WO2019039004A1 - 漏れ波アンテナ - Google Patents

漏れ波アンテナ Download PDF

Info

Publication number
WO2019039004A1
WO2019039004A1 PCT/JP2018/018522 JP2018018522W WO2019039004A1 WO 2019039004 A1 WO2019039004 A1 WO 2019039004A1 JP 2018018522 W JP2018018522 W JP 2018018522W WO 2019039004 A1 WO2019039004 A1 WO 2019039004A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
dielectric substrate
line
ground
leaky wave
Prior art date
Application number
PCT/JP2018/018522
Other languages
English (en)
French (fr)
Inventor
隆吉 佐々木
佐藤 啓介
大島 一郎
尚文 道下
長 敬三
Original Assignee
電気興業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気興業株式会社 filed Critical 電気興業株式会社
Priority to CN201880004398.2A priority Critical patent/CN109983623B/zh
Priority to US16/349,876 priority patent/US10665954B2/en
Priority to KR1020187020100A priority patent/KR101927106B1/ko
Priority to EP18848217.8A priority patent/EP3528341B1/en
Publication of WO2019039004A1 publication Critical patent/WO2019039004A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/26Surface waveguide constituted by a single conductor, e.g. strip conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 

Definitions

  • the present invention relates to a thin antenna configured using metamaterial technology, and more particularly to a leaky wave antenna that can be suitably used as a base station antenna for mobile communication.
  • a polarization sharing antenna (such as vertical polarization and horizontal polarization or ⁇ 45 ° polarization) is mainly used.
  • the polarization sharing antenna can perform polarization diversity or multiple polarization (multiple-input and multiple-output).
  • antennas for small cells are widely used which cover smaller areas than the areas (macro cells) covered by the base station antennas so far.
  • an antenna for small cells is mounted on a wall or roof of a building having a relatively low height, unlike an antenna of a macrocell disposed on the roof of a steel tower or building.
  • Such an antenna for small cells is easy for human eyes to see, and therefore, miniaturization and thinning are required from the aesthetic point of view such as consideration for landscapes and the like.
  • Patent Document 1 describes a flat antenna having a thin structure in which a plurality of CRLH (Composite Right / Left Handed) lines are printed on a dielectric substrate.
  • CRLH Composite Right / Left Handed
  • switching of polarization can be easily changed by changing the feed phase to each CRLH line.
  • the radiation element described in Patent Document 1 Since the radiation element described in Patent Document 1 has a structure in which the dielectric substrate and the ground plate are separately configured, the radiation element is provided for the ground plate rising portion connecting the dielectric substrate and the ground plate. Has a large thickness. Therefore, it is difficult to reduce the weight and thickness of the radiation element so that the radiation element does not stand out when attached to a wall surface or the like of a building. Further, since the radiation element of Patent Document 1 requires a component called a ground plate rising portion, the number of types of components to be configured increases, so there is a problem that the structure of the antenna becomes complicated and the cost increases. . Furthermore, in the radiation element described in Patent Document 1, half-value angles of vertical polarization and horizontal polarization do not match with respect to directivity in the horizontal plane. Therefore, it is necessary to perform cell design so as to realize the directivity suitable for a small cell in the mobile communication base station by reducing the difference in half angle between polarizations.
  • the present invention has been made in view of the above-described circumstances, and provides a leaky wave antenna that can share a polarization and has a small number of parts and parts.
  • the present invention also provides a thin leaky wave antenna having a structure that reduces interference with adjacent cells and achieves high tilt angle in vertical in-plane directivity in order to realize directivity suitable for small cells. Do.
  • the present invention also provides a leaky wave antenna capable of obtaining a high gain with a cross polarization discrimination degree of 20 dB or more because it is used for a mobile communication base station.
  • the present invention provides a leaky wave antenna including a CRLH line using a coplanar line with a ground formed on the upper surface of a single dielectric substrate.
  • the present invention A dielectric substrate, A ground plane formed on the lower surface of the dielectric substrate; It comprises a ground portion and a transmission line portion formed on the upper surface of the dielectric substrate,
  • a leak wave antenna comprising: a CRLH line using a coplanar line with a ground, wherein a series capacitor constituting the CRLH line is formed on the upper surface of the dielectric substrate.
  • the series capacitor (C L ) has an interdigital structure or a slot capacitor structure.
  • a parallel inductor (L L ) connected to the series capacitor (C L ) is formed on the top surface of the dielectric substrate.
  • the ground portion and one end of the parallel inductor (L L ) are electrically connected to the ground plane on the lower surface of the dielectric substrate through a through hole or a ground plate rising portion.
  • the present invention also provides a leak wave antenna based on a CRLH line using a coplanar line with a ground, which can cancel current vectors generated in the horizontal direction and the vertical direction, and is formed on a single dielectric substrate.
  • the first unit cell (UC) is A dielectric substrate, A ground plane formed on the lower surface of the dielectric substrate; It comprises a ground portion and a transmission line portion formed on the upper surface of the dielectric substrate, A first CRLH line using a coplanar line with a ground, wherein a series capacitor (C L ) and a parallel inductor (L L ) constituting the first CRLH line are formed on the upper surface of the dielectric substrate Including and
  • the second unit cell (UC ') is A dielectric substrate, A ground plane formed on the lower surface of the dielectric substrate; It comprises a ground portion and a transmission line portion formed on the upper surface of the dielectric substrate, A second CRLH line using a grounded coplanar line, wherein a series capacitor (C L ) and a parallel inductor (L L ) constituting the second CRLH line are formed on the upper surface of the dielectric substrate Including and The arrangement of said series capacitor (C L) connected to the parallel inductor of the 1CRLH line (L L
  • the series capacitor (C L ) has an interdigital structure or a slot capacitor structure.
  • the ground portion and one end of the parallel inductor (L L ) are electrically connected to the ground plane on the lower surface of the dielectric substrate through a through hole or a ground plate rising portion. ing.
  • the first antenna unit (A1) has a first feeding point (P1) at one end of the first antenna unit
  • the second antenna unit (A2) has a second feeding point (P2) at one end of the second antenna unit, and the first feeding point and the second feeding point are located at the same end.
  • the third antenna unit (A3) has a third feeding point (P3) at one end of the third antenna unit
  • the fourth antenna unit (A4) has a fourth feeding point (P4) at one end of the fourth antenna unit, and positions the third feeding point and the fourth feeding point at the same end.
  • the first antenna element is A dielectric substrate, A ground plane formed on the lower surface of the dielectric substrate; It comprises a ground portion and a transmission line portion formed on the upper surface of the dielectric substrate, A first CRLH line formed using a grounded coplanar line, wherein a series capacitor (C L ) and a parallel inductor (L L ) constituting the first CRLH line are formed on the upper surface of the dielectric substrate.
  • the second antenna element is A dielectric substrate, A ground plane formed on the lower surface of the dielectric substrate; A ground portion formed on the upper surface of the dielectric substrate; A second CRLH line disposed adjacent to the ground portion and formed on the upper surface of the dielectric substrate using a coplanar line with a ground, wherein a series capacitor (C L ) and a parallel inductor constituting the second CRLH line And a second CRLH line, wherein (L L ) is formed on the top surface of the dielectric substrate,
