WO2021083285A1 - 信道测量方法和用户设备 - Google Patents

信道测量方法和用户设备 Download PDF

Info

Publication number
WO2021083285A1
WO2021083285A1 PCT/CN2020/124884 CN2020124884W WO2021083285A1 WO 2021083285 A1 WO2021083285 A1 WO 2021083285A1 CN 2020124884 W CN2020124884 W CN 2020124884W WO 2021083285 A1 WO2021083285 A1 WO 2021083285A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
index value
precoding matrix
index
transmission
Prior art date
Application number
PCT/CN2020/124884
Other languages
English (en)
French (fr)
Inventor
刘显达
刘鹍鹏
张雷鸣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to MX2022005066A priority Critical patent/MX2022005066A/es
Priority to EP20882840.0A priority patent/EP4044445A4/en
Publication of WO2021083285A1 publication Critical patent/WO2021083285A1/zh
Priority to US17/731,085 priority patent/US20220337295A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas

Definitions

  • the embodiment of the present invention relates to a channel measurement technology, in particular to a channel measurement method and user equipment.
  • the new radio (NR) of the fifth-generation mobile communication technology (5th-Generation, 5G) supports a codebook-based uplink transmission mode.
  • the base station may configure at least one Sounding Reference Signal (SRS) resource through high-level signaling.
  • SRS Sounding Reference Signal
  • User equipment User equipment, UE
  • the base station receives and measures the SRS sent by the user equipment.
  • the base station When the base station schedules the user for uplink data transmission, it will indicate the SRS resource indication (SRS resource indication, SRI), the number of transmission ranks (Transmission rank indication, TRI), and the transmission precoding through the downlink control information (DCI Downlink control information, DCI) Matrix (Transmission precoding matrix indication, TPMI).
  • SRS resource indication SRI
  • TTI Transmission rank indication
  • TRI Transmission rank indication
  • TPMI Transmission precoding matrix indication
  • the UE determines the number of transmission layers and precoding mode used to send data based on the indication information.
  • TRI and TPMI can be coded jointly, that is, by indicating a certain state in a DCI field, the number of transmission layers and the precoding matrix information can be indicated at the same time.
  • the number of transmission layers can be selected and indicated from the set ⁇ 1,2,3,4 ⁇ , and TPMI(W) is selected and indicated based on Table 1 to Table 7.
  • the rows of the matrix correspond to the transmission antenna ports of PUSCH or SRS ports, and the columns of the matrix correspond to the transmission layer.
  • It corresponds to the transmission antenna port of PUSCH, or SRS port.
  • TPMI 0-3 in Table 1 and Table 2 are non-coherent codewords
  • TPMI 0-5 in Table 3 are non-coherent codewords
  • TPMI 0 in Table 4 and Table 5 TPMI 0-1 in Table 6 and TPMI 0 in Table 7
  • TPMI 0 is a non-coherent codeword, for example, each column in the matrix has only one non-zero element.
  • TPMI 6-11 in Table 1 and Table 2 TPMI 6-13 in Table 3
  • TPMI 1-2 in Table 4 are partially coherent codewords.
  • each column in the matrix has Two non-zero elements and two zero elements.
  • TPMI other than the above-mentioned TPMI is a completely coherent codeword, for example, all elements in each column of the matrix are non-zero elements.
  • the terminal equipment will report the coherence capability between each transmitting antenna.
  • coherent capabilities include fully-coherent capabilities and non-coherent capabilities.
  • the fully-coherent capability indicates that the phase calibration is completed between the two transmitting antenna ports of the terminal equipment, and the phase weighting can be performed, that is: two transmitting antennas can be used to transmit the same layer of data; non-coherent (non-coherent) ) Capability, indicating that the phase calibration between the two transmitting antennas of the terminal device is not completed, and the same layer of data cannot be transmitted by phase weighting, that is, only one antenna can be used to transmit the same layer of data.
  • a terminal device For a terminal device with a maximum of 2 antenna ports, if reporting non-coherent capabilities, it can only support TPMI 0-1 in Table 6 and TPMI 0 in Table 7. Optionally, it can also support TPMI 2 to enable full power For PUSCH transmission, if the full coherence capability is reported, all TPMIs in Table 6 and Table 7 can be supported.
  • coherent capabilities include fully-coherent capabilities, partially-coherent capabilities, and non-coherent capabilities.
  • fully-coherent capability it indicates that all transmitting antennas of the UE have completed phase calibration and can be phase weighted, that is, all UE antennas can transmit the same data layer.
  • all TPMIs in Table 1-5 can be supported.
  • the phase calibration is completed in the UE's pairwise transmitting antenna groups and can be phase weighted, while the phase calibration between the UE's pairwise transmitting antenna groups is not completed and the phase weighting cannot be performed, that is, the antenna
  • the two transmitting antennas in the group can transmit the same layer of data.
  • it can support TPMI 0-11 in Table 1 and Table 2, TPMI 0-13 in Table 3, and TPMI 0-2 in Table 4 and Table 5.
  • it can also support TPMI 0-11 in Table 1 and Table 2.
  • the terminal device cannot maintain the phase between the antennas indicated by the base station.
  • non-coherent (non-coherent) capability it indicates that the UE's 4 transmitting antennas have not completed phase calibration, and they cannot be phase-weighted to transmit the same data layer, that is, for the same layer of data, only one antenna can be used for transmission.
  • it can support TPMI 0-3 in Table 1 and Table 2, TPMI 0-5 in Table 3, and TPMI 0 in Table 4 and Table 5.
  • it can also support TPMI in Table 1 and Table 2.
  • user equipment such as but not limited to terminal devices such as smart phones
  • uplink reference signals such as but not limited to sounding reference signal (Sounding Reference Signal, SRS)
  • the access device such as but not limited to base station
  • receives the uplink reference signal Refer to the signal and perform uplink channel measurement based on this, determine the uplink transmission parameters, and notify the user equipment of the above uplink transmission parameters through, for example, but not limited to, Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the uplink transmission parameters may include, for example, but not It is limited to at least one of the following parameters: Channel Quality Indicator (CQI), Rank Indication (RI) and Precoding Matrix Indicator (PMI).
  • CQI Channel Quality Indicator
  • RI Rank Indication
  • PMI Precoding Matrix Indicator
  • each codebook subset configuration corresponds to an index value index value set.
  • the access device can traverse each index value in the index value set corresponding to the current coherence capability, and based on, for example, but It is not limited to the principles of maximizing channel capacity or maximizing channel throughput to determine the selected index value.
  • the access device may select a precoding matrix in a preset codebook based on the principle of maximizing channel capacity or maximizing channel throughput, and use the number of columns of the precoding matrix as the rank.
  • the transmission parameter indication information is used to indicate the index value selected in the index value set corresponding to the current codebook subset configuration, and the index value is used to indicate the number of transmission layers and the precoding matrix ;
  • the transmission parameter indication method can be executed by an access device (such as a base station);
  • the selected index value can be sent through DCI.
  • the index value includes the index of the index value, the value of the number of transmission layers, and the index of the precoding matrix, and the precoding matrix It is jointly determined by the value of the number of transmission layers and the index of the precoding matrix. For example, when the value of the number of transmission layers is 1, index 1 indicates matrix A; when the value of the number of transmission layers is 2, index 1 indicates matrix B. Therefore, the precoding matrix is jointly determined by the value of the number of transmission layers and the index of the precoding matrix.
  • the codebook subset configuration is determined based on the coherence capability.
  • the codebook subset configuration includes a first codebook subset and a second codebook subset.
  • the coherence capability is one of the following capabilities:
  • the first codebook subset includes non-coherent codewords and a part of partially coherent or fully coherent codewords, where non-coherent codewords means that for each layer in a precoding matrix, only A non-zero element, partially coherent codeword means that for each layer in a precoding matrix, there are partial non-zero elements, and a fully coherent codeword refers to, for each layer in the precoding matrix, All non-zero elements; one way to include only a part of partially coherent or fully coherent codewords is to include a partially coherent or fully coherent codeword in rank 1-3 in the first codebook subset.
  • the second codebook subset includes non-coherent codewords, partially coherent codewords, and part of fully coherent codewords; one way to include only a part of fully coherent codewords is that the second codebook subset includes some of the codewords in rank 1. Fully coherent codewords.
  • the first codebook subset corresponds to terminal devices with non-coherent capabilities
  • the second codebook subset corresponds to terminal devices with partial coherence capabilities.
  • terminal devices with non-coherent capabilities can configure the first codebook subset
  • terminal devices with partial coherence capabilities can configure the second codebook subset.
  • the first codebook subset corresponds to terminal devices with partial coherence capabilities. Specifically, terminal devices with partial coherence capabilities can also configure the first codebook subset.
  • the index value set corresponding to each codebook subset configuration includes at least one index value
  • the index value set corresponding to the first codebook subset is a subset of the index value set corresponding to the second codebook subset Index value Index value.
  • the index value set corresponding to the first codebook subset configuration includes M first index values
  • the index value set corresponding to the second codebook subset configuration includes N second index values; among them, M first indexes
  • the value includes M natural numbers from 0 to M-1
  • the N second index values include N natural numbers from 0 to N-1
  • M is a positive integer greater than or equal to 1
  • N is a positive integer greater than the M.
  • the value of the number of transmission layers corresponding to the first index value m indicates the same as the precoding matrix indicating, and the precoding matrix corresponding to the first index value m indicates the associated precoding matrix and the second index value n
  • the precoding matrix indicates that the associated precoding matrix is the same; where the first index value m and the second index value n are non-reserved index values, and the non-reserved index value corresponds to a value of the number of transmission layers and a precoding matrix indicator; m is an arbitrary natural number greater than or equal to 0 and less than M, and n is an arbitrary natural number greater than or equal to 0 and less than N.
  • the combination of the number of layers and TPMI included in the index value set corresponding to the first codebook subset is included in the combination of the number of layers and TPMI included in the index value set corresponding to the second codebook subset.
  • the precoding matrix is jointly determined by the value of the number of transmission layers, the specific waveform and the precoding matrix indication.
  • the specific waveform includes a CP-OFDM waveform and a DFT-s-OFDM waveform.
  • the method further includes receiving maximum transmission layer limit information of the physical uplink shared channel PUSCH, where the maximum transmission layer limit information is used to indicate the maximum number of transmission layers for the second network device to send the PUSCH.
  • the maximum number of transmission layers can be one of 1, 2, 3, or 4.
  • the index value set corresponding to the value of each maximum transmission layer whose value is greater than 2 is the same; the value of the maximum transmission layer is The index value set corresponding to each value of the maximum number of transmission layers of 1 is different from the index value set corresponding to each value of the maximum number of transmission layers greater than 1; the value of the maximum number of transmission layers The index value set corresponding to each value of the maximum number of transmission layers with a value of 2 is different from the index value set corresponding to each value of the maximum number of transmission layers whose value is greater than 2.
  • the index value sets corresponding to the maximum number of transmission layers of 3 and the maximum number of transmission layers of 4 are the same.
  • the index value sets corresponding to the maximum number of transmission layers of 2 and the maximum number of transmission layers of 3 and the maximum number of transmission layers being 4 are the same.
  • the index value sets corresponding to the maximum number of transmission layers of 1 and the maximum number of transmission layers of 2 or 3 or 4 are different.
  • the index value sets corresponding to the maximum number of transmission layers of 2 and the maximum number of transmission layers of 3 or 4 are different.
  • the value of the number of transmission layers corresponding to the index value indicated by the transmission parameter indication information is less than the value of the maximum number of transmission layers.
  • the fourth index value p and the value of the maximum number of transmission layers is any one of the fifth index value set corresponding to y
  • the value of the transmission layer number corresponding to the fourth index value p and the precoding matrix indication are the same as the value of the transmission layer number corresponding to the fifth index value q and the precoding matrix indication
  • the fourth index The precoding matrix corresponding to the value p indicates that the associated precoding matrix and the precoding matrix corresponding to the fifth index value q indicate that the associated precoding matrix is the same;
  • x and y are positive integers greater than X and less than or equal to K
  • p is Any natural number greater than or equal to 0 and less than P
  • q is any natural number greater than or equal to 0 and less than Q
  • P is the number of index values included in the fourth index value set
  • Q is the number of index values included in the fifth index value set
  • the method further includes:
  • the network device may determine the codebook subset configuration based on the coherent capability indication information.
  • the corresponding relationship between the index value and the value of a transmission layer number and a precoding matrix indicates that the corresponding relationship satisfies:
  • the corresponding relationship between the index value and the value of a transmission layer number and the indication of a precoding matrix may also satisfy:
  • the corresponding relationship between the index value and the value of a transmission layer number and the indication of a precoding matrix may also satisfy:
  • the transmission parameter indication information is used to indicate an index value selected in an index value set corresponding to the current coherence capability, and the index value is used to indicate the number of transmission layers and the precoding matrix;
  • the index value includes the index of the index value, the value of the number of transmission layers, and the index of the precoding matrix
  • the precoding matrix is composed of the value of the number of transmission layers and the precoding matrix.
  • the index of the matrix is determined jointly.
  • the codebook subset configuration includes a first codebook subset and a second codebook subset.
  • the current coherence capability is one of the following capabilities:
  • the first codebook subset includes non-coherent codewords and a part of partially coherent or fully coherent codewords, where non-coherent codewords means that for each layer in a precoding matrix, only A non-zero element, partially coherent codeword means that for each layer in a precoding matrix, there are partial non-zero elements, and a fully coherent codeword refers to, for each layer in the precoding matrix, All non-zero elements; one way to include only a part of partially coherent or fully coherent codewords is to include a partially coherent or fully coherent codeword in rank 1-3 in the first codebook subset.
  • the second codebook subset includes non-coherent codewords, partially coherent codewords, and part of fully coherent codewords; one way to include only a part of fully coherent codewords is that the second codebook subset includes some of the codewords in rank 1. Fully coherent codewords.
  • the first codebook subset corresponds to terminal devices with non-coherent capabilities
  • the second codebook subset corresponds to terminal devices with partial coherence capabilities.
  • terminal devices with non-coherent capabilities can configure the first codebook subset
  • terminal devices with partial coherence capabilities can configure the second codebook subset.
  • the first codebook subset corresponds to terminal devices with partial coherence capabilities.
  • terminal devices with partial coherence capabilities can also configure the first codebook subset.
  • the index value set corresponding to each codebook subset configuration includes at least one index value
  • the index value set corresponding to the first codebook subset is a subset of the index value set corresponding to the second codebook subset Index value Index value.
  • the index value set corresponding to the first codebook subset configuration includes M first index values
  • the index value set corresponding to the second codebook subset configuration includes N second index values; among them, M first indexes
  • the value includes M natural numbers from 0 to M-1
  • the N second index values include N natural numbers from 0 to N-1
  • M is a positive integer greater than or equal to 1
  • N is a positive integer greater than the M.
  • the value of the number of transmission layers corresponding to the first index value m indicates the same as the precoding matrix indicating, and the precoding matrix corresponding to the first index value m indicates the associated precoding matrix and the second index value n
  • the precoding matrix indicates that the associated precoding matrix is the same; where the first index value m and the second index value n are non-reserved index values, and the non-reserved index value corresponds to a value of the number of transmission layers and a precoding matrix indicator; m is an arbitrary natural number greater than or equal to 0 and less than M, and n is an arbitrary natural number greater than or equal to 0 and less than N.
  • the combination of the number of layers and TPMI included in the index value set corresponding to the first codebook subset is included in the combination of the number of layers and TPMI included in the index value set corresponding to the second codebook subset.
  • the precoding matrix is jointly determined by the value of the number of transmission layers, the specific waveform and the precoding matrix indication.
  • the specific waveform includes a CP-OFDM waveform and a DFT-s-OFDM waveform.
  • the method further includes receiving maximum transmission layer limit information of the physical uplink shared channel PUSCH, where the maximum transmission layer limit information is used to indicate the maximum number of transmission layers for the second network device to send the PUSCH.
  • the maximum number of transmission layers can be one of 1, 2, 3, or 4.
  • the index value set corresponding to the value of each maximum transmission layer whose value is greater than 2 is the same; the value of the maximum transmission layer is The index value set corresponding to each value of the maximum number of transmission layers of 1 is different from the index value set corresponding to each value of the maximum number of transmission layers greater than 1; the value of the maximum number of transmission layers The index value set corresponding to each value of the maximum number of transmission layers with a value of 2 is different from the index value set corresponding to each value of the maximum number of transmission layers whose value is greater than 2.
  • the index value sets corresponding to the maximum number of transmission layers of 3 and the maximum number of transmission layers of 4 are the same.
  • the index value sets corresponding to the maximum number of transmission layers of 2 and the maximum number of transmission layers of 3 and the maximum number of transmission layers being 4 are the same.
  • the index value sets corresponding to the maximum number of transmission layers of 1 and the maximum number of transmission layers of 2 or 3 or 4 are different.
  • the index value sets corresponding to the maximum number of transmission layers of 2 and the maximum number of transmission layers of 3 or 4 are different.
  • the value of the number of transmission layers corresponding to the index value indicated by the transmission parameter indication information is less than the value of the maximum number of transmission layers.
  • the fourth index value p and the value of the maximum number of transmission layers is any one of the fifth index value set corresponding to y
  • the value of the transmission layer number corresponding to the fourth index value p and the precoding matrix indication are the same as the value of the transmission layer number corresponding to the fifth index value q and the precoding matrix indication
  • the fourth index The precoding matrix corresponding to the value p indicates that the associated precoding matrix and the precoding matrix corresponding to the fifth index value q indicate that the associated precoding matrix is the same;
  • x and y are positive integers greater than X and less than or equal to K
  • p is Any natural number greater than or equal to 0 and less than P
  • q is any natural number greater than or equal to 0 and less than Q
  • P is the number of index values included in the fourth index value set
  • Q is the number of index values included in the fifth index value set
  • the method further includes:
  • the corresponding relationship between the index value and the value of a transmission layer number and a precoding matrix indication satisfies:
  • the corresponding relationship between the index value and the value of a transmission layer number and the indication of a precoding matrix may also satisfy:
  • the corresponding relationship between the index value and the value of a transmission layer number and the indication of a precoding matrix may also satisfy:
  • an access device is provided:
  • the processing module is configured to generate transmission parameter indication information, where the transmission parameter indication information is used to indicate an index value selected in the index value set corresponding to the current coherence capability, and the index value is used to indicate the number of transmission layers and the preset Coding matrix
  • the transceiver module is used to send the transmission parameter indication information.
  • the index value includes the index of the index value, the value of the number of transmission layers, and the index of the precoding matrix
  • the precoding matrix is composed of the value of the number of transmission layers and the precoding matrix.
  • the index of the matrix is jointly and uniquely determined.
  • the current coherence capability is one of the following capabilities:
  • the codebook subset configuration includes a first codebook subset and a second codebook subset.
  • the first codebook subset includes non-coherent codewords and a part of partially coherent or fully coherent codewords, where non-coherent codewords refer to, for each layer in a precoding matrix, only A non-zero element, a partially coherent codeword means that for each layer in a precoding matrix, there are some non-zero elements, and a fully coherent codeword means that for each layer in the precoding matrix, All non-zero elements; one way to include only a part of partially coherent or fully coherent codewords is to include a partially coherent or fully coherent codeword in rank 1-3 in the first codebook subset.
  • the second codebook subset includes non-coherent codewords, partially coherent codewords, and part of fully coherent codewords; one way to include only a part of fully coherent codewords is that the second codebook subset includes some of the codewords in rank 1. Fully coherent codewords.
  • the first codebook subset corresponds to terminal devices with non-coherent capabilities
  • the second codebook subset corresponds to terminal devices with partial coherence capabilities.
  • terminal devices with non-coherent capabilities can configure the first codebook subset
  • terminal devices with partial coherence capabilities can configure the second codebook subset.
  • the first codebook subset corresponds to terminal devices with partial coherence capabilities. Specifically, terminal devices with partial coherence capabilities can also configure the first codebook subset.
  • the index value set corresponding to each codebook subset configuration includes at least one index value
  • the index value set corresponding to the first codebook subset is a subset of the index value set corresponding to the second codebook subset Index value Index value.
