WO2019041860A1 - 触控显示面板、驱动和制造该触控显示面板的方法、以及触控显示装置 - Google Patents

触控显示面板、驱动和制造该触控显示面板的方法、以及触控显示装置 Download PDF

Info

Publication number
WO2019041860A1
WO2019041860A1 PCT/CN2018/084993 CN2018084993W WO2019041860A1 WO 2019041860 A1 WO2019041860 A1 WO 2019041860A1 CN 2018084993 W CN2018084993 W CN 2018084993W WO 2019041860 A1 WO2019041860 A1 WO 2019041860A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
line
gate
lines
display panel
Prior art date
Application number
PCT/CN2018/084993
Other languages
English (en)
French (fr)
Inventor
胡祖权
马小叶
马睿
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/335,807 priority Critical patent/US11093072B2/en
Publication of WO2019041860A1 publication Critical patent/WO2019041860A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04184Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally

Definitions

  • the present disclosure relates to the field of touch display technologies, and more particularly to a touch display panel, a method of driving the touch display panel, a method of manufacturing the touch display panel, and a touch display device including the touch display panel.
  • a touch sensor In an in-cell touch display panel, a touch sensor is embedded in a display panel, and the touch sensor can be classified into a resistive sensor, a capacitive sensor, an optical sensor, and the like depending on its working principle. Capacitive touch sensors are widely used in the industry due to their multi-point control capability and high sensitivity. Capacitive touch sensors typically include a touch electrode. In a typical application, some of the touch electrodes and/or their leads are arranged along the width direction of the touch display panel, so that a space for arranging the leads is reserved on the left and right sides of the touch display panel.
  • a touch display panel includes: a plurality of gate lines extending in a first direction; a plurality of data lines extending in a second direction crossing the first direction; and And a pixel disposed at an intersection of the gate line and the data line.
  • Each of the pixels includes a pixel electrode and a common electrode disposed opposite to the pixel electrode.
  • Each of the common electrodes is distributed in a plurality of touch regions arranged in an array and independent of each other.
  • Each of the touch regions further includes at least one connecting line extending along the first direction and a corresponding touch signal line electrically connected to the at least one connecting line and extending along the second direction.
  • Each of the at least one connection line electrically connects together a respective one of the plurality of common electrodes.
  • each of the touch zones includes a plurality of the connecting lines.
  • At least two of the common electrodes in the common electrode are formed together as a single piece within each of the touch regions.
  • the number of the connecting lines is equal to the number of the touch signal lines, and each of the connecting lines is electrically connected to a corresponding one of the touch signal lines.
  • connection line is disposed in the same layer as the gate line, and wherein the touch signal line is disposed in the same layer as the data line.
  • the touch display panel further includes: a base substrate on which the pixel electrode is disposed; and a plurality of thin film transistors disposed at the intersection of the gate line and the data line, Each of the thin film transistors includes a gate disposed on the substrate and in the same layer as the gate line, the gate being electrically connected to a corresponding one of the gate lines; a gate insulating layer, Covering the base substrate, the pixel electrode, the gate, the gate line, and the connection line; an active layer disposed on the gate insulating layer and opposite to the gate; a source Contacting the active layer and being disposed in the same layer as the data line, the source is electrically connected to a corresponding one of the data lines; and a drain, contacting the active layer and the data a line is disposed in the same layer, the drain is electrically connected to a corresponding one of the pixel electrodes; and a passivation layer covering the gate insulating layer, the source, the drain, the data line, and the The touch signal line.
  • the touch display panel further includes: a plurality of first vias each penetrating the passivation layer and the gate insulating layer to expose a corresponding one of the pixel electrodes a respective one of the drains; a plurality of first conductive connections, each filling a respective one of the first vias to electrically connect a corresponding one of the pixel electrodes and a corresponding one of the drains; a plurality of second vias each penetrating the passivation layer to expose a corresponding one of the touch signal lines; a plurality of third vias each penetrating through the passivation layer and the gate a layer to expose a corresponding one of the connecting lines; a plurality of second conductive connections, each filling a respective one of the second vias and a corresponding one of the third vias to electrically connect a corresponding one of the touch signal lines and a corresponding one of the connection lines; and a plurality of fourth via holes each penetrating the passivation layer and the gate
  • each of the common electrodes is electrically coupled to a corresponding one of the connecting lines by at least two of the fourth vias.
  • a touch display device including the touch display panel as described above is provided.
  • a method of driving a touch display panel includes: a plurality of gate lines; a plurality of data lines crossing the gate lines; and a plurality of pixels disposed at intersections of the gate lines and the data lines.
  • Each of the pixels includes a pixel electrode and a common electrode disposed opposite to the pixel electrode.
  • Each of the common electrodes is distributed in a plurality of touch regions arranged in an array and independent of each other.
  • Each of the touch regions further includes at least one connecting line extending in a direction parallel to the gate line and a touch electrically connected to the at least one connecting line and extending in a direction parallel to the data line Signal line.
  • Each of the at least one connection line electrically connects together a respective one of the plurality of common electrodes.
  • the method includes alternately performing a display period and a touch period. During the display period, a corresponding common voltage is applied to each of the touch signal lines. Applying a touch driving signal to each of the touch signal lines and detecting each of the touch driving signals on each of the touch signal lines as the touch area for each touch area. Corresponding touch sensing signals.
  • the method further includes identifying the touch area as a touch position in response to detecting a change in the touch sensing signal for one of the touch areas relative to a standard signal.
  • the changing comprises selecting from a group consisting of the touch sensing signal being smaller than the standard signal at a first moment and the touch sensing signal being greater than the standard signal at a second moment. At least one.
  • a method of manufacturing a touch display panel includes: providing a substrate; forming a plurality of gate lines extending along the first direction on the substrate, along the a plurality of connecting lines extending in a first direction, a plurality of pixel electrodes distributed in an array, and respective gates associated with the pixel electrodes, wherein each of the gates and a corresponding one of the gate lines Electrically connecting; forming a gate insulating layer covering the base substrate, the gate line, the connection line, the pixel electrode, and the gate; on the gate insulating layer Forming respective active layers disposed opposite to the gate, respective sources and respective drains in contact with the active layer, a plurality of data lines extending in a second direction crossing the first direction, and a plurality of touch signal lines extending along the second direction, wherein each of the data lines is electrically connected to a corresponding one of the sources; forming a passivation layer, the passivation layer covering The gate insulating layer, the data line, and the
  • the providing the electrical connection between the pixel electrode and the corresponding drain comprises: forming a plurality of first vias, each penetrating the passivation layer and the gate insulating layer Exposing a respective one of the pixel electrodes and a corresponding one of the drains; and filling the first vias with respective first conductive connections to electrically connect the pixel electrodes and the respective drains.
  • the providing the electrical connection between the at least one connection line and the corresponding touch signal line comprises: each of the at least one connection line and the corresponding touch signal Forming a second via hole at a corresponding intersection of the lines, wherein the second via hole extends through the passivation layer to expose the corresponding touch signal line; each of the at least one connection line and the Forming a third via hole at the corresponding intersection of the corresponding touch signal lines, wherein the third via hole penetrates the passivation layer and the gate insulating layer to expose the connection line; and utilizes the second conductive layer
  • the connection portion fills and electrically connects the second via hole and the third via hole.
  • the forming the common electrode includes: forming a plurality of fourth vias, each penetrating the passivation layer and the gate insulating layer to expose a corresponding one of the connection lines; And filling each of the fourth vias with a corresponding one of the common electrodes to provide an electrical connection between the corresponding common electrode and the corresponding connection line.
  • the forming the fourth via further comprises providing two of the fourth vias for each of the common electrodes.
  • the forming the common electrode further includes forming, in each of the touch regions, at least two of the common electrodes directly adjacent to each other as a single piece.
  • FIG. 1 is a schematic block diagram of a touch display device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic plan view showing a plurality of touch regions in a touch display panel according to an embodiment of the present disclosure
  • FIG. 3 is a schematic plan view showing a plurality of touch areas in a touch display panel according to an embodiment of the present disclosure
  • FIG. 4 is a schematic plan view showing a plurality of touch regions in a touch display panel according to an embodiment of the present disclosure
  • FIG. 5 is a schematic block diagram of a touch display panel according to an embodiment of the present disclosure.
  • FIG. 6 is an example timing diagram of the touch display panel shown in FIG. 5;
  • FIG. 7 is a flowchart of a method of driving a touch display panel according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a method of driving a touch display panel according to an embodiment of the present disclosure
  • Figure 9 is a cross-sectional view taken along line A-A of Figure 2;
  • FIG. 10 is a flowchart of a method of manufacturing a touch display panel according to an embodiment of the present disclosure.
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/ Some should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer Thus, a first element, component, region, layer, or section, which is discussed below, may be referred to as a second element, component, region, layer or section without departing from the teachings of the disclosure.
