WO2019041688A1 - 一种波长可调的bosa及其温度控制方法 - Google Patents

一种波长可调的bosa及其温度控制方法 Download PDF

Info

Publication number
WO2019041688A1
WO2019041688A1 PCT/CN2017/118494 CN2017118494W WO2019041688A1 WO 2019041688 A1 WO2019041688 A1 WO 2019041688A1 CN 2017118494 W CN2017118494 W CN 2017118494W WO 2019041688 A1 WO2019041688 A1 WO 2019041688A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
bosa
laser
pins
thermistor
Prior art date
Application number
PCT/CN2017/118494
Other languages
English (en)
French (fr)
Inventor
单大丹
段苍木
邱晨
陈俊麟
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2019041688A1 publication Critical patent/WO2019041688A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to a wavelength-adjustable BOSA and a temperature control method thereof.
  • Fiber to the home In recent years, with the rapid development of Fiber to the home (FTTH) network, the entire network architecture is expanding, and more and more people feel the high-quality and high-speed services provided by fiber-to-the-home technology. However, as the number of users has increased, the fiber resources have become increasingly scarce. In the industry, wavelength division multiplexing is used to efficiently utilize fiber resources for high-speed data transmission.
  • BOSA Bi-Directional Optical Sub-Assembly
  • the wavelength of lasers using BOSA devices on the market will drift with temperature and will not provide a stable wavelength of light output.
  • Most of the cores of the Coarse Wavelength Division Multiplex (CWDM) and Distributed Feed Back (DFB) are used, and the wavelength drift range may reach ⁇ 10 nm.
  • the root cable can only transmit up to 16 bands of optical signals, and the fiber resources cannot be utilized efficiently.
  • Another type of device that has been commonly used in the market is the use of discrete devices. TOSA and ROSA are separated, for example, using DWDM TOSA.
  • the thermal energy is first transmitted to the BOSA casing through the thermal pad between the cooling fin and the BOSA, and then transmitted to the internal thermal layer by the outer casing to cause the laser chip operating temperature to change.
  • BOSA has a large outer casing, fast heat dissipation, and is greatly affected by the external environment, which makes the working temperature of the laser chip difficult to stabilize, resulting in slow wavelength adjustment and temperature, poor adjustment accuracy, small adjustment range, and high power consumption, which makes it popular. Once limited.
  • the technical problem to be solved by the invention is how to solve the problem that the wavelength adjustment and the temperature speed brought by the cooling sheet structure in the wavelength-adjustable BOSA are slow, the adjustment precision is poor, and the external environment is greatly affected, so that the working temperature of the laser chip is difficult to be stable.
  • the present invention provides a wavelength-adjustable BOSA, including a BOSA housing, a transmitting module, a receiving module, and a BOSA receiving light path assembly.
  • the transmitting module includes a base, a first refrigerator, a laser, and a backlight. a PD, a first thermistor, and a 45° reflective prism, wherein the base is provided with at least 8 pins corresponding to the TEC+ and TEC- pins of the first refrigerator, and the LD+ and LD- pins of the laser , the PD+ and PD- pins of the backlight PD, and the RES1 and RES2 pins of the first thermistor, specifically:
  • the bottom of the first refrigerator is fixed on the base by a thermal adhesive, the 45° reflective prism is located at the surface of the first refrigerator after the fixing is completed, and is opposite to the central area of the base; the first refrigerator surface a reflecting surface located on the 45° reflective prism is provided with the laser;
  • the first thermistor is disposed on a surface of the first refrigerator near a position of the laser;
  • the backlight PD is disposed at a position facing the laser on the surface of the first refrigerator.
  • the laser, the backlight PD, the first thermistor and the 45° reflective prism are first fixed on the thermal conductive PCB before being fixed on the surface of the first refrigerator; wherein the thermal conductive PCB The plate is fixed at a position on the first refrigerator such that the laser is located at a central position of the first refrigerator.
  • the present invention further provides a wavelength-adjustable BOSA, including a BOSA housing, a transmitting module, a receiving module, and a BOSA receiving light path assembly, the transmitting module including a base, a first refrigerator, a laser, a backlight PD, a first thermistor and a 45° reflective prism, wherein the base is provided with at least 8 pins corresponding to the TEC+ and TEC- pins of the first refrigerator, and the LD+ and LD-tubes of the laser Foot, PD+ and PD- pins of the backlight PD, and RES1 and RES2 pins of the first thermistor, specific:
  • the bottom of the first refrigerator is fixed on the base by a heat conductive glue, and the laser is disposed at a central area of the surface of the first refrigerator; the first refrigerator surface is located on the light emitting surface side of the laser. a 45° reflective prism; wherein a position of the first refrigerator fixed on the base is deflected to a laser backlight side by a specified distance, so that the optical path can be directed to the center perpendicular direction of the base after being reflected by the 45° reflective prism ;
  • the first thermistor is disposed on a surface of the first refrigerator near a position of the laser;
  • the backlight PD is disposed at a position facing the laser on the surface of the first refrigerator.
  • the laser, the backlight PD, the first thermistor and the 45° reflective prism are first fixed on the thermal conductive PCB before being fixed on the surface of the first refrigerator; wherein the thermal conductive PCB The plate is fixed at a position on the first refrigerator such that the laser is located at a central position of the first refrigerator.
  • the arrangement of the pins includes:
  • the fourth row of the configuration is symmetrically distributed on both sides of the first and second rows of the space.
  • the first refrigerator has a length, width and height dimension of 3 mm*2.5 mm*2.0 mm and an operating power of 0.6 W to 0.7 W.
  • the BOSA further includes a second refrigerator and a second thermistor, specifically:
  • the second thermistor and the second refrigerator are respectively fixed on the BOSA housing.
  • the BOSA housing has a length of 15 to 20 mm and a width of 6 to 8 mm.
  • the present invention further provides a wavelength-adjustable BOSA, including a BOSA housing, a transmitting module, a receiving module, and a BOSA light-emitting path assembly, the transmitting module including a base, a coupling platform, and a first refrigerator. a laser, a backlight PD, and a first thermistor, wherein the base is provided with at least eight pins corresponding to the TEC+ and TEC- pins of the first refrigerator, and the LD+ and LD- pins of the laser, respectively.
  • the PD+ and PD- pins of the backlight PD, and the RES1 and RES2 pins of the first thermistor specifically:
  • the bottom of the coupling platform is fixed on the base by a thermal conductive adhesive; wherein the bottom of the coupling platform is a narrow surface, the side of the fixing device is a wide surface; the pins are disposed on the base, and the average layout is Coupling two wide-face sides of the platform; a row of through holes are disposed at a height position of the wide surface near the copper core of the pin, the through hole is used for the gold wire bonding wire to pass through the coupling platform, and the side of the coupling platform is set up Connected to a circuit of the other side of the coupling platform; wherein the electrical appliance includes two objects of the first refrigerator, the laser, the backlight PD, and the first thermistor;
  • the laser is disposed on a side of the coupling platform, and is located on the same side of the coupling platform as the first thermistor and the backlight PD;
  • the first thermistor is disposed at a position close to the laser; the backlight PD is disposed at a position opposite to the laser.
  • the laser, the backlight PD and the first thermistor are first fixed on the thermal conductive PCB before being fixed on the surface of the first refrigerator.
  • the through hole is further provided with a connecting post.
  • the connecting post inside the through hole is covered with a ceramic sleeve and the gold wire is reserved at the two side ends of the coupling platform. Wire welding position.
  • the BOSA further includes a second refrigerator and a second thermistor, specifically:
  • the second thermistor and the second refrigerator are respectively fixed on the BOSA housing.
  • the pin is integrally fixed with a pin and a row of insulating sleeves, and is provided with a row of seats, wherein each of the row of insulating sleeves is provided with four pins having a diameter of 0.25 mm, each tube Maintain a safe distance of 0.25mm or more between the feet;
  • the pin is fixed to the base on which the corresponding slot is opened by the row seat, wherein the two row insulation sleeves comprise a total of 8 pins.
  • the present invention further provides a wavelength-adjustable BOSA temperature control method, using the wavelength-adjustable BOSA according to the second aspect or the third aspect, wherein the control method comprises:
  • the method further includes:
  • the temperature of the BOSA housing is obtained according to the second thermistor in real time, and when the temperature of the BOSA housing is lower than a preset second threshold, the second refrigerator is activated, so that the BOSA housing The temperature can exceed the preset second threshold temperature as quickly as possible.
  • the invention proposes a wavelength-adjustable BOSA. Since the first refrigerator is disposed inside the transmitting component and directly formed between the laser and the base, the laser is improved (for example, the DFB laser whose laser wavelength can change with temperature) The wavelength adjustment accuracy, on the other hand, further improves the adjustment response rate of the laser by integrating the first thermistor from the BOSA case in the background art into the inside of the emission assembly.
  • FIG. 1 is a layout diagram of a cooling sheet of a wavelength-adjustable BOSA in the prior art provided by the present invention
  • FIG. 2 is a layout diagram of each device in a wavelength-adjustable BOSA according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a transmitting component of a wavelength-adjustable BOSA according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of another wavelength-adjustable BOSA transmitting component according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a pin of a wavelength-adjustable BOSA transmitting component according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a pin of another wavelength-tunable BOSA transmitting component according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a pin of a transmitting component in a wavelength adjustable BOSA according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a transmitting component of a wavelength-adjustable BOSA according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a wavelength-tunable BOSA transmitting component according to an embodiment of the present invention.
  • FIG. 10 is a top plan view showing a structure of a wavelength-adjustable BOSA transmitting component according to an embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of a wavelength-tunable BOSA transmitting component according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a packaging effect of a wavelength-adjustable BOSA according to an embodiment of the present invention.
