和第二像素组2中,子像素形成的第一虚拟三角形的侧边分别为与第一方向01呈第一角度α和第二角度β的两条边。
应当理解的是,第一方向01上的每一子像素排上不同颜色的子像素重复地依次排列,每一单元中的两个像素组沿第二方向02翻转180°后的排布结构相同,且每个像素组中三个子像素的中心的连线形成的第一虚拟三角形的两个侧边与第一方向01呈第一角度α和第二角度β。如此,随着多个相同单元阵列排布,位于显示区域异形边缘W(例如弧形边缘)的多个子像素的边缘的连线与异形边缘W的切线趋于重合或平行,从而使多个子像素边缘的连线更为圆滑而接近异形边缘W的形状,进而降低在异形边缘W处图像的锯齿感,提高显示面板的显示效果。还应当理解的是,本申请实施例中的像素排布结构,可以使位于显示区域异形边缘W的子像素包括多种颜色,从而避免显示面板的边缘处形成彩边,提高显示面板的显示效果。
值得注意的是,在相同的显示区域面积和相同高PPI数量的前提下,各子像素的形状、尺寸以及像素组中的子像素的中心间距都会使虚拟三角形的两个侧边与第一方向01之间的夹角会改变。容易理解,在相同的显示区域面积和相同高PPI数量的前提下,对于本申请的实施例的像素排布结构,如将第一角度α和第二角度β保持在30°和60°的范围内,只需改变各子像素的形状、尺寸及子像素之间的间距,就可以针对不同的显示区域,有效降低显示区域异形边缘的锯齿感。相比相关设计中的像素排布结构,本申请的像素排布结构,更便于应用到不同设计的产品中,从而有效地降低设计和制作成本。
本申请的一些实施例中,属于沿第二方向02延伸的同一排上的子像素的颜色相同。如图5及图8所示,沿第二方向02延伸的同一排的像素组中相同颜色的子像素的中心位于一条直线上。在第二方向02上,相邻的两个沿第一方向01延伸的子像素排中,相同颜色的子像素错开排布,即排布在沿第二方向02延伸的不同排中;且沿第一方向01延伸的同一子像素排中,相邻的第一子像素12和第二子像素14位于相邻子像素排中最邻近的第三子像素16的沿第二方向02延伸的中心线的两侧。换言之,沿第一方向01延伸的所有奇数排中的子像素的排列方式相同,所有偶数排中的子像素的排列方式也相同,然而相邻的子像素排中,相同颜色的子像素的发光区并非上下对应,而是相互错开排列。且沿第二方向02延伸的同一排像素组的各子像素的发光区上下对应。具体地,如图5和图6所示,沿第二方向02延伸的同一排的像素组中,所有第一子像素12的中心位于一条直线上,所有第二子像素14的中心位于另一条直线上,所有第三子像素16的中心位于又一条直线上。
如此,一方面,该像素排布结构中每个像素组(pixel)由三种颜色(RGB三色)组成,可以实现真正意义上的全色显示。并且,所述像素排布结构中,沿第一方向01延伸的子像素排中,重复地依次排布有三种颜色子像素。在第二方向02上相同颜色的子像素间距较宽。相比于相关技术中,某一方向上只密布有一种颜色子像素的像素排布结构,本申请的像素排布结构,第一方向和第二方向显示较为均匀,显示效果更佳。另一方面,每个相同单元中,第一像素组和第二像素组中的颜色相同的子像素相互错开排布。在工艺条件相同的情况下,这种子像素错位排布的结构,扩大了各相同子像素的开口之间可以利用的距离,降低了掩膜版制作工艺和蒸镀工艺的难度,因而像素组的尺寸可以做得更小,有利于实现高分辨率显示屏的制造。且在第一方向01和第二方向02上,相邻的两个相同颜色的子像 素间距较宽,有利于张网力F的传输,减少了掩模板(Mask)的变形,同样降低了精细金属掩膜板制作工艺和蒸镀工艺的难度。
