WO2019037694A1 - 波束指示和上报方法、网络设备、终端 - Google Patents

波束指示和上报方法、网络设备、终端 Download PDF

Info

Publication number
WO2019037694A1
WO2019037694A1 PCT/CN2018/101435 CN2018101435W WO2019037694A1 WO 2019037694 A1 WO2019037694 A1 WO 2019037694A1 CN 2018101435 W CN2018101435 W CN 2018101435W WO 2019037694 A1 WO2019037694 A1 WO 2019037694A1
Authority
WO
WIPO (PCT)
Prior art keywords
attribute
transport layer
candidate
indication information
layer
Prior art date
Application number
PCT/CN2018/101435
Other languages
English (en)
French (fr)
Inventor
金黄平
韩玮
毕晓艳
张闽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019037694A1 publication Critical patent/WO2019037694A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Definitions

  • the present application relates to the field of communications, and in particular, to a beam indication and reporting method, a network device, and a terminal.
  • Massive multiple input and multiple output is one of the industry's recognized 5G key technologies. Through the use of large-scale antennas, significant spectral efficiency is achieved. The accuracy of channel state information (CSI) that the base station can obtain largely determines the performance of Massive MIMO.
  • CSI channel state information
  • FDD frequency division duplex
  • TDD time division duplex
  • codebook design is a key issue for Massive MIMO.
  • LTE Long Term Evolution
  • CBSR/CSR codebook subset restriction
  • the method of constructing a precoding matrix in the new radio (NR) technology is different from the LTE standard.
  • NR uses a beam combination technique to construct a precoding vector, which is compatible with the LTE standard.
  • the method of directly selecting a suitable matrix as a precoding matrix in the codebook (this method can also be called beam selection) is very different. Therefore, the codebook subset restriction scheme adopted by the LTE standard for reducing interference cannot be applied.
  • the beam combining technology adopted by NR In the beam combining technology adopted by NR.
  • the embodiment of the present application provides a beam indication method and a corresponding beam reporting method, including:
  • the network device generates indication information, wherein, for each of the at least one transport layer, the indication information is used to indicate that each beam in the beam set corresponds to a beam attribute of the transport layer, where the beam attribute is One of a plurality of beam attributes, the plurality of beam attributes including at least: a non-candidate beam, a candidate reference beam, and a candidate non-reference beam; and the network device transmits the indication information to the terminal.
  • the terminal After receiving the indication information sent by the network device, the terminal determines, for each of the at least one transmission layer, the beam attribute of each beam in the beam set corresponding to the transmission layer according to the indication information.
  • the beam attribute limits whether the beam can be used as a candidate beam.
  • constructing a pre-beam by means of beam combining When the vector is encoded, it is indicated by whether the beam can be used as a component vector, a reference beam or a non-reference beam of a precoding vector corresponding to a transmission layer. In this way, the selection range of the reference beam having a large influence on the spatial direction of the precoding vector can be restricted, thereby realizing the limitation of the direction of data transmission pointed by the precoding vector obtained by the beam combining method and/or Adjustment, to achieve the purpose of reducing interference, can also avoid interference caused by the superimposed beam direction to other cells.
  • the indication information is used to indicate that each beam in the beam set corresponds to a beam attribute of a different transmission layer; in this case, the indication information may indicate that one beam corresponds to a beam of a different transmission layer. Attributes.
  • the indication information respectively indicates beam attributes of different beams of different transmission layers; different beam characteristics of different beams of the same transmission layer are different; in this case, independent indication information is required for different transmission layers. To indicate the beam properties of each of these beams.
  • the indication information is used to indicate beam attributes of different beams of different transmission layers; beam characteristics of all beams under the same transmission layer are the same. In this case, indication information is required to indicate whether different transmission layers are available. As a candidate beam, if the transmission layer can serve as a candidate beam, the beam attribute of each beam in the transmission layer is further indicated.
  • the indication information includes a plurality of pieces of sub-information, each sub-information corresponding to one of the beam sets, the sub-information being used to indicate one of the following:
  • the beam attribute of the beam is a candidate reference beam
  • the beam attribute of the beam is a candidate reference beam
  • the beam attribute of the beam is a candidate non-reference beam
  • the beam attribute of the beam is a candidate reference beam
  • the beam attribute of the beam is a candidate non-reference beam
  • the beam attribute of the beam is a candidate non-reference beam
  • the beam attribute of the beam is a non-candidate beam
  • the beam attribute of the beam is a non-candidate beam
  • first transport layer is stronger than the second transport layer.
  • the first transmission layer is stronger than the second transmission layer, and the singular value corresponding to the first transmission layer is greater than the singular value corresponding to the second transmission layer; or the main transmission energy of the first transmission layer is stronger than the second transmission layer.
  • the indication information described above is transmitted by radio resource control (RRC).
  • RRC radio resource control
  • the terminal After receiving the indication information, the terminal determines, for each of the at least one transport layer, determining, according to the indication information, each beam in the beam set corresponds to a beam attribute of the transport layer, and then according to each A beam attribute of each beam under the transport layer determines whether the beam is reported, and the position and superposition coefficient of the reported beam.
  • the determining, according to the beam attributes of each beam under each transport layer, whether to report the beam, and the position and superposition coefficient of the reported beam including:
  • the beam attribute is a candidate non-reference beam
  • the position and the broadband amplitude of the beam are reported, and the broadband amplitude is less than 1;
  • the position of the beam is reported.
  • the embodiment of the present application provides a network device, which may be a base station or a control node.
  • Such network side devices may include improved systems and devices as peer devices in conventional wireless telecommunications systems.
  • Such advanced or next generation devices may be included in an evolved wireless communication standard such as Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the network device includes:
  • a processor configured to generate indication information, where, for each of the at least one transport layer, the indication information is used to indicate that each beam in the beam set corresponds to a beam attribute of the transport layer, where
  • the beam attribute is one of a plurality of beam attributes, the plurality of beam attributes including at least: a non-candidate beam, a candidate reference beam, and a candidate non-reference beam;
  • transceiver configured to send the indication information generated by the processor.
  • the embodiment of the present application provides a base station, which has a function of realizing the behavior of the base station in the actual method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the base station includes a processor and a transceiver configured to support the base station to perform the corresponding functions in the above methods.
  • the transceiver is configured to support communication between the base station and the UE, and send information or signaling involved in the foregoing method to the UE, and receive information or instructions sent by the base station.
  • the base station can also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
  • the embodiment of the present application provides a terminal, where the terminal has a function of implementing terminal behavior in the design of the foregoing method.
  • the function can be implemented by hardware, and the structure of the terminal includes a transceiver and a processor.
  • a transceiver configured to receive, from the network device, indication information, where, for each of the at least one transport layer, the indication information is used to indicate that each beam in the beam set corresponds to a beam attribute of the transport layer
  • the beam attribute is one of a plurality of beam attributes, the plurality of beam attributes including at least: a non-candidate beam, a candidate reference beam, and a candidate non-reference beam;
  • a processor configured to determine, for each of the at least one transport layer, a beam attribute of each of the beam sets corresponding to the transport layer according to the indication information.
  • the terminal can also implement corresponding software implementation through hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • an embodiment of the present application provides a control node, which may include a controller/processor, a memory, and a communication unit.
  • the controller/processor can be used to coordinate resource management and configuration between multiple base stations, and can be used to perform the methods described in the above embodiments.
  • the memory can be used to store program code and data for the control node.
  • the communication unit is configured to support the control node to communicate with the base station, for example, to send information of the configured resource to the base station.
  • an embodiment of the present application provides a communication system, where the system includes the base station and the terminal in the foregoing aspect.
  • the control node in the above embodiment may also be included.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the base station, which includes a program designed to perform the above aspects.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the terminal, which includes a program designed to execute the above aspects.
  • FIG. 1 is an exemplary schematic diagram of a wireless communication network in accordance with an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • an ideal precoding vector can be obtained by various methods, and an ideal precoding vector obtained by different methods can be different.
  • an ideal precoding vector can be obtained by performing a Singular Value Decomposition (SVD) on the channel matrix. Specifically, the Singular Value Decomposition (SVD) is performed on the channel matrix, and the channel matrix can be decomposed into a form of a product of a left-hand matrix, a diagonal matrix, and a right-hand matrix.
  • the conjugate transposed matrix of the right chirp matrix can be used as an ideal precoding matrix, and the column vector of the ideal precoding matrix can be used as an ideal precoding vector.
  • the above-described ideal precoding matrix obtained according to the singular value decomposition may also be obtained by, for example, but not limited to, eigenvalue decomposition of the correlation matrix of the channel matrix.
  • the specific value of the ideal precoding vector and its acquisition method can be determined according to the overall needs of the system design.
  • the technical details of the ideal precoding vector have been clearly described in the prior art, and therefore will not be described here.
  • the above-mentioned channel matrix can be obtained by means of a reference signal, and the form of the channel matrix can be various, and the values of different forms of the channel matrix may be different. The technical details of the channel matrix have been clearly described in the prior art, and therefore will not be described again here.
  • the ideal precoding vector may be approximated in the form of a weighted sum of a plurality of component vectors, namely:
  • the number m of component vectors (m is a positive integer) may be set according to specific needs (such as but not limited to the need of precision).
  • the number of component vectors may be a preset number.
  • the base codebook is a collection of candidate vectors.
  • the base codebook can usually be expressed in the form of a matrix, so the base codebook can also be referred to as the base codebook matrix, and the candidate vector is the column vector of the base codebook matrix.
  • the base codebook mentioned in this document can be interchanged with the base codebook matrix unless otherwise specified or if it does not contradict its actual role or internal logic in the relevant description.
  • the base codebook matrix contains multiple column vectors, some of which can be selected as component vectors. There are many ways to select component vectors, and you can choose the appropriate method according to your specific needs. For example, a component vector may be determined from a plurality of column vectors according to how close the column vector of the base codebook matrix is to the ideal precoding vector, wherein a plurality of column vectors that are closest to the ideal precoding vector may be selected. As a component vector. In a specific implementation process, the proximity may be embodied by, for example but not limited to, an inner product or an Euclidean distance of a column vector of the basic codebook matrix and an ideal precoding vector.
  • a plurality of column vectors having the largest inner product with the ideal precoding vector (for example, if the inner product is a complex number, the amplitude of the inner product) can be used as the component vector, when present
  • the plurality of column vectors may belong to different base codebooks.
  • the inner product of each component vector and the ideal precoding vector can be further used as the superposition coefficient of the component vector.
  • the above component vector and its superposition coefficient may also be determined by traversing. For example, if the number of component vectors is four, four candidate vectors may be selected from the basic codebook matrix as component vectors, and four superposition coefficients are selected from the superimposed coefficient sets as superposition coefficients of the selected four component vectors.
  • the quasi-ideal precoding vector is compared with the channel matrix to determine whether the quasi-ideal precoding vector can be used as an ideal precoding vector.
  • the channel matrix may be precoded by the quasi-ideal precoding vector, and the channel capacity of the precoded channel matrix may be calculated.
  • the quasi-ideal precoding vector is determined to be ideal.
  • the precoding vector is used, and the candidate vectors are identified as component vectors, and the superimposed coefficients are identified as superposition coefficients of the component vectors.
  • the above component vectors and superposition coefficients can also be obtained directly from the channel matrix without first obtaining an ideal precoding vector.
  • the embodiment of the present invention does not limit how to determine the component vector and the superposition coefficient.
  • the component vector After obtaining the component vector and the superposition coefficient, the component vector is weighted and combined by superimposing the coefficients to obtain a precoding vector to simulate the ideal precoding vector.
  • the transmitting device may directly use the precoding vector for precoding the signal to be transmitted, or perform other processing on the precoding vector, and precode the signal to be transmitted through the processed precoding vector.
  • the foregoing other processing may be to reconstruct a precoding vector, for example, orthogonalizing a precoding vector of a plurality of users to be simultaneously scheduled.
  • the column vector included in the basic codebook matrix may be referred to as a beam.
  • the component is compared by the superposition coefficient described above.
  • a method in which a vector is weighted and combined to obtain a precoding vector can be referred to as a beam combination, and the above component vector can also be referred to as a component beam.
  • beam combining has been described in detail in the prior art, and therefore will not be described herein.
  • the component vector closest to the precoding vector may be referred to as a reference beam, and other component vectors may be referred to as non-reference beams.
  • the reference beam and the non-reference beam there are many methods for identifying the reference beam and the non-reference beam, and the reference beam and the non-reference beam are different according to different methods.
  • the specific method is not limited in the embodiment of the present invention.
  • the above basic codebook and basic codebook matrix may also be referred to as a basic beam set.
  • a beam may be selected from a set of basic beams as a component vector, or a beam may be selected as a component vector from a subset of the basic beam set.
  • Each precoding vector may be precoded for one data stream, which may be referred to as a layer, a data layer or a transport layer.
  • Layer-x or layer-x may be used to represent Layer x.
  • the relevant content of the relevant layer has been clearly described in the prior art, and therefore will not be described herein.
  • multiple transport layers may be precoded by multiple precoding vectors at the same time, thereby implementing multi-stream (or multi-layer) transmission, thereby improving channel transmission efficiency. In general, the transmission quality of these transport layers tends to be different.
  • the transmission quality of the transmission layer precoded by the ideal precoding vector corresponding to the larger singular value is often higher than the ideal precoding corresponding to the smaller singular value.
  • the vector performs the transmission quality of the pre-coded transport layer.
