JP4048419B2 - Stretched polyester film - Google Patents

Stretched polyester film Download PDF

Info

Publication number
JP4048419B2
JP4048419B2 JP2002122760A JP2002122760A JP4048419B2 JP 4048419 B2 JP4048419 B2 JP 4048419B2 JP 2002122760 A JP2002122760 A JP 2002122760A JP 2002122760 A JP2002122760 A JP 2002122760A JP 4048419 B2 JP4048419 B2 JP 4048419B2
Authority
JP
Japan
Prior art keywords
polyester resin
film
polyester
resin layer
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002122760A
Other languages
Japanese (ja)
Other versions
JP2003311906A (en
Inventor
一元 今井
尚伸 小田
裕之 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002122760A priority Critical patent/JP4048419B2/en
Publication of JP2003311906A publication Critical patent/JP2003311906A/en
Application granted granted Critical
Publication of JP4048419B2 publication Critical patent/JP4048419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【0001】
【本願発明の技術分野】
本発明はポリエステル延伸フィルムに関する。更に詳しくは、ポリエステル延伸フィルムの優れた特性である透明性、耐熱性、保香性、耐水性等を失うことなく実用面の特性を維持し、且つ保管中、或いは加工中に高温下に曝された場合に於いても柔軟性を失うことなく、その伸度を維持し、良好な引き裂き性とひねり性を具備した包装用フィルムやテープ用フィルムとして有用なポリエステル延伸フィルムに関する。
【0002】
【従来の技術】
従来から、切断性の優れたフィルムとしては、セロハンが知られている。セロハンは、その優れた透明性と易切断性、ひねり・しわ固定性等の特性により各種包装材料、粘着テープ用として重用されている。しかし、一方ではセロハンは吸湿性を有するため特性が季節により変動し一定の品質のものを常に供給することは困難であった。また、ポリエチレンテレフタレートをベースフィルムとした包装用袋や粘着テープなどは、延伸されたポリエチレンテレフタレートフタレートフィルムの強靱性、耐熱性、耐水性、透明性などの優れた特性の良さにより様々な用途に用いられているが、これらの優れた特性を有する反面、切断し難く、包装用袋の口を引き裂き難い欠点や、粘着テープが切りにくい欠点、及びひねり固定性が劣る為にひねり包装用に用いることができない等の欠点があった。
【0003】
上記欠点を解決する方法として、一軸方向に配向させたポリエステルフィルム(特公昭55−8551)やジエチレングリコール成分などを共重合させたもの(特公昭56−50692)や低分子量のポリエステル樹脂を用いるもの(特公昭55−20514)などが提案されている。
さらに、融点の異なるポリエステル樹脂層を有し、それぞれの融点の間で熱処理を行い、少なくとも一層の配向を崩壊させた積層ポリエステルフィルム(特開平5−104618)が提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術において一軸方向に配向させる方法は、配向方向へは直線的に容易に切れるが配向方向以外には切れ難く、またジエチレングリコールル成分などを多量に共重合させる方法は、共重合によりポリエチレンテレフタレート本来の特性が失われるという欠点を有している。また、低分子量のポリエステル樹脂を用いる方法は、延伸工程での膜破れのトラブルが発生しやすくなり実用的でなかった。
さらに、融点の異なるポリエステル樹脂層を有し、それぞれの融点の間で熱処理を行い、少なくとも一層の配向を崩壊させた積層ポリエステルフィルム(特開平5−104618)に於いては、印刷、或いはラミネート等で加熱された際に、結晶化が激しく進行することにより、フィルムが脆くなったり、白化がおこったり、その後の加工、或いは使用に耐えないという問題点があった。
【0005】
【課題を解決するための手段】
すなわち、本発明はセロハンの有する優れた特性のうち、特に任意の方向の易切断性、ひねり固定性に注目し、これらの特性を有しさらにポリエステルフィルムの優れた特性である透明性、耐熱性、防湿性、保香性等を合わせて有し、且つ加工の際に高温に曝された後にも柔軟性を有するフィルムを得ることを目的として研究し、これを達成したものである。
【0006】
つまり、本願発明の延伸ポリエステルフィルムは、ポリエステル樹脂層(A)の少なくとも片面に、ポリエステル樹脂層(A)の融点よりも10℃以上高い融点を有するポリエステル樹脂からなるポリエステル樹脂層(B)が積層され、かつ少なくとも一軸延伸された延伸ポリエステルフィルムであって、ポリエステル樹脂層(B)の合計の厚みが1〜10μmであり、ポリエステル樹脂層(A)が酸成分としてテレフタル酸を主成分とする結晶性ポリエステル樹脂(a−1)とガラス転移温度が結晶性ポリエステル樹脂(a−1)より低い熱可塑性樹脂(a−2)の混合物からなり、前記熱可塑性樹脂(a−2)が結晶性ポリエステル樹脂(a−1)に分散しており、下記式(1)から(4)を同時に満足するような海島構造を有し、かつヘイズが8以下であることを特徴とするものである。
式(1):0.02≦X≦1.0
式(2):0.02≦Y≦1.0
式(3):0.1≦X/Y≦10
式(4):N≧20
(上記式中、Xは島部分のフイルム長手方向長さの平均値(μm)、Yは島部分のフイルム幅方向長さの平均値(μm)、Nはフイルム幅方向断面に存在する島部分の個数(個/10μm2)を表す。)
本願発明の延伸ポリエステルフィルムの製造方法としては、酸成分としてテレフタル酸を主成分とする結晶性ポリエステル樹脂(a−1)とガラス転移温度が結晶性ポリエステル樹脂(a−1)より低い熱可塑性樹脂(a−2)の混合物からなるポリエステル樹脂層(A)の少なくとも片面に、ポリエステル樹脂層(A)の融点よりも10℃以上高い融点を有するポリエステル樹脂からなるポリエステル樹脂層(B)が積層された未延伸積層フィルムを少なくとも一軸延伸後に、ポリエステル樹脂層(A)を構成するテレフタル酸を主成分とする結晶性ポリエステル樹脂(a−1)の融点より5℃低い温度以上、かつポリエステル樹脂層(B)の融点未満の温度で熱処理する方法が好ましい。
【0007】
すなわち、本発明は例えば、融点の異なるポリエステル積層フィルムを延伸後、ポリエステル樹脂層(A)を構成する、低い融点を有する側のポリエステル樹脂(a−1)の融点より5℃低い温度以上で、かつ高い融点を有する側のポリエステル樹脂(B)の融点未満の温度で熱処理を実施することにより、ポリエステル樹脂層(A)は延伸工程での配向が崩れポリエステル樹脂の耐熱性、耐水性、保香性といった特性は維持しつつ引き裂き性とひねり固定性を有し、且つ、海島構造を有して分散する熱可塑性樹脂(a−2)の効果により柔軟性を具備する層を構成し、ポリエステル樹脂層(B)は配向を維持したポリエステルフィルム本来の耐熱性等の優れた特性を有する層を構成するという2種の異なる特性を構成する積層フィルムとなり、ポリエステルフィルム本来の優れた特性を有しつつ優れた耐熱性と良好な引き裂き性とひねり固定性を備えるという相反する特性を持ち、更に、熱可塑性樹脂(a−2)の分散している大きさを規定することにより透明性にも優れたポリエステルフィルムが得られることを見出したことによるものである。