  • under and under can encompass both the ⁇ RTIgt; Terms such as “before” or “before” and “after” or “following” may be used, for example, to indicate the order in which light passes through the elements.
  • the device can be oriented in other ways (rotated 90 degrees or in other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • a layer is referred to as “between two layers,” it may be a single layer between the two layers, or one or more intermediate layers may be present.
  • FIG. 1 is a block diagram of a touch display device 10 in accordance with an embodiment of the present disclosure.
  • the touch display device 10 includes a touch display panel 100 , a timing controller 200 , a gate driver 300 , a data driver 400 , and a touch control circuit 500 .
  • the touch display panel 100 includes a plurality of gate lines GL, a plurality of data lines DL, and a plurality of touch signal lines PD.
  • the gate line GL extends in the first direction D1
  • the data line DL and the touch signal line PD extend in the second direction D2 that intersects (eg, is substantially perpendicular) with the first direction D1.
  • the touch display panel 100 further includes a plurality of pixels PX arranged in an array, each of which is electrically connected to a corresponding one of the gate lines GL and a corresponding one of the data lines DL.
  • Each of the pixels PX may include a pixel electrode and a common electrode (not shown in FIG. 1).
  • the touch display panel 100 can be divided into a plurality of touch areas, as will be further described later.
  • the timing controller 200 controls the display panel 100, the gate driver 300, the data driver 400, and the touch control circuit 500.
  • the timing controller 200 receives input image data RGBD and an input control signal CONT.
  • the input image data RGBD includes input pixel data for a plurality of pixels.
  • the input pixel data may include red gradation data R, green gradation data G, and blue gradation data B for a corresponding one of the plurality of pixels.
  • the input control signal CONT may include a main clock signal, a data enable signal, a vertical sync signal, a horizontal sync signal, and the like.
  • the timing controller 200 generates output image data RGBD', a first control signal CONT1, a second control signal CONT2, and a third control signal CONT3 based on the input image data RGBD and the input control signal CONT.
  • the first control signal CONT1 may include a vertical enable signal, a gate clock signal, and the like.
  • the second control signal CONT2 may include a horizontal enable signal, a data clock signal, a data load signal, a polarity control signal, and the like.
  • the third control signal CONT3 can be used to instruct the touch control circuit 500 to operate in cooperation with the gate driver 300 and the data driver 400 during the display period and perform touch scan detection in the touch period.
  • the gate driver 300 receives the first control signal CONT1 from the timing controller 200.
  • the gate driver 300 generates a plurality of gate driving signals for driving the gate lines GL based on the first control signal CONT1.
  • the gate driver 300 may sequentially apply a plurality of gate driving signals to the gate lines GL.
  • the data driver 400 receives the second control signal CONT2 and the output image data RGBD' from the timing controller 200.
  • the data driver 400 generates a plurality of data voltages based on the second control signal CONT2 and the output image data RGBD'.
  • the data driver 400 can apply a plurality of data voltages to the data lines DL.
  • the touch control circuit 500 receives the third control signal CONT3 from the timing controller 200.
  • the touch control circuit 500 can supply a corresponding common voltage to the common electrodes of the plurality of pixels PX via the touch signal line PD. These common voltages can be equal or unequal.
  • the touch control circuit 500 sequentially applies a touch driving signal to the touch signal line PD, and detects the touch position by detecting the touch sensing signal on the touch signal line PD. As will be described further below.
  • the touch signal line PD extends to the bottom end of the touch display panel 100 to be connected to the touch control circuit 500 without the need for the touch display panel 100 .
  • the left and right sides are led out. As a result, there is no need to reserve a space for arranging the leads on the left and right sides of the touch display panel 100, thereby facilitating the narrow bezel design.
  • FIG. 2 illustrates several example touch regions 20 in the touch display panel 100.
  • a plurality of gate lines Gate[1], Gate[2], ..., Gate[N] extend along the first direction D1
  • a plurality of data lines Data[1], Data[2],. .., Data[N] and the plurality of touch signal lines Pd[1], Pd[2], . . . , Pd[N] extend in the second direction D2 crossing the first direction D1.
  • the gate lines, data lines, and touch signal lines are also indicated by 11, 12, and 22, respectively.
  • a plurality of pixels 40 are disposed at intersections of the gate lines 11 and the data lines 12, each of which includes a pixel electrode 42 and a common electrode 41 disposed opposite to the pixel electrode 42.
  • N ⁇ N pixels 40 are arranged in N rows R[1], R[2], ..., R[N] and N columns C[1], C[ 2],...,C[N].
  • Each of the pixels 40 further includes a thin film transistor 43 disposed at an intersection of a corresponding one of the gate lines 11 and a corresponding one of the data lines 12, the thin film transistor 43 including a gate connected to the corresponding gate line 11. The pole is connected to the source of the corresponding data line 12 and the drain of the pixel electrode 42 connected to the pixel 40.
  • Each of the common electrodes 41 is distributed in the plurality of touch regions 20.
  • Each of the touch areas 20 further includes a connecting line 21 extending along the first direction D1 and a corresponding touch signal line 22 electrically connected to the connecting line 21 and extending along the second direction D2.
  • FIG. 2 shows N touch areas 20 arranged in the second direction D2. It will be understood that although not shown, the touch areas 20 are arranged in an array in the touch display panel 100 (FIG. 1). That is, a plurality of touch regions 20 are actually arranged in the first direction D1.
  • each of the connection lines 21 electrically connects the N common electrodes 41 in the touch area 20 in which they are located.
  • the electrical connection between the connection line 21 and the common electrode 41 can be achieved by the fourth via 54.
  • the touch areas 20 are independent of each other, and the connection lines 21 of any two directly adjacent touch areas 20 in the first direction D1 or the second direction D2 are not connected to each other.
  • the number of the connection lines 21 is equal to the number of the touch signal lines 22, and each of the connection lines 21 is electrically connected only to one touch signal line 22.
  • the electrical connection between the connection line 21 and the touch signal line 22 can be achieved by the second via 52, the third via 53, and the second conductive connection 56.
  • the corresponding touch signal line 22 of each touch area 20 transmits a corresponding touch sensing signal to the touch control circuit 500 ( FIG. 1 ) during the touch period, and the touch control circuit 500 can then be based on the touch.
  • the sensing signal identifies one or more of the touch zones 20 as a touch location.
  • FIG. 3 alternately illustrates several example touch regions 20 in touch display panel 100.
  • a plurality of gate lines Gate[1], Gate[2], Gate[3], Gate[4],..., Gate[2N-1], Gate[2N] extend along the first direction D1.
  • the second direction D2 extends.
  • 2N ⁇ N pixels 40 are arranged in 2N rows R[1], R[2], R[3], R[4],..., R[2N-1], R[2N] and N Column C[1], C[2], ..., C[N].
  • N touch areas 20 arranged in the second direction D2 are shown, each of which includes two connection lines 21 and a corresponding touch signal line 22.
  • Each of the connecting lines 21 electrically connects the N common electrodes 41 in the touch area 20 where they are located, and the two connecting lines 21 in the touch area 20 are electrically connected through the corresponding touch signal lines 22.
  • the connecting lines 21 of any two directly adjacent touch areas 20 in the first direction D1 or the second direction D2 are not connected to each other. As a result, the touch areas 20 are still independent of each other.
  • the electrical connection between the connection line 21 and the common electrode 41 is achieved by the fourth via hole 54, and the electrical connection between the connection line 21 and the touch signal line 22 passes through the second via hole. 52.
  • the third via 53 and the second conductive connection 56 are implemented. It will be understood that each touch zone 20 may comprise three or more connection lines 21 depending on the desired touch control accuracy, and each connection line 21 may electrically connect any suitable number of common electrodes 41 together.
  • FIG. 4 shows a variation of the touch area 20 shown in FIG.
  • a plurality of gate lines Gate[1], Gate[2], Gate[3], Gate[4],..., Gate[2N-1], Gate[2N] extend along the first direction D1.
  • a plurality of data lines Data[1], Data[2], ..., Data[N] and a plurality of touch signal lines Pd[1], Pd[2], ..., Pd[N] The second direction D2 extends.
  • 2N ⁇ N pixels 40 are arranged in 2N rows R[1], R[2], R[3], R[4],..., R[2N-1], R[2N] and N Column C[1], C[2], ..., C[N].
  • each touch area 20 may include only one connection line 21. This allows the aperture ratio of the pixel 40 to be increased by reducing the wiring space for the connection line 21, thereby improving display brightness. Moreover, this reduces the resolution of the pattern of the common electrode 41, thereby reducing the process requirements. It will be understood that in other embodiments, each touch region 20 may cover three or more pixels 40 in the second direction D2, and thus three or more directly adjacent common electrodes may be formed Together as a piece. In addition, although not shown, in each of the touch regions 20, two or more directly adjacent common electrodes 41 in the first direction D1 may also be formed together as a single piece.
  • FIG. 5 shows a schematic block diagram of the touch display panel 100 of FIG.
  • the touch display panel 100 includes a plurality of blocks arranged in a plurality of rows r1, r2, r3, ..., rn and a plurality of columns c1, c2, ..., cm, each of which The touch area 20 described above with respect to Figures 2-4 is represented.
  • each of these blocks is indicated by 30, and is hereinafter referred to as a touch sensor.
  • the touch sensor 30 operates as a self-capacitive touch sensor, each of which includes a plurality of common electrodes 41 in the touch area 20 described above with respect to FIGS. 2-4 and (one or more) connections connecting the common electrodes 41 Line 21.
  • the touch display panel 100 does not need a double-layer electrode or bridge structure as in a typical mutual capacitive touch sensor, and does not need to be as in a typical self-capacitive touch sensor. Complex electrode pattern. This helps to simplify the manufacturing process and thus save costs.
  • FIG. 6 is an example timing diagram of the touch display panel 100 illustrated in FIG. 5
  • FIGS. 7 and 8 are flowcharts of a method 700 of driving the touch display panel 100 . The operation of the touch display panel 100 will be described below with reference to FIGS. 6-8.