  • precoding vectors can often be used to characterize the spatial direction of data transmission, which is largely dependent on the direction of the reference beam of the precoding vector.
  • an attempt may be made to set the direction of the precoding vector to deviate from the direction of the other data transmissions described above.
  • the direction of the above other data transmission may be referred to as a restriction direction.
  • the foregoing limiting direction may be simulated by using a basic beam set or one or more beams in a subset thereof.
  • the one or more beams may be referred to as a limited beam, meaning that the restricted beam is used. Beam.
  • a specific beam may be selected from the beams other than the above-mentioned limiting beam as a reference beam of the precoding vector, in which case the reference beam of the direction of the precoding vector is largely determined. , will not be a limited beam, so that the precoding vector will deviate to some extent from the above limiting direction.
  • a selection may be made from a set of base beams or a beam included in a subset thereof. In other words, when setting the reference beam of the precoding vector, the above limited beam is avoided.
  • the beam attribute can be set for the basic beam set or the beam of the subset thereof, thereby indicating whether the beam can be used as a component vector of the precoding vector corresponding to the transmission layer.
  • reference beam or non-reference beam may be selected from a plurality of beam attributes, and the beam attributes may include at least: a non-candidate beam, a candidate reference beam, and a candidate non-reference beam, wherein, corresponding to a transmission layer, if a beam characteristic of a beam is non- If the beam is a candidate beam, the beam can be used as a reference beam of the precoding vector.
  • the beam may also serve as a non-reference beam of the precoding vector; if the beam attribute of a beam is a non-reference beam, the beam may serve as a non-reference beam of the precoding vector, but not as a reference beam.
  • the beam attributes of one beam may also be set based on other reasons, thereby determining, for example, whether the beam can be used as a component vector, reference beam or non-reference of the precoding vector.
  • the beam is not limited to the above-mentioned purpose of avoiding interference.
  • plural in the present application means two or more.
  • the term “and/or” in the present application is merely an association relationship describing an associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A and B exist at the same time. There are three cases of B alone.
  • the character "/" in this article generally indicates that the contextual object is an "or” relationship.
  • the terms “first” and “second” in this application are used to distinguish different objects, and do not limit the order of the different objects.
  • the terminal determines a channel matrix according to a reference signal transmitted by the network device, determines a precoding vector based on the channel matrix and the base codebook, and feeds back information about acquiring the precoding vector to the network device.
  • the network device acquires a precoding vector, and precodes the data to be transmitted according to the precoding vector, and sends the precoded data to the terminal.
  • the network device may limit the range of the beam that the terminal can use by configuring corresponding parameters, for example, but not limited to, radio resource control (RRC).
  • RRC radio resource control
  • the Beam selection codebook can adopt a CBSR method similar to the Class A codebook in LTE, and the signaling bits are directly used for the parameter i1/Layer/i2 of the index codebook.
  • its CBSR codebook cannot be restricted like class A, because the direction of the final precoding matrix is the result of superimposing multiple beams. Simply limiting the direction of a single beam cannot represent the final limitation of beam superposition. The direction, therefore, for the beam combination codebook, the technical problem solved by the present application is how to limit the range of beams that the terminal can use, thereby limiting the range of precoding vectors used by the terminal.
  • the embodiment of the present application provides a beam indication method and device, which can help achieve the following beneficial effects: when constructing a precoding vector by using a beam combination method, a beam attribute can be set for a basic beam set or a beam of a subset thereof. In order to indicate whether the beam can be used as a transport layer corresponding reference beam or non-reference beam. In this way, the selection range of the reference beam having a large influence on the spatial direction of the precoding vector can be restricted, thereby realizing the limitation of the direction of data transmission pointed by the precoding vector obtained by the beam combining method and/or Adjust to achieve the purpose of reducing interference.
  • FIG. 1 is an exemplary schematic diagram of a wireless communication network 100 in accordance with an embodiment of the present application.
  • the wireless communication network 100 includes base stations 102-106 and terminal devices 108-122, wherein the base stations 102-106 can pass backhaul links with each other (e.g., lines between base stations 102-106) Communication is shown, which may be a wired backhaul link (eg, fiber optic, copper) or a wireless backhaul link (eg, microwave).
  • the terminal devices 108-122 can communicate with the corresponding base stations 102-106 via a wireless link (as indicated by the broken line between the base stations 102-106 and the terminal devices 108-122).
  • the base stations 102-106 are configured to provide wireless access services for the terminal devices 108-122.
  • each base station corresponds to a service coverage area (also referred to as a cell, as shown in each ellipse area in FIG. 1), and the terminal device entering the area can communicate with the base station by using a wireless signal to receive the base station.
  • Wireless access service provided.
  • multiple base stations may use Coordinated Multipoint (CoMP) technology to provide services for terminal devices in the overlapping area.
  • CoMP Coordinated Multipoint
  • the base station 102 overlaps with the service coverage area of the base station 104, and the terminal device 112 is within the overlapping area, so the terminal device 112 can receive the wireless signals from the base station 102 and the base station 104.
  • the base station 102 and the base station 104 can cooperate with each other to provide services to the terminal device 112.
  • the service coverage areas of the base station 102, the base station 104, and the base station 106 have a common overlapping area, and the terminal device 120 is within the overlapping area, so the terminal device 120 can receive the base station.
  • the wireless signals 102, 104, and 106, the base stations 102, 104, and 106 can cooperate with each other to provide services to the terminal device 120.
  • the base station may be referred to as a Node B (NodeB), an evolved Node B (eNodeB), and an Access Point (AP), etc., depending on the wireless communication technology used.
  • NodeB Node B
  • eNodeB evolved Node B
  • AP Access Point
  • the base station can be further divided into a macro base station for providing a macro cell, a micro base station for providing a pico cell, and a femtocell for providing Femto cell) Femto base station, etc.
  • future base stations may use other names.
  • the terminal devices 108-122 may be various wireless communication devices having wireless communication functions, such as but not limited to mobile cellular phones, cordless phones, personal digital assistants (PDAs), smart phones, notebook computers, tablets, wireless devices.
  • IOT Internet of Things
  • the communication unit obtains a wireless communication function so that it can access the wireless communication network and accept remote control.
  • Such devices have wireless communication functions because they are equipped with wireless communication units, and therefore belong to the category of wireless communication devices.
  • the terminal devices 108-122 may also be referred to as mobile stations, mobile devices, mobile terminals, wireless terminals, handheld devices, clients, and the like.
  • the base stations 102-106 and the terminal devices 108-122 can be configured with multiple antennas to support MIMO (Multiple Input Multiple Output) technology. Further, the base stations 102-106 and the terminal devices 108-122 can support single-user MIMO (SU-MIMO) technology or multi-user MIMO (Multi-User MIMO, MU-MIMO). MU-MIMO can be implemented based on Space Division Multiple Access (SDMA) technology. Due to the configuration of multiple antennas, the base stations 102-106 and the terminal devices 108-122 can also flexibly support Single Input Single Output (SISO) technology, Single Input Multiple Output (SIMO) and multiple input.
  • SISO Single Input Single Output
  • SIMO Single Input Multiple Output
  • the multiplexing technology can be a spatial multiplexing (Spatial Multiplexing) technology.
  • the transmit diversity technology may include: Space-Time Transmit Diversity (STTD), Space-Frequency Transmit Diversity (SFTD), and time switching. Time Switched Transmit Diversity (TSTD), Frequency Switching Transmit Diversity (FSTD), Orthogonal Transmit Diversity (OTD), Cyclic Delay Diversity (CDD), etc.
  • the current LTE (Long Term Evolution) standard adopts a transmit diversity method such as Space Time Block Coding (STBC), Space Frequency Block Coding (SFBC), and CDD.
  • STBC Space Time Block Coding
  • SFBC Space Frequency Block Coding
  • CDD Code Division Multiple Access
  • the base stations 102-106 and the terminal devices 108-122 can communicate using various wireless communication technologies, such as, but not limited to, Time Division Multiple Access (TDMA) technology, Frequency Division Multiple Access (Frequency Division Multiple Access, FDMA) technology, Code Division Multiple Access (CDMA) technology, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Orthogonal Frequency Division Multiple Access (OFDMA) Technology, Single Carrier FDMA (SC-FDMA) technology, Space Division Multiple Access (SDMA) technology, and evolution and derivative technologies of these technologies.
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier FDMA
  • SDMA Space Division Multiple Access
  • the above wireless communication technology is adopted as a radio access technology (RAT) by many wireless communication standards, thereby constructing various wireless communication systems (or networks) well known today, including but not limited to Global System for Mobile Communications (GSM), CDMA2000, Wideband CDMA (WCDMA), WiFi defined by the 802.11 family of standards, Worldwide Interoperability for Microwave Access (WiMAX), Long Term Evolution (Long Term Evolution, LTE), LTE-Advanced (LTE-A), and an evolution system of these wireless communication systems.
  • GSM Global System for Mobile Communications
  • WCDMA Wideband CDMA
  • WiFi defined by the 802.11 family of standards
  • WiMAX Worldwide Interoperability for Microwave Access
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • the wireless communication network 100 shown in FIG. 1 is for example only and is not intended to limit the technical solution of the present application. It should be understood by those skilled in the art that in a specific implementation process, the wireless communication network 100 may also include other devices, such as but not limited to a Base Station Controller (BSC), and may also configure the base station and the terminal according to specific needs. The number of devices.
  • BSC Base Station Controller
  • the network device may be the base stations 102-106 shown in FIG. 1, and the terminal may be the terminal devices 108-122 shown in FIG.
  • the embodiments of the present application provide a beam indication method and a receiving method, and corresponding network devices and terminals. The technical solutions provided by the embodiments of the present application are described in detail below.
  • FIG. 2 is a schematic diagram of interaction between an indication method and a method of determining a precoding vector according to an embodiment of the present application.
  • the method described in FIG. 2 may include the following steps S101 to S104:
  • Step 101 The network device generates indication information, where, for each of the at least one transport layer, the indication information is used to indicate that each beam in the beam set corresponds to a beam attribute of the transport layer, where
  • the beam attribute is one of a plurality of beam attributes, the plurality of beam attributes including at least: a non-candidate beam, a candidate reference beam, and a candidate non-reference beam; wherein the beam set is a base beam set or a base beam set Subset.
  • the beam attributes of the partial beams may also need no indication.
  • the beam attributes of the beams may be determined in a manner predetermined in the standard.
  • the foregoing beam set may be a basic beam set or a subset of the basic beam set.
  • the at least one transport layer may be all transport layers supported by the communication system, such as all transport layers supported by the network device, or all transport layers supported by the terminal, or may be part of the transport layer among all transport layers.
  • the at least one transport layer may be all transport layers supported by the network device when the data is transmitted by using a beam combination, or all transport layers supported by the terminal when the data is transmitted by using a beam combination.
  • multiple beam attributes of one beam can be as shown in the following list 1:
  • the beam attributes herein include at least: beam attribute 1: candidate reference beam, that is, the beam is unrestricted, can be used and can be used as a reference beam.
  • Beam attribute 2 Candidate non-reference beam, ie the beam is unrestricted and can be used but not as a reference beam.
  • Beam attribute 3 Non-candidate beam, that is, the beam is limited and cannot be used to avoid interference.
  • the indication information is used to indicate that each beam in the indicator beam set corresponds to a beam attribute of a different transmission layer; that is, an indication information can be used to indicate that one beam corresponds to a beam attribute of a different transmission layer.
  • the indication information is further used to respectively indicate beam attributes of different beams of different transmission layers; different beam characteristics of different beams of the same transmission layer are different; that is, for each beam corresponding to beam characteristics of different transmission layers, an indication is used separately Information to indicate.
  • the indication information is further used to hierarchically indicate beam attributes of different beams of different transmission layers; that is, first indicating whether a beam in a certain transmission layer is a candidate beam, and if the beam of the transmission layer is not limited, further indicating each The beam corresponds to the beam attribute of the transport layer. If the transport layer is restricted, it only needs to indicate that the transport layer is a restricted transport layer, that is, each beam corresponds to a beam attribute in the transport layer that is a non-candidate beam. At this time, there is no need to further indicate the beam attribute of each beam in the transport layer.
  • the indication information may include multiple pieces of sub-information, each sub-information corresponding to one of the beam sets, the sub-information being used to indicate that the beam is among the at least one transport layer.
  • Beam properties in each transport layer For example, the specific meaning of a sub-information can be expressed as ⁇ beam corresponding to the beam attribute of the transport layer 1, and the beam corresponds to the beam attribute of the transport layer 2...the beam corresponds to the beam attribute of the transport layer x ⁇ . Taking two transport layers as an example, in a specific implementation process, the specific meaning of the sub-information can be expressed as follows:
  • Layer-1 Layer-2 1 Beam attribute 1 Beam attribute 1 2 Beam attribute 1 Beam attribute 2 ... ... ... K2 Beam attribute 1 Beam attribute K2 K2+1 Beam attribute 2 Beam attribute 1 K2+2 Beam attribute 2 Beam attribute 2 ... ... ... 2K2 Beam attribute 2 Beam attribute K2 ... ... ... (K1-1)*(K2)+1 Beam attribute K1 Beam attribute 1 (K1-1)*(K2)+2 Beam attribute K1 Beam attribute 2 ... ... ... (K1-1)*(K2)+K2 Beam attribute K1 Beam attribute K2
  • the specific meaning of the sub-information is that the beam attribute of the beam corresponding to the sub-information in the layer Layer-1 is the beam attribute 1, and the layer Layer-2
  • the beam attribute in is the beam attribute 1.
  • the sub-information and/or the indication information may be an index of the above specific meaning, or a quantitative representation form of the above specific meaning.
  • the specific value of the sub-information may be as follows:
  • the first transmission layer is stronger than the second transmission layer, for example, the transmission quality of the first transmission layer is higher than the transmission quality of the second transmission layer, or the transmission energy of the first transmission layer is strong.
  • the emission energy of the second transport layer in other words, in the above specific implementation, the specific meaning of the sub-information can be expressed as:
  • the beam attribute of the beam is a candidate reference beam
  • the beam attribute of the beam is a candidate reference beam
  • the beam attribute of the beam is a candidate non-reference beam
  • the beam attribute of the beam is a candidate reference beam
  • the beam attribute of the beam is a candidate non-reference beam
  • the beam attribute of the beam is a candidate non-reference beam
  • the beam attribute of the beam is a non-candidate beam
  • the beam attribute of the beam is a non-candidate beam
  • first transport layer is stronger than the second transport layer.
  • the specific value of the sub-information may be as follows:
  • Sub information Layer-1 Layer-2 First value Candidate reference beam Candidate reference beam Second value Candidate reference beam Candidate non-reference beam Third value Candidate non-reference beam Candidate reference beam
