WO2019039639A1 - 나트륨이온전지용 양극활물질 및 그의 제조 방법 - Google Patents

나트륨이온전지용 양극활물질 및 그의 제조 방법 Download PDF

Info

Publication number
WO2019039639A1
WO2019039639A1 PCT/KR2017/009486 KR2017009486W WO2019039639A1 WO 2019039639 A1 WO2019039639 A1 WO 2019039639A1 KR 2017009486 W KR2017009486 W KR 2017009486W WO 2019039639 A1 WO2019039639 A1 WO 2019039639A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
metal oxide
ion battery
oxide powder
sodium ion
Prior art date
Application number
PCT/KR2017/009486
Other languages
English (en)
French (fr)
Inventor
조우석
정구진
김경수
오례경
박다정
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2019039639A1 publication Critical patent/WO2019039639A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a sodium ion battery, and more particularly, to a positive electrode active material for a sodium ion battery and a method for manufacturing the same, for controlling the sodium content by controlling the sodium content during synthesis.
  • Lithium secondary batteries have been put to practical use as batteries that can be miniaturized and lightweight and can be recharged with a high capacity, and are used in portable electronic devices such as portable video cameras, mobile phones, and notebook personal computers and communication devices.
  • the lithium secondary battery is composed of an anode, a cathode, and an electrolyte.
  • the lithium secondary battery is used to transfer energy while reciprocally moving both electrodes, such as lithium ions discharged from the cathode active material through charging, This is possible.
  • sodium ion batteries sodium-based secondary batteries (hereinafter referred to as "sodium ion batteries”) using sodium instead of lithium has been reexamined. Since sodium is abundant in resource reserves, secondary batteries can be manufactured at low cost if sodium secondary batteries can be manufactured instead of lithium.
  • the problem of the sodium ion battery is a gas generated in the evaluation of the initial lifetime. Since a considerable amount of gas is generated in the initial charge and discharge, the cell swells and the contact between the anode and the cathode is lost.
  • the sodium ion battery has a large number of residual sodium byproducts (Na2CO3, NaOH, etc.) on the surface of the anode, which acts as a resistor on the surface of the anode to degrade electrochemical characteristics such as capacity reduction and power reduction.
  • Na2CO3, NaOH, etc. residual sodium byproducts
  • an object of the present invention is to provide a cathode active material for a sodium ion battery and a method for producing the same, which effectively inhibit the generation of sodium by-products in the synthesis step without additional washing process of the surface sodium byproduct.
  • the cathode active material has a 03-layered structure in the step of producing the cathode active material.
  • M Mn, Fe, Co, Ti, Ti, Mg, Cr, V or Ni, 0 ⁇ x ⁇ 1
  • the cathode active material for a sodium ion battery has a 03-layered structure.
  • the method for preparing a cathode active material for a sodium ion battery according to the present invention can effectively suppress the generation of sodium by-products in the synthesis step without further washing the surface active material of the cathode active material by controlling the Na content in the metal oxide powder.
  • FIG. 1 is a flowchart showing a method of manufacturing a cathode active material for a sodium ion battery according to the present invention.
  • FIG. 2 is a SEM image of a surface of a cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention.
  • FIG. 3 is a graph showing the results of measurement of initial charged state impedance of a cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention.
  • FIG. 4 is a graph showing charge and discharge characteristics of a coin cell manufactured through a cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention.
  • FIG. 5 is a graph showing output characteristics of a coin cell manufactured through a cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention.
  • FIG. 1 is a flowchart showing a method of manufacturing a cathode active material for a sodium ion battery according to the present invention.
  • a method for manufacturing a cathode active material for a sodium ion battery includes forming a metal oxide powder (S10) and firing a metal oxide powder to produce a cathode active material (S10).
  • a metal oxide powder is prepared in step S10.
  • the mixing amount of Na 2 CO 3 can be adjusted so that the sodium content of the prepared cathode active material is less than 1.
  • step S20 the metal oxide powder is fired to produce a cathode active material.
  • the metal oxide powder can be formed by firing at 760 to 960 DEG C for 14 to 34 hours.
  • the prepared cathode active material may have a 03-layered structure.
  • the method for preparing a cathode active material for a sodium ion battery according to the present invention can control the Na content in the metal oxide powder and effectively suppress the generation of sodium by-products in the synthesis step without further washing the surface active material of the cathode active material have.
  • a sodium precursor Na 2 CO 3 was prepared with Na 0.9 (Ni 0.25 Fe 0.25 Mn 0.5 ) O 2 so as to have an Na content of 0.9 under the same conditions as those of the comparative example.
  • the electrolytic solution is EC with a 1M of NaClO 4 was dissolved:
  • FIG. 2 is a SEM image of a surface of a cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention.
  • the formation of surface by-products is suppressed in contrast to the presence of a large amount of surface by-products on the surface of the cathode active material.
  • the surface by-product is Na 2 CO 3 , NaOH, etc. formed by dissolving Na.
  • FIG. 3 is a graph showing impedance measurement results of an initial charged state (4.3 V) of a cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention.
  • FIG. 4 is a graph showing the charging and discharging characteristics of a coin cell manufactured through a cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention.
  • FIG. 5 is a table showing charging capacity and discharge capacity of a coin cell manufactured through a positive electrode active material for a battery.
  • FIG. 5 is a graph showing output characteristics of a coin cell manufactured through a cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention
  • Table 2 is a graph showing output characteristics of a cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention
  • FIG. 4 is a table showing the energy density according to the output of the coin cell manufactured through FIG.
  • the discharge curves at 1C and 3C show that the embodiment of the comparative example significantly improved the high capacity and the overvoltage. Especially, when the energy density is converted into the energy density, the output characteristic is greatly improved.
  • the energy density at the high power was significantly improved, and the energy density at 3C was 246 Wh / kg in the comparative example, whereas the energy density was 1.8 times as high as 435 Wh / kg in the Example have.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 합성 과정에서 나트륨 함량을 조절하여 표면 나트륨 부산물을 억제하기 위한 나트륨이온전지용 양극활물질 및 그의 제조 방법에 관한 것이다. 본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법은 Na1-xMO2(M=Mn, Fe, Co, Ti, Ti, Mg, Cr, V 또는 Ni, 0<x<1)로 표시되는 금속산화물 분말을 제조하는 단계, 금속 산화물 분말을 소성하여 양극활물질을 제조하는 단계를 포함한다.