【0008】
【発明の実施の形態】
本発明のポリエステル樹脂層(B)に用いられるポリエステル樹脂(B)は特に限定されるものではなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートおよびこれらの構成成分を主成分とする共重合体等がある。
【0009】
ポリエステル樹脂層(A)に用いられるポリエステル樹脂は、テレフタル酸を主成分とする結晶性ポリエステル樹脂(a−1)と、ガラス転移温度が結晶性ポリエステル樹脂(a−1)より低く、該結晶性ポリエステル樹脂(a−1)に対して海島構造を有して分散する熱可塑性樹脂(a−2)の混合物から成り、該結晶性ポリエステル樹脂(a−1)が、ポリエステル樹脂層(B)に用いられるポリエステル樹脂(B)の融点よりも10℃以上、好ましくは20℃以上低い融点を有する共重合体が好ましい。
【0010】
本発明における熱可塑性樹脂(a−2)は、ガラス転移温度が結晶性ポリエステル樹脂(a−1)より低く、該結晶性ポリエステル樹脂(a−1)に対して海島構造を有して分散する熱可塑性樹脂であれば何でも良く、具体例としては、低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、エチレン−プロピレン共重合体、エチレン−プロピレン−ブテン共重合体、エチレン−アクリル酸共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、ポリアミド及びポリアミド−ポリエチレンオキサイドブロック共重合体、ポリアミド−ポリテトラメチレンオキサイドブロック共重合体、ポリアミド−ポリエチレンオキサイドブロック共重合体等のポリアミド系エラストマー、ポリエステル−ポリエチレンオキサイドブロック共重合体、ポリエステル−ポリテトラメチレンオキサイドブロック共重合体等のポリエステル系エラストマーなどを上げることができる。
【0011】
本発明に於いて結晶性ポリエステル樹脂(a−1)と熱可塑性樹脂(a−2)との配合比は任意であるが、結晶性ポリエステル(a−1)に対して熱可塑性樹脂(a−2)が下記式(1)〜(4)を同時に満たすことが必要である。これは、本発明のフイルムに於ける高温に曝された後の柔軟性の保持は、ポリエステル樹脂層(A)の層中で、熱可塑性樹脂(a−2)が島状に分散することが必要であり、島状分散を起こしている熱可塑性樹脂(a−2)の形状が下記式(1)から(4)を共に満足することで本発明の目的である透明性と高温下に曝された後の柔軟性を達成することができる。
式(1) 0.02≦X≦1.0
式(2) 0.02≦Y≦1.0
式(3) 0.1≦X/Y≦10
式(4) N≧20
上記式中、Xは島部分のフイルム長手方向長さの平均値(μm)
Yは島部分のフイルム幅方向長さの平均値(μm)
Nはフイルム幅方向断面に存在する島部分の個数(個/10μm2
【0012】
即ちフイルムの長手方向断面又は幅方向断面上に観察される島部分の長手方向、幅方向長さの平均値をそれぞれX、Y(μm)とした場合、X又はYが0.02μm未満の場合、高温に曝された後の柔軟性が失われ、切断の原因となり使用上不都合となる。又、1.0μmを超えると透明性が悪化し本発明の目的である透明性に優れたフイルムである、ヘイズが8%以下であることを満たせなくなる。さらに、X/Yが0.1未満、又は10を超えた場合、手切れの際に方向性が生じ、任意方向の手切れが出来なくなる。また、Nが20(個/10μm2)未満であると、高温に曝された後の柔軟性が消失し、加工時の衝撃で切れるといったトラブルが発生する。
【0013】
さらに、ポリエステル樹脂層(B)の合計の厚みは1μm以上10μm以下、好ましくは2μm以上6μm以下の厚みが好ましい。ポリエステル樹脂層(B)の厚みが1μm未満の場合は、得られるフィルムの強度が低くなり、実用上支障がでるだけでなく、熱固定時にフイルムが溶融し製膜が困難となる。またポリエステル樹脂層(B)の厚みが10μmを越えると目的とする引き裂き性とひねり性が低下する。またポリエステル樹脂層(A)とポリエステル樹脂層(B)の積層は3層(B/A/B)または2層(B/A)の構成のどちらでもよいが、3層(B/A/B)に積層したものの方が加工時のカールや、耐熱性に於いて好ましい。さらに、延伸フィルムの厚みは本発明の目的とする用途である包装用袋や粘着テープなどで使用されるフィルム厚みは12μから30μであるが、特に限定されるものではない。
【0014】
本発明のポリエステルフィルムは、本発明の効果を阻害しない範囲で、公知の各種添加材、例えば滑剤、顔料、酸化防止剤、帯電防止剤等が添加されていてもよい。
【0015】
ここでいう未延伸積層フィルムとは、複数の押出機等の中で、融点以上の温度で別々に溶融し、ダイス出口から押し出して成形した未延伸フィルム同士を加温状態でラミネートする方法が挙げられる。別の方法としては一方の未延伸フィルムの表面に、他方の溶融フィルムを溶融ラミネートする方法がある。さらに別の方法としては共押し出し法により積層した状態でダイス出口より押し出して未延伸フィルムを成形する方法がある。
【0016】
次に本発明フィルムの製造法の一例を説明する。真空乾燥した結晶性ポリエステル樹脂(a−1)及び熱可塑性樹脂(a−2)を所定の割合で押出し機に供給し、別の押出し機にポリエステル樹脂(B)を供給する。2台の押出し機から、それぞれの融点以上の温度で溶融押し出しし、複合アダプターを通過させ、2種3層(B/A/B)または2種2層(B/A)として口金より押し出し冷却固化させて未延伸積層フィルムを成形する。
【0017】
このようにして得られた未延伸積層フィルムをポリエステル樹脂層(A)に用いられる結晶性ポリエステル樹脂(a−1)及びポリエステル樹脂(B)の二次転移点のうちの高い温度以上、結晶性ポリエステル樹脂(a−1)の融点以下の温度で一軸延伸または二軸延伸を行う。一軸延伸の場合は少なくとも1.5倍以上、好ましくは3〜5倍であり、二軸延伸の場合は延伸面積で2〜30倍、好ましくは9〜16倍である。また二軸延伸の場合は逐次延伸でも同時延伸でもよい。
【0018】
この延伸フィルムをポリエステル樹脂層(A)に用いられる結晶性ポリエステル樹脂(a−1)の融点よりも高く、かつポリエステル樹脂(B)の融点よりも低い温度で熱処理を行う。この熱処理では、必要に応じて弛緩処理を行ってもよいことは言うまでもない。
【0019】
【作用】
前記熱処理によりポリエステル樹脂層(A)は延伸による分子配向が殆ど崩壊し、本発明の目的とする引き裂き性とひねり性が得られ、ポリエステル樹脂層(B)は分子配向を維持している為に本発明の特性を有するフィルムが得られると考えられる。更に、ポリエステル樹脂層(A)に含まれる熱可塑性樹脂(a−2)が結晶性ポリエステル樹脂(a−1)中に海島構造に分散することで加工中に高温下に曝された後にも柔軟性を失うことなく、その伸度を維持すると考えられる。
【0020】
本発明は前述した如く、製膜ラインでの熱処理により分子配向が殆ど崩壊した引き裂き性とひねり性を付与する層と、分子配向を維持したポリエステル本来の特性を有する層のバランスにより目的とするフィルム特性を自在に設定出来る利点を有するとともに、分子配向を維持した層が存在し、且つ低ガラス転移温度の熱可塑性樹脂(a−2)が、引き裂き性とひねり性を付与する層に海島構造に分散していることによって、製膜での切断のトラブル等も防止できる利点を有する。
