JP2008054146A - アレーアンテナ - Google Patents

アレーアンテナ Download PDF

Info

Publication number
JP2008054146A
JP2008054146A JP2006229955A JP2006229955A JP2008054146A JP 2008054146 A JP2008054146 A JP 2008054146A JP 2006229955 A JP2006229955 A JP 2006229955A JP 2006229955 A JP2006229955 A JP 2006229955A JP 2008054146 A JP2008054146 A JP 2008054146A
Authority
JP
Japan
Prior art keywords
array antenna
stub
unit pattern
strip line
island
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006229955A
Other languages
English (en)
Inventor
Shinichiro Matsuzawa
晋一郎 松沢
Yoshitoku Inoue
良徳 井上
Kazuo Sato
和夫 佐藤
Takeshi Nomura
壮史 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2006229955A priority Critical patent/JP2008054146A/ja
Publication of JP2008054146A publication Critical patent/JP2008054146A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

【課題】1GHz以上の高い周波数帯域においても、電磁波ビームの走査制御または形状制御が容易で、高利得が得られ易い小形のアレーアンテナを実現すること。
【解決手段】第1グランド領域(0≦y≦a)の接地導体g1は、スリットs1や島部i1を有しており、これらの島部i1は、スリットs1が奏するカップリング作用によって、高周波的には接地導体g1と一体になるように構成されている。ストリップ線路展開領域(a<y≦b)には、主線路11とスタブ12から成るストリップ線路14が配置されている。スタブ12の端部は、y=a,bの各近傍でそれぞれ島部i1,i2に接続されており、この接続によって、x座標が一致する各島部(i1とi2)は、それぞれ何れも所望の同電位に可変制御することができる。この直流電位によって生成される電界により、ギャップG1の上下近傍に配置される液晶分子が所望の向きに配向制御される。
【選択図】図1