Description

나트륨이온전지용 양극활물질 및 그의 제조 방법
본 발명은 나트륨이온전지용 양극활물질에 관한 것으로, 더욱 상세하게는 합성 과정에서 나트륨 함량을 조절하여 표면 나트륨 부산물을 억제하기 위한 나트륨이온전지용 양극활물질 및 그의 제조 방법에 관한 것이다.
전자제품의 디지털화와 고성능화 등으로 소비자의 요구가 바뀜에 따라 시장요구도 박형, 경량화와 고에너지 밀도에 의한 고용량을 지니는 전지의 개발로 흐름이 바뀌고 있는 상황이다. 또한, 미래의 에너지 및 환경 문제를 대처하기 위하여 하이브리드 전기 자동차나 전기 자동차, 및 연료전지 자동차의 개발이 활발히 진행되고 있는 바, 자동차 전원용으로 전지의 대형화가 요구되고 있다.
소형 경량화 및 고용량으로 충방전 가능한 전지로서 리튬 계열 이차전지가 실용화되고 있으며, 소형 비디오 카메라, 휴대전화, 노트퍼스컴 등의 휴대용 전자 및 통신기기 등에 이용되고 있다. 리튬 이차전지는 양극, 음극, 전해질로 구성되며, 충전에 의해 양극활물질로부터 나온 리튬 이온이 음극 활물질에 삽입되고 방전시 다시 탈리되는 등의 양 전극을 왕복하면서 에너지를 전달하는 역할을 하기 때문에 충방전이 가능하다.
한편, 최근에는 리튬 대신에 나트륨을 이용한 나트륨 기반 이차전지(이하 '나트륨이온전지'라 함)의 연구가 다시 재조명 되고 있다. 나트륨은 자원 매장량이 풍부하기 때문에 리튬 대신에 나트륨을 이용한 이차전지를 제작할 수 있다면 이차전지를 낮은 비용으로 제조할 수 있게 된다.
이러한 나트륨이온전지의 상용화를 위해 중요 소재인 양극활물질에 대한 연구가 활발하게 진행되고 있다. 특히 층상계 구조를 가지는 금속산화물인 Na1 - xMO2(M = Mn, Fe, Co, Ni 등)이 상용화 가능성이 높은 양극활물질로 주목받고 있다.
하지만 나트륨이온전지의 문제점은 초기 수명 평가시 발생되는 가스로서, 초기 충방전에도 상당량의 가스가 발생하여 셀이 부풀어 올라 양극과 음극 간의 접촉이 소실되어 셀 성능이 급격이 저하된다.
또한 나트륨이온전지는 양극 표면에 잔존 나트륨 부산물(Na2CO3, NaOH 등)이 다수 존재하게 되며, 이는 양극 표면에서 저항으로 작용하여 양극 소재의 용량 감소, 출력 감소 등의 전기화학 특성을 저하시킨다.
이를 위하여 최근에는 수세 등을 통한 표면 나트륨 부산물의 제거 방법 등이 제시되고 있으나, 수세 처리를 위한 추가적 공정이 필요하여 양극 소재의 단가 향상 등의 문제점이 있었다.
따라서 본 발명의 목적은 표면 나트륨 부산물을 추가적인 수세 공정 없이 합성 단계에서 나트륨 부산물의 발생을 효과적으로 억제 시키기 위한 나트륨이온전지용 양극활물질 및 그의 제조 방법을 제공하는 데 있다.
본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법은 Na1 - xMO2(M=Mn, Fe, Co, Ti, Ti, Mg, Cr, V 또는 Ni, 0<x<1)로 표시되는 금속산화물 분말을 형성하는 단계, 상기 금속 산화물 분말을 소성하여 양극활물질을 제조하는 단계를 포함한다.
본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법에 있어서, 상기 금속 산화물 분말을 형성하는 단계에서, 상기 금속 산화물 분말은 (M)OH2(M=Mn, Fe, Co, Ti, Ti, Mg, Cr, V 또는 Ni)로 표시되는 금속 산화물 전구체와 Na2CO3를 포함하는 나트륨 전구체를 혼합하여 형성하는 것을 특징으로 한다.
본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법에 있어서, 상기 금속 산화물 분말을 형성하는 단계에서, 상기 금속 산화물 분말은 Na1 - xMO2(M=Mn, Fe, Co, Ti, Ti, Mg, Cr, V 또는 Ni, 0<x<0.2)로 표시되는 것을 특징으로 한다.
본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법에 있어서, 상기 양극활물질을 제조하는 단계에서, 상기 양극활물질은 03형 층상 구조를 갖는 것을 특징으로 한다.
