WO2019041100A1 - 充电系统及充电方法 - Google Patents

充电系统及充电方法 Download PDF

Info

Publication number
WO2019041100A1
WO2019041100A1 PCT/CN2017/099346 CN2017099346W WO2019041100A1 WO 2019041100 A1 WO2019041100 A1 WO 2019041100A1 CN 2017099346 W CN2017099346 W CN 2017099346W WO 2019041100 A1 WO2019041100 A1 WO 2019041100A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
charging circuit
charge
circuit
Prior art date
Application number
PCT/CN2017/099346
Other languages
English (en)
French (fr)
Inventor
胡金刚
赵涛
田杰
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/099346 priority Critical patent/WO2019041100A1/zh
Priority to CN201780006067.8A priority patent/CN108495788A/zh
Publication of WO2019041100A1 publication Critical patent/WO2019041100A1/zh
Priority to US16/802,964 priority patent/US20200195021A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00038Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors
    • H02J7/00041Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors in response to measured battery parameters, e.g. voltage, current or temperature profile
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/44The network being an on-board power network, i.e. within a vehicle for aircrafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Definitions

  • the embodiments of the present invention relate to the field of drones, and in particular, to a charging system and a charging method.
  • the unmanned aerial vehicle uses a battery as a power source.
  • the battery needs to be charged.
  • the battery is charged by using one charger. Specifically, when one battery is full, the other battery is charged.
  • this charging method will result in a longer charging time of the battery.
  • the chargers of the devices in the prior art are used independently of each other, for example, an aircraft adapter, an aircraft battery housekeeper, a remote controller charger, a battery-charging treasure converter, and the like are independently used, resulting in a battery of the unmanned aerial vehicle, Devices such as remote controls and shooting equipment need to be separately charged, which reduces the efficiency of the UAV.
  • Embodiments of the present invention provide a charging system and a charging method to shorten the charging time of the battery and improve the working efficiency of the unmanned aerial vehicle.
  • a first aspect of the embodiments of the present invention provides a charging system, including:
  • At least one charging circuit each charging circuit for charging at least one battery
  • a first charging interface electrically connected to each of the charging circuits for charging the first external device
  • a second aspect of the embodiments of the present invention provides a charging method, including:
  • the plurality of batteries are simultaneously charged by the multi-channel charging circuit, thereby saving the charging time of the battery.
  • the processor in the charging system is based on each of the plurality of charging circuits. Electrical parameter information, controlling a plurality of charging circuits to selectively charge a plurality of batteries, or/and charging an external device such that a plurality of charging circuits can simultaneously charge a plurality of batteries to an external device such as a drone
  • the remote control device, shooting equipment, etc. are charged, thereby improving the work efficiency of the unmanned aerial vehicle.
  • FIG. 1 is a structural diagram of a charging system according to an embodiment of the present invention.
  • FIG. 2 is a structural diagram of a charging system according to an embodiment of the present invention.
  • FIG. 3 is a structural diagram of a charging system according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a battery control system according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a charging system according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of a charging system according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a charging method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a charging method according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a charging method according to an embodiment of the present invention.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be in the middle. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • FIG. 1 is a structural diagram of a charging system according to an embodiment of the present invention.
  • the charging system is suitable for simultaneously charging a plurality of batteries of a frequently operating unmanned aerial vehicle or a mobile robot.
  • the charging system can also provide an external device of the unmanned aerial vehicle or the movable robot, for example. Remote control devices, shooting devices, etc. are charged.
  • the charging system includes: at least one charging circuit, a first charging interface 111, one or more processors 112, and an adapter 113; as shown in FIG. 1, at least one charging circuit includes a charging circuit 1, a charging circuit 2.
  • each charging circuit is used to charge at least one battery; as shown in FIG. 1, the charging circuit 1 is used to charge the battery B1 and the battery B2, and the charging circuit 2 is used to charge the battery B3 and the battery B4, and the charging circuit 3 is used. The battery B5 and the battery B6 are charged, and the charging circuit 4 is used to charge the battery B7 and the battery B8.
  • each charging circuit can charge two batteries, which is only illustrative and not limited to The number of batteries that a charging circuit can charge.
  • each battery is electrically coupled to a charging circuit that charges the battery via a first switch.
  • the processor controlling the charging circuit to selectively charge at least one battery connected to the charging circuit, specifically for controlling at least one first switch connected to the charging circuit to be closed
  • a charging circuit charges at least one battery connected to the charging circuit.
  • the battery B1 is electrically connected to the charging circuit 1 through the switch S1
  • the battery B2 is electrically connected to the charging circuit 1 through the switch S2
  • the battery B3 is electrically connected to the charging circuit 2 through the switch S3
  • the battery B4 passes through the switch S4 and the charging circuit.
  • battery B5 is electrically connected to the charging circuit 3 through the switch S5
  • the battery B6 is electrically connected to the charging circuit 3 through the switch S6
  • the battery B7 is electrically connected to the charging circuit 4 through the switch S7
  • the battery B8 is electrically connected to the charging circuit 4 through the switch S8. connection.
  • the processor 112 is closed by controlling the switch S1 to cause the charging circuit 1 to charge the battery B1; or by controlling the switch S2 to be closed to cause the charging circuit 1 to charge the battery B2; or by controlling the switch S3 to be closed, so that the charging circuit 2 is supplied to the battery B3 charging; or by controlling the switch S4 to close, so that the charging circuit 2 charges the battery B4; or by controlling the switch S5 to close, so that the charging circuit 3 charges the battery B5; or by controlling the switch S6 to close, so that the charging circuit 3 gives The battery B6 is charged; either by the control switch S7 being closed to cause the charging circuit 4 to charge the battery B7; or by the control switch S8 being closed to cause the charging circuit 4 to charge the battery B8.
  • the switches S1-S8 may specifically be mechanical relays or semiconductor back-to-back P-channel metal oxide semiconductor field effect transistors (PMOS).
  • the first charging interface 111 is electrically connected to each of the charging circuits for charging the first external device. As shown in FIG. 1 , the first charging interface 111 is electrically connected to the charging circuit 1 , the charging circuit 2 , the charging circuit 3 , and the charging circuit 4 respectively. Optionally, each charging circuit passes through a first unidirectional device and the first The charging interface 111 is electrically connected. An input end of the first unidirectional pass device is electrically connected to the charging circuit, and an output end of the first unidirectional pass device is electrically connected to the first charging interface.
  • the first unidirectional pass device herein includes a diode. As shown in FIG.
  • the charging circuit 1 is electrically connected to the first charging interface 111 through a diode D9; the charging circuit 2 is electrically connected to the first charging interface 111 through a diode D10; and the charging circuit 3 is electrically connected to the first charging interface 111 through a diode D11.
  • the charging circuit 4 is electrically connected to the first charging interface 111 via a diode D12.
  • the input end of the diode D9 is electrically connected to the charging circuit 1, and the output end of the diode D9 is electrically connected to the first charging interface 111; the input end of the diode D10 is electrically connected to the charging circuit 2, The output end of the diode D10 is electrically connected to the first charging interface 111; the input end of the diode D11 is electrically connected to the charging circuit 3, the output end of the diode D11 is electrically connected to the first charging interface 111; the input end of the diode D12 is electrically connected to the charging circuit 4. Connected, the output of the diode D12 is electrically connected to the first charging interface 111.
  • the first external device includes at least one of the following: a remote control device of the drone, and a photographing device.
  • the photographing device may be a photographing device mounted on an unmanned aerial vehicle.
  • One or more of the batteries B1-B8 may be the power source of the unmanned aerial vehicle.
  • the charging system can also charge external devices of the UAV.
  • the AC power supply is 110V ⁇ 220V AC
  • AC power is converted to 30V DC power through AC to DC AC / DC adapter 113
  • the output current is 27A
  • the nominal output power is 800W.
  • the charging circuit 1, the charging circuit 2, the charging circuit 3, and the charging circuit 4 may specifically be a 4-way DC charging circuit.
  • the charging circuit 1, the charging circuit 2, the charging circuit 3, and the charging circuit 4 can also be a 4-way DC charger.
  • the 30V DC output from the adapter 113 is stepped down to the battery by the 4-way DC charging circuit in a constant current and then constant voltage manner to charge the battery.
  • the processor 112 can also adjust the magnitude of the constant current output by the DC charging circuit. For example, processor 112 controls the amount of current that the DC charging circuit charges the battery based on the temperature of the battery.
  • Processor 112 can be a general purpose or special purpose processor.
  • One or more processors 112 are electrically connected to each of the charging circuits, that is, the charging circuit 1, the charging circuit 2, the charging circuit 3, and the charging circuit 4.
  • the processor 112 is configured to: obtain electrical parameter information of the charging circuit;
  • the electrical parameter information of the charging circuit is controlled to selectively charge at least one battery connected to the charging circuit or/and to charge a first external device connected to the first charging interface.
  • the processor 112 may specifically be a Micro Controller Unit (MCU).
  • MCU Micro Controller Unit
  • the method is: controlling the charging circuit to give the at least one in a constant current and a constant voltage manner.
  • Charging batteries Specifically, taking the charging circuit 1 as an example, the processor 112
  • the chargeable circuit 1 can be charged to charge at least one of the batteries B1 and B2 by first constant current and then constant voltage.
  • the processor 112 can also control the charging circuit 2 to charge at least one of the batteries B3 and B4 in a constant current and constant voltage manner, and control the charging circuit 3 to supply the battery in a constant current and constant voltage manner.
  • At least one of the batteries of B5 and B6 is charged, and the charging circuit 4 is controlled to charge at least one of the batteries B7 and B8 by first constant current and then constant voltage.
  • the output current of the charging circuit is constant to perform constant current charging of the at least one battery.
  • the output current of the charging circuit 1 is constant, that is, when the charging circuit 1 starts charging the battery B1, the charging circuit 1 performs constant current charging on the battery B1 to make the battery
  • the power of B1 increases rapidly.
  • the processor 112 can further control the output voltage of the charging circuit 1 to be constant, that is, control the charging circuit 1 to perform constant voltage charging on the battery B1.
  • the processor 112 can obtain the electrical parameter information of the charging circuit in real time.
  • the processor 112 can obtain the electrical parameter information of the charging circuit 1, the charging circuit 2, the charging circuit 3, and the charging circuit 4 in real time, optionally.
  • the electrical parameter information of the charging circuit includes at least one of an output power of the charging circuit, an output current of the charging circuit, and an output voltage of the charging circuit.
  • the processor 112 may further control, according to the electrical parameter information of each charging circuit, the charging circuit to selectively charge at least one battery connected to the charging circuit, or/and to connect to the first charging interface.
  • the first external device is charged.
  • the processor 112 controls the charging circuit 1 to selectively charge at least one of the battery B1 and the battery B2 according to the electrical parameter information of the charging circuit 1, or/and to the first external connection to the first charging interface 111. The device is charged.
  • the processor controls the charging circuit to selectively charge at least one battery connected to the charging circuit according to electrical parameter information of the charging circuit, or/and to connect to the first charging interface
  • the method is specifically configured to: when the charging circuit changes from outputting a constant current to outputting a constant voltage, controlling the charging circuit to simultaneously give another one or more of the battery or/and the first external device Perform constant current charging.
  • the charging circuit 1 first charges the battery B1 with a constant current, and when the amount of the battery B1 increases to a preset amount, the charging circuit 1 shifts to charge the battery B1 at a constant voltage, when the battery B1 is charged from the constant current mode.
  • the current indicating that the charging circuit 1 charges the battery B1 is reduced, and the reduced portion of the current can be used to charge the battery B2, and can also be used to charge the first external device connected to the first charging interface 111. It can be used to simultaneously charge the first external device to which the battery B2 and the first charging interface 111 are connected.
  • the processor 112 can control the charging circuit 1 to connect the battery B2 or/and the first charging interface 111 while charging the battery B1 with a constant voltage.
  • the first external device performs constant current charging.
  • the current indicating that the charging circuit 1 charges the battery B2 is reduced, and the reduced portion of the current can be used to charge the first external device connected to the first charging interface 111. It can be output to the charging circuit 2, and the charging circuit 2 can charge the battery B3 and the battery B4 in combination with the current saved by the charging circuit 1 and the original current of the charging circuit 2, and the charging circuit 2 charges the battery B3 and the battery B4 with the charging circuit 1
  • the manner of charging the battery B1 and the battery B2 is similar, and details are not described herein.
  • the charging circuit 2 can charge the battery B3 and the battery B4 while charging the first external device connected to the first charging interface 111.
  • the charging process of the charging circuit 3 and the charging circuit 4 is deduced by analogy and will not be described herein.
  • the processor 112 is further configured to: detect a remaining power of the at least one battery connected to the charging circuit; and when the at least one battery is full, control the charging circuit to be connected to the first charging interface An external device is charged.
  • the charging circuit 1 charges the battery B1 and the battery B2 at a constant voltage
  • the battery B1 and the battery B2 may not be fully charged, and the charging circuit 1 also needs to charge the battery B1 and the battery B2 at a constant voltage for a period of time to discharge the battery B1 and The battery B2 is full.
  • the processor 112 can detect the remaining power of the battery B1 and the battery B2 in real time.
  • the processor 112 determines that both the battery B1 and the battery B2 are full according to the remaining power of the battery B1 and the battery B2, the processor 112 controls.
  • the charging circuit 1 charges the first external device to which the first charging interface 111 is connected.
  • the processor 112 controls the charging circuit 2 to charge the first external device connected to the first charging interface 111.
  • the charging circuit 3 fills the battery B5 and the battery B6, the processor 112 controls the charging circuit 3 to charge the first external device to which the first charging interface 111 is connected.
  • the processor 112 controls the charging circuit 4 to charge the first external device to which the first charging interface 111 is connected.
  • the plurality of charging circuits charge the DC power source to the plurality of batteries in a constant current and then a constant voltage manner, if the first When the charging interface 111 is connected to the first external device, a part of the direct current is separated from the plurality of charging circuits to charge the first external device, and the current for charging the battery is reduced. If the first charging interface 111 is not connected to the first external device, The battery is then charged at maximum power.
  • multiple batteries are simultaneously charged by the multi-channel charging circuit, which saves the charging time of the battery.
  • the processor in the charging system controls multiple charging according to the electrical parameter information of each charging circuit in the plurality of charging circuits.