  • the first transport layer is stronger than the second transport layer, and the specific meaning thereof may be as described above.
  • the specific meaning of the sub-information can be expressed as:
  • the beam attribute of the beam is a candidate reference beam
  • the beam attribute of the beam is a candidate reference beam
  • the beam attribute of the beam is a candidate reference beam
  • the beam attribute of the beam is a candidate non-reference beam
  • the beam attribute of the beam is a candidate non-reference beam
  • the beam attribute of the beam is a candidate reference beam
  • the beam attribute of the beam is a candidate non-reference beam
  • the beam attribute of the beam is a candidate non-reference beam
  • the beam attribute of the beam is a non-candidate beam
  • the beam attribute of the beam is a non-candidate beam
  • first transport layer is stronger than the second transport layer.
  • first transport layer is stronger than the second transport layer, and the first transport layer may have better transmission quality than the second transport layer.
  • the first transmission layer is stronger than the second transmission layer, then one beam is used as the reference beam in the first transmission layer, and the possibility of being a non-reference beam in the second transmission layer is very small, that is, the second The possibility of value is very small.
  • the bits when a number of bits are used to indicate a specific value of the sub-information, the bits may be further divided into multiple groups, and each group of bits corresponds to one transport layer, and is used to indicate that the foregoing beam is in the transmission. Beam properties in the layer. For example, when the number of transmission layers is 2, if two bits are used to indicate four values of the sub-information, one bit can be used to indicate the beam attribute of the beam in one transport layer, and another bit is used to indicate The beam properties of the beam in another transport layer, such as Table 5:
  • Layer-1 Layer-2 00 Beam attribute 1 Beam attribute 1 01 Beam attribute 1 Beam attribute 2 10 Beam attribute 2 Beam attribute 1 11 Beam attribute 2 Beam attribute 2
  • the previous bit corresponds to the transport layer Layer-1
  • the latter bit corresponds to the transport layer Layer-2
  • the beam attribute 1 is indicated by 0
  • the beam attribute 2 is indicated by 1 .
  • Layer-1 Layer-2 00 Beam attribute 1 Beam attribute 2 01 Beam attribute 1 Beam attribute 1 10 Beam attribute 2 Beam attribute 2 11 Beam attribute 2 Beam attribute 1
  • the indication information may further include a specific information, which is used to indicate whether a beam in the beam set is applicable to the transport layer, that is, whether there is at least one beam in the beam set for each transport layer. And a beam attribute of the at least one beam is a non-candidate beam with respect to the transport layer.
  • the above specific information may be indicated by one bit. For example, for each transport layer, when the value of the bit is 0, the beam indicating that the beam set is applicable to the transport layer, when the bit is A value of 1 indicates that at least one beam in the beam set is not applicable to the transport layer.
  • the indication information may be implemented in the form of codebook subset restriction (CBSR/CSR) signaling, where the CBSR signaling is used to limit the precoding matrix indication of the linear superposition codebook (Pre a -coding matrix indicator (PMI) and a layer indicator (RI), wherein the PMI restriction information includes individual beam attributes.
  • CBSR/CSR codebook subset restriction
  • the indication information here may be sent in a semi-static manner, for example, through high layer signaling, such as radio resource control (RRC) signaling or other notification signaling; to further save the indication overhead, the indication information may be a The way the index number indicates the beam limit information of each beam in each transport layer.
  • the indication information may be a plurality of pieces of information. If the indication information shown in the foregoing manners in Tables 2 to 5 is a plurality of pieces of information, the plurality of pieces of information may be sent simultaneously or not simultaneously.
  • Step 103 The terminal receives the indication information from the network device.
  • Step 104 For each of the at least one transport layer, the terminal determines, according to the indication information, that each of the beam sets corresponds to a beam attribute of the transport layer.
  • the terminal determines, according to the indication of the indication information, whether the beam of the beam set is a non-candidate beam, a candidate reference beam or a candidate non-reference beam, and determines whether to report according to a beam attribute of each beam in each transmission layer. Beam, and the position and superposition factor of the reported beam.
  • Step 105 The terminal reports the candidate beam to the network device.
  • the beam attribute is a non-candidate beam, it is not reported; when the beam attribute is a candidate non-reference beam, the position and the broadband amplitude of the beam are reported, and the broadband amplitude is less than 1; when the beam attribute is a candidate reference beam, the beam is reported. position.
  • a beam attribute can be set for a basic beam set or a beam of a subset thereof.
  • a reference beam or a non-reference beam of a precoding vector corresponding to a transport layer are examples of the selection range of the reference beam having a large influence on the spatial direction of the precoding vector.
  • the number of transmission layers is 2.
  • Layer-1 Layer-2 000 Beam attribute 1 Beam attribute 1 001 Beam attribute 1 Beam attribute 2 010 Beam attribute 2 Beam attribute 1 011 Beam attribute 2 Beam attribute 2 100 Beam attribute 3 Beam attribute 3 101 - - 110 - - 111 - -
  • the beam attribute corresponding to the transmission layer 1 (Layer-1) of one beam is beam attribute 1
  • the beam attribute corresponding to the layer 2 in layer 2 (Layer-2) is also beam attribute 1
  • the beam is available in both Layer-1 and Layer-2 and can be used as a reference beam, which is a candidate reference beam.
  • the candidate reference beam may be referred to as a leading beam
  • the subsequent full text may be referred to as a leading beam.
  • 001 indicates that the beam attribute of a certain beam corresponding to the transmission layer 1 (Layer-1) is the beam attribute 1
  • the beam attribute corresponding to the transmission layer 2 (Layer-2) is the beam attribute 2, that is, the beam corresponds to the Layer-1.
  • the candidate non-reference beam can be called a non-leading beam in the embodiment of the present application.
  • the beam attribute corresponding to transmission layer 1 (Layer-1) of one beam is beam attribute 2
  • the beam attribute corresponding to transmission layer 2 (Layer-2) is beam attribute 1, that is, the beam corresponds to Layer-1. Available in but not as a leading beam, but corresponding to Layer-2 is available and can be used as a leading beam.
  • the beam attribute corresponding to the transmission layer 1 (Layer-1) of one beam is 011
  • the beam attribute corresponding to the layer 2 of Layer 2 is beam attribute 2, that is, the beam corresponds to Layer-1. Available in Layer-2 but not as a leading beam. It is indicated by 100 that the beam attribute of a certain beam corresponding to the transmission layer 1 (Layer-1) is the beam attribute 3, and the beam attribute corresponding to the transmission layer 2 (Layer-2) is the beam attribute 3, that is, the beam corresponds to the Layer-1. Neither is available in Layer-2 and is a non-candidate beam. In other words, the beam is a restricted beam for Layer-1 and Layer-2. The direction of these beams is often the direction of other data transmission. To avoid interference, it needs to be avoided.
  • the foregoing indication information is represented by a binary only as an example.
  • the indication information may be represented by other forms, and the network device and the terminal only need to agree on the indication information or the beam corresponding to the serial number.
  • a combination of attributes or attributes can be used.
  • Layer-1 Layer-2 00 Beam attribute 1 Beam attribute 1 01 Beam attribute 2 Beam attribute 1 10 Beam attribute 2 Beam attribute 2 11 Beam attribute 3 Beam attribute 3
  • a certain beam has four combinations of possible beam attributes corresponding to Layer-1 and Layer-2. Therefore, it can be represented by binary 00, 01, 10, and 11, and only requires 2 bits of indication overhead. That is, compared with the indication information shown in Table 6, the indication information shown in Table 7 saves 1 bit.
  • the beam attribute has three attributes, and the number of transmission layers is 2.
  • Direct instructions As shown in Table 9, in this indication mode, it indicates that the two attributes corresponding to Layer-1 of the Layer-1 require 2 bits of overhead, and the three attributes corresponding to Layer-2 require 2 bits of overhead, which requires a total of 4 bits.
  • Sub information Layer-1 000 Beam attribute 1 001 Beam attribute 2 010 Beam attribute 3 011 -
  • the 1 bit is used to indicate whether the indication information corresponds to Layer-1 or Layer-2, for example, 0 indicates that the indication information is a beam attribute indicating that a certain beam corresponds to Layer-1. 1 indicates that the indication information is a beam attribute indicating that a certain beam corresponds to Layer-2; further, a certain beam is represented by 00, and a beam attribute corresponding to Layer-1 is a beam attribute 1, and a beam attribute corresponding to Layer-2 is also Beam attribute 1, the candidate reference beam. Therefore, 000 means that the beam attribute of a certain beam corresponding to Layer-1 is beam attribute 1; 100 means that the beam attribute of a certain beam corresponding to Layer-2 is beam attribute 1. The other beams correspond to the beam attributes of Layer-1 and Layer-2, and so on, in this way, a 3-bit indication overhead is required.
  • the beam attribute has three attributes, and the number of transmission layers is 2.
  • the beam attributes are all beam attributes 1: available and can be used as a leading beam; 01 is used to indicate that Layer-1 is unlimited, and there is a limit to Layer-2; with 10, there is no limit for Layer-2, and there is a limit for Layer-1; 11 is for all beams in Layer-1 and Layer-2. limit;
  • the beam attributes of all beams corresponding to the transmission layer are attribute 3: non-candidate beam.
  • the beam attributes of all beams corresponding to the transmission layer are attribute 3: non-candidate beam.
  • the technical solution provided by the embodiment of the present application may further indicate the beam attribute of the beam by first indicating the limitation of a certain transmission layer. For example, the two layers are unrestricted, and all of the attributes 1 are required. 00 can indicate that the manner in which the beam attributes are independently indicated for each beam of each transport layer will further save the indication overhead.
  • FIG. 3 is a schematic diagram showing an exemplary logical structure of a network device 600 according to an embodiment of the present application.
  • the network device 600 includes a generating unit 601 and a transmitting unit 602.
  • the generating unit 601 may be configured to execute S101 in FIG. 2 to generate indication information, where, for each of the at least one transport layer, the indication information is used to indicate that each beam in the beam set corresponds to the transmission a beam attribute of a layer, wherein the beam attribute is one of a plurality of beam attributes, the plurality of beam attributes including at least: a non-candidate beam, a candidate reference beam, and a candidate non-reference beam; the generating unit 601 further Perform the other steps described in this application.
  • the sending unit 602 can be configured to execute S102 in FIG. 2, that is, to send the indication information to the terminal, or to perform other steps described in the present application.
  • the foregoing network device 600 is configured to perform the foregoing corresponding method.
  • the related technical content has been clearly described above, and thus is not described herein again.
  • FIG. 4 is a schematic diagram showing an exemplary logical structure of a terminal 700 according to an embodiment of the present application.
  • the terminal 700 includes a receiving unit 701 and a processing unit 702.
  • the receiving unit 701 can be configured to execute S103 in FIG. 2, that is, receive indication information from a network device; and the receiving unit 701 is further configured to perform other steps described in the present application.
  • the processing unit 702 may be configured to perform S104 in FIG. 2, that is, for each of the at least one transport layer, determining, according to the indication information, a beam attribute of each beam in the beam set corresponding to the transport layer. Determining whether each beam under each transport layer can serve as a candidate reference beam or a candidate non-reference beam, and reporting the candidate beam to a network device, the processing unit 702 is further configured to perform other steps described in this application.
  • the foregoing terminal 700 is configured to perform the foregoing corresponding method, and the related technical content has been clearly described above, and thus is not described herein again.
  • FIG. 5 is a schematic diagram of an exemplary hardware structure of a communication device 800 in accordance with an embodiment of the present application.
  • the communication device 800 can be the network device described above, or it can be the terminal described above.
  • communication device 800 includes a processor 802, a transceiver 804, a plurality of antennas 806, a memory 808, an I/O (Input/Output) interface 810, and a bus 812.
  • the transceiver 804 further includes a transmitter 8042 and a receiver 8044 that is further configured to store instructions 8082 and data 8084.
  • the processor 802, the transceiver 804, the memory 808, and the I/O interface 810 are communicatively coupled to one another via a bus 812, and the plurality of antennas 806 are coupled to the transceiver 804.
  • the processor 802 can be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or a dedicated processor such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 802 can also be a combination of multiple processors.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • processor 802 can also be a combination of multiple processors.
  • the processor 802 is configured to generate indication information, where the indication information is
  • the indication information is used to indicate that each beam in the beam set corresponds to a beam attribute of the transport layer, wherein the beam attribute is among multiple beam attributes
  • the plurality of beam attributes include at least: a non-candidate beam, a candidate reference beam, and a candidate non-reference beam; and then transmitted to the terminal by the transceiver 804.
  • the transceiver 804 receives the indication information from the network device, and for each of the at least one transmission layer, the processor 802 determines, according to the indication information, each of the beam sets. Corresponding to a beam attribute of the transmission layer, determining whether each beam under each transmission layer can serve as a candidate reference beam or a candidate non-reference beam, and reporting the candidate beam to the network device through the transceiver 804;
  • the transceiver 804 includes a transmitter 8042 and a receiver 8044, wherein the transmitter 8042 is configured to transmit signals through at least one of the plurality of antennas 806.
  • the receiver 8044 is configured to receive a signal through at least one of the plurality of antennas 806.
  • the memory 808 can be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory
  • registers such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • the memory 808 is specifically configured to store instructions 8082 and data 8084, and the processor 802 can perform the steps and/or
  • the I/O interface 810 is configured to receive instructions and/or data from peripheral devices and to output instructions and/or data to peripheral devices.
  • the processor 802 can be configured to perform, for example, S201 in the method illustrated in FIG. 2.
  • Processor 802 may be a processor specifically designed to perform the steps and/or operations described above, or may be a processor that performs the steps and/or operations described above by reading and executing instructions 8082 stored in memory 808, processor 802 Data 8084 may be required during the execution of the above steps and/or operations.
  • the transmitter 8042 is specifically configured to be executed by at least one of the plurality of antennas 806, for example, S202 in the method shown in FIG.
  • the processor 802 can be configured to perform, for example, S204 in the method illustrated in FIG. 2.
  • Processor 802 may be a processor specifically designed to perform the steps and/or operations described above, or may be a processor that performs the steps and/or operations described above by reading and executing instructions 8082 stored in memory 808, processor 802 Data 8084 may be required during the execution of the above steps and/or operations.
  • the receiver 8044 is specifically configured to be executed by at least one of the plurality of antennas 806, such as S203 in the method shown in FIG. 2.
  • the communication device 800 may also include other hardware devices, which are not enumerated herein.
  • the embodiment of the present application further provides a storage medium, which may include a memory 808.
  • the information transmission device provided by the embodiment of the present application can be used to perform the foregoing information transmission method. Therefore, the technical effects of the present invention can be referred to the foregoing method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请提供了一种波束指示和上报方法,网络设备,终端,所述方法包括:生成指示信息,其中,对于至少一个传输层之中的每一传输层,所述指示信息用于指示波束集合中的每一波束对应于该传输层的波束属性,其中所述波束属性为多种波束属性之中的一种,所述多种波束属性至少包括:非候选波束、候选基准波束和候选非基准波束;发送所述指示信息。本申请实施例提供的技术方案在通过波束组合方式构建预编码向量时,通过指示该波束是否可以作为基准波束或者非基准波束。可以针对对预编码向量的空间方向影响较大的基准波束的选择范围进行限制,从而实现对通过波束组合方式获得的预编码向量所指向的数据传输的方向进行限制和/或调整,达到降低干扰的目的。