본 발명에 따른 나트륨이온전지용 양극활물질은 Na1 - xMO2(M=Mn, Fe, Co, Ti, Ti, Mg, Cr, V 또는 Ni, 0<x<1)로 표시되는 금속산화물 분말을 소성하여 형성한다.
본 발명에 따른 나트륨이온전지용 양극활물질에 있어서, 상기 금속 산화물 분말은 상기 금속 산화물 분말은 (M)(OH)2(M=Mn, Fe, Co, Ti, Ti, Mg, Cr, V 또는 Ni)로 표시되는 금속 산화물 전구체와 Na2CO3를 포함하는 나트륨 전구체를 혼합하여 형성하는 것을 특징으로 한다.
본 발명에 따른 나트륨이온전지용 양극활물질에 있어서, 상기 금속 산화물 분말은 Na1 - xMO2(M=Mn, Fe, Co, Ti, Ti, Mg, Cr, V 또는 Ni, 0<x<0.2)로 표시되는 것을 특징으로 한다.
본 발명에 따른 나트륨이온전지용 양극활물질에 있어서, 상기 나트륨이온전지용 양극활물질은 03형 층상 구조를 갖는 것을 특징으로 한다.
본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법은 금속 산화물 분말에서 Na 함량을 조절하여, 제조된 양극 활물질 표면 나트륨 부산물을 추가적인 수세 공정 없이 합성 단계에서 나트륨 부산물의 발생을 효과적으로 억제 시킬 수 있다.
도 1은 본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법을 나타낸 순서도이다.
도 2는 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질의 표면 SEM 이미지이다.
도 3은 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질의 초기 충전상태 임피던스 측정 결과를 나타낸 그래프이다.
도 4는 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질을 통해 제조된 코인셀의 충방전 특성을 나타낸 그래프이다.
도 5는 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질을 통해 제조된 코인셀의 출력 특성을 나타낸 그래프이다.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않는 범위에서 생략될 것이라는 것을 유의하여야 한다.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.
도 1은 본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법을 나타낸 순서도이다.
도 1을 참조하면, 본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법은 금속 산화물 분말을 형성하는 단계(S10) 및 금속 산화물 분말을 소성하여 양극활물질을 제조하는 단계(S10)를 포함한다.
이와 같은 본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법의 각 단계에 대해서 구체적으로 설명하면 다음과 같다.
먼저 S10 단계에서 금속 산화물 분말을 제조한다. 여기서 금속 산화물 분말은 (M)OH2(M=Mn, Fe, Co, Ti, Ti, Mg, Cr, V 또는 Ni)로 표시되는 금속 산화물 전구체와 Na2CO3를 포함하는 나트륨 전구체를 혼합하여 제조한다.
이때 제조된 양극활물질의 나트륨 함량이 1미만이 되도록 Na2CO3를 혼합양을 조절할 수 있다.
여기서 금속 산화물 분말은 Na1 - xMO2(M=Mn, Fe, Co, Ti, Ti, Mg, Cr, V 또는 Ni, 0<x<1)로 표시될 수 있으며, 바람직하게는 Na1 - xMO2(M=Mn, Fe, Co, Ti, Ti, Mg, Cr, V 또는 Ni, 0<x<0.2)로 표시될 수 있다.
다음으로 S20 단계에서 금속 산화물 분말을 소성하여 양극활물질을 제조할 수 있다. 여기서 금속 산화물 분말을 760 ~ 960℃에서 14 ~ 34시간 소성하여 형성할 수 있다. 제조된 양극활물질은 03형 층상 구조를 가질 수 있다.
이와 같이, 본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법은 금속 산화물 분말에서 Na 함량을 조절하여, 제조된 양극 활물질 표면 나트륨 부산물을 추가적인 수세 공정 없이 합성 단계에서 나트륨 부산물의 발생을 효과적으로 억제 시킬 수 있다.