  • FIG. 13 is a flowchart of temperature control of a wavelength-adjustable BOSA according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a wavelength control effect of a laser signal according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram showing the effect of wavelength-adjustable BOSA wavelength changing with time according to an embodiment of the present invention.
  • the traditional external chiller scheme should have low heat transfer efficiency and poor stability, and the real-time heat transfer is not enough. It is theoretically impossible to achieve small power consumption and high precision temperature precision control.
  • the inventor broke the limitation of traditional thinking, broke through the limitations of BOSA packaging process, adopted the miniaturization of refrigerator and temperature sensor, built-in thinking scheme to design and develop our packaging structure, how to increase the heat transfer efficiency between the refrigerator and the laser and how
  • the temperature sensor can ensure the real-time and accurate monitoring of the working temperature of the laser chip to optimize the physical structure, realize the precise control of the working temperature of the laser chip, and further realize the fast and precise adjustment of the wavelength of the light emitted by the laser chip by utilizing the wavelength drift of the DFB laser with temperature.
  • Embodiment 1 of the present invention provides a wavelength-adjustable BOSA, as shown in FIG. 2 and FIG. 3, including a BOSA housing 1, a transmitting module 2, a receiving module 3, and a BOSA receiving light path assembly 4, the transmitting mode
  • the group 2 includes a base 21, a first refrigerator 22, a laser 23, a backlight PD24, a first thermistor 25, and a 45° reflective prism 26, wherein the base 21 is provided with at least eight pins corresponding to the first The TEC+ and TEC- pins of a chiller 22, the LD+ and LD- pins of the laser 23, the PD+ and PD- pins of the backlight PD24, and the RES1 and RES2 pins of the first thermistor, specifically:
  • the bottom of the first refrigerator 22 is fixed on the base 21 by a thermal adhesive.
  • the 45° reflective prism 26 is disposed at the surface of the first refrigerator 22 after the fixing is completed, and is opposite to the central area of the base 21.
  • the surface of the first refrigerator 22 is located on the reflective surface of the 45 ° reflective prism 26 is provided with the laser 23;
  • the first thermistor 25 is disposed on a surface of the first refrigerator 22 near the laser 23;
  • the backlight PD24 is disposed at a position facing the laser 23 on the surface of the first refrigerator 22.
  • the embodiment of the invention proposes a wavelength-adjustable BOSA. Since the first refrigerator is disposed inside the transmitting component and directly formed between the laser and the base, the laser is improved (for example, the laser wavelength can be changed with temperature).
  • the wavelength adjustment accuracy of the DFB laser on the other hand, further improves the adjustment response rate of the laser by integrating the first thermistor from the BOSA case in the background art into the inside of the emission assembly.
  • the 45° reflective prism 26 is formed in the central area of the first refrigerator 22, and the first refrigerator 22 also fixes the central area thereof in the central area of the base 21, thereby ensuring the emission assembly.
  • the corresponding lens can be made in the central area of the cap, so that it can be compatible with the use of the existing optical module, and because there is no need to consider the fixed angle due to the deviation of the lens position in the cap from the center. The problem, therefore, guarantees the efficiency of the prior art installation of the transmitting components.
  • the laser is directly disposed on the base of the transmitting component (for example, the pedestal in the TO package), it is not necessary to consider the deformation problem of the base due to the laser emission (because it is a base of a metal material, it is almost can be ignored).
  • the laser is no longer disposed directly on the base, but a layer of the first refrigerator 22 is sandwiched between the laser and the base, and is also located at a position deviating from the central area of the first refrigerator 22. on. It should be clarified that the working principle of the refrigerator is that one side is heated while the other side is cooled, and the material body is a semiconductor material.
  • the refrigerator itself has a certain deformation during the working process, and on the other hand, the invention is added.
  • the size of the laser is less than 10% relative to the size of the refrigerator. Therefore, the local temperature of the refrigerator on the laser coupling surface is too high, causing irregular deformation of the refrigerator, and the laser signal band emitted by the laser Unnecessary interference. Therefore, in order to improve the above-described problems that may be caused by the structure proposed by the embodiment of the present invention, in addition to the laser described in Embodiment 1, the laser is disposed on the first refrigerator 26 and the light-emitting surface of the laser 23 faces the 45-degree reflective prism.
  • the laser 23, the backlight PD24, the first thermal X resistor 25 and the 45° reflective prism 26 are fixed to the first refrigerator 22 Before the surface, it is first fixed on the thermal conductive PCB board 29; wherein the thermal conductive PCB board 29 is fixed at the position on the first refrigerator 22, so that the laser 23 is located in the first refrigerator 22 Central location.
  • the thermal conductive PCB is doped with copper element, and the thermal conductive PCB can obtain a thermal conductivity of 16.5 W/mK, which can quickly spread the local heat of the laser to other areas of the thermal conductive PCB, thereby further Improve the irregular thermal deformation that may occur in the first refrigerator.
  • Embodiment 1 can also learn the optimization of the self-technical solution by referring to the related extension content in Embodiment 2.
  • Embodiment 2 of the present invention provides a wavelength-adjustable BOSA, as shown in FIG. 2 and FIG. 4, comprising a BOSA housing 1, a transmitting module 2, a receiving module 3, and a BOSA receiving light path assembly 4, the transmitting mode
  • the group 2 includes a base 21, a first refrigerator 22, a laser 23, a backlight PD24, a first thermistor 25, and a 45° reflective prism 26, wherein the base 21 is provided with at least eight pins corresponding to the first The TEC+ and TEC- pins of a chiller 22, the LD+ and LD- pins of the laser 23, the PD+ and PD- pins of the backlight PD24, and the RES1 and RES2 pins of the first thermistor, specifically:
  • the bottom of the first refrigerator 22 is fixed on the base 21 by a thermal conductive adhesive.
  • the laser 23 is disposed at a central region of the surface of the first refrigerator 22; the surface of the first refrigerator 22 is located at the laser 23
  • the light-emitting surface side is provided with the 45° reflective prism 26; wherein the position of the first refrigerator 22 fixed on the base 21 is deflected to the backlight side of the laser 23 by a specified distance, so that the optical path is reflected by the 45° reflective prism 26 , capable of pointing to the center perpendicular direction of the base 21;
  • the first thermistor 25 is disposed on a surface of the first refrigerator 22 near the laser 23;
  • the backlight PD24 is disposed at a position facing the laser 23 on the surface of the first refrigerator 22.
  • the embodiment of the invention proposes a wavelength-adjustable BOSA. Since the first refrigerator is disposed inside the transmitting component and directly formed between the laser and the base, the laser is improved (for example, the laser wavelength can be changed with temperature).
  • the wavelength adjustment accuracy of the DFB laser on the other hand, further improves the adjustment response rate of the laser by integrating the first thermistor from the BOSA case in the background art into the inside of the emission assembly.
  • the laser is directly disposed on the base of the transmitting component (for example, the pedestal in the TO package), it is not necessary to consider the deformation problem of the base due to the laser emission (because it is a base of a metal material, it is almost can be ignored).
  • the laser is no longer disposed directly on the base, but a layer of the first refrigerator 22 is sandwiched between the laser and the base.
  • the working principle of the refrigerator is that one side is heated while the other side is cooled, and the material body is a semiconductor material. Therefore, the refrigerator itself has a certain deformation during the working process, and on the other hand, the invention is added.
  • the size of the laser is less than 10% relative to the size of the refrigerator. Therefore, the local temperature of the refrigerator on the laser coupling surface is too high, causing irregular deformation of the refrigerator, and the laser signal band emitted by the laser Unnecessary interference.
  • the laser 23 is disposed in the central region of the refrigerator described in Embodiment 2 (the laser is disposed at the center of the refrigerator, The irregular deformation can be optimized to make the deformation range clue and the vertical direction, thereby reducing the more adverse effects that may be caused by the irregular deformation in the horizontal direction.
  • the laser 23, The backlight PD 24, the first thermistor 25, and the 45° reflective prism 26 are first fixed on the thermal conductive PCB board 29 before being fixed on the surface of the first refrigerator 22; wherein the thermal conductive PCB board 29 is A position fixed to the first refrigerator 22 is such that the laser 23 is located at a center position of the first refrigerator 22.
  • the thermal conductive PCB is doped with copper element, and the thermal conductive PCB can obtain a thermal conductivity of 16.5 W/mK, which can quickly spread the local heat of the laser to other areas of the thermal conductive PCB, thereby further Improve the irregular thermal deformation that may occur in the first refrigerator.
  • the arrangement of the pins may be specifically implemented in the following three manners.
  • the layout is on the circumferential side of the base 21, and eight pins are evenly distributed.
  • This arrangement mode is mainly applied to products that cannot be horizontally fixed on the structure of the casing and the PCB, and has a low frequency at the transmitting end (such as a 2.5 GHz optical module or an ONU or RFOG device with an uplink below 300 MHz).
  • the first row and the second row are symmetrically arranged in the circumferential area of the base 21 in two pins, and the remaining rows are formed in the third row and the fourth row symmetrically distributed in the first row and the second row.
  • the two sides of the space, so that the connection of the eight pins constitutes an octagon.
  • the difference between the second method and the first method is small, especially when the circumferential circumference of each pin is small, there is almost no difference between the two.
  • mode 2 makes it easier to identify the position of the different function pins.
  • Each row of pins in mode 2 can be given to the TEC+ and TEC- pins of the first refrigerator 22, the LD+ and LD- pins of the laser 23, and the backlight.
  • the PD+ and PD- pins of the PD24, or one of the RES1 and RES2 pins of the first thermistor, in particular, can be given a letter in the middle of each row of pins, for example: the letter T indicates the behavior of TEC+ and TEC - Pin, and the letter L indicates the behavior of the LD+ and LD-pins, etc., so that the detection object can be quickly determined.
  • the first row and the second row are symmetrically arranged in the circumferential area of the base 21 in units of two pins, and the third row and the remaining one are formed in units of three pins.