【0021】
【実施例】
以下実施例により本発明を説明する。実施例および比較例における評価の方法については(a)〜(e)の方法で行った。
【0022】
(a)断面形状評価
フイルムをエポキシ樹脂に包埋した後、フイルム長手方向或いは幅方向にミクロトームを用いて、トリミングと面出しを行なった。面出ししたエポキシブロックをRuO4蒸気中に置き、16時間染色を行なった。このブロックから超薄切片を作成し、TEM観察用のメッシュ上に乗せ、カーボン蒸着を施して観察用の試料とした。
観察は、日本電子製JEM2010透過型電子顕微鏡を用い、フイルム中のポリエステル樹脂層(A)に島状に分散している熱可塑性樹脂(a−2)の形状観察を行なった。
この観察により、熱可塑性樹脂(a−2)の長手方向の平均長さX(μm)、及び幅方向の平均長さY(μm)を求め、X/Yを算出した。
又、フイルム幅方向断面中にある結晶性ポリエステル樹脂(a−1)と熱可塑性樹脂(a−2)で構成された層中(50μm2)に観察される、島状に分散している熱可塑性樹脂(a−2)の個数を数え、10μm2あたりの個数を算出した。
【0023】
(b)ヘイズ
JIS−K7105に従い、ヘイズ(曇価)を求めた。
【0024】
(c)高温に曝された後の柔軟性
40℃の恒温室にて1週間エージングをした後に、JIS−K7127に従い、フイルム長手方向の引張破壊伸びを測定し、エージング前と変化しないものを○、伸びが5%未満となるものを×とした。
【0025】
(d)手切れ性
官能テストで行い、当該ポリエステルフイルム//9μmAl箔/20μm押出しLDPE とした後、ヒートシールにて製袋し、ヒートシール部分を手で切断した時、任意の方向に容易に手で切断できるものものを○、容易に手で切断できないもの、或いは、切れ方に方向性を有するものを×とした。
【0026】
(e)ひねり性
官能テストで行い、幅30mmのテープ状サンプルを手でひねった時、ひねった状態でもとに戻らないものを○、ひねった状態を維持できないものを×とした。
【0027】
(実施例1)
ポリエステル樹脂層(A)に、結晶性ポリエステル樹脂(a−1)として融点が200℃のポリエチレンイソフタレート共重合体、また、熱可塑性樹脂(a−2)としてジカルボン酸成分としてテレフタル酸100mol%、ジオール成分としてブタンジオール85mol%、分子量1000のポリテトラメチレングリコール15mol%からなるポリエチレンテレフタレート−ポリテトラメチレングリコール共重合体を用い、それぞれを97/3wt%の割合で混合したものを用いた。ポリエステル樹脂層(B)として、融点が260℃のポリエチレンテレフタレート(B)を用い、おのおの285℃の温度で別々の押出機により溶融し、この溶融体を複合アダプターで合流させた後にTダイより押し出し、冷却ドラムで急冷して(B/A/B)構成の3層の未延伸積層フィルムを得た。
【0028】
前記未延伸積層フィルムをまず縦方向に90℃で3.5倍、次いで横方向に110℃で3.8倍に延伸した後、3%の弛緩を行いつつ230℃の温度で熱処理を行い20μのフィルムを得た。このフィルムのB/A/B各層の厚み比率はそれぞれ2μm/16μm/2μmの比率であった。
【0029】
前記フイルムに於ける熱可塑性樹脂(a−2)の分散状態を観察したところ、長手方向長さX=0.1μm、幅方向長さY=0.1μm、N=25個/10μm2であった。
【0030】
かくして得られたフィルムヘイズが3であり透明性に優れ、爪をあてがう程度でどの方向にも容易に切断することができ、またフィルムをひねると、そのままのひねった状態を維持できた。更に、40℃にて1週間エージングした後にも柔軟性を有しており脆化することはなかった。また、本フィルムは製膜及びスリット時にも破断等のトラブルは無く生産性も良好であった。
【0031】
(実施例2)
実施例1と同じ原料、方法でB/A/B各層の厚みを4/12/4μmに変更した20μmのフィルムを得た。かくして得られたフィルムも実施例1よりも少し抵抗のある手切れ性のあるフィルムが得られた以外は透明性、ひねり固定性、柔軟性も良好であった。
【0032】
(実施例3)
実施例1と同じ原料、方法でB/A/B各層の厚みを1/18/1μmに変更した20μmのフィルムを得た。かくして得られたフィルムは透明性、手切れ性、ひねり固定性、柔軟性も良好であった。
【0033】
(比較例1)
実施例1と同じ原料、方法でB/A/B各層の厚み比率のみ6/8/6μmに変更した20μのフィルムを得た。かくして得られたフィルムは手切れ性はなく、またフィルムをひねっても元に戻り、ひねり固定性は無かった。
【0034】
(比較例2)
実施例1と同じ原料、方法でB/A/B各層の厚み比率のみ0.25/19.5/0.25μmに変更した20μのフィルムを得た。かくして得られたフィルムは熱固定時に溶融し、製膜加工できなかった。
【0035】
(比較例3)
ポリエチレンイソフタレート共重合体(A)の融点を245℃に変更した以外は全て実施例1と同じ方法、条件、厚み比率で20μのフィルムを得た。かくして得られたフィルムは手切れ性はなく、またフィルムをひねっても元に戻り、ひねり固定性は無かった。
【0036】
(比較例4)
熱固定の温度を180℃に変更した以外は全て実施例1と同じ方法、条件、厚み比率で20μのフィルムを得た。かくして得られたフィルムは手切れ性はなく、またフィルムをひねっても元に戻り、ひねり固定性は無かった。
【0037】
(実施例4)
実施例1の熱可塑性樹脂の添加量を15wt%に変更した以外は全て実施例1と同じ方法、条件、厚み比率で20μmのフイルムを得た。かくして得られたフィルムは、透明性が若干劣っていた以外は、手切れ性、ひねり固定性、柔軟性も良好であった。
【0038】
(比較例5)
熱可塑性樹脂(a−2)の添加量を減少以外は全て実施例1と同じ方法、条件、厚み比率で20μのフィルムを得た。かくして得られたフィルムは透明性、手切れ性、ひねり固定性に優れていたが、高温に曝した後の柔軟性に劣っていた。
【0039】
(比較例6)
熱可塑性樹脂(a−2)を構成する成分のうち、ブタンジオールを93.2mol%、分子量1000のポリテトラメチレングリコールを6.8mol%とし熱可塑性樹脂(a−2)を得た。該熱可塑性樹脂(a−2)を10wt%添加した以外は全て実施例1と同じ方法、条件、厚み比率で20μのフィルムを得た。かくして得られたフィルムは透明性、手切れ性、ひねり固定性に優れていたが、高温に曝した後の柔軟性に劣っていた。
【0040】
(比較例7)
熱可塑性樹脂(a−2)を構成する成分のうち、ブタンジオールを75mol%、分子量1000のポリテトラメチレングリコールを25mol%とし熱可塑性樹脂(a−2)を得た。該熱可塑性樹脂(a−2)を3wt%添加した以外は全て実施例1と同じ方法、条件、厚み比率で20μのフィルムを得た。かくして得られたフィルムは、手切れ性、ひねり固定性、柔軟性に優れていたが、透明性に劣っていた。
【0041】
(実施例5)
ダイス出口のせん断速度とドラフト比を変更することで、熱可塑性樹脂(a−2)の形状を変更した以外は全て実施例1と同じ方法、条件、厚み比率で20μmのフイルムを得た。該フイルムに於けるX/Yは6であった。かくして得られたフィルムは、透明性、手切れ性、ひねり固定性、柔軟性に優れていた。
【0042】
(比較例8)
実施例5と同様に熱可塑性樹脂(a−2)の形状を変更した以外は全て実施例1と同じ方法、条件、厚み比率で20μmのフイルムを得た。該フイルムに於けるX/Yは20であった。かくして得られたフィルムは、透明性、ひねり固定性、柔軟性に優れていたが、幅方向の手切れ性に劣っており、任意方向手切れ性が得られなかった。
【0043】
実施例および比較例で得られたフィルムの評価結果を表1、表2に示す。
【0044】
【表1】