이와 같은 본 발명의 제조 방법으로 제조된 나트륨이온전지용 양극활물질의 전기화학적 및 물리적 특성을 확인하기 위해서 하기와 같은 실험을 진행하였다.
비교예
비교예는 금속 산화물 전구체로 (Ni0 . 25Fe0 . 25Mn0 . 5)(0H)2와 나트륨 전구체로 Na2CO3를 혼합하고, 860℃에서 24시간 소성하여 Na 함량이 1.0인 Na(Ni0.25Fe0.25Mn0.5)O2로 표시되는 양극활물질을 제조하였다.
실시예
실시예는 비교예와 동일한 조건으로 나트륨 전구체 Na2CO3를 Na 함량이 0.9가 되도록 Na0.9(Ni0.25Fe0.25Mn0.5)O2로 표시되는 양극활물질을 제조하였다.
그리고 전기화학특성 평가를 위하여, 음극은 N 금속, 분리막은 Glass fiber, 전해액은 1M의 NaClO4가 용해된 EC:PC(1:1)을 사용하여 비교예와 실시예를 동일한 조건에서 코인셀을 제조하였다.
한편 도 2는 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질의 표면 SEM 이미지이다.
도 2를 참조하면, 비교예의 경우 양극 활물질 표면에 다량의 표면 부산물이 존재하는 것과 대비하여, 실시예는 표면 부산물의 형성이 억제되어 있음을 확인할 수 있다. 여기서 표면 부산물은 Na 용출에 의해 형성되는 Na2CO3, NaOH 등이다.
도 3은 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질의 초기 충전상태(4.3V) 임피던스 측정 결과를 나타낸 그래프이다.
도 3을 참조하면, 표면 부산물에 의한 저항 여부를 확인하기 위하여 AC-impedance 분석을 진행하였다.
4.3V 충전 상태에서 임피던스 측정 결과, 실시예를 통해 제조된 코인셀의 저항이 현저히 감소되어 있음을 확인할 수 있다. 이를 통해 표면 부산물 형성이 억제된 실시예가 복합 저항이 억제되어 있음을 확인하였다.
도 4는 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질을 통해 제조된 코인셀의 충방전 특성을 나타낸 그래프이고, 하기의 표 1은 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질을 통해 제조된 코인셀의 충전용량 및 방전용량을 나타낸 표이다.
충전용량(mAh/g) 방전용량(mAh/g)
실시예 160.2 160.0
비교예 139.7 138.2
도 4 및 표 1을 참조하면, 비교예와 실시예의 0.1C에서의 충방전 곡선을 확인한 결과, 비교예와 대비하여 실시예의 충방전 곡선의 과전압이 현저히 개선되어 있음을 확인할 수 있으며, 이에 기인하여 방전 용량도 비교예 대비 높게 나타내는 것을 확인할 수 있었다. 이는 상술한 도 2에 나타난 바와 같이 임피던스 감소에 기인하는 효과로 판단할 수 있다.
도 5는 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질을 통해 제조된 코인셀의 출력 특성을 나타낸 그래프이고, 표 2는 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질을 통해 제조된 코인셀의 출력에 따른 에너지 밀도를 나타낸 표이다.
0.1C 0.2C 0.5C 1C 3C
실시예 437.5Wh/kg 408.8Wh/kg 373.1Wh/kg 335.8Wh/kg 246.6Wh/kg
비교예 526.3Wh/kg 499.1Wh/kg 468.5Wh/kg 438.5Wh/kg 435.1Wh/kg
도 5 및 표 2를 참조하면, 1C와 3C에서의 방전 곡선을 보면 비교예 대비 실시예가 높은 용량과 과전압이 현저히 개선된 것을 확인할 수 있다. 특히 에너지밀도로 환산하면 출력 특성이 크게 개선된 것을 확인할 수 있다.
또한 표 2에 나타난 바와 같이, 고출력에서 에너지밀도가 크게 향상되었으며, 3C에서의 에너지 밀도가 비교예는 246Wh/kg인 것에 비해 실시예는 435Wh/kg으로 1.8배 가량 높은 에너지 밀도를 나타내는 것을 확인할 수 있다.
한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.