再一方面,第二方向02延伸的同一排的像素组中相同颜色的子像素的中心位于一条直线上,与子像素相连的阵列走线可以呈一排,便于阵列走线的布置,有利于减少阳极过孔到像素定义层的距离,降低了显示面板的制作难度,有利于高分辨率显示屏的制造。
容易理解,由于蓝色子像素B的发光效率通常是最低的,相应地所需要的发光面积就要更大,因此,一些实施例中,子像素B的面积大于红色的子像素R的面积和绿色的子像素G的面积。具体地,在一些实施方式中,第一子像素12为绿色,第二子像素14为红色,第三子像素16为蓝色,第三子像素16的开口面积大于第一子像素12的开口面积,并且大于第二子像素14的开口面积。此外,第一子像素12的开口面积可以等于第二子像素14的开口面积,使得像素排布结构具有更佳的显示效果。
需要说明的是,第一子像素12的开口面积和第二子像素14的开口面积也可以不相等,在实际应用中,可以根据需要对各子像素的开口面积进行相应地调整。
本申请的一些实施例中,多个子像素的形状相同。在一些实施例中,第一子像素12、第二子像素14和第三子像素16的形状可以为三角形、四边形或其他多边形等,在此不作限定。如此,可以保证像素排布更为均匀,且在显示区域异形边缘W的子像素边缘的连线更为圆滑,从而进一步地降低显示区域异形边缘W的锯齿感。在其中一实施例中,子像素的形状可以为菱形,如此,一方面可以使像素组中的子像素排布更为紧凑,有利于提高显示面板的开口率;另一方面,子像素的边均与第一方向01呈夹角设置,且每一子像素对应的边与前述的第一虚拟三角形的侧边更趋于平行,从而可以进一步地降低显示区域异形边缘W的锯齿感,提高显示效果。
本申请的一些实施例中,每一像素组中第三子像素16沿第二方向02延伸的中心线与第一子像素12和第二子像素14的中心连线的中垂线重合。如此,可以使第一虚拟三角形呈等腰三角形,第一子像素12、第二子像素14和第三子像素16分布均匀,显示效果较佳。在一些实施例中,对于多个沿第一方向01延伸的子像素排,相邻的奇数排和偶数排中,相同颜色的子像素(如第一子像素12)错位M个子像素排列,即,相邻两排中位置最接近的相同颜色的两个子像素的发光区中点之间的距离在第一方向01上的投影距离为M个子像 素的宽度;同一排中位置最接近的相同颜色的两个子像素的中点之间的距离为N个子像素的宽度;在子像素的形状均相同、尺寸均相等情况下,N=2M。需要说明的是,尽管像素组中第三子像素16沿第二方向02延伸的中心线与相邻排上的第一子像素12、第二子像素14的中线连线的中垂线重合,显示效果较佳,不过,在其他一些实施例中,对于多个沿第一方向01延伸的子像素排,相邻的奇数排和偶数排即相邻两排中,相同颜色的子像素错开的尺寸可以不严格限制为M个子像素,也即相邻的第一子像素12、第二子像素14的中心的连线的中垂线与相邻排中最相邻的第三子像素16沿第二方向02延伸的中心线在第一方向01可以间隔一定距离。
本申请的一些实施例中,每一像素组中任一子像素与第一方向01上相邻的一像素组中的同颜色的子像素之间在第一方向01上的距离为第一距离,所述任一子像素与第二方向02上相邻的另一像素组中同色的子像素之间的距离为第二距离,第一距离与第二距离的比为2N/(N+1)。如图5所示,第一像素组1中的第一子像素12与第一方向01上相邻的第二像素组2中第一子像素12之间在第一方向01上的距离为X,第一像素组1中的第一子像素12与第二方向02上相邻的另一个第一像素组1中的第一子像素12之间的距离为Y,其中,N=1,即X=Y。在如图8所示的实施例中,N=2,即第三像素组3中的第一子像素12与第一方向01上相邻的第四像素组4中第一子像素12之间在第一方向01上的距离为X,第三像素组3中的第一子像素12与第二方向02上相邻的另一个第三像素组3中的第一子像素12之间的距离为Y,满足Y=4/3X。
