WO2019039183A1 - Steering device - Google Patents

Steering device Download PDF

Info

Publication number
WO2019039183A1
WO2019039183A1 PCT/JP2018/028002 JP2018028002W WO2019039183A1 WO 2019039183 A1 WO2019039183 A1 WO 2019039183A1 JP 2018028002 W JP2018028002 W JP 2018028002W WO 2019039183 A1 WO2019039183 A1 WO 2019039183A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
motor actuator
output shaft
nut
motor
Prior art date
Application number
PCT/JP2018/028002
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 石原
敏郎 與田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201880050831.6A priority Critical patent/CN111051183A/en
Priority to US16/636,270 priority patent/US11318986B2/en
Priority to DE112018004711.3T priority patent/DE112018004711T5/en
Publication of WO2019039183A1 publication Critical patent/WO2019039183A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0442Conversion of rotational into longitudinal movement
    • B62D5/0445Screw drives
    • B62D5/0448Ball nuts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0235Determination of steering angle by measuring or deriving directly at the electric power steering motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • B62D3/04Steering gears mechanical of worm type
    • B62D3/06Steering gears mechanical of worm type with screw and nut
    • B62D3/08Steering gears mechanical of worm type with screw and nut using intermediate balls or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0442Conversion of rotational into longitudinal movement
    • B62D5/0454Worm gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/065Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by specially adapted means for varying pressurised fluid supply based on need, e.g. on-demand, variable assist
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/04Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to forces disturbing the intended course of the vehicle, e.g. forces acting transversely to the direction of vehicle travel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls

Definitions

  • the present invention relates to a steering apparatus for steering a pair of wheels of a vehicle, and more particularly to a steering apparatus provided with a steering mechanism corresponding to each of the wheels.
  • a power steering device In an automobile, a power steering device is adopted to assist a steering force by a steering wheel (hereinafter referred to as a steering assist force).
  • a sector gear In this power steering apparatus, a sector gear is generally driven by a piston operated by hydraulic pressure, and a link system connected to a wheel by the sector gear is operated to provide a steering assist force.
  • a steering assist force is provided by a steering mechanism in which each of the paired wheels of a car is hydraulically driven.
  • a steering mechanism in which each of the paired wheels of a car is hydraulically driven.
  • Patent Document 1 hydraulically driven pistons are provided on the links connected to the respective wheels, and the hydraulic pressure acting on the respective pistons is controlled according to the steering of the steering wheel.
  • the configuration for strengthening the steering assist force is shown.
  • the hydraulic pressure from the hydraulic pump is controlled by the control valve so as to act on the respective pistons through the piping.
  • An object of the present invention is to provide a novel steering device capable of improving the steering performance by quickly giving a steering assist force individually to each wheel.
  • the present invention is: (1) a first steering mechanism including a first ball and nut type steering and a first motor actuator; and the first ball and nut type steering includes a first output shaft and a first ball nut A first transmission mechanism, the first output shaft is rotatable about the rotation axis of the first output shaft, and the first ball nut rotates the first output shaft as the first output shaft rotates
  • the first transmission mechanism includes a first nut that moves in the direction of the axis, and the first transmission mechanism steers the first steered wheel along with the movement of the first nut, and the first motor actuator has a first output shaft.
  • a first electric motor for applying a rotational force (2) a second steering mechanism, comprising a second ball nut type steering and a second motor actuator unit, the second ball nut type steering 2 output shaft and 2nd baller And the second transmission mechanism, the second output shaft is rotatable about the rotation axis of the second output shaft, and the second ball nut is configured to output the second output as the second output shaft rotates.
  • the second transmission mechanism includes a second nut that moves in the direction of the axis of rotation of the shaft, and the second transmission mechanism steers the second steered wheel along with the movement of the second nut, and the second motor actuator is configured to A second electric motor for applying a rotational force to the output shaft, and (3) a connecting member, the first transmission mechanism and the second transmission mechanism being capable of interlocking the movements of the first transmission mechanism and the second transmission mechanism And a connecting member for connecting the two.
  • FIG. 6 is a cross-sectional view showing the configuration of an electric steering mechanism that is not connected to the steering wheel. It is a sectional view showing the composition of the electric steering mechanism of the one connected with a steering wheel. FIG. 6 is a cross-sectional view showing another configuration of the electric steering mechanism that is coupled to the steering wheel.
  • It is a control block diagram which shows the structure of the control apparatus shown in FIG. It is a control flowchart figure explaining specific control of the control apparatus shown in FIG.
  • FIG. 1 shows the configuration of a steering system which is a typical embodiment of the present invention.
  • the front wheels on the front side of the vehicle are provided as a pair of wheels (hereinafter referred to as steered wheels), and are provided with a first steered wheel 10L and a second steered wheel 10R.
  • the first steering wheel 10L and the second steering wheel 10R are connected by a tie rod 11.
  • a first tie rod arm 12L and a second tie rod arm 12R are coupled to both ends of the tie rod 11, and both tie rod arms 12L and 12R are connected to the first steered wheel 10L and the second steered wheel 10R, respectively. There is. As a result, the first steered wheel 10L and the second steered wheel 10R can be steered in conjunction with each other.
  • first steered wheel 10L is connected to the first electric steering mechanism 16L via the first steering arm 13L, the first drag link 14L, and the first pitman arm 15L.
  • second steering wheel 10R is coupled to the second electric steering mechanism 16R via the second steering arm 13R, the second drag link 14R, and the second pitman arm 15R.
  • the second electric steering mechanism 16R is connected to the steering wheel 18 via the steering shaft 17, and the second electric steering mechanism 16R drives the pitman arm 15R to steer by operation of the steering wheel 18. is there.
  • the steering assist force is applied by the first electric steering mechanism 16L and the second electric steering mechanism 16R.
  • the first electric steering mechanism 16L includes a first integral gearbox 19 (hereinafter simply referred to as a first gearbox) 19L and a first motor for controlling a ball-nut steering incorporated in the first gearbox 19L. It comprises an actuator 20L.
  • the second electric steering mechanism 16R controls a second integral gear box (hereinafter simply referred to as a second gear box) 19R and a ball nut type steering wheel built in the second gear box 19R. It comprises the 2nd motor actuator 20R.
  • the second electric steering mechanism 16R is provided with a torque sensor 21 for detecting the operation torque of the steering wheel 18.
  • the first motor actuator 20L of the first electric steering mechanism 16L is controlled by the first control device 22L, and similarly, the second motor actuator 20R of the second electric steering mechanism 16R is controlled by the second control device 22R. ing.
  • the first control device 22L and the second control device 22R are respectively communicated via a communication line, and mutually exchange control information, failure, and abnormality information.
  • first control device 22L and the second control device 22R can be configured as an integrated control device 23 without being separated, in which case, the integrated control device 23 controls the first electric steering mechanism 16L and the second electric steering mechanism. 16R can be controlled. Further, the first control device 22L can be configured as a mechanical-electrical integrated type integrally assembled to the first electric steering mechanism 16L, and the second control device 22R can also be configured as a mechanical-electrical integrated type integrally assembled to the second electric steering mechanism 16R. .
  • the first electric steering mechanism 16L includes the first motor actuator 20L
  • the second electric steering mechanism 16R includes the second motor actuator 20R, and is further controlled individually by the respective control devices 22L and 22R. It has become.
  • FIG. 2 shows the first electric steering mechanism 16L
  • FIG. The second electric steering mechanism 16R is shown.
  • FIG. 2 showing the first electric steering mechanism 16L, the first inner storage space 26L of the elongated hollow cylindrical first housing 25L with an open bottom is slid along the axial direction of the first housing 25L.
  • the first housing 25L is made of metal, and the first nut 27L housed in the first inner housing space 26L has the first large diameter portion 29L formed at both ends, and the first large diameter portion 29L is The inner peripheral surface of the first inner storage space 26L is configured to slide.
  • the above-mentioned first rack portion 28L is formed in the small diameter portion 30L between the two first large diameter portions 29L.
  • a first sector gear storage portion 31L is integrally formed on the side surface of the first housing 25L, and a first sector gear 32L is stored and disposed in the first sector gear storage portion 31L.
  • the first sector gear 32L meshes with the first rack portion 28L formed on the first nut 27L, and in the state shown in FIG. 2, the first sector gear 32L rotates clockwise due to the left and right sliding motion of the first nut 27L. It is designed to be rotated (positive direction) and counterclockwise (negative direction).
  • the first sector gear 32L is connected to the first pitman arm 15L shown in FIG. 1, and the rotation operation of the first sector gear 32L is transmitted to the first pitman arm 15L, whereby the first steered wheel 10L is steered. It is configured to be
  • a helical "screw groove” is cut in the axial direction (sliding direction) of the first nut 27L, and the first output shaft 34L provided with the first ball screw 33L is engaged with the screw groove. It is done.
  • the rotation axis Cr1 of the first output shaft 34L coincides with the axial center of the first nut 27L in the sliding direction, and when the first output shaft 34L rotates around the rotation axis Cr1, the first nut is thereby rotated. 27L slides in the lateral direction on the drawing.
  • a first ball nut type steering is configured by the first output shaft 34L, the first ball screw 33L, the first nut 27L, and the first rack portion 28L.
  • a first bearing member 35L made of metal is attached in a fluid tight manner to the open end of the first housing 25L, and a first ball bearing (A) 36L is provided at the center of the first bearing member 35L. It is done.
  • the first output shaft 34L penetrates the first ball bearing (A) 36L so as to be capable of bearing, and the end of the first output shaft 34L penetrated is supported by the first ball bearing (B) 37L. ing.
  • the first ball bearing (B) 37L is fixed to the first cover 38L, and the first cover 38L encloses and seals the speed reduction mechanism described later in a fluid-tight manner.
  • a first worm wheel 39L is fixed to an end of the first output shaft 34L located between the first bearing member 35L and the first cover 38L, and the first worm wheel 39L is a first worm 40L. And a speed reducing mechanism.
  • the first worm 40L is fixed to the rotation shaft of the first electric motor 41L so as to be driven by the first electric motor 41L.
  • the first electric motor 41L is fixed to the outer surface of the first housing 25L such that the rotation axis of the rotation axis of the first electric motor 41L is positioned in the direction orthogonal to the rotation axis Cr1 of the first output shaft 34L. There is. This makes it possible to reduce the size of the first electric steering mechanism 16L in the length direction (the direction of the rotation axis Cr1 of the first output shaft 34L), thereby enhancing flexibility (layout capability) when mounted on a vehicle. .
  • the speed reduction mechanism is composed of the first worm wheel 39L and the first worm 40L, the reduction in size can be achieved, and an increase in size and weight of the steering apparatus can be suppressed.
  • the rotational force of the first electric motor 41L is decelerated and amplified, a small electric motor can be used, or the steering assist force can be increased when the size is not reduced. it can.
  • the first output shaft 34L is rotationally driven via the first worm 40L and the first worm wheel 39L.
  • the first output shaft 34L is rotated, the first nut 27L slides by the first ball screw 33L, the first rack portion 28L rotates the first sector gear 32L, and the first steering is performed via the link system.
  • the steering assist force can be applied to the wheel 10L.
  • FIG. 3 showing the second electric steering mechanism 16R, the second internal storage space 26R of the elongated hollow cylindrical second housing 25R with an open end is slid along the axial direction of the second housing 25R.
  • the second housing 25R is made of metal, and the second nut 27R housed in the second inner housing space 26R has the second large diameter portion 29R formed at both ends, and the second large diameter portion 29R is
  • the inner storage space 26R is configured to slide on the inner peripheral surface thereof.
  • the second rack portion 28R described above is formed in the second small diameter portion 30R between the second large diameter portions 29R.
  • a second sector gear storage portion 31R is integrally formed on a side surface of the second housing 25R, and a second sector gear 32R is stored and disposed in the second sector gear storage portion 31R.
  • the second sector gear 32R meshes with the second rack portion 28R formed on the second nut 27R, and in the state shown in FIG. 3, the second sector gear 32R rotates clockwise due to the left and right sliding motion of the second nut 27R. It is designed to be rotated (positive direction) and counterclockwise (negative direction).
  • the second sector gear 32R is connected to the second pitman arm 15R shown in FIG. 1, and the rotation operation of the second sector gear 32R is transmitted to the second pitman arm 15R, whereby the second steered wheel 10R is steered. It is configured to be
  • a helical "screw groove” is cut in the axial direction (sliding direction) of the second nut 27R, and the second output shaft 34R provided with the second ball screw 33R is engaged with this screw groove. It is done.
  • the rotation axis Cr2 of the second output shaft 34R coincides with the axial center of the second nut 27R in the sliding direction, and when the second output shaft 34R rotates around the rotation axis Cr2, the second nut is thereby rotated. 27R slides in the lateral direction on the drawing.
  • a second ball nut type steering is configured by the second output shaft 34R, the second ball screw 33R, the second nut 27R, and the second rack portion 28R.
  • a second bearing member 35R made of metal is attached in a fluid tight manner to the open end of the second housing 25R, and a second ball bearing (A) 36R is provided at the center of the second bearing member 35R. It is provided.
  • the second output shaft 34R penetrates the second ball bearing (A) 36R so as to be capable of bearing.
  • One end of a torsion bar 43 described later is fixed to an internal space in the vicinity of the end of the second output shaft 34R.
  • the second worm wheel 39R is fixed to the outer periphery of the end of the second output shaft 34R penetrating from the second bearing member 35R, and the second worm wheel 39R meshes with the second worm 40R. Forms a speed reduction mechanism.
  • the second worm wheel 39R is fixed to the rotation shaft of the second electric motor 41R so as to be driven by the second electric motor 41R.
  • the second electric motor 41R is fixed to the outer surface of the second housing 25R so that the rotation axis of the rotation axis of the second electric motor 41L is also positioned in the direction orthogonal to the rotation axis Cr2 of the second output shaft 34R. There is. This makes it possible to miniaturize the physical size of the second electric steering mechanism 16R in the length direction (direction of the rotation axis Cr2 of the second output shaft 34R), and to enhance flexibility (layout capability) when mounted on an automobile .
  • the speed reduction mechanism is composed of the second worm wheel 39R and the second worm 40R, so it can be miniaturized, suppressing the enlargement of the steering apparatus and the weight increase. can do.
  • the rotational force of the second electric motor 41R is decelerated and amplified, a small electric motor can be used, or the steering assist force can be increased if the size is not reduced. it can.
  • the second electric steering mechanism 16R is provided with an input shaft 42 connected to the steering shaft 17 fixed to the steering wheel 18, and the other end of the torsion bar 43 is fixed to the input shaft 42. , And the second output shaft 34R. Therefore, the torsion bar 43 is twisted between the second output shaft 34R and the input shaft 42, and the amount of twist can be measured to detect torque.
  • the second output shaft 34R is connected to the steering wheel 18 via the input shaft 42.
  • the steering wheel 18 is connected to the side of the second electric motor 41R that outputs a large torque in the same direction as the steering direction, so that the driver can easily feel the responsiveness of the steering assist and improve the steering feeling. be able to.
  • the first angle sensor 44 is attached to the input shaft 42, and the second angle sensor 45 is attached to the second output shaft 34R.
  • the steering torque is detected based on the relative rotation angle detected by the first angle sensor 44 of the input shaft 42 and the second angle sensor 45 of the two output shafts.
  • the first angle sensor 44 and the second angle sensor 45 can also detect an input from the input shaft 42 and a reverse input from the second output shaft 34R. This will be described based on a control flowchart to be described later.
  • the input shaft 42 is supported by the second ball bearing (B) 37R, and the second ball bearing (B) 37R is fixed to the second cover 38R.
  • the second cover 38R encloses and seals the reduction mechanism including the worm wheel 39R and the worm 40R, and the first angle sensor 44 and the second angle sensor 45 that constitute a torque sensor in a fluid-tight manner.
  • the first electric steering mechanism 16L and the second electric steering mechanism 16R are substantially the same in shape, and in particular, the respective housings 25L, 25R, the respective nuts The 27L, 27R, and the respective sector gears 32L, 32R have the same shape. For this reason, parts sharing can be achieved, and the manufacturing cost can be reduced.
  • the first nut 27L and the second nut 27R, and the first sector gear 32L and the second sector gear 32R may have the same tooth specifications, and the other parts may be somewhat different. It is good. Furthermore, the housings 25L, 25R may differ in shape depending on the case, but at least the respective nuts 27L, 27R and the respective sector gears 32L, 32R can be shared.
  • the second output shaft 34R is rotationally driven via the second worm 40R and the second worm wheel 39R.
  • the second output shaft 34R is rotated, the second nut 27R is slidingly moved by the second ball screw 33R, the second rack portion 28R rotates the second sector gear 30, and the second steering is performed via the link system.
  • a steering assist force can be applied to the wheel 10R.
  • the steering torque is detected by the first angle sensor 44 and the second angle sensor 45.
  • the steering torque can also be detected by using a Hall element.
  • FIG. 4 the detection of the steering torque is performed using a Hall element and is basically the same as the configuration of FIG. 3, so the description of the same reference numerals will be omitted.
  • a magnetic torque sensor 46 using a permanent magnet or a Hall element is provided between the second output shaft 34R and the input shaft 42, and the steering torque can be detected by this.
  • the second electric steering mechanism 16R shown in FIG. 3 either the input from the input shaft 42 or the reverse input from the second output shaft 34R is detected. It is possible.
  • the second electric steering mechanism 16R can also be applied to a column assist type steering device. That is, by interlocking the second output shaft 34R of the second electric steering mechanism 16R to assist the steering column, the steering force can be applied to the steering column as in the present embodiment. Adoption of such a configuration makes it possible to apply to an automobile with a small space for the driver's foot, such as a cab-over type truck, and to improve the layout.
  • control of the first electric motor 41L of the first electric steering mechanism 16L and the control of the second electric motor 41R of the second electric steering mechanism 16R will be described.
  • the first electric motor 41L is controlled by the first control device 22L
  • the second electric motor 41R is controlled by the second control device 22R.
  • the first control device 22L receives the vehicle speed determination unit 50 to which vehicle speed information for determining the vehicle speed of the vehicle is input, and the motor status signal of the first electric motor 41L is input, and the failure of the first electric motor 41L. And vehicle speed information from the vehicle speed determination unit 50, and second electric motor failure information from a second motor failure determination unit 51R of the second control device 22R described later.
  • the first electric motor assist computing unit 52L for obtaining the drive control amount of the first electric motor 41L when the torque information from the torque determination unit 55 of the second control device 22R described later is input, and the drive control of the first electric motor 41L
  • the first electric motor drive unit 53L sets an amount and generates a drive control signal of the first electric motor 41L.
  • the vehicle speed determination unit 50, the first motor failure determination unit 51L, and the first electric motor assist calculation unit 52L are functional blocks executed by the program of the first microcomputer 24L, and the first electric motor drive unit 53L Is its output circuit. Details of these functional blocks will be described in the control flowchart shown in FIG.
  • the second control device 22R receives a motor information signal of the second electric motor 41R, and determines a second motor failure determination unit 51R that determines a failure or abnormality of the second electric motor 41R, the first angle sensor 44, and Sensor information of the two angle sensor 45 is input, and a disturbance determination unit 54 that determines a disturbance from the steered wheels 10L and 10R, disturbance information from the disturbance determination unit 54, or sensors of the first angle sensor 44 and the second angle sensor 45
  • the first electric motor failure information from the first motor failure judgment unit 51L of the first control device 22L and the torque information from the torque judgment unit 55 are input, (2)
  • the drive control amount of the second electric motor assist calculation unit 52R for obtaining the drive control amount of the electric motor 41R and the drive control amount of the second electric motor 41R are set, and the drive of the second electric motor 41R And a second electric motor drive unit 53R for generating the control signal.
  • the second motor malfunction determination unit 51R, the disturbance determination unit 54, the torque determination unit 55, and the second electric motor assist computing unit 52R are executed by the program of the second microcomputer 24R. It is a functional block, and the 2nd electric motor drive part 53R is the output circuit. The details of these functional blocks are also described in the control flowchart shown in FIG.
  • first control device 22L and the second control device 22R are connected by a communication line, and the microcomputer 24L of the first control device 22L or the microcomputer 24R of the second control device 22R loses an abnormality or a failure. When a failure occurs, the other microcomputer performs steering control.
  • a redundant steering system can be configured by the first microcomputer 24L and the second microcomputer 24R, and even when one microcomputer fails, the other microcomputer continues to steer Control can be performed. Furthermore, both electric steering mechanisms can be operated by sending the drive control amount calculated by the normal one of the microcomputers to the electric motor drive unit of the one having the failure as shown by the broken arrow. It is a thing.
  • the steering function can be maintained on the normal electric motor side.
  • a redundant steering system can be configured by the first electric motor 41L and the second electric motor 41R, and the steering control is continuously performed in the other electric motor even when one electric motor fails. You will be able to In this case, if the speed reduction mechanism that has caused the failure has the function of the reverse efficiency, a mechanism can be provided to cancel the function of the reverse efficiency between the speed reduction mechanism and the rack portion.
  • control of the first control device 22L and the second control device 22R will be described based on a control flowchart shown in FIG.
  • This control flow is activated at predetermined time intervals, and can be executed, for example, by a compare match interrupt of a built-in timer of a microcomputer.
  • Step S10 it is determined based on the torque sensor whether or not there is a change in the steering torque by the rotation operation of the steering wheel 18. This can be determined by detecting the torsion of the torsion bar 41 by the first angle sensor 44 and the second angle sensor 45 provided in the second electric steering mechanism 16R.
  • Step S11 it is determined from the information from the first angle sensor 44 and the second angle sensor 45 whether or not a disturbance is detected.
  • the disturbance indicates a reverse input from the steered wheels 10L and 10R, and therefore, there is a high possibility that the steering performance is adversely affected.
  • a problem may occur in that the steering stability of the steering wheel 18 is impaired.
  • the phase signal of the second angle sensor 45 provided on the second output shaft 34R precedes the phase signal of the first angle sensor 44 provided on the input shaft 42. It can judge by detecting. On the other hand, when it is detected that the phase signal of the first angle sensor 44 provided on the input shaft 42 leads the phase signal of the second angle sensor 45 provided on the second output shaft 34R, the steering wheel is detected. It can be determined that the normal rotation operation by 18 is performed.
  • step S12 If it is determined that the disturbance is detected, the process proceeds to step S13.
  • Step S12 the current position of the first electric motor 41L of the first electric steering mechanism 16L so that the steered position does not change even if mechanical impact or the like due to disturbance acts on the steered wheels 10L, 10R.
  • a motor torque command value which is a drive control amount for holding the steered position, is calculated. That is, the first electric steering mechanism 16L holds the current steering position so that the steered positions of the steered wheels 10L and 10R do not change even if an impact is applied to the steered wheels 10L and 10R due to road surface gravels or the like. It is When the motor torque command value is obtained, the process proceeds to step S14.
  • Step S13 the motor torque command value calculated in step S12 is set in the first electric motor drive unit 53L, and subsequently, a drive current is supplied to the first electric motor 41L, and a predetermined torque is obtained. To generate.
  • the steered positions of the steered wheels 10L and 10R can be held against disturbance from the road surface, so stable steering control can be performed. It can be done.
  • step S13 When the drive control of the first electric motor 41L in step S13 is executed, the process returns to return and waits for the next start timing.
  • step S14 If it returns to step S11 and a disturbance is not detected in step S11, it is judged that it is regular rotation operation of the steering wheel 18, and in step S14, the 1st electric steering mechanism 16L and the 2nd electric steering mechanism It is determined whether a 16R status signal has been detected. For example, the operation signals of the first electric motor 41L and the second electric motor 41R are monitored, and the abnormality of the first electric steering mechanism 16L and the second electric steering mechanism 16R is caused by the drop of the operation signals or the appearance of the abnormality signal. And failure status can be determined.
  • step S14 since the first microcomputers 24L and 24R mutually monitor each other to determine their normality or to judge their normality by another monitoring computer, this judgment is also determined as the failure judgment in step S14. You can look at it.
  • step S15 When it is determined that the second electric steering mechanism 16R has a failure, the process proceeds to step S15, and when it is determined that the first electric steering mechanism 16L has a failure, the process proceeds to step S17. Do. On the other hand, if it is determined that both the first electric steering mechanism 16L and the second electric steering mechanism 16R have not failed, that is, it is determined that they are normal, the process proceeds to step S19.
  • Step S15 it is determined that a failure has occurred in the second electric steering mechanism 16R. Therefore, from the detected torque corresponding to the operation amount of the steering wheel 18, the first electric steering mechanism 16L is selected. 1. Calculate a motor torque command value which is a drive control amount of the electric motor 41L. That is, the steering assist force corresponding to the operation amount of the steering wheel 18 is obtained, and the steering assist by the first electric motor 41L is performed.
  • Step S16 the motor torque command value calculated in step S15 is set in the first electric motor drive unit 53L, and subsequently, a drive current is supplied to the first electric motor 41L, and a predetermined torque is obtained. To generate.
  • a redundant system is formed by the first electric motor 41L and the second electric motor 41R, and when the second electric motor 41R fails, the first electric motor is formed.
  • the steering assist force can be continuously applied by 41L.
  • the first microcomputer 24L and the second microcomputer 24R also form a redundant system to continuously apply the steering assist force by the first microcomputer 24L even when the second microcomputer fails. be able to.
  • step S16 When the drive control of the first electric motor 41L in step S16 is executed, the process returns to return and waits for the next start timing.
  • Step S17 The process returns to step S14, and when it is determined that the first electric steering mechanism 16L has a failure, the process proceeds to step S17.
  • step S17 it is determined that the first electric steering mechanism 16L has a failure, so from the detected torque corresponding to the operation amount of the steering wheel 18, the second electric motor 41R of the second electric steering mechanism 16R A motor torque command value which is a drive control amount of That is, the steering assist force corresponding to the operation amount of the steering wheel 18 is obtained, and the steering assist by the second electric motor 41R is performed.
  • the process proceeds to step S18.
  • Step S18 the motor torque command value calculated in step S17 is set in the second electric motor drive unit 53R, and subsequently, a drive current is supplied to the second electric motor 41R, and a predetermined torque is obtained. To generate.
  • a redundant system is formed by the first electric motor 41L and the second electric motor 41R, and when the first electric motor 41L fails, the second electric motor is generated.
  • the steering assist force can be continuously applied by 41R.
  • the first microcomputer 24R and the second microcomputer 24R also form a redundant system to continuously apply the steering assist force by the second microcomputer 24R even when the first microcomputer 24L fails. It can be carried out.
  • step S18 When the drive control of the second electric motor 41R in step S18 is executed, the process returns to return and waits for the next start timing.
  • Step S19 it is determined whether the detected steering torque is larger than a predetermined steering torque T1. This determination is applicable to the case where the steering wheel 18 is largely turned to turn the vehicle. If it is determined in step S19 that the detected steering torque is larger than the predetermined steering torque T1, the process proceeds to step S20. If it is determined that the detected steering torque is smaller than the predetermined steering torque T1, the process proceeds to step S23.
  • Step S20 the drive control amount of the first electric motor 41L and the second electric motor 41R corresponding to the detected steering torque is directed in the same direction as the turning direction which is the rotation direction of the steering wheel 18.
  • Calculate a certain motor torque command value That is, the steering assist force corresponding to the operation amount of the steering wheel 18 is obtained, and the steering assist by the first electric motor 41L and the second electric motor 41R is executed.
  • the motor torque values of the first electric motor 41L and the second electric motor 41R are the same value.
  • Step S21 the motor torque command value calculated in step S20 is set in the second electric motor drive unit 53R, and subsequently, a drive current is supplied to the second electric motor 41R, and a predetermined torque is obtained.
  • the second electric steering mechanism 16R is controlled so as to apply the steering assist force earlier than the first electric steering mechanism 16L.
  • Step S22 the motor torque command value calculated in step S20 is set in the first electric motor drive unit 53L, and subsequently, a drive current is supplied to the first electric motor 41L, and a predetermined torque is obtained. To generate. As described above, in the present embodiment, the first electric steering mechanism 16L is controlled to apply a steering assist force later than the second electric steering mechanism 16R.
  • the steering assist of the steered wheels 10L and 10R can be performed so as to suppress the disturbance from the road surface while maintaining the steered positions of the steered wheels 10L and 10R. It is possible to perform stable steering control in which the steered wheels 10L and 10R are less affected by disturbances from the road surface.
  • the time interval for applying the steering assist force of the first electric steering mechanism 16L and the second electric steering mechanism 16R is set to such a time that the driver does not feel discomfort with respect to the application of each steering assist force. It is desirable to
  • the disturbance is a high frequency vibration that is input from the road surface to the steered wheels when the vehicle travels on a rough road surface such as a hill or a gravel road. For this reason, it is possible to detect the presence or absence of disturbance, for example, when a specific frequency signal (a signal of a predetermined frequency or more) is detected among output signals of the torque sensor, it can be determined that the disturbance is generated.
  • a specific frequency signal a signal of a predetermined frequency or more
  • the determination can be made based on the output signal of the yaw rate sensor. It can also be determined based on the vibration of the road surface image captured by the camera. Furthermore, the downstream angle signal precedes the upstream angle signal based on the phase of the vibration of the torque signal on the upstream side (handle side) of the torsion bar and on the downstream side (steering wheel side) of the angle signal. If it does, it can be determined that a disturbance has occurred.
  • the second electric steering mechanism 16R connected to the steering wheel 18 is driven and controlled in advance, whereby the driver turns the steering device into a steering operation. You can easily feel that you are reacting. Further, the first electric motor 41L responds to the drive control of the second electric motor 41R in a delayed manner, whereby the stability of the steering device can be improved.
  • step S22 When the drive control of the first electric motor 41L in step S22 is executed, the process is returned to wait for the next start timing.
  • Step S23 The process returns to step S19, and when it is determined that the operation amount of the steering wheel 18 is small and the detected steering torque is smaller than the predetermined steering torque T1, the process proceeds to step S23.
  • step S23 the vehicle speed of the vehicle is determined. If the vehicle speed is lower than the predetermined vehicle speed V1 (low speed traveling), the process proceeds to step S24. If the vehicle speed is higher than the predetermined vehicle speed V1 (high speed traveling), the step S26. Migrate to
  • Step S24 since the speed of the car is low, it does not take into consideration the hindrance that occurs when the speed of the car described later is high, and there is little need to increase the steering assist force from step S19.
  • the steering assist force is applied only by the second electric steering mechanism 16R interlocked with the steering wheel 18 side. Therefore, in step S24, a motor torque command value which is a drive control amount of the second electric motor 41R of the second electric steering mechanism 16R is calculated from the detected torque corresponding to the operation amount of the steering wheel 18.
  • the process proceeds to step S25.
  • Step S25 the motor torque command value calculated in step S24 is set in the second electric motor drive unit 53R, and subsequently, a drive current is supplied to the second electric motor 41R, and a predetermined torque is obtained. To generate.
  • the steering assist force is applied only by the second electric steering mechanism 16R.
  • the amount of consumption of electrical energy can be reduced, and as a result, the amount of fuel consumption can be reduced.
  • step S25 When the drive control of the second electric motor 41R in step S25 is executed, the process is returned to wait for the next start timing.
  • Step S26 since it is determined that the vehicle speed of the automobile is faster than the predetermined vehicle speed V1, in step S26, the motor torque command value of the second electric motor 41R is calculated. Since the motor torque command value is high-speed traveling at a high speed of the vehicle, the steering assist force needs to be a value capable of strongly maintaining the turning position. This is because, since the vehicle speed is high, when the steered position changes, there is a risk that the vehicle may cause a serpentine traveling. Therefore, first, at step S26, the steering assist force of the second electric motor 41R necessary for steering assist is obtained. When the motor torque command value of the second electric motor 41R is calculated, the process proceeds to step S27.
  • Step S27 a motor torque command value capable of obtaining a steering assist force by holding the steered positions of the steered wheels 10L and 10R and causing no serpentine travel to the first electric motor 41L is obtained.
  • the motor torque command value of the first electric motor 41L is set smaller than the motor torque command value of the second electric motor 41R.
  • Step S28 the motor torque command value calculated in step S26 is set in the second electric motor drive unit 53R, and subsequently, a drive current is supplied to the second electric motor 41R, and a predetermined torque is obtained. To generate.
  • the process proceeds to step S29.
  • Step S29 the motor torque command value calculated in step S27 is set in the first electric motor drive unit 53L, and subsequently, a drive current is supplied to the first electric motor 41L, and a predetermined torque is obtained. To generate. In this case, as described above, the motor torque of the first electric motor 41L is smaller than the motor torque of the second electric motor 41R.
  • the drive control of the first electric motor 41L in step S29 is executed, the process returns to return and waits for the next start timing.
  • steps S26, S27, S28, and S29 the stability of steering at high speed traveling can be improved, and the steering assist forces of the first electric motor 41L and the second electric motor 41R are different. It is possible to suppress the divergence of the vehicle and give a firm sense of steering operation.
  • the first electric steering mechanism is provided with the first motor actuator
  • the second electric steering mechanism is provided with the second motor actuator, and these are individually controlled by the control device. According to this, by performing different control for each of the first electric steering mechanism and the second electric steering mechanism, it is possible to give arbitrary steering controllability, and it is possible to improve the steering performance. Furthermore, since the steering assist force is given by the motor actuator, the response is fast, and the above-mentioned steering controllability can be further improved.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above-described embodiment is described in detail to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the steering apparatus is a first steering mechanism, and includes a first ball nut type steering and a first motor actuator, and the first ball nut type steering is A first output shaft, a first ball screw, a first nut, and a first transmission mechanism, wherein the first output shaft is rotatable around a rotation axis of the first output shaft, and the first output shaft is rotatable.
  • the ball screw drives the first nut so as to move in the direction of the rotation axis of the first output shaft as the first output shaft rotates, and the first transmission mechanism moves the first nut.
  • the first steering wheel is steered
  • the first motor actuator is a first electric motor that applies a rotational force to the first output shaft, the first steering mechanism, and the second steering mechanism.
  • the second ball-nut type steering and a second motor actuator comprising a second output shaft, a second ball screw, a second nut, and a second transmission mechanism
  • the second output shaft is rotatable about the rotation axis of the second output shaft, and the second ball screw is directed in the direction of the rotation axis of the second output shaft as the second output shaft rotates.
  • the second transmission mechanism steers the second steered wheel along with the movement of the second nut, and the second motor actuator
  • the second steering mechanism which is a second electric motor that applies a rotational force to two output shafts, and a coupling member, wherein the movement of the first transmission mechanism and the second transmission mechanism can be interlocked. Connecting the transmission mechanism and the second transmission mechanism And a connecting member.
  • the control device includes a control device that drives and controls the first motor actuator and the second motor actuator, and the control device controls the steering direction of the first steering wheel and the second steering wheel.
  • the control device controls the steering direction of the first steering wheel and the second steering wheel.
  • the control device rotates the second motor actuator in the same direction as the steering direction of the first steered wheel and the second steered wheel. And drivingly controlling the first motor actuator such that the first steered wheel holds a turning angle.
  • the control device rotates the second motor actuator in the same direction as the steering direction of the second steered wheel at a predetermined vehicle speed or more.
  • the first motor actuator is drive-controlled so that the first steered wheel holds the turning angle.
  • control device causes disturbance from the road surface when the second motor actuator is rotated in the same direction as the turning direction of the second steering wheel. Driving control of the first motor actuator is performed so as to suppress.
  • the second output shaft is connected to a steering wheel.
  • the second steering mechanism includes an input shaft, a torsion bar, a first angle sensor, and a second angle sensor, and the input shaft is the steering.
  • the torsion bar is connected to a wheel, and the torsion bar is provided between the input shaft and the second output shaft, and the first angle sensor detects an angle of the input shaft.
  • the two-angle sensor is for detecting the angle of the second output shaft
  • the control device is such that the phase of the output signal of the second angle sensor leads the phase of the output signal of the first angle sensor
  • the second motor actuator suppresses the disturbance from the road surface. It controls the driving of the motor actuator.
  • a control device for driving and controlling the first motor actuator and the second motor actuator is provided, and the second output shaft is connected to a steering wheel
  • the control device drives and controls the second motor actuator in advance of the first motor actuator.
  • the first ball nut type steering and the second ball nut type steering do not have a hydraulic circuit.
  • the first steering mechanism has a first reduction mechanism provided between the first output shaft and the first motor actuator
  • the second steering mechanism has a second reduction mechanism provided between the second output shaft and the second motor actuator.
  • each of the first reduction gear mechanism and the second reduction gear mechanism is a combination of a worm gear and a worm wheel.
  • the first ball and nut steering includes a first sector gear that meshes with a first rack formed on the first nut, and the second ball
  • the nut steering includes a second sector gear engaged with a second rack formed on the second nut, and the first nut and the second nut have the same shape, and the first sector gear and the The two sector gear has the same shape.
  • a control device that drives and controls the first motor actuator and the second motor actuator, an input shaft provided in the second steering mechanism, and a torsion bar A torque sensor, the input shaft is connected to a steering wheel, the torsion bar is provided between the input shaft and the second output shaft, and the torque sensor is connected to the input shaft
  • the steering torque of the second steering mechanism is detected based on the relative rotation angle of the second output shaft, and the control device is configured to respectively receive the first motor actuator and the second motor actuator according to the steering torque.
  • Drive control that drives and controls the first motor actuator and the second motor actuator, an input shaft provided in the second steering mechanism, and a torsion bar A torque sensor, the input shaft is connected to a steering wheel, the torsion bar is provided between the input shaft and the second output shaft, and the torque sensor is connected to the input shaft
  • the steering torque of the second steering mechanism is detected based on the relative rotation angle of the second output shaft, and the control device is configured to respectively receive the first motor actuator and the second motor actuator according to the steering torque. Drive control
  • control device controls the first motor actuator and the first motor actuator in the same direction as the steering wheel when the steering torque is a predetermined value or more. 2 Drive and control both motor actuators.
  • the second output shaft is connected to a steering column, and the second motor actuator is provided on the steering column, and the steering column is provided on the steering column Apply steering power.
  • the first control device for driving and controlling the first motor actuator and the second control device for driving and controlling the second motor actuator are provided.
  • the first control device includes a first microcomputer that calculates a command signal output to the first motor actuator, and the second control device calculates a second micro computer that calculates a command signal output to the second motor actuator. It has a computer.
  • the first motor actuator and the second motor actuator may fail when one of the first motor actuator and the second motor actuator fails.
  • the other motor actuator is continuously driven and controlled.
  • any of the aspects of the steering device when one of the first microcomputer and the second microcomputer fails in the first microcomputer and the second microcomputer, The other microcomputer is continuously driven and controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

According to the present invention, a first electric steering mechanism (16L) is provided with a first motor actuator (20L), a second electric steering mechanism (16R) is provided with a second motor actuator (20R), and these mechanisms are individually controlled by control devices (22L), (22R). Thus, the first electric steering mechanism (16L) and the second electric steering mechanism (16R) can be controlled differently, and thereby arbitrarily defined steering controllability can be provided thereto and steering performance thereof can be improved. In addition, since steering assistance force is applied by the motor actuators (20L), (20R), a quick responsiveness is achieved, and the steering controllability can be further improved.