  • the circuit can selectively charge a plurality of batteries, or/and charge an external device, so that the plurality of charging circuits can charge the plurality of batteries while charging an external device such as a remote control device of the drone, a photographing device, and the like. Thereby improving the working efficiency of the unmanned aerial vehicle.
  • FIG. 2 is a structural diagram of a charging system according to an embodiment of the present invention.
  • the charging system in this embodiment further includes: at least one second unidirectional pass device, each second unidirectional pass device being electrically connected to a battery for each battery Parallel.
  • the second unidirectional pass device includes: an ideal diode.
  • the connection of the switch S1 and the battery B1 is electrically connected to the ideal diode D1; the connection of the switch S2 and the battery B2 is electrically connected to the ideal diode D2; and the connection of the switch S3 and the battery B3 is electrically connected to the ideal diode D3.
  • connection between switch S4 and battery B4 is electrically connected to ideal diode D4; the connection between switch S5 and battery B5 is electrically connected to ideal diode D5; the connection of switch S6 and battery B6 is electrically connected to ideal diode D6; switch S7 and battery
  • the junction of B7 is electrically connected to the ideal diode D7; the junction of the switch S8 and the battery B8 is electrically connected to the ideal diode D8.
  • the ideal diodes D1-D8 connect the batteries B1-B8 in parallel.
  • the second unidirectional pass device can also be a conventional diode.
  • the charging system further includes: a heat sink 114 and a discharge resistor 115, the anode of each battery being electrically connected to the input of a second unidirectional device; the output of each second unidirectional device The terminals are electrically connected to the discharge resistor 115; and the output of each of the second one-way devices is electrically connected to the heat sink 114.
  • the positive pole of the battery B1 is electrically connected to the input end of the ideal diode D1; the positive pole of the battery B2 is electrically connected to the input end of the ideal diode D2; the positive pole of the battery B3 is electrically connected to the input end of the ideal diode D3; the positive pole and the ideal of the battery B4
  • the input end of the diode D4 is electrically connected; the positive pole of the battery B5 is electrically connected to the input end of the ideal diode D5; the positive pole of the battery B6 is electrically connected to the input end of the ideal diode D6; the positive pole of the battery B7 It is electrically connected to the input terminal of the ideal diode D7; the anode of the battery B8 is electrically connected to the input terminal of the ideal diode D8.
  • the output of the ideal diodes D1-D8 is electrically connected to the discharge resistor 115.
  • the discharge resistor includes a positive temperature coefficient (PTC).
  • the discharge resistor 115 can also be a conventional resistor.
  • the outputs of the ideal diodes D1-D8 are also electrically coupled to the heat sink 114.
  • the heat sink 114 includes: a fan.
  • each second unidirectional pass device is electrically connected to the discharge resistor through a second switch.
  • the output terminals of the ideal diodes D1-D8 are electrically connected to the discharge resistor 115 through the second switch S9.
  • the processor 112 is further configured to discharge each of the batteries through the discharge resistor by controlling the second switch to close. That is, the processor 112 can be closed by controlling the second switch S9 to discharge the batteries B1-B8 through the discharge resistor 115, such as a positive temperature coefficient thermistor, while also cooling the charging system by the fan.
  • the processor 112 is further configured to: acquire electrical parameter information of the battery; determine, according to electrical parameter information of the battery, whether the battery is abnormal; if the battery is abnormal, control the second The switch is closed to discharge each battery through the discharge resistor. As shown in FIG. 2, since the batteries B1-B8 are electrically connected to the processor 112, respectively, the processor 112 can obtain electrical parameter information of each battery in real time, such as the battery's power, life, temperature, etc., and the processor 112 can The electrical parameter information of the battery determines whether the battery is abnormal.
  • the processor 112 determines that the battery is abnormal, so that the processor 112 can control the second switch S9 to close, so that the batteries B1-B8 pass the discharge.
  • the resistor 115 is, for example, discharged by a positive temperature coefficient thermistor, and the temperature of the charging system can also be cooled by a fan.
  • the battery charges the first external device connected to the first charging interface when each battery is discharged through the discharge resistor.
  • the processor 112 can further control one or more of the switches S1-S8 to be closed. Alternatively, the processor 112 controls the switches S1-S8. Closing, at this time, the battery B1 and the battery B2 will charge the first external device connected to the first charging interface 111 through the diode D9, and the battery B3 and the battery B4 will charge the first external device connected to the first charging interface 111 through the diode D10.
  • the battery B5 and the battery B6 will charge the first external device connected to the first charging interface 111 through the diode D11, and the battery B7 and the battery B8 will charge the first external device connected to the first charging interface 111 through the diode D12.
  • the processor when each battery is discharged through the discharge resistor, the processor is further configured to: detect a remaining power of the battery; and when the remaining power of the battery is less than or equal to a first remaining power threshold, control the The second switch is turned off to stop each battery from discharging.
  • the processor 112 can also detect the remaining power of each battery. When the remaining power of each battery is less than or equal to the preset remaining power threshold, the second switch S9 is controlled to be disconnected. The batteries B1-B8 are stopped from discharging.
  • each battery is placed in a battery slot.
  • the battery B1 is placed in the battery slot 31.
  • the battery slot 31 is electrically connected to the switch S1 and the ideal diode D1.
  • the battery B2 is placed in the battery slot 32.
  • the battery slot 32 is electrically connected to the switch S2 and the ideal diode D2; the battery B3 is placed in the battery slot 33, the battery slot 33 is electrically connected to the switch S3 and the ideal diode D3; the battery B4 is placed in the battery slot 34, the battery slot 34 and the switch S4 is electrically connected to the ideal diode D4; the battery B5 is placed in the battery slot 35, the battery slot 35 is electrically connected to the switch S5 and the ideal diode D5; the battery B6 is placed in the battery slot 36, and the battery slot 36 is electrically connected to the switch S6 and the ideal diode D6.
  • the battery B7 is placed in the battery compartment 37, and the battery compartment 37 is electrically connected to the switch S7 and the ideal diode D7; the battery B8 is placed in the battery compartment 38, and the battery compartment 38 is electrically connected to the switch S8 and the ideal diode D8.
  • the correspondence between the battery and the battery slot may not be unique, that is, the battery B1 may also be placed in a battery slot other than the battery slot 31, and the same battery B2-B8 may be placed in other batteries. Inside the slot. When the second switch S9 is closed, any of the batteries B1-B8 can be discharged in any of the battery cells.
  • the charging system further includes a first output interface 116 for supplying power to the charging system; and an output of each of the second one-way devices such as the ideal diodes D1-D8 passes through An output interface 116 is electrically connected to one end of the heat sink 114, and the other end of the heat sink 114 is electrically connected through the third switch S10, S11 and the processor 112.
  • the heat sink 114 may specifically be a fan.
  • the processor 112 is further configured to: control the third switches S10, S11 to be closed to cause the fan to cool the charging system.
  • the processor 112 is further configured to: control the wind speed of the fan according to the electrical parameter information of the battery. For example, processor 112 controls the wind speed of the fan based on the temperature of the battery.
  • the adapter 113 is electrically connected to each charging circuit such as the charging circuit 1-4, and the adapter 113 is used to convert the alternating current power source into a direct current power source so that the charging circuit 1-4 firstly supplies the direct current power source.
  • the at least one battery is charged by means of a constant voltage after the flow. While the charging circuit 1-4 is charging the batteries B1-B8, the adapter 113 supplies power to the charging system through the first output interface 116.
  • the batteries B1-B8 can also power the charging system through the first output interface 116, which is given to the charging system at the batteries B1-B8.
  • the processor 112 controls the batteries B1-B8 to discharge through the discharge resistor 115. Specifically, when each battery is discharged through the discharge resistor, each battery supplies power to the charging system through the first output interface.
  • the batteries B1-B8 supply power to the charging system through the first output interface 116, for example, the batteries B1-B8 pass the first output interface 116 to the direct current.
  • the DC-DC circuit 1 supplies power, and the DC-DC circuit 1 supplies power to the heat sink 114.
  • the batteries B1-B8 also supply power to the DC-DC circuit 2 through the first output interface 116, and the DC-DC circuit 2 supplies power to the processor 112.
  • each battery supplies power to the charging system through a second output interface to activate the charging system.
  • each battery can have two output interfaces.
  • the battery 40 can be any one of the batteries B1-B8, the battery 40 has two output interfaces, and one output interface is 17.9V. The other output interface is a 26.3V interface.
  • the battery 40 supplies power to the micro control unit in the battery control system through the 17.9V interface to activate the micro control unit, and the micro control unit controls the battery after startup.
  • the micro-control unit controls the switch 41 between the battery 40 and the 26.3V interface to be closed to allow the battery 40 to be powered externally through the 26.3V interface.
  • the first output interface 116 shown in FIG. 2 or FIG. 3 is specifically a 26.3V interface of each battery
  • the second output interface 117 shown in FIG. 2 or FIG. 3 is specifically a 17.9V interface of each battery. It can be understood that before the batteries B1-B8 supply power to the charging system through the first output interface 116, the batteries B1-B8 supply power to the charging system through the second output interface 117 to activate the charging system. After the charging system is started, the charging system is powered by the batteries B1-B8 through the first output interface 116.
  • the adapter 113 can supply power to the charging system, and the batteries B1-B8 pass.
  • the first output interface 116 or the second output interface 117 can supply power to the charging system.
  • the charging system can be powered by the USB interface 200. In order to ensure that the processor 112 is not powered.
  • the discharge resistance is used to discharge the battery while controlling the fan to cool the charging system, thereby effectively increasing the heat dissipation power of the charging system and shortening the battery discharge time, thereby solving the discharge problem of the battery before storage or transportation.
  • the discharge resistor uses a positive temperature coefficient thermistor. When the positive temperature coefficient thermistor reaches the maximum temperature, its temperature will remain stable, avoiding the risk of heat accumulation.
  • a plurality of batteries are connected in parallel by a plurality of ideal diodes, and a plurality of batteries are connected in parallel and discharged through a positive temperature coefficient thermistor, thereby saving the number and cost of the positive temperature coefficient thermistors.
  • FIG. 5 is a structural diagram of a charging system according to an embodiment of the present invention.
  • the charging system in this embodiment further includes: a second charging interface 118, and the second charging interface 118 is electrically connected to the first output interface 116. Used to charge a second external device.
  • the second external device includes: a user terminal device.
  • the second charging interface 118 is electrically connected to the first output interface 116 through the DC-DC circuit 1 and the charging circuit 5.
  • the charging circuit 5 may be a USB charger, and the second charging interface 118 may specifically be Two USB ports. When the second charging interface 118 is connected to the second external device, the charging system charges the second external device in the following possible ways:
  • each battery is discharged through the discharge resistor, each battery is charged through the first output interface to a second external device connected to the second charging interface.
  • the batteries B1-B8 are discharged through the discharge resistor 115, and the batteries B1-B8 are externally powered through the first output interface 116, that is, the batteries B1-B8 supply power to the charging system through the first output interface 116, specifically, the battery B1
  • the B8 supplies power to the DC-DC circuit 1 through the first output interface 116.
  • the DC-DC circuit 1 supplies power to the charging circuit 5, and the charging circuit 5 further charges the second external device connected to the second charging interface 118.
  • the adapter when the adapter supplies power to the charging system through the first output interface, the adapter gives the second charging through the first output interface. The second external device connected to the interface is charged.
  • the adapter 113 charges the batteries B1-B8 through the charging circuit 1-4
  • the adapter 113 can also externally supply power through the ideal diodes D1-D8.
  • the adapter 113 is connected to the first output interface 116 through the ideal diodes D1-D8, the adapter 113, the first output interface 116 is powered, the first output interface 116 supplies power to the DC-DC circuit 1, the DC-DC circuit 1 supplies power to the charging circuit 5, and the charging circuit 5 further charges the second external device connected to the second charging interface 118.
  • the second charging interface 118 can output 5V voltage, 2A current, 5V voltage, 2A current can be given to the second charging interface. 118 connected second external device is charged.
  • the user terminal device may also be connected to the first charging interface 111, and the remote control device or the photographing device may also be connected to the second charging interface 118, or the remote control device is connected to the first charging interface 111, and the shooting device is connected to The second charging interface 118. That is to say, the present embodiment does not limit the external device to which the first charging interface 111 can be connected, nor the external device to which the second charging interface 118 can be connected.
  • the charging system further includes: a display device 119, the display device comprising: an LCD screen.
  • the display device 119 is electrically coupled to the processor 112 for displaying electrical parameter information of the batteries B1-B8 acquired by the processor 112.
  • the processor 112 determines the battery abnormality according to the electrical parameter information of the battery
  • the processor 112 is further configured to: control the display device 119 to display the alarm information.
  • the electrical parameter information of the battery specifically includes the temperature, life, remaining power, current current, current voltage, and the like of the battery.
  • the display device 119 can display the electrical parameter information of the batteries B1-B8, respectively.
  • the display device displays the electrical parameter information of the battery, thereby realizing the visualization of the electrical parameter information of the battery, so that the electrical parameter information of the battery is clear at a glance.
  • the plurality of charging circuits charge the DC power source with a constant current and a constant voltage to charge the plurality of batteries, and if the first charging interface is connected to the first external device, the plurality of charging devices are A part of the direct current is charged in the charging circuit to charge the first external device, and the AC to DC adapter is not required to be added, thereby saving the cost of the AC to DC.
  • the first external device connected to the first charging interface can be charged by the battery while the battery is being discharged.
  • the second charging connection The port can output 5V voltage and 2A current to charge the second external device connected to the second charging interface, thereby realizing the function of the charging system simultaneously charging a plurality of external devices.
  • FIG. 6 is a structural diagram of a charging system according to an embodiment of the present invention. Based on the above embodiment, the processor controls the charging circuit to selectively charge at least one battery connected to the charging circuit as follows:
  • the first way is to control the charging circuit to sequentially charge each of the at least one battery.
  • the charging circuit 1 is electrically connected to the battery 1 and the battery 2 through the switch S1 and the switch S2, respectively, and the charging circuit 2 is electrically connected to the battery 3 and the battery 4 through the switch S3 and the switch S4, respectively, and the charging circuit 3 passes through the switch S5.
  • the switch S6 is electrically connected to the battery 5 and the battery 6, respectively, and the charging circuit 4 is electrically connected to the battery 7 and the battery 8 through the switch S7 and the switch S8, respectively.