Description

本発明は、平面状の導体から成る同一または類似の単位パターンを誘電体基板の表側に所定の方向に複数配列することによってストリップ線路が形成されたコプレーナ線路構造のアレーアンテナ(漏れ波アンテナ)に関し、特に、アンテナの指向性を制御可能としたものに関する。
この発明は、ミリ波帯域又はマイクロ波帯域の電磁波を送信または受信するレーダや通信機器などに有益であり、アンテナの小型化または配設空間の省スペース化に大いに有用なものである。
誘電体基板上にCRLH(Composite Right and Left Handed )伝送線路を備えた従来のストリップアレーアンテナ(漏れ波アンテナ)の構成例を図20に例示する。このCRLH線路には、伝送線路(X軸方向の主線路)を周期的に分断するギャップや、その伝送線路から枝分かれしたスタブなどが具備されている。このアンテナでは、ギャップが供するキャパシタンスや、スタブが供するインダクタンスの作用により、ある周波数帯において、伝送される電磁波の群速度の向きと位相速度の向きを相互に反対の向きとすることができる。これにより、伝送される電磁波の周波数を変化させることができるので、主線路上で電磁波が伝播する向きとは反対向きの図中のz軸の正の向きからx軸の負の向きの方に傾斜したθ<0なる角度領域に対しても電磁波を放射することができる。その結果、放射ビームの方向を変化させる場合には、その放射ビームの走査範囲を広くとることができる。この様な、位相速度と群速度の向きが反対となる原理については、例えば下記の非特許文献1などに詳しい開示がある。
また、下記の非特許文献2には、給電点から入力する電磁波の周波数を一定値に固定したまま、所定の電子制御に基づいて放射ビームの放射角を可変制御する制御方式が開示されている。この放射角の制御方式では、例えば図20などの様な配線パターンの個々のギャップやスタブに対して、それぞれバラクタダイオードを接近させて配置し、各バラクタダイオードの容量を可変制御することによって放射ビームの放射角を可変制御している。指向性の制御は、各ストリップ線路に供給する電力の位相を制御することで行うことができる。即ち、誘電体基板の表面に垂直な方向を中心(角度基準)として伝送方向に沿った、給電点側寄り又は終端点側寄り等の指向性(即ち、図20の角度θに関する指向性)は、各単位パターンに給電される電力の位相に基づいて変化する。
また、下記の特許文献1には、中央にビアのある金属パッチを誘電体基板上に周期的に配置したEBG構造(Electrical Band Gap 構造)の反射体を利用したビーム走査アンテナ(図21−A,−B)が提案されている。このビーム走査アンテナは、反射体が有する各金属パッチ間のキャパシタンスを変化させることによって、所定の方向からその反射体に入射した電磁波の反射波の進行方向、すなわち、反射の指向性を可変制御するもので、各金属パッチ間のキャパシタンスは、金属パッチが貼り付けられた可動板を水平方向に動かすことによって可変制御される。
なお、通常、電磁波センシングや無線通信などの分野では、放射電磁波の周波数を変化させることなく、アンテナの放射ビームの指向性が制御可能であることが望ましい。
伊藤龍男、他2名、’CHARACTERISTICS AND APPLICATIONS OF PLANAR NEGATIVE REFRACTIVE INDEX MEDIA’,MWE2003,WS02−03 伊藤龍男、他2名、’Electronically-Controlled Metamaterial-Based Transmission Line as a Continuous-Scanning Leaky-Wave Antenna’,2004 IEEE MTT-S Digest TU1D-4. G.V.ELEFTHERIADES 、外1名、'Experimental verification of backward-wave radiation from a negative reflective index metamaterial',JOURNAL OF PHYSICS,vol 92,No.10,pp.5930-5935. 米国特許:US6,552,696B1
しかしながら、非特許文献1及び非特許文献3に記載されている従来のアレーアンテナにおいては、給電電力の周波数を大きく変化させない限り、上記の様なθ<0なる角度領域をも含んだ広範囲に渡ってビームの指向性を任意に持たせることは困難であり、このため、この従来のアンテナでは、一定の周波数の電磁波の放射ビームの放射角を任意に可変制御することはできない。このため、この方式を採用したアンテナは、少なくとも通信やセンシングなどの用途には不利または不向きである。
また、非特許文献2に記載されている従来のアレーアンテナには、可変容量としてバラクタダイオードが用いられているが、一般にバラクタダイオードは伝送損失が大きいため、数GHz以上の周波数帯域においては、バラクタダイオードを所望の可変容量として動作させることは難しい。このため、数GHz以上の周波数帯域の電磁波を取り扱うアレーアンテナにこの従来技術を用いることはできない。
また、放射角が可変制御可能な1GHz以下の周波数帯域などにおいても、一般にバラクタダイオードでは標準容量(所定の基準容量)に対する容量変位の比率(変化率)を十分大きく確保することは必ずしも容易ではないので、放射角の変動範囲を大きく確保することも必ずしも容易とは言えない。
また、特許文献1に記載されている従来のビーム走査アンテナ(図21−A,−B)には、以下の様な生産性や制御性や、或いは小型化や薄板化など係わる問題がある。
(1)図21−A,−Bに示す様に、EBG構造の反射体を用いてビーム走査アンテナを構成するので、この反射体に対して電磁波を照射するための別の給電用アンテナを別途用意する必要がある。また、電磁波ビームの放射において上記の反射体が介在するため、高い反射効率を実現しない限り、所望の放射ビームを高利得で得ることは難しい。
(2)可動板を水平方向に動かすことによって、アンテナの放射ビームの指向性を可変制御することはできるが、各金属パッチには周期的な位置関係に関する強い制約があり、各金属パッチをそれぞれ独立に位置制御することはできない。このため、この従来のビーム走査アンテナに対して、ビーム幅やビームパターンを可変制御するなどのビーム成形技法を導入することができない。
また、目的のアンテナを構成する誘電体基板の誘電率または透磁率を、能動的に制御された電界または磁界によって可変制御して、これによってアレーアンテナの放射ビームの放射角を所望の角度に可変制御する制御方式を考えることもできるが、誘電率が変化する例えば強誘電体やフェライトなどの材料をアンテナ基板に用いた場合には、アンテナ中を伝播する電磁波の電力損失が非常に大きくなるので、アンテナの利得を大きく確保することは困難になる。
本発明は、上記の課題を解決するために成されたものであり、その目的は、1GHz以上の高い周波数帯域においても、電磁波ビームの走査制御または形状制御が容易で、高利得が得られ易い小形のアレーアンテナを実現することである。
上記の課題を解決するためには、以下の手段が有効である。
即ち、本発明の第1の手段は、平面状の導体から成る同一または類似の単位パターンを誘電体基板の表側に所定の方向に複数配列することによって形成されたストリップ線路と、その表側でストリップ線路の両脇にそれぞれストリップ線路と距離を隔てて形成された平面状の接地導体とを有するコプレーナ線路構造のアレーアンテナにおいて、与えられた電界によって誘電率が変化する誘電率可変部材と、この誘電率可変部材に対して電界を与える電界設定手段とを設け、上記の単位パターンに、上記の所定の方向に延びる伝送線路と、この伝送線路を途中で分断するギャップと、この伝送線路から枝分かれするスタブとを設け、上記の誘電率可変部材を、上記のギャップまたはスタブに対して接近させて誘電体基板の表側または裏側の少なくとも一方に配置し、上記の接地導体を、その本体部分並びに、キャパシタ、またはカップリング作用を奏するスリットによって高周波に対してこの本体部分にショートされた島部から構成し、スタブの端部を対応する島部に接続することによってそれぞれ接地し、上記の電界設定手段でこの島部の直流電位を可変制御することによって上記の電界を可変制御することである。
ただし、上記の誘電体基板の厚さは任意でよく、よって、上記の誘電体基板としては、板状の誘電体基板を使用してもよいし、例えばBST薄膜などの様に薄いフィルム状の誘電体基板等を使用してもよい。
また、本願発明のアレーアンテナは、ストリップ線路(主線路)が1本のラインアンテナであっても、複数本のストリップ線路から成る平面アンテナであっても良い。言い換えれば、上記の単位パターンは、1列に配列しても良いし、複数列に渡ってそれぞれ配列しても良い。
また、上記の誘電率可変部材は、片面に配設してもよいし、基板の上下両面に配設してもよい。また、上記の誘電率可変部材は、ギャップの直下または直上、或いはスタブの直下または直上などに局所的に配設してもよいし、また、全面的に配設してもよい。また、誘電率可変部材を基板の上下両面に配設する場合、その配設位置、形状、厚さなどは必ずしも上下対称にする必要はない。したがって、例えば、下側(裏面側)には、誘電率可変部材を広域に渡って連続的に配置し、上側(表側)ではギャップの直上またはスタブの直上などに局所的に分散配置する様にしてもよい。
また、1つの単位パターンに複数のスタブを具備する場合には、必ずしもそれらのスタブの端部を各々全て上記の島部に接続する必要はない。したがって、上記の島部は、高周波に対してその端部を接地するスタブの数だけ設ければよい。
また、上記の電界の可変制御は、電界強度を連続的に変化させ得るものであっても、段階的に変化させるものであってもよく、直流電位の単なるon/off制御によるものであっても良い。したがって、例えば、上記の電界設定手段で与える電界の強さの加減によって、上記の誘電率可変部材の各方向の誘電率は、自在に可変制御することもできる。
なお、上記のカップリング作用は高周波に対する作用であり、この時、上記のスリットは容量として作用する。また、カップリング作用を奏するスリットの形状は任意でよく、例えばメアンダ状に形成してもよい。
また、本発明の第2の手段は、上記の第1の手段において、上記の島部の上記端部との接続部近傍に、そのスタブと同方向のスリットを設けることである。ただし、このスリットの方向は、必ずしもスタブの方向と厳密に一致している必要はなく、また、このスリットは曲がっていてもよい。
また、本発明の第3の手段は、上記の第1の手段において、上記の島部のストリップ線路に面する側に湾状の凹部を形成し、上記のスタブの端部をこの凹部の奥部に接続することである。
また、本発明の第4の手段は、上記の第1乃至第3の何れか1つの手段において、上記の誘電率可変部材を液晶または強誘電体から構成することである。
また、本発明の第5の手段は、上記の第1乃至第4の何れか1つの手段において、上記の電界設定手段を各単位パターン毎にそれぞれ個別に設け、これによって、上記の直流電位の可変制御を単位パターン毎にそれぞれ独立に実行することである。
また、本発明の第6の手段は、平面状の導体から成る同一または類似の単位パターンを誘電体基板の表側に所定の方向に複数配列することによって形成されたストリップ線路と、その表側でストリップ線路の脇にこのストリップ線路と距離を隔てて形成された平面状の接地導体とを有するコプレーナ線路構造のアレーアンテナにおいて、上記の単位パターンに、所定の方向に延びる伝送線路と、その伝送線路を途中で分断するギャップと、その伝送線路から枝分かれするスタブとを設け、このスタブの端部を上記の接地導体にそれぞれ接続し、この接地導体のスタブ端部との接続部近傍において、スタブと同方向のスリットを設けることである。ただし、このスリットの方向は、必ずしもスタブの方向と厳密に一致している必要はなく、また、このスリットは曲がっていてもよい。
また、本発明の第7の手段は、平面状の導体から成る同一または類似の単位パターンを誘電体基板の表側に所定の方向に複数配列することによって形成されたストリップ線路と、その表側でストリップ線路の脇にこのストリップ線路と距離を隔てて形成された平面状の接地導体とを有するコプレーナ線路構造のアレーアンテナにおいて、上記の単位パターンに、所定の方向に延びる伝送線路と、この伝送線路を途中で分断するギャップと、この伝送線路から枝分かれするスタブとを設け、上記の接地導体のストリップ線路に面する側に湾状の凹部を設け、上記のスタブの端部を、対応する凹部の奥部にそれぞれ接続することである。
また、本発明の第8の手段は、上記の第6または第7の手段において、誘電体、磁性体、金属導体、またはそれらの複合体のうち少なくとも一つから構成され、ストリップ線路からの高さhが変動可能な可動部材と、この可動部材に対して機械的に作用してこの可動部材の高さhを変化させるアクチュエータとを設け、この可動部材を、ストリップ線路または単位パターンに対して接近させて、ストリップ線路または単位パターンを覆う様に配設することである。
ただし、上記のアクチュエータは、例えば圧電素子(ピエゾ素子)などを用いて構成することが可能であり、この場合には、電気的に上記の高さhを制御することができる。しかしながら、上記の高さhは、機械的な駆動制御機構を用いて可変制御しても良い。
また、誘電体と金属導体との複合体、若しくは磁性体と金属導体との複合体で、上記の可動部材を構成した場合には、その誘電体や磁性体の表面に金属導体を設けても良く、或いはその誘電体や磁性体の内部に金属導体を設けても良い。
ただし、ストリップ線路全体または単位パターン全体を覆う様な広範に渡って連なる金属導体を配置すると、当該アレーアンテナからの電磁波の放射が阻止されてしまうので、板状または網状に広く連なった金属導体を上記の可動部材の構成に使用することはない。これらの金属導体を用いる場合には、それらの金属導体は、例えば誘電体基板の中に局所的に含めるなどして、上記の可動部材の少なくとも一部として局所的に分散配置する。