Description

ステアリング装置Steering device
 本発明は自動車の対となった車輪の操舵を行なうステアリング装置に係り、特に夫々の車輪に対応した操舵機構を備えたステアリング装置に関するものである。 The present invention relates to a steering apparatus for steering a pair of wheels of a vehicle, and more particularly to a steering apparatus provided with a steering mechanism corresponding to each of the wheels.
 自動車においては、ステアリングホイールによる操舵力をアシスト(以下、操舵アシスト力と表記する)するために、パワーステアリング装置が採用されている。このパワーステアリング装置は、一般には油圧によって動作されるピストンでセクタギアを駆動し、セクタギアによって車輪に連結されたリンク系を操作して、操舵アシスト力を与える構成となっている。 In an automobile, a power steering device is adopted to assist a steering force by a steering wheel (hereinafter referred to as a steering assist force). In this power steering apparatus, a sector gear is generally driven by a piston operated by hydraulic pressure, and a link system connected to a wheel by the sector gear is operated to provide a steering assist force.
 また、例えば、トラックのような自動車では大きな操舵力が必要となるため、操舵力を更にアシストする必要がある。このため、自動車の対となった車輪の夫々を油圧駆動される操舵機構によって操舵アシスト力を与えることが提案されている。例えば、特開2002-87311号公報(特許文献1)においては、夫々の車輪に連結されたリンクに油圧駆動のピストンを設け、ステアリングホイールの操舵に合せて夫々のピストンに作用する油圧を制御して、操舵アシスト力を強化する構成が示されている。この場合、油圧ポンプからの油圧は、制御バルブによって制御されて配管を介して夫々のピストンに作用する構成となっている。 Further, for example, in a car such as a truck, a large steering force is required, and therefore, the steering force needs to be further assisted. For this reason, it has been proposed that a steering assist force is provided by a steering mechanism in which each of the paired wheels of a car is hydraulically driven. For example, in Japanese Patent Application Laid-Open No. 2002-87311 (Patent Document 1), hydraulically driven pistons are provided on the links connected to the respective wheels, and the hydraulic pressure acting on the respective pistons is controlled according to the steering of the steering wheel. The configuration for strengthening the steering assist force is shown. In this case, the hydraulic pressure from the hydraulic pump is controlled by the control valve so as to act on the respective pistons through the piping.
 尚、上述した特許文献1においては、操舵アシスト力を高めるために、夫々の車輪に対応した操舵機構を備えているものであるが、これ以外の目的で、夫々の車輪に対応した操舵機構を備えることも可能である。例えば、操舵の応答性を高めるために、このような構成を採用することもできるものである。 In addition, in patent document 1 mentioned above, in order to raise steering assist force, although the steering mechanism corresponding to each wheel is provided, the steering mechanism corresponding to each wheel is carried out for the purpose other than this. It is also possible to provide. For example, such a configuration can also be employed to enhance steering responsiveness.
2002-87311号公報2002-87311 gazette
 ところで、最近の自動車においては、搭乗者に対する各種の操作装置の操作性を向上させることが要求されており、自動車を操舵するステアリングホイールの操舵性についても例外ではない。このため、夫々の車輪に与える操舵アシスト力を個別に素早く与えることも、操舵性を向上させるために必要な開発目標であり、この開発目標を達成する技術が強く要請されている。 By the way, in the recent automobile, it is required to improve the operability of various operation devices for the passenger, and the steering ability of the steering wheel for steering the automobile is no exception. For this reason, it is also a development goal necessary to improve the steering ability to quickly apply the steering assist force individually applied to each wheel, and a technique for achieving this development goal is strongly demanded.
 本発明の目的は、夫々の車輪に与える操舵アシスト力を個別に素早く与えることで、操舵性を向上させることができる新規なステアリング装置を提供することにある。 An object of the present invention is to provide a novel steering device capable of improving the steering performance by quickly giving a steering assist force individually to each wheel.
 本発明は、(1)第1操舵機構であって、第1ボールナット式ステアリングと、第1モータアクチュエータとを備え、第1ボールナット式ステアリングは、第1出力軸と、第1ボールナットと、第1伝達機構とを備え、第1出力軸は、第1出力軸の回転軸線周りに回転可能であり、第1ボールナットは、第1出力軸の回転に伴い、第1出力軸の回転軸線の方向に移動する第1ナットを備え、第1伝達機構は、第1ナットの移動に伴い、第1操舵輪を転舵させるものであって、第1モータアクチュエータは、第1出力軸に回転力を付与する第1電動モータであり、(2)第2操舵機構であって、第2ボールナット式ステアリングと、第2モータアクチュエータ部と、を備え、第2ボールナット式ステアリングは、第2出力軸と、第2ボールナットと、第2伝達機構と、を備え、第2出力軸は、第2出力軸の回転軸線周りに回転可能であり、第2ボールナットは、第2出力軸の回転に伴い、第2出力軸の回転軸線の方向に移動する第2ナットを備え、第2伝達機構は、第2ナットの移動に伴い、第2操舵輪を転舵させるものであって、第2モータアクチュエータは、第2出力軸に回転力を付与する第2電動モータであり、(3)連結部材であって、第1伝達機構と第2伝達機構との動きを連動可能に第1伝達機構と前記第2伝達機構とを連結する連結部材とを有することを特徴とするものである。 The present invention is: (1) a first steering mechanism including a first ball and nut type steering and a first motor actuator; and the first ball and nut type steering includes a first output shaft and a first ball nut A first transmission mechanism, the first output shaft is rotatable about the rotation axis of the first output shaft, and the first ball nut rotates the first output shaft as the first output shaft rotates The first transmission mechanism includes a first nut that moves in the direction of the axis, and the first transmission mechanism steers the first steered wheel along with the movement of the first nut, and the first motor actuator has a first output shaft. A first electric motor for applying a rotational force, (2) a second steering mechanism, comprising a second ball nut type steering and a second motor actuator unit, the second ball nut type steering 2 output shaft and 2nd baller And the second transmission mechanism, the second output shaft is rotatable about the rotation axis of the second output shaft, and the second ball nut is configured to output the second output as the second output shaft rotates. The second transmission mechanism includes a second nut that moves in the direction of the axis of rotation of the shaft, and the second transmission mechanism steers the second steered wheel along with the movement of the second nut, and the second motor actuator is configured to A second electric motor for applying a rotational force to the output shaft, and (3) a connecting member, the first transmission mechanism and the second transmission mechanism being capable of interlocking the movements of the first transmission mechanism and the second transmission mechanism And a connecting member for connecting the two.
 本発明によれば、電気的なアクチュエータで制御される第1操舵機構と第2操舵機構の夫々について異なる制御を行うことで、任意の操舵制御性を与えることができ、操舵性を向上させることができる。 According to the present invention, by performing different control for each of the first steering mechanism and the second steering mechanism controlled by the electrical actuator, it is possible to provide arbitrary steering controllability and improve the steering performance. Can.
本発明の実施形態になるステアリングシステムの構成を示す構成図である。It is a block diagram showing composition of a steering system which becomes an embodiment of the present invention. ステアリングホイールとは連結されない方の電動操舵機構の構成を示す断面図である。FIG. 6 is a cross-sectional view showing the configuration of an electric steering mechanism that is not connected to the steering wheel. ステアリングホイールと連結される方の電動操舵機構の構成を示す断面図である。It is a sectional view showing the composition of the electric steering mechanism of the one connected with a steering wheel. ステアリングホイールと連結される方の電動操舵機構の他の構成を示す断面図である。FIG. 6 is a cross-sectional view showing another configuration of the electric steering mechanism that is coupled to the steering wheel. 図1に示す制御装置の構成を示す制御ブロック図である。It is a control block diagram which shows the structure of the control apparatus shown in FIG. 図1に示す制御装置の具体的な制御を説明する制御フローチャート図である。It is a control flowchart figure explaining specific control of the control apparatus shown in FIG.
 以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。 Hereinafter, although the embodiment of the present invention will be described in detail with reference to the drawings, the present invention is not limited to the following embodiment, and various modifications and applications can be made within the technical concept of the present invention. Is also included in that range.
 図1は、本発明の代表的な実施形態であるステアリングシステムの構成を示している。自動車の前側の前輪は対の車輪(以下、操舵輪)として設けられており、第1操舵輪10Lと第2操舵輪10Rを備えている。第1操舵輪10Lと第2操舵輪10Rとは、タイロッド11により連結されている。 FIG. 1 shows the configuration of a steering system which is a typical embodiment of the present invention. The front wheels on the front side of the vehicle are provided as a pair of wheels (hereinafter referred to as steered wheels), and are provided with a first steered wheel 10L and a second steered wheel 10R. The first steering wheel 10L and the second steering wheel 10R are connected by a tie rod 11.
 このタイロッド11の両端の夫々には、第1タイロッドアーム12L、第2タイロッドアーム12Rが結合され、両タイロッドアーム12L、12Rは、第1操舵輪10Lと第2操舵輪10Rの夫々に連結されている。これによって、第1操舵輪10Lと第2操舵輪10Rとは、互いに連動して転舵することができる構成となっている。 A first tie rod arm 12L and a second tie rod arm 12R are coupled to both ends of the tie rod 11, and both tie rod arms 12L and 12R are connected to the first steered wheel 10L and the second steered wheel 10R, respectively. There is. As a result, the first steered wheel 10L and the second steered wheel 10R can be steered in conjunction with each other.
 更に、第1操舵輪10Lは、第1ステアリングアーム13L、第1ドラックリンク14L、第1ピットマンアーム15Lを介して、第1電動操舵機構16Lに連結されている。同様に、第2操舵輪10Rは、第2ステアリングアーム13R、第2ドラックリンク14R、第2ピットマンアーム15Rを介して、第2電動操舵機構16Rに連結されている。尚、第1電動操舵機構16L、第2電動操舵機構16Rから第1操舵輪10L、第2操舵輪10Rまでの各リンクや各アームは、以下では単に、「リンク系(=連結部材)」とまとめて表記する場合もある。 Furthermore, the first steered wheel 10L is connected to the first electric steering mechanism 16L via the first steering arm 13L, the first drag link 14L, and the first pitman arm 15L. Similarly, the second steering wheel 10R is coupled to the second electric steering mechanism 16R via the second steering arm 13R, the second drag link 14R, and the second pitman arm 15R. In addition, each link and each arm from the first electric steering mechanism 16L and the second electric steering mechanism 16R to the first steered wheel 10L and the second steered wheel 10R are simply referred to as "link system (= connection member)" hereinafter. In some cases, it may be written together.
 第2電動操舵機構16Rは、ステアリングシャフト17を介してステアリングホイール18と連結されており、ステアリングホイール18の操作によって、第2電動操舵機構16Rは、ピットマンアーム15Rを駆動して転舵するものである。もちろん、この時は、後述するように、第1電動操舵機構16Lと第2電動操舵機構16Rによって操舵アシスト力が与えられるものである。 The second electric steering mechanism 16R is connected to the steering wheel 18 via the steering shaft 17, and the second electric steering mechanism 16R drives the pitman arm 15R to steer by operation of the steering wheel 18. is there. Of course, at this time, as described later, the steering assist force is applied by the first electric steering mechanism 16L and the second electric steering mechanism 16R.
 第1電動操舵機構16Lは、第1インテグラル式ギアボックス(以下、単に第1ギアボックスと表記する)19Lと、第1ギアボックス19Lに内蔵されているボールナット式ステアリングを制御する第1モータアクチュエータ20Lから構成されている。 The first electric steering mechanism 16L includes a first integral gearbox 19 (hereinafter simply referred to as a first gearbox) 19L and a first motor for controlling a ball-nut steering incorporated in the first gearbox 19L. It comprises an actuator 20L.
 同様に、第2電動操舵機構16Rは、第2インテグラル式ギアボックス(以下、単に第2ギアボックスと表記する)19Rと、第2ギアボックス19Rに内蔵されているボールナット式ステアリングを制御する第2モータアクチュエータ20Rから構成されている。尚、第2電動操舵機構16Rには、ステアリングホイール18の操作トルクを検出するトルクセンサ21が設けられている。 Similarly, the second electric steering mechanism 16R controls a second integral gear box (hereinafter simply referred to as a second gear box) 19R and a ball nut type steering wheel built in the second gear box 19R. It comprises the 2nd motor actuator 20R. The second electric steering mechanism 16R is provided with a torque sensor 21 for detecting the operation torque of the steering wheel 18.
 第1電動操舵機構16Lの第1モータアクチュエータ20Lは、第1制御装置22Lによって制御されており、同様に、第2電動操舵機構16Rの第2モータアクチュエータ20Rは、第2制御装置22Rによって制御されている。第1制御装置22Lと第2制御装置22Rとは、通信線を介して夫々通信されており制御情報や、故障、異常情報を相互に交換している。 The first motor actuator 20L of the first electric steering mechanism 16L is controlled by the first control device 22L, and similarly, the second motor actuator 20R of the second electric steering mechanism 16R is controlled by the second control device 22R. ing. The first control device 22L and the second control device 22R are respectively communicated via a communication line, and mutually exchange control information, failure, and abnormality information.
 尚、第1制御装置22Lと第2制御装置22Rは、分離しないで統合制御装置23として構成することができ、この場合は統合制御装置23によって、第1電動操舵機構16L及び第2電動操舵機構16Rを制御することができる。また、第1制御装置22Lは第1電動操舵機構16Lに一体的に組み付ける機電一体型に構成でき、更に第2制御装置22Rも第2電動操舵機構16Rに一体的に組み付ける機電一体型に構成できる。 Note that the first control device 22L and the second control device 22R can be configured as an integrated control device 23 without being separated, in which case, the integrated control device 23 controls the first electric steering mechanism 16L and the second electric steering mechanism. 16R can be controlled. Further, the first control device 22L can be configured as a mechanical-electrical integrated type integrally assembled to the first electric steering mechanism 16L, and the second control device 22R can also be configured as a mechanical-electrical integrated type integrally assembled to the second electric steering mechanism 16R. .
 このように、第1電動操舵機構16Lは第1モータアクチュエータ20Lを備え、第2電動操舵機構16Rは第2モータアクチュエータ20Rを備え、更に、夫々の制御装置22L、22Rによって個別に制御される構成となっている。 As described above, the first electric steering mechanism 16L includes the first motor actuator 20L, and the second electric steering mechanism 16R includes the second motor actuator 20R, and is further controlled individually by the respective control devices 22L and 22R. It has become.
 したがって、第1電動操舵機構16Lと、第2電動操舵機構16Rの夫々について、異なる制御を行うことで任意の操舵制御性を与えることができ、操舵性を向上させることができる。更に、夫々のモータアクチュエータ20L、20Rによって操舵アシスト力を与える構成であるため、操舵アシスト力が大きく、しかも応答性が速いので上述の操舵制御性を更に向上することが可能となる。 Therefore, by performing different control for each of the first electric steering mechanism 16L and the second electric steering mechanism 16R, arbitrary steering controllability can be provided, and the steering performance can be improved. Furthermore, since the steering assist force is given by the respective motor actuators 20L and 20R, the steering assist force is large and the response is fast, so that the above-mentioned steering controllability can be further improved.
 次に、第1電動操舵機構16L、及び第2電動操舵機構16Rの具体的な構成について、図2、図3に基づき説明するが、図2は第1電動操舵機構16Lを示し、図3は第2電動操舵機構16Rを示している。 Next, specific configurations of the first electric steering mechanism 16L and the second electric steering mechanism 16R will be described based on FIGS. 2 and 3. FIG. 2 shows the first electric steering mechanism 16L, and FIG. The second electric steering mechanism 16R is shown.
 第1電動操舵機構16Lを示す図2において、一端が開口した有底の細長い中空円筒状の第1ハウジング25Lの第1内部収納空間26Lには、第1ハウジング25Lの軸線方向に沿って摺動する第1ナット27Lが収納されており、この第1ナット27Lの一部、ここでは第1ナット27Lの側周部に、第1ラック部(=第1伝達機構)28Lが形成されている。 In FIG. 2 showing the first electric steering mechanism 16L, the first inner storage space 26L of the elongated hollow cylindrical first housing 25L with an open bottom is slid along the axial direction of the first housing 25L. A first rack portion (= first transmission mechanism) 28L is formed at a part of the first nut 27L, here, on the side peripheral portion of the first nut 27L.
 第1ハウジング25Lは金属から作られており、第1内部収納空間26Lに収納された第1ナット27Lは、両端に第1径大部29Lが形成されており、この第1径大部29Lが、第1内部収納空間26Lの内周面を摺動するように構成されている。そして、両第1径大部29Lの間の小径部30Lに、上述の第1ラック部28Lが形成されている。 The first housing 25L is made of metal, and the first nut 27L housed in the first inner housing space 26L has the first large diameter portion 29L formed at both ends, and the first large diameter portion 29L is The inner peripheral surface of the first inner storage space 26L is configured to slide. The above-mentioned first rack portion 28L is formed in the small diameter portion 30L between the two first large diameter portions 29L.
 また、第1ハウジング25Lの側面には、第1セクタギア収納部31Lが一体的に形成されており、この第1セクタギア収納部31L内に、第1セクタギア32Lが収納、配置されている。この第1セクタギア32Lは、第1ナット27Lに形成した第1ラック部28Lと噛み合っており、図2に示す状態で、第1ナット27Lの左右の摺動動作によって、第1セクタギア32Lが時計方向(正方向)及び反時計方向(負方向)に回転されるようになっている。 Further, a first sector gear storage portion 31L is integrally formed on the side surface of the first housing 25L, and a first sector gear 32L is stored and disposed in the first sector gear storage portion 31L. The first sector gear 32L meshes with the first rack portion 28L formed on the first nut 27L, and in the state shown in FIG. 2, the first sector gear 32L rotates clockwise due to the left and right sliding motion of the first nut 27L. It is designed to be rotated (positive direction) and counterclockwise (negative direction).
 そして、第1セクタギア32Lは、図1に示す第1ピットマンアーム15Lに連結されており、第1セクタギア32Lの回転動作は第1ピットマンアーム15Lに伝えられ、これによって第1操舵輪10Lが転舵される構成となっている。 The first sector gear 32L is connected to the first pitman arm 15L shown in FIG. 1, and the rotation operation of the first sector gear 32L is transmitted to the first pitman arm 15L, whereby the first steered wheel 10L is steered. It is configured to be
 第1ナット27Lの軸方向(摺動方向)の内部には螺旋状の「ねじ溝」が切られており、このねじ溝に、第1ボールねじ33Lを備えた第1出力軸34Lが螺合されている。この第1出力軸34Lの回転軸線Cr1は、第1ナット27Lの摺動方向の軸心と一致しており、第1出力軸34Lが、回転軸線Cr1の周りで回転すると、これによって第1ナット27Lが、図面上で左右に摺動移動するものである。ここで、第1出力軸34L、第1ボールねじ33L、第1ナット27L、及び第1ラック部28Lとで、第1ボールナット式ステアリングが構成されている。 A helical "screw groove" is cut in the axial direction (sliding direction) of the first nut 27L, and the first output shaft 34L provided with the first ball screw 33L is engaged with the screw groove. It is done. The rotation axis Cr1 of the first output shaft 34L coincides with the axial center of the first nut 27L in the sliding direction, and when the first output shaft 34L rotates around the rotation axis Cr1, the first nut is thereby rotated. 27L slides in the lateral direction on the drawing. Here, a first ball nut type steering is configured by the first output shaft 34L, the first ball screw 33L, the first nut 27L, and the first rack portion 28L.
 第1ハウジング25Lの開口端には、金属から作られた第1軸受部材35Lが液密的に取り付けられており、この第1軸受部材35Lの中央には第1ボールベアリング(A)36Lが設けられている。そして、第1ボールベアリング(A)36Lには、第1出力軸34Lが軸受可能に貫通しており、貫通した第1出力軸34Lの端部が、第1ボールベアリング(B)37Lによって軸受されている。第1ボールベアリング(B)37Lは、第1カバー38Lに固定され、第1カバー38Lは、後述する減速機構を液密的に囲繞して密閉している。 A first bearing member 35L made of metal is attached in a fluid tight manner to the open end of the first housing 25L, and a first ball bearing (A) 36L is provided at the center of the first bearing member 35L. It is done. The first output shaft 34L penetrates the first ball bearing (A) 36L so as to be capable of bearing, and the end of the first output shaft 34L penetrated is supported by the first ball bearing (B) 37L. ing. The first ball bearing (B) 37L is fixed to the first cover 38L, and the first cover 38L encloses and seals the speed reduction mechanism described later in a fluid-tight manner.
 第1軸受部材35Lと第1カバー38Lの間に位置する、第1出力軸34Lの端部には、第1ウォームホイール39Lが固定されており、この第1ウォームホイール39Lは、第1ウォーム40Lと噛み合っており、これらによって減速機構が形成されている。第1ウォーム40Lは、第1電動モータ41Lによって駆動されるように、第1電動モータ41Lの回転軸に固定されている。 A first worm wheel 39L is fixed to an end of the first output shaft 34L located between the first bearing member 35L and the first cover 38L, and the first worm wheel 39L is a first worm 40L. And a speed reducing mechanism. The first worm 40L is fixed to the rotation shaft of the first electric motor 41L so as to be driven by the first electric motor 41L.
 第1電動モータ41Lの回転軸の回転軸線は、第1出力軸34Lの回転軸線Cr1と直交する方向に位置するように、第1電動モータ41Lは、第1ハウジング25Lの外表面に固定されている。これによって、第1電動操舵機構16Lの長さ方向(第1出力軸34Lの回転軸線Cr1の方向)の体格を小型化でき、自動車に装着する時の融通性(レイアウト性)を高めることができる。 The first electric motor 41L is fixed to the outer surface of the first housing 25L such that the rotation axis of the rotation axis of the first electric motor 41L is positioned in the direction orthogonal to the rotation axis Cr1 of the first output shaft 34L. There is. This makes it possible to reduce the size of the first electric steering mechanism 16L in the length direction (the direction of the rotation axis Cr1 of the first output shaft 34L), thereby enhancing flexibility (layout capability) when mounted on a vehicle. .
 また、減速機構は、第1ウォームホイール39Lと第1ウォーム40Lとから構成されているので、小型化することができ、ステアリング装置の大型化や重量の増大を抑制することができる。また、第1電動モータ41Lの回転力を減速して増幅しているので、小型の電動モータを使用できる、或いは小型化しない場合は、操舵アシスト力を大きくできるという、作用、効果を得ることができる。 In addition, since the speed reduction mechanism is composed of the first worm wheel 39L and the first worm 40L, the reduction in size can be achieved, and an increase in size and weight of the steering apparatus can be suppressed. In addition, since the rotational force of the first electric motor 41L is decelerated and amplified, a small electric motor can be used, or the steering assist force can be increased when the size is not reduced. it can.
 また、油圧系を使用しないので、油圧ポンプや油圧配管等が不要となり、システムの簡素化を図ることができるほか、電気的な制御信号を第1電動モータ41Lに送って操舵アシスト力を与えるため、応答性が高いという作用、効果を得ることができる。この応答性が高いということは、後述する制御フローで得られる操舵制御特性を更に向上させることに繋がるものとなる。 In addition, since a hydraulic system is not used, a hydraulic pump, hydraulic piping and the like are not required, and simplification of the system can be achieved, and an electrical control signal is sent to the first electric motor 41L to apply a steering assist force. The action, the effect that the responsiveness is high can be obtained. The high responsiveness leads to further improvement of the steering control characteristic obtained by the control flow to be described later.