  • the fourth row is symmetrically distributed on both sides of the first and second rows of the space.
  • the thicker pins are generally connected to one of PD+ or RES. During the circuit attribute connection, any of the PD+ and RES pins are generally available, and can be directly fixed on the housing or on the PCB.
  • the third mode has a strong alignment advantage, that is, during the operation of inserting the pin into the pin base, the position pattern of the fourth row relative to the other rows can be found. , to quickly complete the orientation pairing between the pin and the pin socket.
  • mode 3 is also applicable when there are local pins involved in large currents.
  • the pin in the upper right corner shown in Figure 6 can be used to connect LD+, thus providing more for high current working objects. Stable and safe pin structure.
  • FIG. 7 it has not only higher frequency characteristics than the above three modes (for example, it can be used as a downstream transmitting unit in an optical module below 25 GHz and 2.7 GHz ONU or RFOG, and it is configured to form the first row and the second row in units of four pins, thereby giving the first row and the second row Having a sufficient area between the rows, it is easier to implement the embodiment in the embodiment of the present invention that the position of the first refrigerator 22 fixed on the base 21 is deflected to the backlight side of the laser 23 by a specified distance, so that the optical path is reflected by the 45°. After the prism 26 is reflected, it can be directed to the structural direction of the center 21 of the base 21".
  • the length of the BOSA housing is 15-20 mm and the width is 6-8 mm, and the length, width and height of the first refrigerator 22 can be made into 3 mm*2.5 mm*2.0 mm. Its working power can reach 0.6W ⁇ 0.7W.
  • Embodiment 2 of the present invention has greatly improved the wavelength adjustment accuracy and the adjustment response rate with respect to the external structure of the refrigerator introduced in the background art.
  • the adjustment temperature reaches a certain threshold, there is a significant drop in the above adjustment precision and the adjustment response speed.
  • the installation of the first refrigerator into the interior of the transmitting assembly can play a more significant role in a temperature regulating device, since the first refrigerator is disposed in a relatively closed space and in addition to the base having the transmitting assembly.
  • the laser transmission space that constitutes its other thermal interaction object is a relatively closed environment, and its influence on thermal interaction is negligible relative to the base.
  • the embodiment of the present invention also provides a preferred implementation for improving the problem of control accuracy and response rate degradation in the above specific case.
  • the BOSA further includes a second refrigerator 51 and a second thermistor 52, specifically:
  • the second thermistor 52 and the second refrigerator 51 are respectively fixed to the BOSA case.
  • the control method will be explained in Embodiment 4 of the present invention.
  • Embodiments of the present invention provide a wavelength-adjustable BOSA that achieves vertical light emission based on a horizontally-emitting laser using a 45° reflective prism as described in Embodiment 2 (where "horizontal” and “vertical” are relative to the base of the transmitting assembly.
  • the surface of the present invention provides a wavelength-adjustable BOSA for vertical light emission based on the vertical emission laser, as shown in FIG. 2, FIG. 9 and FIG. 10, including the BOSA housing 1 and the emission mode.
  • the group 2, the receiving module 3 and the BOSA receiving light path assembly 4 are characterized in that the transmitting module 2 comprises a base 21, a coupling platform 27, a first refrigerator 22, a laser 23, a backlight PD24 and a first thermistor 25
  • the base 21 is provided with at least 8 pins corresponding to the TEC+ and TEC- pins of the first refrigerator 22, the LD+ and LD- pins of the laser 23, and the PD+ and PD-tube of the backlight PD24, respectively.
  • the foot, as well as the RES1 and RES2 pins of the first thermistor specifically:
  • the bottom of the coupling platform 27 is fixed on the base 21 by a thermal conductive adhesive; wherein the bottom of the coupling platform 27 is a narrow surface, and the side for fixing the device is a wide surface; the pins are disposed on the base 21 and average Layout on the two wide side faces of the coupling platform 27 (as shown in FIG. 11); a row of through holes 28 are provided at the height of the wide face near the height of the copper posts of the pins, and the through holes 28 are used for the gold wire bonding wires.
  • the coupling platform 27 can be configured to establish a circuit connection between one side of the coupling platform 27 and the other side of the coupling platform 27; wherein the electrical appliance includes the first refrigerator 22, the laser 23, the backlight PD24, and Two objects in the first thermistor 25;
  • the laser 23 is disposed on a side of the coupling platform 27 and is located on the same side of the coupling platform 27 as the first thermistor 25 and the backlight PD24;
  • the first thermistor 25 is disposed at a position close to the laser 23; the backlight PD24 is disposed at a position facing away from the laser 23.
  • the embodiment of the present invention is relatively simpler in optical path structure because the 45° reflective prism is omitted, but the physical structure is compared with the embodiment. 1 and Embodiment 2 also add a coupling platform and a through hole, which also brings about a complication of the processing process to some extent.
  • the upright coupling platform structure since the upright coupling platform structure is adopted, the space of the base is released, so that the pin layout structure as shown in FIG. 11 is allowed, so that the identification of the transmitting component pins or the transmitting is performed.
  • the mounting of the component pins is greatly improved compared to Embodiment 1 and Embodiment 2.
  • the laser is directly disposed on the base of the transmitting component (for example, the pedestal in the TO package), it is not necessary to consider the deformation problem of the base due to the laser emission (because it is a base of a metal material, it is almost can be ignored).
  • the laser is no longer disposed directly on the base, but a layer of the first refrigerator 22 and the coupling platform 27 are sandwiched between the laser and the base.
  • the working principle of the refrigerator is that one side is heated while the other side is cooled, and the material body is a semiconductor material. Therefore, the refrigerator itself has a certain deformation during the working process, and on the other hand, the invention is added.
  • the size of the laser is less than 10% relative to the size of the refrigerator. Therefore, the local temperature of the refrigerator on the laser coupling surface is too high, causing irregular deformation of the refrigerator, and the laser signal band emitted by the laser Unnecessary interference.
  • the laser 23 is disposed in the central region of the refrigerator described in Embodiment 2 (the laser is disposed at the center of the refrigerator, The irregular deformation can be optimized to make the deformation range clue and the vertical direction, thereby reducing the more adverse effects that may be caused by the irregular deformation in the horizontal direction.
  • the laser 23 is disposed at the center of the refrigerator.
  • the irregular deformation can be optimized to make the deformation range clue and the vertical direction, thereby reducing the more adverse effects that may be caused by the irregular deformation in the horizontal direction.
  • the laser 23 is disposed at the center of the refrigerator 22
  • the irregular deformation can be optimized to make the deformation range clue and the vertical direction, thereby reducing the more adverse effects that may be caused by the irregular deformation in the horizontal direction.
  • the thermal conductive PCB is doped with copper element, and the thermal conductive PCB can obtain a thermal conductivity of 16.5 W/mK, which can quickly spread the local heat of the laser to other areas of the thermal conductive PCB, thereby further Improve the irregular thermal deformation that may occur in the first refrigerator.
  • the through hole 28 is used in two ways.
  • the first one is in the form of a through hole, and the welding of the electric device and the pin on the back surface of the coupling platform 27 is completed through the gold wire;
  • a connecting post is further disposed inside the through hole 28.
  • the connecting post inside the through hole 28 is covered with a ceramic sleeve and the copper post is located at two side ends of the coupling platform 27.
  • a gold wire bonding wire is reserved.
  • Embodiment 2 of the present invention has greatly improved the wavelength adjustment accuracy and the adjustment response rate with respect to the external structure of the refrigerator introduced in the background art.
  • the adjustment temperature reaches a certain threshold, there is a significant drop in the above adjustment precision and the adjustment response speed.
  • the installation of the first refrigerator into the interior of the transmitting assembly can play a more significant role in a temperature regulating device, since the first refrigerator is disposed in a relatively closed space and in addition to the base having the transmitting assembly.
  • the laser transmission space that constitutes its other thermal interaction object is a relatively closed environment, and its influence on thermal interaction is negligible relative to the base.
  • the embodiment of the present invention also provides a preferred implementation for improving the problem of control accuracy and response rate degradation in the above specific case.
  • the BOSA further includes a second refrigerator 51 and a second thermistor 52, specifically:
  • the second thermistor 52 and the second refrigerator 51 are respectively fixed to the BOSA case.
  • the control method will be explained in Embodiment 4 of the present invention.
  • the embodiment of the present invention further provides a more preferable method for fabricating a corresponding pin according to the pin arrangement of the embodiment of the present invention.
  • the pin is specifically a pin and a row of insulating sleeves. Fixed, and provided with row seats, wherein each row of insulating sleeves is provided with four pins having a diameter of 0.25 mm, and each of the pins is maintained at a safety distance of 0.25 mm or more;
  • the pin is fixed on the base 21 which has opened the corresponding slot through the row seat, wherein the two row insulation sleeves comprise a total of 8 pins.
  • the length of the BOSA housing is 15-20 mm and the width is 6-8 mm, and the length, width and height of the first refrigerator 22 are 3 mm*2.5 mm*2.0. Mm, its working power is 0.6W ⁇ 0.7W. Further, the coupling platform 27 has a thickness of 1.0 to 1.5 mm and a height of 3 mm to 5 mm.
  • the sizes of the first refrigerators 22 in the first embodiment, the second embodiment, and the third embodiment are versatile, and only the fixed surface selection is different. Therefore, the above-mentioned length, width, and height are different. 3 mm * 2.5 mm * 2.0 mm was used in each of the examples.
  • the length and width of the first refrigerator 22 refer to the size of the hot side and the cold side
  • the height of 2.0 mm refers to the distance between the hot side and the cold side.
  • the two wavelength-adjustable BOSAs of the foregoing Embodiment 2 and Embodiment 3 are disclosed, and the embodiment of the present invention further provides a first refrigerator, a second refrigerator, a first thermistor and a second thermistor.