在所述像素排布结构中,一方面,某一方向上的像素组等效为真(Real)像素排布结构中的(P+1)/P倍像素组,进而可以提高显示装置的虚拟分辨率。例如,当P=2时,第一方向01上的2个像素组实现Real像素排布结构中3个像素组的显示效果。在一具体的产品中,第一方向01上共780个像素组可实现Real像素排布结构中1280个像素组的显示效果,进而提高显示面板的虚拟分辨率。另一方面,子像素的排布较为均匀,可以使位于显示区域异形边缘W(例如弧形)的多个子像素的边缘的连线与异形边缘W的切线趋于重合或平行,进一步地使多个子像素边缘的连线更为圆滑而接近异形边缘W的形状,从而降低在异形边缘W处图像的锯齿感,提高显示面板的显示效果。
在其中一实施例中,每一像素组中任一子像素与第一方向01上相邻的一像素组中的 同色的子像素之间在第一方向01上的距离为第一距离,所述像素组中的所述任一子像素与第二方向02上相邻的另一像素组中同色的子像素之间的距离为第二距离,第一距离与第二距离之比为1:1,即前述的N等于1。这样,不仅使子像素排布更为均匀,提高显示装置的虚拟分辨率,还进一步使位于显示区域异形边缘W(例如弧形)的多个子像素的边缘的连线与异形边缘W的切线趋于重合或平行,从而大大降低异形边缘W处图像的锯齿感。需要说明的是,一些实施例中,沿第二方向02延伸的同一排的像素组中相同颜色的子像素的中心位于一条直线上,因此,在第二方向02上相邻的两个像素组中相同颜色的子像素之间的距离即为这两个子像素的中心距离。而在第一方向01上,相邻的两个像素组中的相同颜色的子像素分别位于相邻的两个子像素排中,因此,在第一方向01上相邻的两个像素组中的相同颜色的子像素之间在第一方向01上的距离为两者的中心线之间的距离。
在上述实施例中,第一方向01是指如图5或图8所示的横向方向即水平方向,第二方向02是指如图5或图8所示的纵向方向即竖向方向。在其中一些实施例中,第一方向01为纵向方向即竖向方向,第二方向02为横向方向即水平方向,即这些实施例的像素排布结构由如图5或图8所示所述像素排布结构旋转90度或270度得到。第一方向01与第二方向02相互垂直。
可以理解的是,上述的像素排布结构还有其他适当的变形,比如旋转180度,或者第一子像素12、第二子像素14和第三子像素16的位置互调,在此不作一一例举。
图9为本申请一实施例的显示区域的异形边缘的平面示意图;图10为本申请一实施例的边缘显示单元的排布示意图。
一些实施例中,像素排布结构还包括独立于多个阵列排布的相同单元的至少一个边缘显示单元,所述边缘显示单元与阵列单元中的像素组相邻排布,且邻近显示区域的异形边缘。具体而言,显示面板具有可以界定有效显示区的轮廓线,有效显示区可以包括邻近轮廓线的边缘显示区和远离轮廓线的主显示区,前述的异形边缘显示区是指边缘显示区中轮廓线为异形的显示区。边缘显示单元包括三个颜色不同的子像素,三个子像素的中心连线形成第二虚拟三角形,第二虚拟三角形的两个侧边分别与第一方向01呈第三角度γ 1和第四角度γ 2。其中,第三角度γ 1为第二虚拟三角形中更靠近显示区域的异形边缘的一个侧 边与第一方向01形成的夹角,所述第三角度γ 1不等于第一角度α或第二角度β。具体地,如图10所示的实施例中,γ 1<γ 2=α=β,即相当于将阵列单元的像素组中的第一子像素12朝向显示区域的异形边缘移动,从而形成前述的边缘显示单元,进而改变相应的夹角以适应不同的显示区域的异形边缘。在其中一个实施例中,30°≤γ 1≤60°,30°≤γ 2≤60°。