 以上のような構成を備える第1電動操舵機構16Lにおいては、第1制御装置22Lからの駆動制御信号(=操舵アシスト力に対応)が第1電動モータ41Lに与えられると、第1電動モータ41Lは、第1ウォーム40L、第1ウォームホイール39Lを介して第1出力軸34Lを回転駆動する。第1出力軸34Lが回転されると、第1ボールねじ33Lによって第1ナット27Lが摺動移動して、第1ラック部28Lが第1セクタギア32Lを回転し、リンク系を介して第1操舵輪10Lに操舵アシスト力を付与することができる。 In the first electric steering mechanism 16L having the above configuration, when the drive control signal (= corresponding to the steering assist force) from the first control device 22L is applied to the first electric motor 41L, the first electric motor 41L The first output shaft 34L is rotationally driven via the first worm 40L and the first worm wheel 39L. When the first output shaft 34L is rotated, the first nut 27L slides by the first ball screw 33L, the first rack portion 28L rotates the first sector gear 32L, and the first steering is performed via the link system. The steering assist force can be applied to the wheel 10L.
 次に、第2電動操舵機構16Rの具体的な構成を説明する。第2電動操舵機構16Rを示す図3において、一端が開口した有底の細長い中空円筒状の第2ハウジング25Rの第2内部収納空間26Rには、第2ハウジング25Rの軸線方向に沿って摺動する第2ナット27Rが収納されており、この第2ナット27Rの一部、ここでは第2ナット27Rの側周部に、第2ラック部(=第2伝達機構)28Rが形成されている。 Next, a specific configuration of the second electric steering mechanism 16R will be described. In FIG. 3 showing the second electric steering mechanism 16R, the second internal storage space 26R of the elongated hollow cylindrical second housing 25R with an open end is slid along the axial direction of the second housing 25R. A second rack portion (= second transmission mechanism) 28R is formed at a part of the second nut 27R, here, on the side peripheral portion of the second nut 27R.
 第2ハウジング25Rは金属から作られており、第2内部収納空間26Rに収納された第2ナット27Rは、両端に第2径大部29Rが形成されており、この第2径大部29Rが、内部収納空間26Rの内周面を摺動するように構成されている。そして、両第2径大部29Rの間の第2小径部30Rに、上述の第2ラック部28Rが形成されている。 The second housing 25R is made of metal, and the second nut 27R housed in the second inner housing space 26R has the second large diameter portion 29R formed at both ends, and the second large diameter portion 29R is The inner storage space 26R is configured to slide on the inner peripheral surface thereof. The second rack portion 28R described above is formed in the second small diameter portion 30R between the second large diameter portions 29R.
 また、第2ハウジング25Rの側面には、第2セクタギア収納部31Rが一体的に形成されており、この第2セクタギア収納部31R内に、第2セクタギア32Rが収納、配置されている。この第2セクタギア32Rは、第2ナット27Rに形成した第2ラック部28Rと噛み合っており、図3に示す状態で、第2ナット27Rの左右の摺動動作によって、第2セクタギア32Rが時計方向(正方向)及び反時計方向(負方向)に回転されるようになっている。 Further, a second sector gear storage portion 31R is integrally formed on a side surface of the second housing 25R, and a second sector gear 32R is stored and disposed in the second sector gear storage portion 31R. The second sector gear 32R meshes with the second rack portion 28R formed on the second nut 27R, and in the state shown in FIG. 3, the second sector gear 32R rotates clockwise due to the left and right sliding motion of the second nut 27R. It is designed to be rotated (positive direction) and counterclockwise (negative direction).
 そして、第2セクタギア32Rは、図1に示す第2ピットマンアーム15Rに連結されており、第2セクタギア32Rの回転動作は第2ピットマンアーム15Rに伝えられ、これによって第2操舵輪10Rが転舵される構成となっている。 The second sector gear 32R is connected to the second pitman arm 15R shown in FIG. 1, and the rotation operation of the second sector gear 32R is transmitted to the second pitman arm 15R, whereby the second steered wheel 10R is steered. It is configured to be
 第2ナット27Rの軸方向(摺動方向)の内部には螺旋状の「ねじ溝」が切られており、このねじ溝に、第2ボールねじ33Rを備えた第2出力軸34Rが螺合されている。この第2出力軸34Rの回転軸線Cr2は、第2ナット27Rの摺動方向の軸心と一致しており、第2出力軸34Rが、回転軸線Cr2の周りで回転すると、これによって第2ナット27Rが、図面上で左右に摺動移動するものである。ここで、第2出力軸34R、第2ボールねじ33R、第2ナット27R、及び第2ラック部28Rとで、第2ボールナット式ステアリングが構成されている。 A helical "screw groove" is cut in the axial direction (sliding direction) of the second nut 27R, and the second output shaft 34R provided with the second ball screw 33R is engaged with this screw groove. It is done. The rotation axis Cr2 of the second output shaft 34R coincides with the axial center of the second nut 27R in the sliding direction, and when the second output shaft 34R rotates around the rotation axis Cr2, the second nut is thereby rotated. 27R slides in the lateral direction on the drawing. Here, a second ball nut type steering is configured by the second output shaft 34R, the second ball screw 33R, the second nut 27R, and the second rack portion 28R.
 第2ハウジング25Rの開口端には、金属から作られた第2軸受部材35Rが液密的に取り付けられており、この第2軸受部材35Rの中央には、第2ボールベアリング(A)36Rが設けられている。そして、第2ボールベアリング(A)36Rには、第2出力軸34Rが軸受可能に貫通している。第2出力軸34Rの端部付近の内部空間には、後述するトーションバー43の一端が固定されている。 A second bearing member 35R made of metal is attached in a fluid tight manner to the open end of the second housing 25R, and a second ball bearing (A) 36R is provided at the center of the second bearing member 35R. It is provided. The second output shaft 34R penetrates the second ball bearing (A) 36R so as to be capable of bearing. One end of a torsion bar 43 described later is fixed to an internal space in the vicinity of the end of the second output shaft 34R.
 第2軸受部材35Rから貫通した第2出力軸34Rの端部の外周には、第2ウォームホイール39Rが固定されており、この第2ウォームホイール39Rは、第2ウォーム40Rと噛み合っており、これらによって減速機構が形成されている。第2ウォームホイール39Rは、第2電動モータ41Rによって駆動されるように、第2電動モータ41Rの回転軸に固定されている。 The second worm wheel 39R is fixed to the outer periphery of the end of the second output shaft 34R penetrating from the second bearing member 35R, and the second worm wheel 39R meshes with the second worm 40R. Forms a speed reduction mechanism. The second worm wheel 39R is fixed to the rotation shaft of the second electric motor 41R so as to be driven by the second electric motor 41R.
 第2電動モータ41Lの回転軸の回転軸線も、第2出力軸34Rの回転軸線Cr2と直交する方向に位置するように、第2電動モータ41Rは、第2ハウジング25Rの外表面に固定されている。これによって、第2電動操舵機構16Rの長さ方向(第2出力軸34Rの回転軸線Cr2の方向)の体格を小型化でき、自動車に装着する時の融通性(レイアウト性)を高めることができる。 The second electric motor 41R is fixed to the outer surface of the second housing 25R so that the rotation axis of the rotation axis of the second electric motor 41L is also positioned in the direction orthogonal to the rotation axis Cr2 of the second output shaft 34R. There is. This makes it possible to miniaturize the physical size of the second electric steering mechanism 16R in the length direction (direction of the rotation axis Cr2 of the second output shaft 34R), and to enhance flexibility (layout capability) when mounted on an automobile .
 第1電動操舵機構16Lと同様に、減速機構は、第2ウォームホイール39Rと第2ウォーム40Rとから構成されているので、小型化することができ、ステアリング装置の大型化や重量の増大を抑制することができる。また、第2電動モータ41Rの回転力を減速して増幅しているので、小型の電動モータを使用できる、或いは小型化しない場合は、操舵アシスト力を大きくできるという、作用、効果を得ることができる。 As with the first electric steering mechanism 16L, the speed reduction mechanism is composed of the second worm wheel 39R and the second worm 40R, so it can be miniaturized, suppressing the enlargement of the steering apparatus and the weight increase. can do. In addition, since the rotational force of the second electric motor 41R is decelerated and amplified, a small electric motor can be used, or the steering assist force can be increased if the size is not reduced. it can.
 また、第1電動操舵機構16Lと同様に、油圧系を使用しないので、油圧ポンプや油圧配管等が不要となり、システムの簡素化を図ることができるほか、電気的な制御信号を第2電動モータ41Rに送って操舵アシスト力を与えるため、応答性が高いという作用、効果を得ることができる。この応答性が高いということは、後述する制御フローで得られる操舵制御特性を更に向上させることに繋がるものとなる。 Further, similarly to the first electric steering mechanism 16L, since no hydraulic system is used, a hydraulic pump, hydraulic piping, and the like are not necessary, and simplification of the system can be achieved. Since the steering assist force is sent to the 41R, it is possible to obtain an action and an effect that the response is high. The high responsiveness leads to further improvement of the steering control characteristic obtained by the control flow to be described later.
 ここで、第2電動操舵機構16Rは、ステアリングホイール18に固定されたステアリングシャフト17に連結される入力軸42が設けられており、この入力軸42にはトーションバー43の他端が固定されて、第2出力軸34Rと連結されている。したがって、トーションバー43は、第2出力軸34Rと入力軸42の間で捩じられ、この捩じれ量を測定してトルクを検出することができる。 Here, the second electric steering mechanism 16R is provided with an input shaft 42 connected to the steering shaft 17 fixed to the steering wheel 18, and the other end of the torsion bar 43 is fixed to the input shaft 42. , And the second output shaft 34R. Therefore, the torsion bar 43 is twisted between the second output shaft 34R and the input shaft 42, and the amount of twist can be measured to detect torque.
 このように、第2出力軸34Rは、入力軸42を介してステアリングホイール18と接続されている。これによって、転舵方向と同じ方向に大きなトルクを出力する第2電動モータ41R側にステアリングホイール18が繋がるので、運転者は操舵アシストの応答性を容易に感じることができ、操舵感覚を向上させることができる。 Thus, the second output shaft 34R is connected to the steering wheel 18 via the input shaft 42. As a result, the steering wheel 18 is connected to the side of the second electric motor 41R that outputs a large torque in the same direction as the steering direction, so that the driver can easily feel the responsiveness of the steering assist and improve the steering feeling. be able to.
 そして、トーションバー43の捩じれを検出するため、入力軸42には第1角度センサ44が取り付けられ、第2出力軸34Rには第2角度センサ45が取り付けられている。そして、入力軸42の第1角度センサ44と2出力軸の第2角度センサ45で検出された相対回転角度に基づき、操舵トルクが検出されるものである。尚、第1角度センサ44と第2角度センサ45は、入力軸42からの入力、及び第2出力軸34Rからの逆入力を検出することも可能である。これについては、後述する制御フローチャートに基づき説明する。 Then, in order to detect the torsion of the torsion bar 43, the first angle sensor 44 is attached to the input shaft 42, and the second angle sensor 45 is attached to the second output shaft 34R. The steering torque is detected based on the relative rotation angle detected by the first angle sensor 44 of the input shaft 42 and the second angle sensor 45 of the two output shafts. The first angle sensor 44 and the second angle sensor 45 can also detect an input from the input shaft 42 and a reverse input from the second output shaft 34R. This will be described based on a control flowchart to be described later.
 尚、入力軸42は、第2ボールベアリング(B)37Rによって軸受けされており、第2ボールベアリング(B)37Rは、第2カバー38Rに固定されている。第2カバー38Rは、ウォームホイール39R、ウォーム40Rからなる減速機構や、トルクセンサを構成する第1角度センサ44、第2角度センサ45を液密的に囲繞して密閉している。 The input shaft 42 is supported by the second ball bearing (B) 37R, and the second ball bearing (B) 37R is fixed to the second cover 38R. The second cover 38R encloses and seals the reduction mechanism including the worm wheel 39R and the worm 40R, and the first angle sensor 44 and the second angle sensor 45 that constitute a torque sensor in a fluid-tight manner.
 ここで、第1角度センサ44と第2角度センサ45の相互の位相の進行方向を検出することで、ステアリングホイールからの入力であるのか、或いは路面からの逆入力であるのかを精度良く検出することができる。 Here, by detecting the advancing direction of the mutual phase of the first angle sensor 44 and the second angle sensor 45, it is accurately detected whether it is an input from the steering wheel or a reverse input from the road surface. be able to.
 また、図2、図3からわかるように、第1電動操舵機構16Lと第2電動操舵機構16Rは、形状的にほぼ同一形状とされており、特に、夫々のハウジング25L、25R、夫々のナット27L、27R、及び夫々のセクタギア32L、32Rは、同一形状となっている。このため、部品の共用化を図ることができ、製造単価を低減することが可能となる。 Further, as can be seen from FIGS. 2 and 3, the first electric steering mechanism 16L and the second electric steering mechanism 16R are substantially the same in shape, and in particular, the respective housings 25L, 25R, the respective nuts The 27L, 27R, and the respective sector gears 32L, 32R have the same shape. For this reason, parts sharing can be achieved, and the manufacturing cost can be reduced.
 尚、第1ナット27Lと第2ナット27R、および第1セクタギア32Lと第2セクタギア32Rの夫々は、歯の諸元が同じであればよく、他の部分が多少異なっているものであってもよいものである。更に、ハウジング25L、25Rは、場合によっては形状が異なる場合もあるが、少なくとも、夫々のナット27L、27R、及び夫々のセクタギア32L、32Rは、共用化できるものである。 The first nut 27L and the second nut 27R, and the first sector gear 32L and the second sector gear 32R may have the same tooth specifications, and the other parts may be somewhat different. It is good. Furthermore, the housings 25L, 25R may differ in shape depending on the case, but at least the respective nuts 27L, 27R and the respective sector gears 32L, 32R can be shared.
 以上のような構成を備える第2電動操舵機構16Rにおいては、第2制御装置22Rからの駆動制御信号(=操舵アシスト力に対応)が第2電動モータ41Rに与えられると、第2電動モータ41Rは、第2ウォーム40R、第2ウォームホイール39Rを介して第2出力軸34Rを回転駆動する。第2出力軸34Rが回転されると、第2ボールねじ33Rによって第2ナット27Rが摺動移動して、第2ラック部28Rが第2セクタギア30を回転し、リンク系を介して第2操舵輪10Rに操舵アシスト力を付与することができる。 In the second electric steering mechanism 16R having the above configuration, when the drive control signal (= corresponding to the steering assist force) from the second control device 22R is applied to the second electric motor 41R, the second electric motor 41R The second output shaft 34R is rotationally driven via the second worm 40R and the second worm wheel 39R. When the second output shaft 34R is rotated, the second nut 27R is slidingly moved by the second ball screw 33R, the second rack portion 28R rotates the second sector gear 30, and the second steering is performed via the link system. A steering assist force can be applied to the wheel 10R.
 図3に示す第2電動操舵機構16Rにおいては、第1角度センサ44と第2角度センサ45によって操舵トルクを検出しているが、ホール素子を用いても操舵トルクの検出を行なうことができる。図4は、操舵トルクの検出を、ホール素子を使用して行なうものであり、基本的には図3の構成と同様であるので、同じ参照番号については説明を省略する。 In the second electric steering mechanism 16R shown in FIG. 3, the steering torque is detected by the first angle sensor 44 and the second angle sensor 45. However, the steering torque can also be detected by using a Hall element. In FIG. 4, the detection of the steering torque is performed using a Hall element and is basically the same as the configuration of FIG. 3, so the description of the same reference numerals will be omitted.
 図4において、第2出力軸34Rと入力軸42の間には、永久磁石やホール素子を利用した磁気型トルクセンサ46が設けられており、これによって操舵トルクを検出することができる。もちろん、2個の磁気型トルクセンサを使用すれば、図3に示した第2電動操舵機構16Rと同様に、入力軸42からの入力か、或いは第2出力軸34Rからの逆入力を検出することが可能である。 In FIG. 4, a magnetic torque sensor 46 using a permanent magnet or a Hall element is provided between the second output shaft 34R and the input shaft 42, and the steering torque can be detected by this. Of course, if two magnetic type torque sensors are used, as with the second electric steering mechanism 16R shown in FIG. 3, either the input from the input shaft 42 or the reverse input from the second output shaft 34R is detected. It is possible.
 更に、第2電動操舵機構16Rについては、コラムアシスト型のステアリング装置にも適用することができる。つまり、第2電動操舵機構16Rの第2出力軸34Rを、ステアリングコラムをアシストするように連動させることで、本実施形態と同様に、ステアリングコラムに操舵力を付与することができるようになる。このような構成を採用すると、キャブオーバー型のトラックのような、運転者の足元スペースが少ない自動車にも適用が可能となり、レイアウト性の向上を図ることができるようになる。 Furthermore, the second electric steering mechanism 16R can also be applied to a column assist type steering device. That is, by interlocking the second output shaft 34R of the second electric steering mechanism 16R to assist the steering column, the steering force can be applied to the steering column as in the present embodiment. Adoption of such a configuration makes it possible to apply to an automobile with a small space for the driver's foot, such as a cab-over type truck, and to improve the layout.
 次に、第1電動操舵機構16Lの第1電動モータ41Lと、第2電動操舵機構16Rの第2電動モータ41Rの制御について説明する。基本的には、第1電動モータ41Lは、第1制御装置22Lによって制御され、第2電動モータ41Rは、第2制御装置22Rによって制御されている。 Next, control of the first electric motor 41L of the first electric steering mechanism 16L and the control of the second electric motor 41R of the second electric steering mechanism 16R will be described. Basically, the first electric motor 41L is controlled by the first control device 22L, and the second electric motor 41R is controlled by the second control device 22R.
 図5において、第1制御装置22Lは、自動車の車速を判定するための車速情報が入力される車速判定部50、第1電動モータ41Lのモータ状態信号が入力され、第1電動モータ41Lの故障や異常を判定する第1モータ失陥判定部51L、車速判定部50からの車速情報と、後述する第2制御装置22Rの第2モータ失陥判定部51Rからの第2電動モータ失陥情報と、後述する第2制御装置22Rのトルク判定部55からのトルク情報が入力され、第1電動モータ41Lの駆動制御量を求める第1電動モータアシスト演算部52L、及び第1電動モータ41Lの駆動制御量がセットされ、第1電動モータ41Lの駆動制御信号を生成する第1電動モータ駆動部53Lから構成されている。 In FIG. 5, the first control device 22L receives the vehicle speed determination unit 50 to which vehicle speed information for determining the vehicle speed of the vehicle is input, and the motor status signal of the first electric motor 41L is input, and the failure of the first electric motor 41L. And vehicle speed information from the vehicle speed determination unit 50, and second electric motor failure information from a second motor failure determination unit 51R of the second control device 22R described later. The first electric motor assist computing unit 52L for obtaining the drive control amount of the first electric motor 41L when the torque information from the torque determination unit 55 of the second control device 22R described later is input, and the drive control of the first electric motor 41L The first electric motor drive unit 53L sets an amount and generates a drive control signal of the first electric motor 41L.
 ここで、車速判定部50、第1モータ失陥判定部51L、第1電動モータアシスト演算部52Lは、第1マイクロコンピュータ24Lのプログラムによって実行される機能ブロックであり、第1電動モータ駆動部53Lは、その出力回路である。これらの機能ブロックの詳細は、図6に示す制御フローチャートで説明する。 Here, the vehicle speed determination unit 50, the first motor failure determination unit 51L, and the first electric motor assist calculation unit 52L are functional blocks executed by the program of the first microcomputer 24L, and the first electric motor drive unit 53L Is its output circuit. Details of these functional blocks will be described in the control flowchart shown in FIG.
 また、第2制御装置22Rは、第2電動モータ41Rのモータ情報信号が入力され、第2電動モータ41Rの故障や異常を判定する第2モータ失陥判定部51R、第1角度センサ44と第2角度センサ45のセンサ情報が入力され、操舵輪10L、10Rからの外乱を判定する外乱判定部54、外乱判定部54からの外乱情報、或いは第1角度センサ44と第2角度センサ45のセンサ情報に基づきトルクを判定するトルク判定部55、第1制御装置22Lの第1モータ失陥判定部51Lからの第1電動モータ失陥情報と、トルク判定部55からのトルク情報が入力され、第2電動モータ41Rの駆動制御量を求める第2電動モータアシスト演算部52R、及び第2電動モータ41Rの駆動制御量がセットされ、第2電動モータ41Rの駆動制御信号を生成する第2電動モータ駆動部53Rから構成されている。 Further, the second control device 22R receives a motor information signal of the second electric motor 41R, and determines a second motor failure determination unit 51R that determines a failure or abnormality of the second electric motor 41R, the first angle sensor 44, and Sensor information of the two angle sensor 45 is input, and a disturbance determination unit 54 that determines a disturbance from the steered wheels 10L and 10R, disturbance information from the disturbance determination unit 54, or sensors of the first angle sensor 44 and the second angle sensor 45 The first electric motor failure information from the first motor failure judgment unit 51L of the first control device 22L and the torque information from the torque judgment unit 55 are input, (2) The drive control amount of the second electric motor assist calculation unit 52R for obtaining the drive control amount of the electric motor 41R and the drive control amount of the second electric motor 41R are set, and the drive of the second electric motor 41R And a second electric motor drive unit 53R for generating the control signal.
 第1制御装置22Lと同様に、第2モータ失陥判定部51R、外乱判定部54、トルク判定部55、及び第2電動モータアシスト演算部52Rは、第2マイクロコンピュータ24Rのプログラムによって実行される機能ブロックであり、第2電動モータ駆動部53Rは、その出力回路である。これらの機能ブロックの詳細も、図6に示す制御フローチャートで説明する。 Similar to the first control device 22L, the second motor malfunction determination unit 51R, the disturbance determination unit 54, the torque determination unit 55, and the second electric motor assist computing unit 52R are executed by the program of the second microcomputer 24R. It is a functional block, and the 2nd electric motor drive part 53R is the output circuit. The details of these functional blocks are also described in the control flowchart shown in FIG.
 また、第1制御装置22Lと第2制御装置22Rとは、通信線で接続されており、第1制御装置22Lのマイクロコンピュータ24L、或いは第2制御装置22Rのマイクロコンピュータ24Rに異常や故障の失陥が生じた時は、もう一方のマイクロコンピュータによって操舵制御を実行する構成となっている。 Further, the first control device 22L and the second control device 22R are connected by a communication line, and the microcomputer 24L of the first control device 22L or the microcomputer 24R of the second control device 22R loses an abnormality or a failure. When a failure occurs, the other microcomputer performs steering control.
 これによって、第1マイクロコンピュータ24Lと第2マイクロコンピュータ24Rとで、冗長系のステアリングシステムを構成することができ、一方のマイクロコンピュータの機能失陥時においても、他方のマイクロコンピュータにおいて継続して操舵制御を実行することができる。更には、正常な方のマイクロコンピュータで演算した駆動制御量を破線矢印で示すように、失陥を生じた方の電動モータ駆動部に送ることで、両方の電動操舵機構を操作することもできるものである。 As a result, a redundant steering system can be configured by the first microcomputer 24L and the second microcomputer 24R, and even when one microcomputer fails, the other microcomputer continues to steer Control can be performed. Furthermore, both electric steering mechanisms can be operated by sending the drive control amount calculated by the normal one of the microcomputers to the electric motor drive unit of the one having the failure as shown by the broken arrow. It is a thing.
 また、第1電動モータ41L、或いは第2電動モータ41Rに異常や故障等の失陥が生じた場合でも、正常な電動モータ側で操舵機能を維持することができる。これによって、第1電動モータ41Lと第2電動モータ41Rとで、冗長系のステアリングシステムを構成することができ、一方の電動モータの失陥時においても、他方の電動モータにおいて継続して操舵制御を実行することができるようになる。この場合、失陥を生じた方の減速機構が逆効率の機能を備えている場合は、減速機構とラック部の間で逆効率の機能を解除する機構を設けることができる。 In addition, even when the first electric motor 41L or the second electric motor 41R suffers a defect such as an abnormality or a failure, the steering function can be maintained on the normal electric motor side. Thus, a redundant steering system can be configured by the first electric motor 41L and the second electric motor 41R, and the steering control is continuously performed in the other electric motor even when one electric motor fails. You will be able to In this case, if the speed reduction mechanism that has caused the failure has the function of the reverse efficiency, a mechanism can be provided to cancel the function of the reverse efficiency between the speed reduction mechanism and the rack portion.