  • the duty cycle of the touch display panel 100 includes a display period and a touch period.
  • the display period and the touch period are alternately performed at such a frequency that the display operation and the touch operation of the touch display panel 100 are perceived by the user as being performed simultaneously.
  • one duty cycle lasts 16.67 ms, with the first 12.67 ms being the display period and the last 4 ms being the touch period.
  • respective touch signal lines are applied with respective common voltages (step 710).
  • each gate line Gate[1], Gate[2], . . . , Gate[N] is sequentially supplied with a gate driving signal, and each data line (in The data collectively indicated by Data in Fig. 6 is supplied with a data voltage schematically shown as a square wave.
  • a corresponding electric field is established between the common electrode 41 of each pixel 40 and the pixel electrode 42 (FIG. 2-4) to drive the liquid crystal deflection, thereby realizing the display function of the touch display panel 100.
  • the common voltage is shown as a single voltage Vcom in Figure 6, in other embodiments the common voltages may not be equal to each other.
  • each touch signal line Pd[1], Pd[2], Pd[3], Pd[4], . . . , Pd[nm] is sequentially applied with a touch drive signal (for example, a rectangle). Pulse) and each touch driving signal on each of the touch signal lines Pd[1], Pd[2], Pd[3], Pd[4], . . . , Pd[nm] is detected as being used for each touch
  • the corresponding touch sensing signals of the sensor 30 are controlled (step 720). As such, each touch sensor 30 is sequentially applied with the touch drive signal.
  • the capacitance between the touch sensor 30 and the ground increases, so that the touch signal line connected to the touch sensor 30 is connected.
  • the touch driving signal on the touch driving signal is different from the touch driving signal (referred to as a standard signal) in the absence of the touch event.
  • the capacitance inherent to the touch sensor 30 is much smaller than that in the case where there is a touch event, and thus, in the example shown in FIG. 6, the touch signal line Pd[1] is supplied. ], Pd[2], Pd[3], Pd[4], ..., Pd[nm] touch drive signals (rectangular pulses) are approximately considered to be standard signals.
  • the touch sensing signals on the touch signal lines Pd[1], Pd[2], Pd[3], Pd[4], . . . , Pd[nm] are compared with the standard signals (step 722). .
  • the touch sensing signal (indicated by a broken line) on the touch signal line Pd[2] is significantly changed compared to the standard signal.
  • the rising and falling edges of the touch sensing signal have a smaller slope than those of the standard signal due to the increased capacitance.
  • the touch sensing signal is smaller than the standard signal at the first time t1 and larger than the standard signal at the second time t2.
  • the touch sensor 30 or the touch area 20 connected to the touch signal line Pd[2] is identified as a touch position (step 724).
  • FIG. 9 is a cross-sectional view taken along line A-A of FIG. 2, and FIG. 10 is a flow chart showing a method 1000 of manufacturing the touch display panel 100 in accordance with an embodiment of the present disclosure. The structure and manufacture of the touch display panel 100 will be further described below with reference to FIGS. 9 and 10.
  • connection line 21, the gate line 11, the pixel electrode 42, and the thin film transistor 43 are located on the base substrate 10.
  • the thin film transistor 43 includes a gate electrode 431, a gate insulating layer 432, an active layer 433, a source 434, and a drain 435.
  • the gate electrode 431 is directly on the base substrate 10 and disposed in the same layer as the gate line 11.
  • the gate electrode 431 is connected to the gate line 11.
  • the gate insulating layer 432 covers the base substrate 10, the pixel electrode 42, the gate electrode 431, the gate line 11, and the connection line 21.
  • the active layer 433 is disposed on the gate insulating layer 432 and opposite to the gate 431.
  • the source 434 and the drain 435 are in contact with the active layer 433 and are disposed in the same layer as the data line 12.
  • the source 434 is connected to the data line 12, and the drain 435 is connected to the pixel electrode 42.
  • the touch signal line 22 is disposed in the same layer as the data line 12.
  • the passivation layer 44 covers the gate insulating layer 432, the source 434, the drain 435, the data line 12, and the touch signal line 22.
  • the common electrode 41 is disposed on the passivation layer 44.
  • FIG. 9 also shows a first via 51, a second via 52, a third via 53, two fourth vias 54, a first conductive connection 55 and a second conductive connection 56.
  • the first via 51 penetrates the passivation layer 44 and the gate insulating layer 432 to expose the pixel electrode 42 and the drain 435.
  • the first via 51 is filled by the first conductive connection 55 such that the drain 435 and the pixel electrode 42 are electrically connected through the first conductive connection 55.
  • the second via 52 extends through the passivation layer 44 to expose the touch signal line 22.
  • the third via 53 penetrates the passivation layer 44 and the gate insulating layer 432 to expose the connection line 21.
  • the second via 52 and the third via 53 are filled by the second conductive connection portion 56 such that the connection line 21 and the touch signal line 22 are electrically connected through the second conductive connection portion 56.
  • the first conductive connection 55 and the second conductive connection 56 can be made of any suitable electrically conductive material.
  • Two fourth vias 54 extend through the passivation layer 44 and the gate insulating layer 432 to expose the connection lines 21.
  • the fourth via hole 54 is filled with the common electrode 41 such that the common electrode 41 is electrically connected to the connection line 21.
  • the presence of the two fourth via holes 54 can improve the reliability of the electrical connection between the common electrode 41 and the connection line 21.
  • the common electrode 41 can be electrically connected to the connection line 21 by fewer or more fourth vias 54.
  • the gate line 11, the connection line 21, the pixel electrode 42, and the gate electrode 431 associated with the pixel electrode 42 are formed in the lining.
  • a pixel electrode material for example, indium tin oxide, ITO
  • ITO indium tin oxide
  • a gate line material layer is deposited on the base substrate 10, and a gate line 11, a connection line 21, and a gate electrode 431 electrically connected to the gate line 11 are formed using a mask.
  • the connecting wires 21 can be formed independently.
  • connection line 21 may be formed with the gate line 11 by one patterning process, thereby simplifying the manufacturing process and reducing the required mask.
  • a gate insulating layer 432 is formed (step 1300).
  • the gate insulating layer 432 covers the base substrate 10, the pixel electrode 42, the gate line 11, the connection line 21, and the gate electrode 431.
  • an active layer 433 disposed opposite to the gate 431, a source 434 and a drain 435 in contact with the active layer, a data line 12, and a touch signal line 22 are formed on the gate insulating layer 432 ( Step 1400).
  • an active layer material layer is deposited on the gate insulating layer 432, and an active layer 433 directly above the gate electrode 431 is formed using a mask; then, a data line material layer is deposited, and a halftone mask (Half) is utilized.
  • the Tone Mask, HTM) simultaneously forms the data line 12, the touch signal line 22, and the source 434 and the drain 435.
  • Source 434 is electrically coupled to data line 12.
  • the touch signal line 22 and the data line 12 can be formed by one patterning process, thereby simplifying the manufacturing process and reducing the required mask. Alternatively, the touch signal line 22 may be formed independently of the data line 12.
  • a passivation layer 44 is formed (step 1500), which covers the gate insulating layer 432, the data line 12, the touch signal line 22, the source 434, the drain 435, and the active layer 433.
  • a common electrode 41 disposed opposite to the pixel electrode 42 is formed on the passivation layer 44 (step 1600).
  • the common electrode 41 is electrically connected to the connection line 21.
  • a fourth via hole 54 is formed which penetrates the passivation layer 44 and the gate insulating layer 432 to expose the connection line 21, and fills the fourth via hole 54 with the common electrode 21 to provide a common electrode 41 and the connection line 21 Electrical connection. Referring back to FIGS.
  • the touch display panel 100 includes a plurality of the common electrodes 41 distributed in a plurality of touch regions 20 arranged in an array and independent of each other.
  • Each of the touch regions 20 further includes at least one of the connection lines 21, each of which electrically connects a corresponding plurality of common electrodes of the common electrode 41 together.
  • at least two of the common electrodes in the common electrode 41 are formed together as a single piece in each of the touch regions 20 (FIG. 4).
  • An electrical connection between the pixel electrode 41 and the drain 435 is provided (step 1700).
  • a first via 51 is formed which penetrates the passivation layer 44 and the gate insulating layer 432 to expose the pixel electrode 41 and the drain 435, and fills the first via 51 with the first conductive connection 55 to electrically connect the pixels Electrode 41 and drain 435.
  • An electrical connection between the connection line 21 and the touch signal line 22 is provided (step 1800).
  • the second via 52 and the third via 53 are formed at the intersection of the connection line 21 and the touch signal line 22.
  • the second via 52 penetrates the passivation layer 44 to expose the touch signal line 22, and the third via 43 penetrates the passivation layer 44 and the gate insulating layer 432 to expose the connection line 21.
  • the second via 52 and the third via 53 are filled and electrically connected by the second conductive connection portion 56.
  • steps 1600-1800 are not necessarily performed in the order in which they are illustrated and described.
  • the first via 51, the second via 52, the third via 53, and the fourth via 54 may be simultaneously formed by one patterning process, thereby simplifying the manufacturing process and reducing the required mask.
  • a common electrode material for example, ITO
  • ITO a common electrode material
  • the second conductive connection portion 56 may include a first portion filling the second via hole 52 and electrically connected to the touch signal line 22, a second portion filling the third via hole 53 and electrically connected to the touch signal line 22, and located at A passivation layer 44 is connected to the bridge portion of the first portion and the second portion.
  • the common electrode 41 is electrically connected to the connection line 21 through the two fourth via holes 54, thereby improving the reliability of the electrical connection between the common electrode 41 and the connection line 21.
  • the common electrode 41 may be electrically connected to the connection line 21 through fewer or more fourth via holes 54.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控显示面板,包括:多条栅线,沿第一方向延伸;多条数据线,沿与所述第一方向交叉的第二方向延伸;和多个像素,设置在所述栅线与所述数据线的交叉处。所述像素中的每个包括像素电极和与所述像素电极相对设置的公共电极。各公共电极被分布在呈阵列排布且彼此独立的多个触控区中。所述触控区中的每个还包括沿所述第一方向延伸的至少一条连接线和与所述至少一条连接线电连接且沿所述第二方向延伸的相应触控信号线。所述至少一条连接线中的每一条将各所述公共电极中的相应多个公共电极电连接在一起。