  • the arrangement of said series capacitor (C L) connected to the parallel inductor of the 1CRLH line (L L) the arrangement of the said series capacitor (C L) connected to the parallel inductor of the 2CRLH line (L L)
  • a leaky wave antenna arranged in line symmetry or mirror image relation with each other.
  • the leaky wave antenna in FIG. 1 described later, although the leaky wave antenna is shown to be configured by four rows of antenna units, the present invention is not limited thereto). It is also possible to increase the number of columns as 2,.
  • the leaky wave antenna further includes any one of the first antenna set (A1, A2) and the second antenna set (A3, A4), so that three or more antenna sets are arranged. It is done.
  • the series capacitor (C L ) has an interdigital structure or a slot capacitor structure.
  • each of the antenna units constituting an odd-numbered row of each antenna set is configured by connecting a plurality of first unit cells (UC) in the longitudinal direction of each antenna unit,
  • Each of the antenna units constituting an odd-numbered row in the antenna set is configured by connecting a plurality of second unit cells (UC ') in the longitudinal direction of each antenna unit.
  • the ground portion and one end of the parallel inductor (L L ) are electrically connected to the ground plane on the lower surface of the dielectric substrate through a through hole or a ground plate rising portion.
  • the present invention provides an antenna system comprising:
  • the CRLH transmission line according to the embodiment of the present invention uses an interdigital capacitor as a series capacitor constituting the CRLH transmission line.
  • a series capacitor constituting the CRLH transmission line can be configured on the top surface of the dielectric substrate by a slot capacitor or the like.
  • a stub inductor can be used as the parallel inductor.
  • the CRLH line according to the embodiment of the present invention can be configured by a series capacitor including a chip capacitor and a parallel inductor including a chip inductor.
  • the CRLH line according to the embodiment of the present invention can change the inductance value by forming the parallel inductor as a spiral inductor or a meander inductor.
  • a single dielectric substrate can be formed by a CRLH line using a coplanar line with a ground
  • a polarization sharing antenna having a thin and simple structure can be realized.
  • a ground plane is provided on the entire lower surface of the dielectric substrate of the antenna element, so radiation directivity suitable for sector directivity for both vertical polarization and horizontal polarization is provided. You can get it.
  • a desired tilt angle can be obtained by adjusting the parallel inductor and series capacitor in the unit cell of the CRLH line to control the dispersion characteristic.
  • FIG. 1 is an overhead view of the entire leaky wave antenna according to an embodiment of the present invention. It is an overhead view of the unit cell which comprises a part of antenna part (A1) of FIG. It is sectional drawing when the unit cell of FIG. 2 is seen from A direction. It is a top view which shows current distribution at the time of inputting the same phase with respect to feeding point P1 and P2. It is a top view which shows current distribution at the time of inputting an antiphase to feed point P1 and P2. It is a graph which shows the dispersion characteristic of a unit cell. It is a graph which shows the radiation directivity of the vertical polarization in directivity in a perpendicular plane.
  • FIG. 6 is a circuit configuration diagram showing a feeding device which gives different feeding phases to feeding points (P1 to P4) of each antenna unit (A1 to A4). It is an equivalent circuit of unit cell (UC) 1 of FIG.
  • FIG. 5 is a top view showing a structure of a series capacitor 3 of a unit cell 1; A is a top view showing the structure of the parallel inductor 4 of the unit cell 1. B is a top view showing the structure according to another aspect of the parallel inductor 4 of the unit cell 1.
  • the f 0 the center frequency of the operating frequency band and 3.50GHz (wavelength lambda 0)
  • the operating frequency bandwidth is set to 40MHz width of 3.48GHz ⁇ 3.52GHz around the f 0 .
  • the operating frequency band can be made variable by adjusting the values of the series capacitor C L and the parallel inductor L L and adjusting the width or gap width of the grounded coplanar line constituting the right-handed transmission line, as described later. it can.
  • FIG. 1 shows a leaky wave antenna according to an embodiment of the present invention.
  • This leaky wave antenna has a ground plane formed on the lower surface of a dielectric substrate, and has a configuration in which a CRLH line using a coplanar line with a ground is printed on the upper surface.
  • the ground portion printed on the upper surface of the dielectric substrate and the ground at one end of the parallel inductor (L L ) and the lower surface are electrically connected by vias or conductors by through holes.
  • the leaky wave antenna according to the embodiment of the present invention includes antenna units (A1 and A3) in odd columns and antenna units (A2 and A4) in even columns. That is, the leaky wave antenna shown in FIG. 1 includes the first antenna set of the antenna unit A1 in the odd column and the antenna unit A2 in the even column, and the second antenna of the antenna unit A3 in the odd column and the antenna unit A4 in the even column. And a set.
  • the arrangement of parallel inductors constituting the CRLH line of each antenna set has a structure in which the X axis corresponding to the longitudinal direction of each antenna portion is symmetrical (linearly symmetric or mirror image) with respect to the symmetry axis.
  • the antenna units A1 and A3 in the odd-numbered rows have a configuration in which a plurality of unit cells (UC) 1 shown in FIG. 2 are connected in the X-axis direction corresponding to the longitudinal direction of each antenna unit.
  • the antenna units A2 and A4 in the even-numbered columns are unit cells 1 shown in FIG. 2 each other unit cell (UC ′) having a parallel or mirror-symmetrical arrangement of the parallel inductors 4 with respect to the series capacitor 3.
  • a plurality of components are connected in the X-axis direction corresponding to the longitudinal direction of the antenna unit.
  • FIG. 2 shows an example of a unit cell (UC) 1 constituting the leaky wave antenna according to the embodiment of the present invention. Further, FIG. 3 shows a cross-sectional view of the unit cell (UC) 1 of FIG. 2 cut along the solid line portion and viewed from the A direction.
  • Unit cell (UC) 1 shown in FIG. 2 has a series capacitor (C L ) 3 and a left-handed element formed on the upper surface of dielectric substrate 2 with respect to the coplanar line with ground forming the right-handed transmission line. It has a structure as a CRLH line to which a parallel inductor (L L ) 4 is added.
  • unit cell (UC) 1 includes ground portions 5 and 6 disposed on the upper surface of dielectric substrate 2, ground plane 9 disposed on the lower surface of dielectric substrate 2, ground portions 5 and 6, and a ground surface. 9 and through holes or ground plate raising portions 7 and 8 electrically connected to each other.
  • the series capacitor (C L ) 3 is arranged in series to the grounded coplanar line.
  • the series capacitor (C L ) 3 is configured using an interdigital structure.
  • FIG. 13 by changing the values of the comb length lc, the comb width wc, and the comb gap gc of the interdigital portion having a comb tooth shape, a series capacitor (C L ) The capacity of 3 can be changed to the desired value.
  • the conductor pattern corresponding to the parallel inductor (L L ) 4 has a stub structure in which one end is connected to the ground portion 5 and the other end is connected to the transmission line portion. That is, the conductor pattern corresponding to this parallel inductor (L L ) 4 electrically connects the transmission line portion of the coplanar with ground and the ground portion 5 of the dielectric substrate 2 through the through hole or the ground plate rising portion 7 It is arranged to connect to
  • FIG. 14A shows that the stubs of the parallel inductor (L L ) 4 are formed in a straight line
  • FIG. 14A shows that the stubs of the parallel inductor (L L ) 4 are formed in a straight line