 次に、第1制御装置22Lと第2制御装置22Rの制御について、図6に示す制御フローチャートに基づき説明する。尚、この制御フローは所定時間毎に起動されるものであり、例えば、マイクロコンピュータの内臓タイマのコンペアマッチ割り込みによって実行することができる。 Next, control of the first control device 22L and the second control device 22R will be described based on a control flowchart shown in FIG. This control flow is activated at predetermined time intervals, and can be executed, for example, by a compare match interrupt of a built-in timer of a microcomputer.
 ≪ステップS10≫ステップS10においては、ステアリングホイール18の回転操作によって、操舵トルクの変化があったかどうかが、トルクセンサに基づき判断されている。これは、第2電動操舵機構16Rに設けた、第1角度センサ44、及び第2角度センサ45によって、トーションバー41の捩じりを検出することで判断することができる。 << Step S10 >> In step S10, it is determined based on the torque sensor whether or not there is a change in the steering torque by the rotation operation of the steering wheel 18. This can be determined by detecting the torsion of the torsion bar 41 by the first angle sensor 44 and the second angle sensor 45 provided in the second electric steering mechanism 16R.
 ステアリングホイール18の回転操作がなく、トルク変化が検出されないと、リターンに抜けて次の起動タイミングを待つことになる。一方、ステアリングホイール18の回転操作が行われ、操舵トルクの変化が検出されると、次のステップS11に移行する。 If there is no rotational operation of the steering wheel 18 and a change in torque is not detected, the process returns to return and waits for the next start timing. On the other hand, when the steering wheel 18 is rotated and a change in the steering torque is detected, the process proceeds to the next step S11.
 ≪ステップS11≫ステップS11においては、外乱が検出されたかどうかが、第1角度センサ44、第2角度センサ45からの情報によって判断されている。ここで、外乱とは操舵輪10L、10Rからの逆入力を示すものであり、これよって、操舵性能が悪影響を受ける恐れが高い。例えば、轍のような路面の形状変化に起因する逆入力があると、ステアリングホイール18の操舵安定性が損なわれるという不具合を生じることがある。これによって、操舵輪10L、10Rの転舵位置(=転舵角)が変動して安定した操舵位置を確保しにくくなる場合がある。 << Step S11 >> In step S11, it is determined from the information from the first angle sensor 44 and the second angle sensor 45 whether or not a disturbance is detected. Here, the disturbance indicates a reverse input from the steered wheels 10L and 10R, and therefore, there is a high possibility that the steering performance is adversely affected. For example, if there is a reverse input caused by a change in the shape of the road surface like a brow, a problem may occur in that the steering stability of the steering wheel 18 is impaired. As a result, the steered positions (= steered angles) of the steered wheels 10L and 10R may change, making it difficult to secure a stable steered position.
 外乱は逆入力であるので、入力軸42に設けた第1角度センサ44の位相信号に比べて、第2出力軸34Rに設けた第2角度センサ45の位相信号の方が先行していることを検出することで判断することができる。一方、第2出力軸34Rに設けた第2角度センサ45の位相信号に比べて、入力軸42に設けた第1角度センサ44の位相信号の方が先行していることを検出すると、ステアリングホイール18による正規の回転操作であることを判断することができる。 Since the disturbance is reverse input, the phase signal of the second angle sensor 45 provided on the second output shaft 34R precedes the phase signal of the first angle sensor 44 provided on the input shaft 42. It can judge by detecting. On the other hand, when it is detected that the phase signal of the first angle sensor 44 provided on the input shaft 42 leads the phase signal of the second angle sensor 45 provided on the second output shaft 34R, the steering wheel is detected. It can be determined that the normal rotation operation by 18 is performed.
 外乱を検出したと判断されると、ステップS12に移行し、外乱を検出しないと判断されると、ステップS13に移行する。 If it is determined that the disturbance is detected, the process proceeds to step S12. If it is determined that the disturbance is not detected, the process proceeds to step S13.
 ≪ステップS12≫ステップS12においては、操舵輪10L、10Rに外乱による機械的な衝撃等が作用しても転舵位置が変動しないように、第1電動操舵機構16Lの第1電動モータ41Lの現在の転舵位置を保持する駆動制御量であるモータトルク指令値を演算する。つまり、操舵輪10L、10Rに路面の轍や砂利等から衝撃が加わっても、操舵輪10L、10Rの転舵位置が変動しないように、第1電動操舵機構16Lによって現在の転舵位置を保持するものである。モータトルク指令値が求まると、ステップS14に移行する。 «Step S12» In step S12, the current position of the first electric motor 41L of the first electric steering mechanism 16L so that the steered position does not change even if mechanical impact or the like due to disturbance acts on the steered wheels 10L, 10R. A motor torque command value, which is a drive control amount for holding the steered position, is calculated. That is, the first electric steering mechanism 16L holds the current steering position so that the steered positions of the steered wheels 10L and 10R do not change even if an impact is applied to the steered wheels 10L and 10R due to road surface gravels or the like. It is When the motor torque command value is obtained, the process proceeds to step S14.
 ≪ステップS13≫ステップS13においては、ステップS12で演算されたモータトルク指令値を第1電動モータ駆動部53Lにセットし、続いて、第1電動モータ41Lに駆動電流を供給して、所定のトルクを発生させるようにしている。 << Step S13 >> In step S13, the motor torque command value calculated in step S12 is set in the first electric motor drive unit 53L, and subsequently, a drive current is supplied to the first electric motor 41L, and a predetermined torque is obtained. To generate.
 このように、ステップS11、S12、S13の夫々の制御ステップを実行することによって、路面からの外乱に対して操舵輪10L、10Rの転舵位置を保持することができるので、安定した操舵制御を実行することができる。 As described above, by performing the control steps of steps S11, S12, and S13, the steered positions of the steered wheels 10L and 10R can be held against disturbance from the road surface, so stable steering control can be performed. It can be done.
 また、トーションバー43より上流側(ステアリングホイール側)と下流側(転舵輪側)の角度の位相の進み具合を比較することで、ステアリングホイールからの入力であるのか、路面からの逆入力(外乱)であるかを、精度よく判断することができる。 Also, by comparing the progress of the phase of the angle on the upstream side (steering wheel side) and the downstream side (turned wheel side) from the torsion bar 43, whether it is an input from the steering wheel or a reverse input from the road surface (disturbance It can be accurately determined whether or not
 ステップS13による第1電動モータ41Lの駆動制御が実行されると、リターンに抜けて次の起動タイミングを待つことになる。 When the drive control of the first electric motor 41L in step S13 is executed, the process returns to return and waits for the next start timing.
 ≪ステップS14≫ステップS11に戻り、ステップS11で外乱を検出しない場合は、ステアリングホイール18の正規の回転操作であると判断され、ステップS14においては、第1電動操舵機構16Lと第2電動操舵機構16Rの状態信号を検出したかどうかを判断する。例えば、第1電動モータ41Lや第2電動モータ41Rの動作信号を監視しておき、これらの動作信号の欠落や異常信号の出現で、第1電動操舵機構16Lと第2電動操舵機構16Rの異常や故障の失陥状態を判断することができる。 << step S14 >> If it returns to step S11 and a disturbance is not detected in step S11, it is judged that it is regular rotation operation of the steering wheel 18, and in step S14, the 1st electric steering mechanism 16L and the 2nd electric steering mechanism It is determined whether a 16R status signal has been detected. For example, the operation signals of the first electric motor 41L and the second electric motor 41R are monitored, and the abnormality of the first electric steering mechanism 16L and the second electric steering mechanism 16R is caused by the drop of the operation signals or the appearance of the abnormality signal. And failure status can be determined.
 更には、第1マイクロコンピュータ24L、24Rは、相互に監視してその正常性を判断する、或いは別の監視コンピュータによって正常性を判断することができるので、この判断もステップS14の失陥判断と見做すことができる。 Furthermore, since the first microcomputers 24L and 24R mutually monitor each other to determine their normality or to judge their normality by another monitoring computer, this judgment is also determined as the failure judgment in step S14. You can look at it.
 そして、第2電動操舵機構16Rに失陥が生じていると判断されると、ステップS15に移行し、第1電動操舵機構16Lに失陥が生じていると判断されると、ステップS17に移行する。一方、第1電動操舵機構16L、及び第2電動操舵機構16Rの両方に失陥が生じていない、つまり正常と判断されると、ステップS19に移行する。 When it is determined that the second electric steering mechanism 16R has a failure, the process proceeds to step S15, and when it is determined that the first electric steering mechanism 16L has a failure, the process proceeds to step S17. Do. On the other hand, if it is determined that both the first electric steering mechanism 16L and the second electric steering mechanism 16R have not failed, that is, it is determined that they are normal, the process proceeds to step S19.
 ≪ステップS15≫ステップS15においては、第2電動操舵機構16Rに失陥が生じていると判断されているので、ステアリングホイール18の操作量に対応した検出トルクから、第1電動操舵機構16Lの第1電動モータ41Lの駆動制御量であるモータトルク指令値を演算する。つまり、ステアリングホイール18の操作量に対応した操舵アシスト力を求めて、第1電動モータ41Lによる操舵アシストを実行するものである。 << Step S15 >> In step S15, it is determined that a failure has occurred in the second electric steering mechanism 16R. Therefore, from the detected torque corresponding to the operation amount of the steering wheel 18, the first electric steering mechanism 16L is selected. 1. Calculate a motor torque command value which is a drive control amount of the electric motor 41L. That is, the steering assist force corresponding to the operation amount of the steering wheel 18 is obtained, and the steering assist by the first electric motor 41L is performed.
 この場合、第2電動モータ41Rが失陥しているので、この分だけ操舵アシスト力が弱くなるため、第1電動モータ41Lのモータトルク値は大きく設定されても良い。尚、この時には、第2電動モータ41Rには、駆動制御信号が供給されないように第2電動モータ駆動部53Rの動作を禁止することも可能である。検出トルクに基づいたモータトルク指令値が求まると、ステップS16に移行する。 In this case, since the second electric motor 41R is defective, the steering assist force is weakened by this amount, so the motor torque value of the first electric motor 41L may be set large. At this time, it is also possible to prohibit the operation of the second electric motor drive unit 53R so that the drive control signal is not supplied to the second electric motor 41R. When a motor torque command value based on the detected torque is obtained, the process proceeds to step S16.
 ≪ステップS16≫ステップS16においては、ステップS15で演算されたモータトルク指令値を第1電動モータ駆動部53Lにセットし、続いて、第1電動モータ41Lに駆動電流を供給して、所定のトルクを発生させるようにしている。 << Step S16 >> In step S16, the motor torque command value calculated in step S15 is set in the first electric motor drive unit 53L, and subsequently, a drive current is supplied to the first electric motor 41L, and a predetermined torque is obtained. To generate.
 このように、ステップS14、S15、S16においては、第1電動モータ41Lと第2電動モータ41Rとで冗長系を形成しており、第2電動モータ41Rの失陥時においては、第1電動モータ41Lによって継続して操舵アシスト力の付与を行うことができる。更に、第1マイクロコンピュータ24Lと第2マイクロコンピュータ24Rも冗長系を形成することで、第2マイクロコンピュータの失陥時においても、第1マイクロコンピュータ24Lによって、継続して操舵アシスト力の付与を行うことができる。 As described above, in steps S14, S15, and S16, a redundant system is formed by the first electric motor 41L and the second electric motor 41R, and when the second electric motor 41R fails, the first electric motor is formed. The steering assist force can be continuously applied by 41L. Furthermore, the first microcomputer 24L and the second microcomputer 24R also form a redundant system to continuously apply the steering assist force by the first microcomputer 24L even when the second microcomputer fails. be able to.
 ステップS16による第1電動モータ41Lの駆動制御が実行されると、リターンに抜けて次の起動タイミングを待つことになる。 When the drive control of the first electric motor 41L in step S16 is executed, the process returns to return and waits for the next start timing.
 ≪ステップS17≫ステップS14に戻り、第1電動操舵機構16Lに失陥が生じていると判断されると、ステップS17に移行する。ステップS17においては、第1電動操舵機構16Lに失陥が生じていると判断されているので、ステアリングホイール18の操作量に対応した検出トルクから、第2電動操舵機構16Rの第2電動モータ41Rの駆動制御量であるモータトルク指令値を演算する。つまり、ステアリングホイール18の操作量に対応した操舵アシスト力を求めて、第2電動モータ41Rによる操舵アシストを実行するものである。 << Step S17 >> The process returns to step S14, and when it is determined that the first electric steering mechanism 16L has a failure, the process proceeds to step S17. In step S17, it is determined that the first electric steering mechanism 16L has a failure, so from the detected torque corresponding to the operation amount of the steering wheel 18, the second electric motor 41R of the second electric steering mechanism 16R A motor torque command value which is a drive control amount of That is, the steering assist force corresponding to the operation amount of the steering wheel 18 is obtained, and the steering assist by the second electric motor 41R is performed.
 この場合も、第1電動モータ41Lが失陥しているので、この分だけ操舵アシスト力が弱くなるため、第2電動モータ41Rのモータトルク値は大きく設定されても良い。尚、この時には、第1電動モータ41Lには、駆動制御信号が供給されないように第1電動モータ駆動部53Lの動作を禁止することも可能である。検出トルクに基づいたモータトルク指令値が求まると、ステップS18に移行する。 Also in this case, since the first electric motor 41L has failed, the steering assist force is weakened by this amount, and therefore, the motor torque value of the second electric motor 41R may be set large. At this time, it is also possible to prohibit the operation of the first electric motor drive unit 53L so that the drive control signal is not supplied to the first electric motor 41L. When a motor torque command value based on the detected torque is obtained, the process proceeds to step S18.
 ≪ステップS18≫ステップS18においては、ステップS17で演算されたモータトルク指令値を第2電動モータ駆動部53Rにセットし、続いて、第2電動モータ41Rに駆動電流を供給して、所定のトルクを発生させるようにしている。 << Step S18 >> In step S18, the motor torque command value calculated in step S17 is set in the second electric motor drive unit 53R, and subsequently, a drive current is supplied to the second electric motor 41R, and a predetermined torque is obtained. To generate.
 このように、ステップS14、S17、S18においても、第1電動モータ41Lと第2電動モータ41Rとで冗長系を形成しており、第1電動モータ41Lの失陥時においては、第2電動モータ41Rによって継続して操舵アシスト力の付与を行うことができる。更に、第1マイクロコンピュータ24Rと第2マイクロコンピュータ24Rも冗長系を形成することで、第1マイクロコンピュータ24Lの失陥時においても、第2マイクロコンピュータ24Rによって、継続して操舵アシスト力の付与を行うことができる。 As described above, also in steps S14, S17, and S18, a redundant system is formed by the first electric motor 41L and the second electric motor 41R, and when the first electric motor 41L fails, the second electric motor is generated. The steering assist force can be continuously applied by 41R. Furthermore, the first microcomputer 24R and the second microcomputer 24R also form a redundant system to continuously apply the steering assist force by the second microcomputer 24R even when the first microcomputer 24L fails. It can be carried out.
 ステップS18による第2電動モータ41Rの駆動制御が実行されると、リターンに抜けて次の起動タイミングを待つことになる。 When the drive control of the second electric motor 41R in step S18 is executed, the process returns to return and waits for the next start timing.
 ≪ステップS19≫ステップS14に戻り、第1電動操舵機構16L、及び第2電動操舵機構16Rの両方に失陥が生じていない(=正常)と判断されると、ステップS19に移行する。ステップS19では、検出操舵トルクが所定操舵トルクT1より大きいかどうかが判断されている。この判断は、ステアリングホイール18が大きく回転操作されて自動車を旋回する場合に該当している。このステップS19で、検出操舵トルクが所定操舵トルクT1より大きいと判断されると、ステップS20に移行し、検出操舵トルクが所定操舵トルクT1より小さいと判断されると、ステップS23に移行する。 << Step S19 >> Returning to step S14, if it is determined that both the first electric steering mechanism 16L and the second electric steering mechanism 16R have not failed (= normal), the process proceeds to step S19. In step S19, it is determined whether the detected steering torque is larger than a predetermined steering torque T1. This determination is applicable to the case where the steering wheel 18 is largely turned to turn the vehicle. If it is determined in step S19 that the detected steering torque is larger than the predetermined steering torque T1, the process proceeds to step S20. If it is determined that the detected steering torque is smaller than the predetermined steering torque T1, the process proceeds to step S23.
 ≪ステップS20≫ステップS20においては、ステアリングホイール18の回転方向である転舵方向と同じ方向に向けて、検出操舵トルクに対応した第1電動モータ41L、及び第2電動モータ41Rの駆動制御量であるモータトルク指令値を演算する。つまり、ステアリングホイール18の操作量に対応した操舵アシスト力を求めて、第1電動モータ41L、第2電動モータ41Rによる操舵アシストを実行するものである。この場合、第1電動モータ41L、及び第2電動モータ41Rのモータトルク値は同じ値である。夫々の電動モータ41L、41Rのモータトルク指令値が演算されると、ステップS21に移行する。 << Step S20 >> In step S20, the drive control amount of the first electric motor 41L and the second electric motor 41R corresponding to the detected steering torque is directed in the same direction as the turning direction which is the rotation direction of the steering wheel 18. Calculate a certain motor torque command value. That is, the steering assist force corresponding to the operation amount of the steering wheel 18 is obtained, and the steering assist by the first electric motor 41L and the second electric motor 41R is executed. In this case, the motor torque values of the first electric motor 41L and the second electric motor 41R are the same value. When the motor torque command values of the respective electric motors 41L and 41R are calculated, the process proceeds to step S21.
 ≪ステップS21≫ステップS21においては、ステップS20で演算されたモータトルク指令値を第2電動モータ駆動部53Rにセットし、続いて、第2電動モータ41Rに駆動電流を供給して、所定のトルクを発生させるようにしている。ここで、本実施形態では、第2電動操舵機構16Rの方が、第1電動操舵機構16Lより先に操舵アシスト力を与えるように制御されている。ステップS21によって第2電動操舵機構16Rが駆動、制御されると、ステップS22に移行する。 << Step S21 >> In step S21, the motor torque command value calculated in step S20 is set in the second electric motor drive unit 53R, and subsequently, a drive current is supplied to the second electric motor 41R, and a predetermined torque is obtained. To generate. Here, in the present embodiment, the second electric steering mechanism 16R is controlled so as to apply the steering assist force earlier than the first electric steering mechanism 16L. When the second electric steering mechanism 16R is driven and controlled in step S21, the process proceeds to step S22.
 ≪ステップS22≫ステップS22においては、ステップS20で演算されたモータトルク指令値を第1電動モータ駆動部53Lにセットし、続いて、第1電動モータ41Lに駆動電流を供給して、所定のトルクを発生させるようにしている。上述の通り、本実施形態では、第1電動操舵機構16Lが、第2電動操舵機構16Rより後に操舵アシスト力を与えるように制御されている。 << Step S22 >> In step S22, the motor torque command value calculated in step S20 is set in the first electric motor drive unit 53L, and subsequently, a drive current is supplied to the first electric motor 41L, and a predetermined torque is obtained. To generate. As described above, in the present embodiment, the first electric steering mechanism 16L is controlled to apply a steering assist force later than the second electric steering mechanism 16R.
 ステップS21、S22の制御ステップを実行することによって、操舵輪10L、10Rの転舵位置を保持しながら、路面からの外乱を抑制するように操舵輪10L、10Rの操舵アシストを行なうことができ、路面からの外乱の侵入に対して、操舵輪10L、10Rが影響を受け難い安定した操舵制御を行うことができる。ここで、第1電動操舵機構16Lと第2電動操舵機構16Rの操舵アシスト力を付加する時間間隔は、夫々の操舵アシスト力の付加に対して、運転者が違和感を感じない程度の時間に設定されるのが望ましい。 By performing the control steps of steps S21 and S22, the steering assist of the steered wheels 10L and 10R can be performed so as to suppress the disturbance from the road surface while maintaining the steered positions of the steered wheels 10L and 10R. It is possible to perform stable steering control in which the steered wheels 10L and 10R are less affected by disturbances from the road surface. Here, the time interval for applying the steering assist force of the first electric steering mechanism 16L and the second electric steering mechanism 16R is set to such a time that the driver does not feel discomfort with respect to the application of each steering assist force. It is desirable to
 尚、外乱は、自動車が轍や砂利道等の荒れた路面を走行する際に路面から操舵輪へ入力される高周波振動である。このため外乱の有無の検出は、例えば、トルクセンサの出力信号のうち、特定周波数信号(所定周波数以上の信号)が検出された場合に、外乱が生じていると判断することができる。 The disturbance is a high frequency vibration that is input from the road surface to the steered wheels when the vehicle travels on a rough road surface such as a hill or a gravel road. For this reason, it is possible to detect the presence or absence of disturbance, for example, when a specific frequency signal (a signal of a predetermined frequency or more) is detected among output signals of the torque sensor, it can be determined that the disturbance is generated.
 或いは、ヨーレートセンサの出力信号に基づき判断することができる。また、カメラが撮像した路面の画像の振動に基づき判断することもできる。更に、トルクセンサのトーションバーの上流側(ハンドル側)の角度信号と下流側(操舵輪側)の角度信号の振動の位相に基づき、下流側の角度信号が上流側の角度信号に先行している場合に、外乱が生じていると判断することができる。 Alternatively, the determination can be made based on the output signal of the yaw rate sensor. It can also be determined based on the vibration of the road surface image captured by the camera. Furthermore, the downstream angle signal precedes the upstream angle signal based on the phase of the vibration of the torque signal on the upstream side (handle side) of the torsion bar and on the downstream side (steering wheel side) of the angle signal. If it does, it can be determined that a disturbance has occurred.
 このようなステップS20、S21、S22の制御ステップの実行によって、ステアリングホイール18に繋がっている第2電動操舵機構16Rが先行して駆動制御されることで、運転者は、ステアリング装置が操舵操作に反応していることを容易に感じることができる。また、第1電動モータ41Lが第2電動モータ41Rの駆動制御に遅れて応答することで、ステアリング装置の安定性を向上させることができる。 By executing the control steps of steps S20, S21, and S22 as described above, the second electric steering mechanism 16R connected to the steering wheel 18 is driven and controlled in advance, whereby the driver turns the steering device into a steering operation. You can easily feel that you are reacting. Further, the first electric motor 41L responds to the drive control of the second electric motor 41R in a delayed manner, whereby the stability of the steering device can be improved.