  • the processor 112 can control the charging circuit 1 to fully charge the battery 1 and then fully charge the battery 2. Specifically, the processor 112 first controls the switch S1 to be closed and the switch S2 to be turned off, so that the charging circuit 1 is given. The battery 1 is charged. When the battery 1 is full, the processor 112 controls the switch S1 to open and the switch S2 to close, so that the charging circuit 1 charges the battery 2 until the battery 2 is fully charged and the control switch S2 is turned off. The charging mode of the other charging circuit is the same as that of the charging circuit 1, and will not be repeated here.
  • the second way is: controlling the charging circuit to sequentially charge each battery in the at least one battery, and detecting the remaining power of the battery in the charging state; when the remaining power of each of the at least one battery reaches the battery in sequence After the second remaining power threshold, the charging circuit is controlled to sequentially charge each of the at least one battery.
  • the processor 112 can control the charging circuit 1 to first charge the remaining capacity of the battery 1 to 90%, then charge the remaining capacity of the battery 2 to 90%, and then charge the remaining capacity of the battery 1 to 100%. %, finally charge the remaining battery 2 to 100%.
  • the processor 112 first controls the switch S1 to close and the switch S2 to open, so that the charging circuit 1 charges the battery 1.
  • the processor 112 controls the switch S1 to be turned off and the switch S2 to be closed.
  • the processor 112 controls the switch S1 to be closed, and the switch S2 is turned off, so that the charging circuit 1 is again supplied to the battery 1.
  • Charging when the remaining capacity of the battery 1 is charged to 100%, the processor 112 controls the switch S1 to be turned off, and the switch S2 is closed, so that the charging circuit 1 charges the battery 2 again, when the remaining capacity of the battery 2 is charged to 100%, The control switch S2 is turned off.
  • the charging mode of the other charging circuit is the same as that of the charging circuit 1, and will not be repeated here.
  • the charging mode of the second mode is faster than the charging mode of the first mode.
  • each of the plurality of batteries is sequentially charged by controlling the charging circuit, or the charging circuit is sequentially charged to each of the plurality of batteries to a preset amount of power, and then the charging circuit is sequentially controlled to sequentially charge each battery. Full, increasing the flexibility to charge the battery.
  • FIG. 7 is a flowchart of a charging method according to an embodiment of the present invention. As shown in FIG. 7, the method in this embodiment may include:
  • Step S701 Acquire electrical parameter information of each charging circuit in at least one charging circuit, and each charging circuit is configured to charge at least one battery.
  • the execution body of this embodiment may specifically be the processor 112 in the above embodiment, and the processor 112 may be a general-purpose or dedicated processor.
  • the processor 112 can obtain the electrical parameter information of the charging circuit in real time.
  • the processor 112 can obtain the electrical parameter information of the charging circuit 1, the charging circuit 2, the charging circuit 3, and the charging circuit 4 in real time.
  • the electrical parameter information includes at least one of an output power of the charging circuit, an output current of the charging circuit, and an output voltage of the charging circuit.
  • Step S702 controlling the charging circuit to selectively charge at least one battery connected to the charging circuit or/and to charge the first external device according to the electrical parameter information of the charging circuit.
  • the processor 112 controls the charging circuit 1 to selectively charge at least one of the battery B1 and the battery B2 according to the electrical parameter information of the charging circuit 1, or/and to the first external connection to the first charging interface 111.
  • the device is charged.
  • the controlling the charging circuit to selectively charge at least one battery connected to the charging circuit comprises: controlling the charging circuit to charge the at least one battery in a constant current and then constant voltage manner .
  • the processor 112 can control the charging circuit 1 to charge at least one of the batteries B1 and B2 to be charged in a constant current and then constant voltage manner.
  • the charging circuit starts charging at least one battery
  • the charging power The output current of the path is constant to perform constant current charging of the at least one battery.
  • the charging circuit 1 starts charging the battery B1
  • the charging circuit 1 performs constant current charging on the battery B1 to rapidly increase the amount of power of the battery B1.
  • the processor 112 may further The output voltage of the charging circuit 1 is controlled to be constant, that is, the charging circuit 1 is controlled to perform constant voltage charging of the battery B1.
  • the charging circuit controlling, according to the electrical parameter information of the charging circuit, the charging circuit to selectively charge at least one battery connected to the charging circuit, or/and to charge the first external device, including: when charging When the circuit transitions from the output constant current to the output constant voltage, the charging circuit is controlled to simultaneously charge another one or more of the batteries or/and the first external device.
  • the charging circuit 1 first charges the battery B1 with a constant current.
  • the charging circuit 1 shifts to charge the battery B1 at a constant voltage, and when the battery B1 changes from the constant current charging mode to the constant state.
  • the current indicating that the charging circuit 1 charges the battery B1 is reduced, and the reduced portion of the current can be used to charge the battery B2, and can also be used to charge the first external device connected to the first charging interface 111, and can also be used for simultaneously
  • the first external device connected to the battery B2 and the first charging interface 111 is charged.
  • the processor 112 can control the charging circuit 1 to connect the battery B2 or/and the first charging interface 111 while charging the battery B1 with a constant voltage.
  • the first external device performs constant current charging.
  • the current indicating that the charging circuit 1 charges the battery B2 is reduced, and the reduced portion of the current can be used to charge the first external device connected to the first charging interface 111. It can be output to the charging circuit 2, and the charging circuit 2 can charge the battery B3 and the battery B4 in combination with the current saved by the charging circuit 1 and the original current of the charging circuit 2, and the charging circuit 2 charges the battery B3 and the battery B4 with the charging circuit 1
  • the manner of charging the battery B1 and the battery B2 is similar, and details are not described herein.
  • the charging circuit 2 can charge the battery B3 and the battery B4 while charging the first external device connected to the first charging interface 111.
  • the charging process of the charging circuit 3 and the charging circuit 4 is deduced by analogy and will not be described herein.
  • the processor 112 is further configured to: detect a remaining power of the at least one battery connected to the charging circuit; and when the at least one battery is full, control the charging circuit to be connected to the first charging interface An external device is charged.
  • the charging circuit 1 charges the battery B1 and the battery B2 at a constant voltage
  • the battery B1 and the battery B2 may not be fully charged yet.
  • the circuit 1 also needs to charge the battery B1 and the battery B2 at a constant voltage for a period of time to fully charge the battery B1 and the battery B2.
  • the processor 112 can detect the remaining power of the battery B1 and the battery B2 in real time, when the processor 112 is based on the battery B1.
  • the processor 112 controls the charging circuit 1 to charge the first external device to which the first charging interface 111 is connected.
  • Each charging circuit is electrically coupled to the first external device via a first unidirectional pass device.
  • the charging circuit 1 is electrically connected to the first charging interface 111 through a diode D9;
  • the charging circuit 2 is electrically connected to the first charging interface 111 through a diode D10;
  • the charging circuit 3 is electrically connected to the first charging interface 111 through a diode D11.
  • the charging circuit 4 is electrically connected to the first charging interface 111 via a diode D12.
  • Each battery is electrically coupled to a charging circuit that charges the battery via a first switch.
  • the battery B1 is electrically connected to the charging circuit 1 through the switch S1
  • the battery B2 is electrically connected to the charging circuit 1 through the switch S2
  • the battery B3 is electrically connected to the charging circuit 2 through the switch S3, and the battery B4 passes through the switch S4 and the charging circuit.
  • battery B5 is electrically connected to the charging circuit 3 through the switch S5
  • the battery B6 is electrically connected to the charging circuit 3 through the switch S6
  • the battery B7 is electrically connected to the charging circuit 4 through the switch S7
  • the battery B8 is electrically connected to the charging circuit 4 through the switch S8. connection.
  • the controlling the charging circuit to selectively charge at least one battery connected to the charging circuit comprises: controlling at least one first switch connected to the charging circuit to be closed, so that the charging circuit is given At least one battery connected to the charging circuit is charged.
  • the processor 112 is closed by controlling the switch S1 to cause the charging circuit 1 to charge the battery B1.
  • multiple batteries are simultaneously charged by the multi-channel charging circuit, which saves the charging time of the battery.
  • the processor in the charging system controls multiple charging according to the electrical parameter information of each charging circuit in the plurality of charging circuits.
  • the circuit can selectively charge a plurality of batteries, or/and charge an external device, so that the plurality of charging circuits can charge the plurality of batteries while charging an external device such as a remote control device of the drone, a photographing device, and the like. Thereby improving the working efficiency of the unmanned aerial vehicle.
  • FIG. 8 is a flowchart of a charging method according to an embodiment of the present invention.
  • each cell is electrically coupled to a second unidirectional pass device, each cell being connected in parallel by each second unidirectional pass device.
  • the battery B1-B8 are electrically connected to an ideal diode, respectively, and ideal diodes D1-D8 connect the batteries B1-B8 in parallel.
  • each battery is electrically coupled to the input of a second unidirectional pass device; the output of each second unidirectional pass device is electrically coupled to the discharge resistor; and the output of each second unidirectional pass device is coupled to the heat sink
  • the device is electrically connected.
  • the positive electrodes of the batteries B1-B8 are electrically connected to an ideal diode, respectively.
  • the output terminals of the ideal diodes D1-D8 are electrically connected to the discharge resistor 115.
  • the outputs of the ideal diodes D1-D8 are also electrically coupled to the heat sink 114.
  • the discharge resistor 115 may specifically be a positive temperature coefficient thermistor.
  • the heat sink 114 may specifically be a fan.
  • An output of each of the second unidirectional pass devices is electrically coupled to the discharge resistor through a second switch.
  • the output terminals of the ideal diodes D1-D8 are electrically connected to the discharge resistor 115 through the second switch S9.
  • the processor 112 can be closed by controlling the second switch S9 to discharge each battery through the discharge resistor.
  • the method further includes the following steps:
  • Step S801 detecting a remaining battery capacity of the battery.
  • Step S802 When the remaining power of the battery is less than or equal to the first remaining power threshold, the second switch is controlled to be turned off, so that each battery stops discharging.
  • the processor 112 can also detect the remaining power of each battery. When the remaining power of each battery is less than or equal to the preset remaining power threshold, the second switch S9 is controlled to be disconnected. The batteries B1-B8 are stopped from discharging.
  • the battery charges the first external device connected to the first charging interface when each battery is discharged through the discharge resistor.
  • the processor 112 can further control one or more of the switches S1-S8 to be closed. Alternatively, the processor 112 controls the switches S1-S8. Closing, at this time, the battery B1 and the battery B2 will charge the first external device connected to the first charging interface 111 through the diode D9, and the battery B3 and the battery B4 will charge the first external device connected to the first charging interface 111 through the diode D10.
  • the battery B5 and the battery B6 will charge the first external device connected to the first charging interface 111 through the diode D11, and the battery B7 and the battery B8 will charge the first external device connected to the first charging interface 111 through the diode D12.
  • each of the batteries when each of the batteries is discharged through the discharge resistor, each of the batteries supplies power to the heat sink through the second one-way conduction device.
  • the charging system can be cooled by the fan.
  • the discharge resistance is used to discharge the battery while controlling the fan to cool the charging system, thereby effectively increasing the heat dissipation power of the charging system and shortening the battery discharge time, thereby solving the discharge problem of the battery before storage or transportation.
  • the discharge resistor uses a positive temperature coefficient thermistor. When the positive temperature coefficient thermistor reaches the maximum temperature, its temperature will remain stable, avoiding the risk of heat accumulation.
  • a plurality of batteries are connected in parallel by a plurality of ideal diodes, and a plurality of batteries are connected in parallel and discharged through a positive temperature coefficient thermistor, thereby saving the number and cost of the positive temperature coefficient thermistors.
  • FIG. 9 is a flowchart of a charging method according to an embodiment of the present invention. Based on the embodiment shown in FIG. 8, the method further includes:
  • Step S901 Detect electrical parameter information of the battery.
  • the processor 112 can obtain electrical parameter information of each battery in real time, such as the battery's power, life, temperature, and the like.
  • Step S902 controlling heat dissipation speed of the heat dissipation device according to electrical parameter information of the battery.
  • processor 112 controls the wind speed of the fan based on the temperature of the battery.
  • the method further includes: displaying, by the display device, electrical parameter information of the battery.
  • the display device 119 is electrically connected to the processor 112, and the display device 119 is configured to display electrical parameter information of the batteries B1-B8 acquired by the processor 112.
  • the method may further include: determining whether the battery is abnormal according to the electrical parameter information of the battery; and if the battery is abnormal, displaying the alarm information by using the display device.
  • the processor 112 determines the battery abnormality according to the electrical parameter information of the battery, the processor 112 is further configured to: control the display device 119 to display the alarm information.
  • each second unidirectional pass device is also coupled to a second external device. As shown in FIG. 5, the output ends of the ideal diodes D1-D8 pass through the first output interface 116 and the second charging interface. 118 is electrically connected, and the second charging interface 118 is for charging the second external device.
  • the second charging interface 118 may specifically be a two-way USB interface.
  • the battery charges the second external device through the second unidirectional pass device when the battery is discharged through the discharge resistor.
  • the batteries B1-B8 are discharged through the discharge resistor 115, and the batteries B1-B8 are externally powered through the first output interface 116, that is, the batteries B1-B8 supply power to the charging system through the first output interface 116, specifically, the battery B1
  • the B8 supplies power to the DC-DC circuit 1 through the first output interface 116.
  • the DC-DC circuit 1 supplies power to the charging circuit 5, and the charging circuit 5 further charges the second external device connected to the second charging interface 118.
  • the processor controls the charging circuit to selectively charge at least one battery connected to the charging circuit in the following manners:
  • the first way is to control the charging circuit to sequentially charge each of the at least one battery.
  • the second way is: controlling the charging circuit to sequentially charge each battery in the at least one battery, and detecting the remaining power of the battery in the charging state; when the remaining power of each of the at least one battery reaches the battery in sequence After the second remaining power threshold, the charging circuit is controlled to sequentially charge each of the at least one battery.
  • the display device displays the electrical parameter information of the battery, thereby realizing the visualization of the electrical parameter information of the battery, so that the electrical parameter information of the battery is clear at a glance.
  • each battery of the plurality of batteries is sequentially filled by controlling the charging circuit, or the charging circuit is controlled to sequentially charge each of the plurality of batteries to a preset amount of power, and then the charging circuit is controlled to sequentially fill each battery. Increases the flexibility of charging the battery.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • Another point, displayed or The mutual coupling or direct coupling or communication connection discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