  • the index value set corresponding to the first codebook subset configuration includes M first index values
  • the index value set corresponding to the second codebook subset configuration includes N second index values; among them, M first indexes
  • the value includes M natural numbers from 0 to M-1
  • the N second index values include N natural numbers from 0 to N-1
  • M is a positive integer greater than or equal to 1
  • N is a positive integer greater than the M.
  • the value of the number of transmission layers corresponding to the first index value m indicates the same as the precoding matrix indicating, and the precoding matrix corresponding to the first index value m indicates the associated precoding matrix and the second index value n
  • the precoding matrix indicates that the associated precoding matrix is the same; where the first index value m and the second index value n are non-reserved index values, and the non-reserved index value corresponds to a value of the number of transmission layers and a precoding matrix indicator; m is an arbitrary natural number greater than or equal to 0 and less than M, and n is an arbitrary natural number greater than or equal to 0 and less than N.
  • the combination of the number of layers and TPMI included in the index value set corresponding to the first codebook subset is included in the combination of the number of layers and TPMI included in the index value set corresponding to the second codebook subset.
  • the precoding matrix is jointly determined by the value of the number of transmission layers, the specific waveform and the precoding matrix indication.
  • the specific waveform includes a CP-OFDM waveform and a DFT-s-OFDM waveform.
  • the method further includes receiving maximum transmission layer limit information of the physical uplink shared channel PUSCH, where the maximum transmission layer limit information is used to indicate the maximum number of transmission layers for the second network device to send the PUSCH.
  • the maximum number of transmission layers can be one of 1, 2, 3, or 4.
  • the index value set corresponding to the value of each maximum transmission layer whose value is greater than 2 is the same; the value of the maximum transmission layer is The index value set corresponding to each value of the maximum number of transmission layers of 1 is different from the index value set corresponding to each value of the maximum number of transmission layers greater than 1; the value of the maximum number of transmission layers The index value set corresponding to each value of the maximum number of transmission layers with a value of 2 is different from the index value set corresponding to each value of the maximum number of transmission layers whose value is greater than 2.
  • the index value sets corresponding to the maximum number of transmission layers of 3 and the maximum number of transmission layers of 4 are the same.
  • the index value sets corresponding to the maximum number of transmission layers of 2 and the maximum number of transmission layers of 3 and the maximum number of transmission layers being 4 are the same.
  • the index value sets corresponding to the maximum number of transmission layers of 1 and the maximum number of transmission layers of 2 or 3 or 4 are different.
  • the index value sets corresponding to the maximum number of transmission layers of 2 and the maximum number of transmission layers of 3 or 4 are different.
  • the value of the number of transmission layers corresponding to the index value indicated by the transmission parameter indication information is less than the value of the maximum number of transmission layers.
  • the fourth index value p and the value of the maximum number of transmission layers is any one of the fifth index value set corresponding to y
  • the value of the transmission layer number corresponding to the fourth index value p and the precoding matrix indication are the same as the value of the transmission layer number corresponding to the fifth index value q and the precoding matrix indication
  • the fourth index The precoding matrix corresponding to the value p indicates that the associated precoding matrix and the precoding matrix corresponding to the fifth index value q indicate that the associated precoding matrix is the same;
  • x and y are positive integers greater than X and less than or equal to K
  • p is Any natural number greater than or equal to 0 and less than P
  • q is any natural number greater than or equal to 0 and less than Q
  • P is the number of index values included in the fourth index value set
  • Q is the number of index values included in the fifth index value set
  • the method further includes:
  • the corresponding relationship between the index value and the value of a transmission layer number and a precoding matrix indication satisfies:
  • the corresponding relationship between the index value and the value of a transmission layer number and a precoding matrix indication may also satisfy:
  • the corresponding relationship between the index value and the value of a transmission layer number and a precoding matrix indication may also satisfy:
  • a user equipment is provided:
  • the transceiver module is configured to receive transmission parameter indication information, where the transmission parameter indication information is used to indicate the index value selected in the index value set corresponding to the current coherence capability, and the index value is used to indicate the number of transmission layers and the preset Encoding matrix.
  • the processing module determines the number of transmission layers and the precoding matrix according to the transmission parameter indication information.
  • the index value includes the index of the index value, the value of the number of transmission layers, and the index of the precoding matrix, and the precoding The matrix is uniquely determined by the value of the number of transmission layers and the index of the precoding matrix.
  • the current coherence capability is one of the following capabilities:
  • the codebook subset configuration includes a first codebook subset and a second codebook subset.
  • the first codebook subset includes non-coherent codewords and a part of partially coherent or fully coherent codewords, where non-coherent codewords means that for each layer in a precoding matrix, only A non-zero element, partially coherent codeword means that for each layer in a precoding matrix, there are partial non-zero elements, and a fully coherent codeword means that for each layer in the precoding matrix, All non-zero elements; one way to include only a part of partially coherent or fully coherent codewords is to include a partially coherent or fully coherent codeword in rank 1-3 in the first codebook subset.
  • the second codebook subset includes non-coherent codewords, partially coherent codewords, and part of fully coherent codewords; one way to include only a part of fully coherent codewords is that the second codebook subset includes a part of rank 1 Fully coherent codewords.
  • the first codebook subset corresponds to terminal devices with non-coherent capabilities
  • the second codebook subset corresponds to terminal devices with partial coherence capabilities.
  • terminal devices with non-coherent capabilities can configure the first codebook subset
  • terminal devices with partial coherence capabilities can configure the second codebook subset.
  • the first codebook subset corresponds to terminal devices with partial coherence capabilities. Specifically, terminal devices with partial coherence capabilities can also configure the first codebook subset.
  • the index value set corresponding to each codebook subset configuration includes at least one index value
  • the index value set corresponding to the first codebook subset is a subset of the index value set corresponding to the second codebook subset Index value Index value.
  • the index value set corresponding to the first codebook subset configuration includes M first index values
  • the index value set corresponding to the second codebook subset configuration includes N second index values; among them, M first indexes
  • the value includes M natural numbers from 0 to M-1
  • the N second index values include N natural numbers from 0 to N-1
  • M is a positive integer greater than or equal to 1
  • N is a positive integer greater than the M.
  • the value of the number of transmission layers corresponding to the first index value m indicates the same as the precoding matrix indicating, and the precoding matrix corresponding to the first index value m indicates the associated precoding matrix and the second index value n
  • the precoding matrix indicates that the associated precoding matrix is the same; where the first index value m and the second index value n are non-reserved index values, and the non-reserved index value corresponds to a value of the number of transmission layers and a precoding matrix indicator; m is an arbitrary natural number greater than or equal to 0 and less than M, and n is an arbitrary natural number greater than or equal to 0 and less than N.
  • the combination of the number of layers and TPMI included in the index value set corresponding to the first codebook subset is included in the combination of the number of layers and TPMI included in the index value set corresponding to the second codebook subset.
  • the precoding matrix is jointly determined by the value of the number of transmission layers, the specific waveform and the precoding matrix indication.
  • the specific waveform includes a CP-OFDM waveform and a DFT-s-OFDM waveform.
  • the method further includes receiving maximum transmission layer limit information of the physical uplink shared channel PUSCH, where the maximum transmission layer limit information is used to indicate the maximum number of transmission layers for the second network device to send the PUSCH.
  • the maximum number of transmission layers can be one of 1, 2, 3, or 4.
  • the index value set corresponding to the value of each maximum transmission layer whose value is greater than 2 is the same; the value of the maximum transmission layer is The index value set corresponding to each value of the maximum number of transmission layers of 1 is different from the index value set corresponding to each value of the maximum number of transmission layers greater than 1; the value of the maximum number of transmission layers The index value set corresponding to each value of the maximum number of transmission layers with a value of 2 is different from the index value set corresponding to each value of the maximum number of transmission layers whose value is greater than 2.
  • the index value sets corresponding to the maximum number of transmission layers of 3 and the maximum number of transmission layers of 4 are the same.
  • the index value sets corresponding to the maximum number of transmission layers of 2 and the maximum number of transmission layers of 3 and the maximum number of transmission layers being 4 are the same.
  • the index value sets corresponding to the maximum number of transmission layers of 1 and the maximum number of transmission layers of 2 or 3 or 4 are different.
  • the index value sets corresponding to the maximum number of transmission layers of 2 and the maximum number of transmission layers of 3 or 4 are different.
  • the value of the number of transmission layers corresponding to the index value indicated by the transmission parameter indication information is less than the value of the maximum number of transmission layers.
  • the fourth index value p and the value of the maximum number of transmission layers is any one of the fifth index value set corresponding to y
  • the value of the transmission layer number corresponding to the fourth index value p and the precoding matrix indication are the same as the value of the transmission layer number corresponding to the fifth index value q and the precoding matrix indication
  • the fourth index The precoding matrix corresponding to the value p indicates that the associated precoding matrix and the precoding matrix corresponding to the fifth index value q indicate that the associated precoding matrix is the same;
  • x and y are positive integers greater than X and less than or equal to K
  • p is Any natural number greater than or equal to 0 and less than P
  • q is any natural number greater than or equal to 0 and less than Q
  • P is the number of index values included in the fourth index value set
  • Q is the number of index values included in the fifth index value set
  • the method further includes:
  • the corresponding relationship between the index value and the value of a transmission layer number and the indication of a precoding matrix satisfies:
  • the corresponding relationship between the index value and the value of a transmission layer number and the indication of a precoding matrix may also satisfy:
  • the corresponding relationship between the index value and the value of a transmission layer number and the indication of a precoding matrix may also satisfy:
  • Fig. 1 is an exemplary schematic diagram of a wireless communication network according to an embodiment of the present invention
  • Fig. 2 is an exemplary flowchart of a channel measurement method according to an embodiment of the present invention
  • Fig. 3 is an exemplary flowchart of a channel measurement method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an exemplary logical structure of a communication device according to an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of an exemplary hardware structure of a communication device according to an embodiment of the present invention.
  • the next-generation wireless communication system currently in the research and development stage may also be referred to as a New Radio (NR) system or a 5G system.
  • NR New Radio
  • 5G 5th Generation
  • the latest research progress shows that the next-generation wireless communication standard supports semi-static channel measurement, and the CSI obtained from the semi-static channel measurement can be transmitted through the Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the first problem that needs to be solved is how to notify the user equipment to start and stop the semi-static channel measurement.
  • the embodiment of the present invention provides a technical solution, which helps to solve the above-mentioned problems.
  • the technical solutions provided by the embodiments of the present invention will be described below with reference to the accompanying drawings and specific embodiments.
  • the embodiment of the present invention provides a communication device, which may be used to implement the above-mentioned access device, and may also be used to implement the above-mentioned user equipment.
  • the communication device includes a processor and a transceiver.
  • the processor is used to perform the operations of the above-mentioned processing module, and the transceiver is used to perform the operations of the above-mentioned transceiver module.
  • the processor can be used to perform, for example, but not limited to, baseband related processing
  • the transceiver can be used to perform, for example, but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on separate chips, or at least part or all of them may be arranged on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor and the transceiver can be integrated on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be called a system chip (System on Chip). Whether each device is arranged independently on different chips or integrated on one or more chips often depends on the specific needs of product design.
  • the embodiment of the present invention does not limit the specific implementation form of the foregoing device.
  • the embodiment of the present invention also provides a processor, which is configured to execute the above-mentioned various methods.
  • the process of sending the above information and receiving the above information in the above method can be understood as the process of outputting the above information by the processor and the process of receiving the input of the above information by the processor.
  • the processor when outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver. Furthermore, after the above-mentioned information is output by the processor, other processing may be required before it reaches the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to undergo other processing before being input to the processor.
  • the receiving transmission parameter indication information mentioned in the foregoing method can be understood as the input transmission parameter indication information received by the processor.
  • sending the transmission parameter indication information can be understood as the processor outputting the transmission parameter indication information.
  • the processor outputs and receives input and other operations, rather than the transmission, transmission, and reception operations directly performed by the radio frequency circuit and antenna.
  • the foregoing processor may be a processor specifically configured to execute these methods, or a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory may be a non-transitory memory, such as a read-only memory (Read Only Memory, ROM), which may be integrated with the processor on the same chip, or may be separately arranged on different chips.
  • ROM Read Only Memory
  • the present invention does not limit the type of the memory and the setting mode of the memory and the processor.
  • a computer-readable storage medium including instructions, which when run on a computer, cause the computer to execute the above-mentioned various methods. Furthermore, the computer-readable storage medium is a non-transitory computer-readable storage medium.
  • a computer program product containing instructions, which when run on a computer, causes the computer to execute the above-mentioned various methods.
  • Fig. 1 is an exemplary schematic diagram of a wireless communication network 100 according to an embodiment of the present invention.
  • the wireless communication network 100 includes base stations 102-106 and terminal devices 108-122.
  • the base stations 102-106 can pass through backhaul links (such as the straight line between the base stations 102-106). (Shown) for communication, the backhaul link may be a wired backhaul link (for example, optical fiber, copper cable), or a wireless backhaul link (for example, microwave).
  • the terminal devices 108-122 can communicate with the corresponding base stations 102-106 through wireless links (as shown by the broken lines between the base stations 102-106 and the terminal devices 108-122).
  • the base stations 102-106 are usually used as access devices to provide wireless access services for the terminal devices 108-122 that are usually user equipments.
  • each base station corresponds to a service coverage area (also called a cell, as shown in each elliptical area in Figure 1), and terminal equipment entering this area can communicate with the base station through wireless signals to receive the base station Provide wireless access services.
  • a service coverage area also called a cell, as shown in each elliptical area in Figure 1
  • multiple base stations may use coordinated multipoint (CoMP) technology to provide services for terminal devices in the above-mentioned overlapping area.
  • CoMP coordinated multipoint
  • the service coverage area of the base station 102 and the base station 104 overlaps, and the terminal device 112 is within the overlapped area. Therefore, the terminal device 112 can receive wireless signals from the base station 102 and the base station 104.
  • the base station 102 and the base station 104 may cooperate with each other to provide services for the terminal device 112.
  • the service coverage areas of base station 102, base station 104, and base station 106 have a common overlapping area, and terminal device 120 is within the overlapping area, so terminal device 120 can receive data from the base station.
  • the base stations 102, 104, and 106 can cooperate with each other to provide services for the terminal device 120.
  • the base station can also be called NodeB (NodeB), evolved NodeB (evolved NodeB, eNodeB), access point (Access Point, AP), and so on.
  • NodeB NodeB
  • evolved NodeB evolved NodeB
  • eNodeB evolved NodeB
  • Access Point Access Point
  • base stations can be divided into macro base stations for providing macro cells, micro base stations for providing pico cells, and femto cells. Femto cell), etc.
  • future base stations can also adopt other names.
  • the terminal devices 108-122 may be various wireless communication devices with wireless communication functions, such as but not limited to mobile cellular phones, cordless phones, personal digital assistants (PDAs), smart phones, notebook computers, tablet computers, wireless Data card, wireless modem (Modulator demodulator, Modem), or wearable devices such as smart watches, etc.
  • PDAs personal digital assistants
  • V2X Vehicle-to-everything
  • This type of device is equipped with a wireless communication unit and has a wireless communication function, so it also belongs to the category of wireless communication devices.
  • the terminal devices 108 to 122 may also be referred to as mobile stations, mobile devices, mobile terminals, wireless terminals, handheld devices, clients, and so on.
  • the base stations 102 to 106 and the terminal devices 108 to 122 can be configured with multiple antennas to support MIMO (Multiple Input Multiple Output) technology. Furthermore, base stations 102 to 106 and terminal devices 108 to 122 can support both single-user MIMO (Single-User MIMO, SU-MIMO) technology and multi-user MIMO (Multi-User MIMO, MU-MIMO). MU-MIMO can be implemented based on Space Division Multiple Access (SDMA) technology.
  • SDMA Space Division Multiple Access
  • base stations 102-106 and terminal devices 108-122 can also flexibly support Single Input Single Output (SISO) technology, Single Input Multiple Output (SIMO) and Multiple Input Single Output (Multiple Input Single Output, MISO) technology to achieve various diversity (such as but not limited to transmit diversity and receive diversity) and multiplexing technology, where diversity technology can include, for example, but not limited to transmit diversity (TD) Technology and Receive Diversity (Receive Diversity, RD) technology, multiplexing technology can be spatial multiplexing (Spatial Multiplexing) technology.
  • SISO Single Input Single Output
  • SIMO Single Input Multiple Output
  • MISO Multiple Input Single Output
  • diversity technology can include, for example, but not limited to transmit diversity (TD) Technology and Receive Diversity (Receive Diversity, RD) technology
  • multiplexing technology can be spatial multiplexing (Spatial Multiplexing) technology.
  • TD transmit diversity
  • RD Receive Diversity
  • multiplexing technology can be spatial multiplexing (Spatial Multiplexing)
  • transmit diversity technologies may include, for example, but not limited to, Space-Time Transmit Diversity (STTD) and Space-Frequency Transmit Diversity (Space-Frequency Transmit Diversity, SFTD), Time Switched Transmit Diversity (TSTD), Frequency Switch Transmit Diversity (FSTD), Orthogonal Transmit Diversity (OTD), Cyclic Delay Diversity (CDD) ) Equal diversity method, and the diversity method obtained after the above-mentioned various diversity methods are derived, evolved, and combined.
  • the current LTE (Long Term Evolution) standard adopts transmit diversity methods such as Space Time Block Coding (STBC), Space Frequency Block Coding (SFBC), and CDD.
  • STBC Space Time Block Coding
  • SFBC Space Frequency Block Coding
  • CDD Cyclic Delay Diversity
  • transmit diversity also includes other multiple implementation manners. Therefore, the above introduction should not be understood as a limitation to the technical solution of the present invention, and the technical solution of the present invention should be understood as being applicable to various possible transmit diversity solutions.
  • the base stations 102-106 and the terminal devices 108-122 can communicate using various wireless communication technologies, such as, but not limited to, Time Division Multiple Access (TDMA) technology, Frequency Division Multiple Access, FDMA) technology, Code Division Multiple Access (CDMA) technology, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Orthogonal FDMA, OFDMA ) Technology, single carrier frequency division multiple access (Single Carrier FDMA, SC-FDMA) technology, space division multiple access (Space Division Multiple Access, SDMA) technology, as well as the evolution and derivative technologies of these technologies.
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • OFDMA Orthogonal FDMA
  • Single Carrier FDMA Single Carrier FDMA
  • SC-FDMA space division multiple access
  • SDMA Space Division Multiple Access
  • the above-mentioned wireless communication technology has been adopted by many wireless communication standards as a radio access technology (RAT), thereby constructing various wireless communication systems (or networks) that are widely known to people today, including but not limited to Global System for Mobile Communications (GSM), CDMA2000, Wideband CDMA (Wideband CDMA, WCDMA), WiFi defined in the 802.22 series of standards, Worldwide Interoperability for Microwave Access (WiMAX), long-term Evolution (Long Term Evolution, LTE), LTE upgraded version (LTE-Advanced, LTE-A), and evolution systems of these wireless communication systems, etc.
  • GSM Global System for Mobile Communications
  • CDMA2000 Wideband CDMA
  • WCDMA Wideband CDMA
  • WiFi defined in the 802.22 series of standards
  • WiMAX Worldwide Interoperability for Microwave Access
  • LTE long-term Evolution
  • LTE-A LTE upgraded version
  • evolution systems of these wireless communication systems etc.
  • the technical solutions provided by the embodiments of the present invention can be applied to the foregoing various wireless