Description

触控显示面板、驱动和制造该触控显示面板的方法、以及触控显示装置
相关申请的交叉引用
本申请要求2017年8月30日提交的中国专利申请No.201710764392.2的权益,其全部公开内容通过引用合并于此。
技术领域
本公开涉及触控显示技术领域,尤其涉及一种触控显示面板、驱动该触控显示面板方法、制造该触控显示面板的方法、以及包括该触控显示面板的触控显示装置。
背景技术
在内置式(in-cell)触控显示面板中,触控传感器嵌入在显示面板内,所述触控传感器取决于其工作原理可以分为电阻式传感器、电容式传感器、光学式传感器等。电容式触控传感器由于多点控制能力和高灵敏度而被业内广泛应用。电容式触控传感器通常包括触摸电极。在典型的应用中,所述触摸电极中的一些和/或其引线沿触控显示面板的宽度方向排列,从而要求在触控显示面板左右两侧的边框预留出用于布置引线的空间。
发明内容
根据本公开的一个方面,提供了一种触控显示面板,包括:多条栅线,沿第一方向延伸;多条数据线,沿与所述第一方向交叉的第二方向延伸;和多个像素,设置在所述栅线与所述数据线的交叉处。所述像素中的每个包括像素电极和与所述像素电极相对设置的公共电极。各公共电极被分布在呈阵列排布且彼此独立的多个触控区中。所述触控区中的每个还包括沿所述第一方向延伸的至少一条连接线和与所述至少一条连接线电连接且沿所述第二方向延伸的相应触控信号线。所述至少一条连接线中的每一条将各所述公共电极中的相应多个公共电极电连接在一起。
在一些实施例中,所述触控区中的每个包括多条所述连接线。
在一些实施例中,在所述触控区中的每一个内,所述公共电极中的至少两个直接相邻的公共电极形成在一起作为一体件。
在一些实施例中,所述连接线的数量等于所述触控信号线的数量,并且所述连接线中的每一条与所述触控信号线中的相应一条电连接。
在一些实施例中,所述连接线与所述栅线同层设置,并且其中所述触控信号线与所述数据线同层设置。
在一些实施例中,所述触控显示面板还包括:衬底基板,其上设置所述像素电极;多个薄膜晶体管,设置在所述栅线与所述数据线的所述交叉处,所述薄膜晶体管中的每个包括:栅极,设置在所述衬底基板上且与所述栅线同层,所述栅极与所述栅线中的对应一条电连接;栅极绝缘层,覆盖所述衬底基板、所述像素电极、所述栅极、所述栅线和所述连接线;有源层,设置在所述栅极绝缘层上且与所述栅极相对;源极,与所述有源层接触且与所述数据线同层设置,所述源极与所述数据线中的对应一条电连接;和漏极,与所述有源层接触且与所述数据线同层设置,所述漏极与所述像素电极中的相应一个电连接;以及钝化层,覆盖所述栅极绝缘层、所述源极、所述漏极、所述数据线和所述触控信号线。所述公共电极设置于所述钝化层上。
在一些实施例中,所述触控显示面板还包括:多个第一过孔,每个贯穿所述钝化层和所述栅极绝缘层以暴露出所述像素电极中的相应一个和所述漏极中的相应一个;多个第一导电连接部,每个填充所述第一过孔中的相应一个以电连接所述像素电极中的相应一个与所述漏极中的相应一个;多个第二过孔,每个贯穿所述钝化层以暴露出所述触控信号线中的对应一条;多个第三过孔,每个贯穿所述钝化层和所述栅极绝缘层以暴露出所述连接线中的相应一条;多个第二导电连接部,每个填充所述第二过孔中的相应一个和所述第三过孔中的相应一个以电连接所述触控信号线中的对应一条与所述连接线中的相应一条;和多个第四过孔,每个贯穿所述钝化层和所述栅极绝缘层以暴露出所述连接线中的对应一条,所述第四过孔中的每个被所述公共电极中的对应一个填充以提供所述对应的公共电极与所述对应的连接线之间的电连接。
在一些实施例中,所述公共电极中的每一个通过至少两个所述第四过孔与所述连接线中的对应一条电连接。
根据本公开的另一方面,提供了一种触控显示装置,包括如上所述的触控显示面板。
根据本公开的又另一方面,提供了一种驱动触控显示面板的方法。所述触控显示面板包括:多条栅线;多条数据线,与所述栅线交叉;和多个像素,设置在所述栅线与所述数据线的交叉处。所述像素中的每个包括像素电极和与所述像素电极相对设置的公共电极。各公共电极被分布在呈阵列排布且彼此独立的多个触控区中。所述触控区中的每个还包括沿平行于所述栅线的方向延伸的至少一条连接线和与所述至少一条连接线电连接且沿平行于所述数据线的方向延伸的触控信号线。所述至少一条连接线中的每一条将各所述公共电极中的相应多个公共电极电连接在一起。所述方法包括:交替地执行显示时段和触控时段。在所述显示时段,向各所述触控信号线施加相应公共电压。在所述触控时段,依次向各所述触控信号线施加一触控驱动信号并检测各所述触控信号线上的各所述触控驱动信号作为用于各所述触控区的相应触控感测信号。
在一些实施例中,所述方法还包括响应于检测到用于所述触控区之一的所述触控感测信号相对于标准信号的变化,将该触控区标识为触控位置。
在一些实施例中,所述变化包括从由该触控感测信号在第一时刻小于所述标准信号和该触控感测信号在第二时刻大于所述标准信号所组成的组中选择的至少一项。
根据本公开的再又一方面,提供了一种制造触控显示面板的方法,包括:提供衬底基板;在所述衬底基板上形成沿第一方向延伸的多条栅线、沿所述第一方向延伸的多条连接线、呈阵列分布的多个像素电极、以及与所述像素电极相关联的相应栅极,其中所述栅极中的每一个与所述栅线中的对应一条电连接;形成栅极绝缘层,所述栅极绝缘层覆盖所述衬底基板、所述栅线、所述连接线、所述像素电极和所述栅极;在所述栅极绝缘层上形成与所述栅极相对设置的相应有源层、与所述有源层接触的相应源极和相应漏极、沿与所述第一方向交叉的第二方向延伸的多条数据线、以及沿所述第二方向延伸的多条触控信号线,其中所述数据线中的每一条与所述源极中的相应多个源极电连接;形成钝化层,所述钝化层覆盖所述栅极绝缘层、所述数据线、所 述触控信号线、所述源极、所述漏极和所述有源层;在所述钝化层上形成与所述像素电极相对设置的多个公共电极,其中所述公共电极被分布在呈阵列排布且彼此独立的多个触控区中,所述触控区中的每个还包括至少一条所述连接线,所述至少一条连接线中的每一条将所述公共电极中的相应多个公共电极电连接在一起;提供所述像素电极与所述相应漏极之间的电连接;以及在所述触控区中的每一个内提供所述至少一条连接线与所述触控信号线中的相应一条触控信号线之间的电连接。
在一些实施例中,所述提供所述像素电极与所述相应漏极之间的电连接包括:形成多个第一过孔,每个贯穿所述钝化层和所述栅极绝缘层以暴露出所述像素电极中的相应一个和所述漏极中的相应一个;以及利用相应第一导电连接部填充所述第一过孔以电连接所述像素电极与所述相应漏极。
在一些实施例中,所述提供所述至少一条连接线与所述相应的触控信号线之间的电连接包括:在所述至少一条连接线中的每一条与所述相应的触控信号线的相应交叉处形成第二过孔,其中所述第二过孔贯穿所述钝化层以暴露出所述相应的触控信号线;在所述至少一条连接线中的每一条与所述相应的触控信号线的所述相应交叉处形成第三过孔,其中所述第三过孔贯穿所述钝化层和所述栅极绝缘层以暴露出该连接线;以及利用第二导电连接部填充并电连接所述第二过孔和所述第三过孔。
在一些实施例中,所述形成所述公共电极包括:形成多个第四过孔,每个贯穿所述钝化层和所述栅极绝缘层以暴露出所述连接线中的对应一条;以及利用所述公共电极中的对应一个填充所述第四过孔中的每一个以提供所述对应的公共电极与所述对应的连接线之间的电连接。
在一些实施例中,所述形成所述第四过孔还包括为所述公共电极中的每一个提供两个所述第四过孔。
在一些实施例中,所述形成所述公共电极还包括在所述触控区中的每一个内,将所述公共电极中的至少两个直接相邻的公共电极形成在一起作为一体件。
根据在下文中所描述的实施例,本公开的这些和其它方面将是清 楚明白的,并且将参考在下文中所描述的实施例而被阐明。
附图说明
附图被提供用于对本公开的理解,构成本公开的一部分。在附图中:
图1为根据本公开实施例的触控显示装置的示意性框图;
图2为示出了根据本公开实施例的触控显示面板中的若干触控区的示意性平面图;
图3为示出了根据本公开实施例的触控显示面板中的若干触控区的示意性平面图;
图4为示出了根据本公开实施例的触控显示面板中的若干触控区的示意性平面图;
图5为根据本公开实施例的触控显示面板的示意性框图;
图6为图5中所示的触控显示面板的示例时序图;
图7为根据本公开实施例的驱动触控显示面板的方法的流程图;
图8为根据本公开实施例的驱动触控显示面板的方法的流程图;
图9为沿图2中的线A-A截取的剖面图;并且
图10为根据本公开实施例的制造触控显示面板的方法的流程图。
具体实施方式
将理解的是,尽管术语第一、第二、第三等等在本文中可以用来描述各种元件、部件、区、层和/或部分,但是这些元件、部件、区、层和/或部分不应当由这些术语限制。这些术语仅用来将一个元件、部件、区、层或部分与另一个区、层或部分相区分。因此,下面讨论的第一元件、部件、区、层或部分可以被称为第二元件、部件、区、层或部分而不偏离本公开的教导。
诸如“在...下面”、“在...之下”、“较下”、“在...下方”、“在...之上”、“较上”等等之类的空间相对术语在本文中可以为了便于描述而用来描述如图中所图示的一个元件或特征与另一个(些)元件或特征的关系。将理解的是,这些空间相对术语意图涵盖除了图中描绘的取向之外在使用或操作中的器件的不同取向。例如,如果翻转图中的器件,那么被描述为“在其他元件或特征之下”或“在其他 元件或特征下面”或“在其他元件或特征下方”的元件将取向为“在其他元件或特征之上”。因此,示例性术语“在...之下”和“在...下方”可以涵盖在...之上和在...之下的取向两者。诸如“在...之前”或“在...前”和“在...之后”或“接着是”之类的术语可以类似地例如用来指示光穿过元件所依的次序。器件可以取向为其他方式(旋转90度或以其他取向)并且相应地解释本文中使用的空间相对描述符。另外,还将理解的是,当层被称为“在两个层之间”时,其可以是在该两个层之间的唯一的层,或者也可以存在一个或多个中间层。