Claims (8)

  1. Na1 - xMO2(M=Mn, Fe, Co, Ti, Ti, Mg, Cr, V 또는 Ni, 0<x<1)로 표시되는 금속산화물 분말을 제조하는 단계;
    상기 금속 산화물 분말을 소성하여 양극활물질을 제조하는 단계;
    를 포함하는 것을 특징으로 하는 나트륨이온전지용 양극활물질의 제조 방법.
  2. 제1항에 있어서,
    상기 금속 산화물 분말을 제조하는 단계에서,
    상기 금속 산화물 분말은 (M)(OH)2(M=Mn, Fe, Co, Ti, Ti, Mg, Cr, V 또는 Ni)로 표시되는 금속 산화물 전구체와 Na2CO3를 포함하는 나트륨 전구체를 혼합하여 형성하는 것을 특징으로 하는 나트륨이온전지용 양극활물질의 제조 방법.
  3. 제1항에 있어서,
    상기 금속 산화물 분말을 제조하는 단계에서,
    상기 금속 산화물 분말은 Na1 - xMO2(M=Mn, Fe, Co, Ti, Ti, Mg, Cr, V 또는 Ni, 0<x<0.2)로 표시되는 것을 특징으로 하는 나트륨이온전지용 양극활물질의 제조 방법.
  4. 제1항에 있어서,
    상기 양극활물질을 제조하는 단계에서,
    상기 양극활물질은 03형 층상 구조를 갖는 것을 특징으로 하는 나트륨이온전지용 양극활물질의 제조 방법.
  5. Na1 - xMO2(M=Mn, Fe, Co, Ti, Ti, Mg, Cr, V 또는 Ni, 0<x<1)로 표시되는 금속산화물 분말을 소성하여 제조하는 나트륨이온전지용 양극활물질.
  6. 제5항에 있어서,
    상기 금속 산화물 분말은 상기 금속 산화물 분말은 (M)(OH)2(M=Mn, Fe, Co, Ti, Ti, Mg, Cr, V 또는 Ni)로 표시되는 금속 산화물 전구체와 Na2CO3를 포함하는 나트륨 전구체를 혼합하여 제조하는 것을 특징으로 하는 나트륨이온전지용 양극활물질.
  7. 제5항에 있어서,
    상기 금속 산화물 분말은 Na1 - xMO2(M=Mn, Fe, Co, Ti, Ti, Mg, Cr, V 또는 Ni, 0<x<0.2)로 표시되는 것을 특징으로 하는 나트륨이온전지용 양극활물질.
  8. 제7항에 있어서,
    상기 나트륨이온전지용 양극활물질은 03형 층상 구조를 갖는 것을 특징으로 하는 나트륨이온전지용 양극활물질.
PCT/KR2017/009486 2017-08-23 2017-08-30 나트륨이온전지용 양극활물질 및 그의 제조 방법 WO2019039639A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0106765 2017-08-23
KR1020170106765 2017-08-23

Publications (1)

Publication Number Publication Date
WO2019039639A1 true WO2019039639A1 (ko) 2019-02-28