  • a corresponding temperature control method is provided, as shown in FIG. 13, the control method includes:
  • step 201 the target temperature of the current operating condition of the laser 23 is determined.
  • the target temperature here is usually determined based on the current model of the laser 23, the wavelength of the laser to be generated, and the like. In the implementation, it can be pre-stored in the main controller and completed by combining the look-up table and the external input.
  • step 202 an initial input current of the first refrigerator 22 is set according to the target temperature.
  • control signal that is, the target temperature to be searched or calculated
  • step 203 the detected current value of the first thermistor 25 is acquired in real time, and the input current of the first refrigerator 22 is adjusted according to the detected current value.
  • the realizing the input current of the first refrigerator 22 according to the detected current value in real time the method further includes:
  • the temperature of the BOSA housing is acquired according to the second thermistor 52 in real time, and when the temperature of the BOSA housing reaches a preset first threshold, the second refrigerator 51 is activated, so that the BOSA The temperature of the housing can maintain a preset operating temperature range. For example, when the product BOSA device has poor heat dissipation for the outer casing, no heat dissipation or the customer uses the ambient temperature of the product to be greater than 50 degrees Celsius, if the internal laser set temperature is different from the temperature of the outer casing by more than 50 degrees Celsius, the second refrigerator will be activated. For this reason, the temperature difference between the two is less than 50 degrees Celsius.
  • Step 203 and step 204 are generally performed synchronously, and in the specific implementation process, step 203 and step 204 may also complete the execution of the corresponding step content according to the respective execution cycle, and then no further limitation is made.
  • the temperature control method can not only effectively solve the problem that the adjustment precision and the adjustment response speed may be significantly decreased when the adjustment temperature reaches a certain threshold. Moreover, by determining whether the temperature of the BOSA casing reaches a preset first threshold value, the second refrigerator is further operated, and the power consumption is reduced under the condition of ensuring the control precision and the control speed.
  • the temperature of the BOSA casing is obtained according to the second thermistor 52 in real time, and When the temperature of the BOSA housing is lower than a preset second threshold, the second refrigerator 51 is activated such that the temperature of the BOSA housing can exceed the preset second threshold temperature as soon as possible.
  • the BOSA proposed in Embodiment 3 of the present invention is applied to a circuit for testing, and the maximum power consumption is reduced to 1 W or less, and the average power consumption is 0.1 W.
  • the actual wavelength adjustment range can reach 7nm, the adjustment accuracy can reach 0.05nm, and the wavelength stability within -20 to 70 is within 0.2nm.
  • the time to switch between 4nm wavelengths only takes 430ms.
  • the power consumption is only 4%
  • the wavelength adjustment range is nearly doubled, and the wavelength adjustment accuracy, stability and speed are greatly improved.
  • the existing invention solution is smaller in size, and because of its adjustable wavelength, it is not necessary to distinguish different wavelength categories, resulting in fewer material categories, high compatibility, and convenient production and control.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种波长可调的BOSA及其温度控制方法。发射模组(2)包括底座(21)、第一制冷器(22)、激光器(23)、背光PD(24)、第一热敏电阻(25)和45°反光棱镜(26),第一制冷器(22)的底部由导热胶固定在底座(21)上,反光棱镜(26)的位置位于完成固定后的第一制冷器(22)表面,并且相对于底座(21)的中心区域;第一制冷器(22)表面位于反光棱镜(26)的反射面设置有激光器(23);第一热敏电阻(25)设置在第一制冷器(22)表面上靠近激光器(23)的位置;背光PD(24)设置在第一制冷器(22)表面上背靠激光器(23)的位置。将第一制冷器(22)设置在发射组件内部,直接制作在激光器(23)和底座(21)之间,提高了激光器(23)的波长调节精度;通过将第一热敏电阻(25)从背景技术中的BOSA外壳中集成到了发射组件内部,提高了激光器(23)的调节响应速率。

Description

一种波长可调的BOSA及其温度控制方法 【技术领域】
本发明涉及光通信技术领域,特别是涉及一种波长可调的BOSA及其温度控制方法。
【背景技术】
近年随着光纤入户(Fiber to the home,简写为:FTTH)网络的迅速发展,整个网络架构在不断的膨胀,越来越多的人感受到光纤到户技术给我们提供的优质高速服务。但是随着用户数量急剧增加的光纤资源也变得越来越紧缺,业内多采用波分复用方式去高效利用光纤资源,进行高速的数据传输。