本文中使用的术语仅出于描述特定实施例的目的并且不意图限制本公开。如本文中使用的,单数形式“一个”、“一”和“该”意图也包括复数形式,除非上下文清楚地另有指示。将进一步理解的是,术语“包括”和/或“包含”当在本说明书中使用时指定所述及特征、整体、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组的存在或添加一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组。如本文中使用的,术语“和/或”包括相关联的列出项目中的一个或多个的任意和全部组合。
将理解的是,当元件或层被称为“在另一个元件或层上”、“连接到另一个元件或层”、“耦合到另一个元件或层”或“邻近另一个元件或层”时,其可以直接在另一个元件或层上、直接连接到另一个元件或层、直接耦合到另一个元件或层或者直接邻近另一个元件或层,或者可以存在中间元件或层。相反,当元件被称为“直接在另一个元件或层上”、“直接连接到另一个元件或层”、“直接耦合到另一个元件或层”、“直接邻近另一个元件或层”时,没有中间元件或层存在。然而,在任何情况下“在...上”或“直接在...上”都不应当被解释为要求一个层完全覆盖下面的层。
本文中参考本公开的理想化实施例的示意性图示(以及中间结构)描述本公开的实施例。正因为如此,应预期例如作为制造技术和/或公差的结果而对于图示形状的变化。因此,本公开的实施例不应当被解释为限于本文中图示的区的特定形状,而应包括例如由于制造导致的形状偏差。因此,图中图示的区本质上是示意性的,并且其形状不意图图示器件的区的实际形状并且不意图限制本公开的范围。
除非另有定义,本文中使用的所有术语(包括技术术语和科学术语)具有与本公开所属领域的普通技术人员所通常理解的相同含义。将进一步理解的是,诸如那些在通常使用的字典中定义的之类的术语应当被解释为具有与其在相关领域和/或本说明书上下文中的含义相一致的含义,并且将不在理想化或过于正式的意义上进行解释,除非本文中明确地如此定义。
下面结合附图详细描述本公开的实施例。
图1是根据本公开实施例的触控显示装置10的框图。参考图1,触控显示装置10包括触控显示面板100、时序控制器200、栅极驱动器300、数据驱动器400和触控控制电路500。
触控显示面板100包括多条栅线GL、多条数据线DL和多条触控信号线PD。栅线GL在第一方向D1上延伸,并且数据线DL和触控信号线PD在与第一方向D1交叉(例如,基本垂直)的第二方向D2上延伸。触控显示面板100还包括以阵列排布的多个像素PX,其每一个电连接至栅线GL的对应一条栅线和数据线DL的对应一条数据线。每个像素PX可包括像素电极和公共电极(图1中未示出)。触控显示面板100可划分为多个触控区,如后面将进一步描述的。
时序控制器200控制显示面板100、栅极驱动器300、数据驱动器400和触控控制电路500。时序控制器200接收输入图像数据RGBD和输入控制信号CONT。输入图像数据RGBD包括用于多个像素的输入像素数据。输入像素数据可包括用于多个像素中的对应一个的红色灰度数据R、绿色灰度数据G和蓝色灰度数据B。输入控制信号CONT可包括主时钟信号、数据使能信号、垂直同步信号、水平同步信号等。时序控制器200基于输入图像数据RGBD和输入控制信号CONT生成输出图像数据RGBD’、第一控制信号CONT1、第二控制信号CONT2和第三控制信号CONT3。第一控制信号CONT1可包括垂直启动信号、栅极时钟信号等。第二控制信号CONT2可包括水平启动信号、数据时钟信号、数据负载信号、极性控制信号等。第三控制信号CONT3可用于指示触控控制电路500在显示时段中与栅极驱动器300和数据驱动器400相配合地操作并且在触控时段中执行触控扫描检测。
栅极驱动器300从时序控制器200接收第一控制信号CONT1。栅极驱动器300基于第一控制信号CONT1生成用于驱动栅线GL的多个 栅极驱动信号。栅极驱动器300可顺序地将多个栅极驱动信号施加至栅线GL。
数据驱动器400从时序控制器200接收第二控制信号CONT2和输出图像数据RGBD’。数据驱动器400基于第二控制信号CONT2和输出图像数据RGBD’生成多个数据电压。数据驱动器400可将多个数据电压施加至数据线DL。
触控控制电路500从时序控制器200接收第三控制信号CONT3。在显示时段中,触控控制电路500可经由所述触控信号线PD向多个像素PX的公共电极供应相应的公共电压。这些公共电压可以相等或不相等。在触控时段中,触控控制电路500向所述触控信号线PD依次施加一触控驱动信号,并且通过检测所述触控信号线PD上的触控感测信号来标识触控位置,如后面将进一步描述的。
如图1中直观地示出的,在触控显示装置10中,触控信号线PD延伸至触控显示面板100的底端以连接到触控控制电路500,而无需从触控显示面板100的左右两侧引出。结果,无需在触控显示面板100的左右两侧的边框预留出用于布置引线的空间,从而有利于窄边框设计。
图2示出了触控显示面板100中的若干示例触控区20。请参阅图2,多条栅线Gate[1],Gate[2],...,Gate[N]沿第一方向D1延伸,并且多条数据线Data[1],Data[2],...,Data[N]和多条触控信号线Pd[1],Pd[2],...,Pd[N]沿与第一方向D1交叉的第二方向D2延伸。为了便于描述,所述栅线、数据线和触控信号线在下文中也分别由11、12和22指示。多个像素40设置在所述栅线11与所述数据线12的交叉处,其每一个包括像素电极42和与所述像素电极42相对设置的公共电极41。在图2所示的示例中,N×N个像素40被排列在N个行R[1],R[2],...,R[N]和N个列C[1],C[2],...,C[N]中。每个像素40还包括设置在所述栅线11中的对应一条与所述数据线12中的对应一条的交叉处的薄膜晶体管43,该薄膜晶体管43包括连接到该对应的栅线11的栅极、连接到该对应的数据线12的源极、以及连接到该像素40的像素电极42的漏极。
各公共电极41被分布在多个触控区20中。触控区20中的每个还包括沿所述第一方向D1延伸的连接线21和与所述连接线21电连接且 沿所述第二方向D2延伸的相应触控信号线22。图2示出了在第二方向D2上排列的N个触控区20。将理解的是,虽然未示出,但是触控区20在触控显示面板100(图1)中是呈阵列排布的。也即,在第一方向D1上实际上也排列着多个触控区20。在该示例中,每条连接线21将其所在的触控区20中的N个公共电极41电连接在一起。连接线21与公共电极41之间的电连接可以通过第四过孔54实现。触控区20是彼此独立的,在于第一方向D1或第二方向D2上任意两个直接相邻的触控区20的连接线21互不连接。在图2的示例中,连接线21的数量等于触控信号线22的数量,并且每条连接线21仅与一条触控信号线22电连接。连接线21与触控信号线22之间的电连接可以通过第二过孔52、第三过孔53和第二导电连接部56实现。各触控区20的相应触控信号线22在触控时段中向触控控制电路500(图1)传送相应的触控感测信号,所述触控控制电路500于是能够基于所述触控感测信号将所述触控区20中的一个或多个标识为触控位置。
图3替换地示出了触控显示面板100中的若干示例触控区20。请参阅图3,多条栅线Gate[1],Gate[2],Gate[3],Gate[4],...,Gate[2N-1],Gate[2N]沿第一方向D1延伸,并且多条数据线Data[1],Data[2],...,Data[N]和多条触控信号线Pd[1],Pd[2],...,Pd[N]沿第二方向D2延伸。2N×N个像素40被排列在2N个行R[1],R[2],R[3],R[4],...,R[2N-1],R[2N]和N个列C[1],C[2],...,C[N]中。
在图3中,示出了在第二方向D2上排列的N个触控区20,其每一个包括两条连接线21和一条相应的触控信号线22。每条连接线21将其所在的触控区20中的N个公共电极41电连接在一起,并且该触控区20内的两条连接线21通过该相应的触控信号线22电连接。第一方向D1或第二方向D2上任意两个直接相邻的触控区20的连接线21互不连接。结果,触控区20仍然是彼此独立的。与图2中所示的示例类似,连接线21与公共电极41之间的电连接通过第四过孔54实现,并且连接线21与触控信号线22之间的电连接通过第二过孔52、第三过孔53和第二导电连接部56实现。将理解的是,取决于所期望的触控控制精度,每个触控区20可以包括三条或更多条连接线21,并且每条连接线21可以将任何适当数目的公共电极41电连接在一起。
图4示出了图3中所示的触控区20的变型。请参阅图4,多条栅 线Gate[1],Gate[2],Gate[3],Gate[4],...,Gate[2N-1],Gate[2N]沿第一方向D1延伸,并且多条数据线Data[1],Data[2],...,Data[N]和多条触控信号线Pd[1],Pd[2],...,Pd[N]沿第二方向D2延伸。2N×N个像素40被排列在2N个行R[1],R[2],R[3],R[4],...,R[2N-1],R[2N]和N个列C[1],C[2],...,C[N]中。
不同于图3中所示的示例,在图4中所示的触控区20中的每一个内,在第二方向D2上的两个直接相邻的公共电极形成在一起作为一体件41。在这种情况下,每个触控区20可仅包括一条连接线21。这允许通过减少用于连接线21的布线空间而提高像素40的开口率,从而提高显示亮度。而且,这降低了公共电极41的图案的分辨率,从而降低工艺要求。将理解的是,在其他实施例中,每个触控区20在第二方向D2上可以覆盖三个或更多个像素40,并且因此三个或更多个直接相邻的公共电极可以形成在一起作为一体件。另外,虽然未示出,但是在每个触控区20内,在第一方向D1上的两个或更多个直接相邻的公共电极41也可以形成在一起作为一体件。