Description

波束指示和上报方法、网络设备、终端
本申请要求于2017年8月21日提交中国专利局、申请号为201710720140.X、申请名称为“波束指示和上报方法、网络设备、终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种波束指示和上报方法、网络设备、终端。
背景技术
大规模多输入多输出(massive multiple input and multiple output,Massive MIMO)是业界公认的5G关键技术之一,通过使用大规模天线,实现频谱效率的显著提升。基站可以获取的信道状态信息(channel state information,CSI)的准确性在很大程度上决定了Massive MIMO的性能。在频分双工(frequency division duplex,FDD)系统或信道互异性不能很好满足的时分双工(time division duplex,TDD)系统中,通常采用码本来量化CSI。因此,码本设计是Massive MIMO的一个关键问题。
长期演进(Long Term Evolution,LTE)为了防止小区间干扰,定义了码本子集限制(codebook subset restriction,CBSR/CSR)信令。它的基本原理是:网络端通过无线资源控制(radio resource control,RRC)配置相应参数,来限制终端可以使用的预编码矩阵的范围,进而尽量减少基站给终端发送的数据波束对其他小区的干扰。
新无线(new radio,NR)技术中构建预编码矩阵的方法与LTE标准有所不同,具体来说,NR使用波束组合(beam combination)技术来构建预编码向量,这与LTE标准所采用的从码本中直接选择合适的矩阵作为预编码矩阵(这种方法也可以称为波束选择,beam selection)的方法存在很大区别,因此LTE标准为降低干扰所采用的码本子集限制方案无法适用于NR所采用的波束组合技术中。
由此可见,需要设计一种适用于NR的码本子集限制方案。
发明内容
如前所述,针对LTE码本子集限制方案无法适用于NR的问题,本申请实施例提供了一种波束指示方法和相应的波束上报方法,包括:
网络设备生成指示信息,其中,对于至少一个传输层之中的每一传输层,所述指示信息用于指示波束集合中的每一波束对应于该传输层的波束属性,其中所述波束属性为多种波束属性之中的一种,所述多种波束属性至少包括:非候选波束、候选基准波束和候选非基准波束;网络设备向终端发送所述指示信息。终端在接收到网络设备发送的指示信息之后,对于至少一个传输层之中的每一传输层,根据所述指示信息确定所述波束集合中的每一波束对应于该传输层的波束属性。该波束属性即限制了该波 束是否可以作为候选波束,在作为候选波束时进一步限制了其在不同的传输层下是否可以作为候选基准波束和候选非基准波束,因此,在通过波束组合方式构建预编码向量时,通过指示该波束是否可以作为一传输层对应的预编码向量的分量向量、基准波束或者非基准波束。如此一来,便可以针对对预编码向量的空间方向影响较大的基准波束的选择范围进行限制,从而实现对通过波束组合方式获得的预编码向量所指向的数据传输的方向进行限制和/或调整,达到降低干扰的目的,也能避免叠加后的波束方向对其他小区造成干扰。
一种实现方式中,所述的指示信息用于指示波束集合中的每一波束对应于不同传输层的波束属性;这种情况下,所述指示信息可以指示一个波束对应于不同传输层的波束属性。
另一种实现方式中,所述指示信息分别指示不同传输层的不同波束的波束属性;同一传输层的不同波束的波束属性不同;这种情况下,对应不同的传输层,需要独立的指示信息来指示其中的每一波束的波束属性。
再一种实现方式中,所述指示信息用于指示不同传输层的不同波束的波束属性;同一传输层下的所有波束的波束属性相同,这种情况下,需要指示信息指示不同传输层是否可作为候选波束,若该传输层可作为候选波束,再进一步指示该传输层中的每一个波束的波束属性。
其中,所述指示信息包括多条子信息,每一子信息与所述波束集合之中的一个波束相对应,该子信息用于指示下列其中之一:
对于第一传输层,所述波束的波束属性为候选基准波束,且对于第二传输层,所述波束的波束属性为候选基准波束;
对于第一传输层,所述波束的波束属性为候选非基准波束,且对于第二传输层,所述波束的波束属性为候选基准波束;
对于第一传输层,所述波束的波束属性为候选非基准波束,且对于第二传输层,所述波束的波束属性为候选非基准波束;
对于第一传输层,所述波束的波束属性为非候选波束,且对于第二传输层,所述波束的波束属性为非候选波束;
其中,所述第一传输层强于第二传输层。
第一传输层强于第二传输层,具体表现为第一传输层对应的奇异值大于第二传输层对应的奇异值;或者第一传输层的主径能量强于第二传输层。
以上所述的指示信息通过无线资源控制(radio resource control,RRC)发送。
终端接收到所述指示信息之后,对于至少一个传输层之中的每一传输层,根据所述指示信息确定所述波束集合中的每一波束对应于该传输层的波束属性之后,然后根据每一传输层下每一波束的波束属性,确定是否上报波束,以及上报波束的位置和叠加系数。
具体的,所述根据每一传输层下每一波束的波束属性,确定是否上报波束,以及上报波束的位置和叠加系数,包括:
当波束属性为非候选波束,不上报;
当波束属性为候选非基准波束,上报该波束的位置和宽带幅度,并且宽带幅度小 于1;
当波束属性为候选基准波束,上报该波束的位置。
另一方面,本申请实施例提供了网络设备,该网络设备可以是一种基站,也可以是一种控制节点。
这种网络侧设备可以包括作为对传统无线电信系统中的对等设备的改进的系统和设备。这种高级或下一代设备可以包含在演进无线通信标准(例如长期演进(LTE))中。
所述网络设备包括:
处理器,用于生成指示信息,其中,对于至少一个传输层之中的每一传输层,所述指示信息用于指示波束集合中的每一波束对应于该传输层的波束属性,其中所述波束属性为多种波束属性之中的一种,所述多种波束属性至少包括:非候选波束、候选基准波束和候选非基准波束;
收发器,用于发送所述处理器生成的指示信息。
另一方面,本申请实施例提供了一种基站,该基站具有实现上述方法实际中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,基站的结构中包括处理器和收发器,所述处理器被配置为支持基站执行上述方法中相应的功能。所述收发器用于支持基站与UE之间的通信,向UE发送上述方法中所涉及的信息或者信令,接收基站所发送的信息或指令。所述基站还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
又一方面,本申请实施例提供了一种终端,该终端具有实现上述方法设计中终端行为的功能。所述功能可以通过硬件实现,终端的结构中包括收发器和处理器。
收发器,用于接收来自网络设备接收指示信息,其中,对于至少一个传输层之中的每一传输层,所述指示信息用于指示波束集合中的每一波束对应于该传输层的波束属性,其中所述波束属性为多种波束属性之中的一种,所述多种波束属性至少包括:非候选波束、候选基准波束和候选非基准波束;
处理器,用于对于至少一个传输层之中的每一传输层,根据所述指示信息确定所述波束集合中的每一波束对应于该传输层的波束属性。
所述终端也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
又一方面,本申请实施例提供了一种控制节点,可以包括控制器/处理器,存储器以及通信单元。所述控制器/处理器可以用于协调多个基站之间的资源管理和配置,可以用于执行上述实施例描述的方法。存储器可以用于存储控制节点的程序代码和数据。所述通信单元,用于支持该控制节点与基站进行通信,譬如将所配置的资源的信息发送给基站。
又一方面,本申请实施例提供了一种通信系统,该系统包括上述方面所述的基站和终端。可选地,还可以包括上述实施例中的控制节点。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例的无线通信网络的示范性示意图。
图2是本申请一实施例的波束指示和上报方法。
图3是本申请一实施例的网络设备的结构示意图;
图4是本申请一实施例的终端的结构示意图;
图5是本申请一实施例的通信设备的结构示意图。
具体实施方式
首先,对本文中涉及的相关技术和术语进行解释说明,以方便读者理解:
1)理想预编码向量、分量向量、基础码本
在具体实现过程中,理想预编码向量可以通过多种方法来获得,且通过不同方法获得的理想预编码向量可以不同。例如,理想预编码向量可通过对信道矩阵进行奇异值分解(Singular Value Decomposition,SVD)来获得。具体来说,对信道矩阵进行奇异值分解(Singular Value Decomposition,SVD),可以将信道矩阵分解为左酉矩阵、对角矩阵和右酉矩阵三者乘积的形式。在具体实现过程中,可以将右酉矩阵的共轭转置矩阵作为理想预编码矩阵,该理想预编码矩阵的列向量即可作为理想预编码向量。此外,上述依照奇异值分解获得的理想预编码矩阵,也可以通过,例如但不限于,对信道矩阵的相关矩阵进行特征值分解来获得。在具体实现过程中,可以根据系统设计的整体需要,确定理想预编码向量的具体值及其获取方法。有关理想预编码向量的技术细节已经在现有技术中进行了清楚的描述,因此此处不再赘述。此外,上述信道矩阵可以借助参考信号来获得,且信道矩阵的形式可以有多种,不同形式的信道矩阵的值可能有所不同。有关信道矩阵的技术细节已经在现有技术中进行了清楚的描述,因此此处不再赘述。
在获得上述理想预编码向量之后,可以将该理想预编码向量近似表示成多个分量向量加权之和的形式,即:
Figure PCTCN2018101435-appb-000001
其中,P代表理想预编码向量,b i代表分量向量i,a i代表分量向量i的叠加系数。在具体实现过程中,可以根据具体需要(例如但不限于精确度的需要),设置分量向量的数量m(m为正整数),例如,分量向量的数量可以为预设的数量。
基础码本是一系列候选向量的集合。基础码本通常可以表现为矩阵的形式,因此也可将基础码本称为基础码本矩阵,候选向量即为基础码本矩阵的列向量。对于本文 提到的基础码本,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可与基础码本矩阵互换。
基础码本矩阵包含多个列向量,其中的一些列向量,可以被选中作为分量向量。分量向量的选择方法有多种,可以根据具体的需要选择合适的方法。举例来说,可以根据基础码本矩阵的列向量与理想预编码向量的接近程度,从多个列向量中确定分量向量,其中与理想预编码向量接近程度最高的多个列向量即可被选中作为分量向量。在具体实现过程中,上述接近程度可以具体体现为,例如但不限于,基础码本矩阵的列向量与理想预编码向量的内积或者欧氏距离。以内积为例,在确定分量向量时,可以将与理想预编码向量的内积(例如,如果内积为复数,则为该内积的幅度)最大的多个列向量作为分量向量,当存在多个基础码本矩阵时,上述多个列向量可以属于不同的基础码本。此外,还可以进一步将每一分量向量与理想预编码向量的内积作为该分量向量的叠加系数。
在具体实现过程中,当叠加系数选自特定叠加系数集合时,上述分量向量及其叠加系数也可以通过遍历的方式来确定。例如,若分量向量的数量为4个,可以从基础码本矩阵中任选4个候选向量作为分量向量,并且从叠加系数集合中任选4个叠加系数作为所选4个分量向量的叠加系数,以此来构建一准理想预编码向量,并将该准理想预编码向量与信道矩阵进行比较,来确定该准理想预编码向量是否可以作为理想预编码向量。例如,可通过该准理想预编码向量来对信道矩阵进行预编码,并计算经过预编码的信道矩阵的信道容量,在该信道容量高于预设阈值时,认定该准理想预编码向量为理想预编码向量,并将上述候选向量认定为分量向量,将上述叠加系数认定为这些分量向量的叠加系数。此外,本领域的技术人员应当明白,也可以通过信道矩阵直接获得上述分量向量和叠加系数,而不必先获得理想预编码向量。本发明实施例对如何确定分量向量和叠加系数不做限定。
在获得分量向量和叠加系数之后,通过叠加系数来对分量向量进行加权合并,便可获得一预编码向量,以模拟理想预编码向量。发射端设备可以将该预编码向量直接用于对待发射信号进行预编码,也可以对该预编码向量进行其他处理,并通过处理后的预编码向量对待发射信号进行预编码。在具体实现过程中,上述其他处理可以是对预编码向量进行重构,例如将即将同时调度的多个用户的预编码向量进行正交化处理等。上述内容在现有技术中已经进行了清楚的描述,因此此处不再赘述。
为便于描述,在本发明实施例提供的技术方案中,可将基础码本矩阵所包含的列向量称为波束(beam),在这种情况下,上文所述的通过叠加系数来对分量向量进行加权合并以获得预编码向量的方法便可称为波束组合(beam combination),而上述分量向量也可以称为分量波束。有关波束组合的相关技术在现有技术中已经进行了详细的描述,因此此处不再赘述。同时,在预编码向量的分量向量中,与预编码向量最为接近的分量向量可以称为基准波束,其他分量向量可以称为非基准波束。在具体实现过程中,认定基准波束和非基准波束的方法有很多种,且不同方法所认定的基准波束和非基准波束可以不同,本发明实施例对具体方法不做限定。此外,上述基础码本和基础码本矩阵也可以称为基础波束集合。在具体实现过程中,可以从基础波束集合中选择波束作为分量向量,也可以从基础波束集合的子集中选择波束作为分量向量。
每个预编码向量可以对一个数据流进行预编码,该数据流又可称为层(Layer)、数据层或者传输层,在本申请实施例中,可以使用Layer-x或者layer-x来表示层x。有关层的相关内容在现有技术中已经做了清楚的描述,因此此处不再赘述。在具体实现过程中,可以同时通过多个预编码向量来对多个传输层进行预编码,从而实现多流(或者多层)传输,以此来提高信道传输效率。一般来说,这些传输层的传输质量往往是不同的。例如,在通过奇异值分解来获得理想预编码向量时,通过较大奇异值所对应的理想预编码向量进行预编码的传输层的传输质量,往往高于通过较小奇异值对应的理想预编码向量进行预编码的传输层的传输质量。
在数据传输过程中,预编码向量常常可以用于表征数据传输的空间方向,而该空间方向在很大程度上取决于该预编码向量的基准波束的方向。为了避免对其他数据传输(例如相邻基站与该相邻基站所服务的终端之间的数据传输)造成干扰,可以尝试将预编码向量的方向设置成偏离上述其他数据传输的方向。为便于描述,可以将上述其他数据传输的方向称为限制方向。在具体实现过程中,可以通过基础波束集合或者其子集中的一个或者多个波束来模拟上述限制方向,为便于描述,可以将上述一个或者多个波束称为限制波束,意为被限制使用的波束。为了避开上述限制方向,可以从上述限制波束之外的波束中选择特定的波束作为将预编码向量的基准波束,在这种情况下,在很大程度上决定预编码向量的方向的基准波束,将不会是限制波束,如此一来,预编码向量将在一定程度上偏离上述限制方向。在选择波束的过程中,可以从基础波束集合或者其子集所包含的波束中进行选择。换句话说,在设置预编码向量的基准波束时,要避开上述限制波束。
如此一来,在通过波束组合方式构建预编码向量时,可以为基础波束集合或者其子集中的波束设置波束属性,以此来指示该波束是否可以作为一传输层对应的预编码向量的分量向量、基准波束或者非基准波束。例如,设置的波束属性可以从多种波束属性中选择,这些波束属性可以至少包括:非候选波束、候选基准波束和候选非基准波束,其中,对应一传输层,若一波束的波束属性为非候选波束,则该波束不可作为上述预编码向量的分量向量,由此可见该波束可以为一限制波束;若一波束的波束属性为候选基准波束,则该波束可以作为上述预编码向量的基准波束,进一步的,该波束也可以作为上述预编码向量的非基准波束;若一波束的波束属性为非基准波束,则该波束可以作为上述预编码向量的非基准波束,而不能作为基准波束。
应注意,本领域的技术人员应当明白,在具体实现过程中,也可以基于其他原因来设置一个波束的波束属性,从而确定例如该波束是否可以作为预编码向量的分量向量、基准波束或者非基准波束,而不仅仅受限于上述规避干扰的目的。