また、上記の可動部材は、必ずしも上記の単位パターンの全体を覆う様に配設しなくても良い。例えば、上記の可動部材によって、ギャップだけを上から覆う様にしても良いし、スタブだけを上から覆う様にしても良いし、それらの両方だけを上から覆う様にしても良い。ギャップの近傍に配設される可動部材の部分がそのギャップのキャパシタンスを支配的に変化させ、スタブの近傍に配設される部分がそのスタブのインダクタンスを支配的に変化させる。
また、本発明の第9の手段は、上記の第8の手段において、上記のアクチュエータと可動部材を、上記の単位パターン毎にそれぞれ個別に設け、上記の高さhの可変制御を、単位パターン毎にそれぞれ独立に実行することである。
ただし、ここで、上記の可動部材は、必ずしも各単位パターン毎にそれぞれ同一形状である必要はない。
また、本発明の第10の手段は、上記の第1乃至第9の何れか1つの手段において、導体から成る反射板を、誘電体基板の表側または裏側の何れか一方に、誘電体基板から隔てて、誘電体基板に対して平行に設けることである。
ただし、誘電体基板と反射板との距離は任意でよいが、この距離は取り扱う高周波の波長の約1/4かそれ以下にすることが望ましい。
以上の本発明の手段により、前記の課題を効果的、或いは合理的に解決することができる。
以上の本発明の手段によって得られる効果は以下の通りである。
本発明の第1の手段においては、上記の島部は接地導体の一部を構成しており、この部分は、高周波に対しては上記のカップリング作用によってその接地導体の他の部位とは一体化されるが、直流的にはその接地導体の他の部位とは、上記のスリットによって分離される。このため、ストリップ線路を構成する各単位パターンの直流電位は、島部を除いた両脇の接地導体の各部の直流電位(即ちグランド電位)とは独立に可変制御することができる。
したがって、本発明の第1の手段によれば、電界設定手段で各単位パターンの直流電位を可変制御することによって、上記の誘電率可変部材に与える電界を可変制御することができ、これによって、ストリップ線路のギャップなどの容量やスタブのインダクタンスなどが変化する。このため、本発明の第1の手段によれば、この可変作用に基づいて、アンテナのθ方向の指向性を可変制御することができる。
また、本発明の第1の手段によれば、誘電体基板の片面だけに線路を配線(プリント)すればよいので、所望の回路(アンテナ)を非常に簡単に構成することができる。また、電界設定手段を構成するバイアス線路の配線の取り回しなども極めて簡単になる。したがって、これらの作用により、本発明の第1の手段によれば、他のIC回路などとの共平面化(モノリシック構造化)等も容易となる。
このため、本発明のアレーアンテナは、例えば、小形の送受信回路を単層構造に構成する際などに有用となり、例えば、シングルチップのMMIC高周波ユニットなどの小形の送受信回路等を開発する際などには、本発明は極めて優れた効果を発揮する。
また、本発明の第2または第3の手段によれば、スタブと島部との整合条件が改善されるため、放射ビームの走査範囲の中に死角が生じ難くなり、これによって、所定の走査範囲内で途切れなく連続的に所望の走査制御を行うことが可能となる。
また、本発明の第4の手段によれば、上記の誘電率可変部材が示す誘電率の可変範囲をより広く確保することができるので、放射ビームの走査角の範囲をより大きく確保することができる。また、本発明の第4の手段によれば、放射ビームの形状を所望の形状に制御する場合にも、それらの制御性(自由度)をより高く確保することができる。
また、本発明の第5の手段によれば、上記のキャパシタンスやインダクタンスを各単位パターン毎に制御することができるので、アンテナのビーム幅やビーム形状をも自在に可変制御することができる。
例えば、上記のキャパシタンスやインダクタンスを各単位パターン毎に制御することによって、アンテナの有効長を可変制御することができるので、これによって、アンテナのビーム幅を可変制御することができる。この有効長は、当該アンテナを構成する単位パターンの配列の全長の内、実際にアンテナとして実質的に有効に作用する部分の長さのことであり、この長さは各単位パターンの各放射量に基づいて判定することができる。より具体的には、これらのアンテナの有効長は、所定の周波数帯に対して動作しにくい単位パターンの並びをアンテナの終端側に設けてそこにバンドギャップを形成することによって可変制御することができ、所定の周波数帯に対して動作しにくい上記の単位パターンの並びの長さ(単位パターンの長さ×単位パターンの個数)が長い場合ほど、アンテナの有効長を短く設定することができる。
また、個々の単位パターン毎にそれらの位相を可変制御することによって、個々の単位パターン毎にそれらの指向性を制御すれば、アレーアンテナのビーム形状にヌルを形成することができる。また、例えばテーラー分布などの様な適当な放射パターンを採用すれば、上記のキャパシタンスやインダクタンスを各単位パターン毎に制御することによって、サイドローブの小さなビーム形状を実現することも可能となる。
また、これらの可変制御を任意に組み合わせることによって、以上で述べた放射ビームの指向性の可変機能や放射ビームの形状の可変機能など各種の所望の機能を何れも任意に組み合わせて同時に実現することができる。
また、本発明の第6または第7の手段によれば、上記のコプレーナ線路構造のアレーアンテナにおいて、スタブと接地導体との整合条件が改善されるため、放射ビームの走査範囲の中に死角が生じ難くなり、これによって、所定の走査範囲内で途切れなく連続的に所望の走査制御を行うことが可能となる。
即ち、この整合条件の改善に係わる作用・効果は、先の本発明の第2または第3の手段の作用・効果と互いに同様に得られるものである。
また、本発明の第8の手段によれば、上記の可動部材を基板に対して垂直に機械的に動かすことにより、ギャップやスタブの近傍の等価誘電率を変化させたり、ギャップが供するキャパシタやスタブが供するインダクタの電気長を変化させることができる。即ち、上記の高さhを可変制御することにより、ギャップのキャパシタンスやスタブのインダクタンスを変化させることができるため、アレーアンテナから放射される電磁波の強度や位相分布などを自在に可変制御することができる。したがって、本発明の第8の手段によれば、上記の高さhを上記のアクチュエータを用いて可変制御することにより、当該アレーアンテナの指向性を可変制御することができる。
また、この時の高さhの変動幅は、1mm未満の十分に小さな長さに留めることができるので、本発明の第8の手段によれば、1GHz以上の高い周波数帯域においても、所定の周波数に対してビーム指向の走査範囲の広い、従来よりも格段に小形のアレーアンテナを実現することができる。これは、個々の可動部材の微小変位に基づいて、放射ビームの指向性が可変制御できるので、アレーアンテナ全体の方位を機械的に変化させて指向性を可変制御する従来方式の場合に比べ、所望のアレーアンテナをよりコンパクトに形成することができるためである。
また、本発明の第9の手段によれば、上記の第5の手段の場合と同様の作用に基づいて、上記のキャパシタンスやインダクタンスを各単位パターン毎に制御することができるので、アンテナのビーム幅やビーム形状をも自在に可変制御することができる。
また、本発明の第10の手段によれば、上記の反射板の電磁波遮断作用によって、アンテナから出力される電磁波が、アンテナの背後に設置される例えばICチップなどの回路に対して悪影響を与えることを防止することができる。したがって、この反射板の厚さは、その透過率が十分に小さくなる程度に厚くすることが望ましい。
また、この反射板によって反射される電磁波は所望の放射ビームの一部として利用することができるので、反射板とストリップ線路との間の距離を最適化することによって、アンテナの放射特性や利得などを改善することも可能となる。
上記の単位パターンは、少なくとも設計や製造の容易性の観点からすれば、同一パターンのものを周期的に配列することが望ましいが、必ずしも同一パターンのものを正確に周期的に配列する必要はない。また、ストリップ線路の構成要素となる上記の単位パターンは、伝送線路やスタブなどの各部の太さや長さなどの寸法を必ずしも揃える必要はなく、また、ギャップなどの間隔なども不揃いでも良い。また、相異なる2つ1組の単位パターンを1周期とする更に大きな単位パターンを考えてアレーアンテナを構成してもよいし、また、1つの単位パターン中における上記のギャップの数は任意でよい。また、1つの単位パターン中における上記のスタブの数も任意でよい。更に、給電点または終端点に、例えば半周期分などの1周期に満たない単位パターンを付加する様な構成を採用してもよい。
また、上記のスタブはストリップ線路の片側だけにあっても、両側にあっても良く、或いは、進行方向に沿って設ける側を交互に反転しても良い。また、通常、上記のスタブはストリップ線路に対して直角に設けられるが、その角度は一般に任意で良い。
また、上記のギャップを構成するストリップ線路の対峙部分は、そのキャパシタンスを大きくするために、伝送方向に対して垂直な方向の幅を広く構成しても良いし、また、このギャップは、例えばストリップ線路のギャップの対峙部の双方を櫛形に形成して互いに咬合させるなどして構成されるメアンダ状に形成してもよい。また、メアンダ状(蛇行形状)の配線パターンでスタブを形成してもよい。
また、接地導体の島部と本体部分の間の高周波に係わる結合作用を強くするためには、コンデンサをその間に挿入して用いたり、或いはその間にメアンダ状のスリットを形成したりしてもよい。また、そのスリットのキャパシタンスを大きくするために、ストリップ線路の導体の厚みを厚くしてもよい。これらの実施形態は、用いる高周波の周波数や、所望のアンテナの小形化のレベルなどに応じて、任意に最適な形態を選択すればよい。
また、以下に例示する各実施例のアレーアンテナが放射または受信する電磁波の周波数は、概ね10GHz〜300GHzの範囲(ミリ波帯及び準ミリ波帯)において概ね略一定に固定された周波数を想定したものであり、単位パターンをx軸方向に繰り返し形成する際のそのパターン形成周期は、勿論従来と同様にしてその周波数に合わせて決定すれば良い。ただし、本発明によって得ることができる作用・効果は、必ずしも上記の周波数帯域内の電磁波を取り扱うアレーアンテナだけに限定されるものではない。
また、特に上記の誘電率可変部材を液晶で構成する場合には、上記の電界を掛けていない時にその液晶分子を所望の向きに揃えるために、その方向に溝が彫られた板など(例えば配向膜など)を用いて液晶を把持することが望ましい。即ち、この様な液晶分子の配向制御には、例えば液晶ディスプレーなどの分野の技術を適用したり応用したりすることができる。
また、上記の反射板と誘電体基板との距離は任意でよいが、取り扱う高周波の波長の1/4程度にこの距離(光学的な距離)を設定すると、特にアンテナの正面方向にメインローブを向ける際には、利得を高くする上で有利となる。したがって、この光学的な距離は、アンテナの小形化の観点からすると、高周波の波長の約1/4かそれ以下にすることが望ましい。また、反射板を設けると、この反射板でグランド(接地導体)の機能をも兼ね合わせることも可能である。
ただし、反射板と誘電体基板との距離を短くし過ぎると、反射板とコプレーナ線路との間に配置可能な誘電率可変部材の厚さが制限されてしまったり、反射板の高周波に対する接地作用が必要以上に支配的となってしまう恐れが生じ得るため、必ずしも望ましいとは言えない。
また、請求項6または請求項7に記載のアレーアンテナにおいて、コンデンサを用いずに導体の配線パターンだけでストリップ線路や接地導体を形成する場合には、誘電体基板の上の導体積層領域と、導体を積層しない誘電体露出領域とを互いに入れ換えた自己補対形状の配線パターンを考えることができるが、バビネの原理に基づいて、請求項6または請求項7のアレーアンテナの代わりに、この様な双対構造のアレーアンテナを構成してもよい。
以下、本発明を具体的な実施例に基づいて説明する。
ただし、本発明の実施形態は、以下に示す個々の実施例に限定されるものではない。
図1は本実施例1のアレーアンテナ100のコプレーナ線路の平面図である。このコプレーナ線路は、誘電体基板の上に形成するもので、その平面パターンは、y軸座標の値によって以下の3つの領域に大別される。
(1)第1グランド領域(0≦y≦a)
(2)ストリップ線路展開領域(a<y≦b)
(3)第2グランド領域(b<y≦c)
また、x軸方向には、このコプレーナ線路の単位パターンが周期Dで繰り返し計5周期展開されている。接地導体g1は、スリットs1や島部i1を有しており、これらの島部i1は、スリットs1が奏するカップリング作用によって、高周波的には接地導体g1と一体になるように構成されている。また、第2グランド領域の接地導体g2の島部i2も同様に、スリットs2が奏するカップリング作用によって、高周波的には接地導体g2と一体になるように構成されている。
ストリップ線路展開領域の中央には、主線路11がx軸方向に延びており、この主線路11を途中で分断するギャップG1が上記の周期Dで形成されている。このギャップG1は、主線路11のy軸方向に幅広に形成された対峙部11aと対峙部11bとをx軸方向で対峙させることによって形成されている。
また、主線路11の途中からは、スタブ12が枝分かれしてy軸方向に延びている。以下、主線路11(対峙部11a,11bを含む)とスタブ12とを総称してストリップ線路14と言う。スタブ12の端部は、y=aの近傍では島部i1に、y=bの近傍では島部i2に、それぞれ接続されており、この接続によってx座標が一致する各島部の組(i1とi2)は、それぞれ直流的には同電位となる。勿論、これらに直接繋がっている主線路11とスタブ12もその電位となる。そして、この島部i1は、図中のy=0の付近において可変電圧の直流電源からのバイアス線路にそれぞれ接続されており、これによって、その電位は任意に可変制御することができる。