图5示出了图1中的触控显示面板100的示意性框图。请参阅图5,触控显示面板100包括排布在多个行r1,r2,r3,...,rn和多个列c1,c2,...,cm中的多个块,其每一个表示上面关于图2-4描述的触控区20。在图5中,这些块中的每个由30指示,并且在下文中被称为触控传感器。触控传感器30操作为自容式触控传感器,其每一个包括上面关于图2-4描述的触控区20中的多个公共电极41和连接这些公共电极41的(一条或多条)连接线21。归因于所述公共电极41的简单布置,触控显示面板100无需像典型的互容式触控传感器中那样的双层电极或桥接结构,也无需像典型的自容式触控传感器中那样的复杂电极图案。这有利于简化制造工艺,从而节省成本。
图6为图5中所示的触控显示面板100的示例时序图,并且图7和图8为驱动触控显示面板100的方法700的流程图。下面结合图6-8描述触控显示面板100的操作。
触控显示面板100的工作周期包括显示时段和触控时段。显示时段和触控时段以这样的频率交替地执行使得触控显示面板100的显示操作和触控操作被用户感知为同时执行。在示例性实施例中,一个工作周期持续16.67ms,其中前12.67ms为显示时段,后4ms为触控时段。
在显示时段内,各触控信号线(在图6中由Pd集体地指示)被施加相应公共电压(步骤710)。同时,在其中垂直同步信号Vsync有效的时间间隔内,各栅线Gate[1],Gate[2],...,Gate[N]被依次供应有栅极驱动信号,并且各数据线(在图6中由Data集体地指示)被供应有示意性地示出为方波的数据电压。如此,各像素40的公共电极41与像素电极42(图2-4)之间建立相应的电场以驱动液晶偏转,实现触控显示面板100的显示功能。将理解的是,虽然所述公共电压在图6中被示出为单个电压Vcom,但是在其他实施例中公共电压可以彼此不相等。
在触控时段,各触控信号线Pd[1],Pd[2],Pd[3],Pd[4],...,Pd[nm]被依次施加一触控驱动信号(例如,矩形脉冲)并且各触控信号线Pd[1],Pd[2],Pd[3],Pd[4],...,Pd[nm]上的各触控驱动信号被检测作为用于各触控传感器30(或触控区20)的相应触控感测信号(步骤720)。如此,各触控传感器30被依次地施加所述触控驱动信号。当其中手指或触控笔接触或接近某一触控传感器30的触控事件发生时,该触控传感器30与地之间的电容增大,使得该触控传感器30所连接的触控信号线上的触控驱动信号不同于不存在所述触控事件的情况下的触控驱动信号(称为标准信号)。为了便于说明,假定触控传感器30固有的电容比起它在存在触控事件的情况下的电容小得多,并且因此在图6所示的示例中,供应给各触控信号线Pd[1],Pd[2],Pd[3],Pd[4],...,Pd[nm]的触控驱动信号(矩形脉冲)被近似地认为是标准信号。各触控信号线Pd[1],Pd[2],Pd[3],Pd[4],...,Pd[nm]上的触控感测信号被与标准信号相比较(步骤722)。如图6所示,触控信号线Pd[2]上的触控感测信号(由虚线指示)与标准信号相比被明显地改变。具体地,由于增大的电容,该触控感测信号的上升沿和下降沿与标准信号的那些相比具有较小的斜率。更具体地,该触控感测信号在第一时刻t1处小于标准信号并且在第二时刻t2处大于标准信号。响应于此,连接到该触控信号线Pd[2]的触控传感器30(或触控区20)被标识为触控位置(步骤724)。
图9示出了沿图2中的线A-A截取的剖面图,并且图10示出了根据本公开实施例的制造触控显示面板100的方法1000的流程图。下面结合图9和图10进一步描述触控显示面板100的结构和制造。
如图9所示,连接线21、栅线11、像素电极42和薄膜晶体管43位于衬底基板10上。薄膜晶体管43包括栅极431、栅极绝缘层432、有源层433、源极434和漏极435。栅极431直接位于衬底基板10上且与栅线11同层设置。栅极431与栅线11连接。栅极绝缘层432覆盖衬底基板10、像素电极42、栅极431、栅线11和连接线21。有源层433设置于栅极绝缘层432上且与栅极431相对。源极434和漏极435与有源层433接触,且与数据线12同层设置。源极434与数据线12连接,并且漏极435与像素电极42连接。触控信号线22与数据线12同层设置。钝化层44覆盖栅极绝缘层432、源极434、漏极435、数据线12和触控信号线22。公共电极41被设置在钝化层44上。
图9还示出了第一过孔51、第二过孔52、第三过孔53、两个第四过孔54、第一导电连接部55和第二导电连接部56。第一过孔51贯穿钝化层44和栅极绝缘层432以暴露出像素电极42和漏极435。第一过孔51被第一导电连接部55填充,使得漏极435与像素电极42通过第一导电连接部55电连接。第二过孔52贯穿钝化层44以暴露出触控信号线22。第三过孔53贯穿钝化层44和栅极绝缘层432以暴露出连接线21。第二过孔52和第三过孔53被第二导电连接部56进行填充,使得连接线21与触控信号线22通过第二导电连接部56电连接。第一导电连接部55和第二导电连接部56可以由任何适当的导电材料制成。两个第四过孔54贯穿钝化层44和栅极绝缘层432以暴露出连接线21。所述第四过孔54被公共电极41填充,使得公共电极41与连接线21电连接。两个第四过孔54的存在可以改善公共电极41与连接线21之间的电连接的可靠性。在其他实施例中,公共电极41可以通过更少或更多第四过孔54与连接线21电连接。
在制造触控显示面板100时,在衬底基板10被提供(步骤1100)之后,栅线11、连接线21、像素电极42以及与所述像素电极42相关联的栅极431被形成在衬底基板10上(步骤1200)。例如,可以先在衬底基板10上沉积像素电极材料(例如,铟锡氧化物,ITO)层,并利用掩模板形成像素电极42。然后,在衬底基板10上沉积栅线材料层,并利用掩模板形成栅线11、连接线21和与栅线11电连接的栅极431。在一些实施例中,连接线21可以被独立地形成。替换地,连接线21可以与栅线11通过一次构图工艺形成,从而简化制造工艺并且减少所 需要的掩模板。接下来,形成栅极绝缘层432(步骤1300)。栅极绝缘层432覆盖衬底基板10、像素电极42、栅线11、连接线21和栅极431。然后,在栅极绝缘层432上形成与所述栅极431相对设置的有源层433、与所述有源层接触的源极434和漏极435、数据线12以及触控信号线22(步骤1400)。例如,在栅极绝缘层432上沉积有源层材料层,并利用掩模板形成位于栅极431的正上方的有源层433;然后,沉积数据线材料层,并利用半色调掩模板(Half Tone Mask,HTM)同时形成数据线12、触控信号线22、以及源极434和漏极435。源极434与数据线12电连接。触控信号线22和数据线12可以通过一次构图工艺形成,从而简化制造工艺并且减少所需要的掩模板。替换地,触控信号线22可以独立于数据线12形成。然后,形成钝化层44(步骤1500),所述钝化层44覆盖栅极绝缘层432、数据线12、触控信号线22、源极434、漏极435和有源层433。在所述钝化层44上形成与所述像素电极42相对设置的公共电极41(步骤1600)。公共电极41与连接线21电连接。例如,形成第四过孔54,其贯穿钝化层44和栅极绝缘层432以暴露出连接线21,并且利用公共电极21填充第四过孔54以提供公共电极41与连接线21之间的电连接。返回参照图2-4,触控显示面板100包括被分布在呈阵列排布且彼此独立的多个触控区20中的多个所述公共电极41。所述触控区20中的每个还包括至少一条所述连接线21,其中的每一条将所述公共电极41中的相应多个公共电极电连接在一起。在一些实施例中,在所述触控区20中的每一个内,将所述公共电极41中的至少两个直接相邻的公共电极形成在一起作为一体件(图4)。提供像素电极41与漏极435之间的电连接(步骤1700)。例如,形成第一过孔51,其贯穿钝化层44和栅极绝缘层432以暴露出像素电极41和漏极435,并且利用第一导电连接部55填充第一过孔51以电连接像素电极41与漏极435。提供连接线21与触控信号线22之间的电连接(步骤1800)。例如,在连接线21与触控信号线22的交叉处形成第二过孔52和第三过孔53。第二过孔52贯穿钝化层44以暴露出触控信号线22,并且第三过孔43贯穿钝化层44和栅极绝缘层432以暴露出连接线21。然后,利用第二导电连接部56填充并电连接第二过孔52和第三过孔53。
将理解的是,步骤1600-1800不一定以它们被图示和描述的顺序执 行。在一些实施例中,可以通过一次构图工艺同时形成第一过孔51、第二过孔52、第三过孔53和第四过孔54,从而简化制造工艺并且减少所需要的掩模板。然后,沉积公共电极材料(例如,ITO)层,并利用掩模板同时形成公共电极41、第一导电连接部55和第二导电连接部56。第二导电连接部56可以包括填充第二过孔52且与触控信号线22电连接的第一部、填充第三过孔53且与触控信号线22电连接的第二部、以及位于钝化层44上且连接第一部和第二部的跨桥部。在图9中所示的示例中,公共电极41通过两个第四过孔54与连接线21电连接,从而改善公共电极41与连接线21之间的电连接的可靠性。替换地,公共电极41可以通过更少或更多个第四过孔54与连接线21电连接。
虽然前面的讨论包含若干特定的实现细节,但是这些不应解释为对任何要求保护的主题的限制,而应解释为对可能仅限于特定实施例的特征的描述。在本说明书中不同的实施例中描述的特定特征也可以在单个实施例中以组合形式实现。与此相反,在单个实施例中描述的不同特征也可以在多个实施例中分别地或者以任何适当的子组合形式实现。类似地,虽然各个操作在附图中被描绘为按照特定的顺序,但是这不应理解为要求这些操作必须以所示的特定顺序或者按顺行次序执行,或者要求必须执行所有示出的操作以获得期望的结果。在某些情况下,并行处理可能是有利的。
以上所述为本公开的特定实施例,并且本公开的范围并不局限于此。各种变化或替换可以由本领域普通的技术人员做出而不脱离本公开的范围。因此,本公开的范围应以所附的权利要求的范围及其等同物为准。