3)、多个,和/或,第一,第二
本申请中的术语“多个”是指两个或两个以上。本申请中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。本申请中的术语“第一”、“第二”是为了区分不同的对象,并不限定该不同对象的顺序。
通常来说,在通信过程中,终端根据网络设备发射的参考信号确定信道矩阵,并 基于信道矩阵和基础码本确定预编码向量,以及将获取预编码向量的相关信息反馈给网络设备。网络设备获取预编码向量,并根据预编码向量对待发射数据进行预编码,并将预编码后的数据发往终端。为了尽量减少网络设备给终端发送的数据波束对其他小区的干扰,网络设备可以通过例如但不限于无线资源控制(radio resource control,RRC)配置相应参数,来限制终端可以使用的波束的范围。
目前新无线(new radio,NR)中定义了两种基本码本的类型,一种是波束选择(beam selection)码本,另外一种是波束组合(beam combination)码本。Beam selection码本可以采用类似LTE中Class A码本的CBSR方法,信令比特直接用于索引码本的参数i1/Layer/i2。但是对于beam combination码本,它的CBSR码本不能像class A那样进行限制,因为最后预编码矩阵的方向是多个beam叠加后的结果,单纯通过限制单个beam方向不能代表最后限制了beam叠加后的方向,因此,对于beam combination码本,本申请解决的技术问题就是如何限制终端可以使用的波束范围,从而限制终端使用的预编码向量的范围。
基于此,本申请实施例提供了一种波束指示方法和设备,有助于实现以下有益效果:在通过波束组合方式构建预编码向量时,可以为基础波束集合或者其子集中的波束设置波束属性,以此来指示该波束是否可以作为一传输层对应基准波束或者非基准波束。如此一来,便可以针对对预编码向量的空间方向影响较大的基准波束的选择范围进行限制,从而实现对通过波束组合方式获得的预编码向量所指向的数据传输的方向进行限制和/或调整,达到降低干扰的目的。
图1是依照本申请一实施例的无线通信网络100的示范性示意图。如图1所示,无线通信网络100包括基站102~106和终端设备108~122,其中,基站102~106彼此之间可通过回程(backhaul)链路(如基站102~106彼此之间的直线所示)进行通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。终端设备108~122可通过无线链路(如基站102~106与终端设备108~122之间的折线所示)与对应的基站102~106通信。
基站102~106用于为终端设备108~122提供无线接入服务。具体来说,每个基站都对应一个服务覆盖区域(又可称为蜂窝,如图1中各椭圆区域所示),进入该区域的终端设备可通过无线信号与基站通信,以此来接受基站提供的无线接入服务。基站的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个基站的无线信号,因此这些基站可以进行相互协同,以此来为该终端设备提供服务。例如,多个基站可以采用多点协作(Coordinated multipoint,CoMP)技术为处于上述交叠区域的终端设备提供服务。例如,如图1所示,基站102与基站104的服务覆盖区域存在交叠,终端设备112便处于该交叠区域之内,因此终端设备112可以收到来自基站102和基站104的无线信号,基站102和基站104可以进行相互协同,来为终端设备112提供服务。又例如,如图1所示,基站102、基站104和基站106的服务覆盖区域存在一个共同的交叠区域,终端设备120便处于该交叠区域之内,因此终端设备120可以收到来自基站102、104和106的无线信号,基站102、104和106可以进行相互协同,来为终端设备120提供服务。
依赖于所使用的无线通信技术,基站又可称为节点B(NodeB),演进节点B(evolved NodeB,eNodeB)以及接入点(Access Point,AP)等。此外,根据所提供的服务覆盖区域的大小,基站又可分为用于提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell) 的微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站等。随着无线通信技术的不断演进,未来的基站也可以采用其他的名称。
终端设备108~122可以是具备无线通信功能的各种无线通信设备,例如但不限于移动蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、智能电话、笔记本电脑、平板电脑、无线数据卡、无线调制解调器(Modulator demodulator,Modem)或者可穿戴设备如智能手表等。随着物联网(Internet of Things,IOT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端设备108~122还可以称为移动台、移动设备、移动终端、无线终端、手持设备、客户端等。
基站102~106,和终端设备108~122均可配置有多根天线,以支持MIMO(多入多出,Multiple Input Multiple Output)技术。进一步的说,基站102~106和终端设备108~122既可以支持单用户MIMO(Single-User MIMO,SU-MIMO)技术,也可以支持多用户MIMO(Multi-User MIMO,MU-MIMO),其中MU-MIMO可以基于空分多址(Space Division Multiple Access,SDMA)技术来实现。由于配置有多根天线,基站102~106和终端设备108~122还可灵活支持单入单出(Single Input Single Output,SISO)技术、单入多出(Single Input Multiple Output,SIMO)和多入单出(Multiple Input Single Output,MISO)技术,以实现各种分集(例如但不限于发射分集和接收分集)和复用技术,其中分集技术可以包括例如但不限于发射分集(Transmit Diversity,TD)技术和接收分集(Receive Diversity,RD)技术,复用技术可以是空间复用(Spatial Multiplexing)技术。而且上述各种技术还可以包括多种实现方案,例如发射分集技术可以包括,空时发射分集(Space-Time Transmit Diversity,STTD)、空频发射分集(Space-Frequency Transmit Diversity,SFTD)、时间切换发射分集(Time Switched Transmit Diversity,TSTD)、频率切换发射分集(Frequency Switch Transmit Diversity,FSTD)、正交发射分集(Orthogonal Transmit Diversity,OTD)、循环延迟分集(Cyclic Delay Diversity,CDD)等分集方式,以及上述各种分集方式经过衍生、演进以及组合后获得的分集方式。例如,目前LTE(长期演进,Long Term Evolution)标准便采用了空时块编码(Space Time Block Coding,STBC)、空频块编码(Space Frequency Block Coding,SFBC)和CDD等发射分集方式。
此外,基站102~106与终端设备108~122可采用各种无线通信技术进行通信,例如但不限于,时分多址(Time Division Multiple Access,TDMA)技术、频分多址(Frequency Division Multiple Access,FDMA)技术、码分多址(Code Division Multiple Access,CDMA)技术、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、正交频分多址(Orthogonal FDMA,OFDMA)技术、单载波频分多址(Single Carrier FDMA,SC-FDMA)技术、空分多址(Space Division Multiple Access,SDMA)技术以及这些技术的演进及衍生技术等。上述无线通信技术作为无线接入技术(Radio Access Technology,RAT)被众多无线通信标准所采纳,从而构建出了在今天广为人们所熟知的各种无线通信系统(或者网络),包括但不限于 全球移动通信系统(Global System for Mobile Communications,GSM)、CDMA2000、宽带CDMA(Wideband CDMA,WCDMA)、由802.11系列标准定义的WiFi、全球互通微波存取(Worldwide Interoperability for Microwave Access,WiMAX)、长期演进(Long Term Evolution,LTE)、LTE升级版(LTE-Advanced,LTE-A)以及这些无线通信系统的演进系统等。如无特别说明,本申请实施例提供的技术方案可应用于上述各种无线通信技术和无线通信系统。此外,术语“系统”和“网络”可以相互替换。
应注意,图1所示的无线通信网络100仅用于举例,并非用于限制本申请的技术方案。本领域的技术人员应当明白,在具体实现过程中,无线通信网络100还可能包括其他设备,例如但不限于基站控制器(Base Station Controller,BSC),同时也可根据具体需要来配置基站和终端设备的数量。
在本文中,上述网络设备可以是图1所示的基站102~106,终端可以是图1所示的终端设备108~122。本申请实施例提供了一种波束指示方法和接收方法,以及相应的网络设备和终端,下面就对本申请实施例提供的技术方案进行详细描述。
图2是依照本申请一实施例的指示方法和确定预编码向量的方法的交互示意图。图2所述的方法可以包括以下步骤S101~S104:
步骤101:网络设备生成指示信息,其中,对于至少一个传输层之中的每一传输层,所述指示信息用于指示波束集合中的每一波束对应于该传输层的波束属性,其中所述波束属性为多种波束属性之中的一种,所述多种波束属性至少包括:非候选波束、候选基准波束和候选非基准波束;其中,所述波束集合为基础波束集合或者基础波束集合的子集。
在具体实现过程中,部分波束的波束属性也可能无需指示,在这种情况下,这些波束的波束属性可以采用在标准中预先规定的方式来确定。
在具体实现过程中,上述波束集合可以为基础波束集合或者基础波束集合的子集。此外,上述至少一个传输层可以是通信系统所支持的所有传输层,例如网络设备所支持的所有传输层,或者终端所支持的所有传输层,也可以是所有传输层之中的部分传输层。特别的,上述至少一个传输层可以是网络设备采用波束组合形式进行数据传输时所支持的所有传输层,或者终端采用波束组合形式进行数据传输时所支持的所有传输层。
在具体实现过程中,一个波束的多种波束属性可以如下列表1所示:
表1
指示信息 波束属性
1 波束属性1
2 波束属性2
K 波束属性K
这里的波束属性至少包括:波束属性1:候选基准波束,也即该波束不受限制,可以用而且可以作为基准波束。波束属性2:候选非基准波束,也即该波束不受限制, 可以用但是不可以作为基准波束。波束属性3:非候选波束,也即该波束受限制,不可以用,避免造成干扰。
所述指示信息用于指示:指示波束集合中的每一波束对应于不同传输层的波束属性;也即,用一个指示信息即可指示一个波束对应于不同传输层的波束属性。
所述指示信息还用于分别指示不同传输层的不同波束的波束属性;同一传输层的不同波束的波束属性不同;也即,对于每一个波束对应于不同传输层的波束属性,单独用一个指示信息来进行指示。
所述指示信息还用于分级指示不同传输层的不同波束的波束属性;也即首先指示某一传输层中的波束是否是候选波束,如果该传输层的波束不受限制,则进一步指示每一个波束对应于该传输层的波束属性,如果该传输层受限制,则只需要指示该传输层是受限制的传输层,也即每一个波束对应于该传输层中的波束属性都为非候选波束,此时无需进一步指示该传输层中的每一个波束的波束属性。
在一种实现方案中,上述指示信息可以包括多条子信息,每一子信息与所述波束集合之中的一个波束相对应,该子信息用于指示该波束在上述至少一个传输层之中的各个传输层中的波束属性。举例来说,一子信息的具体含义可以表示为{波束对应传输层1的波束属性,波束对应传输层2的波束属性…波束对应传输层x的波束属性}。以2个传输层为例,在具体实现过程中,子信息的具体含义可以表示成如下形式:
表2:
子信息 Layer-1 Layer-2
1 波束属性1 波束属性1
2 波束属性1 波束属性2
K2 波束属性1 波束属性K2
K2+1 波束属性2 波束属性1
K2+2 波束属性2 波束属性2
2K2 波束属性2 波束属性K2
(K1-1)*(K2)+1 波束属性K1 波束属性1
(K1-1)*(K2)+2 波束属性K1 波束属性2
(K1-1)*(K2)+K2 波束属性K1 波束属性K2
其中,举例来说,当子信息的信息索引为1时,该子信息的具体含义为,该子信息所对应的波束在层Layer-1中的波束属性为波束属性1,在层Layer-2中的波束属性为波束属性1。在实际数据传输过程中,子信息和/或指示信息可以为上述具体含义的索引,或者上述具体含义的量化表现形式。
当波束信息采用上述实现方案时,作为本发明实施例的第一种具体实现方案,当传输层的数量为2时,子信息的具体取值可以如下表3:
表3
子信息 Layer-1 Layer-2
第一种取值 候选基准波束 候选基准波束
第二种取值 候选非基准波束 候选基准波束
第三种取值 候选非基准波束 候选非基准波束
第四种取值 非候选波束 非候选波束
其中,在上述第一种具体实现方案中,第一传输层强于第二传输层,例如第一传输层的传输质量高于第二传输层的传输质量,或者第一传输层的发射能量强于第二传输层的发射能量。换句话说,在上述第一种具体实现方案中,子信息的具体含义可以表示为:
对于第一传输层,所述波束的波束属性为候选基准波束,且对于第二传输层,所述波束的波束属性为候选基准波束;或者
对于第一传输层,所述波束的波束属性为候选非基准波束,且对于第二传输层,所述波束的波束属性为候选基准波束;或者
对于第一传输层,所述波束的波束属性为候选非基准波束,且对于第二传输层,所述波束的波束属性为候选非基准波束;或者
对于第一传输层,所述波束的波束属性为非候选波束,且对于第二传输层,所述波束的波束属性为非候选波束;
其中,所述第一传输层强于第二传输层。
不难理解,在上述实现方案中,子信息的取值有四种,因此可以使用两比特来指示子信息。
当波束信息采用上述实现方案时,作为本发明实施例的第二种具体实现方案,当传输层的数量为2时,子信息的具体取值可以如下表4:
表4
子信息 Layer-1 Layer-2
第一种取值 候选基准波束 候选基准波束
第二种取值 候选基准波束 候选非基准波束
第三种取值 候选非基准波束 候选基准波束
第四种取值 候选非基准波束 候选非基准波束
第五种取值 非候选波束 非候选波束
其中,在上述第二种具体实现方案中,第一传输层强于第二传输层,其具体含义可以如前文所述。换句话说,在上述第二种具体实现方案中,子信息的具体含义可以表示为:
对于第一传输层,所述波束的波束属性为候选基准波束,且对于第二传输层,所述波束的波束属性为候选基准波束;或者
对于第一传输层,所述波束的波束属性为候选基准波束,且对于第二传输层,所述波束的波束属性为候选非基准波束;或者
对于第一传输层,所述波束的波束属性为候选非基准波束,且对于第二传输层,所述波束的波束属性为候选基准波束;或者
对于第一传输层,所述波束的波束属性为候选非基准波束,且对于第二传输层,所述波束的波束属性为候选非基准波束;或者
对于第一传输层,所述波束的波束属性为非候选波束,且对于第二传输层,所述波束的波束属性为非候选波束;
其中,所述第一传输层强于第二传输层。在具体实现过程中,所述第一传输层强于第二传输层,可以是,第一传输层的传输质量好于第二传输层。
不难理解,在上述实现方案中,子信息的取值有五种,因此可以使用三比特来指示子信息。
事实上,若第一传输层强于第二传输层,则一波束在第一传输层中用作基准波束,而在第二传输层中作为非基准波束的可能性非常小,即上述第二种取值的可能性非常小。
在具体实现过程中,当使用若干比特来指示子信息的具体取值时,可以将这些比特进一步划分为多个组,每一组比特与一个传输层相对应,用于指示上述波束在该传输层中的波束属性。例如,在传输层的数量为2时,若使用两比特来指示子信息的四种取值,则可以将一个比特用于指示波束在一个传输层中的波束属性,将另一个比特用于指示波束在另一个传输层中的波束属性,例如表5:
表5
子信息 Layer-1 Layer-2
00 波束属性1 波束属性1
01 波束属性1 波束属性2
10 波束属性2 波束属性1
11 波束属性2 波束属性2
其中在子信息的2个比特之中,前一个比特与传输层Layer-1相对应,后一个比特与传输层Layer-2相对应,波束属性1使用0来指示,波束属性2使用1来指示。
另一方面,也可以不再进一步区分哪些比特用于哪一传输层,而通过这些比特的整体取值来体现上述波束在各个传输层中的波束属性。例如,在传输层的数量为2时,若使用两比特来指示子信息的四种取值,则子信息的具体比特值与各个波束的波束属性之间的对应关系可以如下表6所示:
表6
子信息 Layer-1 Layer-2
00 波束属性1 波束属性2
01 波束属性1 波束属性1
10 波束属性2 波束属性2
11 波束属性2 波束属性1
此外,对于每一传输层,上述指示信息还可以包含一特定信息,用于指示波束集合中的波束是否均可应用于该传输层,即对于每一传输层,波束集合中是否存在至少一个波束,相对于该传输层,该至少一个波束的波束属性为非候选波束。当波束集合中的波束均可应用于该传输层时,则不存在上述至少一个波束;当波束集合中的波束并非均可应用于该传输层时,则存在上述至少一个波束。当不难理解,上述特定信息可以通过一比特来指示,例如,对于每一传输层,当该比特的取值为0时,表示波束集合中的波束均可应用于该传输层,当该比特的取值为1时,表示波束集合中至少有一个波束不可应用于该传输层。
一种实现方式中,所述指示信息可以采用码本子集限制(codebook subset restriction,CBSR/CSR)信令的形式实现,该CBSR信令用于限制线性叠加码本的预编码矩阵指示(Pre-coding matrix indicator,PMI)以及传输层指示(layer indicator,RI),其中,PMI限制信息包含各个波束属性。步骤102,网络设备将生成的指示信息发送出去;
这里的指示信息可以通过半静态的方式发送出去,例如通过高层信令,例如无线资源控制(radio resource control,RRC)信令或者其他通知信令;为进一步节约指示开销,该指示信息可以是一个索引号的方式,该索引号可以表示每一传输层中各个波束的波束限制信息。上述指示信息可以是多个信息,如上述表2~5几种方式所示的指示信息是多个信息,则这多个信息可以是同时发送的,也可以不是同时发送的。
步骤103,终端接收来自网络设备的指示信息;
步骤104,对于至少一个传输层之中的每一传输层,终端根据所述指示信息确定所述波束集合中的每一波束对应于该传输层的波束属性。
具体的,终端根据所述指示信息的指示,确定波束集合的波束是否是非候选波束,还是候选基准波束或者是候选非基准波束,并且根据每一传输层下每一波束的波束属性,确定是否上报波束,以及上报波束的位置和叠加系数。
步骤105,终端向网络设备上报所述候选波束。
具体的,当波束属性为非候选波束,不上报;当波束属性为候选非基准波束,上报该波束的位置和宽带幅度,并且宽带幅度小于1;当波束属性为候选基准波束,上 报该波束的位置。
本申请实施例提供了一种波束指示方法和设备,有助于实现以下有益效果:在通过波束组合方式构建预编码向量时,可以为基础波束集合或者其子集中的波束设置波束属性,以此来指示该波束是否可以作为一传输层对应的预编码向量的分量向量、基准波束或者非基准波束。如此一来,便可以针对对预编码向量的空间方向影响较大的基准波束的选择范围进行限制,从而实现对通过波束组合方式获得的预编码向量所指向的数据传输的方向进行限制和/或调整,达到降低干扰的目的。
以下将举例说明本申请的具体实现过程。
实施例一
本实施例以波束属性有三种,传输层数为2,通过多条子信息联合指示传输层和其中波束属性为例进行说明,即K=3,Layer=2,Layer-x与beam联合进行指示。
如表7所示,此种指示方式中,需要3bit的开销。
表7
子信息 Layer-1 Layer-2
000 波束属性1 波束属性1
001 波束属性1 波束属性2
010 波束属性2 波束属性1
011 波束属性2 波束属性2
100 波束属性3 波束属性3
101 - -
110 - -
111 - -
这种指示方式中,用000表示某一个波束对应于传输层1(Layer-1)的波束属性是波束属性1,对应于传输层2(Layer-2)中的波束属性也为波束属性1,即该波束对应于Layer-1和Layer-2中都可用且可以作为基准波束,即为候选基准波束。候选基准波束在本申请实施例中,可以称之为leading beam,后续全文可以用leading beam简称。用001表示某一个波束对应于传输层1(Layer-1)的波束属性是波束属性1,对应于传输层2(Layer-2)的波束属性为波束属性2,即该波束对应于Layer-1可以作为leading beam,但对应于Layer-2中可用但不可以作为基准波束,也即为候选非基准波束,候选非基准波束在本申请实施例中,可以称之为非leading beam,后续全文可以用非leading beam简称。用010表示某一个波束对应于传输层1(Layer-1)的波束属性是波束属性2,对应于传输层2(Layer-2)的波束属性为波束属性1,即该波束对应于Layer-1中可用但不可以作为leading beam,但对应于Layer-2为可用且可以作为leading beam。用011表示某一个波束对应于传输层1(Layer-1)的波束属性是波束属性2,对应于传输层2(Layer-2)的波束属性为波束属性2,即该波束对应于Layer-1和Layer-2中 可用但不可以作为leading beam。用100表示某一个波束对应于传输层1(Layer-1)的波束属性是波束属性3,对应于传输层2(Layer-2)的波束属性为波束属性3,即该波束对应于Layer-1和Layer-2中皆不可用,为非候选波束。换句话说,该波束对应于Layer-1和Layer-2来讲,都是被限制使用的波束,这些波束的方向往往是其他的数据传输的方向,为避免对其造成干扰,需要避免。
应理解的是,上述指示信息用二进制表示的仅为举例,在其他的实现方式中,还可以以其他形式的指示信息来表示,网络设备和终端只需要约定好指示信息或序号对应表示的波束属性或者属性组合即可。网络设备向终端指示某一个波束对应于传输层1和传输层2的波束属性时,只需要发送该指示信息即可。
考虑到主径能量高,因此某一波束若在Layer-1可用且可以作为基准波束,同时在Layer-2可用但不可以作为基准波束的可能性非常小,因此,除去这一可能性,对表7进行进一步优化后,得到表8。
表8
子信息 Layer-1 Layer-2
00 波束属性1 波束属性1
01 波束属性2 波束属性1
10 波束属性2 波束属性2
11 波束属性3 波束属性3
如表7所示,某一波束对应于Layer-1和Layer-2下可能的波束属性有四种组合形式,因此,用二进制00,01,10,11即可表示,只需要2bit的指示开销即可,相比表6所示的指示信息,表7所示的指示信息节约了1bit。
实施例二
本实施例以波束属性有三种属性,传输层数为2,通过指示信息分别指示各个传输层中的波束的属性为例进行说明,即K=3,Layer=2,各个Layer分别用多条子信息独立进行指示。如表9所示,此种指示方式中,指示某一波束对应于Layer-1的三种属性需要2bits的开销,在对应于Layer-2的三种属性需要2bits开销,一共需要4bits的开销。
表9
子信息 Layer-1
000 波束属性1
001 波束属性2
010 波束属性3
011 -
指示信息 Layer-2
100 波束属性1
101 波束属性2
110 波束属性3
111 -
这种指示方式中,首先用1bit来表示该指示信息是对应于Layer-1还是对应于Layer-2的,例如用0表示该指示信息是表示某一波束对应于Layer-1的波束属性,用1表示该指示信息是表示某一波束对应于Layer-2的波束属性;进一步的,用00表示某一波束,对应Layer-1的波束属性是波束属性1,对应于Layer-2的波束属性也是波束属性1,即候选基准波束。因此,000即表示某一波束对应于Layer-1的波束属性是波束属性1;100即表示某一波束对应于Layer-2的波束属性是波束属性1。其他波束对应于Layer-1和Layer-2的波束属性依次类推,这种方式中,则需要3bit的指示开销。
实施例三
本实施例以波束属性有三种属性,传输层数为2,通过指示信息分级指示传输层和波束属性为例进行说明,即K=3,Layer=2,Layer-x与beam分级进行指示layer。具体的,如表10所示,用00表示对应于两个Layer(Layer-1和Layer-2)的所有波束均无限制,也即波束属性均为波束属性1:可用且可作为leading beam;用01表示Layer-1无限制,对Layer-2有限制;用10表示对于Layer-2无限制,对于Layer-1有限制;用11表示对Layer-1和Layer-2中所有的波束均有限制;
对于有限制的Layer,则无需进一步指示某一波束对应该传输层的波束属性,也即所有波束对应于该传输层的波束属性都是属性3:非候选波束。对于无限制的Layer,则需要进一步指示某一波束对应于该传输层的波束属性。具体,如表11所示,用2bits来指示beam的三种波束属性,该波束属性表示的含义如前实施例所述,在此不再赘述。
表10
Figure PCTCN2018101435-appb-000002
表11
子信息 波束属性
00 波束属性1
01 波束属性2
10 波束属性3
11 -
本申请实施例提供的技术方案可以通过先指示某一传输层的限制情况,再进一步指示其中的波束的波束属性,例如,两个layer均无限制,均为属性1的这种情况,只需要00即可指示,相对于对于每一个传输层的每一个波束,都独立指示其波束属性的方式,将进一步节约指示开销。
图3是依照本申请一实施例的网络设备600的示范性逻辑结构示意图。网络设备600包括生成单元601和发送单元602。生成单元601可以用于执行图2中的S101,生成指示信息,其中,对于至少一个传输层之中的每一传输层,所述指示信息用于指示波束集合中的每一波束对应于该传输层的波束属性,其中所述波束属性为多种波束属性之中的一种,所述多种波束属性至少包括:非候选波束、候选基准波束和候选非基准波束;所述生成单元601还用于执行本申请中描述的其他步骤。发送单元602可以用于执行图2中的S102,即用于向终端发送所述指示信息,或者用于执行本申请中描述的其他步骤。
上述网络设备600用于执行上述对应的方法,相关技术内容已经在上文进行了清楚的描述,因此此处不再赘述。
图4是依照本申请一实施例的终端700的示范性逻辑结构示意图。如图4所示,终端700包括接收单元701和处理单元702。接收单元701可以用于执行图2中的S103,即接收来自网络设备的指示信息;接收单元701还用于执行本申请中描述的其他步骤。处理单元702可以用于执行图2中的S104,即对于至少一个传输层之中的每一传输层,根据所述指示信息确定所述波束集合中的每一波束对应于该传输层的波束属性,确定每一传输层下每一个波束是否可以作为候选基准波束或候选非基准波束,并且向网络设备上报所述候选波束,所述处理单元702还用于执行本申请中描述的其他步骤。
上述终端700用于执行上述对应的方法,相关技术内容已经在上文进行了清楚的描述,因此此处不再赘述。
图5是依照本申请一实施例的通信设备800的示范性硬件结构示意图。该通信设备800可以是上文中描述的网络设备,也可以是上文中描述的终端。如图5所示,通信设备800包括处理器802、收发器804、多根天线806,存储器808、I/O(输入/输出,Input/Output)接口810和总线812。收发器804进一步包括发射器8042和接收器8044,存储器808进一步用于存储指令8082和数据8084。此外,处理器802、收发器804、存储器808和I/O接口810通过总线812彼此通信连接,多根天线806与收发器804相连。
处理器802可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器802还可以是多个处理器的组合。
当该通信设备800为网络设备时,该处理器802用于生成指示信息,所述指示信息
其中,对于至少一个传输层之中的每一传输层,所述指示信息用于指示波束集合中的每一波束对应于该传输层的波束属性,其中所述波束属性为多种波束属性之中的一种,所述多种波束属性至少包括:非候选波束、候选基准波束和候选非基准波束;然后,通过收发器804将其发送给终端。
当该通信设备800为终端时,收发器804接收来自网络设备的指示信息,对于至少一个传输层之中的每一传输层,通过处理器802根据所述指示信息确定所述波束集合中的每一波束对应于该传输层的波束属性,确定每一传输层下每一个波束是否可以作为候选基准波束或候选非基准波束,在通过收发器804向所述网络设备上报所述候选波束;
收发器804包括发射器8042和接收器8044,其中,发射器8042用于通过多根天线806之中的至少一根天线发送信号。接收器8044用于通过多根天线806之中的至少一根天线接收信号。
存储器808可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器808具体用于存储指令8082和数据8084,处理器802可以通过读取并执行存储器808中存储的指令8082,来执行上文所述的步骤和/或操作,在执行上述操作和/或步骤的过程中可能需要用到数据8084。
I/O接口810用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
在本申请的一个实施例中,处理器802可以用于执行,例如,图2所示方法中的S201。处理器802可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器808中存储的指令8082来执行上述步骤和/或操作的处理器,处理器802在执行上述步骤和/或操作的过程中可能需要用到数据8084。发射器8042具体用于通过多根天线806之中的至少一根天线执行,例如,图2所示方法中的S202。
在本申请的另一个实施例中,处理器802可以用于执行,例如,图2所示方法中的S204。处理器802可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器808中存储的指令8082来执行上述步骤和/或操作的处理器,处理器802在执行上述步骤和/或操作的过程中可能需要用到数据8084。接收器8044具体用于通过多根天线806之中的至少一根天线执行,例如图2所示方法中的S203。
应注意,在具体实现过程中,通信设备800还可以包括其他硬件器件,本文不再 一一列举。
本领域普通技术人员可知,上述方法中的全部或部分步骤可以通过程序指令相关的硬件完成,该程序可以存储于一计算机可读存储介质中,该计算机可读存储介质如ROM、RAM和光盘等。
本申请实施例还提供一种存储介质,该存储介质可以包括存储器808。
由于本申请实施例提供的信息传输装置可用于执行上述信息传输方法,因此其所能获得的技术效果可参考上述方法实施例,本申请实施例在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (15)

  1. 一种波束指示方法,其特征在于,包括:
    生成指示信息,其中,对于至少一个传输层之中的每一传输层,所述指示信息用于指示波束集合中的每一波束对应于该传输层的波束属性,其中所述波束属性为多种波束属性之中的一种,所述多种波束属性至少包括:非候选波束、候选基准波束和候选非基准波束;
    发送所述指示信息。
  2. 一种网络设备,其特征在于,包括:
    处理器,用于生成指示信息,其中,对于至少一个传输层之中的每一传输层,所述指示信息用于指示波束集合中的每一波束对应于该传输层的波束属性,其中所述波束属性为多种波束属性之中的一种,所述多种波束属性至少包括:非候选波束、候选基准波束和候选非基准波束;
    收发器,用于发送所述处理器生成的指示信息。
  3. 如权利要求1所述的方法或权利要求2所述的网络设备,其特征在于,所述波束集合为基础波束集合或者基础波束集合的子集。
  4. 如权利要求3所述的方法或网络设备,其特征在于,所述指示信息用于指示:
    指示波束集合中的每一波束对应于不同传输层的波束属性;
    或分别指示不同传输层的不同波束的波束属性;同一传输层的不同波束的波束属性不同;
    或分级指示不同传输层的不同波束的波束属性。
  5. 如权利要求1或者2所述的方法或网络设备,其特征在于,所述指示信息包括多条子信息,每一子信息与所述波束集合之中的一个波束相对应,该子信息用于指示下列其中之一:
    对于第一传输层,所述波束的波束属性为候选基准波束,且对于第二传输层,所述波束的波束属性为候选基准波束;
    对于第一传输层,所述波束的波束属性为候选非基准波束,且对于第二传输层,所述波束的波束属性为候选基准波束;
    对于第一传输层,所述波束的波束属性为候选非基准波束,且对于第二传输层,所述波束的波束属性为候选非基准波束;
    对于第一传输层,所述波束的波束属性为非候选波束,且对于第二传输层,所述波束的波束属性为非候选波束;
    其中,所述第一传输层强于第二传输层。
  6. 如权利要求1~5中任一项所述的方法或网络设备,其特征在于,所述指示信 息通过RRC信令发送。
  7. 一种波束上报方法,其特征在于,包括:
    接收指示信息,其中,对于至少一个传输层之中的每一传输层,所述指示信息用于指示波束集合中的每一波束对应于该传输层的波束属性,其中所述波束属性为多种波束属性之中的一种,所述多种波束属性至少包括:非候选波束、候选基准波束和候选非基准波束;
    对于至少一个传输层之中的每一传输层,根据所述指示信息确定所述波束集合中的每一波束对应于该传输层的波束属性。
  8. 一种终端,其特征在于,包括:
    收发器,用于接收来自网络设备接收指示信息,其中,对于至少一个传输层之中的每一传输层,所述指示信息用于指示波束集合中的每一波束对应于该传输层的波束属性,其中所述波束属性为多种波束属性之中的一种,所述多种波束属性至少包括:非候选波束、候选基准波束和候选非基准波束;
    处理器,用于对于至少一个传输层之中的每一传输层,根据所述指示信息确定所述波束集合中的每一波束对应于该传输层的波束属性。
  9. 如权利要求7所述的方法或权利要求8所述的终端,其特征在于,所述对于至少一个传输层之中的每一传输层,根据所述指示信息确定所述波束集合中的每一波束对应于该传输层的波束属性之后,包括:
    根据每一传输层下每一波束的波束属性,确定是否上报波束,以及上报波束的位置和叠加系数。
  10. 如权利要求9所述的方法或终端,其特征在于,所述根据每一传输层下每一波束的波束属性,确定是否上报波束,以及上报波束的位置和叠加系数,包括:
    当波束属性为非候选波束,不上报;
    当波束属性为候选非基准波束,上报该波束的位置和宽带幅度,并且宽带幅度小于1;
    当波束属性为候选基准波束,上报该波束的位置。
  11. 一种网络设备,其特征在于,包括:
    处理模块,用于生成指示信息,其中,对于至少一个传输层之中的每一传输层,所述指示信息用于指示波束集合中的每一波束对应于该传输层的波束属性,其中所述波束属性为多种波束属性之中的一种,所述多种波束属性至少包括:非候选波束、候选基准波束和候选非基准波束;
    发送模块,用于发送所述处理模块生成的指示信息。
  12. 一种终端,其特征在于,包括:
    接收模块,用于接收来自网络设备接收指示信息,其中,对于至少一个传输层 之中的每一传输层,所述指示信息用于指示波束集合中的每一波束对应于该传输层的波束属性,其中所述波束属性为多种波束属性之中的一种,所述多种波束属性至少包括:非候选波束、候选基准波束和候选非基准波束;
    处理模块,用于对于至少一个传输层之中的每一传输层,根据所述指示信息确定所述波束集合中的每一波束对应于该传输层的波束属性。
  13. 一种处理装置,其特征在于,所述处理装置包括至少一个电路,所述至少一个电路用于执行权利要求1,3~6中任一项所述的波束指示方法,或,权利要求7、9、10中任一项所述的波束上报方法。
  14. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机的处理组件上运行时,使得所述处理组件执行权利要求1,3~6中任一项所述的波束指示方法,或,权利要求7、9、10中任一项所述的波束上报方法。
  15. 一种计算机程序产品,其特征在于,所述计算机程序产品中包含指令,其特征在于,当所述指令在计算机上运行时,使得计算机实现如权利要求1,3~6中任一项所述的波束指示方法,或,权利要求7、9、10中任一项所述的波束上报方法。
PCT/CN2018/101435 2017-08-21 2018-08-21 波束指示和上报方法、网络设备、终端 WO2019037694A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710720140.X 2017-08-21
CN201710720140.XA CN109428636B (zh) 2017-08-21 2017-08-21 波束指示和上报方法、网络设备、终端

Publications (1)

Publication Number Publication Date
WO2019037694A1 true WO2019037694A1 (zh) 2019-02-28

Family

ID=65439710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101435 WO2019037694A1 (zh) 2017-08-21 2018-08-21 波束指示和上报方法、网络设备、终端

Country Status (2)

Country Link
CN (1) CN109428636B (zh)
WO (1) WO2019037694A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111800172B (zh) * 2019-04-09 2022-02-25 华为技术有限公司 一种通信方法及装置
CN116828497A (zh) * 2022-03-21 2023-09-29 维沃移动通信有限公司 信道特征信息传输方法、装置、终端及网络侧设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457649A (zh) * 2012-05-28 2013-12-18 电信科学技术研究院 波束赋形传输方法和装置
CN104184561A (zh) * 2014-01-13 2014-12-03 中兴通讯股份有限公司 预编码导频处理方法、装置、基站及终端
CN104702324A (zh) * 2015-03-17 2015-06-10 东南大学 大规模mimo下行链路自适应传输方法
WO2016180058A1 (zh) * 2015-05-14 2016-11-17 东南大学 一种基于波束运算和分组平均的lte-a双码本预编码选择方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326764B (zh) * 2012-03-20 2017-03-01 华为技术有限公司 一种下行信道质量信息获取方法和装置
KR102194928B1 (ko) * 2013-05-01 2020-12-24 엘지전자 주식회사 무선 통신 시스템에서 분할 빔포밍을 위하여 단말이 피드백 정보를 전송하는 방법 및 이를 위한 장치
US10158414B2 (en) * 2015-06-18 2018-12-18 Samsung Electronics Co., Ltd. Advanced beamforming and feedback methods for MIMO wireless communication systems
CN106374984A (zh) * 2015-07-20 2017-02-01 中兴通讯股份有限公司 一种波束更新的方法和装置
US9838095B2 (en) * 2015-07-21 2017-12-05 Samsung Electronics Co., Ltd. Higher rank codebooks for advanced wireless communication systems
CN105871435B (zh) * 2016-04-01 2019-04-02 北京北方烽火科技有限公司 信道状态信息反馈方法、装置及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457649A (zh) * 2012-05-28 2013-12-18 电信科学技术研究院 波束赋形传输方法和装置
CN104184561A (zh) * 2014-01-13 2014-12-03 中兴通讯股份有限公司 预编码导频处理方法、装置、基站及终端
CN104702324A (zh) * 2015-03-17 2015-06-10 东南大学 大规模mimo下行链路自适应传输方法
WO2016180058A1 (zh) * 2015-05-14 2016-11-17 东南大学 一种基于波束运算和分组平均的lte-a双码本预编码选择方法

Also Published As

Publication number Publication date
CN109428636B (zh) 2021-10-15
CN109428636A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
JP6640386B2 (ja) プリコーディングベクトルを示し決定するための方法およびデバイス
KR102618282B1 (ko) Mimo 측정 기준 신호 및 피드백을 동작시키기 위한 방법 및 장치
EP3348016B1 (en) Signaling methods and apparatus for advanced mimo communication systems
CN107431515B (zh) 用于码本设计和信令的方法和装置
CN106165314B (zh) 用于在无线通信系统中报告信道状态信息的方法和装置
CN106797242B (zh) 用于带有极化有源天线阵列的mimo无线通信系统的csi反馈
CN111342873B (zh) 一种信道测量方法和通信装置
CN109194377B (zh) 信道测量方法和用户设备
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
WO2018127073A1 (zh) 一种参数指示及确定方法和接收端设备及发射端设备
WO2021083285A1 (zh) 信道测量方法和用户设备
CN109150270B (zh) 信道状态信息反馈和接收方法、发送端设备和接收端设备
WO2020199964A1 (zh) 通信方法及装置
WO2019037694A1 (zh) 波束指示和上报方法、网络设备、终端
WO2018127110A1 (zh) 指示、确定预编码矩阵的方法以及接收、发射端设备
AU2019421319B2 (en) Precoding vector indicating and determining method and communications apparatus
US20200280963A1 (en) User equipment and access device
US20200128547A1 (en) Frequency Band Indication Method, Frequency Band Determining Method, Transmit End Device, And Receive End Device
US20230075044A1 (en) Channel Measurement Method and User Equipment
WO2022094821A1 (zh) 一种指示预编码矩阵的方法、用户设备、接入设备
WO2019095970A1 (zh) 一种用户设备、接入设备和预编码方法
WO2017028641A1 (zh) 信息反馈方法、信息反馈装置及终端
WO2019095973A1 (zh) 一种用户设备和信道测量方法
WO2018127072A1 (zh) 一种信道信息反馈及确定方法、接收端和发射端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848136

Country of ref document: EP

Kind code of ref document: A1