また、各島部(i1,i2)と各スタブ12との接続部付近には、y軸方向に延びるスリットs3が形成されている。ただし、このスリットs3は、各島部(i1,i2)のストリップ線路展開領域に面する側に形成された湾状の凹部の最奥端の中央部分に対して、y軸方向に延長されたスタブ12の端部を接続することによって、この接続後に残った湾部wとして形成したものと解釈することもできる。この様なスリットs3(湾部w)は、スタブ12と島部(i1,i2)との高周波に対する整合条件を改善するために形成するものである。
なお、給電すべき高周波は、図中右端の給電点P1 から給電され、この給電によって、終端点P2 と給電点P1 との間に定在波が生成される。
図2に、このアレーアンテナ100の断面αにおける断面図を示す。誘電体基板15は、比誘電率が約2.2の4フッ化エチレン樹脂から形成されている。この誘電体基板15の上部には、x軸方向に長手方向を有する帯状の、上記のストリップ線路展開領域(a<y≦b)よりも幅広のプール領域15aが形成されており、このプール領域15aには、液晶13aが充填されている。この液晶13aは、ネマティック液晶に光重合成ポリマーを混合したものである。
また、液晶13aと誘電体基板15の各上面は、強誘電体からなる配向膜f1で覆われている。この配向膜f1は、液晶13aを封止するためのものであり、この配向膜f1の下面に形成された配向溝はx軸方向を向いている。また、プール領域15aの各面にも同方向の配向溝が形成されている。
上記のコプレーナ線路(ストリップ線路14、接地導体g1,g2、島部i1,i2)は、この配向膜f1の上面に形成されている。また、コプレーナ線路の上には、液晶13b(誘電率可変部材)を把持するための保持部材17が圧着されている。液晶13bも液晶13aと同材料からなる。そして、液晶13bと保持部材17の各上面は、強誘電体からなる配向膜f2で覆われている。この配向膜f2は、液晶13bを封止するためのものであり、この配向膜f2の下面に形成された配向溝はx軸方向を向いている。また、誘電体基板15と同材料からなる保持部材17の内壁面にも同方向の配向溝が形成されている。これらの配向膜f1,f2の配向溝をx軸方向に向けるのは、液晶13a,13bに電界が掛かっていない時に、それらの液晶分子をx軸方向に配向させるためである。
なお、誘電体基板15の裏面には、膜厚約80μmのアルミからなる反射板16が蒸着されている。また、この反射板16からのz軸方向におけるコプレーナ線路までの距離τは、4mmとした。また、y軸方向における主線路11と接地導体g1との距離δは、0.6mmである。
図3に、アレーアンテナ100の放射動作に係わるシミュレーション結果(放射特性)を示す。ただし、本シミュレーションでは、上記の反射板16の設置を省略し、更に誘電体基板15の厚さを保持部材17の厚さと略同じと仮定して、当該アレーアンテナの放射量の計算を行った。また、その他のシミュレーション条件については、以下の通りとした。
(1)高周波の周波数 : 13.5GHz
(2)周期Dの単位パターンのx軸方向における繰り返し回数 : 5
(3)バイアス電圧(全単位パターン共通)
(a)0V(比誘電率=3.0に相当)
(b)100V(比誘電率=3.6に相当)
このシミュレーション結果から、直流電源からのバイアス電圧を0V〜100Vに可変制御することによって、放射ビームの方位θを+14°から−11°までの約25°の範囲に渡って比較的広範に走査できることが分かる。
これは、ギャップG1付近に位置する液晶分子の方向(電気双極子モーメントの方向)が、0Vからのバイアス電圧の上昇に伴い、生成される電界の作用や液晶分子同士の隣接作用に従って、x軸方向からy軸方向に変わるためである。この配向転換現象は、バイアス電圧を上昇させた際に、接地導体g1,g2のストリップ線路展開領域側に面する各辺と、対峙部11a,11bのy軸方向に突き出た各端部との間に、電界が集中し易くなるために起るものである。
図4には、図2のアレーアンテナ100において、反射板16を省略せず、距離τを4mm(=1/4波長)とした時のアレーアンテナ100の放射特性(シミュレーション結果)を示す。ここでは、反射板16の上面におけるる反射率を1.0と仮定し、透過率を0.0と仮定した。また、その他のシミュレーション条件については、以下の通りとした。
(1)高周波の周波数 : 13.5GHz
(2)周期Dの単位パターンのx軸方向における繰り返し回数 : 5
(3)バイアス電圧(全単位パターン共通)
(c)0V(比誘電率=3.0に相当)
このシミュレーション結果より、反射板16を設けることによって、放射ビームを殆ど基板の上方向のみに放射させることができ、裏面側への放射を確実に低減できることが分かる。また、表側への放射についても、若干サイドローブが形成されるものの、少なくともメインローブについては、確実に利得を向上できることが分かる。なお、ビームの走査角度については、反射板の有無による差はほとんどないことを確認している。
図5は、本実施例2のアレーアンテナ110のコプレーナ線路の平面図である。ここでは、図2の断面構成に対して、上側の液晶13bやそれを保持するための保持部材17や配向膜f2の具備を省略することによって、各コンデンサCの配設を可能とした。
ここでは、スリットs1やスリットs2の各カップリング作用を補うために、それぞれコンデンサCが配設されており、これによって、高周波に対する島部i1と接地導体g1とのショート状態が確保される。スリットs2について(即ち、島部i2と接地導体g2について)も同様である。また、各島部i1,i2が何れも同電位となる様に、1つの直流電源から給電した。
図6に、このアレーアンテナ110の放射特性(シミュレーション結果)を示す。ただし、このシミュレーションでは、図2では誘電体基板15の裏面に設けられていた反射板16がないことを仮定した。また、フッ化エチレン樹脂から形成された誘電体基板の比誘電率を3.0、厚さを0.5mmとし、給電する高周波の周波数を14.0GHzと仮定した。
バイアス電圧を0Vから100Vまで変化させることによって、液晶の誘電率を3.0から3.8まで変化させると、これによって、ビームを約25°Backward側からForward 側に走査できることが分かる。また、本グラフに示す様に、反射板がない場合には、基板の上下両方に略対称形に放射ビームが放射されるが、先の実施例1でも示した様に、誘電体基板15の裏面に反射板をおくことにより、片側方向に放射させることができる。
なお、本実施例2では、単位パターンに印加する直流電位(バイアス電圧)を全単位パターンの間で共通の値としたが、これらの直流電位は、それぞれ独立に可変制御してもよい。上記の可変制御を各単位パターン毎にそれぞれ独立に実行することによって、例えば以下の作用・効果などを得ることができる。
(1)アンテナのビーム幅を自在に変更する
(2)不要なサイドローブの放射量を抑制する
(3)所望の向きにヌルを形成する
以下の実施例3〜実施例5では、これらの作用・効果が得られる事例について、具体的に開示する。
本実施例3では、アンテナのビーム幅を自在に可変制御する事例について具体的に開示する。図7に本実施例3のアレーアンテナ120の平面図を示す。例えば、この様にしてスイッチや電圧可変の直流電源を用いて、個々のギャップG1近傍の誘電率可変部材(図2の液晶13aに相当)のx軸方向とy軸方向の各誘電率をそれぞれ独立に変化させると、これによって、一部の単位パターンを所定の周波数に対して概ね非動作の状態に制御することができる。本図7の例では、終端点P2 側の4つの単位パターンが非動作状態となる。そして、この場合、それらの非動作状態の単位パターンによって、当該アレーアンテナの終端点側に、即ち給電点とは反対の側に、バンドギャップを形成することができる。したがって、終端点側にバンドギャップを生成するこの様な制御によれば、当該アレーアンテナの有効長を可変制御することができる。その際、アレーアンテナの有効長が短い場合ほど、当該アレーアンテナのビーム幅が広くなるので、アンテナのビーム幅を自在に可変制御することが可能となる。ただし、上記の有効長とは、当該アンテナを構成する単位パターンの配列の全長の内、実際にアンテナとして実質的に有効に作用する部分の長さのことであり、この長さは各単位パターンの各放射量に基づいて判定することができる。
図8に、このアンテナ長可変制御時のアレーアンテナ120の放射特性を模式的に例示する。ただし、このシミュレーションでは、単位パターンのx軸方向における繰り返し回数を8と仮定した。この時、スイッチ操作により、給電点に近い4周期の単位パターンの各バイアス電圧を0Vに設定し、終端点側の残りの4周期の単位パターンの各バイアス電圧を200Vに設定すると、図8の一点鎖線(4個)に示す様なビーム形状が得られる。また、8周期の全ての単位パターンの各バイアス電圧を0Vに設定すると、図8の実線(8個)に示す様なビーム形状が得られる。
また、本例では、給電点側に纏めて並べる動作状態の単位パターンの各島部のバイアス電圧を0Vとしているが、この電圧を0V〜100Vの間で可変制御することにより、メインローブの方位を可変制御(走査制御)することもできる。
本実施例4では、不要なサイドローブの放射量を抑制する事例について具体的に開示する。電圧可変の直流電源を用いて、単位パターンに印加するバイアス電圧を各単位パターン毎にそれぞれ適当に設定すれば、これによって、サイドローブレベルを抑制できる場合がある。即ち、個々のギャップG1近傍の誘電率可変部材(液晶13a,液晶13b)の誘電率を変化させて、上記の単位パターンの各放射量の分布を、例えば周知のテイラー分布などの様なサイドローブ抑制作用を示す適当な分布に制御すると、その結果、当該アレーアンテナのサイドローブの放射量が小さくなる。
本実施例4では、電圧可変の直流電源を用いて、単位パターンの島部に印加するバイアス電圧を各単位パターン毎にそれぞれ適当に設定可能とするアンテナの構成例を以下に2例例示する。
図9は、本実施例4のアレーアンテナ130の平面図である。この例では5周期単位パターンが配列されており、島部i1と接地導体g1とを高周波的にショートさせるコンデンサCが各スリットs1毎にそれぞれ2つずつ配設されている。また、電圧が可変制御可能な各直流電源のアース側は、それぞれ対応する接地導体g1に接続されている。この様な構成に基づいて、各単位パターンの各島部i1,i2のバイアス電圧を変化させることにより、アンテナのビーム方向やビームの形(ビーム幅、サイドローブレベル、ヌルの角度)を変化させることができる。
図10は、本実施例4の他のアレーアンテナ140の平面図である。例えばこの様に、各島部i1,i2をそれぞれ大面積化すると、各島部自身がそれぞれ接地導体と概ね同様に作用するので、仮想的にショートした場合と等価の効果が得られ、これによって、コンデンサの使用個数を効果的に削減できる場合もある。
本実施例5では、所望の向きにヌルを形成する事例について具体的に開示する。
可変制御を各単位パターン毎にそれぞれ独立に実行すれば、単位パターンの各指向性を相異なる複数の向きに制御することによって、それらの向きから外れたビーム間の方位にヌルを形成することができ、これによって、任意の方向からの信号の受信を低減させることができる。例えば、アンテナの正面方向にヌルを形成したい場合には、半数の単位パターンのビームの向きを後方波(Backward波)の側(即ち、左手系のビームの向き)に向け、残りの半数の単位パターンのビームの向きを前方波(Forward 波)の側(即ち、右手系のビームの向き)に向ければ良い。これにより、正面方向からの信号の受信を低減させることができる。
本実施例5では、単位パターンの島部に印加するバイアス電圧を各単位パターン毎にそれぞれ適当に設定して所望のヌルを形成する際のアンテナの制御例を以下に例示する。
図11に図示する本実施例5のアレーアンテナ120′は、先の実施例3のアレーアンテナ120と同等のものであり、(a)に示した状態では、全てのスイッチをon状態にすることによって、全ての単位パターンの各島部i1,i2の電位は、50Vに設定されている。また、(b)に示した状態では、終端点P2 寄りの4つの単位パターンの各島部i1,i2の電位が0Vに、残りの給電点P1 寄りの4つの単位パターンの各島部i1,i2の電位が50Vに設定されている。この時、各島部がそれぞれ50Vの電位を有する場合には、その単位パターンのギャップG1近傍にある液晶のy軸方向の比誘電率は、3.4となる。
この2つの場合について、xz平面内における当該アンテナの指向性をシミュレーションした結果を図12に示す。(b)の場合には、給電側の4つの単位パターンからの放射ビームはForward 側に向き、終端側の4つの単位パターンからの放射ビームはBackward側に向くため、ピーク利得はほとんど変化せずに、アンテナ正面方向の0度方向にヌルを向けることができている。そして、このヌルの位置は液晶にかける電圧を変化させることにより制御可能である。
なお、例えば、単位パターンの各指向性を相異なる2つの向きに組分けして制御する場合、一方の向きに放射させる単位パターンの組に属する各単位パターンは、必ずしも単位パターンの配列上に連続に一纏まりに配置する必要はない。即ち、相異なる指向性を与える単位パターンを交互に配置しても良いし、一方の向きに放射させる単位パターンの組を配列上の連続的な1組にまとめても良い。また、上記の指向性の相異なる複数の向きは、3方向でも4方向以上でも良い。
上記の実施例1などにおけるスリットs3の設置は、略同様にして、液晶や電界設定手段を持たない請求項6や請求項7に記載のアレーアンテナなどにおいても有用である。以下、その様なスリットを、先の実施例のアレーアンテナのスリットs3と区別するためにスリットs3′と呼ぶことにする。