应当理解的是,在一些实施例中,显示区域的异形边缘为弧线,若弧线较为规则,即弧线的切角没有变化或变化较小,将第一角度α设置为等于第二角度β(如图6所示的实施例中),可以有效减小异形边缘显示区的锯齿感。在另一些实施例中,弧线的切角变化较大,例如图9所示的实施例中,显示区域的异形边缘的不同位置的切角θ 1和θ 2不相等,此时,边缘显示单元中的三个子像素的中心连线形成的第二虚拟三角形的两个侧边与第一方向01形成的第三角度γ 1不等于所述第一角度α或所述第二角度β。如此,显示区域的异形边缘的不同位置的切线,与边缘显示单元中的子像素和/或邻近异形边缘的像素组中子像素的边缘的连线趋于重合或平行,从而使多个子像素边缘的连线更为圆滑而接近异形边缘的形状,进而降低在异形边缘处图像的锯齿感,提高显示面板的显示效果。
可以理解,边缘显示单元的数量可以根据实际情况而定,且至少一个边缘显示单元中的第二虚拟三角形的第三角度γ 1和第四角度γ 2的大小可以根据实际情况而定,在此不作限定。在一些实施例中,像素排布结构包括多个边缘显示单元,而多个边缘显示单元中的第二虚拟三角形的第三角度γ 1可以相同,亦可互不相同,对应的,多个边缘显示单元第四角度γ 2可以相同,或部分相同,亦可互不相同。
还可以理解的是,由于影响锯齿感主要因素是更靠近显示区域的异形边缘的子像素的排布,因此,在其中一实施例中,第二虚拟三角形的第四角度γ 2可以等于第一虚拟三角形的第一角度α和第二角度β,第二虚拟三角形的第三角度γ 1与第一角度α、第二角度β、第四角度γ 2均不相等。这样,其他子像素的显示不影响,子像素排布均匀,且显示区域的异形边缘的不同位置的切线与边缘显示单元中的子像素和/或邻近异形边缘的像素组中子像素的边缘的连线趋于重合或平行,从而降低锯齿感。
需要说明的是,本申请的实施例中,第二虚拟三角形的底边即为第二虚拟三角形的顶点相对的边,侧边即为另外两条边。其中,第二虚拟三角形的顶点为边缘显示单元中与相 邻的像素组中形成第一虚拟三角形的顶点的子像素位于不排的子像素的中心。
基于上述的像素排布结构,本申请一实施例还提供一种显示面板,该显示面板包括上述的像素排布结构。
显示面板可以为OLED发光显示面板、液晶显示面板、Micro LED、量子点显示面板等,在此不作限定。具体地,显示面板还包括与子像素一一对应连接的像素驱动电路(图未示)。在其中一个实施例中,显示面板还包括设置在边框区域的数据信号驱动电路和扫描信号驱动电路等,在此不作限定。本申请实施例中的显示面板,一个子像素可以对应连接一个像素驱动电路,在显示时可以以子像素为最小单元进行像素共用,从而实现高的像素虚拟分辨率。
基于同样的发明构思,本申请还提供一种显示装置,该显示装置包括上述实施例中的显示面板。
具体地,该显示装置可以应用于手机终端、仿生电子、电子皮肤、可穿戴设备、车载设备、物联网设备及人工智能设备等领域。例如,上述显示装置可以为手机、平板、掌上电脑、ipod、智能手表等数码设备。