目前没有一款光收发一体组件(Bi-Directional Optical Sub-Assembly,简写为:BOSA)器件能实现发射激光器的波长稳定可调。市场上在使用BOSA器件的激光器的波长都会随着温度的变化而产生漂移,不能提供稳定波长的光输出。且大多采用的稀疏波分复用(Coarse Wavelength Division Multiplex,简写为:CWDM)和分布反馈式(Distributed Feed Back,简写为:DFB)的管芯去做,波长漂移范围可能达到±10nm,这样一根光缆最多只能传输16个波段光信号,光纤资源得不到高效利用。另外一种市面上已普遍应用的是采用分立式器件,TOSA和ROSA分开,例如:采用DWDM TOSA去做。这种分立式器件方式,波长可以做到非常精确,性能也很稳定,但是采用分立结构,体积变大了,价格非常冉贵,不同波长管芯也不同,类型特别多,设备成本非常高,加工也很复杂。如图1:市场上也出现一种采用普通BOSA外置制冷器方案是通过在激光器的外部添加制冷器和温度传感器,利用制冷器改变BOSA外部环境温度,从而去控制器件里面激光器芯片工作温度而达到波长稳定可调这一功能。但是这种外置制冷器的方式,热传递效果很差,热能首先要通过制冷片与BOSA之间的导 热垫传递到BOSA外壳上,再由外壳传递到内部热层而引起激光器芯片工作温度变化,然而BOSA外壳体积大,散热快,受外部环境影响大,导致激光器芯片工作温度很难稳定,从而导致波长调节和温度速度慢,调节精度差,调节范围小,功耗高,使得其推广也一度受限。
【发明内容】
本发明要解决的技术问题是如何解决波长可调BOSA中制冷片结构带来的波长调节和温度速度慢,调节精度差,并且,受外部环境影响大,导致激光器芯片工作温度很难稳定。
本发明采用如下技术方案:
第一方面,本发明提供了一种波长可调的BOSA,包括BOSA壳体、发射模组、接收模组和BOSA收发光路组件,所述发射模组包括底座、第一制冷器、激光器、背光PD、第一热敏电阻和45°反光棱镜,其中,底座上设置有至少8个管脚,分别对应于所述第一制冷器的TEC+和TEC-管脚,激光器的LD+和LD-管脚,背光PD的PD+和PD-管脚,以及第一热敏电阻的RES1和RES2管脚,具体的:
所述第一制冷器的底部由导热胶固定在底座上,所述45°反光棱镜的位置位于完成固定后的所述第一制冷器表面,并且相对于底座的中心区域;第一制冷器表面位于所述45°反光棱镜的反射面设置有所述激光器;
所述第一热敏电阻设置在所述第一制冷器表面上靠近所述激光器的位置;
所述背光PD设置在所述第一制冷器表面上背靠所述激光器的位置。
优选的,所述激光器、背光PD、第一热敏电阻和45°反光棱镜在被固定在所述第一制冷器表面之前,先被固定在热导PCB板上;其中,所述热导PCB板被固定在所述第一制冷器上的位置,使得所述激光器位于所述第一制冷器的中心位置。
第二方面,本发明还提供了一种波长可调的BOSA,包括BOSA壳体、发射模组、接收模组和BOSA收发光路组件,所述发射模组包括底座、第一制冷器、激光器、背光PD、第一热敏电阻和45°反光棱镜,其中,底座上设置有至少8个管脚,分别对应于所述第一制冷器的TEC+和TEC-管脚,激光器的LD+和LD-管 脚,背光PD的PD+和PD-管脚,以及第一热敏电阻的RES1和RES2管脚,具体的:
所述第一制冷器的底部由导热胶固定在底座上,所述激光器设置的位置位于所述第一制冷器表面的中心区域;第一制冷器表面位于所述激光器的出光面侧设置有所述45°反光棱镜;其中,第一制冷器固定在底座上的位置向激光器背光侧偏斜指定距离,使得光路在通过所述45°反光棱镜反射后,能够指向所述底座的中心垂线方向;
所述第一热敏电阻设置在所述第一制冷器表面上靠近所述激光器的位置;
所述背光PD设置在所述第一制冷器表面上背靠所述激光器的位置。
优选的,所述激光器、背光PD、第一热敏电阻和45°反光棱镜在被固定在所述第一制冷器表面之前,先被固定在热导PCB板上;其中,所述热导PCB板被固定在所述第一制冷器上的位置,使得所述激光器位于所述第一制冷器的中心位置。
优选的,所述管脚的径长为0.25mm,且数量为8个时,所述管脚的排列方式包括:
布局在底座圆周靠边区域,均匀分布8个管脚;或者,
设定一排所包含的管脚数量为两个,则构成第一排和第二排对称布局在底座圆周靠边区域结构,将剩余管脚构成第三排和第四排对称分布在所述第一排和第二排构成空间的两侧,从而使得8个管脚的连线构成八边形;或者,
设定一排所包含的管脚数量为两个,则构成第一排和第二排对称布局在底座圆周靠边区域结构,并以三个管脚为单位构成第三排和剩余的一个管脚构成的第四排对称分布在所述第一排和第二排构成空间的两侧。
优选的,所述第一制冷器的长宽高尺寸为3mm*2.5mm*2.0mm,其工作功率为0.6W~0.7W。
优选的,所述BOSA还包括第二制冷器和第二热敏电阻,具体的:
所述第二热敏电阻和第二制冷器分别固定在所述BOSA壳体上。
优选的,BOSA壳体的长度在15~20mm,宽在6~8mm。
第三方面,本发明还提供了一种波长可调的BOSA,包括BOSA壳体、发射模组、接收模组和BOSA收发光路组件,所述发射模组包括底座、耦合平台、第一制冷器、激光器、背光PD和第一热敏电阻,其中,底座上设置有至少8个管脚,分别对应于所述第一制冷器的TEC+和TEC-管脚,激光器的LD+和LD-管脚,背光PD的PD+和PD-管脚,以及第一热敏电阻的RES1和RES2管脚,具体的:
所述耦合平台的底部由导热胶固定在底座上;其中,所述耦合平台的底部为窄面,其用于固定器件的侧面为宽面;管脚设置在底座上,并且平均布局在所述耦合平台两宽面侧;在所述宽面靠近管脚铜芯柱高度位置设置有一排通孔,所述通孔用于金丝焊线能够穿过耦合平台,建立耦合平台设置电器的一侧与耦合平台另一侧管脚的电路连接;其中,所述电器包括有所述第一制冷器、激光器、背光PD和第一热敏电阻中的两个对象;
所述激光器设置在所述耦合平台的侧面,并且与第一热敏电阻和背光PD位于耦合平台的同侧;
所述第一热敏电阻设置在靠近所述激光器的位置;所述背光PD设置在背靠所述激光器的位置。
优选的,所述激光器、背光PD和第一热敏电阻在被固定在所述第一制冷器表面之前,先被固定在热导PCB板上。
优选的,所述通孔内部还设置有连接柱,具体的:在通孔内部的连接柱采用陶瓷套包络铜柱,并在铜柱位于耦合平台的两个侧面端预留了金丝焊线焊接位。
优选的,所述BOSA还包括第二制冷器和第二热敏电阻,具体的:
所述第二热敏电阻和第二制冷器分别固定在所述BOSA壳体上。
优选的,所述管脚具体为管脚和联排绝缘套一体式固定的,并设置有排座,其中,每一联排绝缘套中设置有4根直径为0.25mm管脚,每根管脚之间保持0.25mm以上的安全间距;
所述管脚通过排座固定在已开好对应槽孔的底座上完成固定,其中,两个 联排绝缘套一共包括了8根管脚。
第四方面,本发明还提供了一种波长可调的BOSA温度控制方法,使用第二方面或者第三方面所述的波长可调的BOSA,控制方法包括:
确定当前激光器工作条件的目标温度;
根据目标温度,设置第一制冷器的初始输入电流;实时获取第一热敏电阻的检测电流值,根据所述检测电流值调整所述第一制冷器的输入电流;
其中,在实时根据所述检测电流值调整所述第一制冷器的输入电流的同时,还包括:
实时根据第二热敏电阻获取BOSA壳体的温度,并在所述BOSA壳体的温度达到预设第一阈值时,启动所述第二制冷器,使得所述BOSA壳体的温度能够维持预设工作温度区间。
优选的,实时根据第二热敏电阻获取BOSA壳体的温度,并在所述BOSA壳体的温度低于预设第二阈值时,启动所述第二制冷器,使得所述BOSA壳体的温度能够尽快超过所述预设第二阈值温度。
与现有技术相比,本发明的有益效果在于:
本发明提出了一款波长可调的BOSA,由于将第一制冷器设置在了发射组件内部,直接制作在激光器和底座之间,因此提高了激光器(例如:激光波长可随温度变化的DFB激光器)的波长调节精度,另一方面,还通过将第一热敏电阻从背景技术中的BOSA外壳中集成到了发射组件内部,进一步提高了激光器的调节响应速率。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明提供的现有技术中的一种波长可调的BOSA中制冷片布局结构图;
图2是本发明实施例提供的一种波长可调的BOSA中各器件布局结构图;
图3是本发明实施例提供的一种波长可调的BOSA中发射组件结构示意图;
图4是本发明实施例提供的另一种波长可调的BOSA中发射组件结构示意图;
图5是本发明实施例提供的一种波长可调的BOSA中发射组件的管脚示意图;
图6是本发明实施例提供的另一种波长可调的BOSA中发射组件的管脚示意图;
图7是本发明实施例提供的还有一种波长可调的BOSA中发射组件的管脚示意图;
图8是本发明实施例提供的还有一种波长可调的BOSA中发射组件结构示意图;
图9是本发明实施例提供的还有一种波长可调的BOSA中发射组件的结构示意图;
图10是本发明实施例提供的还有一种波长可调的BOSA中发射组件的结构俯视图;
图11是本发明实施例提供的还有一种波长可调的BOSA中发射组件的结构示意图;
图12是本发明实施例提供的还有一种波长可调的BOSA的封装效果示意图;
图13是本发明实施例提供的一种波长可调的BOSA的温度控制流程图;
图14是本发明实施例提供的激光信号波长随温度控制效果示意图;
图15是本发明实施例提供的波长可调的BOSA波长随时间变化效果示意图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,术语“内”、“外”、“纵向”、“横向”、“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了 便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不应当理解为对本发明的限制。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
传统外置制冷器方案,应热传递效率低和稳定度差,热传递实时性也不够,从理论上不可能实现小功耗和高精度的温度精准控制。发明人打破传统思维限制,突破BOSA封装工艺限制思路,采用将制冷器和温度传感器小型化,内置化的思维方案去设计开发我们封装结构,围绕如何增加制冷器到激光器之间的导热效率和如何保证温度传感器能实时精准的监测激光器芯片工作温度来优化物理结构,实现激光器芯片工作温度的精准控制,同时利用DFB激光器光波长随温度漂移特性,进一步实现激光器芯片发射光的波长快速精准调节。下面将结合具体的实施例展开描述如何实现本发明的技术方案。
实施例1:
本发明实施例1提供了一种波长可调的BOSA,如图2和图3所示,包括BOSA壳体1、发射模组2、接收模组3和BOSA收发光路组件4,所述发射模组2包括底座21、第一制冷器22、激光器23、背光PD24、第一热敏电阻25和45°反光棱镜26,其中,底座21上设置有至少8个管脚,分别对应于所述第一制冷器22的TEC+和TEC-管脚,激光器23的LD+和LD-管脚,背光PD24的PD+和PD-管脚,以及第一热敏电阻的RES1和RES2管脚,具体的:
所述第一制冷器22的底部由导热胶固定在底座21上,所述45°反光棱镜26设置的位置位于完成固定后的所述第一制冷器22表面,并且相对于底座21的中心区域;第一制冷器22表面位于所述45°反光棱镜26的反射面设置有所述激光器23;
所述第一热敏电阻25设置在所述第一制冷器22表面上靠近所述激光器23的位置;