本发明实施例提供一种充电系统及充电方法,该充电系统包括:至少一个充电电路、第一充电接口、一个或多个处理器;每个充电电路用于给至少一个电池充电;第一充电接口与每个充电电路电连接,用于给第一外部设备充电;一个或多个处理器与每个充电电路电连接,处理器用于:获取充电电路的电参数信息;根据充电电路的电参数信息,控制充电电路可选择性地给与充电电路连接的至少一个电池充电,或/及给与第一充电接口连接的第一外部设备充电。本发明实施例通过多路充电电路对多个电池同时进行充电,节省了电池的充电时间;多个充电电路在给多个电池充电的同时还可以给外部设备例如无人机的遥控设备、拍摄设备等充电,从而提高了无人飞行器的工作效率。

Description

充电系统及充电方法 技术领域
本发明实施例涉及无人机领域,尤其涉及一种充电系统及充电方法。
背景技术
现有技术中无人飞行器以电池作为动力电源,当电池电量下降到一定程度时需要给电池充电,通常使用一路充电器对电池进行充电,具体的,当一块电池充满后再给另一电池充电,当无人飞行器需要频繁更换电池时,这种充电方式将导致电池的充电时间较长。
另外,现有技术中各设备的充电器是相互独立使用的,例如飞机适配器、飞机电池管家、遥控器充电器、电池-充电宝转换器等设备是独立使用的,导致无人飞行器的电池、遥控器、拍摄设备等设备需要各自单独充电,从而降低了无人飞行器的工作效率。
发明内容
本发明实施例提供一种充电系统及充电方法,以缩短电池的充电时间,提高无人飞行器的工作效率。
本发明实施例的第一方面是提供一种充电系统,包括:
至少一个充电电路,每个充电电路用于给至少一个电池充电;
第一充电接口,与所述每个充电电路电连接,用于给第一外部设备充电;
一个或多个处理器,与所述每个充电电路电连接,所述处理器用于:
获取所述充电电路的电参数信息;
根据所述充电电路的电参数信息,控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电,或/及给与所述第一充电接口连接的第一外部设备充电。
本发明实施例的第二方面是提供一种充电方法,包括:
获取至少一个充电电路中每个充电电路的电参数信息,每个充电电路用于给至少一个电池充电;
根据所述充电电路的电参数信息,控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电,或/及给第一外部设备充电。
本实施例提供的充电系统及充电方法,通过多路充电电路对多个电池同时进行充电,节省了电池的充电时间,另外,充电系统中的处理器根据多个充电电路中每个充电电路的电参数信息,控制多个充电电路可选择性地给多个电池充电,或/及给外部设备充电,使得多个充电电路在给多个电池充电的同时还可以给外部设备例如无人机的遥控设备、拍摄设备等充电,从而提高了无人飞行器的工作效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的充电系统的结构图;
图2为本发明实施例提供的充电系统的结构图;
图3为本发明实施例提供的充电系统的结构图;
图4为本发明实施例提供的电池控制系统的结构图;
图5为本发明实施例提供的充电系统的结构图;
图6为本发明实施例提供的充电系统的结构图;
图7为本发明实施例提供的充电方法的流程图;
图8为本发明实施例提供的充电方法的流程图;
图9为本发明实施例提供的充电方法的流程图。
附图标记:
111-第一充电接口  112-处理器        113-适配器
114-散热装置      115-放电电阻      116-第一输出接口
117-第二输出接口  118-第二充电接口  119-显示设备
200-USB接口       40-电池           41-开关
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种充电系统。图1为本发明实施例提供的充电系统的结构图。该充电系统适用于给频繁运行的无人飞行器或可移动机器人的多块电池同时充电,在给多块电池充电的同时,该充电系统还可以给无人飞行器或可移动机器人的的外部设备例如遥控设备、拍摄设备等设备进行充电。如图1所示,充电系统包括:至少一个充电电路、第一充电接口111、一个或多个处理器112、以及适配器113;如图1所示,至少一个充电电路包括充电电路1、充电电路2、充电电路3、充电电路4,此处只是示意性说明,并不限定充电电路的个数。其中,每个充电电路用于给至少一个电池充电;如图1所示,充电电路1用于给电池B1和电池B2充电,充电电路2用于给电池B3和电池B4充电,充电电路3用于给电池B5和电池B6充电,充电电路4用于给电池B7和电池B8充电,在本实施例中,每个充电电路可以给两个电池充电,此处只是示意性说明,并不限定每个充电电路可以充电的电池的个数。
可选的,每个电池通过一个第一开关与给所述电池充电的充电电路电连接。所述处理器控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电时,具体用于:控制与所述充电电路连接的至少一个第一开关闭合,以使所述充电电路给与所述充电电路连接的至少一个电池充电。如图1所示,电池B1通过开关S1与充电电路1电连接,电池B2通过开关S2与充电电路1电连接;电池B3通过开关S3与充电电路2电连接,电池B4通过开关S4与充电电路2电连接;电池B5通过开关S5与充电电路3电连接,电池B6通过开关S6与充电电路3电连接;电池B7通过开关S7与充电电路4电连接,电池B8通过开关S8与充电电路4电连接。处理器112通过控制开关S1闭合,以使充电电路1给电池B1充电;或者通过控制开关S2闭合,以使充电电路1给电池B2充电;或者通过控制开关S3闭合,以使充电电路2给电池B3充电;或者通过控制开关S4闭合,以使充电电路2给电池B4充电;或者通过控制开关S5闭合,以使充电电路3给电池B5充电;或者通过控制开关S6闭合,以使充电电路3给电池B6充电;或者通过控制开关S7闭合,以使充电电路4给电池B7充电;或者通过控制开关S8闭合,以使充电电路4给电池B8充电。开关S1-S8具体可以是机械的继电器或者半导体的背靠背的P沟道金属氧化物半导体场效应晶体管(positive channel Metal Oxide Semiconductor,简称PMOS)。
第一充电接口111与所述每个充电电路电连接,用于给第一外部设备充电。如图1所示,第一充电接口111分别与充电电路1、充电电路2、充电电路3、充电电路4电连接,可选的,每个充电电路通过一个第一单向导通器件与第一充电接口111电连接。所述第一单向导通器件的输入端与所述充电电路电连接,所述第一单向导通器件的输出端与所述第一充电接口电连接。此处的第一单向导通器件包括:二极管。如图1所示,充电电路1通过二极管D9与第一充电接口111电连接;充电电路2通过二极管D10与第一充电接口111电连接;充电电路3通过二极管D11与第一充电接口111电连接;充电电路4通过二极管D12与第一充电接口111电连接。二极管D9的输入端与充电电路1电连接,二极管D9的输出端与第一充电接口111电连接;二极管D10的输入端与充电电路2电连接, 二极管D10的输出端与第一充电接口111电连接;二极管D11的输入端与充电电路3电连接,二极管D11的输出端与第一充电接口111电连接;二极管D12的输入端与充电电路4电连接,二极管D12的输出端与第一充电接口111电连接。
在本实施例中,第一外部设备包括如下至少一种:无人机的遥控设备、拍摄设备。该拍摄设备可以是搭载在无人飞行器上的拍摄设备。电池B1-B8中的一个或多个可以是无人飞行器的动力电源,当无人飞行器的电池电量下降到一定程度时,需要给无人飞行器的电池进行充电,在给电池充电的同时,该充电系统还可以给无人飞行器的外部设备进行充电。
如图1所示,交流电源为110V~220V的交流电,交流电源经过交流转直流AC/DC适配器113后转换为30V的直流电源,输出电流为27A,标称输出功率为800W。在本实施例中,充电电路1、充电电路2、充电电路3、充电电路4具体可以是4路直流充电电路,在其他实施例中,充电电路1、充电电路2、充电电路3、充电电路4还可以是4路直流充电器。适配器113输出的30V直流电被4路直流充电电路分别以先恒流后恒压的方式降压给电池,以对电池进行充电。当直流充电电路以恒流的方式给电池充电时,直流充电电路的输出电流是恒定的,在本实施例中,处理器112还可以调节直流充电电路输出的恒定电流的大小。例如,处理器112根据电池的温度控制直流充电电路给电池充电的电流大小。
处理器112可以是通用或者专用的处理器。一个或多个处理器112与每个充电电路即充电电路1、充电电路2、充电电路3、充电电路4分别电连接,处理器112用于:获取所述充电电路的电参数信息;根据所述充电电路的电参数信息,控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电,或/及给与所述第一充电接口连接的第一外部设备充电。处理器112具体可以是微控制单元(Micro Controller Unit,简称MCU)。
所述处理器控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电时,具体用于:控制所述充电电路以先恒流后恒压的方式给所述至少一个电池充电。具体的,以充电电路1为例,处理器112 可控制充电电路1以先恒流后恒压的方式给电池B1和电池B2充电中的至少一个电池充电。同理,处理器112还可控制充电电路2以先恒流后恒压的方式给电池B3和电池B4充电中的至少一个电池充电,控制充电电路3以先恒流后恒压的方式给电池B5和电池B6充电中的至少一个电池充电,控制充电电路4以先恒流后恒压的方式给电池B7和电池B8充电中的至少一个电池充电。
当所述充电电路给至少一个电池开始充电时,所述充电电路的输出电流恒定,以对所述至少一个电池进行恒流充电。例如,当充电电路1给电池B1开始充电时,充电电路1的输出电流恒定,也就是说,当充电电路1给电池B1开始充电时,充电电路1对电池B1进行恒流充电,以使电池B1的电量快速增加,当电池B1的电量增加到预设电量时,处理器112可进一步控制充电电路1的输出电压恒定,即控制充电电路1对电池B1进行恒压充电。
在本实施例中,处理器112可实时获取充电电路的电参数信息,例如处理器112可实时获取充电电路1、充电电路2、充电电路3、充电电路4分别的电参数信息,可选的,所述充电电路的电参数信息包括如下至少一种:所述充电电路的输出功率、所述充电电路的输出电流、所述充电电路的输出电压。进一步的,处理器112还可根据每个充电电路的电参数信息,控制该充电电路可选择性地给与该充电电路连接的至少一个电池充电,或/及给与所述第一充电接口连接的第一外部设备充电。例如,处理器112根据充电电路1的电参数信息,控制充电电路1可选择性地给电池B1和电池B2中的至少一个电池充电,或/及给与第一充电接口111连接的第一外部设备充电。
所述处理器根据所述充电电路的电参数信息,控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电,或/及给与所述第一充电接口连接的第一外部设备充电时,具体用于:当所述充电电路从输出恒定电流转变为输出恒定电压时,控制所述充电电路同时给另外一个或多个所述电池或/及所述第一外部设备进行恒流充电。例如,充电电路1先以恒定电流给电池B1充电,当电池B1的电量增加到预设电量时,充电电路1转变为以恒定电压给电池B1充电,当电池B1从恒流充电模式 转变为恒压充电模式时,表示充电电路1给电池B1充电的电流减少,减少的这部分电流可用于给电池B2充电,也可用于给第一充电接口111连接的第一外部设备充电,还可用于同时给电池B2和第一充电接口111连接的第一外部设备充电。可选的,当电池B1从恒流充电模式转变为恒压充电模式时,处理器112可控制充电电路1以恒定电压给电池B1充电的同时给电池B2或/及第一充电接口111连接的第一外部设备进行恒流充电。当电池B2从恒流充电模式转变为恒压充电模式时,表示充电电路1给电池B2充电的电流减少,减少的这部分电流可用于给第一充电接口111连接的第一外部设备充电,也可以输出给充电电路2,充电电路2可结合充电电路1节省的电流和充电电路2原有的电流对电池B3和电池B4充电,充电电路2给电池B3和电池B4充电的方式与充电电路1给电池B1和电池B2充电的方式类似,此处不再赘述,同理,充电电路2给电池B3和电池B4充电的同时还可以给第一充电接口111连接的第一外部设备充电。充电电路3和充电电路4的充电过程以此类推,此处不再赘述。
另外,处理器112还用于:检测与所述充电电路连接的至少一个电池的剩余电量;当所述至少一个电池均充满时,控制所述充电电路给与所述第一充电接口连接的第一外部设备充电。例如,当充电电路1以恒定电压给电池B1和电池B2充电时,电池B1和电池B2可能还未充满,充电电路1还需以恒定电压给电池B1和电池B2充电一段时间才能将电池B1和电池B2充满,此时,处理器112可实时检测电池B1和电池B2的剩余电量,当处理器112根据电池B1和电池B2的剩余电量确定电池B1和电池B2均被充满时,处理器112控制充电电路1给第一充电接口111连接的第一外部设备充电。同理,当充电电路2将电池B3和电池B4充满时,处理器112控制充电电路2给第一充电接口111连接的第一外部设备充电。当充电电路3将电池B5和电池B6充满时,处理器112控制充电电路3给第一充电接口111连接的第一外部设备充电。当充电电路4将电池B7和电池B8充满时,处理器112控制充电电路4给第一充电接口111连接的第一外部设备充电。
