WO2019039253A1 - Substrate film for dicing - Google Patents

Substrate film for dicing Download PDF

Info

Publication number
WO2019039253A1
WO2019039253A1 PCT/JP2018/029385 JP2018029385W WO2019039253A1 WO 2019039253 A1 WO2019039253 A1 WO 2019039253A1 JP 2018029385 W JP2018029385 W JP 2018029385W WO 2019039253 A1 WO2019039253 A1 WO 2019039253A1
Authority
WO
WIPO (PCT)
Prior art keywords
dicing
layer
substrate film
film
resin
Prior art date
Application number
PCT/JP2018/029385
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 栗原
末藤 壮一
塚田 章一
Original Assignee
グンゼ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グンゼ株式会社 filed Critical グンゼ株式会社
Priority to KR1020237038440A priority Critical patent/KR20230157537A/en
Priority to CN201880043105.1A priority patent/CN110800084A/en
Priority to JP2019538045A priority patent/JP7421339B2/en
Priority to KR1020197036854A priority patent/KR20200045444A/en
Publication of WO2019039253A1 publication Critical patent/WO2019039253A1/en
Priority to JP2023182491A priority patent/JP2024008947A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors

Definitions

  • the present invention relates to a substrate film for dicing, which is adhered and fixed to a semiconductor wafer when the semiconductor wafer is diced into chips.
  • An object of the present invention is to provide a substrate film for dicing having high heat recovery and excellent rack recovery.
  • Another object of the present invention is to provide a substrate film for dicing which is uniformly stretched even when expanding is performed under low temperature conditions.
  • the present invention is also favorable even if the expand is performed under low temperature conditions (-15 to 5 ° C.) and high speed conditions.
  • An object of the present invention is to provide a substrate film for dicing which is stretched.
  • a sheet (a dicing film including a substrate film for dicing) in which a product being processed remains after an expanding step. At that time, if the slack remains in the sheet, it tends to lead to problems such as that the product can not be stored well in a rack, the products collide with each other, and a defect occurs.
  • the rack is a name used in the industry, and is also called a zipper or a case.
  • heat shrinkage and restoration technology This is a thing of shrinking the part by heating the slack part which arose by the expanding process, and eliminating slack (a thing with a high restoration rate by heat contraction).
  • the dicing film expands well and the semiconductor wafer and the die bond layer are cut well (divided) Is required.
  • the present inventor has intensively studied to solve the above-mentioned problems.
  • a substrate film for dicing includes a structure in which the following surface layer / intermediate layer / backing layer is laminated in order, and a polyurethane resin is used for the intermediate layer, so that a sheet after the expanding step (dicing film including substrate film for dicing) It has been found that the sagging is well eliminated by the heat shrink technology (heat shrinkage technology).
  • the dicing base film of the above-mentioned substrate film is uniformly stretched even when the expansion is carried out under low temperature conditions. It was found that the dicing film was well stretched even when the above-mentioned substrate film for dicing was expanded under high-speed conditions in addition to low-temperature conditions.
  • Item 1 It is a base film for dicing including the structure laminated
  • Item 2 The base film for dicing according to the above item 1, wherein the surface layer and / or the back layer is a single layer or a multilayer.
  • the polyethylene-based resin is branched low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene- At least one resin selected from the group consisting of ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, ethylene-methyl methacrylate copolymer (EMMA), ethylene-methacrylic acid copolymer (EMAA), and ionomer resin 3.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • EVA ethylene-vinyl acetate copolymer
  • EMA ethylene-methyl acrylate copolymer
  • EMMA ethylene-methyl methacrylate copolymer
  • EMMA ethylene-methacrylic acid copolymer
  • ionomer resin ionomer resin
  • Item 4 The substrate film for dicing according to any one of Items 1 to 3, wherein the polyurethane resin is a thermoplastic polyurethane resin (TPU).
  • TPU thermoplastic polyurethane resin
  • Item 5 A dicing film wherein an adhesive layer and a die bond layer are provided in this order on the surface side of the substrate film for dicing according to any one of Items 1 to 4.
  • the substrate film for dicing of the present invention By using the substrate film for dicing of the present invention, collection of used dicing films into a rack can be performed more quickly and easily. That is, the substrate film for dicing of the present invention has high heat recovery, that is, it exhibits good heat shrinkability and is excellent in rack recovery.
  • the dicing film is uniformly stretched even when expanding is performed under low temperature conditions.
  • the dicing film may be expanded even under low temperature conditions and high speed conditions. Stretches well.
  • the present invention relates to a substrate film for dicing.
  • the present invention relates to a dicing film in which an adhesive layer and a die bonding layer are provided in this order on a substrate film for dicing.
  • Substrate film for dicing is It is characterized by including the composition laminated in order of surface / middle class / back layer.
  • the surface layer and / or the back layer be a single layer or a multilayer.
  • the surface layer is made of a resin composition containing a polyethylene resin.
  • branched low density polyethylene LDPE
  • linear low density polyethylene LLDPE
  • ethylene-vinyl acetate copolymer EVA
  • EMA ethylene-methyl acrylate copolymer
  • EMMA ethylene-methyl methacrylate copolymer
  • EMMA ethylene-methacrylic acid copolymer
  • ionomer resin ionomer resin
  • the surface layer is excellent in the expandability of the substrate film for dicing, that is, the tensile properties of the substrate, by being made of the resin composition containing at least one of these components.
  • a polypropylene-based resin may be blended.
  • the melt flow rate (MFR) at 190 ° C. of ethylene-vinyl acetate copolymer (EVA) may be about 30 g / 10 min or less, preferably about 20 g / 10 min or less, and more preferably about 15 g / 10 min or less Preferably, about 10 g / 10 minutes or less is more preferable.
  • MFR of EVA is preferably about 0.1 g / 10 min or more, and more preferably about 0.3 g / 10 min or more, in order to facilitate extrusion of the resin.
  • the density of EVA is preferably about 0.9 ⁇ 0.96g / cm 3, more preferably about 0.92 ⁇ 0.94g / cm 3.
  • the melt flow rate (MFR) at 190 ° C. of the branched low density polyethylene (LDPE) is preferably about 10 g / 10 min or less, and more preferably about 6 g / 10 min or less.
  • the density of LDPE is preferably about 0.9 ⁇ 0.94g / cm 3, more preferably about 0.91 ⁇ 0.93g / cm 3.
  • the melt flow rate (MFR) at 190 ° C. of linear low density polyethylene (LLDPE) is preferably about 10 g / 10 min or less, and more preferably about 6 g / 10 min or less.
  • the density of LLDPE is preferably about 0.9 ⁇ 0.94g / cm 3, more preferably about 0.91 ⁇ 0.93g / cm 3.
  • melt flow rate is determined in accordance with ISO 1133, and the density is determined in accordance with ISO 1183-1: 2004.
  • the surface layer may further contain an antistatic agent, if necessary.
  • the antistatic agent that can be used in the surface layer can also be used in the surface layer.
  • known surfactants such as anion type, cation type and nonionic type can be selected.
  • nonionic agents such as PEEA resin and hydrophilic PO resin from the viewpoint of durability and durability. Surfactants are preferred.
  • the content of the antistatic agent is preferably about 5 to 25% by weight, more preferably about 7 to 22% by weight, of the antistatic agent in the resin composition of the surface layer.
  • the substrate film for dicing of the present invention in which the antistatic agent is contained in the above-mentioned range is preferable because the surface resistivity of the back surface thereof is about 10 7 to 10 12 ⁇ / ⁇ .
  • An antiblocking agent may be further added to the surface layer.
  • the addition of the antiblocking agent is preferable because blocking such as when the substrate film for dicing is rolled up is suppressed.
  • As the antiblocking agent inorganic or organic fine particles can be exemplified.
  • the back layer is made of a resin composition containing a polyethylene-based resin, as in the surface layer.
  • a polyethylene-based resin used for the surface layer may be used, or a polyethylene-based resin different from the surface layer may be used.
  • an antistatic agent or an antiblocking agent may be contained.
  • the surface layer and / or the back layer may be a single layer or a multilayer.
  • the substrate film for dicing of the present invention can be provided with a plurality of surface layers and / or back layers, if necessary.
  • the surface layer and / or the back layer are composed of multiple layers, they are represented as surface layer-1, surface layer-2, surface layer-3, ... in order from the outermost layer side, and back layer-1 in reverse order from the back layer side. It is represented as layer-2, back layer-3,.
  • the intermediate layer is made of a resin composition containing a polyurethane resin (PU).
  • the PU is preferably a thermoplastic polyurethane resin (TPU).
  • the middle layer which consists of a resin composition containing polyurethane system resin (PU) for a substrate film for dicing.
  • the substrate film for dicing has an intermediate layer made of a resin composition containing a polyurethane resin (PU), low temperature conditions and high speed conditions, for example, when cutting (dividing) a semiconductor wafer and a die bond layer after stealth dicing. Even if the expansion is carried out in the above, the dicing film stretches well.
  • PU polyurethane resin
  • TPU thermoplastic polyurethane resin
  • PU polyurethane resin
  • TPU is obtained by reacting a polyisocyanate, a polyol and a chain extender, and comprises a soft segment produced by the reaction of a polyol and a polyisocyanate and a hard segment produced by the reaction of a chain extender and a polyisocyanate. Block copolymers.
  • polyisocyanate examples include diphenylmethane diisocyanate, hexamethylene diisocyanate, tolidine diisocyanate, 1,5-naphthalene diisocyanate, isophorone diisocyanate, xylylene diisocyanate and the like.
  • diphenylmethane diisocyanate and / or hexamethylene diisocyanate is preferred in view of the abrasion resistance of the thermoplastic polyurethane resin.
  • polyester polyol examples include polytetramethylene ether glycol, polyester polyol, lactone polyester polyol and the like. Polyester polyols are obtained by the polycondensation reaction of dicarboxylic acids and diols.
  • diol used for producing the polyester polyol examples include ethanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol and the like. Or in combination.
  • examples of the dicarboxylic acid used in the present invention include adipic acid and sebacic acid, and these are used alone or in combination.
  • polytetramethylene ether glycol is preferable in that a thermoplastic polyurethane resin can obtain high impact resilience.
  • the number average molecular weight of such a polyol is preferably 1,000 to 4,000, and it is particularly preferable that the number average molecular weight is 2,000 to 3,000.
  • chain extender for example, aliphatic linear diol having 2 to 6 carbon atoms such as ethanediol, 1,4-butanediol, 1,6-hexanediol, 1,4-bis (hydroxyethoxy) Benzene and the like can be mentioned.
  • Amines such as hexamethylenediamine, isophoronediamine, tolylenediamine, monoethanolamine and the like can also be used partially in combination.
  • aliphatic straight chain diols having 2 to 6 carbon atoms are preferable in view of the abrasion resistance of the thermoplastic polyurethane resin.
  • the density of the thermoplastic polyurethane resin is preferably about 1.1 ⁇ 1.5g / cm 3, more preferably about 1.1 ⁇ 1.3g / cm 3.
  • thermoplastic polyurethane resin can manufacture said raw material using well-known methods, such as a one-shot method and a prepolymer method.
  • Examples of PU include Pandex manufactured by D.I. C. Vesturopolymer Co., Ltd., and Milactolan manufactured by Japan Miractoran Co., Ltd.
  • the intermediate layer may include (ii) a polyethylene-based resin in addition to the (i) PU described above.
  • the polyethylene resin can be a resin usable in the surface layer.
  • the same resin as the polyethylene-based resin used in the surface layer may be used for the intermediate layer, or a resin different from the polyethylene-based resin used in the surface layer may be used. It is preferable to use ethylene-methacrylic acid copolymer (EMAA) as the polyethylene resin together with the above-mentioned PU.
  • EEMA ethylene-methacrylic acid copolymer
  • the content of the polyethylene resin in the intermediate layer is preferably 0 to 80% by weight, and more preferably 0 to 70% by weight.
  • the expandability of the substrate film for dicing that is, the tensile property is good.
  • the substrate film for dicing of the present invention includes a configuration in which a surface layer / intermediate layer / back layer is laminated in order.
  • the surface layer is a layer in contact with the wafer and in contact with the adhesive layer.
  • the intermediate layer may form a layer (monolayer) with each resin alone, may form a layer (monolayer) with a mixture of resins, or may form a layer (multilayer) for each resin. good.
  • the surface layer and / or the back layer is preferably a single layer or a multilayer.
  • LDPE, EVA, etc. may form a layer (single layer) with each resin, or a layer (single layer) may be formed with a mixture of resins, and each layer (multilayer) You may form
  • the total thickness of the substrate film for dicing of the present invention is preferably about 50 to 300 ⁇ m, more preferably about 70 to 200 ⁇ m, and still more preferably about 80 to 150 ⁇ m.
  • the ratio of the thickness of the surface layer and the back layer is preferably about 4 to 80%, more preferably about 10 to 60%, with respect to the total thickness of the substrate film for dicing.
  • the ratio of the thickness of the intermediate layer to the total thickness of the substrate film for dicing is preferably about 20 to 96%, and more preferably about 40 to 90%.
  • the substrate film for dicing As a specific example of the substrate film for dicing, the case where the total thickness of the substrate film for dicing is about 60 to 100 ⁇ m will be described.
  • the thickness of the surface layer and the back layer is preferably about 2 to 44 ⁇ m each, and more preferably about 10 to 38 ⁇ m each.
  • each layer may be formed within the above thickness range as a total thickness.
  • the thickness of the intermediate layer is preferably about 12 to 96 ⁇ m, and more preferably about 24 to 80 ⁇ m.
  • each layer may be formed within the above thickness range as a total thickness.
  • Example with 3 types and 5 layers (Surface-1 / Surface-2 / Intermediate / Back layer-2 / Back layer-1)
  • the total thickness of the surface layer-1 and the surface layer-2 is in the range of the thickness of the surface layer
  • the total thickness of the back layer-1 and the back layer-2 Is the range of the thickness of the back layer.
  • the surface layer-1 and the surface layer-2 may use polyethylene resins of the same type, or different polyethylene resins.
  • the back layer 1 and the back layer 2 may use polyethylene resins of the same type, or different polyethylene resins.
  • the EVA used for the surface layer 2 and the back layer 2 has a vinyl group content (compared to the EVA used for the surface layer 1 and the back layer 1 It is preferable to use EVA having a high VA content).
  • EVA having a VA content of about 5 to 15% by weight, and more preferably about 7 to 13% by weight.
  • EVA having a VA content of about 15 to 33% by weight, and more preferably about 28 to 33% by weight.
  • EVA having a high melt flow rate MFR
  • MFR melt flow rate
  • the MFR at 190 ° C. of EVA is preferably about 0.1 g / 10 minutes to 10 g / 10 minutes, and more preferably about 5 g / 10 minutes to 10 g / 10 minutes.
  • MFR at 190 ° C. of EVA is preferably about 10 g / 10 minutes to 40 g / 10 minutes, and more preferably about 12 g / 10 minutes to 35 g / 10 minutes.
  • the base film for dicing of the surface layer / intermediate layer / back layer can be produced by multi-layer coextrusion molding of the resin composition for the surface layer, the intermediate layer and the back layer.
  • the resin composition for surface layer, the resin composition for intermediate layer, and the resin composition for back layer are manufactured by co-extrusion so as to be laminated in the order of surface layer / intermediate layer / back layer. Can.
  • the resin composition for each surface layer and the back layer is charged into each extruder, for example, surface layer-1 / surface layer-2 / intermediate layer / back layer It can be manufactured by coextrusion so as to be laminated in the order of -2 / back layer-1.
  • an antistatic agent can be further added to the resin composition constituting the surface layer. The same is true for the back layer.
  • the resin for each layer described above is supplied to the screw extruder in this order, extruded from a multilayer T die at 180 to 240 ° C. into a film, and cooled while passing through a cooling roll at 30 to 70 ° C. It pulls away without stretching.
  • the resin for each layer may be once obtained as pellets and then extruded as described above.
  • substantially non-stretching refers to non-stretching or slight stretching to such an extent that the extension of the dicing film is not adversely affected. In general, it is sufficient that the film is pulled to such an extent that no sag occurs when taking up the film.
  • the dicing film of the present invention can be produced according to known techniques.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is dissolved in a solvent such as an organic solvent, the solution is applied on a substrate film for dicing, and the solvent is removed to obtain a film of a substrate film / pressure-sensitive adhesive layer.
  • a solvent such as an organic solvent
  • the resin composition which comprises a die-bonding layer is dissolved in solvent, such as an organic solvent, it apply
  • solvent such as an organic solvent
  • a dicing film is produced by superimposing the pressure-sensitive adhesive layer and the die-bonding layer so as to face each other. Thereby, the film of the structure of a base film / adhesive layer / die-bonding layer can be obtained. At this stage, the die bonding layer is bonded to the semiconductor wafer and the adhesive layer in a weak (pseudo) bonding state.
  • the divided semiconductor chip and die bonding layer are stacked on a predetermined package or semiconductor chip, heated to a temperature at which the die bonding layer is strongly bonded, and bonded.
  • PE-1 to 9 Polyethylene resin 1 to 9 SEBS: Styrene-Butadiene Copolymer Hydrogen Additive (Styrene-Ethylene-Butylene-Styrene Copolymer)
  • TPU Thermoplastic polyurethane (PU)
  • Amorphous PO amorphous polyolefin LDPE: branched low density polyethylene
  • EVA ethylene-vinyl acetate copolymer
  • VA content vinyl acetate content ratio
  • EMAA ethylene-methacrylic acid copolymer
  • MAA content methacrylic acid content
  • St content Styrene content ratio (content of vinyl aromatic hydrocarbon (St) component in vinyl aromatic hydrocarbon resin)
  • the resin composition constituting each layer is introduced into the respective extruders adjusted to 220 ° C. and extruded by a 220 ° C. T die so as to be in the order of surface layer / interlayer / back layer, laminated at 30 ° C. Cooling water was co-extruded on a circulating chill roll to obtain a flat three-layer film.
  • the resin composition constituting each layer is introduced into the respective extruders adjusted to 220 ° C., and in the order of surface layer-1 / surface layer-2 / intermediate layer / back layer-2 / back layer-1, 220
  • the mixture was extruded through a T-die, laminated, and co-extruded on a chill roll circulating cooling water of 30 ° C. to obtain a flat five-layer film.
  • the film was processed so that the distance between chucks was 40 mm with a width of 10 mm at a tensile speed of 200 mm / min in the MD direction (extrusion direction of film forming) and TD direction (width direction of film formed by film forming) SS curves (stress-strain curves) were obtained using film samples.
  • the stress value at an elongation of 25% of the obtained SS curve was read.
  • the ratio of the stress value at an elongation rate of 25% in the MD direction to the stress value at an elongation rate of 25% in the TD direction was determined as a modulus ratio (MD / TD).
  • the substrate film for dicing exhibits good uniform expandability (uniform Ex property) under low temperature conditions of -15 to 5 ° C.
  • ⁇ Evaluation criteria> High-speed tensile test evaluation (mechanical properties)
  • The tensile elongation at break in the MD and TD directions is 120% or more.
  • X The tensile elongation at break in the MD and TD directions is less than 120%.
  • the tensile speed is set to 250 mm / sec and a tensile test is performed to evaluate the expandability under high speed conditions in addition to the low temperature conditions.
  • a tensile test is performed to evaluate the expandability under high speed conditions in addition to the low temperature conditions.
  • the tensile elongation at break in the MD and TD directions of the film is 120% or more, for example, after stealth dicing, when expanding under low temperature conditions (-15 to 5 ° C.) and high speed conditions, the film is good To stretch.
  • the chuck After holding for 10 seconds with 200% elongation, the chuck was returned to the original position, the chuck was opened, and the sample was shrunk under the above condition 2.
  • Recovery rate [%] ⁇ (120-L) / 80 ⁇ ⁇ 100 The recovery rate was measured in both the MD direction and the TD direction, and this was expressed as heat shrinkability (HS property).
  • the substrate film for dicing exhibits good heat shrinkability (HS property) under an environment of 80 ° C.
  • the substrate film for dicing exhibits good uniform heat shrinkability (uniform HS property) under the condition of 80 ° C.
  • the dicing film of the substrate film for dicing (Examples 1 to 12) of the present invention was uniformly stretched even when expanding was performed under low temperature conditions.
  • the value of the heat shrink property was a significantly large value as compared with the comparative example. That is, the substrate film for dicing of the present invention had better heat shrinkability.
  • Example 2 The low temperature expandability (Ex property) was acceptable in both of the substrate films for dicing of the present invention (examples) and comparative examples.
  • the substrate film for dicing of the present invention (Example) was excellent in low-temperature high-speed expandability (low-temperature high-speed Ex property) as compared with the comparative example.
  • the dicing film shrinks its part by heating the slack part generated even after passing through the expanding step, and the slack is eliminated. can do.
  • the dicing film (sheet) has a high recovery ratio due to heat shrinkage.
  • the substrate film for dicing of the present invention By using the substrate film for dicing of the present invention, collection of used dicing films into a rack can be performed more quickly and easily. That is, the substrate film for dicing of the present invention has high heat recovery, and the dicing film is uniformly recovered. That is, heat shrinkability is exhibited well and rack recovery is excellent. Further, products using the substrate film for dicing of the present invention do not collide with each other, and no defect occurs.
  • the expandability is good and the dicing film is uniformly stretched even when expanding is performed under low temperature conditions.
  • the semiconductor wafer and the die bond layer are collectively cut well (split) in the expand performed under low temperature conditions.
  • the substrate film for dicing of the present invention When the substrate film for dicing of the present invention is used, in particular, when stealth dicing, the semiconductor wafer and the die bond layer are cut (divided), expandability is achieved even when expand is performed under low temperature conditions and high speed conditions. Is good, and the dicing film stretches well.
  • the substrate film for dicing of the present invention When the substrate film for dicing of the present invention is used, the semiconductor wafer and the die bond layer are collectively cut well (split) in the expand performed under the low temperature condition and the high speed condition.
  • the miniaturization of the semiconductor product proceeds, and while the sheet is required to be expanded (expandability), the sheet becomes a sheet having higher expandability and shrinkage.

Abstract

A purpose of the present invention is to provide a substrate film for dicing having high heat resilience and excellent rack recovery properties. A further purpose of the present invention is to provide a substrate film for dicing in which a dicing film stretches uniformly even when expansion is performed under the condition of a low temperature. The substrate film for dicing comprises a surface layer/an intermediate layer/a back layer laminated in this order, wherein the surface layer and the back layer are composed of a resin composition including a polyethylene-based resin, and the intermediate layer is composed of a resin composition including a polyurethane-based resin.

Description

ダイシング用基体フィルムSubstrate film for dicing
 本発明は、半導体ウェハをチップ状にダイシングする際に、半導体ウェハに貼着して固定し使用される、ダイシング用基体フィルムに関する。 The present invention relates to a substrate film for dicing, which is adhered and fixed to a semiconductor wafer when the semiconductor wafer is diced into chips.
 半導体チップを製造する方法として、半導体ウェハを予め大面積で製造し、次いでその半導体ウェハをチップ状にダイシング(切断分離)し、最後にダイシングされたチップをピックアッップする方法がある。半導体ウェハの切断方法として、近年、レーザー加工装置を用い、半導体ウェハに接触することなく半導体ウェハを切断(分断)するステルスダイシングが知られている。 As a method of manufacturing a semiconductor chip, there is a method of manufacturing a semiconductor wafer with a large area in advance, then dicing (cutting and separating) the semiconductor wafer into chips and finally picking up the diced chips. As a cutting method of a semiconductor wafer, stealth dicing which cuts a semiconductor wafer without contacting a semiconductor wafer (cutting) is known in recent years using a laser processing apparatus.
 ステルスダイシングによる半導体ウェハの切断性(分断性)を向上させる方法として、-15~5℃の低温条件下でエキスパンドを実施することによって、ダイシングテープ上に設けたダイボンドフィルムの伸びを抑制し、且つ応力を増加させる方法で、半導体ウェハとダイボンドフィルムとが一括して良好に切断(分断)されるウェハ加工用テープが知られている(特許文献1及び2)。 As a method of improving the cutting ability (dividing ability) of a semiconductor wafer by stealth dicing, expansion is carried out under a low temperature condition of -15 to 5 ° C to suppress the elongation of the die bond film provided on the dicing tape, and A wafer processing tape is known in which a semiconductor wafer and a die bond film are collectively cut well (divided) by a method of increasing stress (Patent Documents 1 and 2).
特開2015-185584号公報JP, 2015-185584, A 特開2015-185591号公報Unexamined-Japanese-Patent No. 2015-185591
 本発明は、熱による復元性が高く、ラック回収性に優れたダイシング用基体フィルムを提供することを目的とする。 An object of the present invention is to provide a substrate film for dicing having high heat recovery and excellent rack recovery.
 本発明は、更に、低温条件下でエキスパンドを実施した場合であっても、均一に伸張するダイシング用基体フィルムを提供することを目的とする。 Another object of the present invention is to provide a substrate film for dicing which is uniformly stretched even when expanding is performed under low temperature conditions.
 本発明は、更に、ステルスダイシング(レーザーダイシング)後、半導体ウェハとダイボンド層を切断(分断)する場合に、低温条件(-15~5℃)及び高速条件でエキスパンドを実施しても、良好に伸張するダイシング用基体フィルムを提供することを目的とする。 Furthermore, in the case of cutting (dividing) the semiconductor wafer and the die bonding layer after stealth dicing (laser dicing), the present invention is also favorable even if the expand is performed under low temperature conditions (-15 to 5 ° C.) and high speed conditions. An object of the present invention is to provide a substrate film for dicing which is stretched.
 半導体製造ラインでは、エキスパンド工程後に加工途中の製品が残ったシート(ダイシング用基体フィルムを含むダイシングフィルム)を、ラックにおいて一時的に保管することが望まれている。その際に、シートにたるみが残ったままであると、ラックに良好に収納できない、製品同士が衝突し欠陥が生じる等の問題に繋がる傾向があった。該ラックは、当業界で用いられる名称であり、他にジッパーやケース等とも呼ばれている。 In a semiconductor manufacturing line, it is desired to temporarily store in a rack a sheet (a dicing film including a substrate film for dicing) in which a product being processed remains after an expanding step. At that time, if the slack remains in the sheet, it tends to lead to problems such as that the product can not be stored well in a rack, the products collide with each other, and a defect occurs. The rack is a name used in the industry, and is also called a zipper or a case.
 これを解決するためには、エキスパンド工程後にシートのたるみを解消する必要がある。その方法として、ヒートシュリンク技術(加熱収縮復元技術)が存在する。これは、エキスパンド工程によって生じたたるみ部を加熱することでその部分を収縮させ、たるみを解消するというもの(加熱収縮による復元率が高いということ)である。 In order to solve this, it is necessary to eliminate the sagging of the sheet after the expanding step. As a method therefor, there is a heat shrink technology (heat shrinkage and restoration technology). This is a thing of shrinking the part by heating the slack part which arose by the expanding process, and eliminating slack (a thing with a high restoration rate by heat contraction).
 例えば-15~5℃の低温条件下でエキスパンドを実施した場合であっても、ダイシングフィルムが均一に伸張し、半導体ウェハが良好に切断されることが求められている。 For example, even when expanding is performed under a low temperature condition of −15 to 5 ° C., it is required that the dicing film is uniformly stretched and the semiconductor wafer is cut well.
 更に、例えばステルスダイシング後、前記低温条件に加えて、高速条件でエキスパンドを実施した場合であっても、ダイシングフィルムが良好に伸張し、半導体ウェハとダイボンド層が良好に切断(分断)されることが求められている。 Furthermore, for example, after stealth dicing, even when expanding is performed under high-speed conditions in addition to the above-mentioned low-temperature conditions, the dicing film expands well and the semiconductor wafer and the die bond layer are cut well (divided) Is required.
 本発明者は、上記の課題を解決するために鋭意研究を行った。 The present inventor has intensively studied to solve the above-mentioned problems.
 ダイシング用基体フィルムが、下記の表層/中間層/裏層の順に積層された構成を含み、中間層にポリウレタン系樹脂を用いることで、エキスパンド工程後のシート(ダイシング用基体フィルムを含むダイシングフィルム)のたるみが、ヒートシュリンク技術(加熱収縮復元技術)により良好に解消されることを見出した。 A substrate film for dicing includes a structure in which the following surface layer / intermediate layer / backing layer is laminated in order, and a polyurethane resin is used for the intermediate layer, so that a sheet after the expanding step (dicing film including substrate film for dicing) It has been found that the sagging is well eliminated by the heat shrink technology (heat shrinkage technology).
 前記ダイシング用基体フィルムは、低温条件下でエキスパンドを実施した場合であっても、ダイシングフィルムが均一に伸張することを見出した。前記ダイシング用基体フィルムは、低温条件に加えて、高速条件でエキスパンドを実施した場合であっても、ダイシングフィルムが良好に伸張することを見出した。 It has been found that the dicing base film of the above-mentioned substrate film is uniformly stretched even when the expansion is carried out under low temperature conditions. It was found that the dicing film was well stretched even when the above-mentioned substrate film for dicing was expanded under high-speed conditions in addition to low-temperature conditions.
 項1.
 表層/中間層/裏層の順に積層された構成を含むダイシング用基体フィルムであって、 表層及び裏層はポリエチレン系樹脂を含む樹脂組成物からなり、
 中間層はポリウレタン系樹脂を含む樹脂組成物からなる、
 ダイシング用基体フィルム。
Item 1.
It is a base film for dicing including the structure laminated | stacked in order of surface layer / middle layer / back layer, Comprising: A surface layer and a back layer consist of a resin composition containing polyethylene-type resin,
The middle layer is made of a resin composition containing a polyurethane resin,
Substrate film for dicing.
 項2.
 前記表層及び/又は裏層が、単層又は複層である、前記項1記載のダイシング用基体フィルム。
Item 2.
The base film for dicing according to the above item 1, wherein the surface layer and / or the back layer is a single layer or a multilayer.
 項3.
 前記ポリエチレン系樹脂が、分岐鎖状低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、エチレン-酢酸ビニル共重合体(EVA)、エチレン-メチルアクリレート共重合体(EMA)、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、エチレン-メチルメタクリレート共重合体(EMMA)、エチレン-メタクリル酸共重合体(EMAA)、及びアイオノマー樹脂からなる群から選ばれる少なくとも1種の樹脂である、前記項1又は2に記載のダイシング用基体フィルム。
Item 3.
The polyethylene-based resin is branched low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene- At least one resin selected from the group consisting of ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, ethylene-methyl methacrylate copolymer (EMMA), ethylene-methacrylic acid copolymer (EMAA), and ionomer resin 3. The substrate film for dicing according to item 1 or 2 above.
 項4.
 前記ポリウレタン系樹脂が、熱可塑性ポリウレタン樹脂(TPU)である、前記項1~3のいずれかに記載のダイシング用基体フィルム。
Item 4.
The substrate film for dicing according to any one of Items 1 to 3, wherein the polyurethane resin is a thermoplastic polyurethane resin (TPU).
 項5.
 前記項1~4のいずれか1項記載のダイシング用基体フィルムの表層側に、粘着剤層とダイボンド層とをこの順に設けたダイシングフィルム。
Item 5.
5. A dicing film wherein an adhesive layer and a die bond layer are provided in this order on the surface side of the substrate film for dicing according to any one of Items 1 to 4.
 本発明のダイシング用基体フィルムを用いると、使用済みのダイシングフィルムのラックへの回収が、より迅速にかつ簡便に行える。つまり、本発明のダイシング用基体フィルムは、熱による復元性が高く、つまりヒートシュリンク性が良好に発揮され、ラック回収性に優れている。 By using the substrate film for dicing of the present invention, collection of used dicing films into a rack can be performed more quickly and easily. That is, the substrate film for dicing of the present invention has high heat recovery, that is, it exhibits good heat shrinkability and is excellent in rack recovery.
 本発明のダイシング用基体フィルムを用いると、低温条件下でエキスパンドを実施した場合であっても、ダイシングフィルムが均一に伸張する。 When the substrate film for dicing of the present invention is used, the dicing film is uniformly stretched even when expanding is performed under low temperature conditions.
 本発明のダイシング用基体フィルムを用いると、例えばステルスダイシング後、半導体ウェハとダイボンド層を切断(分断)する場合に、低温条件及び高速条件下でエキスパンドを実施した場合であっても、ダイシングフィルムが良好に伸張する。 When the substrate film for dicing of the present invention is used, for example, in the case of cutting (dividing) a semiconductor wafer and a die-bonding layer after stealth dicing, the dicing film may be expanded even under low temperature conditions and high speed conditions. Stretches well.
 本発明は、ダイシング用基体フィルムに関する。 The present invention relates to a substrate film for dicing.
 更に本発明は、ダイシング用基体フィルム上に粘着剤層とダイボンド層をこの順に設けたダイシングフィルムに関する。 Furthermore, the present invention relates to a dicing film in which an adhesive layer and a die bonding layer are provided in this order on a substrate film for dicing.
 (1)ダイシング用基体フィルム
 本発明のダイシング用基体フィルムは、
 表層/中間層/裏層の順に積層された構成を含むことを特徴とする。
(1) Substrate film for dicing The substrate film for dicing of the present invention is
It is characterized by including the composition laminated in order of surface / middle class / back layer.
 前記表層及び/又は裏層が、単層又は複層であることが好ましい。 It is preferable that the surface layer and / or the back layer be a single layer or a multilayer.
 以下、本発明のダイシング用基体フィルムを構成する各層について詳細に説明する。 Hereinafter, each layer which comprises the base film for dicing of this invention is demonstrated in detail.
 (1-1)表層
 表層は、ポリエチレン系樹脂を含む樹脂組成物からなる。
(1-1) Surface Layer The surface layer is made of a resin composition containing a polyethylene resin.
 表層に含まれるポリエチレン系樹脂として、分岐鎖状低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、エチレン-酢酸ビニル共重合体(EVA)、エチレン-メチルアクリレート共重合体(EMA)、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、エチレン-メチルメタクリレート共重合体(EMMA)、エチレン-メタクリル酸共重合体(EMAA)、及びアイオノマー樹脂からなる群から選ばれる少なくとも1種の成分を用いることが好ましい。 As polyethylene-based resin contained in the surface layer, branched low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA) At least one selected from the group consisting of ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, ethylene-methyl methacrylate copolymer (EMMA), ethylene-methacrylic acid copolymer (EMAA), and ionomer resin It is preferred to use species components.
 表層は、これら少なくとも1種の成分を含む樹脂組成物からなることで、ダイシング用基体フィルムのエキスパンド性、即ち、基材の引張物性に優れる。 The surface layer is excellent in the expandability of the substrate film for dicing, that is, the tensile properties of the substrate, by being made of the resin composition containing at least one of these components.
 その他、本発明の効果を損なわない限りにおいて、ポリプロピレン系樹脂を配合しても良い。 In addition, as long as the effects of the present invention are not impaired, a polypropylene-based resin may be blended.
 エチレン-酢酸ビニル共重合体(EVA)の190℃におけるメルトフローレート(MFR)は、30g/10分程度以下であれば良く、20g/10分程度以下が好ましく、15g/10分程度以下がより好ましく、10g/10分程度以下が更に好ましい。上記MFRを10g/10分以下に設定することにより、中間層との粘度差を抑制できるため、安定した製膜が可能となる。 The melt flow rate (MFR) at 190 ° C. of ethylene-vinyl acetate copolymer (EVA) may be about 30 g / 10 min or less, preferably about 20 g / 10 min or less, and more preferably about 15 g / 10 min or less Preferably, about 10 g / 10 minutes or less is more preferable. By setting the MFR to 10 g / 10 min or less, the difference in viscosity with the intermediate layer can be suppressed, and stable film formation becomes possible.
 また、EVAのMFRは、樹脂の押出しを容易にするため、0.1g/10分程度以上が好ましく、0.3g/10分程度以上がより好ましい。 Further, MFR of EVA is preferably about 0.1 g / 10 min or more, and more preferably about 0.3 g / 10 min or more, in order to facilitate extrusion of the resin.
 EVAの密度は、0.9~0.96g/cm3程度が好ましく、0.92~0.94g/cm3程度がより好ましい。 The density of EVA is preferably about 0.9 ~ 0.96g / cm 3, more preferably about 0.92 ~ 0.94g / cm 3.
 分岐鎖状低密度ポリエチレン(LDPE)の190℃におけるメルトフローレート(MFR)は、10g/10分程度以下が好ましく、6g/10分程度以下がより好ましい。上記MFRを10g/10分以下に設定することにより、中間層との粘度差を抑制できるため、安定した製膜が可能となる。 The melt flow rate (MFR) at 190 ° C. of the branched low density polyethylene (LDPE) is preferably about 10 g / 10 min or less, and more preferably about 6 g / 10 min or less. By setting the MFR to 10 g / 10 min or less, the difference in viscosity with the intermediate layer can be suppressed, and stable film formation becomes possible.
 また、LDPEのMFRは、樹脂の押出しを容易にするため、0.1g/10分程度以上が好ましく、0.3g/10分程度以上がより好ましい。 Moreover, in order to make extrusion of resin easy, about 0.1 g / 10 minutes or more are preferable, and, as for MFR of LDPE, about 0.3 g / 10 minutes or more are more preferable.
 LDPEの密度は、0.9~0.94g/cm3程度が好ましく、0.91~0.93g/cm3程度がより好ましい。 The density of LDPE is preferably about 0.9 ~ 0.94g / cm 3, more preferably about 0.91 ~ 0.93g / cm 3.
 直鎖状低密度ポリエチレン(LLDPE)の190℃におけるメルトフローレート(MFR)は、10g/10分程度以下が好ましく、6g/10分程度以下がより好ましい。上記MFRを10g/10分以下に設定することにより、中間層との粘度差を抑制できるため、安定した製膜が可能となる。 The melt flow rate (MFR) at 190 ° C. of linear low density polyethylene (LLDPE) is preferably about 10 g / 10 min or less, and more preferably about 6 g / 10 min or less. By setting the MFR to 10 g / 10 min or less, the difference in viscosity with the intermediate layer can be suppressed, and stable film formation becomes possible.
 また、LLDPEのMFRは、樹脂の押出しを容易にするため、0.1g/10分程度以上が好ましく、0.3g/10分程度以上がより好ましい。 Moreover, in order to make extrusion of resin easy, about 0.1 g / 10 minutes or more are preferable, and, as for MFR of LLDPE, about 0.3 g / 10 minutes or more are more preferable.
 LLDPEの密度は、0.9~0.94g/cm3程度が好ましく、0.91~0.93g/cm3程度がより好ましい。 The density of LLDPE is preferably about 0.9 ~ 0.94g / cm 3, more preferably about 0.91 ~ 0.93g / cm 3.
 ここで、メルトフローレート(MFR)はISO 1133に準拠して求めたものであり、密度はISO 1183-1:2004に準拠して求めたものである。 Here, the melt flow rate (MFR) is determined in accordance with ISO 1133, and the density is determined in accordance with ISO 1183-1: 2004.
 表層には、必要に応じ、更に帯電防止剤を含んでいても良い。前記表層で使用できる帯電防止剤を、表層においても使用できる。表層で用いられる帯電防止剤としては、アニオン系,カチオン系、ノニオン系等の公知の界面活性剤を選択できるが、とりわけ持続性、耐久性の点から、PEEA樹脂、親水性PO樹脂等のノニオン系界面活性剤が好適である。 The surface layer may further contain an antistatic agent, if necessary. The antistatic agent that can be used in the surface layer can also be used in the surface layer. As the antistatic agent used in the surface layer, known surfactants such as anion type, cation type and nonionic type can be selected. Among them, nonionic agents such as PEEA resin and hydrophilic PO resin from the viewpoint of durability and durability. Surfactants are preferred.
 表層が帯電防止剤を含む場合、帯電防止剤の含有量は、表層の樹脂組成物中、帯電防止剤を5~25重量%程度が好ましく、7~22重量%程度がより好ましい。帯電防止剤を前記範囲で配合することにより、エキスパンドリングと接して一様にエキスパンドされる場合の表層の滑り性を損なうことがない。 When the surface layer contains an antistatic agent, the content of the antistatic agent is preferably about 5 to 25% by weight, more preferably about 7 to 22% by weight, of the antistatic agent in the resin composition of the surface layer. By blending the antistatic agent in the above range, the slipperiness of the surface layer in the case of being uniformly expanded in contact with the expanding ring is not impaired.
 また、有効に半導電性が付与されるため、発生する静電気を素早く除電することが可能となる。例えば、上記した範囲で帯電防止剤を含有させた本発明のダイシング用基体フィルムは、その裏面の表面抵抗率が107~1012Ω/□程度となるため好ましい。 In addition, since semiconductivity is effectively imparted, it is possible to quickly eliminate static electricity generated. For example, the substrate film for dicing of the present invention in which the antistatic agent is contained in the above-mentioned range is preferable because the surface resistivity of the back surface thereof is about 10 7 to 10 12 Ω / □.
 表層には、更にアンチブロッキング剤等を加えても良い。アンチブロッキング剤を添加することにより、ダイシング用基体フィルムをロール状に巻き取った場合等のブロッキングが抑えられ好ましい。アンチブロッキング剤としては、無機系又は有機系の微粒子を例示することができる。 An antiblocking agent may be further added to the surface layer. The addition of the antiblocking agent is preferable because blocking such as when the substrate film for dicing is rolled up is suppressed. As the antiblocking agent, inorganic or organic fine particles can be exemplified.
 (1-2)裏層
 裏層は、表層と同様に、ポリエチレン系樹脂を含む樹脂組成物からなる。
(1-2) Back Layer The back layer is made of a resin composition containing a polyethylene-based resin, as in the surface layer.
 表層に用いられるポリエチレン系樹脂を使用してもよく、表層とは異なるポリエチレン系樹脂を使用してもよい。 A polyethylene-based resin used for the surface layer may be used, or a polyethylene-based resin different from the surface layer may be used.
 また、必要に応じて、表層と同様、帯電防止剤やアンチブロッキング剤を含んでいても良い。 Also, as necessary, as in the surface layer, an antistatic agent or an antiblocking agent may be contained.
 本発明のダイシング用基体フィルムは、前記表層及び/又は裏層が、単層であっても良いし、複層であっても良い。本発明のダイシング用基体フィルムは、必要に応じて、表層及び/又は裏層を複数層設けることができる。 In the substrate film for dicing of the present invention, the surface layer and / or the back layer may be a single layer or a multilayer. The substrate film for dicing of the present invention can be provided with a plurality of surface layers and / or back layers, if necessary.
 表層及び/又は裏層を複層とする場合、最表層側から順に表層-1、表層-2、表層-3、・・・と表し、また、最裏層側から順に裏層-1、裏層-2、裏層-3、・・・と表す。 When the surface layer and / or the back layer are composed of multiple layers, they are represented as surface layer-1, surface layer-2, surface layer-3, ... in order from the outermost layer side, and back layer-1 in reverse order from the back layer side. It is represented as layer-2, back layer-3,.
 (1-3)中間層
 中間層は、ポリウレタン系樹脂(PU)を含む樹脂組成物からなる。
(1-3) Intermediate Layer The intermediate layer is made of a resin composition containing a polyurethane resin (PU).
 前記PUは、熱可塑性ポリウレタン樹脂(TPU)であることが好ましい。 The PU is preferably a thermoplastic polyurethane resin (TPU).
 ダイシング用基体フィルムが、ポリウレタン系樹脂(PU)を含む樹脂組成物からなる中間層を有することにより、エキスパンド性を向上させることが可能である。 It is possible to improve expandability by having the middle layer which consists of a resin composition containing polyurethane system resin (PU) for a substrate film for dicing.
 ダイシング用基体フィルムが、ポリウレタン系樹脂(PU)を含む樹脂組成物からなる中間層を有することにより、例えばステルスダイシング後、半導体ウェハとダイボンド層を切断(分断)する場合に、低温条件及び高速条件でエキスパンドを実施した場合であっても、ダイシングフィルムが良好に伸張する。 When the substrate film for dicing has an intermediate layer made of a resin composition containing a polyurethane resin (PU), low temperature conditions and high speed conditions, for example, when cutting (dividing) a semiconductor wafer and a die bond layer after stealth dicing. Even if the expansion is carried out in the above, the dicing film stretches well.
 (i)ポリウレタン系樹脂(PU)
 ポリウレタン系樹脂(PU)として、熱可塑性ポリウレタン樹脂(TPU)を用いることが好ましい。TPUとしては、ポリイソシアネート、ポリオール及び鎖伸長剤を反応させることにより得られるものであり、ポリオールとポリイソシアネートの反応によってできたソフトセグメントと鎖伸長剤とポリイソシアネートの反応によってできたハードセグメントとからなるブロックコポリマーである。
(I) Polyurethane resin (PU)
It is preferable to use a thermoplastic polyurethane resin (TPU) as the polyurethane resin (PU). TPU is obtained by reacting a polyisocyanate, a polyol and a chain extender, and comprises a soft segment produced by the reaction of a polyol and a polyisocyanate and a hard segment produced by the reaction of a chain extender and a polyisocyanate. Block copolymers.
 ポリイソシアネートとしては、例えばジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、トリジンジイソシアネート、1,5-ナフタレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート等が挙げられる。これらのうち、ジフェニルメタンジイソシアネート及び/又はヘキサメチレンジイソシアネートが、熱可塑性ポリウレタン樹脂の耐擦過傷性の点で好ましい。 Examples of the polyisocyanate include diphenylmethane diisocyanate, hexamethylene diisocyanate, tolidine diisocyanate, 1,5-naphthalene diisocyanate, isophorone diisocyanate, xylylene diisocyanate and the like. Among these, diphenylmethane diisocyanate and / or hexamethylene diisocyanate is preferred in view of the abrasion resistance of the thermoplastic polyurethane resin.
 ポリオールとしては、例えばポリテトラメチレンエーテルグリコール、ポリエステルポリオール、ラクトン系ポリエステルポリオール等が挙げられる。ポリエステルポリオールは、ジカルボン酸とジオールの重縮合反応により得られる。 Examples of the polyol include polytetramethylene ether glycol, polyester polyol, lactone polyester polyol and the like. Polyester polyols are obtained by the polycondensation reaction of dicarboxylic acids and diols.
 ポリエステルポリオールの製造に用いられるジオールは具体的には、エタンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール等が挙げられ、これらの単独、或いは併用したものである。 Specific examples of the diol used for producing the polyester polyol include ethanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol and the like. Or in combination.
 また、本発明に用いられるジカルボン酸は、アジピン酸、セバシン酸等が挙げられ、これらの単独、或いは併用したものである。 Further, examples of the dicarboxylic acid used in the present invention include adipic acid and sebacic acid, and these are used alone or in combination.
 これらのポリオールのうち、熱可塑性ポリウレタン樹脂が高い反発弾性が得られるという点で、ポリテトラメチレンエーテルグリコールであることが好ましい。また、かかるポリオールの数平均分子量は、1,000~4,000であるのが好ましく、数平均分子量が2,000~3,000であるものが特に好ましい。 Among these polyols, polytetramethylene ether glycol is preferable in that a thermoplastic polyurethane resin can obtain high impact resilience. Further, the number average molecular weight of such a polyol is preferably 1,000 to 4,000, and it is particularly preferable that the number average molecular weight is 2,000 to 3,000.
 また、鎖伸長剤としては、例えばエタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール等の炭素原子数が2~6の脂肪族直鎖ジオール、1,4-ビス(ヒドロキシエトキシ)ベンゼン等が挙げられる。ヘキサメチレンジアミン、イソホロンジアミン、トリレンジアミン、モノエタノールアミン等のようなアミン類も一部併用して用いることができる。これらのうち、熱可塑性ポリウレタン樹脂の耐擦過傷性の点で炭素原子数が2~6の脂肪族直鎖ジオールが好ましい。 Further, as a chain extender, for example, aliphatic linear diol having 2 to 6 carbon atoms such as ethanediol, 1,4-butanediol, 1,6-hexanediol, 1,4-bis (hydroxyethoxy) Benzene and the like can be mentioned. Amines such as hexamethylenediamine, isophoronediamine, tolylenediamine, monoethanolamine and the like can also be used partially in combination. Among them, aliphatic straight chain diols having 2 to 6 carbon atoms are preferable in view of the abrasion resistance of the thermoplastic polyurethane resin.
 熱可塑性ポリウレタン樹脂の密度は、1.1~1.5g/cm3程度が好ましく、1.1~1.3g/cm3程度がより好ましい。 The density of the thermoplastic polyurethane resin is preferably about 1.1 ~ 1.5g / cm 3, more preferably about 1.1 ~ 1.3g / cm 3.
 熱可塑性ポリウレタン樹脂は、上記の原料をワンショット法、プレポリマー法等の公知の方法を用いて製造できる。 A thermoplastic polyurethane resin can manufacture said raw material using well-known methods, such as a one-shot method and a prepolymer method.
 PUとしては、例えば、ディーアイシーコベストロポリマー(株)製のパンデックス、日本ミラクトラン(株)製のミラクトラン等が挙げられる。 Examples of PU include Pandex manufactured by D.I. C. Vesturopolymer Co., Ltd., and Milactolan manufactured by Japan Miractoran Co., Ltd.
 中間層は、構成する樹脂組成物が、前記(i)PUに加えて、(ii)ポリエチレン系樹脂を含んでも良い。 The intermediate layer may include (ii) a polyethylene-based resin in addition to the (i) PU described above.
 (ii)ポリエチレン系樹脂 
 ポリエチレン系樹脂は、表層で使用可能な樹脂を用いることができる。
(Ii) Polyethylene resin
The polyethylene resin can be a resin usable in the surface layer.
 表層で使用されているポリエチレン系樹脂と同じ樹脂を中間層に用いてもよく、表層で使用されているポリエチレン系樹脂と異なる樹脂を用いてもよい。ポリエチレン系樹脂として、上記PUと共に、エチレン-メタクリル酸共重合体(EMAA)を用いることが好ましい。 The same resin as the polyethylene-based resin used in the surface layer may be used for the intermediate layer, or a resin different from the polyethylene-based resin used in the surface layer may be used. It is preferable to use ethylene-methacrylic acid copolymer (EMAA) as the polyethylene resin together with the above-mentioned PU.
 中間層にポリエチレン系樹脂を含む場合の含有割合は、0~80重量%が好ましく、0~70重量%が好ましい。 The content of the polyethylene resin in the intermediate layer is preferably 0 to 80% by weight, and more preferably 0 to 70% by weight.
 ポリエチレン系樹脂が0~80重量%の範囲であれば、ダイシング用基体フィルムのエキスパンド性、すなわち引張物性が良好である。 When the polyethylene resin is in the range of 0 to 80% by weight, the expandability of the substrate film for dicing, that is, the tensile property is good.
 (1-4)ダイシング用基体フィルムの層構成
 本発明のダイシング用基体フィルムは、表層/中間層/裏層の順に積層された構成を含む。
(1-4) Layer Configuration of Substrate Film for Dicing The substrate film for dicing of the present invention includes a configuration in which a surface layer / intermediate layer / back layer is laminated in order.
 表層は、ウェハ接触側であり、粘着層と接する層である。 The surface layer is a layer in contact with the wafer and in contact with the adhesive layer.
 中間層は、各樹脂単独で層(単層)を形成しても良いし、樹脂の混合物で層(単層)を形成しても良いし、樹脂毎に層(多層)を形成しても良い。 The intermediate layer may form a layer (monolayer) with each resin alone, may form a layer (monolayer) with a mixture of resins, or may form a layer (multilayer) for each resin. good.
 本発明のダイシング用基体フィルムでは、前記表層及び/又は裏層が、単層又は複層であることが好ましい。表裏層は、LDPE、EVA等が、各樹脂で層(単層)を形成しても良いし、樹脂の混合物で層(単層)を形成しても良いし、樹脂毎に層(多層)を形成しても良い。 In the substrate film for dicing of the present invention, the surface layer and / or the back layer is preferably a single layer or a multilayer. In the front and back layers, LDPE, EVA, etc. may form a layer (single layer) with each resin, or a layer (single layer) may be formed with a mixture of resins, and each layer (multilayer) You may form
 本発明のダイシング用基体フィルムの全体の厚さとしては、50~300μm程度が好ましく、70~200μm程度がより好ましく、80~150μm程度が更に好ましい。ダイシング用基体フィルムの全体の厚さを50μm以上に設定することにより、半導体ウェハをダイシングする際に、半導体ウェハを衝撃から保護することが可能となる。 The total thickness of the substrate film for dicing of the present invention is preferably about 50 to 300 μm, more preferably about 70 to 200 μm, and still more preferably about 80 to 150 μm. By setting the total thickness of the substrate film for dicing to 50 μm or more, when dicing the semiconductor wafer, it is possible to protect the semiconductor wafer from impact.
 ダイシング用基体フィルム全厚さに対し、表層及び裏層の厚さの割合は4~80%程度が好ましく、10~60%程度がより好ましい。 The ratio of the thickness of the surface layer and the back layer is preferably about 4 to 80%, more preferably about 10 to 60%, with respect to the total thickness of the substrate film for dicing.
 ダイシング用基体フィルム全厚さに対し、中間層の厚さの割合は20~96%程度が好ましく、40~90%程度がより好ましい。 The ratio of the thickness of the intermediate layer to the total thickness of the substrate film for dicing is preferably about 20 to 96%, and more preferably about 40 to 90%.
 ダイシング用基体フィルムの具体例として、ダイシング用基体フィルムの全厚さが60~100μm程度の場合を説明する。 As a specific example of the substrate film for dicing, the case where the total thickness of the substrate film for dicing is about 60 to 100 μm will be described.
 表層及び裏層の厚さは、各2~44μm程度が好ましく、各10~38μm程度がより好ましい。表層及び裏層が複層である時は、総厚さとして、上記の厚み範囲内で各層を形成すればよい。 The thickness of the surface layer and the back layer is preferably about 2 to 44 μm each, and more preferably about 10 to 38 μm each. When the surface layer and the back layer are multilayers, each layer may be formed within the above thickness range as a total thickness.
 中間層の厚さは12~96μm程度が好ましく、24~80μm程度がより好ましい。中間層が複層である時は、総厚さとして、上記の厚み範囲内で各層を形成すればよい。 The thickness of the intermediate layer is preferably about 12 to 96 μm, and more preferably about 24 to 80 μm. When the intermediate layer is a multilayer, each layer may be formed within the above thickness range as a total thickness.
 3種5層とする例(表層-1/表層-2/中間層/裏層-2/裏層-1)
 3種5層とする例では、上述したとおり、表層-1と表層-2の総厚さが上記表層の厚さの範囲となり、同様に、裏層-1と裏層-2の総厚さが上記裏層の厚さの範囲となる。
Example with 3 types and 5 layers (Surface-1 / Surface-2 / Intermediate / Back layer-2 / Back layer-1)
In the example of three types and five layers, as described above, the total thickness of the surface layer-1 and the surface layer-2 is in the range of the thickness of the surface layer, and similarly, the total thickness of the back layer-1 and the back layer-2 Is the range of the thickness of the back layer.
 表層-1と表層-2は、同種のポリエチレン系樹脂を用いてもよく、異種のポリエチレン系樹脂を用いてもよい。 The surface layer-1 and the surface layer-2 may use polyethylene resins of the same type, or different polyethylene resins.
 裏層-1と裏層-2は、同種のポリエチレン系樹脂を用いてもよく、異種のポリエチレン系樹脂を用いてもよい。 The back layer 1 and the back layer 2 may use polyethylene resins of the same type, or different polyethylene resins.
 同種のポリエチレン系樹脂を用いる場合として、例えば、EVAを用いる場合、表層-2及び裏層-2に用いるEVAは、表層-1及び裏層-1に用いるEVAに比べ、ビニル基の含有量(VA含有量)が高いEVAを用いることが好ましい。 When using the same polyethylene-based resin, for example, when using EVA, the EVA used for the surface layer 2 and the back layer 2 has a vinyl group content (compared to the EVA used for the surface layer 1 and the back layer 1 It is preferable to use EVA having a high VA content).
 表層-1及び裏層-1では、VA含有量が5~15重量%程度のEVAを用いることが好ましく、7~13重量%程度のEVAを用いることがより好ましい。 In the surface layer-1 and the back layer-1, it is preferable to use EVA having a VA content of about 5 to 15% by weight, and more preferably about 7 to 13% by weight.
 表層-2及び裏層-2では、VA含有量が15~33重量%程度のEVAを用いることが好ましく、28~33重量%程度のEVAを用いることがより好ましい。 In the surface layer-2 and the back layer-2, it is preferable to use EVA having a VA content of about 15 to 33% by weight, and more preferably about 28 to 33% by weight.
 また、MFRの観点では、表層-2及び裏層-2に用いるEVAは、表層-1及び裏層-1に比べて、メルトフローレート(MFR)が高いEVAを用いることが好ましい。 From the viewpoint of MFR, it is preferable to use EVA having a high melt flow rate (MFR) as the EVA used for the surface layer 2 and the back layer 2 compared to the surface layer 1 and the back layer 1.
 表層-1及び裏層-1では、EVAの190℃におけるMFRは0.1g/10分~10g/10分程度が好ましく、5g/10分~10g/10分程度がより好ましい。 In the surface layer-1 and the back layer-1, the MFR at 190 ° C. of EVA is preferably about 0.1 g / 10 minutes to 10 g / 10 minutes, and more preferably about 5 g / 10 minutes to 10 g / 10 minutes.
 表層-2及び裏層-2では、EVAの190℃におけるMFRは、10g/10分~40g/10分程度が好ましく、12g/10分~35g/10分程度がより好ましい。 In the surface layer-2 and the back layer-2, MFR at 190 ° C. of EVA is preferably about 10 g / 10 minutes to 40 g / 10 minutes, and more preferably about 12 g / 10 minutes to 35 g / 10 minutes.
 (2)ダイシング用基体フィルムの製法
 表層/中間層/裏層のダイシング用基体フィルムは、表層、中間層、及び裏層用の樹脂組成物を多層共押出成形して製造することができる。具体的には、前記表層用樹脂組成物、中間層用樹脂組成物、及び裏層用樹脂組成物を、表層/中間層/裏層の順に積層されるよう共押出成形することにより製造することができる。
(2) Production method of base film for dicing The base film for dicing of the surface layer / intermediate layer / back layer can be produced by multi-layer coextrusion molding of the resin composition for the surface layer, the intermediate layer and the back layer. Specifically, the resin composition for surface layer, the resin composition for intermediate layer, and the resin composition for back layer are manufactured by co-extrusion so as to be laminated in the order of surface layer / intermediate layer / back layer. Can.
 更に、表層及び裏層を複層構成にする場合には、各表層及び裏層用の樹脂組成物を夫々の押出機に投入し、例えば、表層-1/表層-2/中間層/裏層-2/裏層-1の順に積層されるように共押出成形することにより製造することができる。 Furthermore, when the surface layer and the back layer have a multilayer structure, the resin composition for each surface layer and the back layer is charged into each extruder, for example, surface layer-1 / surface layer-2 / intermediate layer / back layer It can be manufactured by coextrusion so as to be laminated in the order of -2 / back layer-1.
 表層を構成する樹脂組成物には、必要に応じて更に帯電防止剤を加えることができる。裏層も同様である。 If necessary, an antistatic agent can be further added to the resin composition constituting the surface layer. The same is true for the back layer.
 上記した各層用樹脂を夫々この順でスクリュー式押出機に供給し、180~240℃で多層Tダイからフィルム状に押出し、これを30~70℃の冷却ロ-ルに通しながら冷却して実質的に無延伸で引き取る。或いは、各層用樹脂を一旦ペレットとして取得した後、上記の様に押出成形してもよい。 The resin for each layer described above is supplied to the screw extruder in this order, extruded from a multilayer T die at 180 to 240 ° C. into a film, and cooled while passing through a cooling roll at 30 to 70 ° C. It pulls away without stretching. Alternatively, the resin for each layer may be once obtained as pellets and then extruded as described above.
 引き取りの際に実質的に無延伸とするのは、ダイシング後に行うフィルムの拡張を有効に行うためである。この実質的に無延伸とは、無延伸、或いは、ダイシングフィルムの拡張に悪影響を与えない程度の僅少の延伸を含むものである。通常、フィルム引き取りの際に、たるみの生じない程度の引っ張りであれば良い。 The fact that the film is not substantially drawn at the time of take-up is to effectively expand the film after dicing. The term "substantially non-stretching" refers to non-stretching or slight stretching to such an extent that the extension of the dicing film is not adversely affected. In general, it is sufficient that the film is pulled to such an extent that no sag occurs when taking up the film.
 (3)ダイシングフィルムの製造
 本発明のダイシングフィルムは、周知の技術に沿って製造することができる。例えば、粘着剤層を構成する粘着剤を有機溶剤等の溶媒に溶解させ、これをダイシング用基体フィルム上に塗布し、溶媒を除去することにより基体フィルム/粘着剤層の構成のフィルムを得ることができる。
(3) Production of Dicing Film The dicing film of the present invention can be produced according to known techniques. For example, the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is dissolved in a solvent such as an organic solvent, the solution is applied on a substrate film for dicing, and the solvent is removed to obtain a film of a substrate film / pressure-sensitive adhesive layer. Can.
 ダイボンド層を構成する樹脂組成物を、有機溶剤等の溶媒に溶解させ、別のフィルム(剥離フィルム)上に塗布し、溶媒を除去することによって、ダイボンドフィルムを作製する。 The resin composition which comprises a die-bonding layer is dissolved in solvent, such as an organic solvent, it apply | coats on another film (peeling film), and a die-bonding film is produced by removing a solvent.
 更に、前記粘着剤層とダイボンド層を対向するように重ね合わせることにより、ダイシングフィルムを作製する。これにより、基体フィルム/粘着剤層/ダイボンド層の構成のフィルムを得ることができる。この段階ではダイボンド層は、半導体ウェハと粘着層と弱く(擬似)接着した状態で、貼り合わされている。 Furthermore, a dicing film is produced by superimposing the pressure-sensitive adhesive layer and the die-bonding layer so as to face each other. Thereby, the film of the structure of a base film / adhesive layer / die-bonding layer can be obtained. At this stage, the die bonding layer is bonded to the semiconductor wafer and the adhesive layer in a weak (pseudo) bonding state.
 エキスパンド後、分断された半導体チップとダイボンド層は、所定のパッケージ又は半導体チップを積層させて、ダイボンド層が強く接着する温度まで過熱し、接着させる。 After expansion, the divided semiconductor chip and die bonding layer are stacked on a predetermined package or semiconductor chip, heated to a temperature at which the die bonding layer is strongly bonded, and bonded.
 以下に、本発明を、実施例を用いてより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
 (1)ダイシング用基体フィルムの原料
 表1にダイシング用基体フィルムの原料を示した。
(1) Raw Material of Substrate Film for Dicing Table 1 shows the material of the substrate film for dicing.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[略称の説明]
 PE-1~9:ポリエチレン系樹脂1~9
 SEBS:スチレン-ブタジエン共重合体水素添加物
     (スチレン-エチレン-ブチレン-スチレン共重合体)
 TPU:熱可塑性ポリウレタン(PU)
 非晶性PO:非晶性ポリオレフィン
 LDPE:分岐状低密度ポリエチレン
 EVA:エチレン-酢酸ビニル共重合体
 VA含量:酢酸ビニル含有割合
 EMAA:エチレン-メタクリル酸共重合体
 MAA含量:メタクリル酸含有量
 St含量:スチレン含有割合
  (ビニル芳香族炭化水素系樹脂中のビニル芳香族炭化水素(St)成分の含有量)
[Explanation of abbreviations]
PE-1 to 9: Polyethylene resin 1 to 9
SEBS: Styrene-Butadiene Copolymer Hydrogen Additive (Styrene-Ethylene-Butylene-Styrene Copolymer)
TPU: Thermoplastic polyurethane (PU)
Amorphous PO: amorphous polyolefin LDPE: branched low density polyethylene EVA: ethylene-vinyl acetate copolymer VA content: vinyl acetate content ratio EMAA: ethylene-methacrylic acid copolymer MAA content: methacrylic acid content St content : Styrene content ratio (content of vinyl aromatic hydrocarbon (St) component in vinyl aromatic hydrocarbon resin)
(2)表層/中間層/裏層のダイシング用基体フィルムの製造
 表2に記載の表層/中間層/裏層(3層)となるように、各成分及び組成で樹脂組成物を配合し、ダイシング用基体フィルムを作製した。
(2) Production of base film for dicing of surface layer / intermediate layer / back layer The resin composition is blended with each component and composition so as to be the surface layer / interlayer / back layer (three layers) described in Table 2. A substrate film for dicing was produced.
 各層を構成する樹脂組成物を、220℃に調整された夫々の押出機に投入し表層/中間層/裏層の順序になるように、220℃のTダイスにより押出し、積層し、30℃の冷却水が循環するチルロール上に共押出しせしめて、フラット状の3層フィルムを得た。 The resin composition constituting each layer is introduced into the respective extruders adjusted to 220 ° C. and extruded by a 220 ° C. T die so as to be in the order of surface layer / interlayer / back layer, laminated at 30 ° C. Cooling water was co-extruded on a circulating chill roll to obtain a flat three-layer film.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (3)表層-1/表層-2/中間層/裏層-2/裏層-1のダイシング用基体フィルムの製造
 表3及び4に記載の表層-1/表層-2/中間層/裏層-2/裏層-1(5層)となるように、各成分及び組成で樹脂組成物を配合し、ダイシング用基体フィルムを作製した。
(3) Production of base film for dicing of surface layer-1 / surface layer-2 / intermediate layer / back layer-2 / back layer-1 Surface layer-1 / surface layer-2 / interlayer / back layer described in Table 3 and 4 A resin composition was blended with each component and composition so as to be −2 / backing layer-1 (5 layers), to prepare a substrate film for dicing.
 各層を構成する樹脂組成物を、220℃に調整された夫々の押出機に投入し表層-1/表層-2/中間層/裏層-2/裏層-1の順序になるように、220℃のTダイスにより押出し、積層し、30℃の冷却水が循環するチルロール上に共押出しせしめて、フラット状の5層フィルムを得た。 The resin composition constituting each layer is introduced into the respective extruders adjusted to 220 ° C., and in the order of surface layer-1 / surface layer-2 / intermediate layer / back layer-2 / back layer-1, 220 The mixture was extruded through a T-die, laminated, and co-extruded on a chill roll circulating cooling water of 30 ° C. to obtain a flat five-layer film.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (4)ダイシング用基体フィルムの評価
 (4-1)低温エキスパンド性(Ex性)
 <評価方法>
 (引張伸度の測定)
 フィルムのMD方向(フィルム成形の押出方向)及びTD方向(フィルム成形により成形されたフィルムの幅方向)について、200mm/minの引張速度で、10mm幅でチャック間距離が40mmになるように加工したフィルムサンプルを用いて、フィルムの引張伸度測定を行った。
(4) Evaluation of base film for dicing (4-1) Low temperature expandability (Ex property)
<Evaluation method>
(Measurement of tensile elongation)
The film was processed so that the distance between chucks was 40 mm with a width of 10 mm at a tensile speed of 200 mm / min in the MD direction (extrusion direction of film forming) and TD direction (width direction of film formed by film forming) The film was subjected to tensile elongation measurement of the film using the film sample.
 (25%モジュラスの測定)
 フィルムのMD方向(フィルム成形の押出方向)及びTD方向(フィルム成形により成形されたフィルムの幅方向)について、200mm/minの引張速度で、10mm幅でチャック間距離が40mmになるように加工したフィルムサンプルを用いて、SSカーブ(応力-ひずみ曲線)を得た。
(Measurement of 25% modulus)
The film was processed so that the distance between chucks was 40 mm with a width of 10 mm at a tensile speed of 200 mm / min in the MD direction (extrusion direction of film forming) and TD direction (width direction of film formed by film forming) SS curves (stress-strain curves) were obtained using film samples.
 得られたSSカーブの、伸び率25%における応力値を夫々読み取った。 The stress value at an elongation of 25% of the obtained SS curve was read.
 <評価基準>
 (ア)低温エキスパンド性(低温Ex性)
 ○:引張試験を行った際に、伸び率が100%以上である。
 ×:引張試験を行った際に、フィルム伸び率が100%未満である。
<Evaluation criteria>
(A) Low temperature expandability (low temperature Ex property)
:: Elongation percentage is 100% or more when a tensile test is performed.
X: Film elongation is less than 100% when a tensile test is conducted.
 (イ)均一エキスパンド性(均一Ex性)
 MD方向の伸び率25%における応力値と、TD方向の伸び率25%における応力値の比を求め、モジュラス比(MD/TD)とした。
 ○:モジュラス比(MD/TD)が1.5未満である。
 ×:モジュラス比(MD/TD)が1.5以上である。
(A) Uniform expandability (uniform ex. Property)
The ratio of the stress value at an elongation rate of 25% in the MD direction to the stress value at an elongation rate of 25% in the TD direction was determined as a modulus ratio (MD / TD).
○: Modulus ratio (MD / TD) is less than 1.5.
X: Modulus ratio (MD / TD) is 1.5 or more.
 モジュラス比(MD/TD)が、前記範囲にあることで、ダイシング用基体フィルムは、-15~5℃の低温条件下で、良好な均一エキスパンド性(均一Ex性)を発揮する。 When the modulus ratio (MD / TD) is in the above range, the substrate film for dicing exhibits good uniform expandability (uniform Ex property) under low temperature conditions of -15 to 5 ° C.
 (4-2)低温高速エキスパンド性(低温高速Ex性)
 <評価方法> 
(破断伸び(最大伸び)(%)の測定)
 引張試験:株式会社島津製作所製「HYDROSHOT・HITS-T10」を用いて、-15±2℃環境下で、250mm/secの引張速度で、25mm幅でチャック間距離が10mmになるように加工したフィルムサンプルを、MD方向及びTD方向に、破断するまで伸ばした。
(4-2) Low-temperature high-speed expandability (low-temperature high-speed Ex)
<Evaluation method>
(Measurement of elongation at break (maximum elongation) (%))
Tensile test: Using “HYDROS HOT-HITS-T10” manufactured by Shimadzu Corporation, processed at a tension speed of 250 mm / sec under an environment of −15 ± 2 ° C. so that the distance between chucks is 10 mm with a width of 25 mm. The film sample was stretched in the MD and TD directions until it broke.
 荷重と伸びのデータプロットより、SSカーブ(応力-ひずみ曲線)を作成し、破断伸び(最大伸び)を算出した。 An SS curve (stress-strain curve) was created from data plots of load and elongation, and elongation at break (maximum elongation) was calculated.
 <評価基準>
 (高速引張試験評価(機械特性))
 ○:MD及びTD方向の破断引張伸びが120%以上である。
 ×:MD及びTD方向の破断引張伸びが120%未満である。
<Evaluation criteria>
(High-speed tensile test evaluation (mechanical properties))
○: The tensile elongation at break in the MD and TD directions is 120% or more.
X: The tensile elongation at break in the MD and TD directions is less than 120%.
 この評価方法では、引張速度を250mm/secに設定して、引張試験を行うことで、低温条件に加えて、高速条件でのエキスパンド性を評価している。そして、フィルムのMD及びTD方向の破断引張伸びが120%以上であることで、例えばステルスダイシング後、低温条件(-15~5℃)及び高速条件でのエキスパンドを実施する際に、フィルムが良好に伸張する。 In this evaluation method, the tensile speed is set to 250 mm / sec and a tensile test is performed to evaluate the expandability under high speed conditions in addition to the low temperature conditions. And, when the tensile elongation at break in the MD and TD directions of the film is 120% or more, for example, after stealth dicing, when expanding under low temperature conditions (-15 to 5 ° C.) and high speed conditions, the film is good To stretch.
 (4-3)ヒートシュリンク性(HS性)
 条件1-引張試験:株式会社島津製作所製「オートグラフAG-500NX TRAPEZIUM X」を用いて、-15±2℃環境下で、200mm/minの引張速度で、10mm幅でチャック間距離が40mmになるように加工したフィルムサンプルを、MD方向及びTD方向に、夫々200%伸ばした。
(4-3) Heat shrink (HS)
Condition 1-Tensile test: Using "Autograph AG-500NX TRAPEZIUM X" manufactured by Shimadzu Corporation, under a -15 ± 2 ° C environment, the distance between chucks is 40 mm with a width of 10 mm at a tensile speed of 200 mm / min. The thus-processed film sample was stretched by 200% in the MD and TD directions, respectively.
 条件2-収縮試験:三菱重工冷熱株式会社製「恒湿器TBP105DA」を用いて、設定温度80℃にて5秒間サンプルを加熱させた。 Condition 2-Shrinkage test: A sample was heated at a set temperature of 80 ° C. for 5 seconds using “Humidifier TBP105DA” manufactured by Mitsubishi Heavy Industries Cold Thermal Co., Ltd.
 <評価方法>
 長さ100mm(標線間隔40mm+つかみシロ(上下に30mmずつ))、幅10mmの大きさのフィルム短冊サンプルを作成し、上記条件1にて伸長させた。
<Evaluation method>
A film strip sample having a length of 100 mm (mark line interval 40 mm + grip (30 mm at the top and bottom) and a width of 10 mm was prepared and stretched under the above condition 1.
 200%伸長させた状態にて10秒間保持した後、チャックを元の位置に戻し、チャックを開放し、サンプルを上記条件2にて収縮させた。 After holding for 10 seconds with 200% elongation, the chuck was returned to the original position, the chuck was opened, and the sample was shrunk under the above condition 2.
 収縮後の標線間隔L[mm]を測定し、下記計算式にて、回復率を算出した。 The mark interval L [mm] after contraction was measured, and the recovery rate was calculated by the following formula.
  回復率[%]={(120-L)/80}×100
 MD方向及びTD方向共に、回復率を測定し、これをヒートシュリンク性(HS性)と表した。
Recovery rate [%] = {(120-L) / 80} × 100
The recovery rate was measured in both the MD direction and the TD direction, and this was expressed as heat shrinkability (HS property).
 <評価基準>
 (ア)ヒートシュリンク性(HS性)
 ○:ヒートシュリンクにより、回復率が70%以上である。
   回復率は、90~110%であることがより好ましい。
 ×:ヒートシュリンクにより、回復率が70%未満である。
<Evaluation criteria>
(A) Heat shrink (HS)
○: Recovery rate is 70% or more due to heat shrink.
The recovery rate is more preferably 90 to 110%.
X: The recovery rate is less than 70% by heat shrink.
 MD及びTD方向の回復率が、前記範囲にあることで、ダイシング用基体フィルムは、80℃環境下で、良好なヒートシュリンク性(HS性)を発揮する。 When the recovery rate in the MD and TD directions is in the above range, the substrate film for dicing exhibits good heat shrinkability (HS property) under an environment of 80 ° C.
 (イ)均一ヒートシュリンク性(均一HS性)
 ○:MD方向の回復率とTD方向の回復率との比(MD/TD)が1.2未満である。
   回復率の比(MD/TD)は、0.9~1.15であることがより好ましい。
 ×:回復率の比(MD/TD)が1.2以上である。
(A) Uniform heat shrink (uniform HS)
○: The ratio of the recovery rate in the MD direction to the recovery rate in the TD direction (MD / TD) is less than 1.2.
The ratio of recovery rates (MD / TD) is more preferably 0.9 to 1.15.
X: Recovery ratio (MD / TD) is 1.2 or more.
 回復率の比(MD/TD)が、前記範囲にあることで、ダイシング用基体フィルムは、80℃の条件下で、良好な均一ヒートシュリンク性(均一HS性)を発揮する。 When the ratio of recovery rate (MD / TD) is in the above range, the substrate film for dicing exhibits good uniform heat shrinkability (uniform HS property) under the condition of 80 ° C.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明のダイシング用基体フィルム(実施例1~12)は、低温条件下でエキスパンドを実施した場合であっても、ダイシングフィルムが均一に伸張した。 The dicing film of the substrate film for dicing (Examples 1 to 12) of the present invention was uniformly stretched even when expanding was performed under low temperature conditions.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明(実施例)のダイシング用基体フィルムは、比較例に比べて、ヒートシュリンク性(HS性)の数値が有意に大きな値となった。つまり、本発明のダイシング用基体フィルムは、ヒートシュリンク性がより良好であった。 In the substrate film for dicing of the present invention (example), the value of the heat shrink property (HS property) was a significantly large value as compared with the comparative example. That is, the substrate film for dicing of the present invention had better heat shrinkability.
 低温エキスパンド性(Ex性)は、本発明(実施例)及び比較例のダイシング用基体フィルムで、どちらも許容範囲であった。 The low temperature expandability (Ex property) was acceptable in both of the substrate films for dicing of the present invention (examples) and comparative examples.
 本発明(実施例)のダイシング用基体フィルムは、比較例に比べて、低温高速エキスパンド性(低温高速Ex性)が良好であった。 The substrate film for dicing of the present invention (Example) was excellent in low-temperature high-speed expandability (low-temperature high-speed Ex property) as compared with the comparative example.
 (5)考察
 ヒートシュリンク性
 本発明のダイシング用基体フィルムを用いると、ダイシングフィルム(シート)は、エキスパンド工程を経た後でも、生じたたるみ部を加熱することでその部分を収縮させ、たるみを解消することができる。
(5) Consideration Heat Shrinkability When the substrate film for dicing of the present invention is used, the dicing film (sheet) shrinks its part by heating the slack part generated even after passing through the expanding step, and the slack is eliminated. can do.
 本発明のダイシング用基体フィルムを用いると、特にダイシングフィルム(シート)は、加熱収縮による復元率が高い。 When the substrate film for dicing of the present invention is used, in particular, the dicing film (sheet) has a high recovery ratio due to heat shrinkage.
 本発明のダイシング用基体フィルムを用いると、使用済みのダイシングフィルムのラックへの回収が、より迅速にかつ簡便に行える。つまり、本発明のダイシング用基体フィルムは、熱による復元性が高く、しかもダイシングフィルムが均一に回復する。つまりヒートシュリンク性が良好に発揮され、ラック回収性に優れている。また、本発明のダイシング用基体フィルムを用いた製品同士は衝突せず欠陥が生じない。 By using the substrate film for dicing of the present invention, collection of used dicing films into a rack can be performed more quickly and easily. That is, the substrate film for dicing of the present invention has high heat recovery, and the dicing film is uniformly recovered. That is, heat shrinkability is exhibited well and rack recovery is excellent. Further, products using the substrate film for dicing of the present invention do not collide with each other, and no defect occurs.
 エキスパンド性
 本発明のダイシング用基体フィルムを用いると、低温条件下でエキスパンドを実施した場合であっても、エキスパンド性は良好で、しかもダイシングフィルムが均一に伸張する。本発明のダイシング用基体フィルムを用いると、低温条件下で実施されるエキスパンドにおいて、半導体ウェハとダイボンド層が一括して良好に切断(分断)される。
Expandability When the substrate film for dicing of the present invention is used, the expandability is good and the dicing film is uniformly stretched even when expanding is performed under low temperature conditions. When the substrate film for dicing of the present invention is used, the semiconductor wafer and the die bond layer are collectively cut well (split) in the expand performed under low temperature conditions.
 本発明のダイシング用基体フィルムを用いると、特に、ステルスダイシング後、半導体ウェハとダイボンド層を切断(分断)する場合に、低温条件及び高速条件下でエキスパンドを実施した場合であっても、エキスパンド性が良好であり、ダイシングフィルムが良好に伸張する。本発明のダイシング用基体フィルムを用いると、低温条件及び高速条件下で実施されるエキスパンドにおいて、半導体ウェハとダイボンド層が一括して良好に切断(分断)される。 When the substrate film for dicing of the present invention is used, in particular, when stealth dicing, the semiconductor wafer and the die bond layer are cut (divided), expandability is achieved even when expand is performed under low temperature conditions and high speed conditions. Is good, and the dicing film stretches well. When the substrate film for dicing of the present invention is used, the semiconductor wafer and the die bond layer are collectively cut well (split) in the expand performed under the low temperature condition and the high speed condition.
 本発明のダイシング用基体フィルムを用いると、半導体製品の小型化が進み、シートにおいてより拡張すること(エキスパンド性)が求められる中で、より拡張性・収縮性が高いシートとなる。 When the substrate film for dicing of the present invention is used, the miniaturization of the semiconductor product proceeds, and while the sheet is required to be expanded (expandability), the sheet becomes a sheet having higher expandability and shrinkage.

Claims (5)

  1.  表層/中間層/裏層の順に積層された構成を含むダイシング用基体フィルムであって、
     表層及び裏層はポリエチレン系樹脂を含む樹脂組成物からなり、
     中間層はポリウレタン系樹脂を含む樹脂組成物からなる、
     ダイシング用基体フィルム。
    It is a substrate film for dicing including the structure laminated | stacked in order of surface layer / middle layer / back layer, Comprising:
    The surface layer and the back layer are made of a resin composition containing a polyethylene resin,
    The middle layer is made of a resin composition containing a polyurethane resin,
    Substrate film for dicing.
  2.  前記表層及び/又は裏層が、単層又は複層である、請求項1記載のダイシング用基体フィルム。 The substrate film for dicing according to claim 1, wherein the surface layer and / or the back layer is a single layer or a multilayer.
  3.  前記ポリエチレン系樹脂が、分岐鎖状低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、エチレン-酢酸ビニル共重合体(EVA)、エチレン-メチルアクリレート共重合体(EMA)、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、エチレン-メチルメタクリレート共重合体(EMMA)、エチレン-メタクリル酸共重合体(EMAA)、及びアイオノマー樹脂からなる群から選ばれる少なくとも1種の樹脂である、請求項1又は2に記載のダイシング用基体フィルム。 The polyethylene-based resin is branched low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene- At least one resin selected from the group consisting of ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, ethylene-methyl methacrylate copolymer (EMMA), ethylene-methacrylic acid copolymer (EMAA), and ionomer resin The substrate film for dicing according to claim 1 or 2.
  4.  前記ポリウレタン系樹脂が、熱可塑性ポリウレタン樹脂(TPU)である、請求項1~3のいずれかに記載のダイシング用基体フィルム。 The substrate film for dicing according to any one of claims 1 to 3, wherein the polyurethane resin is a thermoplastic polyurethane resin (TPU).
  5.  請求項1~4のいずれか1項記載のダイシング用基体フィルムの表層側に、粘着剤層とダイボンド層とをこの順に設けたダイシングフィルム。 A dicing film wherein a pressure-sensitive adhesive layer and a die bonding layer are provided in this order on the surface side of the substrate film for dicing according to any one of claims 1 to 4.
PCT/JP2018/029385 2017-08-25 2018-08-06 Substrate film for dicing WO2019039253A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237038440A KR20230157537A (en) 2017-08-25 2018-08-06 Substrate film for dicing
CN201880043105.1A CN110800084A (en) 2017-08-25 2018-08-06 Cutting base film
JP2019538045A JP7421339B2 (en) 2017-08-25 2018-08-06 Base film for dicing
KR1020197036854A KR20200045444A (en) 2017-08-25 2018-08-06 Gas film for dicing
JP2023182491A JP2024008947A (en) 2017-08-25 2023-10-24 Base film for dicing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017162613 2017-08-25
JP2017-162613 2017-08-25

Publications (1)

Publication Number Publication Date
WO2019039253A1 true WO2019039253A1 (en) 2019-02-28

Family

ID=65438882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029385 WO2019039253A1 (en) 2017-08-25 2018-08-06 Substrate film for dicing

Country Status (5)

Country Link
JP (2) JP7421339B2 (en)
KR (2) KR20200045444A (en)
CN (1) CN110800084A (en)
TW (1) TWI813582B (en)
WO (1) WO2019039253A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021061325A (en) * 2019-10-07 2021-04-15 倉敷紡績株式会社 Dicing sheet and base film therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113122160A (en) * 2021-04-29 2021-07-16 东莞市金恒晟新材料科技有限公司 Preparation method of novel thermal tackifying protective film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124169A (en) * 1998-08-10 2000-04-28 Lintec Corp Dicing tape and dicing method
JP2002155249A (en) * 2000-11-22 2002-05-28 Mitsui Chemicals Inc Adhesive tape for processing wafer and method for producing the same and method for using the same
JP2004122758A (en) * 2002-07-26 2004-04-22 Nitto Denko Corp Multi-layer sheet, its manufacturing method and adhesive sheet using multi-layer sheet
JP2009231778A (en) * 2008-03-25 2009-10-08 Lintec Corp Dual-purpose laser dicing and concurrent die-bonding sheet and method for manufacturing chip composite
JP2015185591A (en) * 2014-03-20 2015-10-22 日立化成株式会社 Wafer processing tape

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101157406B (en) * 2007-10-30 2010-12-29 中国石化扬子石油化工有限公司 A packaging elastic contraction film and preparing method
JP6299315B2 (en) 2014-03-20 2018-03-28 日立化成株式会社 Wafer processing tape
KR102457313B1 (en) * 2014-09-29 2022-10-20 린텍 가부시키가이샤 Base for sheets for semiconductor wafer processing, sheet for semiconductor wafer processing, and method for manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124169A (en) * 1998-08-10 2000-04-28 Lintec Corp Dicing tape and dicing method
JP2002155249A (en) * 2000-11-22 2002-05-28 Mitsui Chemicals Inc Adhesive tape for processing wafer and method for producing the same and method for using the same
JP2004122758A (en) * 2002-07-26 2004-04-22 Nitto Denko Corp Multi-layer sheet, its manufacturing method and adhesive sheet using multi-layer sheet
JP2009231778A (en) * 2008-03-25 2009-10-08 Lintec Corp Dual-purpose laser dicing and concurrent die-bonding sheet and method for manufacturing chip composite
JP2015185591A (en) * 2014-03-20 2015-10-22 日立化成株式会社 Wafer processing tape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021061325A (en) * 2019-10-07 2021-04-15 倉敷紡績株式会社 Dicing sheet and base film therefor

Also Published As

Publication number Publication date
KR20230157537A (en) 2023-11-16
CN110800084A (en) 2020-02-14
JP7421339B2 (en) 2024-01-24
KR20200045444A (en) 2020-05-04
TWI813582B (en) 2023-09-01
JP2024008947A (en) 2024-01-19
JPWO2019039253A1 (en) 2020-08-06
TW201912416A (en) 2019-04-01

Similar Documents

Publication Publication Date Title
JP2024008947A (en) Base film for dicing
JP6506556B2 (en) Self-adhesive surface protection film
JP2007185781A (en) Surface protective film
JP5456602B2 (en) Cover tape, cover tape manufacturing method, and electronic component package
JP7252380B2 (en) Base film for dicing
KR101265551B1 (en) Oriented Polypropylene Film and Composition for Adhesive Layer
JP6227494B2 (en) Base film used for adhesive film for semiconductor manufacturing process
JPH05104618A (en) Manufacture for polyester film having favorable tear property and twisting property
JP2021150505A (en) Base film for dicing
JP6535508B2 (en) Substrate film used for adhesive film for semiconductive process
WO1995003368A1 (en) Pressure sensitive adhesive film
JP7245108B2 (en) Base film for dicing
JP2017048386A (en) Film excellent in tactile feeling
JP4048419B2 (en) Stretched polyester film
JP5328193B2 (en) Multilayer backgrind substrate film, backgrind film, and method for producing the same
JP2011016860A (en) Sheet-shaped adhesive composition, and adhesive sheet having the same
JP3139830B2 (en) Print laminating film
JP2021174841A (en) Base film for dicing
JP2023013675A (en) Thermoplastic resin film, adhesive film, and adhesive film for semiconductor manufacturing process
JPH028050A (en) Laminate of oriented polypropylene films and use thereof
JPS61167551A (en) Laminated polypropylene film
JP2023155246A (en) Base film for dicing
TW202229450A (en) Resin composition, substrate film for dicing tape, dicing tape, and resin film
JP2022093019A (en) Multilayer film, adhesive film, and adhesive film for semiconductor manufacturing process
JP2022167401A (en) Film for back grinding process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538045

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848698

Country of ref document: EP

Kind code of ref document: A1