所述背光PD24设置在所述第一制冷器22表面上背靠所述激光器23的位置。
本发明实施例提出了一款波长可调的BOSA,由于将第一制冷器设置在了发 射组件内部,直接制作在激光器和底座之间,因此提高了激光器(例如:激光波长可随温度变化的DFB激光器)的波长调节精度,另一方面,还通过将第一热敏电阻从背景技术中的BOSA外壳中集成到了发射组件内部,进一步提高了激光器的调节响应速率。
本发明实施例由于将45°反光棱镜26制作在了第一制冷器22的中心区域,而所述第一制冷器22也将其中心区域固定在底座21的中心区域,从而保证了发射组件的带透镜的管帽中,相应的透镜能够制作在管帽的中心区域,从而能够实现与现有光模块使用上的兼容,并且,因为无需考虑因为管帽中透镜位置偏离中心带来的固定角度的问题,因此,保证了现有技术中对发射组件安装的效率。
在背景技术中,由于激光器是被直接设置在发射组件的底座上(例如TO封装中的基座),因此,无需考虑由于激光器发射带来的底座形变问题(由于是金属材料的底座,几乎可以忽略不计)。然而,在本发明实施例中,激光器不再是直接设置在底座上,而是在激光器和底座之间夹着一层第一制冷器22,并且还位于偏离第一制冷器22中心区域的位置上。需要明确的是,制冷器的工作原理就是一面被加热,而另一面则降温,并且材料主体是半导体材料,因此,制冷器自身工作过程过程中就存在一定的形变,另一方面加上本发明实施例中激光器的大小相对于制冷器的大小只有10%不到,因此,容易发生制冷器位于激光器耦合面上的局部温度过高,造成制冷器的不规则形变,给激光器发射的激光信号带来不必要的干扰。因此,为了改善由于本发明实施例所提出的结构,可能造成的上述问题,除了在实施例1中描述的将激光器设置在位于第一制冷器26上且激光器23的出光面朝向45°反光棱镜26的反射面外,还存在一种优选的实现方式,具体为:所述激光器23、背光PD24、第一热敏X电阻25和45°反光棱镜26在被固定在所述第一制冷器22表面之前,先被固定在热导PCB板29上;其中,所述热导PCB板29被固定在所述第一制冷器22上的位置,使得所述激光器23位于所述第一制冷器22的中心位置。其中,所述热导PCB中掺杂了铜元素,所述热导PCB可以获得16.5W/mK的导热系数,能够起到将激光器局 部产热快速的平摊到热导PCB其他区域,从而进一步改善第一制冷器可能发生的不规则热形变。
值得说明的是,本发明实施例1和实施例2之间属于共同的发明构思,且具有较高的结构相似度,因此,基于本发明实施例相关的可扩展实现方案将在实施例2中展开来描述。实施例1也同样可以借鉴实施例2中的相关扩展内容,实现自身技术方案的优化。
实施例2:
本发明实施例2提供了一种波长可调的BOSA,如图2和图4所示,包括BOSA壳体1、发射模组2、接收模组3和BOSA收发光路组件4,所述发射模组2包括底座21、第一制冷器22、激光器23、背光PD24、第一热敏电阻25和45°反光棱镜26,其中,底座21上设置有至少8个管脚,分别对应于所述第一制冷器22的TEC+和TEC-管脚,激光器23的LD+和LD-管脚,背光PD24的PD+和PD-管脚,以及第一热敏电阻的RES1和RES2管脚,具体的:
所述第一制冷器22的底部由导热胶固定在底座21上,所述激光器23设置的位置位于所述第一制冷器22表面的中心区域;第一制冷器22表面位于所述激光器23的出光面侧设置有所述45°反光棱镜26;其中,第一制冷器22固定在底座21上的位置向激光器23背光侧偏斜指定距离,使得光路在通过所述45°反光棱镜26反射后,能够指向所述底座21的中心垂线方向;
所述第一热敏电阻25设置在所述第一制冷器22表面上靠近所述激光器23的位置;
所述背光PD24设置在所述第一制冷器22表面上背靠所述激光器23的位置。
本发明实施例提出了一款波长可调的BOSA,由于将第一制冷器设置在了发射组件内部,直接制作在激光器和底座之间,因此提高了激光器(例如:激光波长可随温度变化的DFB激光器)的波长调节精度,另一方面,还通过将第一热敏电阻从背景技术中的BOSA外壳中集成到了发射组件内部,进一步提高了激光器的调节响应速率。
在背景技术中,由于激光器是被直接设置在发射组件的底座上(例如TO封 装中的基座),因此,无需考虑由于激光器发射带来的底座形变问题(由于是金属材料的底座,几乎可以忽略不计)。然而,在本发明实施例中,激光器不再是直接设置在底座上,而是在激光器和底座之间夹着一层第一制冷器22。需要明确的是,制冷器的工作原理就是一面被加热,而另一面则降温,并且材料主体是半导体材料,因此,制冷器自身工作过程过程中就存在一定的形变,另一方面加上本发明实施例中激光器的大小相对于制冷器的大小只有10%不到,因此,容易发生制冷器位于激光器耦合面上的局部温度过高,造成制冷器的不规则形变,给激光器发射的激光信号带来不必要的干扰。因此,为了改善由于本发明实施例所提出的结构,可能造成的上述问题,除了在实施例2中描述的将激光器设置在制冷器的中心区域的方式外(将激光器设置在制冷器中心位置,可以优化不规则形变,使得形变范围线索与垂直方向,从而减少了水平方向不规则形变可能带来的更恶劣的影响。),还存在一种优选的实现方式,具体为:所述激光器23、背光PD24、第一热敏电阻25和45°反光棱镜26在被固定在所述第一制冷器22表面之前,先被固定在热导PCB板29上;其中,所述热导PCB板29被固定在所述第一制冷器22上的位置,使得所述激光器23位于所述第一制冷器22的中心位置。其中,所述热导PCB中掺杂了铜元素,所述热导PCB可以获得16.5W/mK的导热系数,能够起到将激光器局部产热快速的平摊到热导PCB其他区域,从而进一步改善第一制冷器可能发生的不规则热形变。
在本发明实施例中,所述管脚的径长为0.25mm,且数量为8个时,所述管脚的排列方式具体可以通过以下三种方式实现。
方式一:
如图5所示,布局在底座21圆周靠边区域,均匀分布8个管脚。此种排布模式主要是应用在无法水平固定在壳体和PCB的结构上,且发射端频率较低产品中(如2.5GHZ光模块或上行在300MHz以下ONU或RFOG设备中)。
方式二:
以两个管脚为单位分别构成第一排和第二排对称布局在底座21圆周靠边区域,将剩余管脚构成第三排和第四排对称分布在所述第一排和第二排构成空间 的两侧,从而使得8个管脚的连线构成八边形。其中,方式二和方式一的差距很小,尤其是在各管脚内切的圆周周长较小时,两者几乎没有多少差别。但是,方式二更容易识别不同功能管脚所处位置,可以将方式二中每一排管脚给予第一制冷器22的TEC+和TEC-管脚,激光器23的LD+和LD-管脚,背光PD24的PD+和PD-管脚,或者第一热敏电阻的RES1和RES2管脚当中的一对,尤其是可以在每一排管脚中间给予标示字母,例如:字母T表明该行为TEC+和TEC-管脚,而字母L表明该行为LD+和LD-管脚等等,从而可以快速确定检测对象。
方式三:
如图6所示,以两个管脚为单位分别构成第一排和第二排对称布局在底座21圆周靠边区域,并以三个管脚为单位构成第三排和剩余的一个管脚构成的第四排对称分布在所述第一排和第二排构成空间的两侧。其中比较粗的管脚一般接PD+或RES之一,在电路属性连接过程中PD+和RES中的任意一个引脚一般都是可地属性的,可直接固定在壳体上或PCB上。
相对于方式一和方式二来说,方式三具有很强的对准优势,即在进行管脚插入管脚座的操作过程中,可以通过寻找所述第四排相对于其它几排的位置图形,来快速完成管脚和管脚座之间的方位配对。另一方面来说,方式三也适用于有局部管脚涉及大电流的情况下,例如:图6所示的位于右上角的管脚可以用于连接LD+,从而为大电流工作对象提供更为稳定和安全的管脚结构。
在本发明实施例中,除了上述三种方式外,还提供了一种更为特殊的方式四,如图7所示,其相对于上述三种方式来说,不仅具有更高的频率特性(例如:可使用在25GHZ以下光模块和2.7GHZ ONU或RFOG中作为下行发射单元),而且其通过以四个管脚为单位分别构成第一排和第二排,从而给第一排和第二排之间留下充足的区域,可以更容易实现本发明实施例中“第一制冷器22固定在底座21上的位置向激光器23背光侧偏斜指定距离,使得光路在通过所述45°反光棱镜26反射后,能够指向所述底座21的中心垂线方向”的结构要求。
在本发明实施例中,所述BOSA壳体的长度在15~20mm,宽在6~8mm,则所述第一制冷器22的的长宽高尺寸可以制作成为3mm*2.5mm*2.0mm,其工作功率 可达到0.6W~0.7W。
发明人通过实验得出,本发明实施例2所提出的结构方案,虽然在波长调节精度和调节响应速率相对于背景技术中介绍的制冷器外置的结构方案有了很大的提高,但是,当调节温度达到某一阈值时,上述调节精度和调节响应速度会存在较明显的下降。经过测试和理论分析,将第一制冷器设置到发射组件内部可以在一段温度调节器件起到较明显的作用,而由于第一制冷器被设置在一较密闭空间,并且除了拥有发射组件的底座这一间接的热交互对象外,构成其另一热交互对象的激光传输空间则是一较密闭的环境,其对热交互的影响相对于底座可以忽略不计,因此,在底座的热交互因为其自身材料问题或者外界温度问题达到某一瓶颈状态时,便会影响到热交互效率从而表现出控制精度和响应速率的下降。给予上述分析,本发明实施例还提供了一种优选的实现方案,用于改善上述特定情况下控制精度和响应速率的下降的问题。如图8所示,所述BOSA还包括第二制冷器51和第二热敏电阻52,具体的:
所述第二热敏电阻52和第二制冷器51分别固定在所述BOSA壳体上。在本发明实施例4中将对于其控制方法展开阐述。
实施例3:
本发明实施例除了提供实施例2所述的利用45°反光棱镜来实现水平发射激光基础上完成垂直出光的波长可调的BOSA外(其中“水平”和“垂直”均相对于发射组件的底座表面而言),还通过本发明实施例3提供一种垂直发射激光基础上完成垂直出光的波长可调的BOSA,如图2、图9和图10所示,包括BOSA壳体1、发射模组2、接收模组3和BOSA收发光路组件4,其特征在于,所述发射模组2包括底座21、耦合平台27、第一制冷器22、激光器23、背光PD24和第一热敏电阻25,其中,底座21上设置有至少8个管脚,分别对应于所述第一制冷器22的TEC+和TEC-管脚,激光器23的LD+和LD-管脚,背光PD24的PD+和PD-管脚,以及第一热敏电阻的RES1和RES2管脚的,具体的:
所述耦合平台27的底部由导热胶固定在底座21上;其中,所述耦合平台27的底部为窄面,其用于固定器件的侧面为宽面;管脚设置在底座21上,并且 平均布局在所述耦合平台27两宽面侧(如图11所示);在所述宽面靠近管脚铜芯柱高度位置设置有一排通孔28,所述通孔28用于金丝焊线能够穿过耦合平台27,建立耦合平台27设置电器的一侧与耦合平台27另一侧管脚的电路连接;其中,所述电器包括有所述第一制冷器22、激光器23、背光PD24和第一热敏电阻25中的两个对象;
所述激光器23设置在所述耦合平台27的侧面,并且与第一热敏电阻25和背光PD24位于耦合平台27的同侧;
所述第一热敏电阻25设置在靠近所述激光器23的位置;所述背光PD24设置在背靠所述激光器23的位置。