  • FIG. 14B shows that the stubs of the parallel inductor (L L ) 4 have a meander shape (or zigzag shape). Show what was formed in As shown in FIGS. 14A and 14B, by changing the value of the parallel inductor (L L) 4 stub widths wl and stub length ll, it is possible to change the inductance value of the parallel inductor (L L) 4. That is, the inductance value of the parallel inductor (L L ) 4 can be adjusted in accordance with the desired operating frequency band and dispersion characteristics.
  • FIG. 12 shows an equivalent circuit of a unit cell (UC) 1 having the CRLH line of FIG.
  • the CRLH line can be formed by connecting a plurality of unit cells (UC) 1 in a predetermined direction.
  • a normal transmission line (right-handed transmission line) includes only an inductance component (L R ) and a capacitance component (C R ).
  • the CRLH line further includes a left-handed series capacitance (C L ) and a parallel inductance (L L ). Therefore, according to such a CRLH line, a right-handed frequency region in which the phase advances forward and a left-handed frequency region in which the phase advances backward by the four parameters C R , L R , C L , and L L Can be produced.
  • FIG. 6 shows the dispersion characteristics of the unit cell (UC) 1 of FIG.
  • Dispersion characteristics indicate the amount of phase change per unit cell.
  • the vertical axis represents frequency
  • the horizontal axis represents the absolute value of the phase change amount ⁇ p per unit cell.
  • the larger the numerical value of ⁇ p the larger the amount of phase change per cell. Therefore, the radiation angle ⁇ of the leaked wave when a plurality of cells are respectively connected becomes larger.
  • the relationship between the radiation angle ⁇ of the leaked wave and the phase constant ⁇ p is expressed by the following equation.
  • sin ⁇ 1 ( ⁇ / k)
  • k represents a wave number
  • represents a phase constant.
  • FIG. 6 shows the dispersion characteristics of Airline. Inside the Airline line, it becomes a fast wave band, and a leak wave is generated from the CRLH line.
  • the characteristics in the left handed region are described.
  • the use in the right-handed region in the fast wave band region shown in the dispersion characteristic shown in FIG. 6 is also possible.
  • it exhibits vertical plane directivity with upward tilt and also allows radiation in the X-axis direction.
  • each antenna unit (A1 to A4) shown in FIG. 1 are, for example, configured by connecting a plurality of unit cells (UC) 1 shown in FIG. 2 in the X-axis direction which is the longitudinal direction of each antenna unit. doing.
  • This antenna element has feed points P1 to P4 disposed on the bottom side, and has a line termination (release termination) disposed on the top side opposite to the bottom side.
  • the antenna portion A1 is excited by feeding power to the feeding point P1 of the antenna element (the same applies to the other feeding points P2 to P4 and the antenna portions A2 to A4).
  • Each of the antenna units A1 to A4 can control the gain by increasing or decreasing the number of unit cells to be connected.
  • each of the antenna units A1 to A4 a plurality of unit cells are arranged in an array in the horizontal direction.
  • the antenna units A1 and A3 in the odd rows have unit cells (UC) in which the parallel inductors are branched to the left, and the antenna units A2 in the even rows And A4, the parallel inductor has another unit cell (UC ') branched to the right. That is, comparing the antenna units A1 and A3 in the odd-numbered rows with the antenna units A2 and A4 in the even-numbered rows, assuming that the X axis which is the longitudinal direction of each antenna unit is a symmetry axis, The branch directions are axisymmetrical or mirror images of each other.
  • parallel inductors of the antenna section A1 (A3) in the odd-numbered column and the antenna section A2 (A4) in the even-numbered column are branched outward from the CRLH line.
  • this parallel inductor can be branched in the reverse direction. That is, the branch directions of the parallel inductors of the antenna section A1 (A3) in the odd-numbered column and the antenna section A2 (A4) in the even-numbered column can be branched inward from the CRLH line.
  • the directivity in the horizontal plane can be controlled by increasing the number of arrangement of the antenna units.
  • the parallel inductor (L L ) branches off from the transmission line in the odd number direction
  • the leaky wave antenna according to the embodiment of the present invention by arranging two antenna sets in which the antenna units (A1 and A3) in the odd-numbered rows and the antenna units (A2 and A4) in the even-numbered rows are combined. , Generation of cross polarization in the horizontal plane can be suppressed.
  • control can also be performed by disposing a metal reflecting plate on the lower surface side of each of the antenna units (A1 to A4).
  • FIG. 4 shows a current distribution at the time of vertical polarization excitation by the antenna unit A1 (A3) forming the odd-numbered row and the antenna unit A2 (A4) forming the even-numbered row.
  • the series capacitor portion is in the X axis direction perpendicular to the ground, and the antenna portion A1 (A3) A2 (A4) generates a current vector in the same direction.
  • the antenna sections A1 (A3) and the antenna sections A2 (A4) generate current vectors in opposite directions in the Y-axis direction that is horizontal to the ground. Therefore, the current vector in the X-axis direction is strengthened because it becomes a vector in the same direction, but the current vector in the Y-axis direction is canceled because it becomes a vector in the reverse direction. Therefore, the current in the X-axis direction becomes dominant and excites vertical polarization.
  • FIG. 5 shows a current distribution at the time of horizontal polarization excitation by the antenna unit A1 (A3) forming the odd-numbered row and the antenna unit A2 (A4) forming the even-numbered row.
  • the series capacitor unit is X by the antenna unit A1 (A3) and the antenna unit A2 (A4). It generates current vectors in opposite directions in the axial direction.
  • the parallel inductor unit generates current vectors in the same direction in the Y-axis direction by the antenna unit A1 (A3) and the antenna unit A2 (A4). In this case, since the current vector in the X-axis direction is canceled out, the current vector in the Y-axis direction becomes dominant and excites horizontal polarization.
  • FIG. 7 shows in-plane directivity in the case where the normalized frequency is 1 when in-phase feeding is performed to each of the feeding points P1 to P4 (vertical polarization excitation).
  • FIG. 8 the vertical in-plane directivity in the case where the normalized frequency is 1 when the feeding points of P2 and P4 are fed with a phase difference of 180 ° to P1 and P3 (horizontal polarization excitation) is shown. Show. It can be confirmed that a vertical surface tilt angle substantially equivalent to the estimated tilt angle ⁇ calculated from the dispersion characteristics is obtained.
  • FIG. 9 shows in-horizontal-plane directivity in the case where the normalized frequency is 1 when in-phase feeding is performed to each of the feeding points P1 to P4 (vertical polarization excitation).
  • FIG. 10 shows the directivity in the horizontal plane when the normalized frequency is 1 when the feeding points of P2 and P4 are fed with a phase difference of 180 ° to P1 and P3 (horizontal polarization excitation) .
  • Horizontal in-plane directivity is directivity at the angle of the maximum value in vertical in-plane directivity. It can be seen that substantially the same horizontal half-value angle is obtained for both vertical polarization and horizontal polarization.
  • 9 and 10 also show cross polarization directivity together with main polarization directivity.
  • FIG. 11 shows a power feeding apparatus used when operating the leaky wave antennas (A1 to A4) according to the embodiment of the present invention as polarization antennas.
  • FIG. 11 shows an aspect in which two hybrid couplers are used as a feeding device.
  • this input signal (IN (1)) is connected to feeding points P1 and P3 of the antenna units (A1 and A3) in the odd-numbered rows. Output the same phase from the output port.
  • the leaky wave antennas (A1 to A4) are used as polarization antennas by giving desired input signals (IN (1), IN (2)) to the hybrid coupler shown in FIG. It can be operated.