Figure 0004048419
【0045】
【表2】
Figure 0004048419
【0046】
【発明の効果】
以上の如く、手切れ性、ひねり性の良好なポリエステルフィルムが得られ、包装用として有効なことがわかる。[0001]
[Technical field of the present invention]
The present invention relates to a stretched polyester film. More specifically, it maintains the practical properties without losing the excellent properties of the stretched polyester film, such as transparency, heat resistance, fragrance retention, and water resistance, and is exposed to high temperatures during storage or processing. In such a case, the present invention relates to a stretched polyester film useful as a packaging film or a film for tape, which maintains its elongation without losing flexibility even when formed, and has good tearability and twistability.
[0002]
[Prior art]
Conventionally, cellophane has been known as a film having excellent cutting properties. Cellophane is widely used for various packaging materials and adhesive tapes due to its excellent transparency, easy cutting property, twist and wrinkle fixing properties and the like. However, on the other hand, cellophane has a hygroscopic property, and its characteristics fluctuate depending on the season, and it has been difficult to always supply a product of a certain quality. In addition, packaging bags and adhesive tapes with polyethylene terephthalate as the base film are used for various applications due to the excellent properties such as toughness, heat resistance, water resistance and transparency of the stretched polyethylene terephthalate phthalate film. Although it has these excellent characteristics, it is difficult to cut, it is difficult to tear the mouth of the packaging bag, the adhesive tape is difficult to cut, and the twist fixing property is poor, so it should be used for twist packaging. There were drawbacks such as not being able to.
[0003]
As a method for solving the above drawbacks, a polyester film oriented in a uniaxial direction (Japanese Patent Publication No. 55-8551), a copolymer of a diethylene glycol component, etc. (Japanese Examined Publication No. 56-50692) or a low molecular weight polyester resin ( Japanese Patent Publication No. 55-20514) has been proposed.
Further, there has been proposed a laminated polyester film (Japanese Patent Laid-Open No. 5-104618) which has polyester resin layers having different melting points and is heat-treated between the melting points to collapse at least one layer of orientation.
[0004]
[Problems to be solved by the invention]
However, in the above prior art, the method of aligning in the uniaxial direction can be easily cut linearly in the alignment direction but difficult to cut in other directions, and the method of copolymerizing a large amount of diethylene glycol component, etc. It has the disadvantage that the original properties of polyethylene terephthalate are lost. In addition, the method using a low molecular weight polyester resin is not practical because it easily causes a problem of film breakage in the stretching process.
Further, in a laminated polyester film (Japanese Patent Laid-Open No. 5-104618) having polyester resin layers having different melting points and heat-treating between the respective melting points, the orientation of at least one layer is destroyed. When heated at, the crystallization progressed violently, resulting in the film becoming brittle, whitening, and being unable to withstand subsequent processing or use.
[0005]
[Means for Solving the Problems]
That is, the present invention pays particular attention to easy cutting in any direction and twist fixing property among the excellent properties of cellophane, and has transparency and heat resistance, which are these properties and further excellent properties of the polyester film. In addition, the present inventors have studied and achieved this in order to obtain a film having both moisture resistance, aroma retention, etc., and having flexibility even after being exposed to high temperatures during processing.
[0006]
That is, in the stretched polyester film of the present invention, the polyester resin layer (B) made of a polyester resin having a melting point higher by 10 ° C. than the melting point of the polyester resin layer (A) is laminated on at least one side of the polyester resin layer (A). A stretched polyester film that is at least uniaxially stretched, wherein the total thickness of the polyester resin layer (B) is 1 to 10 μm, and the polyester resin layer (A) is a crystal mainly composed of terephthalic acid as an acid component. The polyester resin (a-1) is composed of a mixture of a thermoplastic resin (a-2) having a glass transition temperature lower than that of the crystalline polyester resin (a-1), and the thermoplastic resin (a-2) is a crystalline polyester. Having a sea-island structure which is dispersed in the resin (a-1) and satisfies the following formulas (1) to (4) simultaneously; It is characterized in that the size is 8 or less.
Formula (1): 0.02 ≦ X ≦ 1.0
Formula (2): 0.02 ≦ Y ≦ 1.0
Formula (3): 0.1 ≦ X / Y ≦ 10
Formula (4): N ≧ 20
(In the above formula, X is the average value (μm) of the length in the film longitudinal direction of the island portion, Y is the average value (μm) of the length in the film width direction of the island portion, and N is the island portion existing in the cross section in the film width direction) Represents the number of pieces (pieces / 10 μm 2 ).
As a method for producing the stretched polyester film of the present invention, a crystalline polyester resin (a-1) mainly composed of terephthalic acid as an acid component and a thermoplastic resin having a glass transition temperature lower than that of the crystalline polyester resin (a-1). A polyester resin layer (B) made of a polyester resin having a melting point 10 ° C. higher than the melting point of the polyester resin layer (A) is laminated on at least one side of the polyester resin layer (A) made of the mixture of (a-2). After the unstretched laminated film is at least uniaxially stretched, a temperature of 5 ° C. lower than the melting point of the crystalline polyester resin (a-1) mainly composed of terephthalic acid constituting the polyester resin layer (A) and a polyester resin layer ( A method of heat treatment at a temperature lower than the melting point of B) is preferred.
[0007]
That is, the present invention is, for example, at a temperature of 5 ° C. lower than the melting point of the polyester resin (a-1) having a low melting point constituting the polyester resin layer (A) after stretching polyester laminated films having different melting points, And by performing heat treatment at a temperature lower than the melting point of the polyester resin (B) on the side having a high melting point, the polyester resin layer (A) loses its orientation in the stretching step, and the heat resistance, water resistance, and fragrance of the polyester resin are lost. A layer having a tear property and a twist-fixing property while maintaining properties such as a property and having a flexibility by the effect of the thermoplastic resin (a-2) dispersed with a sea-island structure, and a polyester resin The layer (B) is a laminated film having two different characteristics, that is, a layer having excellent characteristics such as heat resistance inherent in the polyester film maintaining orientation. The polyester film has excellent properties inherent to the polyester film while having excellent heat resistance, good tearing properties and twist fixing properties, and is further dispersed in the thermoplastic resin (a-2). This is because it has been found that a polyester film excellent in transparency can be obtained by regulating the thickness.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The polyester resin (B) used for the polyester resin layer (B) of the present invention is not particularly limited. For example, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and a copolymer containing these components as main components. There are coalescence etc.
[0009]
The polyester resin used for the polyester resin layer (A) has a crystalline polyester resin (a-1) mainly composed of terephthalic acid and a glass transition temperature lower than that of the crystalline polyester resin (a-1). The polyester resin (a-1) is composed of a mixture of thermoplastic resin (a-2) dispersed with a sea-island structure, and the crystalline polyester resin (a-1) is formed on the polyester resin layer (B). A copolymer having a melting point lower than the melting point of the polyester resin (B) used by 10 ° C. or more, preferably 20 ° C. or more is preferable.