可以理解的是,当交流电源经过适配器转换为直流电源,多个充电电路将直流电源以先恒流后恒压的方式给多个电池充电的同时,若第一 充电接口111连接有第一外部设备,则从多个充电电路中分出来一部分直流电给第一外部设备充电,给电池充电的电流会减小,若第一充电接口111没有连接第一外部设备,则以最大功率给电池充电。
本实施例通过多路充电电路对多个电池同时进行充电,节省了电池的充电时间,另外,充电系统中的处理器根据多个充电电路中每个充电电路的电参数信息,控制多个充电电路可选择性地给多个电池充电,或/及给外部设备充电,使得多个充电电路在给多个电池充电的同时还可以给外部设备例如无人机的遥控设备、拍摄设备等充电,从而提高了无人飞行器的工作效率。
本发明实施例提供一种充电系统。图2为本发明实施例提供的充电系统的结构图。在图1所示实施例的基础上,本实施例中的充电系统还包括:至少一个第二单向导通器件,每个第二单向导通器件与一个电池电连接,用于将每个电池进行并联。在本实施例中,第二单向导通器件包括:理想二极管。如图2所示,开关S1和电池B1的连接处与理想二极管D1电连接;开关S2和电池B2的连接处与理想二极管D2电连接;开关S3和电池B3的连接处与理想二极管D3电连接;开关S4和电池B4的连接处与理想二极管D4电连接;开关S5和电池B5的连接处与理想二极管D5电连接;开关S6和电池B6的连接处与理想二极管D6电连接;开关S7和电池B7的连接处与理想二极管D7电连接;开关S8和电池B8的连接处与理想二极管D8电连接。理想二极管D1-D8将电池B1-B8并联在一起。在其他实施例中,第二单向导通器件还可以是传统的二极管。
另外,如图2所示,充电系统还包括:散热装置114和放电电阻115,每个电池的正极与一个第二单向导通器件的输入端电连接;每个第二单向导通器件的输出端与放电电阻115电连接;及每个第二单向导通器件的输出端与散热装置114电连接。例如,电池B1的正极与理想二极管D1的输入端电连接;电池B2的正极与理想二极管D2的输入端电连接;电池B3的正极与理想二极管D3的输入端电连接;电池B4的正极与理想二极管D4的输入端电连接;电池B5的正极与理想二极管D5的输入端电连接;电池B6的正极与理想二极管D6的输入端电连接;电池B7的正极 与理想二极管D7的输入端电连接;电池B8的正极与理想二极管D8的输入端电连接。理想二极管D1-D8的输出端与放电电阻115电连接,可选的,所述放电电阻包括:正温度系数热敏电阻(Positive Temperature Coefficient,简称PTC)。在其他实施例中,放电电阻115也可以是常规电阻。另外,理想二极管D1-D8的输出端还与散热装置114电连接。可选的,散热装置114包括:风扇。
具体的,每个第二单向导通器件的输出端通过第二开关与所述放电电阻电连接。如图2所示,理想二极管D1-D8的输出端通过第二开关S9与放电电阻115电连接。处理器112还用于:通过控制所述第二开关闭合,以使每个电池通过所述放电电阻放电。即处理器112可通过控制第二开关S9闭合,以使电池B1-B8通过放电电阻115例如正温度系数热敏电阻放电,同时还可以通过风扇给该充电系统降温。
在一些实施例中,处理器112还用于:获取所述电池的电参数信息;根据所述电池的电参数信息,确定所述电池是否异常;若所述电池异常,则控制所述第二开关闭合,以使每个电池通过所述放电电阻放电。如图2所示,由于电池B1-B8分别与处理器112电连接,处理器112可实时获取到每个电池的电参数信息,例如电池的电量、寿命、温度等,并且处理器112可根据电池的电参数信息确定电池是否异常,例如电池的温度大于预设温度阈值,则处理器112确定该电池异常,以使处理器112可控制第二开关S9闭合,以使电池B1-B8通过放电电阻115例如正温度系数热敏电阻放电,同时还可以通过风扇给该充电系统降温。
另外,当每个电池通过所述放电电阻放电时,所述电池给与所述第一充电接口连接的第一外部设备充电。如图2所示,当电池B1-B8通过放电电阻115放电时,处理器112还可以进一步控制开关S1-S8中的一个或多个闭合,可选的,处理器112控制开关S1-S8均闭合,此时,电池B1和电池B2将通过二极管D9给第一充电接口111连接的第一外部设备充电,电池B3和电池B4将通过二极管D10给第一充电接口111连接的第一外部设备充电,电池B5和电池B6将通过二极管D11给第一充电接口111连接的第一外部设备充电,电池B7和电池B8将通过二极管D12给第一充电接口111连接的第一外部设备充电。
此外,当每个电池通过所述放电电阻放电时,所述处理器还用于:检测所述电池的剩余电量;当所述电池的剩余电量小于或等于第一剩余电量阈值时,控制所述第二开关断开,以使每个电池停止放电。如图2所示,当电池B1-B8通过放电电阻115开始放电时,电压较高的电池优先放电,当电池B1-B8的电压相同时,电池B1-B8将同时放电。电池B1-B8在放电的过程中,处理器112还可以检测每个电池的剩余电量,当每个电池的剩余电量小于或等于预设的剩余电量阈值时,控制第二开关S9断开,以使电池B1-B8停止放电。
可选的,每个电池放置在一个电池槽内,如图3所示,电池B1放置在电池槽31内,电池槽31与开关S1和理想二极管D1电连接;电池B2放置在电池槽32内,电池槽32与开关S2和理想二极管D2电连接;电池B3放置在电池槽33内,电池槽33与开关S3和理想二极管D3电连接;电池B4放置在电池槽34内,电池槽34与开关S4和理想二极管D4电连接;电池B5放置在电池槽35内,电池槽35与开关S5和理想二极管D5电连接;电池B6放置在电池槽36内,电池槽36与开关S6和理想二极管D6电连接;电池B7放置在电池槽37内,电池槽37与开关S7和理想二极管D7电连接;电池B8放置在电池槽38内,电池槽38与开关S8和理想二极管D8电连接。在本实施例中,电池和电池槽的对应关系可以不唯一,也就是说电池B1还可以放置在除电池槽31之外的电池槽内,同理电池B2-B8也可以放置在其他的电池槽内。当第二开关S9闭合时,电池B1-B8中的任一电池在任一电池槽内均可以放电。
如图2或图3所示,充电系统还包括第一输出接口116,第一输出接口116用于给充电系统供电;每个第二单向导通器件例如理想二极管D1-D8的输出端通过第一输出接口116与散热装置114的一端电连接,散热装置114的另一端通过第三开关S10、S11和处理器112电连接。
散热装置114具体可以是风扇。当每个电池例如电池B1-B8通过放电电阻115放电时,处理器112还用于:控制第三开关S10、S11闭合,以使风扇给充电系统降温。在其他实施例中,处理器112还用于:根据电池的电参数信息,控制风扇的风速。例如处理器112根据电池的温度控制风扇的风速。
如图2或图3所示,适配器113与每个充电电路例如充电电路1-4电连接,适配器113用于将交流电源转换为直流电源,以使充电电路1-4将直流电源以先恒流后恒压的方式给至少一个电池充电。充电电路1-4给电池B1-B8充电的同时,适配器113通过第一输出接口116给所述充电系统供电。
在其他实施例中,假设充电系统没有适配器113,在没有适配器113的情况下,电池B1-B8也可以通过第一输出接口116给所述充电系统供电,在电池B1-B8给所述充电系统供电的同时处理器112控制电池B1-B8通过放电电阻115放电。具体的,当每个电池通过所述放电电阻放电时,每个电池通过所述第一输出接口给所述充电系统供电。例如,在没有适配器113的情况下,电池B1-B8通过放电电阻115放电时,电池B1-B8通过第一输出接口116给充电系统供电,例如,电池B1-B8通过第一输出接口116给直流转直流电路1供电,直流转直流电路1给散热装置114供电,此外,电池B1-B8还通过第一输出接口116给直流转直流电路2供电,直流转直流电路2给处理器112供电。
可选的,每个电池通过所述第一输出接口给所述充电系统供电之前,每个电池通过第二输出接口给所述充电系统供电,以启动所述充电系统。在本实施例中,每个电池可以有两个输出接口,如图4所示,电池40可以是电池B1-B8中的任一个电池,电池40有两个输出接口,一个输出接口是17.9V接口,另一个输出接口是26.3V接口,当电池控制系统没有启动时,电池40通过17.9V接口给电池控制系统中的微控制单元供电,以启动微控制单元,微控制单元启动后控制电池40与26.3V接口电连接,例如,微控制单元控制电池40与26.3V接口之间的开关41闭合,以使电池40通过26.3V接口向外供电。可选的,图2或图3所示的第一输出接口116具体为每个电池的26.3V接口,图2或图3所示的第二输出接口117具体为每个电池的17.9V接口。可以理解的是,电池B1-B8通过第一输出接口116给充电系统供电之前,电池B1-B8通过第二输出接口117给充电系统供电,以启动充电系统。充电系统启动之后,再由电池B1-B8通过第一输出接口116给充电系统供电。
如图2或图3所示,适配器113可以给充电系统供电,电池B1-B8通 过第一输出接口116或第二输出接口117可以给充电系统供电,当适配器113不给充电系统供电,且电池B1-B8不给充电系统供电时,还可以通过USB接口200给充电系统供电,以保证处理器112不断电。
本实施例通过放电电阻给电池放电的同时控制风扇给充电系统降温,有效增大了充电系统的散热功率,缩短了电池放电时间,从而解决了电池在存储或运输之前的放电问题。另外,放电电阻采用正温度系数热敏电阻,当正温度系数热敏电阻达到最大温度后其温度将保持稳定,避免了热量积累的风险。通过多个理想二极管将多个电池并联在一起,多个电池并联后通过一个正温度系数热敏电阻放电,节省了正温度系数热敏电阻的数量和成本。
本发明实施例提供一种充电系统。图5为本发明实施例提供的充电系统的结构图。在上述实施例的基础上,例如在图2所示实施例的基础上,本实施例中的充电系统还包括:第二充电接口118,第二充电接口118与第一输出接口116电连接,用于给第二外部设备充电。所述第二外部设备包括:用户终端设备。如图5所示,第二充电接口118与第一输出接口116通过直流转直流电路1和充电电路5电连接,其中,充电电路5具体可以是USB充电器,第二充电接口118具体可以是两路USB接口。当第二充电接口118连接有第二外部设备时,充电系统给第二外部设备充电的方式有以下几种可能的情况:
一种可能的情况是:当每个电池通过所述放电电阻放电时,每个电池通过所述第一输出接口给与所述第二充电接口连接的第二外部设备充电。
例如,电池B1-B8通过放电电阻115放电,同时电池B1-B8通过第一输出接口116对外供电,也就是说,电池B1-B8通过第一输出接口116给充电系统供电,具体的,电池B1-B8通过第一输出接口116给直流转直流电路1供电,直流转直流电路1给充电电路5供电,充电电路5进一步给连接第二充电接口118的第二外部设备充电。
另一种可能的情况是:当所述适配器通过所述第一输出接口给所述充电系统供电时,所述适配器通过所述第一输出接口给与所述第二充电 接口连接的第二外部设备充电。
适配器113通过充电电路1-4给电池B1-B8充电的同时,适配器113还可以通过理想二极管D1-D8对外供电,具体的,适配器113通过理想二极管D1-D8与第一输出接口116连接,适配器113给第一输出接口116供电,第一输出接口116给直流转直流电路1供电,直流转直流电路1给充电电路5供电,充电电路5进一步给连接第二充电接口118的第二外部设备充电。
在本实施例中,当适配器113给充电系统供电,或者电池B1-B8给充电系统供电时,第二充电接口118均能输出5V电压、2A电流,5V电压、2A电流可以给第二充电接口118连接的第二外部设备充电。
在其他实施例中,用户终端设备也可以连接到第一充电接口111,遥控设备或拍摄设备也可以连接到第二充电接口118,或者,遥控设备连接到第一充电接口111,拍摄设备连接到第二充电接口118。也就是说,本实施例不限定第一充电接口111可连接的外部设备,也不限定第二充电接口118可连接的外部设备。
如图5所示,充电系统还包括:显示设备119,所述显示设备包括:LCD屏幕。显示设备119与处理器112电连接,显示设备119用于显示处理器112获取到的电池B1-B8的电参数信息。另外,当处理器112根据所述电池的电参数信息确定所述电池异常时,处理器112还用于:控制显示设备119显示报警信息。电池的电参数信息具体包括电池的温度、寿命、剩余电量、当前电流、当前电压等。显示设备119可以分别显示电池B1-B8的电参数信息。
本实施例通过显示设备显示电池的电参数信息,实现了电池的电参数信息的可视化,使得电池的电参数信息一目了然。当交流电源经过适配器转换为直流电源,多个充电电路将直流电源以先恒流后恒压的方式给多个电池充电的同时,若第一充电接口连接有第一外部设备,则从多个充电电路中分出来一部分直流电给第一外部设备充电,不需要另外增加交流转直流适配器,节省了交流转直流的成本。另外,当电池放电的同时还可以通过电池给第一充电接口连接的第一外部设备充电。此外,不论是适配器给充电系统供电,还是电池给充电系统供电,第二充电接 口均能输出5V电压、2A电流,以给第二充电接口连接的第二外部设备充电,实现了充电系统对多个外部设备同时充电的功能。
本发明实施例提供一种充电系统。图6为本发明实施例提供的充电系统的结构图。在上述实施例的基础上,所述处理器控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电的方式有如下几种:
第一种方式是:控制所述充电电路依次将所述至少一个电池中的每个电池充满。