本发明实施例除了可以具有实施例1和实施例2所述的技术效果之外,由于省去了45°反光棱镜,光路结构上相对更为简洁,但是,从实体结构来看相比较实施例1和实施例2还增设了耦合平台和通孔,一定程度上也带来了加工工艺的复杂化。但是,在本发明实施例中由于采用了直立的耦合平台结构,释放了底座的空间,因此允许存在如图11所示的管脚布局结构,使得无论在发射组件管脚的识别,还是在发射组件管脚的安装来说,相比较实施例1和实施例2都具有极大的提升。
在背景技术中,由于激光器是被直接设置在发射组件的底座上(例如TO封装中的基座),因此,无需考虑由于激光器发射带来的底座形变问题(由于是金属材料的底座,几乎可以忽略不计)。然而,在本发明实施例中,激光器不再是直接设置在底座上,而是在激光器和底座之间夹着一层第一制冷器22和耦合平台27。需要明确的是,制冷器的工作原理就是一面被加热,而另一面则降温,并且材料主体是半导体材料,因此,制冷器自身工作过程过程中就存在一定的形变,另一方面加上本发明实施例中激光器的大小相对于制冷器的大小只有10%不到,因此,容易发生制冷器位于激光器耦合面上的局部温度过高,造成制冷器的不规则形变,给激光器发射的激光信号带来不必要的干扰。因此,为了改善由于本发明实施例所提出的结构,可能造成的上述问题,除了在实施例2中描述的将激光器设置在制冷器的中心区域的方式外(将激光器设置在制冷器中 心位置,可以优化不规则形变,使得形变范围线索与垂直方向,从而减少了水平方向不规则形变可能带来的更恶劣的影响。),还存在一种优选的实现方式,具体为:所述激光器23、背光PD24和第一热敏电阻25在被固定在所述第一制冷器22表面之前,先被固定在热导PCB板29上;其中,所述热导PCB板29被固定在所述第一制冷器22上的位置,使得所述激光器23位于所述第一制冷器22的中心位置。其中,所述热导PCB中掺杂了铜元素,所述热导PCB可以获得16.5W/mK的导热系数,能够起到将激光器局部产热快速的平摊到热导PCB其他区域,从而进一步改善第一制冷器可能发生的不规则热形变。
在本发明实施例中,所述通孔28的使用方法具有两种,第一种是就以通孔的方式存在,并通过贯穿金丝完成电器和耦合平台27背面的管脚的焊接;第二种则是,在所述通孔28内部还设置有连接柱,具体的:在通孔28内部的连接柱采用陶瓷套包络铜柱,并在铜柱位于耦合平台27的两个侧面端预留了金丝焊线焊接位。于是,耦合平台27一侧的管脚和另一侧的电器可以通过分别焊接在同一根连接柱的两个端面完成电器导通。
发明人通过实验得出,本发明实施例2所提出的结构方案,虽然在波长调节精度和调节响应速率相对于背景技术中介绍的制冷器外置的结构方案有了很大的提高,但是,当调节温度达到某一阈值时,上述调节精度和调节响应速度会存在较明显的下降。经过测试和理论分析,将第一制冷器设置到发射组件内部可以在一段温度调节器件起到较明显的作用,而由于第一制冷器被设置在一较密闭空间,并且除了拥有发射组件的底座这一间接的热交互对象外,构成其另一热交互对象的激光传输空间则是一较密闭的环境,其对热交互的影响相对于底座可以忽略不计,因此,在底座的热交互因为其自身材料问题或者外界温度问题达到某一瓶颈状态时,便会影响到热交互效率从而表现出控制精度和响应速率的下降。给予上述分析,本发明实施例还提供了一种优选的实现方案,用于改善上述特定情况下控制精度和响应速率的下降的问题。如图8所示,所述BOSA还包括第二制冷器51和第二热敏电阻52,具体的:
所述第二热敏电阻52和第二制冷器51分别固定在所述BOSA壳体上。在本 发明实施例4中将对于其控制方法展开阐述。
基于本发明实施例独有的管脚排列方式,本发明实施例还提供了一种更优选的对应管脚的制作方法,具体的,所述管脚具体为管脚和联排绝缘套一体式固定的,并设置有排座,其中,每一联排绝缘套中设置有4根直径为0.25mm管脚,每根管脚之间保持0.25mm以上的安全间距;
所述管脚通过排座固定在已开好对应槽孔的底座21上完成固定,其中,两个联排绝缘套一共包括了8根管脚。
在本发明实施例中,如图12所示,所述BOSA壳体的长度在15~20mm,宽在6~8mm,所述第一制冷器22的长宽高尺寸为3mm*2.5mm*2.0mm,其工作功率为0.6W~0.7W。另外,所述耦合平台27的厚度为1.0~1.5mm,高度为3mm~5mm。
在本发明实施例中,尤其是实施例1、实施例2和实施例3中的第一制冷器22的尺寸是可以通用,仅仅是固定的表面选择上存在差异,因此,上述长宽高尺寸为3mm*2.5mm*2.0mm在各实施例中均被采用到。另外,需要指出的是,所述第一制冷器22的长宽是指其热面和冷面的尺寸,而高2.0mm则是指所述热面和冷面之间的距离。
实施例4:
在公开了上述实施例2和实施例3的两种波长可调的BOSA,本发明实施例进一步就其设置有第一制冷器、第二制冷器、第一热敏电阻和第二热敏电阻情况下的BOSA,提供相应温度控制方法,如图13所示,控制方法包括:
在步骤201中,确定当前激光器23工作条件的目标温度。
这里的目标温度通常是根据当前激光器23的型号、其所要产生的激光波长等确定的。在实现时候,可以是预先存储在主控制器中,并通过结合查表和外界输入的方式完成。
在步骤202中,根据目标温度,设置第一制冷器22的初始输入电流。
这里是控制信号的转换,即将查找或者计算得到的目标温度,转换为用于驱动第一制冷器22工作的初始输入电流。
在步骤203中,实时获取第一热敏电阻25的检测电流值,根据所述检测电 流值调整所述第一制冷器22的输入电流。
其中,在实时根据所述检测电流值调整所述第一制冷器22的输入电流的同时,还包括:
在步骤204中,实时根据第二热敏电阻52获取BOSA壳体的温度,并在所述BOSA壳体的温度达到预设第一阈值时,启动所述第二制冷器51,使得所述BOSA壳体的温度能够维持预设工作温度区间。例如:当产品BOSA器件对应外壳散热性很差,无散热或客户对产品使用环境温度大于50摄氏度情况下,如果内部激光器设定温度与外壳的温度差大于50摄氏度,将启动第二制冷器已为此两者温度差再50摄氏度以内。
其中,步骤203和步骤204通常是同步进行的,而在具体实现过程中,步骤203和步骤204也可以是按照各自的执行周期完成相应步骤内容的执行,再此不做特殊限定。
基于本发明实施例所提出的温度控制方法,不仅能够有效的解决当调节温度达到某一阈值时,上述调节精度和调节响应速度会存在较明显的下降的问题。并且,通过有针对性的判断BOSA壳体的温度是否达到预设第一阈值后,再运行第二制冷器,在保证控制精度和控制速度条件下,降低了功耗的消耗。
有加热必定也有降温的情况,在本发明实施例介绍了上述降温实例后,结合本发明实施例还存在加热实例,具体的:实时根据第二热敏电阻52获取BOSA壳体的温度,并在所述BOSA壳体的温度低于预设第二阈值时,启动所述第二制冷器51,使得所述BOSA壳体的温度能够尽快超过所述预设第二阈值温度。
实施例5:
本发明实施例,将本发明实施例3所提出的BOSA应用到电路中测试,最高功耗降为1W以下,平均功耗0.1W。
如图14所示:实际波长调节范围可达到7nm,调节精度可达到0.05nm,-20到70内波长稳定度0.2nm以内。
如图15所示:4nm波长切换的时间,只需要430ms。相比目前现有的外置制冷器的方案,功耗只有其4%,波长调节范围扩宽了将近一倍,波长调节精度、 稳定度和速度都得到极高提升。相比采用WDM管芯去封装的BOSA现有发明方案体积更小,因其波长可调所以不需要区分不同波长品类,使得物料品类更少,兼容性高,便于生产和管控。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种波长可调的BOSA,包括BOSA壳体、发射模组、接收模组和BOSA收发光路组件,其特征在于,所述发射模组包括底座、第一制冷器、激光器、背光PD、第一热敏电阻和45°反光棱镜,其中,底座上设置有至少8个管脚,分别对应于所述第一制冷器的TEC+和TEC-管脚,激光器的LD+和LD-管脚,背光PD的PD+和PD-管脚,以及第一热敏电阻的RES1和RES2管脚,具体的:
    所述第一制冷器的底部由导热胶固定在底座上,所述45°反光棱镜的位置位于完成固定后的所述第一制冷器表面,并且相对于底座的中心区域;第一制冷器表面位于所述45°反光棱镜的反射面设置有所述激光器;
    所述第一热敏电阻设置在所述第一制冷器表面上靠近所述激光器的位置;
    所述背光PD设置在所述第一制冷器表面上背靠所述激光器的位置。
  2. 根据权利要求1所述的波长可调的BOSA,其特征在于,所述激光器、背光PD、第一热敏电阻和45°反光棱镜在被固定在所述第一制冷器表面之前,先被固定在热导PCB板上;其中,所述热导PCB板被固定在所述第一制冷器上的位置,使得所述激光器位于所述第一制冷器的中心位置。
  3. 一种波长可调的BOSA,包括BOSA壳体、发射模组、接收模组和BOSA收发光路组件,其特征在于,所述发射模组包括底座、第一制冷器、激光器、背光PD、第一热敏电阻和45°反光棱镜,其中,底座上设置有至少8个管脚,分别对应于所述第一制冷器的TEC+和TEC-管脚,激光器的LD+和LD-管脚,背光PD的PD+和PD-管脚,以及第一热敏电阻的RES1和RES2管脚,具体的:
    所述第一制冷器的底部由导热胶固定在底座上,所述激光器设置的位置位于所述第一制冷器表面的中心区域;第一制冷器表面位于所述激光器的出光面侧设置有所述45°反光棱镜;其中,第一制冷器固定在底座上的位置向激光器背光侧偏斜指定距离,使得光路在通过所述45°反光棱镜反射后,能够指向所述底座的中心垂线方向;
    所述第一热敏电阻设置在所述第一制冷器表面上靠近所述激光器的位置;
    所述背光PD设置在所述第一制冷器表面上背靠所述激光器的位置。
  4. 根据权利要求3所述的波长可调的BOSA,其特征在于,所述激光器、背光PD、第一热敏电阻和45°反光棱镜在被固定在所述第一制冷器表面之前,先被固定在热导PCB板上;其中,所述热导PCB板被固定在所述第一制冷器上的位置,使得所述激光器位于所述第一制冷器的中心位置。
  5. 根据权利要求3所述的波长可调的BOSA,其特征在于,所述管脚的径长为0.25mm,且数量为8个时,所述管脚的排列方式包括:
    布局在底座圆周靠边区域,均匀分布8个管脚;或者,
    设定一排所包含的管脚数量为两个,则构成第一排和第二排对称布局在底座圆周靠边区域结构,将剩余管脚构成第三排和第四排对称分布在所述第一排和第二排构成空间的两侧,从而使得8个管脚的连线构成八边形;或者,
    设定一排所包含的管脚数量为两个,则构成第一排和第二排对称布局在底座圆周靠边区域结构,并以三个管脚为单位构成第三排和剩余的一个管脚构成的第四排对称分布在所述第一排和第二排构成空间的两侧。
  6. 根据权利要求3所述的波长可调的BOSA,其特征在于,所述第一制冷器的长宽高尺寸为3mm*2.5mm*2.0mm,其工作功率为0.6W~0.7W。
  7. 根据权利要求3-6任一所述的波长可调的BOSA,其特征在于,所述BOSA还包括第二制冷器和第二热敏电阻,具体的:
    所述第二热敏电阻和第二制冷器分别固定在所述BOSA壳体上。
  8. 根据权利要求3-6任一所述的波长可调的BOSA,其特征在于,BOSA壳体的长度在15~20mm,宽在6~8mm。
  9. 一种波长可调的BOSA,包括BOSA壳体、发射模组、接收模组和BOSA收发光路组件,其特征在于,所述发射模组包括底座、耦合平台、第一制冷器、激光器、背光PD和第一热敏电阻,其中,底座上设置有至少8个管脚,分别对应于所述第一制冷器的TEC+和TEC-管脚,激光器的LD+和LD-管脚,背光PD的PD+和PD-管脚,以及第一热敏电阻的RES1和RES2管脚,具体的:
    所述耦合平台的底部由导热胶固定在底座上;其中,所述耦合平台的底部为窄面,其用于固定器件的侧面为宽面;管脚设置在底座上,并且平均布局在 所述耦合平台两宽面侧;在所述宽面靠近管脚铜芯柱高度位置设置有一排通孔,所述通孔用于金丝焊线能够穿过耦合平台,建立耦合平台设置电器的一侧与耦合平台另一侧管脚的电路连接;其中,所述电器包括有所述第一制冷器、激光器、背光PD和第一热敏电阻中的两个对象;
    所述激光器设置在所述耦合平台的侧面,并且与第一热敏电阻和背光PD位于耦合平台的同侧;
    所述第一热敏电阻设置在靠近所述激光器的位置;所述背光PD设置在背靠所述激光器的位置。
  10. 根据权利要求9所述的波长可调的BOSA,其特征在于,所述激光器、背光PD和第一热敏电阻在被固定在所述第一制冷器表面之前,先被固定在热导PCB板上。
  11. 根据权利要求9所述的波长可调的BOSA,其特征在于,所述通孔内部还设置有连接柱,具体的:在通孔内部的连接柱采用陶瓷套包络铜柱,并在铜柱位于耦合平台的两个侧面端预留了金丝焊线焊接位。
  12. 根据权利要求9所述的波长可调的BOSA,其特征在于,所述BOSA还包括第二制冷器和第二热敏电阻,具体的:
    所述第二热敏电阻和第二制冷器分别固定在所述BOSA壳体上。
  13. 根据权利要求9所述的波长可调的BOSA,其特征在于,所述管脚具体为管脚和联排绝缘套一体式固定的,并设置有排座,其中,每一联排绝缘套中设置有4根直径为0.25mm管脚,每根管脚之间保持0.25mm以上的安全间距;
    所述管脚通过排座固定在已开好对应槽孔的底座上完成固定,其中,两个联排绝缘套一共包括了8根管脚。
  14. 一种波长可调的BOSA温度控制方法,其特征在于,使用如权利要求7或者权利要求10所述的波长可调的BOSA,控制方法包括:
    确定当前激光器工作条件的目标温度;
    根据目标温度,设置第一制冷器的初始输入电流;实时获取第一热敏电阻的检测电流值,根据所述检测电流值调整所述第一制冷器的输入电流;
    其中,在实时根据所述检测电流值调整所述第一制冷器的输入电流的同时,还包括:
    实时根据第二热敏电阻获取BOSA壳体的温度,并在所述BOSA壳体的温度达到预设第一阈值时,启动所述第二制冷器,使得所述BOSA壳体的温度能够维持预设工作温度区间。
  15. 根据权利要求14所述的波长可调的BOSA温度控制方法,其特征在于,实时根据第二热敏电阻获取BOSA壳体的温度,并在所述BOSA壳体的温度低于预设第二阈值时,启动所述第二制冷器,使得所述BOSA壳体的温度能够尽快超过所述预设第二阈值温度。
PCT/CN2017/118494 2017-08-31 2017-12-26 一种波长可调的bosa及其温度控制方法 WO2019041688A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710774118.3A CN107390330B (zh) 2017-08-31 2017-08-31 一种波长可调的bosa及其温度控制方法
CN201710774118.3 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019041688A1 true WO2019041688A1 (zh) 2019-03-07

Family

ID=60349113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118494 WO2019041688A1 (zh) 2017-08-31 2017-12-26 一种波长可调的bosa及其温度控制方法

Country Status (2)

Country Link
CN (1) CN107390330B (zh)
WO (1) WO2019041688A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107390330B (zh) * 2017-08-31 2019-08-20 武汉光迅科技股份有限公司 一种波长可调的bosa及其温度控制方法
CN109061812B (zh) * 2018-08-27 2020-08-07 西安奇芯光电科技有限公司 可调式小波长间隔光收发器
CN109100838B (zh) * 2018-09-03 2021-02-26 武汉电信器件有限公司 一种可控温的集成单纤双向器件
CN113296198A (zh) * 2020-02-21 2021-08-24 佑胜光电股份有限公司 光发射组件、光学收发模块及光纤缆线模块
WO2020206648A1 (zh) * 2019-04-11 2020-10-15 深圳市亚派光电器件有限公司 光发射组件及其制作方法
CN110061800B (zh) * 2019-04-18 2020-08-25 浙江省广电科技股份有限公司 一种可调谐dwdm波长光节点的波长稳定系统
CN112198599B (zh) * 2020-12-07 2021-02-12 武汉乾希科技有限公司 用于光通信器件的耦合方法和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202513157U (zh) * 2012-03-31 2012-10-31 武汉光迅科技股份有限公司 一种小型发光二极管
CN103487899A (zh) * 2013-09-17 2014-01-01 中国科学院半导体研究所 一种单纤双向光收发器件
US9389492B2 (en) * 2014-07-28 2016-07-12 Christie Digital Systems Usa, Inc. Rotationally static light emitting material with rotating optics
CN106054326A (zh) * 2016-05-31 2016-10-26 武汉光迅科技股份有限公司 光电子器件的耦合固定装置
CN107390330A (zh) * 2017-08-31 2017-11-24 武汉光迅科技股份有限公司 一种波长可调的bosa及其温度控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207366795U (zh) * 2017-08-31 2018-05-15 武汉光迅科技股份有限公司 一种波长可调的bosa

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202513157U (zh) * 2012-03-31 2012-10-31 武汉光迅科技股份有限公司 一种小型发光二极管
CN103487899A (zh) * 2013-09-17 2014-01-01 中国科学院半导体研究所 一种单纤双向光收发器件
US9389492B2 (en) * 2014-07-28 2016-07-12 Christie Digital Systems Usa, Inc. Rotationally static light emitting material with rotating optics
CN106054326A (zh) * 2016-05-31 2016-10-26 武汉光迅科技股份有限公司 光电子器件的耦合固定装置
CN107390330A (zh) * 2017-08-31 2017-11-24 武汉光迅科技股份有限公司 一种波长可调的bosa及其温度控制方法

Also Published As

Publication number Publication date
CN107390330A (zh) 2017-11-24
CN107390330B (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
WO2019041688A1 (zh) 一种波长可调的bosa及其温度控制方法
US11973311B2 (en) To package for DFB laser with TEC vertically mounted in groove of heatsink
CN104201557B (zh) 一种可调激光器的封装结构及其封装方法
KR101980288B1 (ko) 고주파 광 모듈 및 이를 구비한 광 통신 장치
JP2015088641A (ja) 光モジュール
WO2021164669A1 (zh) 光学收发模块及光纤缆线模块
CN208334718U (zh) 水平式光通讯次组件的散热结构
WO2019127025A1 (zh) 一种宽温低功耗集成光发射组件
CN102385124A (zh) 内部冷却的、热封闭的模块化激光器封装系统
JP2011108938A (ja) To−can型tosaモジュール
CN106877167A (zh) 一种直接调制激光器
JP6232950B2 (ja) 発光モジュール
CN108387980A (zh) 光学次模块及光模块
JP2011129592A (ja) 光半導体装置
JP2011100785A (ja) To−can形光モジュール用パッケージおよびto−can形光モジュール
JP2019008105A (ja) 光モジュール、及び光伝送装置
CN207366795U (zh) 一种波长可调的bosa
CN104350652A (zh) 具有波长稳定化装置的激光装置
CN214474114U (zh) 一种光模块
JP2007036046A (ja) 光送信デバイス
CN213302589U (zh) 一种光模块
WO2016015262A1 (zh) 可调谐光器件、光网络单元及无源光网络系统
CN104718672B (zh) 光电组件
CN221039537U (zh) 一种单纤四端口Combo PON光器件
JP2003014990A (ja) 光通信モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923463

Country of ref document: EP

Kind code of ref document: A1