Landscapes

  • Waveguide Aerials (AREA)
  • Waveguides (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

目的の動作周波数において、交差偏波およびサイドローブを抑制しつつ垂直面内指向性において高チルト角を実現可能な、CRLH伝送線路を用いた薄型の偏波共用漏れ波アンテナを実現する。具体的には、本発明は、誘電体基板2と、誘電体基板2の下面に形成されたグランド面9と、前記誘電体基板の上面に形成されたグランド部5、6と、グランド部5、6に隣接して配置され、誘電体基板2の上面に形成された、グランド付きコプレーナ線路を用いたCRLH線路であって、該CRLH線路を構成する直列キャパシタ(CL)3および並列インダクタ(LL)4が誘電体基板2の上面に形成されている、CRLH線路とを含んでなる、漏れ波アンテナ(A1)を提供する。

Description

漏れ波アンテナ
 本発明は、メタマテリアル技術を用いて構成された薄型アンテナに関し、特に、移動体通信の基地局アンテナとして好適に使用することができる漏れ波アンテナに関する。
 近年、携帯電話やスマートフォンを初めとした移動通信技術は目覚ましく進歩している。これらの移動通信の利用者は年々増加しており、個人のデータ通信容量も増大している。そのため、移動通信用の基地局アンテナには、周波数利用効率の向上等が求められる。 そのような移動通信用の基地局アンテナとしては、(垂直偏波および水平偏波や±45°偏波等の)偏波共用アンテナが主流となっている。偏波共用アンテナは、偏波ダイバーシチまたは偏波間MIMO(Multiple-Input and Multiple-Output)を行うことが可能である。
 一方、都市部等での通信トラヒックのひっ迫に伴い、これまでの基地局アンテナがカバーしてきたエリア(マクロセル)よりも狭いエリアをカバーする、スモールセル向けのアンテナが多く用いられるようになってきている。このようなスモールセル向けのアンテナは、鉄塔やビルの屋上に配置されるマクロセルのアンテナとは異なり、比較的高さが低い建物壁面や屋上等に取り付けられることが想定される。このようなスモールセル向けのアンテナは、人の目に触れやすいので、景観等への配慮といった美観上の観点から、小型化および薄型化が求められている。
 薄型アンテナについて、例えば、特許文献1には、誘電体基板上にCRLH(Composite Right/Left Handed)線路を複数プリントした薄型構造による平面アンテナの記載がある。特許文献1では、各CRLH線路への給電位相を変更できるようにすることによって、偏波の切り替えを容易に変更できるようにしている。
特開2016-58839号公報
 特許文献1に記載した放射素子は、誘電体基板とグランド板が別々に構成された構造を有しているため、誘電体基板とグランド板とを接続するグランド板立ち上げ部の分だけ放射素子の厚みが大きい構造となっている。そのため、ビルの壁面等への取り付けに際し、放射素子が目立たないように、放射素子の軽量化や薄型化を行うことが難しい。
 また、特許文献1の放射素子は、グランド板立ち上げ部という部品が必要であることから、構成する部品の種類が多くなるので、アンテナの構造が複雑になりコストが高くなる等の課題がある。
 さらに、特許文献1に記載した放射素子は、水平面内指向性について垂直偏波と水平偏波との半値角が一致していない。そのため、偏波間での半値角の差を小さくして移動通信基地局でのスモールセルに適した指向性を実現するようにセル設計を行う必要がある。
 本発明は、上記の状況に鑑みてなされたものであり、偏波の共用が可能であり、部品の種類や部品数が少ない漏れ波アンテナを提供するものである。
 また、本発明は、スモールセルに適した指向性を実現するために、隣接セルとの干渉を低減し、垂直面内指向性において高チルト角が得られる構造を有する薄型の漏れ波アンテナも提供する。
 さらに、本発明は、移動通信用基地局向けに用いることから、交差偏波識別度が20dB以上である高利得を得られる漏れ波アンテナも提供する。
 本発明は、1枚の誘電体基板の上面に形成された、グランド付きコプレーナ線路を用いたCRLH線路を含む漏れ波アンテナを提供するものである。
 具体的には、本発明は、
 誘電体基板と、
 前記誘電体基板の下面に形成されたグランド面と、
 前記誘電体基板の上面に形成されたグランド部および伝送線路部からなる、
 グランド付きコプレーナ線路を用いたCRLH線路であって、該CRLH線路を構成する直列キャパシタが前記誘電体基板の上面に形成されている、CRLH線路と
 を含んでなる、漏れ波アンテナを提供する。
 一態様として、前記直列キャパシタ(C)が、インターデジタル構造またはスロットキャパシタ構造を有している。
 また、前記直列キャパシタ(C)に接続された並列インダクタ(L)が、前記誘電体基板の上面に形成されている。
 他の態様として、前記グランド部と前記並列インダクタ(L)の一端とは、スルーホールまたはグランド板立ち上げ部を介して、前記誘電体基板の下面の前記グランド面に電気的に接続されている。
 また本発明は、水平方向および垂直方向に発生した電流ベクトルを相殺することができ、1枚の誘電体基板に形成された、グランド付きコプレーナ線路を用いたCRLH線路による漏れ波アンテナを提供する。 
 具体的には、本発明は、
 1以上の第1ユニットセル(UC)を含む第1アンテナ部(A1)と、
 1以上の第2ユニットセル(UC’)を含む第2アンテナ部(A2)と
 を含んでなる漏れ波アンテナであって、
 前記第1ユニットセル(UC)は、
 誘電体基板と、
 前記誘電体基板の下面に形成されたグランド面と、
 前記誘電体基板の上面に形成されたグランド部および伝送線路部からなる、
 グランド付きコプレーナ線路を用いた第1CRLH線路であって、該第1CRLH線路を構成する直列キャパシタ(C)および並列インダクタ(L)が前記誘電体基板の上面に形成されている、第1CRLH線路と
 を含み、
 前記第2ユニットセル(UC’)は、
 誘電体基板と、
 前記誘電体基板の下面に形成されたグランド面と、
 前記誘電体基板の上面に形成されたグランド部および伝送線路部からなる、
 グランド付きコプレーナ線路を用いた第2CRLH線路であって、該第2CRLH線路を構成する直列キャパシタ(C)および並列インダクタ(L)が前記誘電体基板の上面に形成されている、第2CRLH線路と
 を含み、
 前記第1CRLH線路の前記直列キャパシタ(C)に接続された並列インダクタ(L)の配置と、前記第2CRLH線路の前記直列キャパシタ(C)に接続された並列インダクタ(L)の配置とが、互いに線対称または鏡像となる位置関係で配置されている、漏れ波アンテナを提供する。
 一態様として、前記直列キャパシタ(C)が、インターデジタル構造またはスロットキャパシタ構造を有している。
 別の一態様として、前記グランド部と前記並列インダクタ(L)の一端とは、スルーホールまたはグランド板立ち上げ部を介して、前記誘電体基板の下面の前記グランド面に電気的に接続されている。
 さらに本発明は、水平方向および垂直方向に発生した電流ベクトルを相殺することができ、1枚の誘電体基板の上面に形成された、グランド付きコプレーナ線路を用いたCRLH線路を含む漏れ波アンテナを提供する。
 具体的には、本発明は、
 1以上の第1アンテナ素子を含む第1アンテナ部(A1)と、該第1アンテナ部の長手方向に対して平行に配置され、1以上の第2アンテナ素子を含む第2アンテナ部(A2)
とを含む第1アンテナセット(A1、A2)と、
 1以上の第1アンテナ素子を含む第3アンテナ部(A3)と、該第3アンテナ部の長手方向に対して平行に配置され、1以上の第2アンテナ素子を含む第4アンテナ部(A4)
とを含む第2アンテナセット(A3、A4)と
 を含んでなる漏れ波アンテナであって、
 前記第1アンテナ部(A1)は、該第1アンテナ部の一方の端部に第1給電点(P1)を有し、
 前記第2アンテナ部(A2)は、該第2アンテナ部の一方の端部に第2給電点(P2)を有し、前記第1給電点と前記第2給電点とが同じ端部に位置するように配置されており、
 前記第3アンテナ部(A3)は、該第3アンテナ部の一方の端部に第3給電点(P3)を有し、
 前記第4アンテナ部(A4)は、該第4アンテナ部の一方の端部に第4給電点(P4)を有し、前記第3給電点と前記第4給電点とを同じ端部に位置するように配置されており、
 前記第1アンテナ素子は、
 誘電体基板と、
 前記誘電体基板の下面に形成されたグランド面と、
 前記誘電体基板の上面に形成されたグランド部および伝送線路部からなる、
 グランド付きコプレーナ線路を用いて形成された第1CRLH線路であって、該第1CRLH線路を構成する直列キャパシタ(C)および並列インダクタ(L)が前記誘電体基板の上面に形成されている、第1CRLH線路と
 を含み、
 前記第2アンテナ素子は、
 誘電体基板と、
 前記誘電体基板の下面に形成されたグランド面と、
 前記誘電体基板の上面に形成されたグランド部と、
 前記グランド部に隣接して配置され、前記誘電体基板の上面にグランド付きコプレーナ線路を用いて形成された第2CRLH線路であって、該第2CRLH線路を構成する直列キャパシタ(C)および並列インダクタ(L)が前記誘電体基板の上面に形成されている、第2CRLH線路と
 を含み、
 前記第1CRLH線路の前記直列キャパシタ(C)に接続された並列インダクタ(L)の配置と、前記第2CRLH線路の前記直列キャパシタ(C)に接続された並列インダクタ(L)の配置とが、互いに線対称または鏡像となる位置関係で配置されている、漏れ波アンテナを提供する。
 一態様として、漏れ波アンテナは、(後述する図1では、漏れ波アンテナがアンテナ部4列で構成されたものを示しているが、これに限らず)アンテナ部を2N列(N=1、2、…)として、列数を増やす構成とすることも可能である。
 例えば、一態様として、漏れ波アンテナは、前記第1アンテナセット(A1、A2)と前記第2アンテナセット(A3、A4)とのいずれかをさらに含むことにより、前記アンテナセットが3セット以上配置されている。
 また一態様として、前記直列キャパシタ(C)が、インターデジタル構造またはスロットキャパシタ構造を有している。
 別の態様として、前記各アンテナセットのうちの奇数列を構成する前記各アンテナ部は、各アンテナ部の長手方向に第1ユニットセル(UC)を複数個接続して構成されており、前記各アンテナセットのうちの奇数列を構成する前記各アンテナ部は、各アンテナ部の長手方向に第2ユニットセル(UC’)を複数個接続して構成されている。
 他の態様として、前記グランド部と前記並列インダクタ(L)の一端とは、スルーホールまたはグランド板立ち上げ部を介して、前記誘電体基板の下面の前記グランド面に電気的に接続されている。
 また、上記の漏れ波アンテナの第1給電点(P1)と第2給電点(P2)と第3給電点(P3)と第4給電点(P4)とのそれぞれに対して、互いに異なる給電位相を与える給電装置とを備えてなるアンテナシステムも提供する。
 本発明の実施の形態に係るCRLH伝送線路は、CRLH伝送線路を構成する直列キャパシタとしてインターデジタルキャパシタを使用している。この他にも、例えば、CRLH伝送線路を構成する直列キャパシタを、スロットキャパシタ等によって誘電体基板の上面に構成することもできる。なお、並列インダクタとして、スタブインダクタを使用して構成することもできる。
 また、他の様態として、本発明の実施の形態に係るCRLH線路は、チップキャパシタからなる直列キャパシタと、チップインダクタからなる並列インダクタとによって構成することができる。
 さらに、別の様態として、本発明の実施の形態に係るCRLH線路は、並列インダクタをスパイラルインダクタまたはメアンダ状インダクタとして形成することによって、インダクタンス値を変化させることができる。
 本発明によれば、グランド付きコプレーナ線路を用いたCRLH線路によって誘電体基板1枚で構成することができるので、薄型で簡素な構造を有する偏波共用アンテナを実現することができる。
 また、目的の周波数における水平面内指向性については、アンテナ素子の誘電体基板の下面全体にグランド面を設けていることから、垂直偏波と水平偏波ともにセクタ指向性に適した放射指向性を得ることができる。
 さらに、CRLH線路のユニットセルにおいて並列インダクタおよび直列キャパシタを調整して分散特性を制御することによって、所望のチルト角を得ることができる。
本発明の実施の形態に係る漏れ波アンテナ全体の俯瞰図である。 図1のアンテナ部(A1)の一部を構成するユニットセルの俯瞰図である。 図2のユニットセルをA方向から見たときの断面図である。 給電点P1およびP2に対して同位相を入力した場合の電流分布を示す平面図である。 給電点P1およびP2に対して逆位相を入力した場合の電流分布を示す平面図である。 ユニットセルの分散特性を示すグラフである。 垂直面内指向性における垂直偏波の放射指向性を示すグラフである。 垂直面内指向性における水平偏波の放射指向性を示すグラフである。 水平面内指向性における垂直偏波の放射指向性を示すグラフである。 水平面内指向性における水平偏波の放射指向性を示すグラフである。 各アンテナ部(A1~A4)の給電点(P1~P4)に異なる給電位相を与える給電装置を示す回路構成図である。 図2のユニットセル(UC)1の等価回路である。 ユニットセル1の直列キャパシタ3の構造を示す上面図である。 Aは、ユニットセル1の並列インダクタ4の構造を示す上面図である。Bは、ユニットセル1の並列インダクタ4の別の態様による構造を示す上面図である。
 以下に示す実施例においては、動作周波数帯域の中心周波数をf0を3.50GHz(波長λ0)とし、動作周波数帯域幅はf0を中心として3.48GHz~3.52GHzの40MHz幅としている。
 動作周波数帯は、後述するように、直列キャパシタCLおよび並列インダクタLLの値を調整し、右手系伝送線路を構成するグランド付きコプレーナ線路幅またはギャップ幅を調整することにより可変にすることができる。
(アンテナの概要)
 図1に示すように、軸の定義として、X軸方向を大地と垂直な方向とし、Y軸およびZ軸によるY-Z平面を大地と水平な方向とする。
 図1に、本発明の実施の形態に係る漏れ波アンテナを示す。この漏れ波アンテナは、誘電体基板の下面に形成されたグランド面を有し、上面にはグランド付きコプレーナ線路を用いたCRLH線路をプリントした構成を有している。そして、誘電体基板の上面にプリントされるグランド部および並列インダクタ(LL)の片端と下面のグランド間は、スルーホールによるビアまたは導体によって電気的に接続される。
 図1に示すように、本発明の実施の形態に係る漏れ波アンテナは、奇数列のアンテナ部(A1およびA3)と偶数列のアンテナ部(A2およびA4)とを備えている。つまり、図1に示す漏れ波アンテナは、奇数列のアンテナ部A1と偶数列のアンテナ部A2との第1アンテナセットと、奇数列のアンテナ部A3と偶数列のアンテナ部A4との第2アンテナセットとを有している。ここで、各アンテナセットのCRLH線路を構成する並列インダクタの配置は、各アンテナ部の長手方向に対応するX軸を対称軸として互いに対称(線対称または鏡像)となる構造を有している。
 具体的には、奇数列のアンテナ部A1およびA3は、図2に示すユニットセル(UC)1を各アンテナ部の長手方向に対応するX軸方向に複数個接続した構成を有している。そして、偶数列のアンテナ部A2およびA4は、図2に示すユニットセル1とは直列キャパシタ3に対する並列インダクタ4の配置が線対称または鏡像な配置を有する別のユニットセル(UC’)を、各アンテナ部の長手方向に対応するX軸方向に複数個接続した構成を有している。
(ユニットセルについて)
 図2に、本発明の実施の形態に係る漏れ波アンテナを構成するユニットセル(UC)1の一例を示す。また、図3に、図2のユニットセル(UC)1を実線部分で切断してA方向から見たときの断面図を示す。図2に示すユニットセル(UC)1は、右手系伝送線路を構成するグランド付きコプレーナ線路に対し、誘電体基板2の上面に形成された、左手系素子である直列キャパシタ(CL)3と並列インダクタ(LL)4とを追加したCRLH線路とした構造を有している。また、ユニットセル(UC)1は、誘電体基板2の上面に配置されたグランド部5、6と、誘電体基板2の下面に配置されたグランド面9と、グランド部5、6とグランド面9とを電気的に接続するスルーホールまたはグランド板立ち上げ部7、8とを有している。
 直列キャパシタ(CL)3は、グランド付きコプレーナ線路へ直列に配置している。直列キャパシタ(CL)3は、インターデジタル構造を用いて構成されている。ここで、図13に示すように、櫛の歯の形状を有するインターデジタル部のそれぞれの櫛の長さlc、櫛の幅wc、また櫛の間隙gcの値を変えることによって、直列キャパシタ(CL)3の容量を所望の値に変更することができる。つまり、直列キャパシタ(CL)3の容量を変えることによって、動作周波数帯および所望の分散特性に合わせた調整をすることができる。
 並列インダクタ(LL)4に対応する導体パターンは、その一方の端部をグランド部5へ接続し、もう一方の端部を伝送線路部分へ接続したスタブ構造を有している。つまり、この並列インダクタ(LL)4に対応する導体パターンは、スルーホールまたはグランド板立ち上げ部7を介して、グランド付きコプレーナの伝送線路部分と誘電体基板2のグランド部5とを電気的に接続するよう配置している。ここで、図14Aには、並列インダクタ(LL)4のスタブが直線状に形成されたものを示し、図14Bには、並列インダクタ(LL)4のスタブがメアンダ形状(またはジグザグ形状)に形成されたものを示す。図14Aおよび図14Bに示すように、並列インダクタ(LL)4のスタブ幅wlおよびスタブ長llの値を変えることによって、並列インダクタ(LL)4のインダクタンス値を変えることができる。つまり、所望の動作周波数帯および分散特性に合わせて並列インダクタ(LL)4のインダクタンス値を調整することができる。
 次に、図2のCRLH線路を有するユニットセル(UC)1の等価回路を図12に示す。複数のユニットセル(UC)1を所定の方向に複数個接続することによってCRLH線路を形成することができる。通常の伝送線路(右手系の伝送線路)は、インダクタンス成分(L)とキャパシタンス成分(C)のみを含んでいる。これに加えて、CRLH線路は、左手系の直列キャパシタンス(C)と並列インダクタンス(L)をさらに含んでいる。そのため、このようなCRLH線路によれば、4つのパラメータC、L、C、Lにより、位相が前方に進む右手系の周波数領域と、位相が後方に進む左手系の周波数領域とを作り出すことができる。
 図6に、図2のユニットセル(UC)1の分散特性を示す。分散特性とは、ユニットセル当たりの位相変化量を示す。図6において縦軸は周波数、横軸はユニットセルあたりの位相変化量βpの絶対値を示す。ここで、βpの数値が大きいほど、セルあたりの位相変化量は大きくなるので、複数個のセルをそれぞれ接続した際の漏れ波の放射角θは大きくなる。漏れ波の放射角θと位相定数βpの関係は、以下の式で示される。
 θ=sin-1(β/k)
ここで、kは波数、βは位相定数を示す。 
 図6に示す例では、使用周波数f0における分散特性βpの値は15°である。図6には、Airlineの分散特性を併記している。Airlineの線の内側において速波帯となり、CRLH線路から漏れ波が生じる。ここで、「Airline」とは、自由空間中における周波数f0でのユニットセル長あたりの位相変化量である。f0におけるβpはAirlineの内側に位置しているため、速波帯領域に存在する。このことから、各ユニットセルから位相差15°の漏れ波が生じる。ユニットセル長p=8mmであり、使用周波数f0=3.5GHzの場合には、推定チルト角θはθ=26.5°となる。
 なお、以上においては左手系領域における特性について述べた。本発明に係る漏れ波アンテナにおいては、図6に示す分散特性において示した、速波帯領域内における右手系領域での使用も可能である。右手系領域での使用においては、上向きチルトを有する垂直面指向性を示すとともに、X軸方向への放射も可能となる。
(アンテナ構成について)
 図1に示す各アンテナ部(A1~A4)を構成するアンテナ素子は、例えば、図2に示すユニットセル(UC)1を各アンテナ部の長手方向であるX軸方向に複数個接続して構成している。このアンテナ素子は、底部側に配置された給電点P1~P4を有し、底部側とは反対に位置する上部側に配置された線路終端(解放終端)を有する。アンテナ素子の給電点P1への給電によってアンテナ部A1が励振される(その他の給電点P2~P4およびアンテナ部A2~A4も同様である)。 各アンテナ部A1~A4は、接続するユニットセル数を増減することによって利得を制御することができる。ここで、接続するユニットセル数をユニットセルあたりの放射量に対して適切に設定することにより、終端抵抗を取り付けることなくアンテナ端部での反射を抑制することができる。接続するユニットセル数を少なくする場合には、各アンテナ部の端部に終端抵抗を取り付けることもできる。終端抵抗を取り付けることによって、天空側のサイドローブを抑制することができる。
 各アンテナ部A1~A4は、複数のユニットセルが水平方向にアレイ状に配置されている。図1においてX-Y平面をZ軸正方向から見た場合、奇数列のアンテナ部A1およびA3では並列インダクタが左側に分岐したユニットセル(UC)を有しており、偶数列のアンテナ部A2およびA4では並列インダクタが右側に分岐した別のユニットセル(UC’)を有している。つまり、奇数列のアンテナ部A1およびA3と、偶数列のアンテナ部A2およびA4とを比較すると、各アンテナ部の長手方向であるX軸を対称軸としたときに、各アンテナ部の並列インダクタの分岐方向は、互いに線対称または鏡像の関係となっている。
 ここで、図1では、奇数列のアンテナ部A1(A3)と偶数列のアンテナ部A2(A4)との並列インダクタを、CRLH線路から互いに外側に向かって分岐する構造としている。ただし、その他の様態として、この並列インダクタを逆方向に分岐することもできる。つまり、奇数列のアンテナ部A1(A3)と偶数列のアンテナ部A2(A4)との並列インダクタの分岐方向を、CRLH線路から互いに内側に向かって分岐する構造とすることもできる。また、アンテナ部の配列数を増加させることにより水平面内指向性の制御が可能である。
 なお、交差偏波を抑制する観点から、各アンテナ部(A1~A4)の長手方向であるX軸を対称軸とした場合、並列インダクタ(L)が伝送線路から分岐する方向は、奇数列ではY軸負方向、偶数列ではY軸正方向となるように対称に配置することが好ましい。
 本発明の実施の形態に係る漏れ波アンテナによれば、奇数列のアンテナ部(A1、A3)と偶数列のアンテナ部(A2、A4)とをそれぞれ組み合わせた2つのアンテナセットを配置することによって、水平面内における交差偏波の発生を抑制することができる。水平面内指向性を制御するその他の方法として、各アンテナ部(A1~A4)の下面側に金属反射板を配置することで制御することもできる。
(給電方法による偏波の切り替え)
 図4および図5には、グランド付きコプレーナ線路により構成されるCRLH線路を用いた偏波共用漏れ波アンテナの各偏波(垂直偏波および水平偏波)を示す。この偏波共用漏れ波アンテナは、対となっているCRLH線路への給電位相を変えることにより、複数の直線偏波を生成することや、使用する偏波を変更することや、異なる偏波を同時励振して共用することができる。
図4に、奇数列を構成するアンテナ部A1(A3)と、偶数列を構成するアンテナ部A2(A4)とによる垂直偏波励振時の電流分布を示す。アンテナ部A1(A3)と、アンテナ部A2(A4)のCRLH線路を同位相により給電することにより、直列キャパシタ部は大地と垂直方向となるX軸方向にアンテナ部A1(A3)と、アンテナ部A2(A4)とで同一方向の電流ベクトルを生成する。これに対し、並列インダクタ部においては大地と水平方向となるY軸方向に、アンテナ部A1(A3)とアンテナ部A2(A4)とで互いに逆方向の電流ベクトルを生成する。そのため、X軸方向の電流ベクトルは同一方向のベクトルとなるので強められるが、Y軸方向の電流ベクトルは逆方向のベクトルとなるので相殺される。よって、X軸方向の電流が支配的となり、垂直偏波を励振する。
 図5に、奇数列を構成するアンテナ部A1(A3)と、偶数列を構成するアンテナ部A2(A4)とによる水平偏波励振時の電流分布を示す。アンテナ部A1(A3)とアンテナ部A2(A4)とのCRLH線路を180°逆相で給電することにより、直列キャパシタ部は、アンテナ部A1(A3)とアンテナ部A2(A4)とによって、X軸方向へ互いに逆方向の電流ベクトルを生成する。そして、並列インダクタ部は、アンテナ部A1(A3)とアンテナ部A2(A4)とによって、Y軸方向へ互いに同一方向の電流ベクトルを生成する。この場合には、X軸方向の電流ベクトルが相殺されるので、Y軸方向の電流ベクトルが支配的となり、水平偏波を励振する。
 図7に、P1~P4の各給電点に対して同相給電した場合(垂直偏波励振)の、規格化周波数が1の場合における垂直面内指向性を示す。図8に、P1およびP3に対してP2およびP4の給電点に180°の位相差をつけて給電した場合(水平偏波励振)の、規格化周波数が1の場合における垂直面内指向性を示す。分散特性から算出した推定チルト角θとほぼ同等の垂直面チルト角が得られていることが確認できる。
 図9に、P1~P4の各給電点に対して同相給電した場合(垂直偏波励振)の、規格化周波数が1の場合における水平面内指向性を示す。図10に、P1およびP3に対してP2およびP4の給電点に180°の位相差をつけて給電した場合(水平偏波励振)の、規格化周波数が1の場合における水平面内指向性を示す。水平面内指向性は、垂直面内指向性における最大値の角度での指向性である。垂直偏波および水平偏波ともに、ほぼ同じ水平面半値角が得られていることがわかる。
 また、図9および図10には、主偏波指向性と共に交差偏波指向性も併せて示している。本発明の実施の形態に係る漏れ波アンテナを4列のアンテナ部(A1~A4)で構成することにより、垂直偏波および水平偏波共に、交差偏波識別度(XPD:Cross Polarization Discrimination)を20dB以上確保することができる。
 図11に、本発明の実施の形態に係る漏れ波アンテナ(A1~A4)を偏波アンテナとして動作させる場合に用いられる給電装置を示す。図11は、給電装置として2つのハイブリットカプラを用いる態様が示されている。図11に示す各ハイブリッドカプラは、Σ結合入力ポート側から信号を入力した場合に、この入力信号(IN(1))を奇数列のアンテナ部(A1、A3)の給電点P1およびP3に接続される出力ポートから同位相のまま出力する。また、図11に示す各ハイブリッドカプラは、Δ結合入力ポート側から信号を入力した場合に、この入力信号(IN(2))を偶数列のアンテナ部(A2、A4)の給電点P2およびP4に接続される出力ポートから逆位相にして出力する。
 このように、図11に示すハイブリッドカプラに所望の入力信号(IN(1)、IN(2))を与えることによって、上記の実施形態に係る漏れ波アンテナ(A1~A4)を偏波アンテナとして動作させることができる。
 1 ユニットセル
 2 誘電体基板
 3 直列キャパシタ(C
 4 並列インダクタ(L
 5、6 グランド部
 7、8 スルーホールまたはグランド板立ち上げ部
 9 グランド面
 A1~A4 アンテナ
 P1~P4 給電点

Claims (13)

  1.  誘電体基板と、
     前記誘電体基板の下面に形成されたグランド面と、
     前記誘電体基板の上面に形成されたグランド部と、
     前記グランド部に隣接して配置され、前記誘電体基板の上面に形成された、グランド付きコプレーナ線路を用いたCRLH線路であって、該CRLH線路を構成する直列キャパシタ(C)が前記誘電体基板の上面に形成されている、CRLH線路と
     を含んでなる、漏れ波アンテナ。
  2.  前記直列キャパシタ(C)が、インターデジタル構造またはスロットキャパシタ構造を有している、請求項1に記載の漏れ波アンテナ。
  3.  前記直列キャパシタ(C)に接続された並列インダクタ(L)が、前記誘電体基板の上面に形成されている、請求項1または2に記載の漏れ波アンテナ。
  4.  前記グランド部と前記並列インダクタ(L)の一端とは、スルーホールまたはグランド板立ち上げ部を介して、前記誘電体基板の下面の前記グランド面に電気的に接続されている、請求項3に記載の漏れ波アンテナ。
  5.  1以上の第1ユニットセル(UC)を含む第1アンテナ部(A1)と、
     1以上の第2ユニットセル(UC’)を含む第2アンテナ部(A2)と
     を含んでなる漏れ波アンテナであって、
     前記第1ユニットセル(UC)は、
     誘電体基板と、
     前記誘電体基板の下面に形成されたグランド面と、
     前記誘電体基板の上面に形成されたグランド部および伝送線路部からなる、
     グランド付きコプレーナ線路を用いた第1CRLH線路であって、該第1CRLH線路を構成する直列キャパシタ(C)および並列インダクタ(L)が前記誘電体基板の上面に形成されている、第1CRLH線路と
     を含み、
     前記第2ユニットセル(UC’)は、
     誘電体基板と、
     前記誘電体基板の下面に形成されたグランド面と、
     前記誘電体基板の上面に形成されたグランド部および伝送線路部からなる、
     グランド付きコプレーナ線路を用いた第2CRLH線路であって、該第2CRLH線路を構成する直列キャパシタ(C)および並列インダクタ(L)が前記誘電体基板の上面に形成されている、第2CRLH線路と
     を含み、
     前記第1CRLH線路の前記直列キャパシタ(C)に接続された並列インダクタ(L)の配置と、前記第2CRLH線路の前記直列キャパシタ(C)に接続された並列インダクタ(L)の配置とが、互いに線対称または鏡像となる位置関係で配置されている、漏れ波アンテナ。
  6.  前記直列キャパシタ(C)が、インターデジタル構造またはスロットキャパシタ構造を有している、請求項5に記載の漏れ波アンテナ。
  7.  前記グランド部と前記並列インダクタ(L)の一端とは、スルーホールまたはグランド板立ち上げ部を介して、前記誘電体基板の下面の前記グランド面に電気的に接続されている、請求項5または6に記載の漏れ波アンテナ。
  8.  1以上の第1アンテナ素子を含む第1アンテナ部(A1)と、該第1アンテナ部の長手方向に対して平行に配置され、1以上の第2アンテナ素子を含む第2アンテナ部(A2)
    とを含む第1アンテナセット(A1、A2)と、
     1以上の第1アンテナ素子を含む第3アンテナ部(A3)と、該第3アンテナ部の長手方向に対して平行に配置され、1以上の第2アンテナ素子を含む第4アンテナ部(A4)とを含む第2アンテナセット(A3、A4)と,
     を含んでなる漏れ波アンテナであって、
     前記第1アンテナ部(A1)は、該第1アンテナ部の一方の端部に第1給電点(P1)を有し、
     前記第2アンテナ部(A2)は、該第2アンテナ部の一方の端部に第2給電点(P2)
    を有し、前記第1給電点と前記第2給電点とが同じ端部に位置するように配置されており、
     前記第3アンテナ部(A3)は、該第3アンテナ部の一方の端部に第3給電点(P3)
    を有し、
     前記第4アンテナ部(A4)は、該第4アンテナ部の一方の端部に第4給電点(P4)を有し、前記第3給電点と前記第4給電点とを同じ端部に位置するように配置されており、
     前記第1アンテナ素子は、
     誘電体基板と、
     前記誘電体基板の下面に形成されたグランド面と、
     前記誘電体基板の上面に形成されたグランド部および伝送線路部からなる、
     グランド付きコプレーナ線路を用いて形成された第1CRLH線路であって、該第1CRLH線路を構成する直列キャパシタ(C)および並列インダクタ(L)が前記誘電体基板の上面に形成されている、第1CRLH線路と
     を含み、
     前記第2アンテナ素子は、
     誘電体基板と、
     前記誘電体基板の下面に形成されたグランド面と、
     前記誘電体基板の上面に形成されたグランド部および伝送線路部からなる、
     グランド付きコプレーナ線路を用いて形成された第2CRLH線路であって、該第2CRLH線路を構成する直列キャパシタ(C)および並列インダクタ(L)が前記誘電体基板の上面に形成されている、第2CRLH線路と
     を含み、
     前記第1CRLH線路の前記直列キャパシタ(C)に接続された並列インダクタ(L)の配置と、前記第2CRLH線路の前記直列キャパシタ(C)に接続された並列インダクタ(L)の配置とが、互いに線対称または鏡像となる位置関係で配置されている、漏れ波アンテナ。
  9. 前記第1アンテナセット(A1、A2)と前記第2アンテナセット(A3、A4)とのいずれかをさらに含むことにより、前記アンテナセットが3セット以上配置された、請求項8に記載の漏れ波アンテナ。
  10.  前記直列キャパシタ(C)が、インターデジタル構造またはスロットキャパシタ構造を有している、請求項8に記載の漏れ波アンテナ。
  11.  前記各アンテナセットのうちの奇数列を構成する前記各アンテナ部は、各アンテナ部の長手方向に第1ユニットセル(UC)を複数個接続して構成されており、前記各アンテナセットのうちの偶数列を構成する前記各アンテナ部は、各アンテナ部の長手方向に第2ユニットセル(UC’)を複数個接続して構成されている、請求項8~10に記載の漏れ波アンテナ。
  12.  前記グランド部と前記並列インダクタ(L)の一端とは、スルーホールまたはグランド板立ち上げ部を介して、前記誘電体基板の下面の前記グランド面に電気的に接続されている、請求項8~11のいずれか一項に記載の漏れ波アンテナ。
  13.  請求項8~12のいずれか一項に記載の漏れ波アンテナと、
     前記第1給電点と前記第2給電点と前記第3給電点と前記第4給電点とのそれぞれに対して、互いに異なる給電位相を与える給電装置と
     を備えてなるアンテナシステム。
PCT/JP2018/018522 2017-08-22 2018-05-14 漏れ波アンテナ WO2019039004A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880004398.2A CN109983623B (zh) 2017-08-22 2018-05-14 漏波天线
US16/349,876 US10665954B2 (en) 2017-08-22 2018-05-14 Leaky-wave antenna
KR1020187020100A KR101927106B1 (ko) 2017-08-22 2018-05-14 누설파 안테나 및 이것을 구비한 안테나 시스템
EP18848217.8A EP3528341B1 (en) 2017-08-22 2018-05-14 Leaky wave antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017159386A JP6345325B1 (ja) 2017-08-22 2017-08-22 漏れ波アンテナ及びこれを備えたアンテナシステム
JP2017-159386 2017-08-22

Publications (1)

Publication Number Publication Date
WO2019039004A1 true WO2019039004A1 (ja) 2019-02-28

Family

ID=62635688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018522 WO2019039004A1 (ja) 2017-08-22 2018-05-14 漏れ波アンテナ

Country Status (5)

Country Link
US (1) US10665954B2 (ja)
EP (1) EP3528341B1 (ja)
JP (1) JP6345325B1 (ja)
CN (1) CN109983623B (ja)
WO (1) WO2019039004A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020187178A1 (en) * 2019-03-15 2020-09-24 Huawei Technologies Co., Ltd. Flat-plate, low sidelobe, two-dimensional, steerable leaky-wave planar array antenna
WO2023090011A1 (ja) * 2021-11-16 2023-05-25 パナソニックホールディングス株式会社 情報通信装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316868B (zh) * 2018-12-19 2023-11-28 华为技术加拿大有限公司 双端馈宽边漏波天线
CN110085990A (zh) * 2019-05-05 2019-08-02 南京邮电大学 一种小型化连续波束扫描的复合左右手漏波天线
US11670867B2 (en) * 2019-11-21 2023-06-06 Duke University Phase diversity input for an array of traveling-wave antennas
CN112054307B (zh) * 2020-08-18 2023-03-14 南昌大学 一种周期性加载寄生贴片增益稳定的微带漏波天线
CN113206381B (zh) * 2021-05-14 2022-04-08 云南大学 一种圆极化漏波天线
JP2023034315A (ja) 2021-08-30 2023-03-13 電気興業株式会社 アンテナ装置、および、通信システム
WO2024100989A1 (ja) * 2022-11-11 2024-05-16 ソニーグループ株式会社 アンテナ、および、デバイス

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054146A (ja) * 2006-08-26 2008-03-06 Toyota Central R&D Labs Inc アレーアンテナ
JP2016058839A (ja) 2014-09-08 2016-04-21 電気興業株式会社 薄型アンテナ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8451175B2 (en) * 2008-03-25 2013-05-28 Tyco Electronics Services Gmbh Advanced active metamaterial antenna systems
JP2010028534A (ja) * 2008-07-22 2010-02-04 Fuji Xerox Co Ltd 右手・左手系複合線路素子
TWI423523B (zh) * 2009-12-23 2014-01-11 Univ Nat Chiao Tung 多平面掃描洩漏波天線
CN105990688A (zh) * 2015-02-06 2016-10-05 中国科学院空间科学与应用研究中心 一种二维阵电扫描天线及其扫描方法
WO2016132499A1 (ja) 2015-02-19 2016-08-25 電気興業株式会社 漏れ波アンテナ
CN105914473B (zh) * 2016-04-14 2018-11-27 北京交通大学 提高辐射效率的漏波天线及该漏波天线的设计方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054146A (ja) * 2006-08-26 2008-03-06 Toyota Central R&D Labs Inc アレーアンテナ
JP2016058839A (ja) 2014-09-08 2016-04-21 電気興業株式会社 薄型アンテナ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ABIELMONA, S. ET AL.: "CRLH LWA with polarization diversity using equalized common and differential modes", ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI, 8 July 2012 (2012-07-08) - 14 July 2012 (2012-07-14), XP032472343, DOI: 10.1109/APS.2012.6349323 *
MEHDIPOUR, A. ET AL.: "Leaky-Wave Antennas Using Negative-Refractive-Index Transmission-Line Metamaterial Supercells", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 62, no. 8, 9 May 2014 (2014-05-09), pages 3929 - 3942, XP011555260, DOI: doi:10.1109/TAP.2014.2322882 *
See also references of EP3528341A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020187178A1 (en) * 2019-03-15 2020-09-24 Huawei Technologies Co., Ltd. Flat-plate, low sidelobe, two-dimensional, steerable leaky-wave planar array antenna
US11158953B2 (en) 2019-03-15 2021-10-26 Huawei Technologies Co., Ltd. Flat-plate, low sidelobe, two-dimensional, steerable leaky-wave planar array antenna
CN113646969A (zh) * 2019-03-15 2021-11-12 华为技术有限公司 平板低旁瓣二维可调的漏波平面阵列天线
CN113646969B (zh) * 2019-03-15 2022-11-08 华为技术有限公司 平板低旁瓣二维可调的漏波平面阵列天线
WO2023090011A1 (ja) * 2021-11-16 2023-05-25 パナソニックホールディングス株式会社 情報通信装置

Also Published As

Publication number Publication date
CN109983623B (zh) 2020-06-12
EP3528341B1 (en) 2021-11-17
JP2019041143A (ja) 2019-03-14
CN109983623A (zh) 2019-07-05
EP3528341A1 (en) 2019-08-21
US20190273324A1 (en) 2019-09-05
EP3528341A4 (en) 2020-07-29
US10665954B2 (en) 2020-05-26
JP6345325B1 (ja) 2018-06-20

Similar Documents

Publication Publication Date Title
JP6345325B1 (ja) 漏れ波アンテナ及びこれを備えたアンテナシステム
US20180145400A1 (en) Antenna
WO2021013010A1 (zh) 天线单元和电子设备
JP6397563B2 (ja) 漏れ波アンテナ
KR101831432B1 (ko) 기지국 안테나
Li et al. Gain-Equalized Multibeam Antenna Fed by a Compact Dual-Layer Rotman Lens at K a-Band
US20150333408A1 (en) Antenna device and wireless transmission device
Michishita et al. Tunable phase shifter using composite right/left-handed transmission line with mechanically variable MIM capacitors
JP6536688B2 (ja) 給電回路及びアンテナ装置
CN113013614B (zh) 一种双向波束赋形的功分器加载的天线组件
WO2021104147A1 (zh) 形成波束的方法和装置
Bertin et al. Switched beam antenna employing metamaterial-inspired radiators
CN107546478B (zh) 采用特殊方向图阵元的宽角扫描相控阵天线及设计方法
KR101927106B1 (ko) 누설파 안테나 및 이것을 구비한 안테나 시스템
US20220247079A1 (en) Antenna and electronic device
Huang et al. Waveguide-fed cavity backed slot antenna array with high efficiency in the Ku-band
KR102251287B1 (ko) 기판집적도파관 구조를 세그먼트 분리하여 층으로 할당하고 적층하는 방식의, 5g 소형 단말기 및 중계기용 광대역 빔 포밍 안테나 면적 축소법
CN107611597B (zh) 具有赋形波束且可作为阵元的低剖强耦合子阵及设计方法
JP2007059959A (ja) 組合せアンテナ
KR20140103762A (ko) 집적도 증가와 간섭 저감을 위한, 메타재질 0차 공진형 전기장 분포를 갖는 소형 mimo 안테나와 그의 다중 배치 구조
Temga et al. 28GHz-band 2x2 patch antenna module vertically integrated with a compact 2-D BFN in broadside coupled stripline structure
EP4046240A1 (en) Mitigating beam squint in multi-beam forming networks
Karmokar et al. Fixed-frequency leaky-wave antenna for simultaneous forward and backward scanning
YE et al. Multibeam antenna based on butler matrix for 3G/LTE/5G/B5G base station applications
TW201526388A (zh) 雙指向性多輸入多輸出天線單元及其陣列

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018848217

Country of ref document: EP

Effective date: 20190516

NENP Non-entry into the national phase

Ref country code: DE