Claims (19)

  1. 一种像素排布结构,包括多个阵列排布的相同单元,每一单元包括沿第一方向相邻排布的第一像素组和第二像素组,所述第一像素组和所述第二像素组均包括颜色不同的三个子像素,所述三个子像素的中心的连线形成第一虚拟三角形;
    所述第二像素组的排布结构与所述第一像素组沿第二方向翻转180度后的排布结构相同;
    其中,所述第一虚拟三角形的两侧边分别与所述第一方向呈第一角度α和第二角度β,且30°≤α≤60°,30°≤β≤60°;
    所述第二方向与所述第一方向相互垂直。
  2. 根据权利要求1所述的像素排布结构,其中,所述三个子像素的形状相同。
  3. 根据权利要求2所述的像素排布结构,其中,所述三个子像素的形状为菱形。
  4. 根据权利要求1所述的像素排布结构,其中,在第二方向上,位于同一排中的子像素的颜色相同。
  5. 根据权利要求1所述的像素排布结构,其中,所述像素排布结构还包括独立于所述多个阵列排布的相同单元的至少一个边缘显示单元,所述边缘显示单元邻近显示区域的异形边缘;
    所述边缘显示单元包括颜色不同的三个子像素,所述三个子像素的中心的连线形成第二虚拟三角形;所述第二虚拟三角形的两个侧边分别与第一方向呈第三角度γ 1和第四角度γ 2
    其中,所述第三角度γ 1为所述第二虚拟三角形中的更靠近所述显示区域的异形边缘的一个侧边与所述第一方向形成的夹角;
    所述第三角度γ 1不等于所述第一角度α或所述第二角度β。
  6. 根据权利要求1所述的像素排布结构,其中,所述三个子像素为第一子像素、第二子像素和第三子像素;
    所述第一子像素和第二子像素沿所述第一方向排布成一排,所述第三子像素排布在相邻的另一排。
  7. 根据权利要求6所述的像素排布结构,其中,每一单元中,一个像素组中的第一子像素和第二子像素,与另一个像素组中的第三子像素位于所述第一方向的同一排。
  8. 根据权利要求6所述的像素排布结构,其中,所述第一子像素的颜色、所述第二子像素的颜色和所述第三子像素的颜色分别为红色、绿色和蓝色中的一种。
  9. 根据权利要求8所述的像素排布结构,其中,蓝色子像素的面积大于红色子像素的面积,所述蓝色子像素的面积大于绿色子像素的面积。
  10. 根据权利要求6所述的像素排布结构,其中,所述第三子像素沿所述第二方向延伸的中心线与所述第一子像素和所述第二子像素的中心连线的中垂线重合。
  11. 根据权利要求1所述的像素排布结构,其中,每一像素组中任一子像素与所述第一方向上相邻的一像素组中的同颜色的子像素之间在第一方向上的距离为第一距离,所述任一子像素与所述第二方向上相邻的另一像素组中同色的子像素之间的距离为第二距离,所述第一距离与所述第二距离之比为2N/(N+1);
    其中,N为大于或等于1的整数。
  12. 根据权利要求3所述的像素排布结构,其中,所述第一虚拟三角形的侧边,和所述三个子像素的与所述第一虚拟三角形的所述侧边相对的边相互平行。
  13. 根据权利要求5所述的像素排布结构,其中,所述第三角度γ1小于所述第四角度γ2;所述第四角度γ2,所述第一角度α和所述第二角度β相等。
  14. 根据权利要求2所述的像素排布结构,其中,所述三个子像素的尺寸都相同。
  15. 根据权利要求6所述的像素排布结构,其中,所述第一子像素为绿色,所述第二子像素为红色,所述第三子像素为蓝色;所述第三子像素的开口面积大于所述第一子像素的开口面积;所述第三子像素的开口面积大于所述第二子像素的开口面积。
  16. 根据权利要求15所述的像素排布结构,其中,所述第一子像素的开口面积等于所述第二子像素的开口面积。
  17. 一种像素排布结构,包括多个沿第二方向排布的子像素排,每个子像素排包括沿第一方向重复地依次排列的第一子像素、第二子像素和第三子像素;
    沿所述第一方向延伸的奇数子像素排中的在第二方向延伸的同一排的子像素颜色相同;沿所述第一方向上延伸的偶数子像素排的在第二方向延伸的同一排的子像素颜色相 同;相邻的两个沿所述第一方向上延伸的子像素排中相同颜色的子像素排布在所述第二方向延伸的不同排中;
    沿所述第一方向延伸的同一子像素排中相邻的第一子像素和第二子像素位于相邻子像素排中最邻近的第三子像素的沿所述第二方向延伸的中心线的两侧;
    其中,沿所述第一方向延伸的同一子像素排上相邻的第一子像素和第二子像素的中心与相邻子像素排中的第三子像素的中心的连线形成第一虚拟三角形,所述第一虚拟三角形的两侧边分别与所述第一方向呈第一角度α和第二角度β,且30°≤α≤60°,30°≤β≤60°;
    所述第二方向与所述第一方向相互垂直。
  18. 一种显示面板,包括权利要求1所述的像素排布结构。
  19. 一种显示装置,包括权利要求18所述的显示面板。
PCT/CN2020/081226 2019-07-15 2020-03-25 像素排布结构、显示面板及显示装置 WO2021008164A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/402,395 US20210376010A1 (en) 2019-07-15 2021-08-13 Pixel arrangement structure and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910636552.4 2019-07-15
CN201910636552.4A CN110335892B (zh) 2019-07-15 2019-07-15 像素排布结构、显示面板及显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/402,395 Continuation US20210376010A1 (en) 2019-07-15 2021-08-13 Pixel arrangement structure and display panel