如图6所示,充电电路1通过开关S1和开关S2分别与电池1和电池2电连接,充电电路2通过开关S3和开关S4分别与电池3和电池4电连接,充电电路3通过开关S5和开关S6分别与电池5和电池6电连接,充电电路4通过开关S7和开关S8分别与电池7和电池8电连接。
以充电电路1为例,处理器112可控制充电电路1先将电池1充满,再将电池2充满,具体的,处理器112先控制开关S1闭合、开关S2断开,以使充电电路1给电池1充电,当电池1充满时,处理器112再控制开关S1断开、开关S2闭合,以使充电电路1给电池2充电,直至电池2充满后控制开关S2断开。其他充电电路的充电方式与充电电路1的充电方式一致,此处不再一一赘述。
第二种方式是:控制所述充电电路依次给所述至少一个电池中的每个电池充电,并检测充电状态的电池的剩余电量;当所述至少一个电池中每个电池的剩余电量依次达到第二剩余电量阈值后,控制所述充电电路依次将所述至少一个电池中的每个电池充满。
以充电电路1为例,处理器112可控制充电电路1先将电池1的剩余电量充至90%,再将电池2的剩余电量充至90%,接着再将电池1的剩余电量充至100%,最后将电池2的剩余电量充至100%。例如,处理器112先控制开关S1闭合、开关S2断开,以使充电电路1给电池1充电,当电池1的剩余电量充至90%时,处理器112控制开关S1断开、开关S2闭合,以使充电电路1给电池2充电,当电池2的剩余电量充至90%时,处理器112控制开关S1闭合、开关S2断开,以使充电电路1再次给电池1 充电,当电池1的剩余电量充至100%时,处理器112控制开关S1断开、开关S2闭合,以使充电电路1再次给电池2充电,当电池2的剩余电量充至100%时,控制开关S2断开。其他充电电路的充电方式与充电电路1的充电方式一致,此处不再一一赘述。
具体的,第二种方式的充电速度比第一种方式的充电速度快。
本实施例通过控制充电电路依次将多个电池中的每个电池充满,或者控制充电电路依次将多个电池中的每个电池充到预设的电量后再控制该充电电路依次将每个电池充满,增加了对电池充电的灵活性。
本发明实施例提供一种充电方法。图7为本发明实施例提供的充电方法的流程图。如图7所示,本实施例中的方法,可以包括:
步骤S701、获取至少一个充电电路中每个充电电路的电参数信息,每个充电电路用于给至少一个电池充电。
本实施例的执行主体具体可以是上述实施例中的处理器112,处理器112可以是通用或者专用的处理器。处理器112可实时获取充电电路的电参数信息,例如处理器112可实时获取充电电路1、充电电路2、充电电路3、充电电路4分别的电参数信息,可选的,所述充电电路的电参数信息包括如下至少一种:所述充电电路的输出功率、所述充电电路的输出电流、所述充电电路的输出电压。
步骤S702、根据所述充电电路的电参数信息,控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电,或/及给第一外部设备充电。
例如,处理器112根据充电电路1的电参数信息,控制充电电路1可选择性地给电池B1和电池B2中的至少一个电池充电,或/及给与第一充电接口111连接的第一外部设备充电。
具体的,所述控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电,包括:控制所述充电电路以先恒流后恒压的方式给所述至少一个电池充电。具体的,以充电电路1为例,处理器112可控制充电电路1以先恒流后恒压的方式给电池B1和电池B2充电中的至少一个电池充电。当所述充电电路给至少一个电池开始充电时,所述充电电 路的输出电流恒定,以对所述至少一个电池进行恒流充电。例如,当充电电路1给电池B1开始充电时,充电电路1对电池B1进行恒流充电,以使电池B1的电量快速增加,当电池B1的电量增加到预设电量时,处理器112可进一步控制充电电路1的输出电压恒定,即控制充电电路1对电池B1进行恒压充电。
所述根据所述充电电路的电参数信息,控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电,或/及给第一外部设备充电,包括:当所述充电电路从输出恒定电流转变为输出恒定电压时,控制所述充电电路同时给另外一个或多个所述电池或/及所述第一外部设备进行恒流充电。例如,充电电路1先以恒定电流给电池B1充电,当电池B1的电量增加到预设电量时,充电电路1转变为以恒定电压给电池B1充电,当电池B1从恒流充电模式转变为恒压充电模式时,表示充电电路1给电池B1充电的电流减少,减少的这部分电流可用于给电池B2充电,也可用于给第一充电接口111连接的第一外部设备充电,还可用于同时给电池B2和第一充电接口111连接的第一外部设备充电。可选的,当电池B1从恒流充电模式转变为恒压充电模式时,处理器112可控制充电电路1以恒定电压给电池B1充电的同时给电池B2或/及第一充电接口111连接的第一外部设备进行恒流充电。当电池B2从恒流充电模式转变为恒压充电模式时,表示充电电路1给电池B2充电的电流减少,减少的这部分电流可用于给第一充电接口111连接的第一外部设备充电,也可以输出给充电电路2,充电电路2可结合充电电路1节省的电流和充电电路2原有的电流对电池B3和电池B4充电,充电电路2给电池B3和电池B4充电的方式与充电电路1给电池B1和电池B2充电的方式类似,此处不再赘述,同理,充电电路2给电池B3和电池B4充电的同时还可以给第一充电接口111连接的第一外部设备充电。充电电路3和充电电路4的充电过程以此类推,此处不再赘述。
另外,处理器112还用于:检测与所述充电电路连接的至少一个电池的剩余电量;当所述至少一个电池均充满时,控制所述充电电路给与所述第一充电接口连接的第一外部设备充电。例如,当充电电路1以恒定电压给电池B1和电池B2充电时,电池B1和电池B2可能还未充满,充电 电路1还需以恒定电压给电池B1和电池B2充电一段时间才能将电池B1和电池B2充满,此时,处理器112可实时检测电池B1和电池B2的剩余电量,当处理器112根据电池B1和电池B2的剩余电量确定电池B1和电池B2均被充满时,处理器112控制充电电路1给第一充电接口111连接的第一外部设备充电。
每个充电电路通过一个第一单向导通器件与所述第一外部设备电连接。如图1所示,充电电路1通过二极管D9与第一充电接口111电连接;充电电路2通过二极管D10与第一充电接口111电连接;充电电路3通过二极管D11与第一充电接口111电连接;充电电路4通过二极管D12与第一充电接口111电连接。
每个电池通过一个第一开关与给所述电池充电的充电电路电连接。如图1所示,电池B1通过开关S1与充电电路1电连接,电池B2通过开关S2与充电电路1电连接;电池B3通过开关S3与充电电路2电连接,电池B4通过开关S4与充电电路2电连接;电池B5通过开关S5与充电电路3电连接,电池B6通过开关S6与充电电路3电连接;电池B7通过开关S7与充电电路4电连接,电池B8通过开关S8与充电电路4电连接。
所述控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电,包括:控制与所述充电电路连接的至少一个第一开关闭合,以使所述充电电路给与所述充电电路连接的至少一个电池充电。例如,处理器112通过控制开关S1闭合,以使充电电路1给电池B1充电。
本实施例通过多路充电电路对多个电池同时进行充电,节省了电池的充电时间,另外,充电系统中的处理器根据多个充电电路中每个充电电路的电参数信息,控制多个充电电路可选择性地给多个电池充电,或/及给外部设备充电,使得多个充电电路在给多个电池充电的同时还可以给外部设备例如无人机的遥控设备、拍摄设备等充电,从而提高了无人飞行器的工作效率。
本发明实施例提供一种充电方法。图8为本发明实施例提供的充电方法的流程图。在图7所示实施例的基础上,每个电池与一个第二单向导通器件电连接,每个电池通过各第二单向导通器件并联。如图2所示,电池 B1-B8分别与一个理想二极管电连接,理想二极管D1-D8将电池B1-B8并联在一起。
每个电池的正极与一个第二单向导通器件的输入端电连接;每个第二单向导通器件的输出端与放电电阻电连接;及每个第二单向导通器件的输出端与散热装置电连接。如图2所示,电池B1-B8的正极分别与一个理想二极管电连接。理想二极管D1-D8的输出端与放电电阻115电连接。另外,理想二极管D1-D8的输出端还与散热装置114电连接。放电电阻115具体可以采用正温度系数热敏电阻。散热装置114具体可以是风扇。
每个第二单向导通器件的输出端通过第二开关与所述放电电阻电连接。如图2所示,理想二极管D1-D8的输出端通过第二开关S9与放电电阻115电连接。在本实施例中,处理器112可通过控制第二开关S9闭合,以使每个电池通过所述放电电阻放电。
当每个电池通过所述放电电阻放电时,所述方法还包括如下步骤:
步骤S801、检测所述电池的剩余电量。
步骤S802、当所述电池的剩余电量小于或等于第一剩余电量阈值时,控制所述第二开关断开,以使每个电池停止放电。
如图2所示,当电池B1-B8通过放电电阻115开始放电时,电压较高的电池优先放电,当电池B1-B8的电压相同时,电池B1-B8将同时放电。电池B1-B8在放电的过程中,处理器112还可以检测每个电池的剩余电量,当每个电池的剩余电量小于或等于预设的剩余电量阈值时,控制第二开关S9断开,以使电池B1-B8停止放电。
另外,当每个电池通过所述放电电阻放电时,所述电池给与所述第一充电接口连接的第一外部设备充电。如图2所示,当电池B1-B8通过放电电阻115放电时,处理器112还可以进一步控制开关S1-S8中的一个或多个闭合,可选的,处理器112控制开关S1-S8均闭合,此时,电池B1和电池B2将通过二极管D9给第一充电接口111连接的第一外部设备充电,电池B3和电池B4将通过二极管D10给第一充电接口111连接的第一外部设备充电,电池B5和电池B6将通过二极管D11给第一充电接口111连接的第一外部设备充电,电池B7和电池B8将通过二极管D12给第一充电接口111连接的第一外部设备充电。
此外,当每个电池通过所述放电电阻放电时,每个电池通过所述第二单向导通器件给所述散热装置供电。例如电池B1-B8通过放电电阻115放电的同时还可以通过风扇给该充电系统降温。
本实施例通过放电电阻给电池放电的同时控制风扇给充电系统降温,有效增大了充电系统的散热功率,缩短了电池放电时间,从而解决了电池在存储或运输之前的放电问题。另外,放电电阻采用正温度系数热敏电阻,当正温度系数热敏电阻达到最大温度后其温度将保持稳定,避免了热量积累的风险。通过多个理想二极管将多个电池并联在一起,多个电池并联后通过一个正温度系数热敏电阻放电,节省了正温度系数热敏电阻的数量和成本。
本发明实施例提供一种充电方法。图9为本发明实施例提供的充电方法的流程图。在图8所示实施例的基础上,所述方法还包括:
步骤S901、检测所述电池的电参数信息。
处理器112可实时获取到每个电池的电参数信息,例如电池的电量、寿命、温度等。
步骤S902、根据所述电池的电参数信息,控制所述散热装置的散热速度。
例如处理器112根据电池的温度控制风扇的风速。
在步骤S901检测所述电池的电参数信息之后,还可以包括:通过显示设备显示所述电池的电参数信息。
如图5所示,显示设备119与处理器112电连接,显示设备119用于显示处理器112获取到的电池B1-B8的电参数信息。
或者,在步骤S901检测所述电池的电参数信息之后,还可以包括:根据所述电池的电参数信息确定所述电池是否异常;若所述电池异常,则通过显示设备显示报警信息。
当处理器112根据所述电池的电参数信息确定所述电池异常时,处理器112还用于:控制显示设备119显示报警信息。
每个第二单向导通器件的输出端还与第二外部设备连接。如图5所示,理想二极管D1-D8的输出端通过第一输出接口116与第二充电接口 118电连接,第二充电接口118用于给第二外部设备充电。第二充电接口118具体可以是两路USB接口。
当所述电池通过所述放电电阻放电时,所述电池通过所述第二单向导通器件给所述第二外部设备充电。例如,电池B1-B8通过放电电阻115放电,同时电池B1-B8通过第一输出接口116对外供电,也就是说,电池B1-B8通过第一输出接口116给充电系统供电,具体的,电池B1-B8通过第一输出接口116给直流转直流电路1供电,直流转直流电路1给充电电路5供电,充电电路5进一步给连接第二充电接口118的第二外部设备充电。
所述处理器控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电的方式有如下几种:
第一种方式是:控制所述充电电路依次将所述至少一个电池中的每个电池充满。
第二种方式是:控制所述充电电路依次给所述至少一个电池中的每个电池充电,并检测充电状态的电池的剩余电量;当所述至少一个电池中每个电池的剩余电量依次达到第二剩余电量阈值后,控制所述充电电路依次将所述至少一个电池中的每个电池充满。
上述两种方式的具体原理和实现方式均与图6所示实施例类似,此处不再赘述。
本实施例通过显示设备显示电池的电参数信息,实现了电池的电参数信息的可视化,使得电池的电参数信息一目了然。另外,通过控制充电电路依次将多个电池中的每个电池充满,或者控制充电电路依次将多个电池中的每个电池充到预设的电量后再控制该充电电路依次将每个电池充满,增加了对电池充电的灵活性。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或 讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (61)