Family

ID=65439096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009486 WO2019039639A1 (ko) 2017-08-23 2017-08-30 나트륨이온전지용 양극활물질 및 그의 제조 방법

Country Status (1)

Country Link
WO (1) WO2019039639A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100266900A1 (en) * 2007-11-22 2010-10-21 Sumitomo Chemical Company,Limited Sodium-manganese mixed metal oxide, production method thereof and sodium secondary battery
JP2013084522A (ja) * 2011-10-12 2013-05-09 Tokyo Univ Of Science ナトリウム二次電池用電極合剤、ナトリウム二次電池用電極およびナトリウム二次電池
KR20140064681A (ko) * 2012-11-19 2014-05-28 한양대학교 산학협력단 나트륨 이차전지용 양극활물질 및 이의 제조 방법
WO2016188877A1 (en) * 2015-05-26 2016-12-01 Umicore Bivalent metal doping for sodium manganese oxide as cathode materials for sodium ion batteries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100266900A1 (en) * 2007-11-22 2010-10-21 Sumitomo Chemical Company,Limited Sodium-manganese mixed metal oxide, production method thereof and sodium secondary battery
JP2013084522A (ja) * 2011-10-12 2013-05-09 Tokyo Univ Of Science ナトリウム二次電池用電極合剤、ナトリウム二次電池用電極およびナトリウム二次電池
KR20140064681A (ko) * 2012-11-19 2014-05-28 한양대학교 산학협력단 나트륨 이차전지용 양극활물질 및 이의 제조 방법
WO2016188877A1 (en) * 2015-05-26 2016-12-01 Umicore Bivalent metal doping for sodium manganese oxide as cathode materials for sodium ion batteries

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QI, XINGGUO ET AL.: "Sodium-deficient O3-Na0.9[Ni0.4MnxTi 0.6-x]O2 Layered-oxide Cathode Materials for Sodium-ion Batteries", PARTICLE & PARTICLE SYSTEM CHARACTERIZATION, vol. 33, no. 8, 2016, pages 538 - 544, XP055577422 *

Similar Documents

Publication Publication Date Title
CN111448619B (zh) 固体电解质材料和电池
KR20190025601A (ko) 나트륨이온전지용 양극활물질 및 그의 제조 방법
WO2013100651A1 (ko) 리튬 이차전지용 양극활물질, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2013141494A1 (ko) 유황을 포함하는 그래핀 복합체 양극을 포함하는 리튬-유황 이차전지 및 그의 제조 방법
CN1316670C (zh) 锂聚合物电池及其制备方法
CN111295789A (zh) 固体电解质材料和电池
EP3041071A1 (en) Lithium transition metal composite particles, method for preparing same, and positive active materials comprising same
WO2010058901A2 (en) Secondary zinc alkaline battery including surface-modified negative electrodes and separators
KR101169805B1 (ko) 비수 전해질 2차전지 및 그 충전 방법
JP2006244734A (ja) 全固体型リチウム二次電池
WO2020013667A1 (ko) 무기 전해액을 포함하는 리튬 이차전지
KR20170103184A (ko) 리튬 이차전지용 양극 제조 방법 및 이러한 방법에 의해 제조된 리튬 이차전지용 양극
WO2020214009A1 (ko) 고체 전해질 복합체 및 이를 포함하는 전고체 전지용 전극
WO2009134047A1 (ko) 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지
WO2012165913A2 (ko) 이차전지용 음극 및 이를 구비하는 이차전지
EP4113697A1 (en) Electrode having improved safety and method for manufacturing same
WO2014104811A1 (ko) 리튬 이차전지용 양극활물질의 제조 방법 및 그에 의한 리튬 이차전지용 양극 활물질
WO2013042939A2 (ko) 케이블형 이차전지
WO2020040338A1 (ko) 양극 소재, 그를 포함하는 양극과 나트륨이온전지 및 그의 제조 방법
KR20130066285A (ko) 표면처리 전극 활물질, 전극 활물질의 표면처리 방법, 전극 및 리튬 이차 전지
JP2011187253A (ja) 全固体リチウム二次電池
KR102006164B1 (ko) 나트륨이온전지용 양극활물질 및 그의 제조 방법
WO2014081269A1 (ko) 금속이 코팅된 전극 활물질의 전구체 및 그의 제조방법
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
WO2016043442A1 (ko) 다공성 탄소 구조체를 이용한 양극 활물질, 그의 제조 방법 및 그를 갖는 나트륨-이산화황 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922642

Country of ref document: EP

Kind code of ref document: A1