  • the wireless communication network 100 shown in FIG. 1 is only used for example, and is not used to limit the technical solution of the present invention. Those skilled in the art should understand that in a specific implementation process, the wireless communication network 100 may also include other devices, and the number of base stations and terminal devices may also be configured according to specific needs.
  • FIG. 2 is an exemplary flowchart of a channel measurement method 300 according to an embodiment of the present invention.
  • step 302 in the method 300 can be performed by a network device, and step 304 can be performed by a user equipment.
  • Step 302 Send transmission parameter indication information; wherein, the transmission parameter indication information is used to indicate the index value selected in the index value set corresponding to the current codebook subset configuration, and the index value is used to indicate the number of transmission layers and Precoding matrix.
  • the number of transmission layers and the precoding matrix are used to indicate PUSCH transmission parameters.
  • the transmission parameter indication information is carried in DCI or RRC signaling.
  • the coherent capability indication information is received before sending the transmission parameter indication information.
  • the codebook subset configuration information is sent, where the codebook subset configuration information is used to indicate to adopt the first codebook subset configuration or the second codebook subset configuration.
  • the codebook subset configuration information is sent according to the coherent capability indication information.
  • the codebook subset configuration information when the coherent capability indicator information indicates non-coherent capabilities, can be configured as the first codebook subset configuration; when the coherent capability indicator information indicates partial coherent capabilities, the codebook subset configuration information can be The configuration is the second codebook subset configuration.
  • the first codebook subset configuration includes non-coherent codewords.
  • the second codebook subset configuration includes non-coherent codewords and partially coherent codewords.
  • the first codebook subset configuration further includes partial codewords in fully coherent codewords and/or partially coherent codewords.
  • the second codebook subset configuration further includes part of the codewords in the fully coherent codewords.
  • Step 304 Receive transmission parameter indication information.
  • the coherent capability indication information is sent before receiving the transmission parameter indication information.
  • receive codebook subset configuration information where the codebook subset configuration information is used to indicate at least one of the first codebook subset configuration and the second codebook subset configuration.
  • receive transmission parameter indication information according to the codebook subset configuration information Specifically, according to the codebook subset configuration information, the number of bits of the transmission parameter indication information and the corresponding meaning of each status bit of the indication information are determined. The meaning of each status bit includes the number of transmission layers and the corresponding TPMI. The status in the TRI and TPMI jointly coded field is used to indicate the TRI and TPMI used for data transmission.
  • Each TRI value corresponds to a set of precoding matrices, and the corresponding relationship is shown in Table 1-4.
  • TPMI When a certain transmission layer number is indicated, TPMI is used to instruct to select one of the precoding matrixes from a set of precoding matrixes corresponding to the transmission layer number.
  • Table 8 is an example of TRI and TPMI joint coding.
  • the indicated number of transmission layers, that is, TRI is indicated by layer x in the table, where the value range of x is ⁇ 1,2,3,4 ⁇ .
  • the number of precoding matrices is determined.
  • the indexes of the TRI and TPMI joint coding field are arranged in ascending order according to the number of layers.
  • the index 0-27 of this field represents layer 1 transmission, where each index corresponds to a precoding matrix index corresponding to layer 1 transmission, including the codeword corresponding to fully coherent , Partially coherent corresponding codewords and non-coherent corresponding codewords;
  • the index 28-49 of this field indicates layer 2 transmission, where each index corresponds to a precoding matrix index corresponding to layer 2 transmission, including the completely coherent corresponding Codewords, codewords corresponding to partial coherence and codewords corresponding to non-coherence;
  • the index 50-56 of this field indicates layer 3 transmission, where each index corresponds to a precoding matrix index corresponding to layer 3 transmission, including fully coherent Corresponding codewords, partially coherent corresponding codewords and non-coherent corresponding codewords;
  • the index 57-61 of this field indicates layer 4 transmission,
  • the first codebook subset configuration when the maximum rank number is 1, the first codebook subset configuration is Including TPMI 0-3 in Table 1 and Table 2, or the first codebook subset configuration includes TPMI 0-3 and TPMI 13 in Table 1 and Table 2, or, in the first codebook subset configuration Including TPMI 0-3 in Table 1 and Table 2, as well as TPMI 4, 8, and TPMI 13.
  • the first codebook subset configuration may include codewords in the case where the maximum rank number is 1, and TPMI 0-5 in Table 3; or, the first code This subset configuration includes TPMI 0-6 in Table 3.
  • the first codebook subset configuration may include codewords in the case where the maximum rank number is 2 as well as TPMI 0-1 in Table 4.
  • the first codebook subset configuration may include codewords in the case where the maximum rank number is 3, and may also include TPMI 0 in Table 5. It should be understood that when the maximum number of antenna ports that can be supported is greater than 4, the foregoing embodiment is also applicable when a 4-port configuration is adopted.
  • the first codebook subset configuration when the maximum rank number is 1, includes TPMI 0-11 in Table 1 and Table 2, or the first codebook subset configuration Including TPMI 0-11 and TPMI 12-15 in Table 1 and Table 2, or the first codebook subset configuration includes TPMI 0-11 and TPMI 12-19 in Table 1 and Table 2.
  • the first codebook subset configuration may include codewords in the case where the maximum rank number is 1, as well as TPMI 0-13 in Table 3.
  • the first codebook subset configuration may include codewords in the case where the maximum rank number is 2, and TPMI 0-2 in Table 4 may also be included.
  • the first codebook subset configuration when the maximum rank number is 4, the first codebook subset configuration may include codewords in the case where the maximum rank number is 3, and may also include TPMI 0-2 in Table 5.
  • the transmission layer number indicator (TRI) and the precoding matrix indicator (TPMI) are jointly coded. That is, each status bit in the field corresponds to an indication of the number of transmission layers and an indication of the precoding matrix under the corresponding number of transmission layers.
  • Each TRI value corresponds to a set of precoding matrices, and the corresponding relationship is shown in Table 1-7.
  • TPMI is used to instruct to select one of the precoding matrixes from a set of precoding matrixes corresponding to the transmission layer number.
  • Table 8 and Table 9 are examples of TRI and TPMI joint coding.
  • the indicated number of transmission layers that is, TRI is indicated by layer x in the table, where the value range of x is limited to 1, that is, the maximum number of transmission layers for the current PUSCH transmission is configured as 1.
  • the value range of y is determined according to the number of precoding matrices in Table 1 and Table 2.
  • the precoding matrix under a specific y will also be determined according to the maximum number of transmit antenna ports.
  • the first index value m is the same as any one of the 16 second index values corresponding to the second codebook subset, n
  • the value of the number of transmission layers corresponding to the first index value m and the precoding matrix indication are the same as the value of the number of transmission layers corresponding to the second index value n and the precoding matrix indication, and the first index value m corresponds to
  • the precoding matrix indicates that the associated precoding matrix and the precoding matrix corresponding to the second index value n indicate that the associated precoding matrix is the same.
  • the index values 5-7 of the field are reserved, indicating that the content corresponding to the index value is an empty set.
  • Table 8 and Table 9 are used for CP-OFDM waveforms and DFT-s-OFDM waveforms.
  • Table 8 and Table 9 are used for CP-OFDM waveforms
  • Table 10 and Table 11 are used for DFT-s-OFDM waveforms.
  • Table 12 and Table 13 are another example of TRI and TPMI joint coding.
  • the indicated number of transmission layers, or TRI is indicated by the x layer in the table.
  • the value range of x in Table 12 and Table 13 is limited to ⁇ 1,2 ⁇ , which is the maximum transmission of the current PUSCH transmission If the number of layers is configured as 2, the indicated number of transmission layers can be 1 or 2.
  • the precoding matrix under a specific y is also determined according to the maximum number of transmit antenna ports.
  • the maximum number of transmit antenna ports is 4.
  • the size of the number of bits indicated by the joint coding of TRI and TPMI, the number of transmission layers corresponding to each state value and the indication of the precoding matrix need to be determined according to the codebook subset configuration. For example, when the codebook subset is configured as the first codebook subset, the number of bits in this field is 4 bits, and when the codebook subset is configured as the second codebook subset, the number of bits in this field is 5 bits.
  • any one of the 12 first index values corresponding to the first codebook subset is the same as any one of the 30 second index values corresponding to the second codebook subset
  • n The value of the number of transmission layers corresponding to the first index value m and the precoding matrix indication are the same as the value of the number of transmission layers corresponding to the second index value n and the precoding matrix indication
  • the first index value m corresponds to
  • the precoding matrix indicates that the associated precoding matrix and the precoding matrix corresponding to the second index value n indicate that the associated precoding matrix is the same.
  • Table 14 is another example of TRI and TPMI joint coding.
  • the value range of the indicated number of transmission layers can be limited to ⁇ 1,2,3,4 ⁇ , ⁇ 1,2,3 ⁇ , or ⁇ 1,2 ⁇ , which is the maximum current PUSCH transmission
  • the number of transmission layers is configured to be 4, or it can be 3, or it can be 2.
  • the precoding matrix under a specific y is also determined according to the maximum number of transmit antenna ports, for example, the maximum number of transmit antenna ports is 4.
  • the size of the number of bits indicated by the joint coding of TRI and TPMI, the number of transmission layers corresponding to each state value and the indication of the precoding matrix need to be determined according to the codebook subset configuration. For example, when the codebook subset is configured as the first codebook subset, the number of bits in this field is 4 bits, and when the codebook subset is configured as the second codebook subset, the number of bits in this field is 6 bits.
  • any one of the 15 first index values corresponding to the first codebook subset is the same as any one of the 36 second index values corresponding to the second codebook subset
  • n The value of the number of transmission layers corresponding to the first index value m and the precoding matrix indication are the same as the value of the number of transmission layers corresponding to the second index value n and the precoding matrix indication
  • the first index value m corresponds to
  • the precoding matrix indicates that the associated precoding matrix and the precoding matrix corresponding to the second index value n indicate that the associated precoding matrix is the same.
  • Table 16 is another example of TRI and TPMI joint coding.
  • the value range of the indicated number of transmission layers can be limited to ⁇ 1,2,3,4 ⁇ , ⁇ 1,2,3 ⁇ , or ⁇ 1,2 ⁇ , which is the maximum current PUSCH transmission
  • the number of transmission layers is configured to be 4, or it can be 3, or it can be 2.
  • the precoding matrix under a specific y is also determined according to the maximum number of transmit antenna ports, for example, the maximum number of transmit antenna ports is 4.
  • the size of the number of bits indicated by the joint coding of TRI and TPMI, the number of transmission layers corresponding to each state value and the indication of the precoding matrix need to be determined according to the codebook subset configuration. For example, when the codebook subset is configured as the first codebook subset, the number of bits in this field is 5 bits, and when the codebook subset is configured as the second codebook subset, the number of bits in this field is 6 bits.
  • any one first index value m among the 17 first index values corresponding to the first codebook subset is the same as any one second index value n among the 38 second index values corresponding to the second codebook subset
  • the value of the number of transmission layers corresponding to the first index value m and the precoding matrix indication are the same as the value of the number of transmission layers corresponding to the second index value n and the precoding matrix indication
  • the first index value m corresponds to
  • the precoding matrix indicates that the associated precoding matrix and the precoding matrix corresponding to the second index value n indicate that the associated precoding matrix is the same.
  • the number of transmission layers and corresponding TPMI corresponding to the index values 12-16 for the first codebook subset configuration and the second codebook subset configuration may also be:
  • Fig. 3 is another embodiment of the present invention.
  • step 402 can be performed by a network device
  • step 404 can be performed by a terminal device.
  • Step 402 Send second transmission parameter control information according to the configuration information of the SRS resource. Specifically, the number of bits of the first transmission indication field in the second transmission parameter control information is determined according to the number of ports of the SRS resource with the largest number of ports among the configured multiple SRS resources. The first transmission indication field is used to indicate the PUSCH transmission used The number of transmission layers and the corresponding precoding matrix; and the number of bits filled with zeros in the second transmission parameter control information is determined according to the number of ports of the SRS resource indicated by the second transmission parameter control information.
  • the second transmission parameter control information is the DCI for scheduling the PUSCH
  • the first transmission indication field is used to indicate the number of transmission layers of the PUSCH and the corresponding TPMI.
  • the number of ports of the SRS resource with the largest number of ports among the multiple SRS resources is used to determine the number of bits of the first transmission indication field (N1).
  • the second transmission parameter control information also includes an SRS resource indication (SRS resource indication, SRI) field, which is used to indicate to select one of multiple configured SRS resources.
  • SRS resource indication, SRI SRS resource indication
  • the port number of the SRS resource indicated by the SRI field is used to determine the effective number of bits (N2) and the number of bits filled with zeros.
  • the number of valid bits is the number of bits used to indicate the TPMI and the number of transmission layers, filled with zeros.
  • the number of bits is N1-N2.
  • the number of SRS ports is 4 to determine the number of bits in the first transmission indication field, that is, the number of TPMI rows indicated in the first transmission indication field is 4.
  • SRI is used to indicate whether to select an SRS resource with 2 ports or an SRS resource with 4 ports.
  • the number of bits N1 in the first transmission indication field is the same as the effective number of bits N2, and there is no zero-filled bit number; when the SRI indicates a 2-port SRS resource, it is due to 4
  • the difference in the number of bits corresponding to the antenna codebook and the 2-antenna codebook results in the difference between the number of bits N1 and the effective number of bits N2 of the first transmission indication field, and the number of bits N1-N2 filled with zeros exists.
  • the zero-filled N bits are located at the last N bits in the second transmission parameter control information.
  • the total number of bits of the second transmission parameter control information is X1
  • the first X1-N bits are bits that indicate valid information
  • the last N bits are zero-filled bits.
  • the N-bits filled with zeros are located N-bits after the valid bits of the first transmission indication field in the second transmission parameter control information.
  • the total number of bits of the second transmission parameter control information is X1
  • the first X1-K bits are bits indicating valid information
  • K>N the total number of bits of the second transmission parameter control information
  • N bits of the K bits are corresponding zero-filling bits.
  • the zero-filled N bits are located N bits after the valid bit in the first transmission parameter control information.
  • a first transmission parameter control information in the second transmission parameter control information of k 0 -k i bit positions wherein, based on the effective number of bits indicating the SRS resource port SRI determined as N2, then the first k 0 - k N2-1 bit is a valid bit, the k N2 -k i th bits are zero filled bits.
  • Step 404 Receive second transmission parameter control information according to the configuration information of the SRS resource. Specifically, the number of bits of the first transmission indication field in the second transmission parameter control information is determined according to the number of ports of the SRS resource with the largest number of ports among the configured multiple SRS resources. The first transmission indication field is used to indicate the PUSCH transmission used The number of transmission layers and the corresponding precoding matrix; and the number of bits filled with zeros in the second transmission parameter control information is determined according to the number of ports of the SRS resource indicated by the second transmission parameter control information.
  • the second transmission parameter control information is the DCI for scheduling the PUSCH
  • the first transmission indication field is used to indicate the number of transmission layers of the PUSCH and the corresponding TPMI.
  • the number of ports of the SRS resource with the largest number of ports among the multiple SRS resources is used to determine the number of bits of the first transmission indication field (N1).
  • the second transmission parameter control information also includes an SRS resource indication (SRS resource indication, SRI) field, which is used to indicate to select one of multiple configured SRS resources.
  • SRS resource indication, SRI SRS resource indication
  • the port number of the SRS resource indicated by the SRI field is used to determine the effective number of bits (N2) and the number of bits filled with zeros.
  • the number of valid bits is the number of bits used to indicate the TPMI and the number of transmission layers, filled with zeros.
  • the number of bits is N1-N2.
  • the number of SRS ports is 4 to determine the number of bits in the first transmission indication field, that is, the number of TPMI rows indicated in the first transmission indication field is 4.
  • SRI is used to indicate whether to select an SRS resource with 2 ports or an SRS resource with 4 ports.
  • the number of bits N1 in the first transmission indication field is the same as the effective number of bits N2, and there is no zero-filled bit number; when the SRI indicates a 2-port SRS resource, it is due to 4
  • the difference in the number of bits corresponding to the antenna codebook and the 2-antenna codebook results in the difference between the number of bits N1 and the effective number of bits N2 of the first transmission indication field, and the number of bits N1-N2 filled with zeros exists.
  • the zero-filled N bits are located at the last N bits in the second transmission parameter control information.
  • the total number of bits of the second transmission parameter control information is X1
  • the first X1-N bits are bits that indicate valid information
  • the last N bits are zero-filled bits.
  • the N-bits filled with zeros are located N-bits after the valid bits of the first transmission indication field in the second transmission parameter control information.
  • the total number of bits of the second transmission parameter control information is X1
  • the first X1-K bits are bits indicating valid information
  • K>N the total number of bits of the second transmission parameter control information
  • N bits of the K bits are corresponding zero-filling bits.
  • the zero-filled N bits are located N bits after the valid bit in the first transmission parameter control information.
  • a first transmission parameter control information in the second transmission parameter control information of k 0 -k i bit positions wherein, based on the effective number of bits indicating the SRS resource port SRI determined as N2, then the first k 0 - k N2-1 bit is a valid bit, the k N2 -k i th bits are zero filled bits.
  • FIG. 4 is a schematic diagram of an exemplary logical structure of a communication device 900 according to an embodiment of the present invention.
  • the communication device 900 may be the access device described above, or the user equipment described above.
  • the communication device 900 includes a transceiver module 902 and a processing module 904.
  • the transceiver module 902 can be used to perform the above steps 302, 402, and 702, and the processing module 904 is used to perform the above steps 304, 404, and 704.
  • the transceiver module 902 can be used to perform the above steps 504, 604, and 804, and the processing module 904 is used to perform the above steps 502, 602, and 802.
  • FIG. 5 is a schematic diagram of an exemplary hardware structure of a communication device 1000 according to an embodiment of the present invention.
  • the communication device 1000 may be the access device described above, or the user equipment described above.
  • the communication device 1000 includes a processor 1002, a transceiver 1004, multiple antennas 1006, a memory 1008, an I/O (Input/Output) interface 1010, and a bus 1012.
  • the memory 1008 is further used to store instructions 10082 and data 10084.
  • the processor 1002, the transceiver 1004, the memory 1008, and the I/O interface 1010 are communicatively connected to each other through the bus 1012, and multiple antennas 1006 are connected to the transceiver 1004.
  • the processor 1002, the transceiver 1004, the memory 1008, and the I/O interface 1010 may also be communicatively connected to each other by using other connection methods other than the bus 1012.
  • the processor 1002 may be a general-purpose processor, such as but not limited to a central processing unit (CPU), or a dedicated processor, such as but not limited to a digital signal processor (DSP), application Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA), etc.
  • the processor 1002 may also be a combination of multiple processors.
  • the processor 1002 may be a processor specifically designed to perform specific steps and/or operations, or a processor that performs the foregoing specific steps and/or operations by reading and executing instructions 10082 stored in the memory 1008.
  • 1002 may need to use data 10084 in the process of performing the above-mentioned specific steps and/or operations.
  • the processor 1002 is configured to perform operations performed by the processing module 904.
  • the transceiver 1004 transmits signals through at least one antenna among the plurality of antennas 1006, and receives signals through at least one antenna among the plurality of antennas 1006.
  • the transceiver 1004 is used to perform operations performed by the transceiver module 902.
  • the memory 1008 may be various types of storage media, such as random access memory (Random Access Memory, RAM), read only memory (Read Only Memory, ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (Programmable ROM, PROM), Erasable PROM (Erasable PROM, EPROM), Electrically Erasable PROM (Electrically Erasable PROM, EEPROM), flash memory, optical memory, registers, etc.
  • the memory 1008 is specifically used to store instructions 10082 and data 10084, and the processor 1002 can execute specific steps and/or operations by reading and executing instructions 10082 stored in the memory 1008. In the process of performing the foregoing specific operations and/or steps The data 10084 may be used.
  • the I/O interface 1010 is used to receive instructions and/or data from peripheral devices, and to output instructions and/or data to the peripheral devices.
  • the communication device 1000 may also include other hardware devices, which will not be listed here.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例提供信道测量方法和用户设备,以及码本指示方法,通过规定预编码的编号顺序降低用户设备或终端计算的复杂度。本发明实施例还提供了一种用户设备。本发明实施例提供的技术方案可以优化码本的指示。以节约资源,提高信道性能。

Description

信道测量方法和用户设备 技术领域
本发明实施例涉及信道测量技术,尤其涉及一种信道测量方法和用户设备。
背景技术
第五代移动通信技术(5th-Generation,5G)的新空口(new radio,NR)中支持基于码本的上行传输模式。基站可以通过高层信令配置至少一个探测参考信号(Sounding Reference Signal,SRS)资源。用户设备(User equipment,UE)根据基站配置的SRS资源和指示信令在该SRS资源上发送SRS。基站接收并测量用户设备发送的SRS。当基站调度该用户进行上行数据发送时,将通过下行控制信息(DCI Downlink control information,DCI)指示SRS资源指示(SRS resource indication,SRI),传输层数(Transmission rank indication,TRI)和传输预编码矩阵(Transmission precoding matrix indication,TPMI)。UE基于该指示信息确定发送数据所使用的传输层数和预编码方式。TRI和TPMI可以联合编码,也就是说,通过指示一个DCI字段中的某个状态可以同时指示传输层数和预编码矩阵信息。传输层数可以从集合{1,2,3,4}中选择并指示,TPMI(W)基于表1-表7进行选择并指示。其中,矩阵的行对应PUSCH的传输天线端口,也可以对应SRS端口,矩阵的列对应传输层。经过调制编码之后的信息比特[y (0)(i)...y (υ-1)(i)] T
Figure PCTCN2020124884-appb-000001
需要经过如下预编码操作发送:
Figure PCTCN2020124884-appb-000002
其中,
Figure PCTCN2020124884-appb-000003
对应了PUSCH的传输天线端口,或者SRS端口。
表1. 4Tx(SRS端口数为4)下1层传输(rank=1)的码本,离散傅里叶变换扩展OFDM(DFT-s-OFDM)波形
Figure PCTCN2020124884-appb-000004
表2. 4Tx(SRS端口数为4)下1层传输(rank=1)的码本,带循环前缀的正交频分复用多址(Cyclic Prefix-Orthogonal Frequency Division Multiple,CP-OFDM)波形
Figure PCTCN2020124884-appb-000005
表3. 4Tx(SRS端口数为4)下2层传输(rank=2)的码本
Figure PCTCN2020124884-appb-000006
表4. 3层传输(rank=3)的码本
Figure PCTCN2020124884-appb-000007
表5. 4层传输(rank=4)的码本
Figure PCTCN2020124884-appb-000008
表6. 2Tx(SRS端口数为2)1层传输(rank=1)的码本
Figure PCTCN2020124884-appb-000009
表7. 2Tx(SRS端口数为2)2层传输(rank=2)的码本
Figure PCTCN2020124884-appb-000010
其中,表1和表2中的TPMI 0-3为非相干码字,表3中的TPMI 0-5,表4和表5中的TPMI 0,表6的TPMI 0-1和表7中的TPMI 0为非相干码字,比如矩阵中每一列仅有一个非零元素。表1和表2中的TPMI 6-11,表3中的TPMI 6-13,表4中的TPMI 1-2,表5中的TPMI 1-2为部分相干码字,比如矩阵中每一列有两个非零元素和两个零元素。除上述TPMI之外的TPMI为完全相干码字,比如矩阵中每一列所有元素都为非零元素。
终端设备会上报各个发送天线之间的相干能力。对于支持最大2天线端口的终端设备,相干能力包括完全相干(fully-coherent)能力和非相干(non-coherent)能力。其中,完全相干(fully-coherent)能力,表明终端设备的2个发送天线端口之间完成相位校准,可以进行相位加权,即:可以采用2个发送天线发送同一层数据;非相干(non-coherent)能力,表明终端设备的2个发送天线之间未完成相位校准,则不可以进行相位加权发送相同一层数据,即:只能使用一根天线发送同一层数据。对于最大2天线端口的终端设备,若上报非相干能力,则仅能支持表6中的TPMI 0-1和表7中的TPMI 0,可选的,还可以支持TPMI 2用于使能满功率PUSCH传输,若上报完全相干能力,可以支持表6和表7中的所有TPMI。
对于支持最大4天线端口的终端设备,相干能力包括完全相干(fully-coherent)能力、部分相干(partially-coherent)能力和非相干(non-coherent)能力。其中,对于完全相干(fully-coherent)能力,表明UE的全部发送天线完成相位校准,可以进行相位加权,即所有UE天线均可以发送同一个数据层。例如,可以支持表1-5中的所有TPMI。对于部分相干(partially-coherent)能力,表明UE的两两发送天线组内完成相位校准,可以进行相位加权,而UE的两两发送天线组间未完成相位校准,不可以进行相位加权,即天线组内的2个发送天线可以发送同一层数据。例如,可以支持表1和表2中的TPMI 0-11,表3中的TPMI 0-13,表4和表5中的TPMI 0-2,可选的,还可以支持表1和表2中的TPMI 12-15,或者进一步支持表1中的TPMI 16-19,这些TPMI用于使能满功率PUSCH传输,此时,终端设备无法保持基站所指示的天线间的相位。对于非相干(non-coherent)能力,表明UE的4个发送天线之间均未完成相位校准,均不可以进行相位加权发送相同的数据层,即对于同一层数据,只能使用一根天线发送。例如,可以支持表1和表2中的TPMI 0-3,表3中的TPMI 0-5,表4和表5中的TPMI 0,可选的,还可以支持表1和表2中的TPMI 13,表3中的TPMI 6,表4中的TPMI 1,这些TPMI用于使能满功率PUSCH传输,此时,终端设备无法保持基站所指示的天线间的相位。
发明内容
通常来说,用户设备(例如但不限于智能手机等终端设备)发送上行参考信号(例如但不限于探测参考信号(Sounding Reference Signal,SRS),接入设备(例如但不限于基站)接收该上行参考信号并据此进行上行信道测量,确定上行传输参数,并通过例如但不限于下行控制信息(Downlink Control Information,DCI),将上述上行传输参数通知用户设备。上行传输参数可以包括,例如但不限于,下列参数之中的至少一种信道质量指示(Channel Quality Indicator,CQI)、秩指示(Rank Indication,RI)和预编码矩阵指示(Precoding Matrix Indicator,PMI)。
本发明实施例提供的技术方案采用索引值集合的方式来对传输参数进行组织。具体来说,每一个码本子集配置对应一个索引值索引值集合。在确定当前调度的PUSCH所采用的索引值(即通过传输参数指示信息所指示的索引值)时,接入设备可以遍历当前相干能力所对应的索引值集合中的各个索引值,并基于例如但不限于,信道容量最大化,或者信道吞吐量最大化等原则,确定所选择的索引值。
确定上述信息的具体过程可以参考现有技术。举例来说,接入设备可以基于信道容量最大化或者信道吞吐量最大化等原则,在预设的码本中选择预编码矩阵,并将该预编码矩阵的列数作为秩。
第一方面,提供一种传输参数指示方法:
生成传输参数指示信息,其中,所述传输参数指示信息用于指示在当前码本子集配置所对应的索引值集合中选择的索引值,所述索引值用于指示传输层数和预编码矩阵;
发送传输参数指示信息;
其中传输参数指示方法可以是接入设备(如基站)来执行;
选择的索引值可以通过DCI来发送。
结合第一方面,在第一方面的第一种可能实现方式中,所述索引值包含该索引值的索引、所述传输层数的值和所述预编码矩阵的索引,所述预编码矩阵由所述传输层数的值和所述预编码矩阵的索引共同确定。例如,当传输层数的值为1时,索引1指示矩阵A;当传输层数的值为2时,索引1指示矩阵B。因此,预编码矩阵是由传输层数的值和预编码矩阵的索引共同确定的。
结合第一方面,码本子集配置基于相干能力确定。
结合第一方面,码本子集配置包括第一码本子集和第二码本子集。
结合第一方面,在第一方面的第二种可能实现方式中,所述相干能力为下列能力其中之一:
半相干;
不相干。
结合第一方面,第一码本子集中包括非相干码字和一部分的部分相干或者完全相干码字,其中,非相干码字是指,对于一个预编码矩阵中的每一层而言,仅有一个非零元素,部分相干码字是指,对于一个预编码矩阵中的每一层而言,有部分非零元素,完全相干码字是指,对于预编码矩阵中的每一层而言,全为非零元素;仅包含一部分的部分相干或者完全相干码字的一种方式是,第一码本子集中在rank 1-3中包括一个部分相干或者完全相干码字。第二码本子集中包括非相干码字,部分相干码字,以及一部分的完全相干码字; 仅包括一部分的完全相干码字的一种方式是,第二码本子集中在rank 1中包括一部分的完全相干码字。
结合第一方面,第一码本子集对应具备非相干能力的终端设备,第二码本子集对应具备部分相干能力的终端设备。具体指,具备非相干能力的终端设备可以配置第一码本子集,具备部分相干能力的终端设备可以配置第二码本子集。
结合第一方面,第一码本子集对应具备部分相干能力的终端设备,具体指,具备部分相干能力的终端设备还可以配置第一码本子集。
结合第一方面,每个码本子集配置对应的索引值集合包含至少一条索引值,且第一码本子集对应的索引值集合为第二码本子集对应的索引值集合的子集索引值索引值。具体的,第一码本子集配置对应的索引值集合包含M个第一索引值,第二码本子集配置对应的索引值集合包含N个第二索引值;其中,M个第一索引值包括0到M-1的M个自然数,N个第二索引值包括0到N-1的N个自然数;M为大于等于1的正整数,N为大于所述M的正整数。
可选的,M个第一索引值中的任意一个第一索引值m与N个第二索引值中的任意一个第二索引值n相同时,第一索引值m对应的传输层数的值和预编码矩阵指示与第二索引值n对应的传输层数的值和预编码矩阵指示相同,且第一索引值m对应的预编码矩阵指示关联的预编码矩阵和第二索引值n对应的预编码矩阵指示关联的预编码矩阵相同;其中,第一索引值m和第二索引值n为非保留的索引值,非保留的索引值对应一个传输层数的值和一个预编码矩阵指示;m为大于等于0且小于M的任意自然数,n为大于等于0且小于N的任意自然数。
可选的,第一码本子集对应的索引值集合包括的层数和TPMI的组合,均包括在第二码本子集对应的索引值集合包括的层数和TPMI的组合中。
可选的,预编码矩阵由传输层数的值和特定波形和预编码矩阵指示共同确定。
可选的,特定波形包括,CP-OFDM波形和DFT-s-OFDM波形。
结合第一方面,所述方法还包括,接收物理上行共享信道PUSCH的最大传输层数限制信息,其中,最大传输层数限制信息用于指示第二网络设备发送PUSCH的最大传输层数。
可选的,最大传输层数的取值为1,2,3,或4中的一个。
可选的,对于相同的码本子集配置,最大传输层数的取值大于2的每个最大传输层数的取值所对应的索引值集合是相同的;最大传输层数的取值为1的每个最大传输层数的取值所对应的索引值集合与最大传输层数的取值大于1的每个最大传输层数的取值所对应的索引值集合不同;最大传输层数的取值为2的每个最大传输层数的取值所对应的索引值集合与最大传输层数的取值大于2的每个最大传输层数的取值所对应的索引值集合不同。
可选的,最大传输层数为3和最大传输层数为4所对应的索引值集合相同。
可选的,最大传输层数为2和最大传输层数为3和最大传输层数为4所对应的索引值集合相同。
可选的,最大传输层数为1和最大传输层数为2或者3或者4所对应的索引值集合不同。
可选的,最大传输层数为2和最大传输层数为3或者4所对应的索引值集合不同。
可选的,传输参数指示信息指示的索引值对应的传输层数的值小于最大传输层数的取 值。
可选的,当最大传输层数的取值为x对应的第四索引值集合中的任意一个第四索引值p与最大传输层数的取值为y对应的第五索引值集合中的任意一个第五索引值q相同时,第四索引值p对应的传输层数的值和预编码矩阵指示与第五索引值q对应的传输层数的值和预编码矩阵指示相同,且第四索引值p对应的预编码矩阵指示关联的预编码矩阵和第五索引值q对应的预编码矩阵指示关联的预编码矩阵相同;其中,x和y为大于X且小于等于K的正整数,p为大于等于0且小于P的任意自然数,q为大于等于0且小于Q的任意自然数,P为第四索引值集合中包含的索引值个数,Q为第五索引值集合中包含的索引值个数,第四索引值p和第五索引值q为非保留的索引值。
结合第一方面,所述方法还包括:
生成相干能力指示信息,其中,所述相干能力指示信息用于指示非相干能力,部分相干能力和完全相干能力中的一个。网络设备可以基于该相干能力指示信息确定码本子集配置。
结合第一方面中可能实现方式,所述索引值与一个传输层数的值和一个预编码矩阵指示的对应关系满足:
Figure PCTCN2020124884-appb-000011
结合第一方面中可能实现方式,所述索引值与一个传输层数的值和一个预编码矩阵指示的对应关系还可以满足:
Figure PCTCN2020124884-appb-000012
或者,
Figure PCTCN2020124884-appb-000013
结合第一方面中可能实现方式,所述索引值与一个传输层数的值和一个预编码矩阵指示的对应关系还可以满足:
Figure PCTCN2020124884-appb-000014
或者,
Figure PCTCN2020124884-appb-000015
第二方面,提供一种传输参数指示方法:
接收传输参数指示信息,其中,所述传输参数指示信息用于指示在当前相干能力所对应的索引值集合中选择的索引值,所述索引值用于指示传输层数和预编码矩阵;
根据所述传输参数指示信息确定所述传输层数和预编码矩阵。
结合第二方面,所述索引值包含该索引值的索引、所述传输层数的值和所述预编码矩阵的索引,所述预编码矩阵由所述传输层数的值和所述预编码矩阵的索引共同确定。
结合第二方面,码本子集配置包括第一码本子集和第二码本子集。
结合第二方面,所述当前相干能力为下列能力其中之一:
半相干;
不相干。
结合第二方面,第一码本子集中包括非相干码字和一部分的部分相干或者完全相干码字,其中,非相干码字是指,对于一个预编码矩阵中的每一层而言,仅有一个非零元素,部分相干码字是指,对于一个预编码矩阵中的每一层而言,有部分非零元素,完全相干码 字是指,对于预编码矩阵中的每一层而言,全为非零元素;仅包含一部分的部分相干或者完全相干码字的一种方式是,第一码本子集中在rank 1-3中包括一个部分相干或者完全相干码字。第二码本子集中包括非相干码字,部分相干码字,以及一部分的完全相干码字;仅包括一部分的完全相干码字的一种方式是,第二码本子集中在rank 1中包括一部分的完全相干码字。
结合第二方面,第一码本子集对应具备非相干能力的终端设备,第二码本子集对应具备部分相干能力的终端设备。具体指,具备非相干能力的终端设备可以配置第一码本子集,具备部分相干能力的终端设备可以配置第二码本子集。
结合第二方面,第一码本子集对应具备部分相干能力的终端设备,具体指,具备部分相干能力的终端设备还可以配置第一码本子集。
结合第二方面,每个码本子集配置对应的索引值集合包含至少一条索引值,且第一码本子集对应的索引值集合为第二码本子集对应的索引值集合的子集索引值索引值。具体的,第一码本子集配置对应的索引值集合包含M个第一索引值,第二码本子集配置对应的索引值集合包含N个第二索引值;其中,M个第一索引值包括0到M-1的M个自然数,N个第二索引值包括0到N-1的N个自然数;M为大于等于1的正整数,N为大于所述M的正整数。
可选的,M个第一索引值中的任意一个第一索引值m与N个第二索引值中的任意一个第二索引值n相同时,第一索引值m对应的传输层数的值和预编码矩阵指示与第二索引值n对应的传输层数的值和预编码矩阵指示相同,且第一索引值m对应的预编码矩阵指示关联的预编码矩阵和第二索引值n对应的预编码矩阵指示关联的预编码矩阵相同;其中,第一索引值m和第二索引值n为非保留的索引值,非保留的索引值对应一个传输层数的值和一个预编码矩阵指示;m为大于等于0且小于M的任意自然数,n为大于等于0且小于N的任意自然数。
可选的,第一码本子集对应的索引值集合包括的层数和TPMI的组合,均包括在第二码本子集对应的索引值集合包括的层数和TPMI的组合中。
可选的,预编码矩阵由传输层数的值和特定波形和预编码矩阵指示共同确定。
可选的,特定波形包括,CP-OFDM波形和DFT-s-OFDM波形。
结合第二方面,所述方法还包括,接收物理上行共享信道PUSCH的最大传输层数限制信息,其中,最大传输层数限制信息用于指示第二网络设备发送PUSCH的最大传输层数。
可选的,最大传输层数的取值为1,2,3,或4中的一个。
可选的,对于相同的码本子集配置,最大传输层数的取值大于2的每个最大传输层数的取值所对应的索引值集合是相同的;最大传输层数的取值为1的每个最大传输层数的取值所对应的索引值集合与最大传输层数的取值大于1的每个最大传输层数的取值所对应的索引值集合不同;最大传输层数的取值为2的每个最大传输层数的取值所对应的索引值集合与最大传输层数的取值大于2的每个最大传输层数的取值所对应的索引值集合不同。
可选的,最大传输层数为3和最大传输层数为4所对应的索引值集合相同。
可选的,最大传输层数为2和最大传输层数为3和最大传输层数为4所对应的索引值集合相同。
可选的,最大传输层数为1和最大传输层数为2或者3或者4所对应的索引值集合不 同。
可选的,最大传输层数为2和最大传输层数为3或者4所对应的索引值集合不同。
可选的,传输参数指示信息指示的索引值对应的传输层数的值小于最大传输层数的取值。
可选的,当最大传输层数的取值为x对应的第四索引值集合中的任意一个第四索引值p与最大传输层数的取值为y对应的第五索引值集合中的任意一个第五索引值q相同时,第四索引值p对应的传输层数的值和预编码矩阵指示与第五索引值q对应的传输层数的值和预编码矩阵指示相同,且第四索引值p对应的预编码矩阵指示关联的预编码矩阵和第五索引值q对应的预编码矩阵指示关联的预编码矩阵相同;其中,x和y为大于X且小于等于K的正整数,p为大于等于0且小于P的任意自然数,q为大于等于0且小于Q的任意自然数,P为第四索引值集合中包含的索引值个数,Q为第五索引值集合中包含的索引值个数,第四索引值p和第五索引值q为非保留的索引值。
结合第二方面,所述方法还包括:
生成相干能力指示信息,其中,所述相干能力指示信息用于指示所述当前相干能力。
结合第二方面中可能实现方式,所述索引值与一个传输层数的值和一个预编码矩阵指示的对应关系满足:
Figure PCTCN2020124884-appb-000016
结合第二方面中可能实现方式,所述索引值与一个传输层数的值和一个预编码矩阵指示的对应关系还可以满足:
Figure PCTCN2020124884-appb-000017
或者,
Figure PCTCN2020124884-appb-000018
结合第二方面中可能实现方式,所述索引值与一个传输层数的值和一个预编码矩阵指示的对应关系还可以满足:
Figure PCTCN2020124884-appb-000019
或者,
Figure PCTCN2020124884-appb-000020
第三方面,提供一种接入设备:
处理模块,用于生成传输参数指示信息,其中,所述传输参数指示信息用于指示在当前相干能力所对应的索引值集合中选择的索引值,所述索引值用于指示传输层数和预编码矩阵;
收发模块,用于发送所述传输参数指示信息。
结合第三方面,所述索引值包含该索引值的索引、所述传输层数的值和所述预编码矩阵的索引,所述预编码矩阵由所述传输层数的值和所述预编码矩阵的索引共同唯一确定。
结合第三方面,所述当前相干能力为下列能力其中之一:
半相干;
不相干。
结合第三方面,码本子集配置包括第一码本子集和第二码本子集。
结合第三方面,第一码本子集中包括非相干码字和一部分的部分相干或者完全相干码字,其中,非相干码字是指,对于一个预编码矩阵中的每一层而言,仅有一个非零元素, 部分相干码字是指,对于一个预编码矩阵中的每一层而言,有部分非零元素,完全相干码字是指,对于预编码矩阵中的每一层而言,全为非零元素;仅包含一部分的部分相干或者完全相干码字的一种方式是,第一码本子集中在rank 1-3中包括一个部分相干或者完全相干码字。第二码本子集中包括非相干码字,部分相干码字,以及一部分的完全相干码字;仅包括一部分的完全相干码字的一种方式是,第二码本子集中在rank 1中包括一部分的完全相干码字。
结合第三方面,第一码本子集对应具备非相干能力的终端设备,第二码本子集对应具备部分相干能力的终端设备。具体指,具备非相干能力的终端设备可以配置第一码本子集,具备部分相干能力的终端设备可以配置第二码本子集。
结合第三方面,第一码本子集对应具备部分相干能力的终端设备,具体指,具备部分相干能力的终端设备还可以配置第一码本子集。
结合第三方面,每个码本子集配置对应的索引值集合包含至少一条索引值,且第一码本子集对应的索引值集合为第二码本子集对应的索引值集合的子集索引值索引值。具体的,第一码本子集配置对应的索引值集合包含M个第一索引值,第二码本子集配置对应的索引值集合包含N个第二索引值;其中,M个第一索引值包括0到M-1的M个自然数,N个第二索引值包括0到N-1的N个自然数;M为大于等于1的正整数,N为大于所述M的正整数。
可选的,M个第一索引值中的任意一个第一索引值m与N个第二索引值中的任意一个第二索引值n相同时,第一索引值m对应的传输层数的值和预编码矩阵指示与第二索引值n对应的传输层数的值和预编码矩阵指示相同,且第一索引值m对应的预编码矩阵指示关联的预编码矩阵和第二索引值n对应的预编码矩阵指示关联的预编码矩阵相同;其中,第一索引值m和第二索引值n为非保留的索引值,非保留的索引值对应一个传输层数的值和一个预编码矩阵指示;m为大于等于0且小于M的任意自然数,n为大于等于0且小于N的任意自然数。
可选的,第一码本子集对应的索引值集合包括的层数和TPMI的组合,均包括在第二码本子集对应的索引值集合包括的层数和TPMI的组合中。
可选的,预编码矩阵由传输层数的值和特定波形和预编码矩阵指示共同确定。
可选的,特定波形包括,CP-OFDM波形和DFT-s-OFDM波形。
结合第三方面,所述方法还包括,接收物理上行共享信道PUSCH的最大传输层数限制信息,其中,最大传输层数限制信息用于指示第二网络设备发送PUSCH的最大传输层数。
可选的,最大传输层数的取值为1,2,3,或4中的一个。
可选的,对于相同的码本子集配置,最大传输层数的取值大于2的每个最大传输层数的取值所对应的索引值集合是相同的;最大传输层数的取值为1的每个最大传输层数的取值所对应的索引值集合与最大传输层数的取值大于1的每个最大传输层数的取值所对应的索引值集合不同;最大传输层数的取值为2的每个最大传输层数的取值所对应的索引值集合与最大传输层数的取值大于2的每个最大传输层数的取值所对应的索引值集合不同。
可选的,最大传输层数为3和最大传输层数为4所对应的索引值集合相同。
可选的,最大传输层数为2和最大传输层数为3和最大传输层数为4所对应的索引值集合相同。
可选的,最大传输层数为1和最大传输层数为2或者3或者4所对应的索引值集合不同。
可选的,最大传输层数为2和最大传输层数为3或者4所对应的索引值集合不同。
可选的,传输参数指示信息指示的索引值对应的传输层数的值小于最大传输层数的取值。
可选的,当最大传输层数的取值为x对应的第四索引值集合中的任意一个第四索引值p与最大传输层数的取值为y对应的第五索引值集合中的任意一个第五索引值q相同时,第四索引值p对应的传输层数的值和预编码矩阵指示与第五索引值q对应的传输层数的值和预编码矩阵指示相同,且第四索引值p对应的预编码矩阵指示关联的预编码矩阵和第五索引值q对应的预编码矩阵指示关联的预编码矩阵相同;其中,x和y为大于X且小于等于K的正整数,p为大于等于0且小于P的任意自然数,q为大于等于0且小于Q的任意自然数,P为第四索引值集合中包含的索引值个数,Q为第五索引值集合中包含的索引值个数,第四索引值p和第五索引值q为非保留的索引值。
结合第三方面,所述方法还包括:
生成相干能力指示信息,其中,所述相干能力指示信息用于指示所述当前相干能力。
结合第三方面中可能实现方式,所述索引值与一个传输层数的值和一个预编码矩阵指示的对应关系满足:
Figure PCTCN2020124884-appb-000021
结合第三方面中可能实现方式,所述索引值与一个传输层数的值和一个预编码矩阵指示的对应关系还可以满足:
Figure PCTCN2020124884-appb-000022
或者,
Figure PCTCN2020124884-appb-000023
结合第三方面中可能实现方式,所述索引值与一个传输层数的值和一个预编码矩阵指示的对应关系还可以满足:
Figure PCTCN2020124884-appb-000024
或者,
Figure PCTCN2020124884-appb-000025
第四方面,提供一种用户设备:
收发模块,用于接收传输参数指示信息,其中,所述传输参数指示信息用于指示在当前相干能力所对应的索引值集合中选择的索引值,所述索引值用于指示传输层数和预编码矩阵。
处理模块,根据所述传输参数指示信息确定所述传输层数和预编码矩阵。
结合第四方面,在第四方面的第一种可能的实现方式中,所述索引值包含该索引值的索引、所述传输层数的值和所述预编码矩阵的索引,所述预编码矩阵由所述传输层数的值和所述预编码矩阵的索引共同唯一确定。
结合第四方面,在第四方面的第二种可能的实现方式中,所述当前相干能力为下列能力其中之一:
半相干;
不相干。
结合第四方面,码本子集配置包括第一码本子集和第二码本子集。
结合第四方面,第一码本子集中包括非相干码字和一部分的部分相干或者完全相干码字,其中,非相干码字是指,对于一个预编码矩阵中的每一层而言,仅有一个非零元素,部分相干码字是指,对于一个预编码矩阵中的每一层而言,有部分非零元素,完全相干码字是指,对于预编码矩阵中的每一层而言,全为非零元素;仅包含一部分的部分相干或者完全相干码字的一种方式是,第一码本子集中在rank 1-3中包括一个部分相干或者完全相干码字。第二码本子集中包括非相干码字,部分相干码字,以及一部分的完全相干码字;仅包括一部分的完全相干码字的一种方式是,第二码本子集中在rank 1中包括一部分的完全相干码字。
结合第四方面,第一码本子集对应具备非相干能力的终端设备,第二码本子集对应具备部分相干能力的终端设备。具体指,具备非相干能力的终端设备可以配置第一码本子集,具备部分相干能力的终端设备可以配置第二码本子集。
结合第四方面,第一码本子集对应具备部分相干能力的终端设备,具体指,具备部分相干能力的终端设备还可以配置第一码本子集。
结合第四方面,每个码本子集配置对应的索引值集合包含至少一条索引值,且第一码本子集对应的索引值集合为第二码本子集对应的索引值集合的子集索引值索引值。具体的,第一码本子集配置对应的索引值集合包含M个第一索引值,第二码本子集配置对应的索引值集合包含N个第二索引值;其中,M个第一索引值包括0到M-1的M个自然数,N个第二索引值包括0到N-1的N个自然数;M为大于等于1的正整数,N为大于所述M的正整数。
可选的,M个第一索引值中的任意一个第一索引值m与N个第二索引值中的任意一个第二索引值n相同时,第一索引值m对应的传输层数的值和预编码矩阵指示与第二索引值n对应的传输层数的值和预编码矩阵指示相同,且第一索引值m对应的预编码矩阵指示关联的预编码矩阵和第二索引值n对应的预编码矩阵指示关联的预编码矩阵相同;其中,第一索引值m和第二索引值n为非保留的索引值,非保留的索引值对应一个传输层数的值和一个预编码矩阵指示;m为大于等于0且小于M的任意自然数,n为大于等于0且小于N的任意自然数。
可选的,第一码本子集对应的索引值集合包括的层数和TPMI的组合,均包括在第二码本子集对应的索引值集合包括的层数和TPMI的组合中。
可选的,预编码矩阵由传输层数的值和特定波形和预编码矩阵指示共同确定。
可选的,特定波形包括,CP-OFDM波形和DFT-s-OFDM波形。
结合第四方面,所述方法还包括,接收物理上行共享信道PUSCH的最大传输层数限制信息,其中,最大传输层数限制信息用于指示第二网络设备发送PUSCH的最大传输层数。
可选的,最大传输层数的取值为1,2,3,或4中的一个。
可选的,对于相同的码本子集配置,最大传输层数的取值大于2的每个最大传输层数的取值所对应的索引值集合是相同的;最大传输层数的取值为1的每个最大传输层数的取值所对应的索引值集合与最大传输层数的取值大于1的每个最大传输层数的取值所对应的索引值集合不同;最大传输层数的取值为2的每个最大传输层数的取值所对应的索引值集合与最大传输层数的取值大于2的每个最大传输层数的取值所对应的索引值集合不同。
可选的,最大传输层数为3和最大传输层数为4所对应的索引值集合相同。
可选的,最大传输层数为2和最大传输层数为3和最大传输层数为4所对应的索引值集合相同。
可选的,最大传输层数为1和最大传输层数为2或者3或者4所对应的索引值集合不同。
可选的,最大传输层数为2和最大传输层数为3或者4所对应的索引值集合不同。
可选的,传输参数指示信息指示的索引值对应的传输层数的值小于最大传输层数的取值。
可选的,当最大传输层数的取值为x对应的第四索引值集合中的任意一个第四索引值p与最大传输层数的取值为y对应的第五索引值集合中的任意一个第五索引值q相同时,第四索引值p对应的传输层数的值和预编码矩阵指示与第五索引值q对应的传输层数的值和预编码矩阵指示相同,且第四索引值p对应的预编码矩阵指示关联的预编码矩阵和第五索引值q对应的预编码矩阵指示关联的预编码矩阵相同;其中,x和y为大于X且小于等于K的正整数,p为大于等于0且小于P的任意自然数,q为大于等于0且小于Q的任意自然数,P为第四索引值集合中包含的索引值个数,Q为第五索引值集合中包含的索引值个数,第四索引值p和第五索引值q为非保留的索引值。
结合第四方面,在第四方面的第三种可能的实现方式中,所述方法还包括:
生成相干能力指示信息,其中,所述相干能力指示信息用于指示所述当前相干能力。
结合第四方面中可能实现方式,所述索引值与一个传输层数的值和一个预编码矩阵指示的对应关系满足:
Figure PCTCN2020124884-appb-000026
结合第四方面中可能实现方式,所述索引值与一个传输层数的值和一个预编码矩阵指示的对应关系还可以满足:
Figure PCTCN2020124884-appb-000027
或者,
Figure PCTCN2020124884-appb-000028
结合第四方面中可能实现方式,所述索引值与一个传输层数的值和一个预编码矩阵指示的对应关系还可以满足:
Figure PCTCN2020124884-appb-000029
或者,
Figure PCTCN2020124884-appb-000030
附图说明
图1是依照本发明一实施例的无线通信网络的示范性示意图;
图2是依照本发明一实施例的信道测量方法的示范性流程图;
图3是依照本发明一实施例的信道测量方法的示范性流程图;
图4是依照本发明一实施例的通信设备的示范性逻辑结构示意图;
图5是依照本发明一实施例的通信设备的示范性硬件结构示意图。
具体实施方式
目前正处于研发阶段的下一代无线通信系统又可称为新无线(New Radio,NR)系统或者5G系统。最新研究进展显示,下一代无线通信标准支持半静态信道测量,并且半静态信道测量得到的CSI可以通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)进行传送。在支持半静态信道测量时,首先需要解决的一个问题便是如何通知用 户设备启动和停止半静态信道测量。本发明实施例提供了一种技术方案,有助于解决上述问题。下文就结合附图和具体实施例来对本发明实施例提供的技术方案进行描述。
本发明实施例提供一种通信设备,该通信设备可以用于实现上述接入设备,也可以用于实现上述用户设备。该通信设备包括处理器和收发器,处理器用于执行上述处理模块的操作,收发器用于执行上述收发模块所执行的操作。
在具体实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器,其中模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本发明实施例对上述器件的具体实现形式不做限定。
本发明实施例还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息过程。具体来说,在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。更进一步的,该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的接收传输参数指示信息可以理解为处理器接收输入的传输参数指示信息。又例如,发送传输参数指示信息可以理解为处理器输出传输参数指示信息。
如此一来,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本发明实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
根据本发明实施例的第二十方面,提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述各种方法。更进一步的,计算机可读存储介质为非瞬时性的计算机可读存储介质。
根据本发明实施例的第二十一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各种方法。
图1是依照本发明一实施例的无线通信网络100的示范性示意图。如图1所示,无线通信网络100包括基站102~106和终端设备108~122,其中,基站102~106彼此之间可通 过回程(backhaul)链路(如基站102~106彼此之间的直线所示)进行通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。终端设备108~122可通过无线链路(如基站102~106与终端设备108~122之间的折线所示)与对应的基站102~106通信。
基站102~106通常作为接入设备来为通常作为用户设备的终端设备108~122提供无线接入服务。具体来说,每个基站都对应一个服务覆盖区域(又可称为蜂窝,如图1中各椭圆区域所示),进入该区域的终端设备可通过无线信号与基站通信,以此来接受基站提供的无线接入服务。基站的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个基站的无线信号,因此这些基站可以进行相互协同,以此来为该终端设备提供服务。例如,多个基站可以采用多点协作(Coordinated multipoint,CoMP)技术为处于上述交叠区域的终端设备提供服务。例如,如图1所示,基站102与基站104的服务覆盖区域存在交叠,终端设备112便处于该交叠区域之内,因此终端设备112可以收到来自基站102和基站104的无线信号,基站102和基站104可以进行相互协同,来为终端设备112提供服务。又例如,如图1所示,基站102、基站104和基站106的服务覆盖区域存在一个共同的交叠区域,终端设备120便处于该交叠区域之内,因此终端设备120可以收到来自基站102、104和106的无线信号,基站102、104和106可以进行相互协同,来为终端设备120提供服务。
依赖于所使用的无线通信技术,基站又可称为节点B(NodeB),演进节点B(evolved NodeB,eNodeB)以及接入点(Access Point,AP)等。此外,根据所提供的服务覆盖区域的大小,基站又可分为用于提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell)的微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站等。随着无线通信技术的不断演进,未来的基站也可以采用其他的名称。
终端设备108~122可以是具备无线通信功能的各种无线通信设备,例如但不限于移动蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、智能电话、笔记本电脑、平板电脑、无线数据卡、无线调制解调器(Modulator demodulator,Modem)或者可穿戴设备如智能手表等。随着物联网(Internet of Things,IOT)技术和车联网(Vehicle-to-everything,V2X)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端设备108~122还可以称为移动台、移动设备、移动终端、无线终端、手持设备、客户端等。
基站102~106,和终端设备108~122均可配置有多根天线,以支持MIMO(多入多出,Multiple Input Multiple Output)技术。进一步的说,基站102~106和终端设备108~122既可以支持单用户MIMO(Single-User MIMO,SU-MIMO)技术,也可以支持多用户MIMO(Multi-User MIMO,MU-MIMO),其中MU-MIMO可以基于空分多址(Space Division Multiple Access,SDMA)技术来实现。由于配置有多根天线,基站102~106和终端设备108~122还可灵活支持单入单出(Single Input Single Output,SISO)技术、单入多出(Single Input Multiple Output,SIMO)和多入单出(Multiple Input Single Output,MISO)技术,以实现各种分集(例如但不限于发射分集和接收分集)和复用技术,其中分集技术可以包括例如但不限于发射分集(Transmit Diversity,TD)技术和接收分集(Receive Diversity, RD)技术,复用技术可以是空间复用(Spatial Multiplexing)技术。而且上述各种技术还可以包括多种实现方案,例如发射分集技术可以包括,例如但不限于,空时发射分集(Space-Time Transmit Diversity,STTD)、空频发射分集(Space-Frequency Transmit Diversity,SFTD)、时间切换发射分集(Time Switched Transmit Diversity,TSTD)、频率切换发射分集(Frequency Switch Transmit Diversity,FSTD)、正交发射分集(Orthogonal Transmit Diversity,OTD)、循环延迟分集(Cyclic Delay Diversity,CDD)等分集方式,以及上述各种分集方式经过衍生、演进以及组合后获得的分集方式。例如,目前LTE(长期演进,Long Term Evolution)标准便采用了空时块编码(Space Time Block Coding,STBC)、空频块编码(Space Frequency Block Coding,SFBC)和CDD等发射分集方式。上文以举例的方式对发射分集进行了的概括性的描述。本领域技术人员应当明白,除上述实例外,发射分集还包括其他多种实现方式。因此,上述介绍不应理解为对本发明技术方案的限制,本发明技术方案应理解为适用于各种可能的发射分集方案。
此外,基站102~106和终端设备108~122可采用各种无线通信技术进行通信,例如但不限于,时分多址(Time Division Multiple Access,TDMA)技术、频分多址(Frequency Division Multiple Access,FDMA)技术、码分多址(Code Division Multiple Access,CDMA)技术、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、正交频分多址(Orthogonal FDMA,OFDMA)技术、单载波频分多址(Single Carrier FDMA,SC-FDMA)技术、空分多址(Space Division Multiple Access,SDMA)技术以及这些技术的演进及衍生技术等。上述无线通信技术作为无线接入技术(Radio Access Technology,RAT)被众多无线通信标准所采纳,从而构建出了在今天广为人们所熟知的各种无线通信系统(或者网络),包括但不限于全球移动通信系统(Global System for Mobile Communications,GSM)、CDMA2000、宽带CDMA(Wideband CDMA,WCDMA)、由802.22系列标准中定义的WiFi、全球互通微波存取(Worldwide Interoperability for Microwave Access,WiMAX)、长期演进(Long Term Evolution,LTE)、LTE升级版(LTE-Advanced,LTE-A)以及这些无线通信系统的演进系统等。如无特别说明,本发明实施例提供的技术方案可应用于上述各种无线通信技术和无线通信系统。此外,术语“系统”和“网络”可以相互替换。
应注意,图1所示的无线通信网络100仅用于举例,并非用于限制本发明的技术方案。本领域的技术人员应当明白,在具体实现过程中,无线通信网络100还可能包括其他设备,同时也可根据具体需要来配置基站和终端设备的数量。
图2是依照本发明一实施例的信道测量方法300的示范性流程图。在具体实现过程中,方法300中的步骤302可由网络设备执行,步骤304可由用户设备执行。
步骤302,发送传输参数指示信息;其中,所述传输参数指示信息用于指示在当前码本子集配置所对应的索引值集合中选择的索引值,所述索引值用于指示传输层数和预编码矩阵。
可选的,所述传输层数和预编码矩阵用于指示PUSCH的传输参数。
可选的,所述传输参数指示信息承载于DCI中,或者承载于RRC信令中。
可选的,在发送传输参数指示信息之前,接收相干能力指示信息。
可选的,在发送传输传输指示信息之前,发送码本子集配置信息,其中,码本子集配 置信息用于指示采用第一码本子集配置或者第二码本子集配置。
可选的,根据相干能力指示信息发送码本子集配置信息。其中,当相干能力指示信息指示为非相干能力,则码本子集配置信息可以配置为第一码本子集配置;当相干能力指示信息指示为部分相干能力,则码本子集配置信息可以配置为第二码本子集配置。
可选的,第一码本子集配置包括非相干码字。
可选的,第二码本子集配置包括非相干码字和部分相干码字。
可选的,第一码本子集配置还包括完全相干码字和/或部分相干码字中的部分码字。
可选的,第二码本子集配置还包括完全相干码字中的部分码字。
步骤304,接收传输参数指示信息。
可选的,在接收传输参数指示信息之前,发送相干能力指示信息。
可选的,在接收传输参数指示信息之前,接收码本子集配置信息,码本子集配置信息用于指示第一码本子集配置和第二码本子集配置中的至少一个。可选的,根据码本子集配置信息,接收传输参数指示信息。具体的,根据码本子集配置信息,确定传输参数指示信息的比特位数,以及该指示信息的每个状态位对应的含义。每个状态位对应的含义包括,传输层数和相应的TPMI。TRI和TPMI联合编码的字段中的状态用于指示数据传输所使用的TRI和TPMI。每个TRI取值都会对应一组预编码矩阵,对应关系如表1-4所示。当某一个传输层数被指示时,TPMI用于指示从该传输层数对应的一组预编码矩阵中选择其中一个预编码矩阵。表8是一种TRI和TPMI联合编码的示例。其中,所指示的传输层数,也就是TRI是通过表中的层x指示的,其中x的取值范围是{1,2,3,4}。所指示的预编码矩阵是通过表中的TPMI=y指示的,其中y是大于等于1的正整数,y的取值范围根据表1-4中每个传输层数对应的三种UE能力对应的预编码矩阵个数确定。在本实施例中,对于每种UE能力,TRI和TPMI联合编码字段的索引按照层数从小到大而从小到大排列。如表8中所示,对于完全相干传输能力,该字段的索引0-27表示层1传输,其中每个索引都对应了层1传输对应的一个预编码矩阵索引,包括完全相干对应的码字,部分相干对应的码字和非相干对应的码字;该字段的索引28-49表示层2传输,其中每个索引都对应了层2传输对应的一个预编码矩阵索引,包括完全相干对应的码字,部分相干对应的码字和非相干对应的码字;该字段的索引50-56表示层3传输,其中每个索引都对应了层3传输对应的一个预编码矩阵索引,包括完全相干对应的码字,部分相干对应的码字和非相干对应的码字;该字段的索引57-61表示层4传输,其中每个索引都对应了层4传输对应的一个预编码矩阵索引,包括完全相干对应的码字,部分相干对应的码字和非相干对应的码字。
具体的,对于4T的情况,即终端设备可以支持的最大天线端口数量为4的情况,针对第一码本子集配置,在最大rank数为1的情况下,第一码本子集配置中包括表1和表2中的TPMI 0-3,或者,第一码本子集配置中包括表1和表2中的TPMI 0-3,以及TPMI 13,或者,第一码本子集配置中包括表1和表2中的TPMI 0-3,以及TPMI 4、8,以及TPMI 13。在最大rank数为2的情况下,第一码本子集配置中除了可以包括最大rank数为1的情况下的码字,还可以包括表3中的TPMI 0-5;或者,第一码本子集配置中包括表3中的TPMI 0-6。在最大rank数为3的情况下,第一码本子集配置中除了可以包括最大rank数为2的情况下的码字,还可以包括表4中的TPMI 0-1。在最大rank数为4的情况下,第一码本子集配置中除了可以包括最大rank数为3的情况下的码字,还可以包括表5中的 TPMI 0。应理解,当可以支持的最大天线端口数大于4的时候,在采用4端口配置的时候,也适用上述实施例。
针对第二码本子集配置,在最大rank数为1的情况下,第一码本子集配置中包括表1和表2中的TPMI 0-11,或者,第一码本子集配置中包括表1和表2中的TPMI 0-11,以及TPMI 12-15,或者,第一码本子集配置中包括表1和表2中的TPMI 0-11,以及TPMI 12-19。在最大rank数为2的情况下,第一码本子集配置中除了可以包括最大rank数为1的情况下的码字,还可以包括表3中的TPMI 0-13。在最大rank数为3的情况下,第一码本子集配置中除了可以包括最大rank数为2的情况下的码字,还可以包括表4中的TPMI 0-2。在最大rank数为4的情况下,第一码本子集配置中除了可以包括最大rank数为3的情况下的码字,还可以包括表5中的TPMI 0-2。
本发明中,传输层数指示(TRI)和预编码矩阵指示(TPMI)联合编码。也就是说,字段中每一个状态位均对应一个传输层数指示以及相应传输层数下的预编码矩阵指示。每个TRI取值都会对应一组预编码矩阵,对应关系如表1-7所示。当某一个传输层数被指示时,TPMI用于指示从该传输层数对应的一组预编码矩阵中选择其中一个预编码矩阵。表8和表9是一种TRI和TPMI联合编码的示例。其中,所指示的传输层数,也就是TRI是通过表中的x层指示的,其中x的取值范围限制为1,也就是当前PUSCH传输的最大传输层数被配置为1。所指示的预编码矩阵是通过表中的TPMI=y指示的,其中y是大于等于1的正整数,y的取值范围根据表1-7中特定传输层数下的预编码矩阵个数确定,对于表8和表9,y的取值范围根据表1和表2的预编码矩阵个数确定。同时,特定y下的预编码矩阵还会根据最大发送天线端口数确定,表8和表9中,最大发送天线端口数量为4。进一步的,特定y下的预编码矩阵还会根据传输波形确定,例如,以TPMI=12为例,当传输波形为DFT-s-OFDM,则TPMI=12对应的预编码矩阵为
Figure PCTCN2020124884-appb-000031
(对应表1),当传输波形为CP-OFDM,则TPMI=12对应的预编码矩阵为
Figure PCTCN2020124884-appb-000032
(对应表2)。进一步的,TRI和TPMI联合编码指示的比特数大小以及每个状态值对应的传输层数和预编码矩阵指示需要根据码本子集配置确定。例如,当码本子集配置为第一码本子集,则该字段的比特数为3比特,当码本子集配置为第二码本子集,则该字段的比特数为4比特。
当第一码本子集对应的5个第一索引值中的任意一个第一索引值m与第二码本子集对应的16个第二索引值中的任意一个第二索引值n相同时,第一索引值m对应的传输层数的值和预编码矩阵指示与所述第二索引值n对应的传输层数的值和预编码矩阵指示相同,且所述第一索引值m对应的预编码矩阵指示关联的预编码矩阵和所述第二索引值n对应的预编码矩阵指示关联的预编码矩阵相同。其中,对于第一码本子集配置而言,字段的索引值5-7为保留的,表明,该索引值对应的内容为空集。
可选的,表8、表9用于CP-OFDM波形和DFT-s-OFDM波形。
可选的,表8、表9用于CP-OFDM波形,表10、表11用于DFT-s-OFDM波形。
表8.TRI和TPMI联合编码指示的示例1
Figure PCTCN2020124884-appb-000033
表9.TRI和TPMI联合编码指示的示例2
Figure PCTCN2020124884-appb-000034
表10.TRI和TPMI联合编码指示的示例3
Figure PCTCN2020124884-appb-000035
表11.TRI和TPMI联合编码指示的示例4
Figure PCTCN2020124884-appb-000036
表12和表13是另一种TRI和TPMI联合编码的示例。其中,所指示的传输层数,或者说TRI是通过表中的x层指示的,在表12和表13中x的取值范围限制为{1,2},也就是当前PUSCH传输的最大传输层数被配置为2,则所指示的传输层数可以为1或者2。所指示的预编码矩阵是通过表中的TPMI=y指示的,其中y是大于等于1的正整数,y的取值范围根据表1-7中特定传输层数下的预编码矩阵个数确定,对于表10和表11,y的取值范围根据表2和表3的预编码矩阵个数确定。同时,特定y下的预编码矩阵还会根据最大发送天线端口数确定,表12和表13中,最大发送天线端口数量为4。进一步的,TRI 和TPMI联合编码指示的比特数大小以及每个状态值对应的传输层数和预编码矩阵指示需要根据码本子集配置确定。例如,当码本子集配置为第一码本子集,则该字段的比特数为4比特,当码本子集配置为第二码本子集,则该字段的比特数为5比特。
当第一码本子集对应的12个第一索引值中的任意一个第一索引值m与第二码本子集对应的30个第二索引值中的任意一个第二索引值n相同时,第一索引值m对应的传输层数的值和预编码矩阵指示与所述第二索引值n对应的传输层数的值和预编码矩阵指示相同,且所述第一索引值m对应的预编码矩阵指示关联的预编码矩阵和所述第二索引值n对应的预编码矩阵指示关联的预编码矩阵相同。
表12.TRI和TPMI联合编码指示的示例3
Figure PCTCN2020124884-appb-000037
表13.TRI和TPMI联合编码指示的示例4
Figure PCTCN2020124884-appb-000038
表14,表15是另一种TRI和TPMI联合编码的示例。所指示的传输层数的取值范围限制可以为{1,2,3,4},也可以为{1,2,3},也可以为{1,2},也就是当前PUSCH传输的最大传输层数被配置为4,也可以为3,也可以为2。所指示的预编码矩阵是通过表中的TPMI=y指示的,其中y是大于等于1的正整数,y的取值范围根据表2-5中特定传输层数下的预编码矩阵个数确定。同时,特定y下的预编码矩阵还会根据最大发送天线端口数确定,比如,最大发送天线端口数量为4。进一步的,TRI和TPMI联合编码指示的比特数大小以及每个状态值对应的传输层数和预编码矩阵指示需要根据码本子集配置确定。例如,当码本子集配置为第一码本子集,则该字段的比特数为4比特,当码本子集配置为第二码本子集,则该字段的比特数为6比特。
当第一码本子集对应的15个第一索引值中的任意一个第一索引值m与第二码本子集对应的36个第二索引值中的任意一个第二索引值n相同时,第一索引值m对应的传输层数的值和预编码矩阵指示与所述第二索引值n对应的传输层数的值和预编码矩阵指示相同,且所述第一索引值m对应的预编码矩阵指示关联的预编码矩阵和所述第二索引值n对应的预编码矩阵指示关联的预编码矩阵相同。
表14.TRI和TPMI联合编码指示的示例5
Figure PCTCN2020124884-appb-000039
表15.TRI和TPMI联合编码指示的示例6
Figure PCTCN2020124884-appb-000040
表16,表17是另一种TRI和TPMI联合编码的示例。所指示的传输层数的取值范围限制可以为{1,2,3,4},也可以为{1,2,3},也可以为{1,2},也就是当前PUSCH传输的最大传输层数被配置为4,也可以为3,也可以为2。所指示的预编码矩阵是通过表中的TPMI=y指示的,其中y是大于等于1的正整数,y的取值范围根据表2-5中特定传输层数下的预编码矩阵个数确定。同时,特定y下的预编码矩阵还会根据最大发送天线端口数确定,比如,最大发送天线端口数量为4。进一步的,TRI和TPMI联合编码指示的比特数大小以及每个状态值对应的传输层数和预编码矩阵指示需要根据码本子集配置确定。例如,当码本子集配置为第一码本子集,则该字段的比特数为5比特,当码本子集配置为第二码本子集,则该字段的比特数为6比特。
当第一码本子集对应的17个第一索引值中的任意一个第一索引值m与第二码本子集对应的38个第二索引值中的任意一个第二索引值n相同时,第一索引值m对应的传输层数的值和预编码矩阵指示与所述第二索引值n对应的传输层数的值和预编码矩阵指示相同,且所述第一索引值m对应的预编码矩阵指示关联的预编码矩阵和所述第二索引值n 对应的预编码矩阵指示关联的预编码矩阵相同。
表16.TRI和TPMI联合编码指示的示例5
Figure PCTCN2020124884-appb-000041
表17.TRI和TPMI联合编码指示的示例6
Figure PCTCN2020124884-appb-000042
表16中,对于第一码本子集配置和第二码本子集配置的索引值12-16所对应的传输层数和相应TPMI还可以为:
12 1层:TPMI=4
13 1层:TPMI=8
14 1层:TPMI=13
15 2层:TPMI=6
16 3层:TPMI=1
或者,
12 1层:TPMI=13
13 2层:TPMI=6
14 3层:TPMI=1
15 1层:TPMI=4
16 1层:TPMI=8
也就是说,对于索引值12-16对应的五个层数和TPMI组合的排列不做限制,但要保证对于相同第一码本子集配置和第二码本子集配置对应的索引值而言,其对应的层数和TPMI组合相同。
方法300中涉及的技术细节已经在上文结合方法200进行了详细的描述,因此此处不再赘述。
图3是本发明的又一种实施方式。在具体实现过程中,步骤402可由网络设备执行,步骤404可由终端设备执行。
步骤402,根据SRS资源的配置信息,发送第二传输参数控制信息。具体包括,根据配置的多个SRS资源中端口数最大的SRS资源的端口数,确定第二传输参数控制信息中第一传输指示字段的比特数,第一传输指示字段用于指示PUSCH传输采用的传输层数以及相应的预编码矩阵;根据第二传输参数控制信息所指示的SRS资源的端口数,确定在第二传输参数控制信息中填零的比特位数。
例如,第二传输参数控制信息为调度PUSCH的DCI,第一传输指示字段用于指示PUSCH的传输层数和相应的TPMI。多个SRS资源中端口数最大的SRS资源的端口数用于确定第一传输指示字段的比特数(N1)。第二传输参数控制信息中还包括SRS资源指示(SRS resource indication,SRI)字段,该字段用于指示从配置的多个SRS资源中选择一个。SRI字段所指示的SRS资源的端口数用于确定有效的比特位数(N2)以及填零的比特位数,有效的比特位数为用于指示TPMI和传输层数的比特位数,填零的比特位数为N1-N2。
比如,配置了两个SRS资源的端口数分别为2和4,则SRS端口数为4用于确定第一传输指示字段的比特数,即,第一传输指示字段中指示的TPMI行数为4,SRI用于指示选择端口数为2的SRS资源还是端口数为4的SRS资源。当SRI指示了4端口的SRS资源,则第一传输指示字段的比特数N1和有效的比特位数N2相同,没有填零的比特位数;当SRI指示了2端口的SRS资源,则由于4天线码本和2天线码本对应的比特数不同导致第一传输指示字段的比特数N1和有效的比特位数N2不相同,存在填零的比特位数N1-N2。
可选的,填零的N位比特位于第二传输参数控制信息中末尾N位比特。比如,第二传输参数控制信息的总比特位数为X1,前X1-N位比特为指示有效信息的比特位,最后N位比特为填零比特位。
可选的,填零的N位比特位于第二传输参数控制信息中第一传输指示字段有效比特位之后的N位比特。比如,第二传输参数控制信息的总比特位数为X1,前X1-K位比特为指示有效信息的比特位,K>N,K位比特中的N位比特为相应的填零比特位。
可选的,填零的N位比特位于第一传输参数控制信息中有效比特位之后的N位比特位。比如,第一传输参数控制信息位于第二传输参数控制信息中第k 0-k i个比特位,其中,根据SRI指示的SRS资源端口数确定的有效比特位数为N2,则第k 0-k N2-1个比特位为有效比特位,第k N2-k i个比特位为填零的比特位。
步骤404,根据SRS资源的配置信息,接收第二传输参数控制信息。具体包括,根据配置的多个SRS资源中端口数最大的SRS资源的端口数,确定第二传输参数控制信息中第一传输指示字段的比特数,第一传输指示字段用于指示PUSCH传输采用的传输层数以及相应的预编码矩阵;根据第二传输参数控制信息所指示的SRS资源的端口数,确定在第二传输参数控制信息中填零的比特位数。
例如,第二传输参数控制信息为调度PUSCH的DCI,第一传输指示字段用于指示 PUSCH的传输层数和相应的TPMI。多个SRS资源中端口数最大的SRS资源的端口数用于确定第一传输指示字段的比特数(N1)。第二传输参数控制信息中还包括SRS资源指示(SRS resource indication,SRI)字段,该字段用于指示从配置的多个SRS资源中选择一个。SRI字段所指示的SRS资源的端口数用于确定有效的比特位数(N2)以及填零的比特位数,有效的比特位数为用于指示TPMI和传输层数的比特位数,填零的比特位数为N1-N2。
比如,配置了两个SRS资源的端口数分别为2和4,则SRS端口数为4用于确定第一传输指示字段的比特数,即,第一传输指示字段中指示的TPMI行数为4,SRI用于指示选择端口数为2的SRS资源还是端口数为4的SRS资源。当SRI指示了4端口的SRS资源,则第一传输指示字段的比特数N1和有效的比特位数N2相同,没有填零的比特位数;当SRI指示了2端口的SRS资源,则由于4天线码本和2天线码本对应的比特数不同导致第一传输指示字段的比特数N1和有效的比特位数N2不相同,存在填零的比特位数N1-N2。
可选的,填零的N位比特位于第二传输参数控制信息中末尾N位比特。比如,第二传输参数控制信息的总比特位数为X1,前X1-N位比特为指示有效信息的比特位,最后N位比特为填零比特位。
可选的,填零的N位比特位于第二传输参数控制信息中第一传输指示字段有效比特位之后的N位比特。比如,第二传输参数控制信息的总比特位数为X1,前X1-K位比特为指示有效信息的比特位,K>N,K位比特中的N位比特为相应的填零比特位。
可选的,填零的N位比特位于第一传输参数控制信息中有效比特位之后的N位比特位。比如,第一传输参数控制信息位于第二传输参数控制信息中第k 0-k i个比特位,其中,根据SRI指示的SRS资源端口数确定的有效比特位数为N2,则第k 0-k N2-1个比特位为有效比特位,第k N2-k i个比特位为填零的比特位。图4是依照本发明一实施例的通信设备900的示范性逻辑结构示意图。在具体实现过程中,通信设备900可以是上文所述的接入设备,也可以上文所述的用户设备。如图4所示,通信设备900包括收发模块902和处理模块904。
当通信设备900为用户设备时,收发模块902可用于执行上述步骤302、402和702,处理模块904用于执行上述步骤304、404和704。
当通信设备900为接入设备时,收发模块902可用于执行上述步骤504、604和804,处理模块904用于执行上述步骤502、602和802。
图5是依照本发明一实施例的通信设备1000的示范性硬件结构示意图。在具体实现过程中,通信设备1000可以是上文所述的接入设备,也可以上文所述的用户设备。如图5所示,通信设备1000包括处理器1002、收发器1004、多根天线1006,存储器1008、I/O(输入/输出,Input/Output)接口1010和总线1012。存储器1008进一步用于存储指令10082和数据10084。此外,处理器1002、收发器1004、存储器1008和I/O接口1010通过总线1012彼此通信连接,多根天线1006与收发器1004相连。在具体实现过程中,处理器1002、收发器1004、存储器1008和I/O接口1010也可以采用总线1012之外的其他连接方式彼此通信连接。
处理器1002可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor, DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器1002还可以是多个处理器的组合。处理器1002可以是专门设计用于执行特定步骤和/或操作的处理器,也可以是通过读取并执行存储器1008中存储的指令10082来执行上述特定步骤和/或操作的处理器,处理器1002在执行上述特定步骤和/或操作的过程中可能需要用到数据10084。特别的,处理器1002用于执行处理模块904所执行的操作。
收发器1004通过多根天线1006之中的至少一根天线发送信号,以及通过多根天线1006之中的至少一根天线接收信号。特别的,收发器1004用于执行收发模块902所执行的操作。
存储器1008可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器1008具体用于存储指令10082和数据10084,处理器1002可以通过读取并执行存储器1008中存储的指令10082,来执行特定步骤和/或操作,在执行上述特定操作和/或步骤的过程中可能需要用到数据10084。
I/O接口1010用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,通信设备1000还可以包括其他硬件器件,本文不再一一列举。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
综上所述,以上仅为本发明的实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (30)

  1. 一种接收参数的指示方法,其特征在于,包括:
    接收传输参数指示信息,其中,所述传输参数指示信息用于指示码本子集配置对应的索引值集合中的一个索引值,所述码本子集配置包括第一码本子集配置和第二码本子集配置;
    所述索引值集合中的索引值对应一个传输层数的值和一个预编码矩阵指示;其中,所述第一码本子集配置对应的索引值集合包含M个第一索引值,所述第二码本子集配置对应的索引值集合包含N个第二索引值;其中,所述M个第一索引值包括0到M-1的M个自然数,所述N个第二索引值包括0到N-1的N个自然数;所述M为大于等于1的正整数,所述N为大于所述M的正整数;
    所述第一码本子集配置中包括非相干码字和完全相干码字,所述第二码本子集配置中包括非相干码字,部分相干码字和完全相干码字;
    所述第一码本子集配置对应非相干能力,所述第一码本子集配置和所述第二码本子集配置对应部分相干能力;
    根据所述传输参数指示信息确定层数值和预编码矩阵。
  2. 如权利要求1中所述的方法,其特征在于,当所述M个第一索引值中的任意一个第一索引值m与所述N个第二索引值中的任意一个第二索引值n相同时,所述第一索引值m对应的传输层数的值和预编码矩阵指示与所述第二索引值n对应的传输层数的值和预编码矩阵指示相同,且所述第一索引值m对应的预编码矩阵指示关联的预编码矩阵和所述第二索引值n对应的预编码矩阵指示关联的预编码矩阵相同;
    其中,所述第一索引值m和第二索引值n为非保留的索引值,所述非保留的索引值对应一个传输层数的值和一个预编码矩阵指示;
    所述m为大于等于0且小于所述M的任意自然数,所述n为大于等于0且小于所述N的任意自然数。
  3. 如权利要求1-2中所述的任一方法,其特征在于,所述预编码矩阵由所述传输层数的值和某一特定天线配置和某一特定波形和所述预编码矩阵指示共同确定。
  4. 如权利要求1-3中所述的任一方法,其特征在于,所述索引值与一个传输层数的值和一个预编码矩阵指示的对应关系满足下列表格中的一个或多个表格:
    Figure PCTCN2020124884-appb-100001
    Figure PCTCN2020124884-appb-100002
    Figure PCTCN2020124884-appb-100003
  5. 如权利要求1-4中所述的任一方法,其特征在于,包括:
    接收物理上行共享信道PUSCH的最大传输层数限制信息,其中,所述最大传输层数限制信息用于指示第二网络设备发送所述PUSCH的最大传输层数。
  6. 如权利要求5中所述的方法,其特征在于,所述最大传输层数的取值为1,2,3,或4中的一个。
  7. 如权利要求5或6所述的方法,其特征在于,对于相同的码本子集配置,所述最 大传输层数的取值大于2的每个所述最大传输层数的取值所对应的所述索引值集合是相同的;
    所述最大传输层数的取值为1的每个所述最大传输层数的取值所对应的所述索引值集合与所述最大传输层数的取值大于1的每个最大传输层数的取值所对应的所述索引值集合不同;
    所述最大传输层数的取值为2的每个所述最大传输层数的取值所对应的所述索引值集合与所述最大传输层数的取值大于2的每个最大传输层数的取值所对应的所述索引值集合不同。
  8. 如权利要求1-7中所述的任一方法,其特征在于,所述传输参数指示信息指示的索引值对应的传输层数的值小于所述最大传输层数的取值。
  9. 如权利要求1-8中所述的任一方法,其特征在于,当所述最大传输层数的取值为x对应的第四索引值集合中的任意一个第四索引值p与所述最大传输层数的取值为y对应的第五索引值集合中的任意一个第五索引值q相同时,所述第四索引值p对应的传输层数的值和预编码矩阵指示与所述第五索引值q对应的传输层数的值和预编码矩阵指示相同,且所述第四索引值p对应的预编码矩阵指示关联的预编码矩阵和所述第五索引值q对应的预编码矩阵指示关联的预编码矩阵相同;
    其中,所述x和所述y为大于X且小于等于K的正整数,所述p为大于等于0且小于P的任意自然数,所述q为大于等于0且小于Q的任意自然数,所述P为所述第四索引值集合中包含的索引值个数,所述Q为所述第五索引值集合中包含的索引值个数,所述第四索引值p和所述第五索引值q为非保留的索引值。
  10. 一种接收参数的设备,其特征在于,包括:
    收发模块,用于接收传输参数指示信息,其中,所述传输参数指示信息用于指示所述码本子集配置对应的索引值集合中的一个索引值,所述码本子集配置包括第一码本子集配置和第二码本子集配置;
    所述索引值集合中的索引值对应一个传输层数的值和一个预编码矩阵指示;其中,所述第一码本子集配置对应的索引值集合包含M个第一索引值,所述第二码本子集配置对应的所述索引值集合包含N个第二索引值;其中,所述M个第一索引值包括0到M-1的M个自然数,所述N个第二索引值包括0到N-1的N个自然数;所述M为大于等于1的正整数,所述N为大于所述M的正整数,所述第一码本子集配置中包括非相干码字和完全相干码字,所述第二码本子集配置中包括非相干码字,部分相干码字和完全相干码字;
    所述第一码本子集配置对应非相干能力,所述第一码本子集配置和所述第二码本子集配置对应部分相干能力;
    处理模块,用于根据所述传输参数指示信息确定层数值和预编码矩阵。
  11. 如权利要求10中所述的设备,其特征在于,当所述M个第一索引值中的任意一个第一索引值m与所述N个第二索引值中的任意一个第二索引值n相同时,所述第一索引值m对应的传输层数的值和预编码矩阵指示与所述第二索引值n对应的传输层数的值和预编码矩阵指示相同,且所述第一索引值m对应的预编码矩阵指示关联的预编码矩阵和所述第二索引值n对应的预编码矩阵指示关联的预编码矩阵相同;
    其中,所述第一索引值m和第二索引值n为非保留的索引值,所述非保留的索引值对应一个传输层数的值和一个预编码矩阵指示;
    所述m为大于等于0且小于所述M的任意自然数,所述n为大于等于0且小于所述N的任意自然数。
  12. 如权利要求10-11中所述的任一设备,其特征在于,所述预编码矩阵由所述传输层数的值和某一特定天线配置和某一特定波形和所述预编码矩阵指示共同确定。
  13. 如权利要求10-12中所述的任一设备,其特征在于,所述索引值与一个传输层数的值和一个预编码矩阵指示的对应关系满足下列表格中的一个或多个表格:
    Figure PCTCN2020124884-appb-100004
    或者,
    Figure PCTCN2020124884-appb-100005
    或者,
    Figure PCTCN2020124884-appb-100006
  14. 如权利要求10-13中所述的任一设备,其特征在于:
    所述收发模块还用于接收物理上行共享信道PUSCH的最大传输层数限制信息,其中,所述最大传输层数限制信息用于指示第二网络设备发送所述PUSCH的最大传输层数。
  15. 如权利要求14中所述的设备,其特征在于,所述最大传输层数的取值为1,2,3,或4中的一个。
  16. 如权利要求14或15所述的设备,其特征在于,对于相同的码本子集配置,所述最大传输层数的取值大于2的每个所述最大传输层数的取值所对应的所述索引值集合是相同的;且
    所述最大传输层数的取值为1的每个所述最大传输层数的取值所对应的所述索引值集合与所述最大传输层数的取值大于1的每个最大传输层数的取值所对应的所述索引值集合不同;
    所述最大传输层数的取值为2的每个所述最大传输层数的取值所对应的所述索引值集合与所述最大传输层数的取值大于2的每个最大传输层数的取值所对应的所述索引值集合不同。
  17. 如权利要求10-16中所述的任一设备,其特征在于,所述传输参数指示信息指示的索引值对应的传输层数的值小于所述最大传输层数的取值。
  18. 如权利要求10-17中所述的任一设备,其特征在于,当所述最大传输层数的取值为x对应的第四索引值集合中的任意一个第四索引值p与所述最大传输层数的取值为y对应的第五索引值集合中的任意一个第五索引值q相同时,所述第四索引值p对应的传输层数的值和预编码矩阵指示与所述第五索引值q对应的传输层数的值和预编码矩阵指示相同,且所述第四索引值p对应的预编码矩阵指示关联的预编码矩阵和所述第五索引值q对应的预编码矩阵指示关联的预编码矩阵相同;
    其中,所述x和所述y为大于X且小于等于K的正整数,所述p为大于等于0且小于P的任意自然数,所述q为大于等于0且小于Q的任意自然数,所述P为所述第四索引值集合中包含的索引值个数,所述Q为所述第五索引值集合中包含的索引值个数,所述第四索引值p和所述第五索引值q为非保留的索引值。
  19. 一种接收参数的设备,其特征在于,包括:
    收发器,用于接收传输参数指示信息,其中,所述传输参数指示信息用于指示码本子集配置对应的索引值集合中的一个索引值,所述码本子集配置包括第一码本子集配置和第二码本子集配置;所述索引值集合中的索引值对应一个传输层数的值和一个预编码矩阵指示;其中,所述第一码本子集配置对应的索引值集合包含M个第一索引值,所述第二码本子集配置对应的所述索引值集合包含N个第二索引值;其中,所述M个第一索引值包括0到M-1的M个自然数,所述N个第二索引值包括0到N-1的N个自然数;所述M为大于等于1的正整数,所述N为大于所述M的正整数,所述第一码本子集配置中包括非相干码字和完全相干码字,所述第二码本子集配置中包括非相干码字,部分相干码字和完全相干码字;
    所述第一码本子集配置对应非相干能力,所述第一码本子集配置和所述第二码本子集配置对应部分相干能力;
    处理器,用于根据所述传输参数指示信息确定层数值和预编码矩阵。
  20. 如权利要求19中所述的设备,其特征在于,当所述M个第一索引值中的任意一个第一索引值m与所述N个第二索引值中的任意一个第二索引值n相同时,所述第一索引值m对应的传输层数的值和预编码矩阵指示与所述第二索引值n对应的传输层数的值和预编码矩阵指示相同,且所述第一索引值m对应的预编码矩阵指示关联的预编码矩阵和所述第二索引值n对应的预编码矩阵指示关联的预编码矩阵相同;
    其中,所述第一索引值m和第二索引值n为非保留的索引值,所述非保留的索引值对应一个传输层数的值和一个预编码矩阵指示;
    所述m为大于等于0且小于所述M的任意自然数,所述n为大于等于0且小于所述N的任意自然数。
  21. 如权利要求19-20中所述的任一设备,其特征在于,所述预编码矩阵由所述传输层数的值和某一特定天线配置和某一特定波形和所述预编码矩阵指示共同确定。
  22. 如权利要求19-21中所述的任一设备,其特征在于,所述索引值与一个传输层数的值和一个预编码矩阵指示的对应关系满足下列表格中的一个或多个表格:
    Figure PCTCN2020124884-appb-100007
    或者,
    Figure PCTCN2020124884-appb-100008
    或者,
    Figure PCTCN2020124884-appb-100009
  23. 如权利要求19-22中所述的任一设备,其特征在于:
    所述收发器还用于接收物理上行共享信道PUSCH的最大传输层数限制信息,其中,所述最大传输层数限制信息用于指示第二网络设备发送所述PUSCH的最大传输层数。
  24. 如权利要求23中所述的设备,其特征在于,所述最大传输层数的取值为1,2,3,或4中的一个。
  25. 如权利要求23或24所述的设备,其特征在于,对于相同的码本子集配置,所述最大传输层数的取值大于2的每个所述最大传输层数的取值所对应的所述索引值集合是相同的;
    所述最大传输层数的取值为1的每个所述最大传输层数的取值所对应的所述索引值集合与所述最大传输层数的取值大于1的每个最大传输层数的取值所对应的所述索引值集合不同;
    所述最大传输层数的取值为2的每个所述最大传输层数的取值所对应的所述索引值集合与所述最大传输层数的取值大于2的每个最大传输层数的取值所对应的所述索引值集合不同。
  26. 如权利要求19-25中所述的任一设备,其特征在于,所述传输参数指示信息指示的索引值对应的传输层数的值小于所述最大传输层数的取值。
  27. 如权利要求19-26中所述的任一设备,其特征在于,当所述最大传输层数的取值为x对应的第四索引值集合中的任意一个第四索引值p与所述最大传输层数的取值为y对应的第五索引值集合中的任意一个第五索引值q相同时,所述第四索引值p对应的传输层数的值和预编码矩阵指示与所述第五索引值q对应的传输层数的值和预编码矩阵指示相同,且所述第四索引值p对应的预编码矩阵指示关联的预编码矩阵和所述第五索引值q对应的预编码矩阵指示关联的预编码矩阵相同;
    其中,所述x和所述y为大于X且小于等于K的正整数,所述p为大于等于0且小于P的任意自然数,所述q为大于等于0且小于Q的任意自然数,所述P为所述第四索引值集合中包含的索引值个数,所述Q为所述第五索引值集合中包含的索引值个数,所述第四索引值p和所述第五索引值q为非保留的索引值。
  28. 一种计算机存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1-9任一项所述的方法。
  29. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-9任一项所述的方法。
  30. 一种存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现一种接入方法:
    接收字段的索引;
    根据所述字段的索引以及第一映射关系确定所述传输层数和预编码矩阵;
    其中,所述第一映射关系存储在存储介质中,所述第一映射关系满足下列表格中的一个或多个表格:
    Figure PCTCN2020124884-appb-100010
    或者,
    Figure PCTCN2020124884-appb-100011
    或者,
    Figure PCTCN2020124884-appb-100012
PCT/CN2020/124884 2019-10-29 2020-10-29 信道测量方法和用户设备 WO2021083285A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2022005066A MX2022005066A (es) 2019-10-29 2020-10-29 Metodo de medicion de canal y equipo de usuario.
EP20882840.0A EP4044445A4 (en) 2019-10-29 2020-10-29 CHANNEL MEASUREMENT METHOD AND USER EQUIPMENT
US17/731,085 US20220337295A1 (en) 2019-10-29 2022-04-27 Channel measurement method and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911040510.0A CN112751597A (zh) 2019-10-29 2019-10-29 信道测量方法和用户设备
CN201911040510.0 2019-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/731,085 Continuation US20220337295A1 (en) 2019-10-29 2022-04-27 Channel measurement method and user equipment

Publications (1)

Publication Number Publication Date
WO2021083285A1 true WO2021083285A1 (zh) 2021-05-06

Family

ID=75640280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124884 WO2021083285A1 (zh) 2019-10-29 2020-10-29 信道测量方法和用户设备

Country Status (5)

Country Link
US (1) US20220337295A1 (zh)
EP (1) EP4044445A4 (zh)
CN (1) CN112751597A (zh)
MX (1) MX2022005066A (zh)
WO (1) WO2021083285A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024083101A1 (zh) * 2022-10-20 2024-04-25 维沃移动通信有限公司 信息指示方法、装置、终端、网络侧设备及可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118160231A (zh) * 2021-12-09 2024-06-07 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN117639856A (zh) * 2022-08-12 2024-03-01 华为技术有限公司 预编码指示方法和通信装置
CN117856833A (zh) * 2022-09-30 2024-04-09 大唐移动通信设备有限公司 上行传输方法、终端、网络设备、装置和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388752A (zh) * 2007-09-11 2009-03-18 大唐移动通信设备有限公司 基于时分双工系统的上行空间传输方法、终端和基站
CN109167621A (zh) * 2017-12-09 2019-01-08 华为技术有限公司 信道测量方法和用户设备
WO2019028834A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated SIGNALING OF TRANSMISSION RANK AND PRECODER IN NON-UPLINK CODE TRANSMISSION

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749584B2 (en) * 2016-12-22 2020-08-18 Samsung Electronics Co., Ltd. Uplink MIMO codebook for advanced wireless communication systems
CN110383738B (zh) * 2017-01-13 2022-08-16 Idac控股公司 针对相位连续的频率选择性预编码处理的方法、装置和系统
WO2019050329A1 (ko) * 2017-09-07 2019-03-14 엘지전자 주식회사 무선 통신 시스템에서 코드북에 기초하여 상향링크 신호를 전송하는 방법 및 이를 위한 장치
WO2019095181A1 (en) * 2017-11-16 2019-05-23 Lenovo (Beijing) Limited Determining a tpmi for a codebook set
US11496198B2 (en) * 2017-12-09 2022-11-08 Huawei Technologies Co., Ltd. Channel measurement method and user equipment
US10952151B2 (en) * 2018-04-19 2021-03-16 Samsung Electronics Co., Ltd. Uplink power control for advanced wireless communication systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388752A (zh) * 2007-09-11 2009-03-18 大唐移动通信设备有限公司 基于时分双工系统的上行空间传输方法、终端和基站
WO2019028834A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated SIGNALING OF TRANSMISSION RANK AND PRECODER IN NON-UPLINK CODE TRANSMISSION
CN109167621A (zh) * 2017-12-09 2019-01-08 华为技术有限公司 信道测量方法和用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Codebook-Based UL Transmission", 3GPP TSG RAN WG1 MEETING #91 R1-1721399, vol. RAN WG1, 27 November 2017 (2017-11-27), Reno USA, pages 1 - 16, XP051363834 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024083101A1 (zh) * 2022-10-20 2024-04-25 维沃移动通信有限公司 信息指示方法、装置、终端、网络侧设备及可读存储介质

Also Published As

Publication number Publication date
EP4044445A1 (en) 2022-08-17
CN112751597A (zh) 2021-05-04
EP4044445A4 (en) 2022-11-16
MX2022005066A (es) 2022-05-19
US20220337295A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
US11239950B2 (en) Method for configuring channel state information reporting band and communications apparatus
WO2021083285A1 (zh) 信道测量方法和用户设备
TWI718686B (zh) 上行傳輸方法、上行傳輸的調度方法、終端及基地台
CN109194377B (zh) 信道测量方法和用户设备
US20160020846A1 (en) Method for reporting and receiving channel state information, and device
US10511411B2 (en) Method for configuring channel state information reporting band and communications apparatus
CN113037347A (zh) 用于带有极化有源天线阵列的mimo无线通信系统的csi反馈
US11445396B2 (en) Channel measurement method and apparatus
US11496198B2 (en) Channel measurement method and user equipment
CN108111195B (zh) 秩指示方法,秩指示上报方法、设备及系统、存储介质
US11909485B2 (en) Channel measurement method and user equipment
US20230299834A1 (en) Precoding Matrix Indication Method, User Equipment, and Access Device
US20200128547A1 (en) Frequency Band Indication Method, Frequency Band Determining Method, Transmit End Device, And Receive End Device
WO2019095969A1 (zh) 一种用户设备和接入设备
CN109428636B (zh) 波束指示和上报方法、网络设备、终端
WO2019095970A1 (zh) 一种用户设备、接入设备和预编码方法
CN109802786B (zh) 一种用户设备和信道测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020882840

Country of ref document: EP

Effective date: 20220509