図13−Aに、本実施例6のアレーアンテナ200の平面図を示す。また、その比較例として、従来のアレーアンテナ900の平面図を図13−Bに示す。本実施例6のアレーアンテナ200では、誘電体基板15の上面にはストリップ線路14が給電点P1 と終端点P2 との間にパターン形成されており、その両脇にはそれぞれ接地導体g1,g2が平行に配設されている。各接地導体g1,g2のスタブ12との各接続部には、その両脇に上記のスリットs3′がスタブ12と同じ方向に形成されている。
図14−A,−Bに、それぞれアレーアンテナ200と、アレーアンテナ900の放射特性を示す。この放射特性は、給電する高周波の周波数を14.0GHzから15.5GHzの間で、0.5GHzずつ変化させて測定したものである。このグラフより、スリットs3′を有する本実施例6のアレーアンテナ200の方が、広い帯域に渡って連続的により高い利得を示すことが分かる。また、サイドローブが非常に形成され難い点でも、本実施例6のアレーアンテナ200は、従来のアレーアンテナ900よりも優れていると言うことができる。
図15に本実施例7のアレーアンテナ210の斜視図及び正面図を示す。誘電体板1は、4フッ化エチレン樹脂(:比誘電率2.2)から形成された厚さ約0.13mmの板状材料から成る。この誘電体板1の四隅は、周知のピエゾ素子から成るアクチュエータ2を介して、本体10に接続されている。ただし、この本体10は、先の実施例6の図13−Aに示した配線パターンに従って形成されたものである。ここでは比誘電率6.0、厚み0.5mmのフッ化エチレン樹脂からなる誘電体基板を用いた。また、アクチュエータ2は、その表面に電圧を印加することによって、誘電体基板1の法線方向、即ち図中のz軸方向に伸縮動作する。
図15の正面図に示すように、本体10は、誘電体基板15をベースに形成されており、この誘電体基板15の上面にはストリップ線路14が形成されている。また、この誘電体基板15の裏面には金属層から形成された接地導体16が積層されている。
図16に、このアレーアンテナ210の放射特性(シミュレーション結果)を示す。ただし、当該シミュレーションは、反射板16がないことを仮定しておこなった。このように、誘電体板1とアンテナ面の距離を0.2mmから1.0mmまで変化させることにより、約25°のビーム走査が可能となることが分かる。
なお、反射板16を具備すれば、図4に示した効果と同様の効果が得られることを、同様のシミュレーションによって確認している。また、誘電体板1の誘電率を更に高くすることによって、ビームの走査角度はさらに広げることができる。
また、誘電体板1は、各単位パターン対応に分割して、それぞれ各単位パターン毎に各高さhを可変制御する様にしてもよい。この場合には、ピエゾ素子からなるアクチュエータ2を、分割された各誘電体板毎に設ければよい。この様にして、各単位パターン毎に各高さhを可変制御する様にすると、先の実施例3〜5と同様にして、例えば以下の作用・効果などを得ることもできる。
(1)アンテナのビーム幅を自在に変更する
(2)不要なサイドローブの放射量を抑制する
(3)所望の向きにヌルを形成する
〔その他の変形例〕
本発明の実施形態は、上記の形態に限定されるものではなく、その他にも以下に例示される様な変形を行っても良い。この様な変形や応用によっても、本発明の作用に基づいて本発明の効果を得ることができる。
(変形例1)
上記のアレーアンテナ100は、x軸方向に延びる複数の列に並列に配置してもよい。更に、この場合、各列(アレー)の間では接地導体やそれが有する島部などを共有することが可能となる。また、その様な共有関係に基づいて、上記の複数の列(アレー)の間ではバイアス回路(電界設定手段)を共有することも可能となる。以下、その様な実施例について例示する。
図17は、本変形例1のアレーアンテナ150のコプレーナ線路の平面図である。このコプレーナ線路は、アレーアンテナ100と同様に誘電体基板の上に形成するもので、その平面パターンは、y軸座標の値によって以下の5つの領域に大別される。
(1)第1グランド領域(0≦y≦a)
(2)第1ストリップ線路展開領域(a<y≦b)
(3)中央グランド領域(b<y≦c)
(4)第2ストリップ線路展開領域(c<y≦d)
(5)第2グランド領域(d<y≦e)
ここで、アレーアンテナ150の第1及び第2グランド領域は、アレーアンテナ100の第1及び第2グランド領域とそれぞれ同一の構造である。また、アレーアンテナ150の第1及び第2ストリップ線路展開領域は、アレーアンテナ100のストリップ線路展開領域とそれぞれ同一の構造である。
中央グランド領域は、接地導体g3とその島部i3から構成されており、これらは、スリットs4を介してx軸方向に交互に配列されている。各島部i3は略X文字形状であり、島部i3に挟まれた接地導体g3は十字形状である。また、両端の接地導体g3は横向きの凸字形状である。
そして、y=bの近傍では、第1ストリップ線路展開領域のスタブ12の端部が島部i3に接続されており、y=cの近傍では、第2ストリップ線路展開領域のスタブ12の端部が島部i3に接続されている。このため、y軸方向に並ぶ各島部i1,i2,i3は、対応する各スタブ12を介して互いに接続されるので、常時同電位に維持される。
各バイアス回路(電界設定手段)の各バイアス線路は、アレーアンテナ100と同様に、第1グランド領域の対応する各島部i1にそれぞれ接続されている。
高周波の給電は、各ストリップ線路14の図中右端の2つの給電点P1 に対して、勿論同じ周波数で同じ位相で行う。この様なコプレーナ線路の構成に従えば、1列構成のアレーアンテナ100と比べて、yz平面内におけるビーム幅の絞り込み作用をも同時に得ることができる。
(変形例2)
例えば、アレーアンテナ100やアレーアンテナ150の第1グランド領域に設ける島部i1の形状は、スリットs3を有する凸字形状に限定されるものではなく、種種の変形例を考えることができる。図18に、第1グランド領域における島部i1の各種の変形例を例示する。
(a)の例は、島部i1のx軸方向の幅をスタブ12の線路幅と同じレベルにまで細くしたものである。その結果、カップリング作用を奏するスリットs1の形状も折れ曲がりのない真っ直ぐな形状になっている。また、このスリットs1は、y=a近傍においては、スリットs3と類似の機能をも、同時に果たしているものと考えられる。
(b)の例は、アレーアンテナ100の島部i1にスリットs3を設けなかった島部i1の変形例である。この様に、本発明のアレーアンテナの各島部にはスタブ12に平行なスリット(スリットs3)を必ずしも設けなくともよい。
(c)の例は、島部i1を五角形とし、その唯一の鋭角の頂点にスタブ12の端部を接続した変形例である。この島部i1の五角形の部分は、接地導体g1の中に埋もれた配置となっている。また、本例のスリットs1も、y=a近傍において、スリットs3と類似の機能を同時に果たしているものと考えられる。
(d)の例は、(c)の例の五角形の島部をT字形にしたもので、このT字形の部分は、接地導体g1の中に埋もれた配置となっている。また、本例のスリットs1も、y=a近傍において、スリットs3と類似の機能を同時に果たしているものと考えられる。
(e)の例は、島部i1をメアンダ状に形成した変形例である。この様な形状によっても、アレーアンテナ100のスリットs1やスリットs3と同等または類似の作用を得ることができる。
(変形例3)
また、第2グランド領域に設ける島部i2についても、各種の変形例を考えることができる。図19に、第2グランド領域における島部i2の変形例などを例示する。
(a)の例は、接地導体g2に島部i2を設けない例である。ストリップ線路14には必ずしもその両脇にスタブ12を設ける必要はないので、本例では片側にしかスタブ12が設けられていない。この様な場合には、勿論それ(省略されたスタブ)に対応する島部i2も設ける必要はない。
(b)の例は、島部i2のストリップ線路展開領域側に設けるスリットs3の位置をスタブ12との接続部から若干離した変形例である。例えばこの様に、同一の島部i2に設けるスリットs3とスリットs3との間の間隔は、スタブ12の線路幅よりも長くしてもよい。
(c)の例は、島部i2を極めて小さく形成した変形例である。この島部i2は、余りに小さく、そのx軸方向の幅がスタブ12の線路幅と同じであるので、この島部i2は、スタブ12の端部12aと解釈することもできる。
本変形例では、この島部i2と接地導体g2との間のカップリング作用を奏するスリットs2が、y=b近傍においては、同時にスリットs3のと類似の作用をも奏するものと考えることもできる。
(d)の例は、島部i2をストリップ線路展開領域の中に設けた変形例である。ただし、その配置領域に基づいて、この島部i2をスタブ12の端部12aと解釈することもできる。
本変形例では、この島部i2のx軸方向の幅をスタブ12の線路幅よりも十分に長くすることにより、スリットs2のx軸方向のスリット長を十分に確保している。
(e)の例は、島部i2のx軸方向の幅をスリットs2に近付くに連れて徐々に広げた変形例である。この島部i2は、接地導体g2が有する湾状の凹部の奥部中央に配置されており、スリットs2は、この凹部の奥底の底辺と島部i2との隙間から形成されている。また、この凹部の残った領域から湾部wが形成されている。
(f)の例は、(a)の例と同様に、一方のスタブ12とそれに対応する島部i2を省略したものであるが、接地導体g2には、(e)の例と同様の湾部wが形成されている。この湾部wの形成により、電界設定手段によって生成される電界が、ギャップG1に集中し易くなるので、この変形例は、(a)の例よりも格段に有効である。
(g)の例は、丸い曲線を基調にして、(e)の例を更に変形した変形例である。
また、(h)の例は、(f),(e)の例と同様に湾部wを形成した変形例であるが、本例では、スタブ12が主線路11の両側に延びているにも係わらず、第2グランド領域には島部i2が形成されていない。本発明では、図1や図17や図18に示したように、電界設定手段のバイアス線路が接続される側のグランド領域には島部を設ける必要があるが、他方のグランド領域については、その限りではない。本例では、スタブ12の先端に幅広の端部12aが形成されており、この部位が接地導体と類似の機能を代替的に果たしている。
また、(i)の例は、接地導体g2に上記の様な島部や湾部を設けることなく、単純にスタブ12の先端を接地導体g2に接近配置した変形例である。この例は、上記の例(c)や(d)におけるスリットs2の長さを最小化させた変形例と考えることができる。
なお、これらの変形例の各パターン構造は、例えばアレーアンテナ100,110,120,130,140または150の任意の位置に設けてもよいし、図18の変形例(a)〜(e)などと任意に組み合わせて使用してもよい。これらの変形は、実現したいインダクタンスやキャパシタンスの値に応じて、任意に選択することができ、何れの実施形態においても、本発明の手段に基づいて、本発明の作用・効果を獲得し得る。
(変形例4)
また、上記の直流電源は、交流電源としてもよい。例えば図3のシミュレーション結果などからも分かる様に、上記の直流電源の電圧を周期的に変化させれば、その周期に従って放射ビームの走査制御を行うことも可能となる。したがって、各単位パターンに直流電位を印加する上記の直流電源の代わりに、例えば10Hzの交流電源を用いれば、1秒間当り10回の走査動作を実現することができる。
(変形例5)
また、本願発明のアレーアンテナは、スロットアンテナに内蔵する放射源として利用してもよい。言い換えれば、例えばアンテナの利得を調整したりサイドローブレベルを低減させたりするために、本願発明のアレーアンテナの上部に基板に対して平行に、スロット放射用のスロット板を設けるなどしてもよい。
本発明は、無線通信や電磁波センシングに有用であり、例えば、無線通信装置や、車両の事故防止システムやオートクルーズ制御システムなどに用いられる障害物センサや、或いはその他の車両周辺の物体に対する物体探索手段などとして利用することができる。
また、本発明のアレーアンテナは、例えばシングルチップのMMIC高周波ユニットなどの小形の送受信回路を開発する際などには極めて優れた効果を発揮し、更には、例えば、RFIDや非接触で情報をやり取りするICカードなどへの応用も、大いに期待することができる。
実施例1のアレーアンテナ100のコプレーナ線路の平面図 アレーアンテナ100の断面αにおける断面図 反射板16を省略した際のアレーアンテナ100の放射特性を示すグラフ アレーアンテナ100の放射特性を示すグラフ 実施例2のアレーアンテナ110のコプレーナ線路の平面図 アレーアンテナ110(反射板なし)の放射特性を示すグラフ 実施例3のアレーアンテナ120の平面図 アレーアンテナ120の放射特性を示すグラフ 実施例4のアレーアンテナ130の平面図 実施例4のアレーアンテナ140の平面図 実施例5のアレーアンテナ120′の平面図 アレーアンテナ120′の放射特性を示すグラフ 実施例6のアレーアンテナ200の平面図 実施例6の比較例のアレーアンテナ900の平面図 アレーアンテナ200の放射特性を示すグラフ アレーアンテナ900の放射特性を示すグラフ 実施例7のアレーアンテナ210の斜視図及び正面図 アレーアンテナ210の放射特性を示すグラフ 変形例1のアレーアンテナ150のコプレーナ線路の平面図 第1グランド領域における島部i1の変形例を例示する平面図 第2グランド領域における島部i2の変形例を例示する平面図 従来のストリップアレーアンテナの構造と動作を示す斜視図 EBG構造の反射体を持つ従来のビーム走査アンテナの平面図 同ビーム走査アンテナの構造と動作を示す側面図
符号の説明
100 : アレーアンテナ
g1 : 接地導体
i1 : 接地導体g1の島部
s1 : スリット
G1 : ギャップ
11 : 主線路
12 : スタブ
13a: 液晶
15 : 誘電体基板
16 : 反射板
C : コンデンサ

Claims (10)

  1. 平面状の導体から成る同一または類似の単位パターンを誘電体基板の表側に所定の方向に複数配列することによって形成されたストリップ線路と、前記表側で前記ストリップ線路の両脇にそれぞれ前記ストリップ線路と距離を隔てて形成された平面状の接地導体とを有するコプレーナ線路構造のアレーアンテナにおいて、
    与えられた電界によって誘電率が変化する誘電率可変部材と、
    前記誘電率可変部材に対して電界を与える電界設定手段と
    を有し、
    前記単位パターンは、
    前記所定の方向に延びる伝送線路と、
    前記伝送線路を途中で分断するギャップと、
    前記伝送線路から枝分かれするスタブと
    を有し、
    前記誘電率可変部材は、
    前記ギャップまたは前記スタブに対して接近して、前記誘電体基板の表側または裏側の少なくとも一方に配置されており、
    前記接地導体は、
    その本体部分、並びに、
    キャパシタ、またはカップリング作用を奏するスリットによって、高周波に対して前記本体部分にショートされた島部
    から成り、
    前記スタブの端部は、
    対応する前記島部に接続されることによってそれぞれ接地されており、
    前記電界設定手段は、
    前記島部の直流電位を可変制御することによって前記電界を可変制御する
    ことを特徴とするアレーアンテナ。
  2. 前記島部は、
    前記端部との接続部近傍において、前記スタブと同方向のスリットを有する
    ことを特徴とする請求項1に記載のアレーアンテナ。
  3. 前記島部は、
    前記ストリップ線路に面する側に湾状の凹部を有し、
    前記スタブの前記端部は、
    前記凹部の奥部に接続されている
    ことを特徴とする請求項1に記載のアレーアンテナ。
  4. 前記誘電率可変部材は、
    液晶または強誘電体から構成されている
    ことを特徴とする請求項1乃至請求項3の何れか1項に記載のアレーアンテナ。
  5. 前記電界設定手段は、
    前記単位パターン毎にそれぞれ個別に設けられており、
    前記直流電位の可変制御を前記単位パターン毎にそれぞれ独立に実行する
    ことを特徴とする請求項1乃至請求項4の何れか1項に記載のアレーアンテナ。
  6. 平面状の導体から成る同一または類似の単位パターンを誘電体基板の表側に所定の方向に複数配列することによって形成されたストリップ線路と、前記表側で前記ストリップ線路の脇に前記ストリップ線路と距離を隔てて形成された平面状の接地導体とを有するコプレーナ線路構造のアレーアンテナにおいて、
    前記単位パターンは、
    前記所定の方向に延びる伝送線路と、
    前記伝送線路を途中で分断するギャップと、
    前記伝送線路から枝分かれするスタブと
    を有し、
    前記スタブの端部は、
    前記接地導体にそれぞれ接続されており、
    前記接地導体は、
    前記端部との接続部近傍において、前記スタブと同方向のスリットを有する
    ことを特徴とするアレーアンテナ。
  7. 平面状の導体から成る同一または類似の単位パターンを誘電体基板の表側に所定の方向に複数配列することによって形成されたストリップ線路と、前記表側で前記ストリップ線路の脇に前記ストリップ線路と距離を隔てて形成された平面状の接地導体とを有するコプレーナ線路構造のアレーアンテナにおいて、
    前記単位パターンは、
    前記所定の方向に延びる伝送線路と、
    前記伝送線路を途中で分断するギャップと、
    前記伝送線路から枝分かれするスタブと
    を有し、
    前記接地導体は、
    前記ストリップ線路に面する側に湾状の凹部を有し、
    前記スタブの端部は、
    対応する前記凹部の奥部にそれぞれ接続されている
    ことを特徴とするアレーアンテナ。
  8. 誘電体、磁性体、金属導体、またはそれらの複合体のうち少なくとも一つから構成され、前記ストリップ線路からの高さhが変動可能な可動部材と、
    前記可動部材に対して機械的に作用して前記可動部材の前記高さhを変化させるアクチュエータと
    を有し、
    前記可動部材は、
    前記ストリップ線路または前記単位パターンに対して接近して、前記ストリップ線路または前記単位パターンを覆う様に配設されている
    ことを特徴とする請求項6または請求項7に記載のアレーアンテナ。
  9. 前記アクチュエータと前記可動部材は、
    前記単位パターン毎にそれぞれ個別に設けられ、
    前記可変制御は、
    前記単位パターン毎にそれぞれ独立に実行される
    ことを特徴とする請求項8に記載のアレーアンテナ。
  10. 導体から成る反射板が、
    前記誘電体基板の表側または裏側の何れか一方に、
    前記誘電体基板から隔てて、
    前記誘電体基板に対して平行に
    設けられている
    ことを特徴とする請求項1乃至請求項9の何れか1項に記載のアレーアンテナ。
JP2006229955A 2006-08-26 2006-08-26 アレーアンテナ Pending JP2008054146A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229955A JP2008054146A (ja) 2006-08-26 2006-08-26 アレーアンテナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229955A JP2008054146A (ja) 2006-08-26 2006-08-26 アレーアンテナ

Publications (1)

Publication Number Publication Date
JP2008054146A true JP2008054146A (ja) 2008-03-06

Family

ID=39237730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229955A Pending JP2008054146A (ja) 2006-08-26 2006-08-26 アレーアンテナ

Country Status (1)

Country Link
JP (1) JP2008054146A (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041090A (ja) * 2008-07-31 2010-02-18 Denso Corp マイクロストリップアレーアンテナ
JP2010512091A (ja) * 2006-12-04 2010-04-15 韓國電子通信研究院 人工磁気導体を利用した導体付着型無線認識用ダイポール・タグアンテナ及び該ダイポール・タグアンテナを利用した無線認識システム
KR101172812B1 (ko) 2010-06-30 2012-08-09 광주과학기술원 일차원 전자기 밴드갭 구조물 및 상기 구조물을 갖는 평면 안테나
JP2013539949A (ja) * 2010-10-15 2013-10-28 シーレイト リミテッド ライアビリティー カンパニー 表面散乱アンテナ
EP2624360A3 (en) * 2012-02-06 2014-05-14 Yokogawa Electric Corporation Control circuit, impedance adjusting circuit, impedance automatic adjusting circuit, radio transceiver circuit, control method, impedance adjusting method, impedance automatic adjusting method , and radio transceiving method
JP2015181211A (ja) * 2014-03-03 2015-10-15 国立大学法人京都工芸繊維大学 非相反伝送線路装置とその測定方法
JP2016518044A (ja) * 2013-03-26 2016-06-20 サムスン エレクトロニクス カンパニー リミテッド 平面型アンテナ装置及び方法
US9385435B2 (en) 2013-03-15 2016-07-05 The Invention Science Fund I, Llc Surface scattering antenna improvements
US9647345B2 (en) 2013-10-21 2017-05-09 Elwha Llc Antenna system facilitating reduction of interfering signals
US9711852B2 (en) 2014-06-20 2017-07-18 The Invention Science Fund I Llc Modulation patterns for surface scattering antennas
US9825358B2 (en) 2013-12-17 2017-11-21 Elwha Llc System wirelessly transferring power to a target device over a modeled transmission pathway without exceeding a radiation limit for human beings
US9853361B2 (en) 2014-05-02 2017-12-26 The Invention Science Fund I Llc Surface scattering antennas with lumped elements
US9882288B2 (en) 2014-05-02 2018-01-30 The Invention Science Fund I Llc Slotted surface scattering antennas
US9923271B2 (en) 2013-10-21 2018-03-20 Elwha Llc Antenna system having at least two apertures facilitating reduction of interfering signals
US9935375B2 (en) 2013-12-10 2018-04-03 Elwha Llc Surface scattering reflector antenna
JP6345325B1 (ja) * 2017-08-22 2018-06-20 電気興業株式会社 漏れ波アンテナ及びこれを備えたアンテナシステム
US10178560B2 (en) 2015-06-15 2019-01-08 The Invention Science Fund I Llc Methods and systems for communication with beamforming antennas
US10361481B2 (en) 2016-10-31 2019-07-23 The Invention Science Fund I, Llc Surface scattering antennas with frequency shifting for mutual coupling mitigation
US10446903B2 (en) 2014-05-02 2019-10-15 The Invention Science Fund I, Llc Curved surface scattering antennas
WO2020187178A1 (en) * 2019-03-15 2020-09-24 Huawei Technologies Co., Ltd. Flat-plate, low sidelobe, two-dimensional, steerable leaky-wave planar array antenna
US11024960B2 (en) 2017-01-13 2021-06-01 Sharp Kabushiki Kaisha Scanned antenna and method of manufacturing scanned antenna
US11967768B2 (en) 2018-04-13 2024-04-23 AGC Inc. Slot array antenna