 また、自動車を大きく旋回する場合においては、大きな操舵アシスト力が必要とされるので、第1電動モータ41Lと第2電動モータ41Rの両方を駆動制御することにより、操舵応答性の改善と操舵力不足の抑制を図ることができる。 In addition, when a large turn of the vehicle is required, a large steering assist force is required. Therefore, the steering responsiveness is improved and the steering force is controlled by driving and controlling both the first electric motor 41L and the second electric motor 41R. The shortage can be suppressed.
 ステップS22による第1電動モータ41Lの駆動制御が実行されると、リターンに抜けて次の起動タイミングを待つことになる。 When the drive control of the first electric motor 41L in step S22 is executed, the process is returned to wait for the next start timing.
 ≪ステップS23≫ステップS19に戻り、ステアリングホイール18の操作量が小さく、検出操舵トルクが所定操舵トルクT1より小さいと判断されると、ステップS23に移行する。このステップS23は、自動車の車速を判断しており、車速が所定車速V1より遅い場合(低速走行)は、ステップS24に移行し、車速が所定車速V1より速い場合(高速走行)は、ステップS26に移行する。 << Step S23 >> The process returns to step S19, and when it is determined that the operation amount of the steering wheel 18 is small and the detected steering torque is smaller than the predetermined steering torque T1, the process proceeds to step S23. In step S23, the vehicle speed of the vehicle is determined. If the vehicle speed is lower than the predetermined vehicle speed V1 (low speed traveling), the process proceeds to step S24. If the vehicle speed is higher than the predetermined vehicle speed V1 (high speed traveling), the step S26. Migrate to
 ≪ステップS24≫ステップS24においては、自動車の速度が遅いため、後述する自動車の速度が速いときに生じる支障を考慮せず、また、ステップS19から操舵アシスト力はそれほど大きくする必要性は少ないため、ステアリングホイール18側と連動した第2電動操舵機構16Rだけで操舵アシスト力を付加する構成としている。したがって、ステップS24では、ステアリングホイール18の操作量に対応した検出トルクから、第2電動操舵機構16Rの第2電動モータ41Rの駆動制御量であるモータトルク指令値を演算する。第2電動モータ41Rのモータトルク指令値が演算されると、ステップS25に移行する。 << Step S24 >> In step S24, since the speed of the car is low, it does not take into consideration the hindrance that occurs when the speed of the car described later is high, and there is little need to increase the steering assist force from step S19. The steering assist force is applied only by the second electric steering mechanism 16R interlocked with the steering wheel 18 side. Therefore, in step S24, a motor torque command value which is a drive control amount of the second electric motor 41R of the second electric steering mechanism 16R is calculated from the detected torque corresponding to the operation amount of the steering wheel 18. When the motor torque command value of the second electric motor 41R is calculated, the process proceeds to step S25.
 ≪ステップS25≫ステップS25においては、ステップS24で演算されたモータトルク指令値を第2電動モータ駆動部53Rにセットし、続いて、第2電動モータ41Rに駆動電流を供給して、所定のトルクを発生させるようにしている。 << Step S25 >> In step S25, the motor torque command value calculated in step S24 is set in the second electric motor drive unit 53R, and subsequently, a drive current is supplied to the second electric motor 41R, and a predetermined torque is obtained. To generate.
 このように、ステアリングホイール18の操作量が小さく、しかも自動車の速度が遅い場合は、第2電動操舵機構16Rだけで操舵アシスト力を付加する構成としている。これによって、電気エネルギーの消費量を少なくでき、結果的に燃料消費量を少なくすることができる。 As described above, when the operation amount of the steering wheel 18 is small and the speed of the vehicle is low, the steering assist force is applied only by the second electric steering mechanism 16R. As a result, the amount of consumption of electrical energy can be reduced, and as a result, the amount of fuel consumption can be reduced.
 ステップS25による第2電動モータ41Rの駆動制御が実行されると、リターンに抜けて次の起動タイミングを待つことになる。 When the drive control of the second electric motor 41R in step S25 is executed, the process is returned to wait for the next start timing.
 ≪ステップS26≫ステップS23に戻り、自動車の車速が所定車速V1より速いと判断されているので、ステップS26においては、第2電動モータ41Rのモータトルク指令値を演算する。このモータトルク指令値は、自動車の速度が速い高速走行であるため、操舵アシスト力は転舵位置を強く維持できる値であることが必要となる。これは、車速が速いので、転舵位置が変動すると、自動車が蛇行走行を生じるといった支障をきたす恐れがあるためである。したがって、先ず、ステップS26では、操舵アシストに必要な第2電動モータ41Rの操舵アシスト力を求めている。第2電動モータ41Rのモータトルク指令値が演算されると、ステップS27に移行する。 << Step S26 >> Returning to step S23, since it is determined that the vehicle speed of the automobile is faster than the predetermined vehicle speed V1, in step S26, the motor torque command value of the second electric motor 41R is calculated. Since the motor torque command value is high-speed traveling at a high speed of the vehicle, the steering assist force needs to be a value capable of strongly maintaining the turning position. This is because, since the vehicle speed is high, when the steered position changes, there is a risk that the vehicle may cause a serpentine traveling. Therefore, first, at step S26, the steering assist force of the second electric motor 41R necessary for steering assist is obtained. When the motor torque command value of the second electric motor 41R is calculated, the process proceeds to step S27.
 ≪ステップS27≫ステップS27においては、第1電動モータ41Lに対して、操舵輪10L、10Rの転舵位置を保持して蛇行走行が生じない、操舵アシスト力を得ることができるモータトルク指令値を演算する。ここで、第1電動モータ41Lのモータトルク指令値は、第2電動モータ41Rのモータトルク指令値より小さく設定されている。第1電動モータ41Lのモータトルク指令値が演算されると、ステップS28に移行する。 << Step S27 >> In step S27, a motor torque command value capable of obtaining a steering assist force by holding the steered positions of the steered wheels 10L and 10R and causing no serpentine travel to the first electric motor 41L is obtained. Calculate Here, the motor torque command value of the first electric motor 41L is set smaller than the motor torque command value of the second electric motor 41R. When the motor torque command value of the first electric motor 41L is calculated, the process proceeds to step S28.
 ≪ステップS28≫ステップS28においては、ステップS26で演算されたモータトルク指令値を第2電動モータ駆動部53Rにセットし、続いて、第2電動モータ41Rに駆動電流を供給して、所定のトルクを発生させるようにしている。第2電動モータ41Rのモータトルク指令値を第2電動モータ駆動部53Rにセットすると、ステップS29に移行する。 << Step S28 >> In step S28, the motor torque command value calculated in step S26 is set in the second electric motor drive unit 53R, and subsequently, a drive current is supplied to the second electric motor 41R, and a predetermined torque is obtained. To generate. When the motor torque command value of the second electric motor 41R is set in the second electric motor drive unit 53R, the process proceeds to step S29.
 ≪ステップS29≫ステップS29においては、ステップS27で演算されたモータトルク指令値を第1電動モータ駆動部53Lにセットし、続いて、第1電動モータ41Lに駆動電流を供給して、所定のトルクを発生させるようにしている。この場合は、上述の通り、第1電動モータ41Lのモータトルクは、第2電動モータ41Rのモータトルクより小さいものとなる。ステップS29による第1電動モータ41Lの駆動制御が実行されると、リターンに抜けて次の起動タイミングを待つことになる。 << Step S29 >> In step S29, the motor torque command value calculated in step S27 is set in the first electric motor drive unit 53L, and subsequently, a drive current is supplied to the first electric motor 41L, and a predetermined torque is obtained. To generate. In this case, as described above, the motor torque of the first electric motor 41L is smaller than the motor torque of the second electric motor 41R. When the drive control of the first electric motor 41L in step S29 is executed, the process returns to return and waits for the next start timing.
 ステップS26、S27、S28、S29によると、高速走行時における操舵の安定性を向上させることができ、また、第1電動モータ41Lと第2電動モータ41Rの操舵アシスト力が異なるため、両者の動きの発散が抑制され、操舵操作のしっかり感を出すことができる。 According to steps S26, S27, S28, and S29, the stability of steering at high speed traveling can be improved, and the steering assist forces of the first electric motor 41L and the second electric motor 41R are different. It is possible to suppress the divergence of the vehicle and give a firm sense of steering operation.
 以上述べた通り、本発明によれば、第1電動操舵機構に第1モータアクチュエータを備え、第2電動操舵機構に第2モータアクチュエータを備え、これらを制御装置によって個別に制御する構成とした。これによれば、第1電動操舵機構と、第2電動操舵機構の夫々について異なる制御を行うことで、任意の操舵制御性を与えることができ、操舵性を向上させることができる。更に、モータアクチュエータによって操舵アシスト力を与える構成であるため、応答性が速く、上述の操舵制御性を更に向上することが可能となる。 As described above, according to the present invention, the first electric steering mechanism is provided with the first motor actuator, the second electric steering mechanism is provided with the second motor actuator, and these are individually controlled by the control device. According to this, by performing different control for each of the first electric steering mechanism and the second electric steering mechanism, it is possible to give arbitrary steering controllability, and it is possible to improve the steering performance. Furthermore, since the steering assist force is given by the motor actuator, the response is fast, and the above-mentioned steering controllability can be further improved.
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, but includes various modifications. For example, the above-described embodiment is described in detail to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations. Further, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, and replace other configurations for part of the configurations of the respective embodiments.
 以上説明した実施形態に基づくステアリング装置としては、例えば、以下に述べる態様のものが考えられる。 As a steering device based on the embodiment described above, for example, one having an aspect described below can be considered.
 すなわち、当該ステアリング装置は、その1つの態様として、ステアリング装置において、第1操舵機構であって、第1ボールナット式ステアリングと、第1モータアクチュエータとを備え、前記第1ボールナット式ステアリングは、第1出力軸と、第1ボールねじと、第1ナットと、第1伝達機構とを備え、前記第1出力軸は、前記第1出力軸の回転軸線周りに回転可能であり、前記第1ボールねじは、前記第1出力軸の回転に伴い前記第1出力軸の回転軸線の方向に移動するように前記第1ナットを駆動し、前記第1伝達機構は、前記第1ナットの移動に伴い第1操舵輪を転舵させるものであって、前記第1モータアクチュエータは、前記第1出力軸に回転力を付与する第1電動モータである、前記第1操舵機構と、第2操舵機構であって、第2ボールナット式ステアリングと、第2モータアクチュエータとを備え、前記第2ボールナット式ステアリングは、第2出力軸と、第2ボールねじと、第2ナットと、第2伝達機構とを備え、前記第2出力軸は、前記第2出力軸の回転軸線周りに回転可能であり、前記第2ボールねじは、前記第2出力軸の回転に伴い前記第2出力軸の回転軸線の方向に移動するように前記第2ナットを駆動し、前記第2伝達機構は、前記第2ナットの移動に伴い第2操舵輪を転舵させるものであって、前記第2モータアクチュエータは、前記第2出力軸に回転力を付与する第2電動モータである、前記第2操舵機構と、連結部材であって、前記第1伝達機構と前記第2伝達機構との動きを連動可能に前記第1伝達機構と前記第2伝達機構とを連結する連結部材とを有する。 That is, as one aspect of the steering apparatus, the steering apparatus is a first steering mechanism, and includes a first ball nut type steering and a first motor actuator, and the first ball nut type steering is A first output shaft, a first ball screw, a first nut, and a first transmission mechanism, wherein the first output shaft is rotatable around a rotation axis of the first output shaft, and the first output shaft is rotatable. The ball screw drives the first nut so as to move in the direction of the rotation axis of the first output shaft as the first output shaft rotates, and the first transmission mechanism moves the first nut. Accordingly, the first steering wheel is steered, and the first motor actuator is a first electric motor that applies a rotational force to the first output shaft, the first steering mechanism, and the second steering mechanism. Is A second ball-nut type steering and a second motor actuator, the second ball-nut type steering comprising a second output shaft, a second ball screw, a second nut, and a second transmission mechanism The second output shaft is rotatable about the rotation axis of the second output shaft, and the second ball screw is directed in the direction of the rotation axis of the second output shaft as the second output shaft rotates. Driving the second nut so as to move in the second direction, the second transmission mechanism steers the second steered wheel along with the movement of the second nut, and the second motor actuator The second steering mechanism, which is a second electric motor that applies a rotational force to two output shafts, and a coupling member, wherein the movement of the first transmission mechanism and the second transmission mechanism can be interlocked. Connecting the transmission mechanism and the second transmission mechanism And a connecting member.
 前記ステアリング装置の好ましい態様において、前記第1モータアクチュエータ及び前記第2モータアクチュエータを駆動制御する制御装置を備え、前記制御装置は、前記第1操舵輪及び前記第2操舵輪の転舵の方向と同じ方向に前記第2モータアクチュエータを回転させるとき、前記第1モータアクチュエータの回転トルクよりも前記第2モータアクチュエータの回転トルクが大きくなるように前記第1モータアクチュエータと前記第2モータアクチュエータを駆動制御する。 In a preferable aspect of the steering device, the control device includes a control device that drives and controls the first motor actuator and the second motor actuator, and the control device controls the steering direction of the first steering wheel and the second steering wheel. When rotating the second motor actuator in the same direction, drive control of the first motor actuator and the second motor actuator so that the rotational torque of the second motor actuator is larger than the rotational torque of the first motor actuator Do.
 別の好ましい態様では、前記ステアリング装置の態様のいずれかにおいて、前記制御装置は、前記第1操舵輪及び前記第2操舵輪の転舵の方向と同じ方向に前記第2モータアクチュエータを回転させるとき、前記第1操舵輪が転舵角を保持するように前記第1モータアクチュエータを駆動制御する。 In another preferable aspect, in any of the aspects of the steering device, the control device rotates the second motor actuator in the same direction as the steering direction of the first steered wheel and the second steered wheel. And drivingly controlling the first motor actuator such that the first steered wheel holds a turning angle.
 さらに別の好ましい態様では、前記ステアリング装置の態様のいずれかにおいて、前記制御装置は、所定車速以上であって、前記第2操舵輪の転舵の方向と同じ方向に前記第2モータアクチュエータを回転させるとき、前記第1操舵輪が転舵角を保持するように前記第1モータアクチュエータを駆動制御する。 In still another preferable aspect, in any of the aspects of the steering device, the control device rotates the second motor actuator in the same direction as the steering direction of the second steered wheel at a predetermined vehicle speed or more. When driving, the first motor actuator is drive-controlled so that the first steered wheel holds the turning angle.
 さらに別の好ましい態様では、前記ステアリング装置の態様のいずれかにおいて、前記制御装置は、前記第2操舵輪の転舵方向と同じ方向に前記第2モータアクチュエータを回転させるとき、路面からの外乱を抑制するように前記第1モータアクチュエータを駆動制御する。 In still another preferable aspect, in any of the aspects of the steering device, the control device causes disturbance from the road surface when the second motor actuator is rotated in the same direction as the turning direction of the second steering wheel. Driving control of the first motor actuator is performed so as to suppress.
 さらに別の好ましい態様では、前記ステアリング装置の態様のいずれかにおいて、前記第2出力軸は、ステアリングホイールと接続されている。 In still another preferred aspect, in any of the aspects of the steering device, the second output shaft is connected to a steering wheel.
 さらに別の好ましい態様では、前記ステアリング装置の態様のいずれかにおいて、前記第2操舵機構は、入力軸、トーションバー、第1角度センサ、及び第2角度センサを備え、前記入力軸は、前記ステアリングホイールと接続されており、前記トーションバーは、前記入力軸と前記第2出力軸の間に設けられており、前記第1角度センサは、前記入力軸の角度を検出するものであり、前記第2角度センサは、前記第2出力軸の角度を検出するものであり、前記制御装置は、前記第1角度センサの出力信号の位相よりも前記第2角度センサの出力信号の位相が先行するとき、路面からの外乱が有ると判断し、前記第2操舵輪の転舵方向と同じ方向に前記第2モータアクチュエータを回転させるとき、路面からの外乱を抑制するように前記第1モータアクチュエータを駆動制御する。 In still another preferred aspect, in any of the aspects of the steering apparatus, the second steering mechanism includes an input shaft, a torsion bar, a first angle sensor, and a second angle sensor, and the input shaft is the steering. The torsion bar is connected to a wheel, and the torsion bar is provided between the input shaft and the second output shaft, and the first angle sensor detects an angle of the input shaft. The two-angle sensor is for detecting the angle of the second output shaft, and the control device is such that the phase of the output signal of the second angle sensor leads the phase of the output signal of the first angle sensor When it is determined that there is a disturbance from the road surface, and the second motor actuator is rotated in the same direction as the turning direction of the second steered wheel, the second motor actuator suppresses the disturbance from the road surface. It controls the driving of the motor actuator.
 さらに別の好ましい態様では、前記ステアリング装置の態様のいずれかにおいて、前記第1モータアクチュエータ及び前記第2モータアクチュエータを駆動制御する制御装置を備え、前記第2出力軸は、ステアリングホイールと接続されており、前記制御装置は、前記第1モータアクチュエータに先行して前記第2モータアクチュエータを駆動制御する。 In still another preferred aspect, in any of the aspects of the steering apparatus, a control device for driving and controlling the first motor actuator and the second motor actuator is provided, and the second output shaft is connected to a steering wheel The control device drives and controls the second motor actuator in advance of the first motor actuator.
 さらに別の好ましい態様では、前記ステアリング装置の態様のいずれかにおいて、前記第1ボールナット式ステアリング及び前記第2ボールナット式ステアリングは、油圧回路を有しない。 In still another preferred aspect, in any of the aspects of the steering device, the first ball nut type steering and the second ball nut type steering do not have a hydraulic circuit.
 さらに別の好ましい態様では、前記ステアリング装置の態様のいずれかにおいて、前記第1操舵機構は、前記第1出力軸と前記第1モータアクチュエータの間に設けられた第1減速機構を有し、前記第2操舵機構は、前記第2出力軸と前記第2モータアクチュエータの間に設けられた第2減速機構を有する。 In still another preferred aspect, in any of the aspects of the steering apparatus, the first steering mechanism has a first reduction mechanism provided between the first output shaft and the first motor actuator, The second steering mechanism has a second reduction mechanism provided between the second output shaft and the second motor actuator.
 さらに別の好ましい態様では、前記ステアリング装置の態様のいずれかにおいて、前記第1減速機構及び前記第2減速機構の夫々は、ウォームギアとウォームホイールの組み合わせである。 In still another preferred aspect, in any of the aspects of the steering apparatus, each of the first reduction gear mechanism and the second reduction gear mechanism is a combination of a worm gear and a worm wheel.
 さらに別の好ましい態様では、前記ステアリング装置の態様のいずれかにおいて、前記第1ボールナット式ステアリングは、前記第1ナットに形成された第1ラックと噛合う第1セクタギアを備え、前記第2ボールナット式ステアリングは、前記第2ナットに形成された第2ラックと噛合う第2セクタギアを備え、前記第1ナットと前記第2ナットは同じ形状を有しており、前記第1セクタギアと前記第2セクタギアは、同じ形状を有している。 In still another preferred aspect, in any of the aspects of the steering device, the first ball and nut steering includes a first sector gear that meshes with a first rack formed on the first nut, and the second ball The nut steering includes a second sector gear engaged with a second rack formed on the second nut, and the first nut and the second nut have the same shape, and the first sector gear and the The two sector gear has the same shape.
 さらに別の好ましい態様では、前記ステアリング装置の態様のいずれかにおいて、前記第1モータアクチュエータ及び前記第2モータアクチュエータを駆動制御する制御装置と、前記第2操舵機構に設けられた入力軸、トーションバー、トルクセンサを備え、前記入力軸は、ステアリングホイールと接続されており、前記トーションバーは、前記入力軸と前記第2出力軸の間に設けられており、前記トルクセンサは、前記入力軸と前記第2出力軸の相対回転角度に基づき前記第2操舵機構の操舵トルクを検出するものであり、前記制御装置は、前記操舵トルクに応じて前記第1モータアクチュエータと前記第2モータアクチュエータの夫々を駆動制御する。 In still another preferable aspect, in any of the aspects of the steering device, a control device that drives and controls the first motor actuator and the second motor actuator, an input shaft provided in the second steering mechanism, and a torsion bar A torque sensor, the input shaft is connected to a steering wheel, the torsion bar is provided between the input shaft and the second output shaft, and the torque sensor is connected to the input shaft The steering torque of the second steering mechanism is detected based on the relative rotation angle of the second output shaft, and the control device is configured to respectively receive the first motor actuator and the second motor actuator according to the steering torque. Drive control.
 さらに別の好ましい態様では、前記ステアリング装置の態様のいずれかにおいて、前記制御装置は、前記操舵トルクが所定値以上のとき、前記ステアリングホイールの回転方向と同じ方向へ前記第1モータアクチュエータと前記第2モータアクチュエータの両方を駆動制御する。 In still another preferable aspect, in any one of the aspects of the steering device, the control device controls the first motor actuator and the first motor actuator in the same direction as the steering wheel when the steering torque is a predetermined value or more. 2 Drive and control both motor actuators.
 さらに別の好ましい態様では、前記ステアリング装置の態様のいずれかにおいて、前記第2出力軸は、ステアリングコラムと接続されており、前記第2モータアクチュエータは、前記ステアリングコラムに設けられ、前記ステアリングコラムに操舵力を付与する。 In still another preferred aspect, in any of the aspects of the steering apparatus, the second output shaft is connected to a steering column, and the second motor actuator is provided on the steering column, and the steering column is provided on the steering column Apply steering power.
 さらに別の好ましい態様では、前記ステアリング装置の態様のいずれかにおいて、前記第1モータアクチュエータを駆動制御する第1制御装置と、前記第2モータアクチュエータを駆動制御する第2制御装置を備え、前記第1制御装置は、前記第1モータアクチュエータに出力される指令信号を演算する第1マイクロコンピュータを備え、前記第2制御装置は、前記第2モータアクチュエータに出力される指令信号を演算する第2マイクロコンピュータを備える。 In still another preferable aspect, in any of the aspects of the steering device, the first control device for driving and controlling the first motor actuator and the second control device for driving and controlling the second motor actuator are provided. The first control device includes a first microcomputer that calculates a command signal output to the first motor actuator, and the second control device calculates a second micro computer that calculates a command signal output to the second motor actuator. It has a computer.
 さらに別の好ましい態様では、前記ステアリング装置の態様のいずれかにおいて、前記第1モータアクチュエータと前記第2モータアクチュエータは、前記第1モータアクチュエータと前記第2モータアクチュエータのうち一方が失陥したとき、他方のモータアクチュエータが継続して駆動制御される。 In still another preferable aspect, in any one of the aspects of the steering device, the first motor actuator and the second motor actuator may fail when one of the first motor actuator and the second motor actuator fails. The other motor actuator is continuously driven and controlled.
 さらに別の好ましい態様では、前記ステアリング装置の態様のいずれかにおいて、前記第1マイクロコンピュータと前記第2マイクロコンピュータは、前記第1マイクロコンピュータと前記第2マイクロコンピュータのうち一方が失陥したとき、他方のマイクロコンピュータが継続して駆動制御される。 In still another preferred aspect, in any of the aspects of the steering device, when one of the first microcomputer and the second microcomputer fails in the first microcomputer and the second microcomputer, The other microcomputer is continuously driven and controlled.

Claims (18)

  1.  ステアリング装置において、
     第1操舵機構であって、第1ボールナット式ステアリングと、第1モータアクチュエータとを備え、
     前記第1ボールナット式ステアリングは、第1出力軸と、第1ボールねじと、第1ナットと、第1伝達機構とを備え、
     前記第1出力軸は、前記第1出力軸の回転軸線周りに回転可能であり、
     前記第1ボールねじは、前記第1出力軸の回転に伴い前記第1出力軸の回転軸線の方向に移動するように前記第1ナットを駆動し、
     前記第1伝達機構は、前記第1ナットの移動に伴い第1操舵輪を転舵させるものであって、
     前記第1モータアクチュエータは、前記第1出力軸に回転力を付与する第1電動モータである、前記第1操舵機構と、
     第2操舵機構であって、第2ボールナット式ステアリングと、第2モータアクチュエータとを備え、
     前記第2ボールナット式ステアリングは、第2出力軸と、第2ボールねじと、第2ナットと、第2伝達機構とを備え、
     前記第2出力軸は、前記第2出力軸の回転軸線周りに回転可能であり、
     前記第2ボールねじは、前記第2出力軸の回転に伴い前記第2出力軸の回転軸線の方向に移動するように前記第2ナットを駆動し、
     前記第2伝達機構は、前記第2ナットの移動に伴い第2操舵輪を転舵させるものであって、
     前記第2モータアクチュエータは、前記第2出力軸に回転力を付与する第2電動モータである、前記第2操舵機構と、
     連結部材であって、前記第1伝達機構と前記第2伝達機構との動きを連動可能に前記第1伝達機構と前記第2伝達機構とを連結する連結部材とを有することを特徴とするステアリング装置。
    In the steering system
    A first steering mechanism comprising a first ball and nut type steering and a first motor actuator;
    The first ball and nut type steering includes a first output shaft, a first ball screw, a first nut, and a first transmission mechanism.
    The first output shaft is rotatable about a rotation axis of the first output shaft,
    The first ball screw drives the first nut so as to move in the direction of the rotation axis of the first output shaft as the first output shaft rotates.
    The first transmission mechanism steers the first steered wheel with the movement of the first nut, and
    The first steering mechanism, wherein the first motor actuator is a first electric motor that applies a rotational force to the first output shaft;
    A second steering mechanism comprising a second ball and nut type steering and a second motor actuator;
    The second ball and nut steering system includes a second output shaft, a second ball screw, a second nut, and a second transmission mechanism.
    The second output shaft is rotatable about the rotation axis of the second output shaft,
    The second ball screw drives the second nut so as to move in the direction of the rotation axis of the second output shaft as the second output shaft rotates.
    The second transmission mechanism steers the second steered wheel along with the movement of the second nut, and
    The second steering mechanism, wherein the second motor actuator is a second electric motor that applies a rotational force to the second output shaft.
    A steering member comprising: a coupling member, the coupling member coupling the first transmission mechanism and the second transmission mechanism such that movements of the first transmission mechanism and the second transmission mechanism can be interlocked. apparatus.
  2.  請求項1に記載のステアリング装置において、
     前記第1モータアクチュエータ及び前記第2モータアクチュエータを駆動制御する制御装置を備え、
     前記制御装置は、前記第1操舵輪及び前記第2操舵輪の転舵の方向と同じ方向に前記第2モータアクチュエータを回転させるとき、前記第1モータアクチュエータの回転トルクよりも前記第2モータアクチュエータの回転トルクが大きくなるように前記第1モータアクチュエータと前記第2モータアクチュエータを駆動制御することを特徴とするステアリング装置。
    In the steering apparatus according to claim 1,
    A controller for driving and controlling the first motor actuator and the second motor actuator;
    When the control device rotates the second motor actuator in the same direction as the steering direction of the first steered wheel and the second steered wheel, the second motor actuator has a rotational torque greater than that of the first motor actuator. A steering apparatus characterized in that the first motor actuator and the second motor actuator are driven and controlled so that the rotational torque of the second motor actuator becomes large.
  3.  請求項2に記載のステアリング装置において、
     前記制御装置は、前記第1操舵輪及び前記第2操舵輪の転舵の方向と同じ方向に前記第2モータアクチュエータを回転させるとき、前記第1操舵輪が転舵角を保持するように前記第1モータアクチュエータを駆動制御することを特徴とするステアリング装置。
    In the steering apparatus according to claim 2,
    When the control device rotates the second motor actuator in the same direction as the turning direction of the first steered wheel and the second steered wheel, the first steered wheel holds the turning angle. A steering apparatus characterized by driving and controlling a first motor actuator.
  4.  請求項3に記載のステアリング装置において、
     前記制御装置は、所定車速以上であって、前記第2操舵輪の転舵の方向と同じ方向に前記第2モータアクチュエータを回転させるとき、前記第1操舵輪が転舵角を保持するように前記第1モータアクチュエータを駆動制御することを特徴とするステアリング装置。
    In the steering apparatus according to claim 3,
    When the control device rotates the second motor actuator in a direction equal to or higher than a predetermined vehicle speed and in the same direction as the turning direction of the second steered wheel, the first steered wheel holds the turning angle. A steering apparatus characterized in that drive control of the first motor actuator is performed.
  5.  請求項3に記載のステアリング装置において、
     前記制御装置は、前記第2操舵輪の転舵方向と同じ方向に前記第2モータアクチュエータを回転させるとき、路面からの外乱を抑制するように前記第1モータアクチュエータを駆動制御することを特徴とするステアリング装置。
    In the steering apparatus according to claim 3,
    When the control device rotates the second motor actuator in the same direction as the steering direction of the second steered wheel, the control device drives and controls the first motor actuator so as to suppress disturbance from the road surface. Steering device.
  6.  請求項5に記載のステアリング装置において、
     前記第2出力軸は、ステアリングホイールと接続されていることを特徴とするステアリング装置。
    In the steering apparatus according to claim 5,
    A steering apparatus, wherein the second output shaft is connected to a steering wheel.
  7.  請求項6に記載のステアリング装置において、
     前記第2操舵機構は、入力軸、トーションバー、第1角度センサ、及び第2角度センサを備え、
     前記入力軸は、前記ステアリングホイールと接続されており、
     前記トーションバーは、前記入力軸と前記第2出力軸の間に設けられており、
     前記第1角度センサは、前記入力軸の角度を検出するものであり、
     前記第2角度センサは、前記第2出力軸の角度を検出するものであり、
     前記制御装置は、前記第1角度センサの出力信号の位相よりも前記第2角度センサの出力信号の位相が先行するとき、路面からの外乱が有ると判断し、前記第2操舵輪の転舵方向と同じ方向に前記第2モータアクチュエータを回転させるとき、路面からの外乱を抑制するように前記第1モータアクチュエータを駆動制御することを特徴とするステアリング装置。
    In the steering apparatus according to claim 6,
    The second steering mechanism includes an input shaft, a torsion bar, a first angle sensor, and a second angle sensor.
    The input shaft is connected to the steering wheel,
    The torsion bar is provided between the input shaft and the second output shaft,
    The first angle sensor detects an angle of the input shaft,
    The second angle sensor detects an angle of the second output shaft,
    When the phase of the output signal of the second angle sensor precedes the phase of the output signal of the first angle sensor, the control device determines that there is a disturbance from the road surface, and turns the second steered wheel A steering apparatus characterized in that when the second motor actuator is rotated in the same direction as the direction, the first motor actuator is drive-controlled to suppress disturbance from the road surface.
  8.  請求項1に記載のステアリング装置において、
     前記第1モータアクチュエータ及び前記第2モータアクチュエータを駆動制御する制御装置を備え、
     前記第2出力軸は、ステアリングホイールと接続されており、
     前記制御装置は、前記第1モータアクチュエータに先行して前記第2モータアクチュエータを駆動制御することを特徴とするステアリング装置。
    In the steering apparatus according to claim 1,
    A controller for driving and controlling the first motor actuator and the second motor actuator;
    The second output shaft is connected to a steering wheel,
    A steering apparatus, wherein the control device drives and controls the second motor actuator prior to the first motor actuator.
  9.  請求項1に記載のステアリング装置において、
     前記第1ボールナット式ステアリング及び前記第2ボールナット式ステアリングは、油圧回路を有しないことを特徴とするステアリング装置。
    In the steering apparatus according to claim 1,
    A steering apparatus characterized in that the first ball nut type steering and the second ball nut type steering do not have a hydraulic circuit.
  10.  請求項1に記載のステアリング装置において、
     前記第1操舵機構は、前記第1出力軸と前記第1モータアクチュエータの間に設けられた第1減速機構を有し、
     前記第2操舵機構は、前記第2出力軸と前記第2モータアクチュエータの間に設けられた第2減速機構を有することを特徴とするステアリング装置。
    In the steering apparatus according to claim 1,
    The first steering mechanism has a first reduction mechanism provided between the first output shaft and the first motor actuator.
    A steering apparatus, wherein the second steering mechanism has a second reduction mechanism provided between the second output shaft and the second motor actuator.
  11.  請求項10に記載のステアリング装置において、
     前記第1減速機構及び前記第2減速機構の夫々は、ウォームギアとウォームホイールの組み合わせであることを特徴とするステアリング装置。
    In the steering apparatus according to claim 10,
    A steering apparatus, wherein each of the first reduction gear mechanism and the second reduction gear mechanism is a combination of a worm gear and a worm wheel.
  12.  請求項1に記載のステアリング装置において、
     前記第1ボールナット式ステアリングは、前記第1ナットに形成された第1ラックと噛合う第1セクタギアを備え、
     前記第2ボールナット式ステアリングは、前記第2ナットに形成された第2ラックと噛合う第2セクタギアを備え、
     前記第1ナットと前記第2ナットは同じ形状を有しており、
     前記第1セクタギアと前記第2セクタギアは、同じ形状を有していることを特徴とするステアリング装置。
    In the steering apparatus according to claim 1,
    The first ball and nut type steering wheel includes a first sector gear that meshes with a first rack formed on the first nut,
    The second ball nut type steering includes a second sector gear that meshes with a second rack formed on the second nut,
    The first nut and the second nut have the same shape,
    A steering device, wherein the first sector gear and the second sector gear have the same shape.
  13.  請求項1に記載のステアリング装置において、
     前記第1モータアクチュエータ及び前記第2モータアクチュエータを駆動制御する制御装置と、前記第2操舵機構に設けられた入力軸、トーションバー、トルクセンサを備え、
     前記入力軸は、ステアリングホイールと接続されており、
     前記トーションバーは、前記入力軸と前記第2出力軸の間に設けられており、
     前記トルクセンサは、前記入力軸と前記第2出力軸の相対回転角度に基づき前記第2操舵機構の操舵トルクを検出するものであり、
     前記制御装置は、前記操舵トルクに応じて前記第1モータアクチュエータと前記第2モータアクチュエータの夫々を駆動制御することを特徴とするステアリング装置。
    In the steering apparatus according to claim 1,
    A controller for driving and controlling the first motor actuator and the second motor actuator; an input shaft provided in the second steering mechanism; a torsion bar; and a torque sensor.
    The input shaft is connected to a steering wheel,
    The torsion bar is provided between the input shaft and the second output shaft,
    The torque sensor detects a steering torque of the second steering mechanism based on a relative rotation angle of the input shaft and the second output shaft.
    A steering apparatus characterized in that the control device drives and controls each of the first motor actuator and the second motor actuator according to the steering torque.
  14.  請求項13に記載のステアリング装置において、
     前記制御装置は、前記操舵トルクが所定値以上のとき、前記ステアリングホイールの回転方向と同じ方向へ前記第1モータアクチュエータと前記第2モータアクチュエータの両方を駆動制御することを特徴とするステアリング装置。
    In the steering apparatus according to claim 13,
    The control device drives and controls both the first motor actuator and the second motor actuator in the same direction as the rotation direction of the steering wheel when the steering torque is equal to or more than a predetermined value.
  15.  請求項1に記載のステアリング装置において、
     前記第2出力軸は、ステアリングコラムと接続されており、
     前記第2モータアクチュエータは、前記ステアリングコラムに設けられ、前記ステアリングコラムに操舵力を付与することを特徴とするステアリング装置。
    In the steering apparatus according to claim 1,
    The second output shaft is connected to a steering column,
    The second motor actuator is provided on the steering column and applies a steering force to the steering column.
  16.  請求項1に記載のステアリング装置において、
     前記第1モータアクチュエータを駆動制御する第1制御装置と、前記第2モータアクチュエータを駆動制御する第2制御装置を備え、
     前記第1制御装置は、前記第1モータアクチュエータに出力される指令信号を演算する第1マイクロコンピュータを備え、
     前記第2制御装置は、前記第2モータアクチュエータに出力される指令信号を演算する第2マイクロコンピュータを備えることを特徴とするステアリング装置。
    In the steering apparatus according to claim 1,
    A first control device for driving and controlling the first motor actuator; and a second control device for driving and controlling the second motor actuator.
    The first control device includes a first microcomputer that calculates a command signal output to the first motor actuator.
    The steering apparatus according to claim 1, wherein the second control device comprises a second microcomputer that calculates a command signal output to the second motor actuator.
  17.  請求項16に記載のステアリング装置において、
     前記第1モータアクチュエータと前記第2モータアクチュエータは、前記第1モータアクチュエータと前記第2モータアクチュエータのうち一方が失陥したとき、他方のモータアクチュエータが継続して駆動制御されることを特徴とするステアリング装置。
    In the steering apparatus according to claim 16,
    The first motor actuator and the second motor actuator are characterized in that when one of the first motor actuator and the second motor actuator fails, the other motor actuator is continuously driven and controlled. Steering device.
  18.  請求項16に記載のステアリング装置において、
     前記第1マイクロコンピュータと前記第2マイクロコンピュータは、前記第1マイクロコンピュータと前記第2マイクロコンピュータのうち一方が失陥したとき、他方のマイクロコンピュータが継続して駆動制御されることを特徴とするステアリング装置。
    In the steering apparatus according to claim 16,
    The first microcomputer and the second microcomputer are characterized in that when one of the first microcomputer and the second microcomputer fails, the other microcomputer is continuously driven and controlled. Steering device.
PCT/JP2018/028002 2017-08-25 2018-07-26 Steering device WO2019039183A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880050831.6A CN111051183A (en) 2017-08-25 2018-07-26 Steering device
US16/636,270 US11318986B2 (en) 2017-08-25 2018-07-26 Steering device
DE112018004711.3T DE112018004711T5 (en) 2017-08-25 2018-07-26 Steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017161985A JP6839632B2 (en) 2017-08-25 2017-08-25 Steering device
JP2017-161985 2017-08-25

Publications (1)

Publication Number Publication Date
WO2019039183A1 true WO2019039183A1 (en) 2019-02-28

Family

ID=65438729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028002 WO2019039183A1 (en) 2017-08-25 2018-07-26 Steering device

Country Status (4)

Country Link
JP (1) JP6839632B2 (en)
CN (1) CN111051183A (en)
DE (1) DE112018004711T5 (en)
WO (1) WO2019039183A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230142494A1 (en) * 2021-11-08 2023-05-11 Zf Active Safety And Electronics Us Llc Apparatus for use in turning steerable vehicle wheels

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7314703B2 (en) * 2019-08-08 2023-07-26 日本精工株式会社 vehicle steering system
JP7211324B2 (en) * 2019-10-08 2023-01-24 トヨタ自動車株式会社 vehicle steering device
JP7317695B2 (en) 2019-12-26 2023-07-31 トヨタ自動車株式会社 steering device
CN111516751B (en) * 2020-05-15 2021-12-31 采埃孚汽车科技(上海)有限公司 New energy automobile turns to device
DE102020119608B4 (en) * 2020-07-24 2023-07-06 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Power steering assembly with targeted compensation of road-side shock impulses to the steering gear
JP7520684B2 (en) 2020-10-20 2024-07-23 日本精工株式会社 Vehicle steering device
DE102021205875A1 (en) 2021-06-10 2022-12-15 Zf Friedrichshafen Ag Steering gear device for a motor vehicle
US20230052313A1 (en) * 2021-08-13 2023-02-16 China Automotive Systems, Inc. Electric steering assemblies for commercial vehicles
WO2024047712A1 (en) * 2022-08-29 2024-03-07 株式会社ジェイテクト Steering device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970876U (en) * 1982-11-05 1984-05-14 自動車機器株式会社 power steering device
JPH0490970A (en) * 1990-08-02 1992-03-24 Rhythm Corp Steering boosting device for vehicle
JP2005306317A (en) * 2004-04-26 2005-11-04 Koyo Seiko Co Ltd Power steering device
JP2006256559A (en) * 2005-03-18 2006-09-28 Honda Motor Co Ltd Electric power steering device
JP2011025857A (en) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd Steering control device
JP2013184622A (en) * 2012-03-09 2013-09-19 Hitachi Automotive Systems Steering Ltd Electric power steering system, and controller of electric power steering system
JP2014227042A (en) * 2013-05-22 2014-12-08 株式会社ジェイテクト Power steering device
JP2016068583A (en) * 2014-09-26 2016-05-09 富士重工業株式会社 Electric power steering device
JP2017001611A (en) * 2015-06-15 2017-01-05 Kyb株式会社 Steering control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087311A (en) 2000-09-12 2002-03-27 Nissan Diesel Motor Co Ltd Power steering device for motor truck
US7014008B2 (en) * 2002-06-27 2006-03-21 Honda Giken Kogyo Kabushiki Kaisha Steering system for vehicle
JP2005329784A (en) * 2004-05-19 2005-12-02 Hitachi Ltd Electric power steering device
CN100572164C (en) * 2005-02-14 2009-12-23 丰田自动车株式会社 Turning facilities
CN105235738A (en) * 2015-11-13 2016-01-13 吉林大学 Dual-motor synchronous-driving steering actuator of automobile steer-by-wire system
CN205396208U (en) * 2016-02-05 2016-07-27 江门市兴江转向器有限公司 Electronic steering gear of automobile -used circulation ball formula

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970876U (en) * 1982-11-05 1984-05-14 自動車機器株式会社 power steering device
JPH0490970A (en) * 1990-08-02 1992-03-24 Rhythm Corp Steering boosting device for vehicle
JP2005306317A (en) * 2004-04-26 2005-11-04 Koyo Seiko Co Ltd Power steering device
JP2006256559A (en) * 2005-03-18 2006-09-28 Honda Motor Co Ltd Electric power steering device
JP2011025857A (en) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd Steering control device
JP2013184622A (en) * 2012-03-09 2013-09-19 Hitachi Automotive Systems Steering Ltd Electric power steering system, and controller of electric power steering system
JP2014227042A (en) * 2013-05-22 2014-12-08 株式会社ジェイテクト Power steering device
JP2016068583A (en) * 2014-09-26 2016-05-09 富士重工業株式会社 Electric power steering device
JP2017001611A (en) * 2015-06-15 2017-01-05 Kyb株式会社 Steering control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230142494A1 (en) * 2021-11-08 2023-05-11 Zf Active Safety And Electronics Us Llc Apparatus for use in turning steerable vehicle wheels

Also Published As

Publication number Publication date
CN111051183A (en) 2020-04-21
JP2019038383A (en) 2019-03-14
JP6839632B2 (en) 2021-03-10
DE112018004711T5 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
JP6839632B2 (en) Steering device
JP6382545B2 (en) Steering device and vehicle equipped with the same
JP6351944B2 (en) Steering device
JP2012121391A (en) Steering device
JP6452944B2 (en) Steering device
JP6297306B2 (en) vehicle
JP5493835B2 (en) Forklift steering device
KR20110062628A (en) Steer by wire apparatus
JP2013248896A (en) Rear wheel toe angle variable vehicle
JP2015098288A (en) Vehicle
US11318986B2 (en) Steering device
JP6523720B2 (en) Rear wheel steering control system
CN115107864B (en) Power steering device for vehicle
WO2015050190A1 (en) Steering device
CN114104091B (en) Independent steering mechanism, steering system and control method
JP4973289B2 (en) Power steering device
JP6764503B2 (en) Actuator control device
JP2017007633A (en) Steering device and switching method of traveling mode of vehicle
JP3734440B2 (en) Vehicle steering system
JP2005335710A (en) Steering device for vehicle
JP2006175925A (en) Steering device for vehicle
WO2016039312A1 (en) Steering device and vehicle running mode switching method
KR101459771B1 (en) Independent and parrel steer by wire system
KR101417092B1 (en) Steering mechanism of independent steer by wire system
KR101316837B1 (en) Steer-by-wire steering system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847419

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18847419

Country of ref document: EP

Kind code of ref document: A1