Claims (18)

  1. 一种触控显示面板,包括:
    多条栅线,沿第一方向延伸;
    多条数据线,沿与所述第一方向交叉的第二方向延伸;和
    多个像素,设置在所述栅线与所述数据线的交叉处,所述像素中的每个包括像素电极和与所述像素电极相对设置的公共电极,各公共电极被分布在呈阵列排布且彼此独立的多个触控区中,
    其中所述触控区中的每个还包括沿所述第一方向延伸的至少一条连接线和与所述至少一条连接线电连接且沿所述第二方向延伸的相应触控信号线,并且
    其中所述至少一条连接线中的每一条将各所述公共电极中的相应多个公共电极电连接在一起。
  2. 根据权利要求1所述的触控显示面板,其中所述触控区中的每个包括多条所述连接线。
  3. 根据权利要求1所述的触控显示面板,其中在所述触控区中的每一个内,所述公共电极中的至少两个直接相邻的公共电极形成在一起作为一体件。
  4. 根据权利要求1所述的触控显示面板,其中所述连接线的数量等于所述触控信号线的数量,并且其中所述连接线中的每一条与所述触控信号线中的相应一条电连接。
  5. 根据权利要求1所述的触控显示面板,其中所述连接线与所述栅线同层设置,并且其中所述触控信号线与所述数据线同层设置。
  6. 根据权利要求5所述的触控显示面板,还包括:
    衬底基板,其上设置所述像素电极;
    多个薄膜晶体管,设置在所述栅线与所述数据线的所述交叉处,所述薄膜晶体管中的每个包括:
    栅极,设置在所述衬底基板上且与所述栅线同层,所述栅极与所述栅线中的对应一条电连接;
    栅极绝缘层,覆盖所述衬底基板、所述像素电极、所述栅极、所述栅线和所述连接线;
    有源层,设置在所述栅极绝缘层上且与所述栅极相对;
    源极,与所述有源层接触且与所述数据线同层设置,所述源极与所述数据线中的对应一条电连接;和
    漏极,与所述有源层接触且与所述数据线同层设置,所述漏极与所述像素电极中的相应一个电连接;以及
    钝化层,覆盖所述栅极绝缘层、所述源极、所述漏极、所述数据线和所述触控信号线,
    其中所述公共电极设置于所述钝化层上。
  7. 根据权利要求6所述的触控显示面板,还包括:
    多个第一过孔,每个贯穿所述钝化层和所述栅极绝缘层以暴露出所述像素电极中的相应一个和所述漏极中的相应一个;
    多个第一导电连接部,每个填充所述第一过孔中的相应一个以电连接所述像素电极中的相应一个与所述漏极中的相应一个;
    多个第二过孔,每个贯穿所述钝化层以暴露出所述触控信号线中的对应一条;
    多个第三过孔,每个贯穿所述钝化层和所述栅极绝缘层以暴露出所述连接线中的相应一条;
    多个第二导电连接部,每个填充所述第二过孔中的相应一个和所述第三过孔中的相应一个以电连接所述触控信号线中的对应一条与所述连接线中的相应一条;和
    多个第四过孔,每个贯穿所述钝化层和所述栅极绝缘层以暴露出所述连接线中的对应一条,所述第四过孔中的每个被所述公共电极中的对应一个填充以提供所述对应的公共电极与所述对应的连接线之间的电连接。
  8. 根据权利要求7所述的触控显示面板,其中所述公共电极中的每一个通过至少两个所述第四过孔与所述连接线中的对应一条电连接。
  9. 一种触控显示装置,包括如权利要求1~8任一所述的触控显示面板。
  10. 一种驱动触控显示面板的方法,所述触控显示面板包括:多条栅线;多条数据线,与所述栅线交叉;和多个像素,设置在所述栅线与所述数据线的交叉处,所述像素中的每个包括像素电极和与所述像素电极相对设置的公共电极,各公共电极被分布在呈阵列排布且彼此独立的多个触控区中,所述触控区中的每个还包括沿平行于所述栅线 的方向延伸的至少一条连接线和与所述至少一条连接线电连接且沿平行于所述数据线的方向延伸的触控信号线,所述至少一条连接线中的每一条将各所述公共电极中的相应多个公共电极电连接在一起,所述方法包括:
    交替地执行显示时段和触控时段,
    其中在所述显示时段,向各所述触控信号线施加相应公共电压,并且
    其中在所述触控时段,依次向各所述触控信号线施加一触控驱动信号并检测各所述触控信号线上的各所述触控驱动信号作为用于各所述触控区的相应触控感测信号。
  11. 根据权利要求10所述的方法,还包括响应于检测到用于所述触控区之一的所述触控感测信号相对于标准信号的变化,将该触控区标识为触控位置。
  12. 根据权利要求11所述的方法,其中所述变化包括从由该触控感测信号在第一时刻小于所述标准信号和该触控感测信号在第二时刻大于所述标准信号所组成的组中选择的至少一项。
  13. 一种制造触控显示面板的方法,包括:
    提供衬底基板;
    在所述衬底基板上形成沿第一方向延伸的多条栅线、沿所述第一方向延伸的多条连接线、呈阵列分布的多个像素电极、以及与所述像素电极相关联的相应栅极,其中所述栅极中的每一个与所述栅线中的对应一条电连接;
    形成栅极绝缘层,所述栅极绝缘层覆盖所述衬底基板、所述栅线、所述连接线、所述像素电极和所述栅极;
    在所述栅极绝缘层上形成与所述栅极相对设置的相应有源层、与所述有源层接触的相应源极和相应漏极、沿与所述第一方向交叉的第二方向延伸的多条数据线、以及沿所述第二方向延伸的多条触控信号线,其中所述数据线中的每一条与所述源极中的相应多个源极电连接;
    形成钝化层,所述钝化层覆盖所述栅极绝缘层、所述数据线、所述触控信号线、所述源极、所述漏极和所述有源层;
    在所述钝化层上形成与所述像素电极相对设置的多个公共电极,其中所述公共电极被分布在呈阵列排布且彼此独立的多个触控区中, 所述触控区中的每个还包括至少一条所述连接线,所述至少一条连接线中的每一条将所述公共电极中的相应多个公共电极电连接在一起;
    提供所述像素电极与所述相应漏极之间的电连接;以及
    在所述触控区中的每一个内提供所述至少一条连接线与所述触控信号线中的相应一条触控信号线之间的电连接。
  14. 根据权利要求13所述的方法,其中所述提供所述像素电极与所述相应漏极之间的电连接包括:
    形成多个第一过孔,每个贯穿所述钝化层和所述栅极绝缘层以暴露出所述像素电极中的相应一个和所述漏极中的相应一个;以及
    利用相应第一导电连接部填充所述第一过孔以电连接所述像素电极与所述相应漏极。
  15. 根据权利要求13所述的方法,其中所述提供所述至少一条连接线与所述相应的触控信号线之间的电连接包括:
    在所述至少一条连接线中的每一条与所述相应的触控信号线的相应交叉处形成第二过孔,其中所述第二过孔贯穿所述钝化层以暴露出所述相应的触控信号线;
    在所述至少一条连接线中的每一条与所述相应的触控信号线的所述相应交叉处形成第三过孔,其中所述第三过孔贯穿所述钝化层和所述栅极绝缘层以暴露出该连接线;以及
    利用第二导电连接部填充并电连接所述第二过孔和所述第三过孔。
  16. 根据权利要求13所述的方法,其中所述形成所述公共电极包括:
    形成多个第四过孔,每个贯穿所述钝化层和所述栅极绝缘层以暴露出所述连接线中的对应一条;以及
    利用所述公共电极中的对应一个填充所述第四过孔中的每一个以提供所述对应的公共电极与所述对应的连接线之间的电连接。
  17. 根据权利要求16所述的方法,其中所述形成所述第四过孔还包括为所述公共电极中的每一个提供两个所述第四过孔。
  18. 根据权利要求13所述的方法,其中所述形成所述公共电极还包括在所述触控区中的每一个内,将所述公共电极中的至少两个直接相邻的公共电极形成在一起作为一体件。
PCT/CN2018/084993 2017-08-30 2018-04-28 触控显示面板、驱动和制造该触控显示面板的方法、以及触控显示装置 WO2019041860A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/335,807 US11093072B2 (en) 2017-08-30 2018-04-28 Touch display panel, method of driving and manufacturing same, and touch display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710764392.2 2017-08-30
CN201710764392.2A CN107515701B (zh) 2017-08-30 2017-08-30 触控显示面板及其驱动方法、制造方法、触控显示装置