  1. 一种充电系统,其特征在于,所述充电系统包括:
    至少一个充电电路,每个充电电路用于给至少一个电池充电;
    第一充电接口,与所述每个充电电路电连接,用于给第一外部设备充电;
    一个或多个处理器,与所述每个充电电路电连接,所述处理器用于:
    获取所述充电电路的电参数信息;
    根据所述充电电路的电参数信息,控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电,或/及给与所述第一充电接口连接的第一外部设备充电。
  2. 根据权利要求1所述的充电系统,其特征在于,所述充电电路的电参数信息包括如下至少一种:
    所述充电电路的输出功率、所述充电电路的输出电流、所述充电电路的输出电压。
  3. 根据权利要求1或2所述的充电系统,其特征在于,所述处理器控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电时,具体用于:
    控制所述充电电路以先恒流后恒压的方式给所述至少一个电池充电。
  4. 根据权利要求3所述的充电系统,其特征在于,当所述充电电路给至少一个电池开始充电时,所述充电电路的输出电流恒定,以对所述至少一个电池进行恒流充电。
  5. 根据权利要求3所述的充电系统,其特征在于,所述处理器根据所述充电电路的电参数信息,控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电,或/及给与所述第一充电接口连接的第一外部设备充电时,具体用于:
    当所述充电电路从输出恒定电流转变为输出恒定电压时,控制所述充电电路同时给另外一个或多个所述电池或/及所述第一外部设备进行恒流充电。
  6. 根据权利要求1-5任一项所述的充电系统,其特征在于,所述处理器还用于:
    检测与所述充电电路连接的至少一个电池的剩余电量;
    当所述至少一个电池均充满时,控制所述充电电路给与所述第一充电接口连接的第一外部设备充电。
  7. 根据权利要求1所述的充电系统,其特征在于,每个充电电路通过一个第一单向导通器件与所述第一充电接口电连接。
  8. 根据权利要求7所述的充电系统,其特征在于,所述第一单向导通器件的输入端与所述充电电路电连接,所述第一单向导通器件的输出端与所述第一充电接口电连接。
  9. 根据权利要求1所述的充电系统,其特征在于,每个电池通过一个第一开关与给所述电池充电的充电电路电连接。
  10. 根据权利要求9所述的充电系统,其特征在于,所述处理器控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电时,具体用于:
    控制与所述充电电路连接的至少一个第一开关闭合,以使所述充电电路给与所述充电电路连接的至少一个电池充电。
  11. 根据权利要求1所述的充电系统,其特征在于,还包括:
    至少一个第二单向导通器件,每个第二单向导通器件与一个电池电连接,用于将每个电池进行并联。
  12. 根据权利要求11所述的充电系统,其特征在于,还包括:散热装置和放电电阻;
    每个电池的正极与一个第二单向导通器件的输入端电连接;
    每个第二单向导通器件的输出端与所述放电电阻电连接;及
    每个第二单向导通器件的输出端与所述散热装置电连接。
  13. 根据权利要求12所述的充电系统,其特征在于,每个第二单向导通器件的输出端通过第二开关与所述放电电阻电连接。
  14. 根据权利要求13所述的充电系统,其特征在于,所述处理器还用于:
    通过控制所述第二开关闭合,以使每个电池通过所述放电电阻放电。
  15. 根据权利要求13所述的充电系统,其特征在于,所述处理器还用于:
    获取所述电池的电参数信息;
    根据所述电池的电参数信息,确定所述电池是否异常;
    若所述电池异常,则控制所述第二开关闭合,以使每个电池通过所述放电电阻放电。
  16. 根据权利要求14或15所述的充电系统,其特征在于,当每个电池通过所述放电电阻放电时,所述电池给与所述第一充电接口连接的第一外部设备充电。
  17. 根据权利要求14或15所述的充电系统,其特征在于,当每个电池通过所述放电电阻放电时,所述处理器还用于:
    检测所述电池的剩余电量;
    当所述电池的剩余电量小于或等于第一剩余电量阈值时,控制所述第二开关断开,以使每个电池停止放电。
  18. 根据权利要求12所述的充电系统,其特征在于,还包括:第一输出接口,所述第一输出接口用于给所述充电系统供电;
    每个第二单向导通器件的输出端通过所述第一输出接口与所述散热装置的一端电连接,所述散热装置的另一端通过第三开关和所述处理器电连接。
  19. 根据权利要求18所述的充电系统,其特征在于,所述散热装置包括:风扇。
  20. 根据权利要求19所述的充电系统,其特征在于,当每个电池通过所述放电电阻放电时,所述处理器还用于:
    控制所述第三开关闭合,以使所述风扇给所述充电系统降温。
  21. 根据权利要求19所述的充电系统,其特征在于,所述处理器还用于:
    根据所述电池的电参数信息,控制所述风扇的风速。
  22. 根据权利要求18-21任一项所述的充电系统,其特征在于,还包括:
    适配器,与每个充电电路电连接,用于将交流电源转换为直流电源,以使所述充电电路将所述直流电源以先恒流后恒压的方式给所述至少一个电池充电。
  23. 根据权利要求22所述的充电系统,其特征在于,所述适配器通过所述第一输出接口给所述充电系统供电。
  24. 根据权利要求18-21任一项所述的充电系统,其特征在于,当每个电池通过所述放电电阻放电时,每个电池通过所述第一输出接口给所述充电系统供电。
  25. 根据权利要求24所述的充电系统,其特征在于,每个电池通过所述第一输出接口给所述充电系统供电之前,每个电池通过第二输出接口给所述充电系统供电,以启动所述充电系统。
  26. 根据权利要求18所述的充电系统,其特征在于,还包括:
    第二充电接口,与所述第一输出接口电连接,用于给第二外部设备充电。
  27. 根据权利要求26所述的充电系统,其特征在于,当每个电池通过所述放电电阻放电时,每个电池通过所述第一输出接口给与所述第二充电接口连接的第二外部设备充电。
  28. 根据权利要求26所述的充电系统,其特征在于,当适配器通过所述第一输出接口给所述充电系统供电时,所述适配器通过所述第一输出接口给与所述第二充电接口连接的第二外部设备充电。
  29. 根据权利要求1-28任一项所述的充电系统,其特征在于,还包括:
    显示设备,与所述处理器电连接,用于显示所述处理器获取到的所述电池的电参数信息。
  30. 根据权利要求29所述的充电系统,其特征在于,当所述处理器根据所述电池的电参数信息确定所述电池异常时,所述处理器还用于:
    控制所述显示设备显示报警信息。
  31. 根据权利要求1所述的充电系统,其特征在于,所述处理器控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电时,具体用于:
    控制所述充电电路依次将所述至少一个电池中的每个电池充满。
  32. 根据权利要求1所述的充电系统,其特征在于,所述处理器控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电时,具体用于:
    控制所述充电电路依次给所述至少一个电池中的每个电池充电,并检测充电状态的电池的剩余电量;
    当所述至少一个电池中每个电池的剩余电量依次达到第二剩余电量阈值后,控制所述充电电路依次将所述至少一个电池中的每个电池充满。
  33. 根据权利要求1-32任一项所述的充电系统,其特征在于,所述第一外部设备包括如下至少一种:
    无人机的遥控设备、拍摄设备。
  34. 根据权利要求7或8所述的充电系统,其特征在于,所述第一单向导通器件包括:二极管。
  35. 根据权利要求11-13任一项所述的充电系统,其特征在于,所述第二单向导通器件包括:理想二极管。
  36. 根据权利要求12-16任一项所述的充电系统,其特征在于,所述放电电阻包括:正温度系数热敏电阻。
  37. 根据权利要求29或30所述的充电系统,其特征在于,所述显示设备包括:LCD屏幕。
  38. 根据权利要求26-28任一项所述的充电系统,其特征在于,所述第二外部设备包括:用户终端设备。
  39. 一种充电方法,其特征在于,包括:
    获取至少一个充电电路中每个充电电路的电参数信息,每个充电电路用于给至少一个电池充电;
    根据所述充电电路的电参数信息,控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电,或/及给第一外部设备充电。
  40. 根据权利要求39所述的方法,其特征在于,所述充电电路的电参数信息包括如下至少一种:
    所述充电电路的输出功率、所述充电电路的输出电流、所述充电电路的输出电压。
  41. 根据权利要求39或40所述的方法,其特征在于,所述控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电,包括:
    控制所述充电电路以先恒流后恒压的方式给所述至少一个电池充电。
  42. 根据权利要求41所述的方法,其特征在于,
    当所述充电电路给至少一个电池开始充电时,所述充电电路的输出电流恒定,以对所述至少一个电池进行恒流充电。
  43. 根据权利要求41所述的方法,其特征在于,所述根据所述充电电路的电参数信息,控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电,或/及给第一外部设备充电,包括:
    当所述充电电路从输出恒定电流转变为输出恒定电压时,控制所述充电电路同时给另外一个或多个所述电池或/及所述第一外部设备进行恒流充电。
  44. 根据权利要求39-43任一项所述的方法,其特征在于,所述方法还包括:
    检测与所述充电电路连接的至少一个电池的剩余电量;
    当所述至少一个电池均充满时,控制所述充电电路给与第一充电接口连接的第一外部设备充电。
  45. 根据权利要求39所述的方法,其特征在于,每个充电电路通过一个第一单向导通器件与所述第一外部设备电连接。
  46. 根据权利要求39所述的方法,其特征在于,每个电池通过一个第一开关与给所述电池充电的充电电路电连接。
  47. 根据权利要求46所述的方法,其特征在于,所述控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电,包括:
    控制与所述充电电路连接的至少一个第一开关闭合,以使所述充电电路给与所述充电电路连接的至少一个电池充电。
  48. 根据权利要求39所述的方法,其特征在于,每个电池与一个第二单向导通器件电连接,每个电池通过各第二单向导通器件并联。
  49. 根据权利要求48所述的方法,其特征在于,每个电池的正极与一个第二单向导通器件的输入端电连接;
    每个第二单向导通器件的输出端与放电电阻电连接;及
    每个第二单向导通器件的输出端与散热装置电连接。
  50. 根据权利要求49所述的方法,其特征在于,每个第二单向导通器件的输出端通过第二开关与所述放电电阻电连接。
  51. 根据权利要求50所述的方法,其特征在于,所述方法还包括:
    通过控制所述第二开关闭合,以使每个电池通过所述放电电阻放电。
  52. 根据权利要求51所述的方法,其特征在于,当每个电池通过所述放电电阻放电时,所述方法还包括:
    检测所述电池的剩余电量;
    当所述电池的剩余电量小于或等于第一剩余电量阈值时,控制所述第二开关断开,以使每个电池停止放电。
  53. 根据权利要求51所述的方法,其特征在于,当每个电池通过所述放电电阻放电时,所述电池给与第一充电接口连接的第一外部设备充电。
  54. 根据权利要求49所述的方法,其特征在于,当每个电池通过所述放电电阻放电时,每个电池通过所述第二单向导通器件给所述散热装置供电。
  55. 根据权利要求54所述的方法,其特征在于,所述方法还包括:
    检测所述电池的电参数信息;
    根据所述电池的电参数信息,控制所述散热装置的散热速度。
  56. 根据权利要求55所述的方法,其特征在于,所述检测所述电池的电参数信息之后,还包括:
    通过显示设备显示所述电池的电参数信息。
  57. 根据权利要求55所述的方法,其特征在于,所述检测所述电池的电参数信息之后,还包括:
    根据所述电池的电参数信息确定所述电池是否异常;
    若所述电池异常,则通过显示设备显示报警信息。
  58. 根据权利要求48-57任一项所述的方法,其特征在于,每个第二单向导通器件的输出端还与第二外部设备连接。
  59. 根据权利要求58所述的方法,其特征在于,当所述电池通过放电电阻放电时,所述电池通过所述第二单向导通器件给所述第二外部设备充电。
  60. 根据权利要求39所述的方法,其特征在于,所述控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电,包括:
    控制所述充电电路依次将所述至少一个电池中的每个电池充满。
  61. 根据权利要求39所述的方法,其特征在于,所述控制所述充电电路可选择性地给与所述充电电路连接的至少一个电池充电,包括:
    控制所述充电电路依次给所述至少一个电池中的每个电池充电,并检测充电状态的电池的剩余电量;
    当所述至少一个电池中每个电池的剩余电量依次达到第二剩余电量阈值后,控制所述充电电路依次将所述至少一个电池中的每个电池充满。
PCT/CN2017/099346 2017-08-28 2017-08-28 充电系统及充电方法 WO2019041100A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/099346 WO2019041100A1 (zh) 2017-08-28 2017-08-28 充电系统及充电方法
CN201780006067.8A CN108495788A (zh) 2017-08-28 2017-08-28 充电系统及充电方法
US16/802,964 US20200195021A1 (en) 2017-08-28 2020-02-27 Charging system and charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/099346 WO2019041100A1 (zh) 2017-08-28 2017-08-28 充电系统及充电方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/802,964 Continuation US20200195021A1 (en) 2017-08-28 2020-02-27 Charging system and charging method