[0010]
The thermoplastic resin (a-2) in the present invention has a glass transition temperature lower than that of the crystalline polyester resin (a-1), and is dispersed with a sea-island structure with respect to the crystalline polyester resin (a-1). Any thermoplastic resin may be used. Specific examples include low density polyethylene, linear low density polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-propylene copolymer, ethylene- Propylene-butene copolymer, ethylene-acrylic acid copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, polyamide and polyamide-polyethylene oxide block copolymer, polyamide-polytetramethylene oxide block copolymer Polymer, polyamide-polyethylene oxide block Polyamide elastomer polymer such as polyester - polyethylene oxide block copolymer, polyester - a polyester-based elastomer polytetramethylene oxide block copolymer can be increased.
[0011]
In the present invention, the mixing ratio of the crystalline polyester resin (a-1) and the thermoplastic resin (a-2) is arbitrary, but the thermoplastic resin (a-) with respect to the crystalline polyester (a-1). 2) must satisfy the following formulas (1) to (4) at the same time. This is because the thermoplastic resin (a-2) is dispersed in islands in the layer of the polyester resin layer (A) in maintaining the flexibility after being exposed to a high temperature in the film of the present invention. It is necessary and the shape of the thermoplastic resin (a-2) causing the island-like dispersion satisfies both the following formulas (1) to (4). After being done, flexibility can be achieved.
Formula (1) 0.02 <= X <= 1.0
Formula (2) 0.02 ≦ Y ≦ 1.0
Formula (3) 0.1 <= X / Y <= 10
Formula (4) N> = 20
In the above formula, X is the average value of the length of the island part in the longitudinal direction (μm)
Y is the average length of the island in the film width direction (μm)
N is the number of islands in the film width direction cross section (pieces / 10μm 2 )
[0012]
In other words, when the average values of the longitudinal and width lengths of the island portions observed on the longitudinal section or the width section of the film are X and Y (μm), respectively, when X or Y is less than 0.02 μm The flexibility after exposure to high temperatures is lost, which causes cutting and inconvenience in use. On the other hand, when the thickness exceeds 1.0 μm, the transparency is deteriorated, and it is impossible to satisfy that the haze is 8% or less, which is an object of the present invention and excellent in transparency. Furthermore, when X / Y is less than 0.1 or exceeds 10, directionality occurs at the time of hand cutting, and hand cutting in an arbitrary direction cannot be performed. On the other hand, if N is less than 20 (pieces / 10 μm 2 ), the flexibility after being exposed to a high temperature is lost, and troubles such as cutting due to impact during processing occur.
[0013]
Furthermore, the total thickness of the polyester resin layer (B) is 1 μm or more and 10 μm or less, preferably 2 μm or more and 6 μm or less. When the thickness of the polyester resin layer (B) is less than 1 μm, the strength of the obtained film is lowered, which not only impedes practical use, but also the film melts at the time of heat setting, making film formation difficult. On the other hand, when the thickness of the polyester resin layer (B) exceeds 10 μm, the intended tearability and twistability are lowered. Further, the lamination of the polyester resin layer (A) and the polyester resin layer (B) may be either a three-layer (B / A / B) or a two-layer (B / A) structure, but the three-layer (B / A / B) ) Is preferred in terms of curling during processing and heat resistance. Further, the thickness of the stretched film is not particularly limited, although the thickness of the film used in the packaging bag or the adhesive tape which is the intended use of the present invention is 12 μ to 30 μ.
[0014]
The polyester film of the present invention may be added with various known additives such as lubricants, pigments, antioxidants, antistatic agents, etc., as long as the effects of the present invention are not impaired.
[0015]
The unstretched laminated film here refers to a method of laminating unstretched films that are melted separately at a temperature equal to or higher than the melting point and extruded from a die outlet in a plurality of extruders and the like in a heated state. It is done. As another method, there is a method of melt laminating the other molten film on the surface of one unstretched film. As another method, there is a method of forming an unstretched film by extruding from a die outlet in a state of being laminated by a coextrusion method.
[0016]
Next, an example of the manufacturing method of this invention film is demonstrated. The crystalline polyester resin (a-1) and the thermoplastic resin (a-2) dried in vacuum are supplied to the extruder at a predetermined ratio, and the polyester resin (B) is supplied to another extruder. Melted and extruded from two extruders at temperatures above their melting points, passed through a composite adapter, and extruded and cooled from the die as 2 types, 3 layers (B / A / B) or 2 types, 2 layers (B / A) Solidify to form an unstretched laminated film.
[0017]
The unstretched laminated film thus obtained is crystalline at a temperature higher than the second transition point of the crystalline polyester resin (a-1) and the polyester resin (B) used for the polyester resin layer (A). Uniaxial stretching or biaxial stretching is performed at a temperature not higher than the melting point of the polyester resin (a-1). In the case of uniaxial stretching, it is at least 1.5 times or more, preferably 3 to 5 times, and in the case of biaxial stretching, the stretching area is 2 to 30 times, preferably 9 to 16 times. In the case of biaxial stretching, sequential stretching or simultaneous stretching may be used.
[0018]
This stretched film is heat-treated at a temperature higher than the melting point of the crystalline polyester resin (a-1) used for the polyester resin layer (A) and lower than the melting point of the polyester resin (B). In this heat treatment, it goes without saying that a relaxation treatment may be performed as necessary.
[0019]
[Action]
The polyester resin layer (A) is almost completely collapsed by stretching due to the heat treatment, and the tearing and twisting properties of the present invention are obtained, and the polyester resin layer (B) maintains the molecular orientation. It is believed that a film having the characteristics of the present invention is obtained. Furthermore, the thermoplastic resin (a-2) contained in the polyester resin layer (A) is dispersed in the sea-island structure in the crystalline polyester resin (a-1) so that it is flexible even after being exposed to high temperatures during processing. It is thought that the elongation is maintained without losing sex.
[0020]
As described above, the present invention provides a target film by balancing the tearing and twisting layers in which the molecular orientation is almost destroyed by the heat treatment in the film-forming line and the layer having the original characteristics of the polyester maintaining the molecular orientation. There is an advantage that the characteristics can be freely set, there is a layer that maintains the molecular orientation, and the thermoplastic resin (a-2) having a low glass transition temperature has a sea-island structure in a layer that imparts tearing and twisting properties. Dispersion has the advantage of preventing cutting troubles in film formation.
[0021]
【Example】
The following examples illustrate the invention. About the evaluation method in an Example and a comparative example, it carried out by the method of (a)-(e).
[0022]
(A) Cross-sectional shape evaluation After embedding the film in an epoxy resin, trimming and chamfering were performed using a microtome in the longitudinal direction or the width direction of the film. The exposed epoxy block was placed in RuO 4 vapor and dyed for 16 hours. An ultrathin section was prepared from this block, placed on a mesh for TEM observation, and subjected to carbon vapor deposition to obtain a sample for observation.
The observation was carried out using a JEM2010 transmission electron microscope manufactured by JEOL Ltd. and observed the shape of the thermoplastic resin (a-2) dispersed in an island shape in the polyester resin layer (A) in the film.