Publications (1)

Publication Number Publication Date
WO2021008164A1 true WO2021008164A1 (zh) 2021-01-21

Family

ID=68144918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081226 WO2021008164A1 (zh) 2019-07-15 2020-03-25 像素排布结构、显示面板及显示装置

Country Status (4)

Country Link
US (1) US20210376010A1 (zh)
CN (1) CN110335892B (zh)
TW (1) TWI735203B (zh)
WO (1) WO2021008164A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098239B (zh) * 2019-05-17 2021-11-02 京东方科技集团股份有限公司 像素结构、显示基板、掩模板及蒸镀方法
CN110335892B (zh) * 2019-07-15 2021-03-26 云谷(固安)科技有限公司 像素排布结构、显示面板及显示装置
CN110998852A (zh) * 2019-11-27 2020-04-10 重庆康佳光电技术研究院有限公司 一种像素排列结构、电致发光器件及显示装置
CN111029379A (zh) * 2019-12-02 2020-04-17 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法和显示装置
CN111613659B (zh) * 2020-06-03 2022-09-20 昆山国显光电有限公司 像素排布结构以及显示面板
CN113823756B (zh) * 2020-06-19 2024-05-07 北京小米移动软件有限公司 显示模组、显示面板及电子设备
CN111755495A (zh) * 2020-06-29 2020-10-09 昆山国显光电有限公司 像素排布结构、高精度金属掩膜板及显示面板
CN111725288B (zh) * 2020-07-17 2022-09-13 昆山国显光电有限公司 像素结构及显示面板
CN112366219B (zh) * 2020-11-09 2022-09-23 京东方科技集团股份有限公司 像素排布结构、显示面板及显示装置
CN112802400B (zh) * 2021-01-06 2023-12-15 季华实验室 一种显示面板
CN113178465B (zh) * 2021-04-09 2022-06-10 武汉华星光电半导体显示技术有限公司 像素排列结构
CN113363270B (zh) * 2021-05-28 2023-05-09 深圳市华星光电半导体显示技术有限公司 像素排布结构及显示面板
CN113327965B (zh) * 2021-05-28 2023-01-24 昆山国显光电有限公司 显示面板及显示装置
CN113257882B (zh) * 2021-07-06 2021-10-01 北京京东方技术开发有限公司 显示基板和显示装置
CN114822375A (zh) * 2022-03-18 2022-07-29 长春希达电子技术有限公司 一种显示面板虚拟像素复用结构、控制方法以及系统
CN115084213A (zh) * 2022-07-29 2022-09-20 京东方科技集团股份有限公司 一种显示面板、显示装置
CN116344526B (zh) * 2023-03-24 2024-03-15 深圳市美矽微半导体股份有限公司 一种具备像素排列的led显示装置
CN116504179B (zh) * 2023-06-27 2023-09-19 长春希达电子技术有限公司 像素复用方法、数据传输系统以及显示屏控制系统和方法
CN116758824B (zh) * 2023-08-16 2023-12-08 长春希达电子技术有限公司 一种裸眼3d显示组件及显示屏

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004258365A (ja) * 2003-02-26 2004-09-16 Seiko Epson Corp 電気光学装置、およびそれを用いた電子機器
CN204614789U (zh) * 2015-05-18 2015-09-02 京东方科技集团股份有限公司 像素排列结构、有机电致发光器件、显示装置、掩模板
CN206349366U (zh) * 2016-12-27 2017-07-21 霸州市云谷电子科技有限公司 像素结构
CN108198514A (zh) * 2018-01-31 2018-06-22 上海天马有机发光显示技术有限公司 一种显示面板和显示装置
WO2018120366A1 (zh) * 2016-12-29 2018-07-05 深圳市华星光电技术有限公司 像素排列结构
CN110335892A (zh) * 2019-07-15 2019-10-15 云谷(固安)科技有限公司 像素排布结构、显示面板及显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102345247B1 (ko) * 2014-12-10 2021-12-29 엘지디스플레이 주식회사 유기발광표시장치
KR102562897B1 (ko) * 2016-03-28 2023-08-04 삼성디스플레이 주식회사 유기 발광 표시 장치
CN107968104B (zh) * 2016-10-20 2020-05-19 上海和辉光电有限公司 显示设备及其像素阵列
CN106783937B (zh) * 2017-01-25 2020-04-17 上海天马有机发光显示技术有限公司 具有曲线形边缘的阵列基板、显示面板及显示装置
CN109727542B (zh) * 2017-10-31 2020-04-21 昆山国显光电有限公司 异形显示屏及显示装置
CN107942565B (zh) * 2017-11-30 2021-03-26 厦门天马微电子有限公司 一种显示基板、显示面板及其显示装置
CN211743156U (zh) * 2018-11-06 2020-10-23 京东方科技集团股份有限公司 像素排布结构、显示基板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004258365A (ja) * 2003-02-26 2004-09-16 Seiko Epson Corp 電気光学装置、およびそれを用いた電子機器
CN204614789U (zh) * 2015-05-18 2015-09-02 京东方科技集团股份有限公司 像素排列结构、有机电致发光器件、显示装置、掩模板
CN206349366U (zh) * 2016-12-27 2017-07-21 霸州市云谷电子科技有限公司 像素结构
WO2018120366A1 (zh) * 2016-12-29 2018-07-05 深圳市华星光电技术有限公司 像素排列结构
CN108198514A (zh) * 2018-01-31 2018-06-22 上海天马有机发光显示技术有限公司 一种显示面板和显示装置
CN110335892A (zh) * 2019-07-15 2019-10-15 云谷(固安)科技有限公司 像素排布结构、显示面板及显示装置

Also Published As

Publication number Publication date
CN110335892A (zh) 2019-10-15
TW202036517A (zh) 2020-10-01
US20210376010A1 (en) 2021-12-02
TWI735203B (zh) 2021-08-01
CN110335892B (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2021008164A1 (zh) 像素排布结构、显示面板及显示装置
US11800771B2 (en) Display substrate, fine metal mask set and display device
CN114994973B (zh) 显示基板和显示装置
US11342385B2 (en) Pixel arrangement structure, display substrate, display device, and mask plate group
CN110364558B (zh) 像素排布结构及显示面板
EP3751612A1 (en) Pixel arrangement structure, display substrate, and display device
TWI763475B (zh) 顯示面板
CN210073853U (zh) 像素排布结构、显示面板及显示装置
JP2021528671A (ja) 表示基板、その駆動方法、表示装置及び高精度メタルマスク
US11106098B2 (en) Pixel arrangement structure, display substrate, display apparatus, and mask plate
TWI780694B (zh) 像素排布結構、顯示面板及顯示裝置
WO2022206017A1 (zh) 像素排列结构、显示面板及显示装置
US11957019B2 (en) Pixel arrangement structure, display method and preparing method of pixel arrangement structure, and display substrate
WO2023109186A1 (zh) 像素排布结构、显示面板和显示装置
US20240179991A1 (en) Array substrate and display device
TW202329497A (zh) 無機發光二極體顯示器
CN113035920A (zh) 像素排列结构、显示面板、显示装置及掩膜板
CN116322191A (zh) 显示面板和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839914

Country of ref document: EP

Kind code of ref document: A1