Publications (1)

Publication Number Publication Date
WO2019041100A1 true WO2019041100A1 (zh) 2019-03-07

Family

ID=63344757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099346 WO2019041100A1 (zh) 2017-08-28 2017-08-28 充电系统及充电方法

Country Status (3)

Country Link
US (1) US20200195021A1 (zh)
CN (1) CN108495788A (zh)
WO (1) WO2019041100A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109066892B (zh) * 2018-09-10 2021-02-05 Oppo广东移动通信有限公司 分体屏电子设备充电电路及充电控制方法
CN111371157B (zh) * 2020-05-27 2020-09-18 北京小米移动软件有限公司 充电控制方法及装置、充电电路、电子设备、存储介质
US11569668B2 (en) * 2020-07-14 2023-01-31 Igrenenergi, Inc. System and method for dynamic balancing power in a battery pack
CN113452117B (zh) * 2021-06-30 2023-04-21 海南小鲨鱼智能科技有限公司 充电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050242768A1 (en) * 2004-04-28 2005-11-03 Pandit Amol S Method and apparatus for sharing battery charging resources
CN202840563U (zh) * 2012-08-03 2013-03-27 信华精机有限公司 充电电池保护电路
CN202917603U (zh) * 2012-11-06 2013-05-01 中航锂电(洛阳)有限公司 一种动力电池模块
CN204559195U (zh) * 2015-04-30 2015-08-12 深圳市大疆创新科技有限公司 充电器、具有该充电器的充电系统及飞行器
JP2016039693A (ja) * 2014-08-07 2016-03-22 ニチコン株式会社 充放電電源装置
CN105610215A (zh) * 2015-12-01 2016-05-25 深圳市大疆创新科技有限公司 供电装置、供电控制方法及应用该供电装置的可移动装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4805223B2 (ja) * 2007-07-27 2011-11-02 レノボ・シンガポール・プライベート・リミテッド 充電システムおよび充電方法
JP5714975B2 (ja) * 2011-05-12 2015-05-07 Fdk株式会社 充電装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050242768A1 (en) * 2004-04-28 2005-11-03 Pandit Amol S Method and apparatus for sharing battery charging resources
CN202840563U (zh) * 2012-08-03 2013-03-27 信华精机有限公司 充电电池保护电路
CN202917603U (zh) * 2012-11-06 2013-05-01 中航锂电(洛阳)有限公司 一种动力电池模块
JP2016039693A (ja) * 2014-08-07 2016-03-22 ニチコン株式会社 充放電電源装置
CN204559195U (zh) * 2015-04-30 2015-08-12 深圳市大疆创新科技有限公司 充电器、具有该充电器的充电系统及飞行器
CN105610215A (zh) * 2015-12-01 2016-05-25 深圳市大疆创新科技有限公司 供电装置、供电控制方法及应用该供电装置的可移动装置

Also Published As

Publication number Publication date
CN108495788A (zh) 2018-09-04
US20200195021A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2019041100A1 (zh) 充电系统及充电方法
CN105610215B (zh) 供电装置、供电控制方法及应用该供电装置的可移动装置
CN203398772U (zh) 一种多节锂电池保护系统
US20130127687A1 (en) Terminal and Method for Charging and Discharging Thereof
CN103532191B (zh) 一种吸尘器的双组电池组充电系统及其充电方法
US9912164B2 (en) Multisource power delivery system
EA035682B1 (ru) Гибридный блок питания
CN104300630A (zh) 充电控制装置及方法
TW200937855A (en) Driving circuit and driving method for MOS transistor and power management system thereof
CN104635899A (zh) 电源供应电路、电源供应系统以及电源供应方法
WO2020103474A1 (zh) 一种充电电路及充电系统
CN103384071A (zh) 电池充电电路
TWM451737U (zh) 避免電池浮充之控制系統及供電系統
CN113517750A (zh) 多模块便携式发电站
US20230198269A1 (en) Power systems and methods of using the same to deliver power
JP2016201990A (ja) 車両電源管理装置
CN105680491A (zh) 一种控制充电设备输出功率的方法和智能充电设备
CN109802439B (zh) 基于可插拔电池的dcdc电源并网方法及系统
CN104348199A (zh) 电池管理系统和方法
Elias et al. Design of smart charger for series lithium-ion batteries
EP4002553A1 (en) Battery temperature control apparatus, battery system, energy storage system and battery temperature control method
TWM449728U (zh) 電池電源管理系統
JP6993286B2 (ja) 蓄電装置、蓄電装置の制御装置及び蓄電装置の制御方法
CN205565771U (zh) 具有放电管理的移动电源
WO2022222156A1 (zh) 电池供电控制方法、装置、可移动平台及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923756

Country of ref document: EP

Kind code of ref document: A1