By this observation, an average length X (μm) in the longitudinal direction and an average length Y (μm) in the width direction of the thermoplastic resin (a-2) were determined, and X / Y was calculated.
In addition, the heat dispersed in islands observed in the layer (50 μm 2 ) composed of the crystalline polyester resin (a-1) and the thermoplastic resin (a-2) in the cross section in the film width direction. The number of the plastic resin (a-2) was counted, and the number per 10 μm 2 was calculated.
[0023]
(B) Haze Haze (cloudiness value) was determined according to JIS-K7105.
[0024]
(C) Flexibility after exposure to high temperature After aging for 1 week in a constant temperature room at 40 ° C., the tensile fracture elongation in the longitudinal direction of the film is measured according to JIS-K7127. The case where the elongation was less than 5% was taken as x.
[0025]
(D) Performed by hand-cutting sensory test, and after forming the polyester film // 9 μm Al foil / 20 μm extruded LDPE, the bag was made by heat sealing and easily cut in any direction when the heat sealing part was cut by hand. Those that can be cut by hand are indicated by ○, those that cannot be easily cut by hand, or those that have directionality in the cutting direction are indicated by ×.
[0026]
(E) Performed by a twisting sensory test, when a 30 mm wide tape-like sample was twisted by hand, the one that did not return to its original state even when twisted was indicated by “◯”, and the one that could not maintain the twisted state was indicated by “X”.
[0027]
Example 1
In the polyester resin layer (A), a polyethylene isophthalate copolymer having a melting point of 200 ° C. as the crystalline polyester resin (a-1), and 100 mol% of terephthalic acid as the dicarboxylic acid component as the thermoplastic resin (a-2), A polyethylene terephthalate-polytetramethylene glycol copolymer consisting of 85 mol% of butanediol and 15 mol% of polytetramethylene glycol having a molecular weight of 1000 was used as the diol component, and these were mixed at a ratio of 97/3 wt%. Polyethylene terephthalate (B) having a melting point of 260 ° C. is used as the polyester resin layer (B), melted by a separate extruder at a temperature of 285 ° C., and the melt is joined by a composite adapter and then extruded from a T die. Then, it was quenched with a cooling drum to obtain a three-layer unstretched laminated film of (B / A / B) structure.
[0028]
The unstretched laminated film was first stretched 3.5 times at 90 ° C. in the machine direction and then 3.8 times at 110 ° C. in the transverse direction, and then heat treated at a temperature of 230 ° C. while relaxing 3%. Film was obtained. The thickness ratio of each layer of B / A / B of this film was 2 μm / 16 μm / 2 μm.
[0029]
When the dispersion state of the thermoplastic resin (a-2) in the film was observed, the length in the longitudinal direction X = 0.1 μm, the length in the width direction Y = 0.1 μm, and N = 25 pieces / 10 μm 2. It was.
[0030]
The film haze thus obtained was 3, excellent in transparency, and could be easily cut in any direction as long as a nail was applied, and when the film was twisted, the twisted state could be maintained as it was. Furthermore, even after aging at 40 ° C. for 1 week, it had flexibility and did not become brittle. Further, this film had no troubles such as breakage during film formation and slitting, and the productivity was good.
[0031]
(Example 2)
A 20 μm film was obtained in which the thickness of each B / A / B layer was changed to 4/12/4 μm by the same raw materials and method as in Example 1. The film thus obtained also had good transparency, twist fixability, and flexibility except that a hand-cut film having a little resistance than Example 1 was obtained.
[0032]
(Example 3)
A 20 μm film was obtained in which the thickness of each layer of B / A / B was changed to 1/18/1 μm by the same raw materials and method as in Example 1. The film thus obtained was also excellent in transparency, hand cutting property, twist fixing property and flexibility.
[0033]
(Comparative Example 1)
A 20 μm film was obtained in which only the thickness ratio of each B / A / B layer was changed to 6/8/6 μm by the same raw materials and method as in Example 1. The film thus obtained was not hand-cut and returned to its original state even when the film was twisted, and was not twist-fixed.
[0034]
(Comparative Example 2)
A 20 μm film was obtained in which only the thickness ratio of each layer of B / A / B was changed to 0.25 / 19.5 / 0.25 μm by the same raw materials and method as in Example 1. The film thus obtained melted during heat setting and could not be formed.
[0035]
(Comparative Example 3)
Except for changing the melting point of the polyethylene isophthalate copolymer (A) to 245 ° C., a 20 μm film was obtained in the same manner, conditions and thickness ratio as in Example 1. The film thus obtained was not hand-cut and returned to its original state even when the film was twisted, and was not twist-fixed.
[0036]
(Comparative Example 4)
A 20 μm film was obtained in the same manner, conditions and thickness ratio as in Example 1 except that the heat setting temperature was changed to 180 ° C. The film thus obtained was not hand-cut and returned to its original state even when the film was twisted, and was not twist-fixed.
[0037]
Example 4
A 20 μm film was obtained in the same manner, conditions and thickness ratio as in Example 1 except that the amount of the thermoplastic resin added in Example 1 was changed to 15 wt%. The film thus obtained had good hand cutting properties, twist fixability and flexibility, except that the transparency was slightly inferior.
[0038]
(Comparative Example 5)
A 20 μm film was obtained in the same manner, conditions and thickness ratio as in Example 1 except that the amount of the thermoplastic resin (a-2) added was reduced. The film thus obtained was excellent in transparency, hand cutting property and twist fixing property, but inferior in flexibility after being exposed to high temperature.
[0039]
(Comparative Example 6)
Among the components constituting the thermoplastic resin (a-2), 93.2 mol% of butanediol and 6.8 mol% of polytetramethylene glycol having a molecular weight of 1000 were obtained to obtain a thermoplastic resin (a-2). Except for adding 10 wt% of the thermoplastic resin (a-2), a 20 μm film was obtained in the same manner, conditions and thickness ratio as in Example 1. The film thus obtained was excellent in transparency, hand cutting property and twist fixing property, but inferior in flexibility after being exposed to high temperature.
[0040]
(Comparative Example 7)
Among the components constituting the thermoplastic resin (a-2), 75 mol% of butanediol and 25 mol% of polytetramethylene glycol having a molecular weight of 1000 were obtained to obtain a thermoplastic resin (a-2). Except for adding 3 wt% of the thermoplastic resin (a-2), a 20 μm film was obtained in the same manner, conditions and thickness ratio as in Example 1. The film thus obtained was excellent in hand cutting properties, twist fixability and flexibility, but was inferior in transparency.
[0041]
(Example 5)
By changing the shear rate and draft ratio at the die outlet, a film having a thickness of 20 μm was obtained in the same manner, conditions and thickness ratio as in Example 1 except that the shape of the thermoplastic resin (a-2) was changed. X / Y in the film was 6. The film thus obtained was excellent in transparency, hand cutting property, twist fixing property and flexibility.
[0042]
(Comparative Example 8)
In the same manner as in Example 5, except that the shape of the thermoplastic resin (a-2) was changed, a film having a thickness of 20 μm was obtained in the same manner, conditions and thickness ratio as in Example 1. X / Y in the film was 20. The film thus obtained was excellent in transparency, twist fixability and flexibility, but inferior in the width direction hand cutting property, and could not be obtained in arbitrary direction hand cutting property.
[0043]
Tables 1 and 2 show the evaluation results of the films obtained in Examples and Comparative Examples.
[0044]
[Table 1]
Figure 0004048419
[0045]
[Table 2]
Figure 0004048419
[0046]
【The invention's effect】
As described above, a polyester film having good hand cutting properties and twisting properties can be obtained, which proves effective for packaging.