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512091A (ja) * 2006-12-04 2010-04-15 韓國電子通信研究院 人工磁気導体を利用した導体付着型無線認識用ダイポール・タグアンテナ及び該ダイポール・タグアンテナを利用した無線認識システム
JP2010041090A (ja) * 2008-07-31 2010-02-18 Denso Corp マイクロストリップアレーアンテナ
KR101172812B1 (ko) 2010-06-30 2012-08-09 광주과학기술원 일차원 전자기 밴드갭 구조물 및 상기 구조물을 갖는 평면 안테나
JP2016201835A (ja) * 2010-10-15 2016-12-01 シーレイト リミテッド ライアビリティー カンパニーSearete Llc 表面散乱アンテナ
JP2013539949A (ja) * 2010-10-15 2013-10-28 シーレイト リミテッド ライアビリティー カンパニー 表面散乱アンテナ
KR20180073716A (ko) * 2010-10-15 2018-07-02 시리트 엘엘씨 표면 산란 안테나
US10062968B2 (en) 2010-10-15 2018-08-28 The Invention Science Fund I Llc Surface scattering antennas
KR102002161B1 (ko) * 2010-10-15 2019-10-01 시리트 엘엘씨 표면 산란 안테나
US10320084B2 (en) 2010-10-15 2019-06-11 The Invention Science Fund I Llc Surface scattering antennas
US9450310B2 (en) 2010-10-15 2016-09-20 The Invention Science Fund I Llc Surface scattering antennas
EP2624360A3 (en) * 2012-02-06 2014-05-14 Yokogawa Electric Corporation Control circuit, impedance adjusting circuit, impedance automatic adjusting circuit, radio transceiver circuit, control method, impedance adjusting method, impedance automatic adjusting method , and radio transceiving method
US8989750B2 (en) 2012-02-06 2015-03-24 Yokogawa Electric Corporation Control circuit, impedance adjusting circuit, impedance automatic adjusting circuit, radio transceiver circuit, control method, impedance adjusting method, impedance automatic adjusting method, and radio transceiving method
US9385435B2 (en) 2013-03-15 2016-07-05 The Invention Science Fund I, Llc Surface scattering antenna improvements
US10090599B2 (en) 2013-03-15 2018-10-02 The Invention Science Fund I Llc Surface scattering antenna improvements
JP2016518044A (ja) * 2013-03-26 2016-06-20 サムスン エレクトロニクス カンパニー リミテッド 平面型アンテナ装置及び方法
US10074905B2 (en) 2013-03-26 2018-09-11 Samsung Electronics Co., Ltd. Planar antenna apparatus and method
US9647345B2 (en) 2013-10-21 2017-05-09 Elwha Llc Antenna system facilitating reduction of interfering signals
US9923271B2 (en) 2013-10-21 2018-03-20 Elwha Llc Antenna system having at least two apertures facilitating reduction of interfering signals
US10673145B2 (en) 2013-10-21 2020-06-02 Elwha Llc Antenna system facilitating reduction of interfering signals
US9935375B2 (en) 2013-12-10 2018-04-03 Elwha Llc Surface scattering reflector antenna
US9871291B2 (en) 2013-12-17 2018-01-16 Elwha Llc System wirelessly transferring power to a target device over a tested transmission pathway
US9825358B2 (en) 2013-12-17 2017-11-21 Elwha Llc System wirelessly transferring power to a target device over a modeled transmission pathway without exceeding a radiation limit for human beings
JP2015181211A (ja) * 2014-03-03 2015-10-15 国立大学法人京都工芸繊維大学 非相反伝送線路装置とその測定方法
US9853361B2 (en) 2014-05-02 2017-12-26 The Invention Science Fund I Llc Surface scattering antennas with lumped elements
US9882288B2 (en) 2014-05-02 2018-01-30 The Invention Science Fund I Llc Slotted surface scattering antennas
US10727609B2 (en) 2014-05-02 2020-07-28 The Invention Science Fund I, Llc Surface scattering antennas with lumped elements
US10446903B2 (en) 2014-05-02 2019-10-15 The Invention Science Fund I, Llc Curved surface scattering antennas
US9812779B2 (en) 2014-06-20 2017-11-07 The Invention Science Fund I Llc Modulation patterns for surface scattering antennas
US10998628B2 (en) 2014-06-20 2021-05-04 Searete Llc Modulation patterns for surface scattering antennas
US9806415B2 (en) 2014-06-20 2017-10-31 The Invention Science Fund I Llc Modulation patterns for surface scattering antennas
US9711852B2 (en) 2014-06-20 2017-07-18 The Invention Science Fund I Llc Modulation patterns for surface scattering antennas
US9806416B2 (en) 2014-06-20 2017-10-31 The Invention Science Fund I Llc Modulation patterns for surface scattering antennas
US9806414B2 (en) 2014-06-20 2017-10-31 The Invention Science Fund I Llc Modulation patterns for surface scattering antennas
US10178560B2 (en) 2015-06-15 2019-01-08 The Invention Science Fund I Llc Methods and systems for communication with beamforming antennas
US10361481B2 (en) 2016-10-31 2019-07-23 The Invention Science Fund I, Llc Surface scattering antennas with frequency shifting for mutual coupling mitigation
US11024960B2 (en) 2017-01-13 2021-06-01 Sharp Kabushiki Kaisha Scanned antenna and method of manufacturing scanned antenna
CN109983623A (zh) * 2017-08-22 2019-07-05 电气兴业株式会社 漏波天线
US10665954B2 (en) 2017-08-22 2020-05-26 Denki Kogyo Company, Limited Leaky-wave antenna
WO2019039004A1 (ja) * 2017-08-22 2019-02-28 電気興業株式会社 漏れ波アンテナ
CN109983623B (zh) * 2017-08-22 2020-06-12 电气兴业株式会社 漏波天线
JP6345325B1 (ja) * 2017-08-22 2018-06-20 電気興業株式会社 漏れ波アンテナ及びこれを備えたアンテナシステム
US11967768B2 (en) 2018-04-13 2024-04-23 AGC Inc. Slot array antenna
WO2020187178A1 (en) * 2019-03-15 2020-09-24 Huawei Technologies Co., Ltd. Flat-plate, low sidelobe, two-dimensional, steerable leaky-wave planar array antenna
CN113646969A (zh) * 2019-03-15 2021-11-12 华为技术有限公司 平板低旁瓣二维可调的漏波平面阵列天线
CN113646969B (zh) * 2019-03-15 2022-11-08 华为技术有限公司 平板低旁瓣二维可调的漏波平面阵列天线
US11158953B2 (en) 2019-03-15 2021-10-26 Huawei Technologies Co., Ltd. Flat-plate, low sidelobe, two-dimensional, steerable leaky-wave planar array antenna

Similar Documents

Publication Publication Date Title
JP2008054146A (ja) アレーアンテナ
US11133584B2 (en) Dynamic polarization and coupling control from a steerable cylindrically fed holographic antenna
CN110574236B (zh) 一种液晶可重构多波束相控阵列
EP3928380B1 (en) Switchable patch antenna
JP4736658B2 (ja) 漏れ波アンテナ
JP2007116573A (ja) アレーアンテナ
JP4466389B2 (ja) アレーアンテナ
US11837802B2 (en) Liquid crystal antenna unit and liquid crystal phased array antenna
JP3306592B2 (ja) マイクロストリップアレーアンテナ
CN109923735B (zh) 平板天线的定向耦合器馈电
US8362954B2 (en) Array antenna, tag communication device, tag communication system, and beam control method for array antenna
JP2008035424A (ja) アレーアンテナ
KR101285388B1 (ko) 빔 조향 장치
US8736514B2 (en) Antenna
CN113871860B (zh) 天线结构及阵列天线模块
JP4534948B2 (ja) アレーアンテナ
JP4534947B2 (ja) アレーアンテナ
JP4747854B2 (ja) アレーアンテナ
US11837785B2 (en) Holographic antenna and holographic antenna arrangement
RU2795571C1 (ru) Двухполяризационная антенная решетка с широким углом сканирования
JP2023131594A (ja) アンテナ装置
JP2012049769A (ja) アンテナ