Publications (1)

Publication Number Publication Date
WO2019041860A1 true WO2019041860A1 (zh) 2019-03-07

Family

ID=60724403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084993 WO2019041860A1 (zh) 2017-08-30 2018-04-28 触控显示面板、驱动和制造该触控显示面板的方法、以及触控显示装置

Country Status (3)

Country Link
US (1) US11093072B2 (zh)
CN (1) CN107515701B (zh)
WO (1) WO2019041860A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI719865B (zh) * 2020-03-23 2021-02-21 友達光電股份有限公司 畫素結構

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107515701B (zh) * 2017-08-30 2020-01-24 京东方科技集团股份有限公司 触控显示面板及其驱动方法、制造方法、触控显示装置
JP2019053116A (ja) * 2017-09-13 2019-04-04 シャープ株式会社 位置入力機能付き表示装置
TWI645557B (zh) * 2017-12-08 2018-12-21 友達光電股份有限公司 畫素陣列基板
CN108561762B (zh) * 2018-01-04 2021-10-29 京东方科技集团股份有限公司 照明面板及其制造方法、照明装置及其控制方法
CN108428705A (zh) * 2018-04-09 2018-08-21 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板、显示装置
CN108628499A (zh) * 2018-05-25 2018-10-09 京东方科技集团股份有限公司 阵列基板及其驱动方法、显示装置
CN109032424B (zh) * 2018-09-05 2022-06-03 张家港康得新光电材料有限公司 一种触控面板、制备方法及触控显示装置
CN109491543B (zh) * 2018-11-06 2020-12-25 京东方科技集团股份有限公司 一种触控显示面板、制作方法及驱动方法
KR102550867B1 (ko) * 2018-12-28 2023-07-04 엘지디스플레이 주식회사 발광표시장치, 발광표시패널, 구동회로 및 구동방법
US11588085B2 (en) * 2019-05-10 2023-02-21 Boe Technology Group Co., Ltd. Light emitting drive substrate and manufacturing method thereof, light emitting substrate and display device
CN110764329A (zh) * 2019-10-31 2020-02-07 京东方科技集团股份有限公司 阵列基板及其制备方法、液晶显示面板、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204706018U (zh) * 2015-06-30 2015-10-14 京东方科技集团股份有限公司 触控显示面板及显示装置
CN105094479A (zh) * 2015-06-30 2015-11-25 京东方科技集团股份有限公司 触控显示面板、制备方法、驱动方法及显示装置
CN205507719U (zh) * 2016-01-28 2016-08-24 成都京东方光电科技有限公司 触控显示基板、触控显示面板和触控显示装置
CN107515701A (zh) * 2017-08-30 2017-12-26 京东方科技集团股份有限公司 触控显示面板及其驱动方法、制造方法、触控显示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5852050B2 (ja) * 2013-05-27 2016-02-03 株式会社ジャパンディスプレイ タッチ検出装置、タッチ検出機能付き表示装置、及び電子機器
CN103713792B (zh) * 2013-12-23 2016-06-01 京东方科技集团股份有限公司 阵列基板及其制造方法和触摸显示装置
KR101648571B1 (ko) * 2014-07-16 2016-08-18 엘지디스플레이 주식회사 인 셀 터치 타입의 표시장치
CN104852068B (zh) 2015-05-26 2017-08-01 苏州弗尔赛能源科技股份有限公司 一种质子交换膜燃料电池双极板分配头及其设计方法
CN104850268B (zh) * 2015-06-10 2018-02-06 京东方科技集团股份有限公司 一种触控显示面板、触控显示装置及制作方法
CN105094437B (zh) * 2015-08-13 2018-12-21 京东方科技集团股份有限公司 一种触控显示面板及其驱动方法、显示装置
CN105094488B (zh) 2015-08-18 2018-10-23 京东方科技集团股份有限公司 触控显示面板及其制作方法、驱动方法和触控显示装置
CN105068694B (zh) * 2015-09-07 2018-01-26 上海天马微电子有限公司 一种触控显示面板及触控显示面板的驱动方法
KR102360791B1 (ko) * 2015-09-30 2022-02-10 엘지디스플레이 주식회사 인 셀 터치 표시장치
KR102439350B1 (ko) * 2015-12-31 2022-09-02 엘지디스플레이 주식회사 터치스크린 내장형 표시장치 및 그 제조방법
US10474286B2 (en) * 2016-10-25 2019-11-12 Lg Display Co., Ltd. Touch display device, active pen, touch system, touch circuit, and pen recognition method
JP2018151914A (ja) * 2017-03-14 2018-09-27 株式会社ジャパンディスプレイ 表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204706018U (zh) * 2015-06-30 2015-10-14 京东方科技集团股份有限公司 触控显示面板及显示装置
CN105094479A (zh) * 2015-06-30 2015-11-25 京东方科技集团股份有限公司 触控显示面板、制备方法、驱动方法及显示装置
CN205507719U (zh) * 2016-01-28 2016-08-24 成都京东方光电科技有限公司 触控显示基板、触控显示面板和触控显示装置
CN107515701A (zh) * 2017-08-30 2017-12-26 京东方科技集团股份有限公司 触控显示面板及其驱动方法、制造方法、触控显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI719865B (zh) * 2020-03-23 2021-02-21 友達光電股份有限公司 畫素結構

Also Published As

Publication number Publication date
CN107515701B (zh) 2020-01-24
US11093072B2 (en) 2021-08-17
US20190227671A1 (en) 2019-07-25
CN107515701A (zh) 2017-12-26

Similar Documents

Publication Publication Date Title
WO2019041860A1 (zh) 触控显示面板、驱动和制造该触控显示面板的方法、以及触控显示装置
CN107797687B (zh) 显示面板、显示装置、集成驱动电路和驱动方法
US20200333903A1 (en) Touch Display Apparatus
US9293078B2 (en) Display device integrated with touch screen panel and method of driving the same
KR101736937B1 (ko) 터치스크린 일체형 표시장치
EP2698689B1 (en) In-cell touch panel
EP2869166B1 (en) Touch panel, touch display panel, and touch detection and display method
TWI480772B (zh) 整合觸控式面板及其方法
WO2016119445A1 (zh) 内嵌式触摸屏及显示装置
CN106909249B (zh) 触控显示基板和触控显示装置
WO2016119333A1 (zh) 内嵌式触摸屏及其驱动方法以及显示装置
US20120169636A1 (en) Touchable sensing matrix unit, a co-constructed active array substrate having the touchable sensing matrix unit and a display having the co-constructed active array substrate
WO2015180356A1 (zh) 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
US9261999B2 (en) Display panel having embedded light sensors
US20120105752A1 (en) Liquid crystal display with integrated touch screen panel and driving method thereof
US10599263B2 (en) In-cell touch display panel and touch display system
TWI546720B (zh) 觸控螢幕與相關觸控感測控制電路
US20160291753A1 (en) Array substrate, touch panel, touch apparatus, display panel and display apparatus
WO2014131248A1 (zh) 电容式内嵌触摸屏及显示装置
CN101231563A (zh) 具有改善的可靠性的触摸面板和采用该面板的显示装置
WO2016070524A1 (zh) 内嵌式触摸屏及显示装置、触摸驱动方法
WO2014169538A1 (zh) 内嵌式触摸屏及显示装置
KR20140126287A (ko) 정전 용량 인셀 터치 패널 및 디스플레이 장치
TWI650603B (zh) Tft基板及應用其的觸控顯示面板
JP6869786B2 (ja) 表示装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851520

Country of ref document: EP

Kind code of ref document: A1