Claims (4)

ポリエステル樹脂層(A)の少なくとも片面に、ポリエステル樹脂層(A)の融点よりも10℃以上高い融点を有するポリエステル樹脂からなるポリエステル樹脂層(B)が積層され、かつ少なくとも一軸延伸された延伸ポリエステルフィルムであって、ポリエステル樹脂層(B)の合計の厚みが1〜10μmであり、ポリエステル樹脂層(A)が酸成分としてテレフタル酸を主成分とする結晶性ポリエステル樹脂(a−1)とガラス転移温度が結晶性ポリエステル樹脂(a−1)より低いポリエステル−ポリテトラメチレンオキサイドブロック共重合体(a−2)の混合物からなり、前記ポリエステル樹脂層(A)を構成する、低い融点を有する側のポリエステル樹脂(a−1)の融点より5℃低い温度以上で、かつ高い融点を有する側のポリエステル樹脂(B)の融点未満の温度で熱処理を実施することにより、ポリエステル樹脂層(A)は延伸工程での配向が崩れており、かつポリエステル樹脂前記熱可塑性樹脂(a−2)が結晶性ポリエステル樹脂(a−1)に分散しており、下記式(1)から(4)を同時に満足するような海島構造を有し、かつヘイズが8%以下であることを特徴とする延伸ポリエステルフィルム。
式(1):0.02≦X≦1.0式(2):0.02≦Y≦1.0式(3):0.1≦X/Y≦10式(4):N≧20(上記式中、Xは島部分のフイルム長手方向長さの平均値(μm)、Yは島部分のフイルム幅方向長さの平均値(μm)、Nはフイルム幅方向断面に存在する島部分の個数(個/10μm)を表す。)
A stretched polyester in which a polyester resin layer (B) made of a polyester resin having a melting point higher by 10 ° C. or more than the melting point of the polyester resin layer (A) is laminated on at least one surface of the polyester resin layer (A), and at least uniaxially stretched A crystalline polyester resin (a-1) having a total thickness of the polyester resin layer (B) of 1 to 10 μm and the polyester resin layer (A) having terephthalic acid as a main component as the acid component and glass The side having a low melting point, which comprises a mixture of a polyester-polytetramethylene oxide block copolymer (a-2) having a transition temperature lower than that of the crystalline polyester resin (a-1 ) and constitutes the polyester resin layer (A) Of the polyester resin (a-1) having a melting point of 5 ° C. or higher and higher than the melting point. By performing the heat treatment at a temperature below the melting point of Riesuteru resin (B), the polyester resin layer (A) is collapsed orientation in the stretching step, and a polyester resin wherein the thermoplastic resin (a-2) is crystalline A stretched polyester film which is dispersed in the polyester resin (a-1), has a sea-island structure that simultaneously satisfies the following formulas (1) to (4), and has a haze of 8% or less: .
Formula (1): 0.02 ≦ X ≦ 1.0 Formula (2): 0.02 ≦ Y ≦ 1.0 Formula (3): 0.1 ≦ X / Y ≦ 10 Formula (4): N ≧ 20 (In the above formula, X is the average value (μm) of the length in the film longitudinal direction of the island portion, Y is the average value (μm) of the length in the film width direction of the island portion, and N is the island portion existing in the cross section in the film width direction) Represents the number of pieces (pieces / 10 μm 2 ).
請求項1記載の熱可塑性樹脂(a−2)が融点170℃以上の結晶セグメント及び融点又は軟化点が100℃以下、分子量が400〜8000の軟質重合体からなるブロック共重合ポリエステルであることを特徴とする延伸ポリエステルフィルム。  The thermoplastic resin (a-2) according to claim 1 is a block copolymer polyester comprising a crystalline segment having a melting point of 170 ° C or higher and a soft polymer having a melting point or softening point of 100 ° C or lower and a molecular weight of 400 to 8000. Characterized stretched polyester film. 請求項1あるいは2記載の延伸ポリステルフィルムであって、ひねり包装用に用いられることを特徴とする延伸ポリエステルフィルム。The stretched polyester film according to claim 1 or 2 , wherein the stretched polyester film is used for twist packaging. 請求項1、2あるいは3記載の延伸ポリエステルフィルムの製造方法であって、未延伸積層フィルムを少なくとも一軸延伸後に、ポリエステル樹脂層(A)を構成するテレフタル酸を主成分とする結晶性ポリエステル樹脂(a−1)の融点より5℃低い温度以上、かつポリエステル樹脂層(B)の融点未満の温度で熱処理することを特徴とする延伸ポリエステルフィルムの製造方法。4. A method for producing a stretched polyester film according to claim 1, 2, or 3, wherein at least uniaxial stretching of the unstretched laminated film is followed by a crystalline polyester resin mainly comprising terephthalic acid constituting the polyester resin layer (A). The manufacturing method of the stretched polyester film characterized by heat-processing at the temperature 5 degreeC lower than melting | fusing point of a-1), and the temperature below melting | fusing point of a polyester resin layer (B).
JP2002122760A 2002-04-24 2002-04-24 Stretched polyester film Expired - Fee Related JP4048419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002122760A JP4048419B2 (en) 2002-04-24 2002-04-24 Stretched polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002122760A JP4048419B2 (en) 2002-04-24 2002-04-24 Stretched polyester film

Publications (2)

Publication Number Publication Date
JP2003311906A JP2003311906A (en) 2003-11-06
JP4048419B2 true JP4048419B2 (en) 2008-02-20

Family

ID=29538285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002122760A Expired - Fee Related JP4048419B2 (en) 2002-04-24 2002-04-24 Stretched polyester film

Country Status (1)

Country Link
JP (1) JP4048419B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576886B2 (en) * 2004-05-28 2010-11-10 東洋紡績株式会社 Laminated polyester film for folding packaging
EP1806380A4 (en) * 2004-08-11 2010-06-16 Mitsubishi Polyester Film Corp Biaxially oriented polyester films
WO2006087795A1 (en) * 2005-02-18 2006-08-24 Toyo Boseki Kabushiki Kaisha Easy-to-tear polyester resin film

Also Published As

Publication number Publication date
JP2003311906A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
EP2059390B1 (en) Multilayered aliphatic polyester film
WO2003059996A1 (en) Polyester films
KR101237678B1 (en) Easy tear biaxially stretched polyester based film
JP3561919B2 (en) Method for producing polyester film having good tearability and twistability
JP4048419B2 (en) Stretched polyester film
JP4839680B2 (en) Biaxially stretched polyester film with excellent adhesion
US4311741A (en) Polyester films with improved processability and tear resistance
JP4150957B2 (en) Polyester film and method for producing the same
JP2002337290A (en) Laminated polyester film
JP2002337285A (en) Laminated polyester film
JP4048418B2 (en) Stretched polyester film and method for producing the same
JP4967504B2 (en) Biaxially stretched polyester film laminate
JP3695880B2 (en) Heat-shrinkable polyester laminated film
JP2004181653A (en) Stretched polyester film with excellent torsional properties
JP3090222B2 (en) Roughened polyester film
JP2003311905A (en) Stretched polyester film
JP3030446B2 (en) Antifogging biaxially oriented polypropylene film
JP2000302926A (en) Polypropylene composition for drawn film
JP4310666B2 (en) Aliphatic polyester biaxially stretched film
JP4842505B2 (en) Polyester resin film with good tearability
JP2006341422A (en) Polyester resin film excellent in adhesiveness
JP2005144874A (en) Method for producing polypropylene film good in tearing and twisting properties
JPS5811148A (en) Polyethylene terephthalate composite oriented film and its manufacture
JP2002337269A (en) Laminated polyester film and packaging bag using the same
JP2005335311A (en) Metal deposition polyester film for bending packaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R151 Written notification of patent or utility model registration

Ref document number: 4048419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees