WO2019037580A1 - 单光子源器件、其制备方法及其应用 - Google Patents

单光子源器件、其制备方法及其应用 Download PDF

Info

Publication number
WO2019037580A1
WO2019037580A1 PCT/CN2018/098222 CN2018098222W WO2019037580A1 WO 2019037580 A1 WO2019037580 A1 WO 2019037580A1 CN 2018098222 W CN2018098222 W CN 2018098222W WO 2019037580 A1 WO2019037580 A1 WO 2019037580A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
single photon
source device
layer
photon source
Prior art date
Application number
PCT/CN2018/098222
Other languages
English (en)
French (fr)
Inventor
方伟
彭笑刚
金一政
林星
戴兴良
濮超丹
Original Assignee
浙江大学
纳晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学, 纳晶科技股份有限公司 filed Critical 浙江大学
Priority to US16/639,735 priority Critical patent/US11094907B2/en
Publication of WO2019037580A1 publication Critical patent/WO2019037580A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the invention relates to the field of quantum dot luminescence technology, in particular to a single photon source device, a preparation method thereof and an application thereof.
  • a single-photon source is an atypical source with statistical characteristics of the sub-Poisson photons.
  • the photons are emitted one by one, that is, the photons are anti-convergence.
  • the autocorrelation coefficient g (2) (0) is the characteristic parameter of the most basic single-photon light source. When g (2) (0) is less than 0.5, it can be considered as a single photon category. g (2) The size of (0) can characterize the probability of two or more photons being found simultaneously at a time interval of zero.
  • Single photon sources also known as single photon sources
  • Single photon sources have received much attention due to their wide range of potential applications.
  • the implementation of single photon sources currently has the following methods: laser attenuation, metallic color centers, quantum dots, and spontaneous parametric down conversion.
  • the advantages of quantum dots compared to other methods are that they can be easily integrated into the chip, and they are superior in terms of single photon emission quality and light source size.
  • Colloidal quantum dots are a kind of quantum dot single photon source. Compared with self-organized quantum dots, colloidal quantum dots can exist from the substrate and can work at room temperature.
  • the so-called "colloid” refers to the dispersion of semiconductor nanoparticles into continuous In the solution, a stable colloidal system is formed.
  • the main object of the present invention is to provide a single photon source device, a preparation method thereof and an application thereof, to solve the problem of high autocorrelation coefficient of the electro-optic single photon light source in the prior art.
  • a single photon source device comprising a first electrode layer, a first carrier transport layer, a quantum dot light emitting layer, and a second carrier transport which are sequentially stacked are provided.
  • the layer and the second electrode layer, the quantum dot light-emitting layer comprises an insulating material and quantum dots dispersed in the insulating material, and an adjacent pitch of at least part of the quantum dots is greater than or equal to a central wavelength of an emission spectrum of the quantum dot.
  • the thickness of the quantum dot light-emitting layer is h
  • the average particle diameter of the quantum dots is d
  • d ⁇ h ⁇ 2d the average particle diameter of the quantum dots
  • a shortest distance between at least a part of the quantum dots and the second carrier transport layer in the quantum dot light-emitting layer is 1 to 4 nm, preferably 2 to 3 nm, and at least a part of the quantum dots in the quantum dot light-emitting layer and the first
  • the carrier transport layer is in direct contact
  • the first carrier transport layer is a hole transport layer
  • the second carrier transport layer is an electron transport layer.
  • the forbidden band width of the insulating material is greater than the forbidden band width of the quantum dot by 2 eV or more, and preferably the forbidden band width of the insulating material is not less than 4 eV.
  • the distribution density of the above quantum dots in the quantum dot light-emitting layer is 0.1 or less.
  • the above insulating material is a polymer, preferably polymethyl methacrylate, polyvinyl chloride, poly- ⁇ -methylstyrene resin, polybutylene terephthalate, polypropylene carbonate, and polyphenylene.
  • ethylene preferably polymethyl methacrylate, polyvinyl chloride, poly- ⁇ -methylstyrene resin, polybutylene terephthalate, polypropylene carbonate, and polyphenylene.
  • One or more of the group consisting of ethylene is preferably polymethyl methacrylate, polyvinyl chloride, poly- ⁇ -methylstyrene resin, polybutylene terephthalate, polypropylene carbonate, and polyphenylene.
  • the material of the second carrier is an inorganic oxide or a doped inorganic oxide
  • the inorganic oxide is selected from any one or more of the group consisting of ZnO, TiO 2 , SnO, ZrO 2 and Ta 2 O 3
  • the dopant in the doped inorganic oxide is one or more selected from the group consisting of Li, Mg, Al, Cd, In, Cu, Cs, Ga, Gd, and 8-hydroxyquinoline aluminum, and is doped
  • the doping ratio of the impurities is 0.001 to 50% by weight.
  • the material of the first carrier is selected from the group consisting of polyethylene dioxythiophene-poly(styrenesulfonate), poly(perfluoroethylene-perfluoroethersulfonic acid) doped polythiophenethiophene, and oxidation.
  • the Hanbury-Brown-Twiss method measures the autocorrelation coefficient g (2) (0) of the single photon source device to be 0.1 or less, preferably 0.04 to 0.05.
  • the starting voltage of the single photon source device is less than or equal to 3V.
  • the numerical aperture of the collecting objective lens is equal to 1.46
  • the number of single photons of the single photon source device received per second is 10 3 to 10 5 .
  • a method of fabricating a single photon source device comprising the steps of: providing a first electrode layer on a substrate; and step S2, at the first electrode layer Providing a first carrier transport layer on a surface away from the substrate; and step S3, providing a quantum dot light-emitting layer on a surface of the first carrier transport layer remote from the first electrode layer; and step S4, in the quantum dot light-emitting layer Providing a second carrier transport layer on a surface away from the first carrier transport layer; and step S5, providing a second electrode layer on a surface of the second carrier transport layer remote from the quantum dot light-emitting layer, wherein the step S3 includes: arranging a quantum dot luminescent layer raw material on the first carrier transport layer by a solution method, the quantum dot luminescent layer raw material comprises a quantum dot solution and a liquid insulating material; drying the quantum dot luminescent layer raw material to obtain quantum dot lumin
  • step S3 comprises: setting a quantum dot solution on the first carrier transport layer by a solution method to form a quantum dot solution layer; and providing a liquid insulating material on the quantum dot solution layer by a solution method to form a quantum dot including the quantum dot a quantum dot light-emitting layer raw material of a solution and a liquid insulating material; and drying the quantum dot light-emitting layer raw material to obtain a quantum dot light-emitting layer.
  • step S3 comprises: mixing the quantum dot solution and the liquid insulating material to form a mixture; setting a mixture on the first carrier transport layer by a solution method; and drying the mixture to obtain a quantum dot light-emitting layer.
  • step S3 comprises: mixing the quantum dot solution with the first concentration of the liquid insulating material to form the first mixture; and setting the first mixture on the first carrier transport layer by the solution method to form the first mixture layer Providing a second concentration of the insulating material on the first mixture layer to form a quantum dot luminescent layer raw material comprising a quantum dot solution and a liquid insulating material; wherein the first concentration is less than the second concentration; and the quantum dot luminescent layer raw material is Dry to obtain a quantum dot luminescent layer.
  • the above solution method is selected from the group consisting of inkjet printing, slit coating, spin coating, and spray coating.
  • a quantum communication system comprising a single photon source device, which is a single photon source device of any of the above.
  • a quantum metering system comprising a single photon source device, the single photon source device of any of the above.
  • a quantum computing system comprising a single photon source device, the single photon source device of any of the above.
  • an insulating material is disposed in the quantum dot luminescent layer, because the transmission speed of the hole is slow relative to the electron transport speed due to the limitation of the existing carrier material selection, and the insulating balance quantum dot of the insulating material is utilized. Balanced injection of electrons and holes on both sides of the luminescent layer.
  • the blocking electrons prevent electrons from directly entering the adjacent hole transport layer through the quantum dot light emitting layer. If the electron is not blocked, the electron is in the hole transport layer.
  • the composite luminescent background noise affects the single photon effect, and the present application increases the barrier of electron passing through the provision of an insulating material in the quantum dot luminescent layer, thereby ensuring the single photon effect of quantum dot luminescence, thereby further Reduce the autocorrelation coefficient of a single photon source device.
  • the spacing of at least some of the quantum dots is greater than or equal to the central wavelength of the luminescence spectrum of the quantum dots. This is the minimum theoretical requirement for realizing a single photon source. If the distance between the quantum dots is too dense, adjacent quantum dot luminescence will interfere with each subsequent Quantum dots collect single photons.
  • the pitch of each of the above quantum dots can be adjusted by controlling the concentration of quantum dots in the quantum dot light-emitting layer so that the pitch of each quantum dot can be greater than or equal to the central wavelength of the quantum dot of the quantum dot.
  • FIG. 1 is a schematic structural diagram of a single photon source device provided by a preferred embodiment of the present application.
  • FIG. 3 is a graph showing the results of electroluminescence spectroscopy test of the single photon source devices of Examples 1 to 3 and Comparative Example 1 at a voltage of 2.8 V;
  • Example 4 is a graph showing the results of electroluminescence intensity test of the quantum dots (in the range of 600 to 660 nm) and Poly-TPD (in the range of 400 to 500 nm) as a function of voltage in Example 1;
  • FIG. 5 is a graph showing a g (2) ( ⁇ ) curve of electroluminescence of a single photon source device of Example 1 at a voltage of 2.6 V;
  • Example 6 is a graph showing the photon number statistics of the single photon source device of Example 1 at different voltages.
  • the autocorrelation coefficient g (2) (0) of the prior art single photon source device can reach 0.4 after spectral processing, but the autocorrelation coefficient is still too high to be applied. In the actual product.
  • a single photon source device is provided. As shown in FIG. 1, the single photon source device includes: a first electrode layer 10 stacked in sequence, and a first load.
  • the quantum dot light-emitting layer 30 includes an insulating material and quantum dots 31 dispersed in the insulating material, and at least The adjacent pitch of the partial quantum dots 31 is greater than or equal to the central wavelength of the luminescent spectrum of the quantum dots 31.
  • An insulating material is disposed in the quantum dot light-emitting layer 30 because the transmission speed of the holes is slower than that of the electrons due to the selection of the transport materials of the existing carriers (including electrons and holes), and the insulating balance of the insulating material is utilized. Injection of electrons and holes on both sides of the quantum dot light-emitting layer 30. At the same time, in the application scenario of the single photon source device, the blocking electrons prevent electrons from directly entering the adjacent hole transport layer through the quantum dot light emitting layer 30. If the electrons are not blocked, electrons are transported in the hole.
  • the layered composite illuminating background noise affects the single photon effect, and the present application increases the barrier of electron penetration by providing an insulating material in the quantum dot luminescent layer 30, thereby ensuring that the quantum dot 31 emits light.
  • the single photon effect further reduces the autocorrelation coefficient of the single photon source device.
  • at least a portion of the quantum dots 31 have a pitch greater than or equal to a center wavelength of the luminescent spectrum of the quantum dot 31 (each quantum dot in the quantum dot luminescent layer 30 is a colloidal quantum dot, preferably a quantum having the same property or high monodispersity prepared in the same batch) Point), this is the minimum theoretical requirement for realizing single-photon light source.
  • the pitch of each of the above quantum dots 31 can be adjusted by controlling the concentration of the quantum dots 31 in the quantum dot light-emitting layer 30 so that the pitch of each of the quantum dots 31 can be made larger than or equal to the center wavelength of the light-emitting spectrum of the quantum dots 31 as much as possible.
  • the quantum dot luminescent layer 30 has a thickness h
  • the quantum dots 31 have an average particle diameter of d
  • d ⁇ h ⁇ 2d the quantum dot light-emitting layer 30 is arranged in the thickness direction to be smaller than the arrangement of two quantum dots, thereby increasing the possibility of single arrangement of quantum dots in the quantum dot light-emitting layer 30 in the thickness direction, and reducing
  • the single photon collection rate is reduced.
  • the shortest distance between at least a portion of the quantum dots 31 and the second carrier transport layer 40 in the quantum dot light-emitting layer 30 is 1 to 4 nm, preferably 2 to 3 nm, and the quantum dots At least a part of the quantum dots 31 in the light-emitting layer 30 are in direct contact with the first carrier transport layer 20, the first carrier transport layer 20 is a hole transport layer, and the second carrier transport layer 40 is an electron transport layer.
  • the holes are further accurately controlled to enter the quantum dot light-emitting layer 30 in time; and the distance of electrons passing through the quantum dot light-emitting layer 30 is increased, thereby prolonging the time of electron transport.
  • the carrier injection barrier of the second carrier layer vector sub-dot light-emitting layer 30 is controlled, preferably the forbidden band width ratio of the insulating material
  • the forbidden band width of the quantum dot 31 is 2 eV or more, and it is preferable that the forbidden band width of the insulating material is not less than 4 eV.
  • the insulating material is a polymer, and more preferably the insulating material is a polymethyl group.
  • the distribution density of the above quantum dots 31 in the quantum dot light-emitting layer 30 is 0.1 or less. It is calculated by counting the number of quantum dots per square millimeter by a microscope.
  • the quantum dots in the quantum dot luminescent layer of the present application may be selected from any one or more of the group consisting of red quantum dots, green quantum dots, and blue quantum dots, and the number thereof may be adjusted according to performance requirements of the device. .
  • the quantum dots in the light-emitting layer may be infrared quantum dots, and the center wavelength of the light-emitting spectrum covers the near-infrared band (780 to 2526 nm), preferably near 850 nm, 1300 nm, and 1550 nm, and the three wavelengths are in optical fiber communication. Three commonly used windows, where the signal loss is minimal in 1550 nm communication.
  • the above quantum dot light-emitting layer further includes a quantum dot ligand.
  • the quantum dot ligands known to those skilled in the art are generally organic ligands, such as sulfhydryl ligands, phosphate ligands or carboxylate ligands, preferably sulfhydryl ligands, and thus the process of fabricating quantum dot luminescent layers
  • Quantum dot ligands are used to stably disperse quantum dots in an organic solvent, and quantum dot ligands can bond with atoms exposed to the surface of the quantum dots, thereby modifying the defect level of the quantum dot surface; and quantum dots and quantum The atomic bonding force of the point ligand is stronger, and the quantum dot can be more effectively protected.
  • the surface ligands of quantum dots are introduced during synthesis, and there is more than one ligand, and the ratio of various ligands is uncertain, and will fall off during the purification process of the quantum dots.
  • ligand exchange replacing the ligand with stronger coordination with the quantum dot will pull down the weak ligand with the original coordination, and finally only a single ligand with strong coordination ability, the distribution of this single ligand The bit facilitates repeated preparation of the light emitting device.
  • the use of the above ligands can be referred to the prior art technique of using a ligand and a quantum dot.
  • the first electrode layer and the second electrode layer are respectively selected from an anode and a cathode, and the anode forming material is selected from the group consisting of glass/indium tin oxide (ITO), fluorine doped tin oxide (FTO), indium zinc oxide (IZO), Aluminum-doped zinc oxide, gallium-doped zinc oxide, cadmium-doped zinc oxide, copper indium oxide (ICO), tin oxide (SnO 2 ), zirconia, graphene, carbon nanotubes, nickel, gold, platinum, and palladium One or more of them.
  • the anode layer requires a suitable thickness. On the one hand, if the thickness of the film is very thin, the conductivity will be poor and it is not suitable for the electrode.
  • the anode is preferred.
  • the thickness is 5 to 1000 nm, preferably 150 to 300 nm.
  • the material forming the cathode is selected from the group consisting of Al, LiF/Al, Ca, Ba, Ca/Al, Ag, LiF/Ag, Ca/Ag, BaF 2 , BaF 2 /Al, BaF 2 /Ag, BaF 2 /Ca/Al
  • the thickness of the cathode preferably satisfies the requirements for light transmittance, and it is preferable that the thickness of the cathode 6 is 5 to 1000 nm, and more preferably 100 to 200 nm.
  • the material of the second carrier is an inorganic oxide or a doped inorganic oxide
  • the inorganic oxide is selected from the group consisting of ZnO, TiO 2 , SnO, ZrO 2 and Ta 2 O 3 .
  • Any one or more of the doped inorganic oxides selected from the group consisting of Li, Mg, Al, Cd, In, Cu, Cs, Ga, Gd, and 8-hydroxyquinoline aluminum Or more than one, and the doping ratio of the dopant is 0.001 to 50% by weight.
  • the material forming the first carrier transport layer 20 of the present invention may be a conventional material, wherein preferably the material of the first carrier is selected from the group consisting of polyethylene dioxythiophene-poly(styrene sulfonate), doped poly Polythiophenethiophene of perfluoroethylene-perfluoroethersulfonic acid, nickel oxide, tungsten oxide, molybdenum oxide, chromium oxide, vanadium oxide, p-type gallium nitride, MoS 2 , WS 2 , WSe 2 , MoSe 2 , poly[ N,N'-bis 4-butylphenyl-N,N'-bisphenylbenzidine], poly[9,9-dioctylindole-2,7-diyl-co-4,4'- N-4-sec-butylphenyldiphenylamine], poly(9-vinylcarbazole), poly(9,9-di-n-oct
  • the autocorrelation coefficient g (2) (0) of the single photon source device is less than or equal to 0.1, preferably 0.04 to 0.05, as measured by the Hanbury-Brown-Twiss method.
  • the autocorrelation coefficient of a skilled single photon source device is greatly reduced.
  • the starting voltage of the single photon source device of the present application is 3V or less, preferably 1.8 to 3V, and the lower starting voltage enables the single photon source device of the present application to be activated by a common battery, thereby expanding its application scenario.
  • the numerical aperture of the collecting objective lens is equal to 1.46
  • the number of single photons of the single photon source device received per second is 10 3 to 10 5 .
  • the single photon effect of the single photon source device of the present application is particularly prominent.
  • a method for fabricating a single photon source device comprising: step S1, disposing a first electrode layer 10 on a substrate; step S2, A first carrier transport layer 20 is disposed on a surface of the first electrode layer 10 remote from the substrate; and in step S3, a quantum dot light-emitting layer 30 is disposed on a surface of the first carrier transport layer 20 remote from the first electrode layer 10.
  • Step S4 providing a second carrier transport layer 40 on a surface of the quantum dot light-emitting layer 30 remote from the first carrier transport layer 20; and step S5, away from the quantum dots in the second carrier transport layer 40;
  • the second electrode layer 50 is disposed on the surface of the luminescent layer 30;
  • the step S3 includes: disposing a quantum dot luminescent layer 30 raw material on the first carrier transport layer 20 by a solution method, and the quantum dot luminescent layer 30 raw material includes a quantum dot solution and A liquid insulating material; the raw material of the quantum dot light-emitting layer 30 is dried to obtain a quantum dot light-emitting layer 30.
  • the quantum dot solution and the insulating material are disposed on the first carrier transport layer 20 in a liquid state, which facilitates dispersion of the quantum dots 31 in the insulating material and adjustment of the concentration of the quantum dots 31.
  • the remaining steps may also be carried out by first performing a solution method to set the relevant materials and then drying, and will not be described herein.
  • the above solution method may be any one of the group consisting of ink jet printing, slit coating, spin coating, and spray coating, which is commonly used in the art.
  • Step S3 of the present application may be implemented in various ways.
  • the main consideration is how to better control the distance between the quantum dots 31 and the second carrier transport layer 40 in the quantum dot light-emitting layer 30.
  • the step S3 includes: setting a quantum dot solution on the first carrier transport layer 20 by a solution method to form a quantum dot solution layer; and setting a liquid insulation on the quantum dot solution layer by a solution method;
  • the material forms a quantum dot light-emitting layer 30 raw material including a quantum dot solution and a liquid insulating material; and the quantum dot light-emitting layer 30 raw material is dried to obtain a quantum dot light-emitting layer 30.
  • a quantum dot solution is disposed on the first carrier transport layer 20, and the number of quantum dots used is controlled by adjusting the concentration of the quantum dot solution; then a liquid insulating material is disposed on the disposed quantum dot solution, and the drying is completed. Thereafter, the solvent in the quantum dot solution is volatilized, and the insulating material is filled into the gap between the quantum dots 31, so that the quantum dots 31 of the formed quantum dot light-emitting layer 30 can be in direct contact with the first carrier transport layer 20, and There is a certain distance between the second carrier transport layers 40, and the distance between the quantum dots 31 and the second carrier transport layer 40 can be adjusted by controlling the thickness of the liquid insulating material provided.
  • the above step S3 comprises: mixing a quantum dot solution and a liquid insulating material to form a mixture; setting a mixture on the first carrier transport layer 20 by a solution method; and drying the mixture A quantum dot light-emitting layer 30 is obtained.
  • the step S3 includes: mixing the quantum dot solution with the first concentration of the liquid insulating material to form the first mixture; and setting the first carrier transport layer 20 by the solution method. a mixture forming a first mixture layer; a second concentration of a liquid insulating material disposed on the first mixture layer to form a quantum dot light-emitting layer 30 raw material including a quantum dot solution and a liquid insulating material; and a quantum dot light-emitting layer 30
  • the raw material is dried to obtain a quantum dot luminescent layer 30, the first concentration being less than the second concentration, and the first concentration being low to have a low viscosity, thereby better dispersing the quantum dots in the preparation.
  • This implementation is better controlled than the quantum dot luminescent layer 30 obtained in the second implementation.
  • a quantum communication system, a quantum metrology system, or a quantum computing system including a single photon source device, which is a single photon source device of any of the above. Since the single photon source device of the present application has a good single photon effect, the data transmission efficiency and accuracy of the quantum communication system, the quantum metrology system, and the quantum computing system to which the application is applied can be improved.
  • CdS shell a mixture of 1.2 mL of dodecane, 3.8 mL of oleylamine, 1 mL of CdSe quantum dot core solution (quantum dot core of about 3 ⁇ 10 -7 mol) was heated to 80 ° C, and then added to the mixture at 80 ° C.
  • Cadmium diethyldithiocarbamate (Cd precursor) and heated to 160 ° C to grow the shell.
  • the growth time of the first single shell layer is 40 minutes, the growth time of other single shell layers is 20 minutes, and the above temperature cycle (80 to 160 ° C) is suitable for the growth of all single shell layers, and Cd of each shell layer growth.
  • the injection volumes of the precursor solutions were 0.08 mL, 0.11 mL, 0.15 mL, 0.20 mL, 0.26 mL, 0.32 mL, 0.39 mL, 0.46 mL, 0.54 mL, and 0.63 mL, respectively.
  • cadmium diethyldithiocarbamate was the sole Cd precursor. Starting from the seventh layer, it became a mixture of cadmium diethyldithiocarbamate and cadmium oleate (the molar ratio of the two was 4:1).
  • the quantum dots in the obtained product system are precipitated with ethanol, and the precipitated quantum dots are redispersed in a mixture of octane and 2-ethyl-1-hexyl mercaptan (molar ratio of 1:1).
  • the core-shell quantum dots were precipitated with ethanol and redispersed in octane to obtain CdSe/CdS core-shell quantum dots having an average particle diameter of 10 nm.
  • a mixture of a quantum dot octane solution and a PMMA acetone solution (1.0 mg/mL) was spin-coated at 2000 rpm for 45 s, and the mixture was dried to form a 12 nm quantum dot luminescent layer, the above-mentioned quantum dot octane solution ( The optical density OD value at 400 nm was 1.0) diluted 50,000 times before use; the ethanol solution ( ⁇ 40 mg/mL) of the second carrier material ZnO nanoparticles was spin-coated at 2000 rpm for 45 s, and dried to obtain An electron transport layer having a thickness of 50 nm.
  • the silver electrode (100 nm) was vapor-deposited at 2*10 -7 torr in a hot vapor deposition machine (Trovato 300C), and finally the cover was covered, and the package was cured with ultraviolet curable glue.
  • a silver electrode (thickness: 100 nm) was vapor-deposited at 2*10 -7 torr in a hot vapor deposition machine (Trovato 300C), and finally, a cover was placed, and the package was cured with a UV-curable adhesive.
  • a mixture of a quantum dot octane solution and a PMMA acetone solution (1.0 mg/mL) was spin-coated at 2000 rpm for 45 s, and the mixture was dried to form a 17 nm quantum dot luminescent layer, the above-mentioned quantum dot octane solution ( The optical density OD value at 400 nm is 1.0) diluted 50,000 times before use; the second carrier material ZnO nanoparticles (average particle size about 50 nm) in ethanol solution ( ⁇ 40 mg) are spin-coated at 2000 rpm. /mL) 45 s, after drying, an electron transport layer having a thickness of 50 nm was obtained.
  • a silver electrode (thickness: 100 nm) was vapor-deposited at 2*10 -7 torr in a hot vapor deposition machine (Trovato 300C), and finally, a cover was placed, and the package was cured with a UV-curable adhesive.
  • the quantum dot octane solution was spin-coated at 2000 rpm and the spin-coated octane solution was dried to form a 12 nm quantum dot luminescent layer, the above-mentioned quantum dot octane solution (optical density OD at 400 nm).
  • the second carrier material ZnO nanoparticles average particle size of about 50 nm
  • ethanol solution ⁇ 40 mg / mL
  • a silver electrode (thickness: 100 nm) was vapor-deposited at 2*10 -7 torr in a hot vapor deposition machine (Trovato 300C), and finally, a cover was placed, and the package was cured with a UV-curable adhesive.
  • the electroluminescence spectra of the single photon source devices obtained in the above respective examples and comparative examples were characterized by a fluorescence microscope system, and the single photon source device was placed on the XYZ platform, and the piezoelectric element was accurately controlled, and the DC power source (Keithley 2400) was used.
  • the luminescence of the quantum dots is collected by an oil immersion objective with an IR of 1.46, and photon coherence is performed by a single photon counting module (PicoHarp 300) with a 50:50 splitter (ie, the Hanbury-Brown-Twiss method).
  • the luminescence spectrum was recorded by a spectrometer (Andor Shamrock 303i).
  • FIG. 2 shows the electroluminescence spectrum test results of the single photon source device of Comparative Example 1 at different voltages. It can be seen from FIG. 2 that there is background stray light at 400 to 500 nm, and as the voltage increases, the more obvious.
  • Example 3 is a graph showing the results of electroluminescence spectroscopy tests of the single photon source devices of Examples 1 to 3 and Comparative Example 1 at a voltage of 2.8 V, and it can be seen from FIG. 3 that Comparative Example 1 has a background of 400 to 500 nm. The stray light, while Examples 1 to 3 (corresponding to the spectral curves of 10.4 nm, 12 nm, and 17 nm in turn) had no background stray light, and the spectrum of Example 3 was a 50-fold amplified spectrum.
  • FIG. 4 is a graph showing the results of electroluminescence intensity measurement of the quantum dots (in the emission spectrum range of 600 to 660 nm) and Poly-TPD (in the range of 400 to 500 nm emission spectrum) as a function of voltage in Example 1.
  • the hole transport layer (Poly-TPD EL shown in Fig. 4) has a weak luminescence, that is, the background interference light intensity is small.
  • FIG. 5 is a graph showing the g (2) ( ⁇ ) curve of electroluminescence of the single photon source device of Example 1 at a voltage of 2.6 V, and it can be seen from FIG. 5 that the value of g (2) (0) is close to 0, so the single photon effect is good.
  • FIG. 6 is a graph showing the photon number of the single photon source device of Example 1 at different voltages. According to FIG. 6, it can be seen that the number of single photons is 10 2 to 10 5 , indicating that the number of effective single photons is large, wherein The count rate is equal to the number.
  • An insulating material is disposed in the quantum dot light-emitting layer because the transmission speed of the holes is slow relative to the electron transport speed due to the selection of the existing carrier material, and the electrons on both sides of the quantum dot light-emitting layer are balanced by the insulating property of the insulating material. Balanced injection of holes.
  • the blocking electrons prevent electrons from directly entering the adjacent hole transport layer through the quantum dot light emitting layer. If the electron is not blocked, the electron is in the hole transport layer.
  • the composite luminescent background noise affects the single photon effect, and the present application increases the barrier of electron passing through the provision of an insulating material in the quantum dot luminescent layer, thereby ensuring the single photon effect of quantum dot luminescence, thereby further Reduce the autocorrelation coefficient of a single photon source device.
  • the spacing of at least some of the quantum dots is greater than or equal to the central wavelength of the luminescent spectrum of the quantum dots. This is the minimum theoretical requirement for realizing a single photon source. If the distance between the quantum dots is too dense, the adjacent quantum dot luminescence will interfere with the subsequent quantum.
  • the point collects a single photon, and when collecting a single photon, it can selectively collect the corresponding quantum dots that satisfy the single photon.
  • the pitch of each of the above quantum dots can be adjusted by controlling the concentration of quantum dots in the quantum dot light-emitting layer so that the pitch of each quantum dot can be greater than or equal to the central wavelength of the quantum dot of the quantum dot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供了单光子源器件、其制备方法及其应用。该单光子源器件包括依次叠置的第一电极层、第一载流子传输层、量子点发光层、第二载流子传输层和第二电极层,量子点发光层包括绝缘材料及分散在绝缘材料中的量子点,且至少部分量子点的相邻间距大于等于量子点的发光光谱中心波长。在量子点发光层中设置绝缘材料,因为受现有载流子材料选择限制,空穴的传输速度相对于电子的传输速度慢,利用绝缘材料的绝缘性平衡量子点发光层两侧的电子和空穴的平衡注入。本申请通过在量子点发光层中设置绝缘材料,增加了电子穿过的障碍,进而能够保证量子点发光的单光子效果,从而进一步减小单光子源器件的自相关系数。

Description

单光子源器件、其制备方法及其应用 技术领域
本发明涉及量子点发光技术领域,具体而言,涉及一种单光子源器件、其制备方法及其应用。
背景技术
单光子光源是一个非典型的具有亚泊松光子统计特征的光源,光子是一个一个发出的,即光子是反聚束的。自相关系数g (2)(0)是最基本的单光子光源的特征参数,当g (2)(0)小于0.5时,可以被认为是单光子范畴了。g (2)(0)的大小可以表征在时间间隔为0时,同时发现两个及以上光子的可能性。
单光子光源(又称,单光子源)由于其广泛的潜在应用而备受关注。单光子源的实现目前主要有以下几种方法:激光衰减、金属色心、量子点以及自发参量下转换。量子点相比于其他几种方法的优点是可以很方便的集成在芯片中,而且在单光子发射质量、光源尺寸等方面均有优越性。胶体量子点是量子点单光子源的一种,相比于自组织量子点,胶体量子点可以脱离衬底而存在且可以在室温下工作,所谓“胶体”是指半导体纳米颗粒被分散到连续的溶液当中,形成一种稳定的胶体体系。
在纳米尺寸下,这些纳米颗粒的许多物理性质也会发生变化,出现一些半导体材料不具有的新性质;同时它还具有一些优势,比如:低成本、高量子效率、可室温工作、可进行溶液加工等。这些优势意味着胶体量子点在光电子器件领域有着广泛的潜在应用。目前,电致单光子源的自相关系数g (2)(0)在经过光谱处理后能达到0.4,这个性能还不足以应用于实际产品中。
发明内容
本发明的主要目的在于提供一种单光子源器件、其制备方法及其应用,以解决现有技术中的电致单光子光源自相关系数高的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种单光子源器件,包括依次叠置的第一电极层、第一载流子传输层、量子点发光层、第二载流子传输层和第二电极层,量子点发光层包括绝缘材料及分散在绝缘材料中的量子点,且至少部分量子点的相邻间距大于等于量子点的发光光谱中心波长。
进一步地,上述量子点发光层的厚度为h,量子点的平均粒径为d,且d<h<2d。
进一步地,上述量子点发光层中的至少部分量子点与第二载流子传输层的最短距离为1~4nm,优选为2~3nm,且量子点发光层中的至少部分量子点与第一载流子传输层直接接触,第一载流子传输层为空穴传输层,第二载流子传输层为电子传输层。
进一步地,上述绝缘材料的禁带宽度大于量子点的禁带宽度2eV以上,优选绝缘材料的禁带宽度不小于4eV。
进一步地,上述量子点在量子点发光层的分布密度为小于等于0.1个/平方微米。
进一步地,上述绝缘材料为聚合物,优选为聚甲基丙烯酸甲酯、聚氯乙烯、聚α-甲基苯乙烯树脂、聚对苯二甲酸丁二醇酯、聚碳酸亚丙酯和聚苯乙烯组成的组中的一种或多种。
进一步地,上述第二载流子的材料为无机氧化物或掺杂无机氧化物,无机氧化物选自ZnO、TiO 2、SnO、ZrO 2和Ta 2O 3组成的组中任意一种或多种,掺杂无机氧化物中掺杂物选自Li、Mg、Al、Cd、In、Cu、Cs、Ga、Gd和8-羟基喹啉铝组成的组中的一种或多种,且掺杂物的掺杂比例为0.001~50wt%。
进一步地,上述第一载流子的材料选自聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)、掺杂聚(全氟乙烯-全氟醚磺酸)的聚噻吩并噻吩、氧化镍、氧化钨、氧化钼、氧化铬、氧化钒、p型氮化镓、MoS 2、WS 2、WSe 2、MoSe 2、聚[N,N'-双(4-丁基苯基)-N,N'-双(苯基)联苯胺]、聚[(9,9-二辛基芴-2,7-二基)-共-(4,4'-(N-(4-仲丁基苯基)二苯胺)]、聚(9-乙烯基咔唑)、聚(9,9-二正辛基芴基-2,7-二基)、2,3,5,6-四氟-7,7,8,8-四氰二甲基对苯醌、聚[(9,9-二正辛基芴基-2,7-二基)-alt-(苯并[2,1,3]噻二唑-4,8-二基)]、4,4'-二(9-咔唑)联苯、4,4',4”-三(咔唑-9-基)三苯胺、N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺、N,N'-双-(1-萘基)-N,N'-二苯基-1,1'-联苯-4,4'-二胺、4-丁基苯基-二苯基胺和N,N'-双(3-甲基苯基)-N,N'-双(苯基)-9,9-螺二芴组成的组中的至少一种。
进一步地,Hanbury-Brown-Twiss方法测得单光子源器件的自相关系数g (2)(0)小于等于0.1,优选为0.04~0.05。
进一步地,上述单光子源器件的启动电压小于等于3V。
进一步地,当收集物镜的数值孔径等于1.46时,每秒接收到的单光子源器件的单光子个数为10 3~10 5
根据本发明的另一方面,提供了一种上述任一种的单光子源器件的制备方法,该制备方法包括:步骤S1,在基板上设置第一电极层;步骤S2,在第一电极层的远离基板的表面上设置第一载流子传输层;步骤S3,在第一载流子传输层的远离第一电极层的表面上设置量子点发光层;步骤S4,在量子点发光层的远离第一载流子传输层的表面上设置第二载流子传输层;以及步骤S5,在第二载流子传输层的远离量子点发光层的表面上设置第二电极层,其中,步骤S3包括:采用溶液法在第一载流子传输层上设置量子点发光层原材料,量子点发光层原材料包括量子点溶液和液态的绝缘材料;对量子点发光层原材料进行干燥,得到量子点发光层。
进一步地,上述步骤S3包括:采用溶液法在第一载流子传输层上设置量子点溶液,形成量子点溶液层;采用溶液法在量子点溶液层上设置液态的绝缘材料,形成包括量子点溶液和液态的绝缘材料的量子点发光层原材料;以及对量子点发光层原材料进行干燥,得到量子点发光层。
进一步地,上述步骤S3包括:将量子点溶液和液态的绝缘材料混合,形成混合物;采用溶液法在第一载流子传输层上设置混合物;以及对混合物进行干燥,得到量子点发光层。
进一步地,上述步骤S3包括:将量子点溶液和第一浓度的液态的绝缘材料混合,形成第一混合物;采用溶液法在第一载流子传输层上设置第一混合物,形成第一混合物层;在第一混合物层上设置第二浓度的绝缘材料,形成包括量子点溶液和液态的绝缘材料的量子点发光层原材料;其中,第一浓度小于第二浓度;以及对量子点发光层原材料进行干燥,得到量子点发光层。
进一步地,上述溶液法选自喷墨打印、狭缝涂布、旋转涂布、喷涂组成的组中的任意一种。
根据本发明的另一方面,提供了一种量子通信系统,包括单光子源器件,该单光子源器件为上述任一种的单光子源器件。
根据本发明的另一方面,提供了一种量子计量系统,包括单光子源器件,该单光子源器件上述任一种的单光子源器件。
根据本发明的另一方面,提供了一种量子计算系统,包括单光子源器件,该单光子源器件上述任一种的单光子源器件。
应用本发明的技术方案,在量子点发光层中设置绝缘材料,因为受现有载流子材料选择限制,空穴的传输速度相对于电子的传输速度慢,利用绝缘材料的绝缘性平衡量子点发光层两侧的电子和空穴的平衡注入。同时,在单光子源器件的应用场景下,阻挡电子防止电子直接穿过量子点发光层而直接进入相邻的空穴传输层,如果不对电子进行阻挡的话,会产生因电子在空穴传输层复合发光的背景噪声(杂光),影响单光子效果,而本申请通过在量子点发光层中设置绝缘材料,增加了电子穿过的障碍,进而能够保证量子点发光的单光子效果,从而进一步减小单光子源器件的自相关系数。且至少部分量子点的间距大于等于量子点的发光光谱的中心波长,此为实现单光子光源的最低理论要求,如果量子点之间的距离太密,相邻的量子点发光会干扰后期针对各个量子点收集单光子。上述各个量子点的间距可以通过控制量子点发光层中量子点的浓度来调整,以尽可能使各个量子点的间距都能大于等于量子点的发光光谱中心波长。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本申请一种优选实施例提供的单光子源器件的结构示意图;
图2示出了对比例1的单光子源器件在不同电压下的电致发光光谱测试结果图;
图3示出了实施例1至3和对比例1的单光子源器件在2.8V的电压下的电致发光光谱测试结果图;
图4示出了实施例1中量子点(在600~660nm区间下)和Poly-TPD(在400~500nm区间下)随着电压变化的电致发光强度测试结果图;
图5示出了实施例1的单光子源器件在2.6V电压下的电致发光的g (2)(τ)曲线图;以及
图6示出了实施例1的单光子源器件在不同电压下的光子数统计曲线图。
其中,上述附图包括以下附图标记:
10、第一电极层;20、第一载流子传输层;30、量子点发光层;31、量子点;40、第二载流子传输层;50、第二电极层。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如本申请背景技术所分析的,现有技术中的单光子源器件自相关系数g (2)(0)在经过光谱处理后能达到0.4,但是该自相关系数仍然太高,不足以应用于实际产品中。为了解决该问题,本申请一种典型的实施方式中,提供了一种单光子源器件,如图1所示,该单光子源器件包括:依次叠置的第一电极层10、第一载流子传输层20、量子点发光层30、第二载流子传输层40和第二电极层50,其中,量子点发光层30包括绝缘材料及分散在绝缘材料中的量子点31,且至少部分量子点31的相邻间距大于等于量子点31的发光光谱中心波长。
在量子点发光层30中设置绝缘材料,因为受现有载流子(包括电子和空穴)传输材料选择限制,空穴的传输速度相对于电子的传输速度慢,利用绝缘材料的绝缘性平衡量子点发光层30两侧的电子和空穴的注入。同时,在单光子源器件的应用场景下,阻挡电子防止电子直接穿过量子点发光层30而直接进入相邻的空穴传输层,如果不对电子进行阻挡的话,会产生因电子在空穴传输层复合发光的背景噪声(即产生非需要的光子),影响单光子效果,而本申请通过在量子点发光层30中设置绝缘材料,增加了电子穿过的障碍,进而能够保证量子点31发光的单光子效果,从而进一步减小单光子源器件的自相关系数。且至少部分量子点31的间距大于等于量子点31的发光光谱中心波长(量子点发光层30中的各个量子点为胶体量子点,优选为同一批制备的具有相同性质或者单分散性高的量子点),此为实现单光子光源的最低理论要求,如果量子点之间的距离太密,相邻的量子点发光会干扰后期针对各个量子点收集单光子,收集单光子时可以选择性地针对满足发出单光子的对应的量子点收集。上述各个量子 点31的间距可以通过控制量子点发光层30中量子点31的浓度来调整,以尽可能使各个量子点31的间距都能大于等于量子点31的发光光谱中心波长。
在本申请一种优选的实施例中,上述量子点发光层30的厚度为h,量子点31的平均粒径为d,且d<h<2d。通过控制量子点发光层30厚度的大小,使得量子点发光层30在厚度方向上小于两个量子点的排布,增加量子点发光层30中量子点在厚度方向的单个排布可能性,减少堆叠情况,因为堆叠的多个量子点同时可能产生的光子数大于1个,减少了单光子的收集率。
在本申请一种优选的实施例中,上述量子点发光层30中的至少部分量子点31与第二载流子传输层40的最短距离为1~4nm,优选为2~3nm,且量子点发光层30中的至少部分量子点31与第一载流子传输层20直接接触,第一载流子传输层20为空穴传输层,第二载流子传输层40为电子传输层。通过上述设置方式,进一步精确地控制了空穴及时进入量子点发光层30;而增加电子经过量子点发光层30的距离,延长了电子传输的时间。
为了有效减少第二载流子层40和量子点发光层30直接的电子耦合,调控第二载流子层向量子点发光层30的载流子注入势垒,优选绝缘材料的禁带宽度比量子点31的禁带宽度大2eV以上,优选绝缘材料的禁带宽度不小于4eV。另外,由于量子点31层中的量子点31一般具有有机表面配体,为了进一步增强量子点31在绝缘材料中分散的均匀性,优选上述绝缘材料为聚合物,更优选绝缘材料为聚甲基丙烯酸甲酯、聚氯乙烯、聚α-甲基苯乙烯树脂、聚对苯二甲酸丁二醇酯、聚碳酸亚丙酯和聚苯乙烯组成的组中的一种或多种。
此外,为了保证更多的单光子的存在,优选上述量子点31在量子点发光层30的分布密度为小于等于0.1个/平方微米。通过显微镜统计每平方毫米的量子点个数计算得到。
本申请的量子点发光层中的量子点可以选自红色量子点、绿色量子点和蓝色量子点组成的组中的任意一种或多种,且其数量可以依据对器件的性能要求进行调节。
在一些实施例中,发光层中的量子点可以为红外量子点,发光光谱中心波长覆盖近红外波段(780~2526nm),优选波长为850nm,1300nm和1550nm附近,此三个波长为光纤通信中常用的三个窗口,其中1550nm通信中信号损失最少。
为了使量子点发光层中的量子点更稳定,优选上述量子点发光层还包括量子点配体。其中,本领域技术人员公知的量子点配体一般为有机配体,比如巯基类配体、磷酸根类配体或羧酸根类配体,优选巯基类配体,因此在制作量子点发光层过程中,利用量子点配体将量子点稳定地分散在有机溶剂中,同时量子点配体可以与量子点裸露在表面的原子成键,进而修饰量子点表面的缺陷能级;且量子点与量子点配体的原子成键力较强,可以更有效地保护量子点。本领域技术人员应该清楚的是,量子点的表面配体是在合成时引入的,存在不止一种配体,各种配体数量比不确定,在量子点提纯清洗过程中还会脱落,因此通过配体交换,换上与量子点配位更强的配体,会把原始配位弱的配体都拉下来,最后只剩强配位能力的单一配体,这种单一配体的配位,有利于发光器件的重复制备。上述配体的使用可以参照现有技术中配体与量子点的配合使用技术。
上述第一电极层和第二电极层分别选自阳极和阴极,上述形成阳极的材料选自玻璃/铟锡氧化物(ITO)、氟掺氧化锡(FTO)、铟锌氧化物(IZO)、铝掺氧化锌、镓掺氧化锌、镉掺氧化锌、铜铟氧化物(ICO)、氧化锡(SnO 2)、氧化锆、石墨烯、纳米碳管、镍、金、铂和钯组成的组中的一种或多种。阳极层需要合适的厚度。一方面如果薄膜厚度很薄,导电率会很差,不适合做电极,另一方面,如果阳极过厚,会影响光提取的效率,同时增加成本,本发明根据其他各层的厚度,优选阳极的厚度为5~1000nm,优选150~300nm。形成上述阴极的材料选自Al、LiF/Al、Ca、Ba、Ca/Al、Ag、LiF/Ag、Ca/Ag、BaF 2、BaF 2/Al、BaF 2/Ag、BaF 2/Ca/Al、BaF 2/Ca/Ag、Mg、Ag:Mg、CsF/Al、CsCO 3/Al组成的组中的一种或多种,其中LiF/Al表示LiF层和Al层的复合形成阴极,Ag:Mg表示Ag和Mg在同一层中形成阴极。阴极的厚度最好满足透光性要求,优选上述阴极6的厚度为5~1000nm,更优选100~200nm。
在本申请一些的实施例中,上述第二载流子的材料为无机氧化物或掺杂无机氧化物,无机氧化物选自ZnO、TiO 2、SnO、ZrO 2和Ta 2O 3组成的组中任意一种或多种,掺杂无机氧化物中掺杂物选自Li、Mg、Al、Cd、In、Cu、Cs、Ga、Gd和8-羟基喹啉铝组成的组中的一种或多种,且掺杂物的掺杂比例为0.001~50wt%。
本发明形成第一载流子传输层20的材料可以采用目前的常规材料,其中优选第一载流子的材料选自聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)、掺杂聚全氟乙烯-全氟醚磺酸的聚噻吩并噻吩、氧化镍、氧化钨、氧化钼、氧化铬、氧化钒、p型氮化镓、MoS 2、WS 2、WSe 2、MoSe 2、聚[N,N'-双4-丁基苯基-N,N'-双苯基联苯胺]、聚[9,9-二辛基芴-2,7-二基-共-4,4'-N-4-仲丁基苯基二苯胺]、聚(9-乙烯基咔唑)、聚(9,9-二正辛基芴基-2,7-二基)、2,3,5,6-四氟-7,7,8,8-四氰二甲基对苯醌、聚[(9,9-二正辛基芴基-2,7-二基)-alt-(苯并[2,1,3]噻二唑-4,8-二基)]、4,4'-二(9-咔唑)联苯、4,4',4”-三(咔唑-9-基)三苯胺、N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺、N,N'-双-1-萘基-N,N'-二苯基-1,1'-联苯-4,4'-二胺、4-丁基苯基-二苯基胺和N,N'-双3-甲基苯基-N,N'-双苯基-9,9-螺二芴组成的组中的至少一种。
在本申请一种优选的实施例中,利用Hanbury-Brown-Twiss方法测得上述单光子源器件的自相关系数g (2)(0)小于等于0.1,优选为0.04~0.05,相比于现有技术的单光子源器件的自相关系数大大减小。另外,本申请的单光子源器件的启动电压为小于等于3V,优选1.8~3V,该较低的启动电压使得本申请的单光子源器件可以用普通的电池启动,拓展了其应用场景。
进一步地,当收集物镜的数值孔径等于1.46时,每秒接收到的单光子源器件的单光子个数为10 3~10 5。说明本申请的单光子源器件的单光子效果尤其突出。
在本申请另一种典型的实施方式中,提供了一种上述任一种的单光子源器件的制备方法,该制备方法包括:步骤S1,在基板上设置第一电极层10;步骤S2,在第一电极层10的远离基板的表面上设置第一载流子传输层20;步骤S3,在第一载流子传输层20的远离第一电极层10的表面上设置量子点发光层30;步骤S4,在量子点发光层30的远离第一载流子传输层20的表面上设置第二载流子传输层40;以及步骤S5,在第二载流子传输层40的远离量子点发光层30的表面上设置第二电极层50;上述步骤S3包括:采用溶液法在第一载流子传输层20上设置量子点发光层30原材料,量子点发光层30原材料包括量子点溶液和液态的绝缘材 料;对量子点发光层30原材料进行干燥,得到量子点发光层30。将量子点溶液和绝缘材料以液态的形式设置在第一载流子传输层20上,有利于量子点31在绝缘材料中的分散以及量子点31浓度的调整。
其余各步骤也可以采用先进行溶液法设置相关材料然后进行干燥的过程,在此不再赘述。
上述溶液法可以采用本领域常用的溶液法,优选喷墨打印、狭缝涂布、旋转涂布、喷涂组成的组中的任意一种。
本申请的步骤S3在实施时,可以有多种实现方式,主要考虑因素是如何更好地控制量子点发光层30中的量子点31与第二载流子传输层40之间的距离。一种优选的实现方式中,上述步骤S3包括:采用溶液法在第一载流子传输层20上设置量子点溶液,形成量子点溶液层;采用溶液法在量子点溶液层上设置液态的绝缘材料,形成包括量子点溶液和液态的绝缘材料的量子点发光层30原材料;以及对量子点发光层30原材料进行干燥,得到量子点发光层30。
首先在第一载流子传输层20上设置量子点溶液,通过调整量子点溶液的浓度控制所使用的量子点的数量;然后在所设置的量子点溶液上设置液态的绝缘材料,在干燥完成之后,量子点溶液中的溶剂挥发,绝缘材料填充进入量子点31之间的间隙中,使得所形成的量子点发光层30的量子点31能够和第一载流子传输层20直接接触,和第二载流子传输层40之间存在一定的距离,而且可以通过控制所设置的液态绝缘材料的厚度来调整量子点31和第二载流子传输层40之间的距离。
在另一种优选的实现方式中,上述步骤S3包括:将量子点溶液和液态的绝缘材料混合,形成混合物;采用溶液法在第一载流子传输层20上设置混合物;以及对混合物进行干燥,得到量子点发光层30。
在又一种优选的实现方式中,上述步骤S3包括:将量子点溶液和第一浓度的液态的绝缘材料混合,形成第一混合物;采用溶液法在第一载流子传输层20上设置第一混合物,形成第一混合物层;在第一混合物层上设置第二浓度的液态的绝缘材料,形成包括量子点溶液和液态的绝缘材料的量子点发光层30原材料;以及对量子点发光层30原材料进行干燥,得到量子点发光层30,第一浓度小于第二浓度,第一浓度低则粘度低,从而制备中更好地分散量子点。该实现方式和第二种实现方式得到的量子点发光层30相比较而言,量子点31的位置更好控制。
在本申请又一种典型的实施方式中,提供了一种量子通信系统、量子计量系统或量子计算系统,包括单光子源器件,该单光子源器件为上述任一种的单光子源器件。由于本申请的单光子源器件的单光子效果较好,因此能够提高应用其的量子通信系统、量子计量系统和量子计算系统的数据传输效率和准确率。
以下将结合实施例和对比例,进一步说明本申请的有益效果。
下述实施例及对比例中使用的CdSe/CdS核壳量子点的合成方法:
第一激子峰在550nm的CdSe核量子点的合成:0.2mmol硬脂酸镉和3.5mL的十八烯(ODE)放置于25mL的三颈瓶中,在氩气鼓泡后,将Se悬浊液(0.05mmol Se分散在0.5mL ODE中)注入到250℃的上述三颈瓶中,生长8分钟后,Se悬浊液分批添加直到第一激子峰达到550nm。然后将三颈瓶内的反应体系降温至50℃,然后原位提纯去除未反应的前体及副产物,得到CdSe量子点核溶液。
生长CdS壳:将1.2mL十二烷、3.8mL油胺、1mLCdSe量子点核溶液(量子点核约为3×10 -7mol)的混合物加热到80℃,然后向80℃的该混合物中加入二乙基二硫代氨基甲酸酯镉(Cd前体),并升温至160℃用以生长壳。第一单壳层的生长时间为40分钟,其他单壳层的生长时间均为20分钟,且上述温度循环(80到160℃)适用于所有单壳层的生长,各层壳层生长时Cd前体溶液的注入体积分别为0.08mL、0.11mL、0.15mL、0.20mL、0.26mL、0.32mL、0.39mL、0.46mL、0.54mL及0.63mL。在生长第一至第六单壳层中,二乙基二硫代氨基甲酸酯镉作为唯一的Cd前体。从第七层开始,变成二乙基二硫代氨基甲酸酯镉和油酸镉的混合物(两者的摩尔比为4:1)。壳层生长完成后,用乙醇沉淀所得到的产物体系中的量子点,沉淀得到的量子点重新分散于辛烷和2-乙基-1-己硫醇混合物(摩尔比为1:1)中以进行配体交换,1小时后用乙醇沉淀核壳量子点再重新分散于辛烷中,得到平均粒径为10nm的CdSe/CdS核壳量子点。
实施例1
准备玻璃基板,旋涂ITO至玻璃基板上形成第一电极层,ITO厚度为0.18mm,方阻为~100Ω/sq;以4000r.p.m.的转速旋涂空穴注入材料PEDOT:PSS溶液(BaytronP VP Al 4083,通过0.45mm N66过滤器过滤)50s至ITO上,150℃下烘烤15分钟,形成厚度为30nm的空穴注入层;将设置了空穴注入层的玻璃基板转移至充满氮气的手套箱(O 2<1ppm,H 2O<1ppm)中,以2000r.p.m.的转速旋涂空穴传输材料8mg/mL Poly-TPD 45s,130℃下烘烤30分钟,得到厚度为30nm的空穴传输层。以2000r.p.m.的转速旋涂量子点的辛烷溶液和PMMA的丙酮溶液(1.0mg/mL)的混合物45s,对混合物进行干燥,形成12nm的量子点发光层,上述量子点的辛烷溶液(在400nm下的光学密度OD值为1.0)在使用前稀释5万倍;以2000r.p.m.的转速旋涂第二载流子材料ZnO纳米颗粒的乙醇溶液(~40mg/mL)45s,干燥后得到厚度为50nm的电子传输层。于热蒸镀机(Trovato 300C)在2*10 -7torr下蒸镀银电极(100nm),最后盖上盖板,用紫外固化胶固化封装。
实施例2
准备玻璃基板,旋涂ITO至玻璃基板上形成第一电极层,ITO厚度为0.18mm,方阻为~100Ω/sq,以4000r.p.m.的转速旋涂空穴注入材料PEDOT:PSS溶液(BaytronP VP Al 4083,通过0.45mm N66过滤器过滤)50s至ITO上,150℃下烘烤15分钟,形成厚度为30nm的空穴注入层;将设置了空穴注入层的玻璃基板转移至充满氮气的手套箱(O 2<1ppm,H 2O<1ppm)中,以2000r.p.m.的转速旋涂空穴材料8mg/mL Poly-TPD 45s,130℃下烘烤30分钟,,得到厚度为30nm的空穴传输层。以2000r.p.m.的转速旋涂量子点的辛烷溶液和PMMA的丙酮溶液(1.0mg/mL)的混合物45s,对混合物进行干燥,形成10.4nm的量子点发光层,上述 量子点的辛烷溶液(在400nm下的光学密度OD值为1.0)在使用前稀释5万倍;以2000r.p.m.的转速旋涂第二载流子材料ZnO纳米颗粒(平均粒径约为50nm)的乙醇溶液(~40mg/mL)45s,干燥后得到厚度为50nm的电子传输层。于热蒸镀机(Trovato 300C)在2*10 -7torr下蒸镀银电极(厚度为100nm),最后盖上盖板,用紫外固化胶固化封装。
实施例3
准备玻璃基板,旋涂ITO至玻璃基板上形成第一电极层,ITO厚度为0.18mm,方阻为~100Ω/sq,以4000r.p.m.的转速旋涂空穴注入材料PEDOT:PSS溶液(BaytronP VP Al 4083,通过0.45mm N66过滤器过滤)50s至ITO上,150℃下烘烤15分钟,形成厚度为30nm的空穴注入层;将设置了空穴注入层的玻璃基板转移至充满氮气的手套箱(O 2<1ppm,H 2O<1ppm)中,以2000r.p.m.的转速旋涂空穴材料8mg/mL Poly-TPD 45s,130℃下烘烤30分钟,得到厚度为30nm的空穴传输层。以2000r.p.m.的转速旋涂量子点的辛烷溶液和PMMA的丙酮溶液(1.0mg/mL)的混合物45s,对混合物进行干燥,形成17nm的量子点发光层,上述量子点的辛烷溶液(在400nm下的光学密度OD值为1.0)在使用前稀释5万倍;以2000r.p.m.的转速旋涂第二载流子材料ZnO纳米颗粒(平均粒径约为50nm)的乙醇溶液(~40mg/mL)45s,干燥后得到厚度为50nm的电子传输层。于热蒸镀机(Trovato 300C)在2*10 -7torr下蒸镀银电极(厚度为100nm),最后盖上盖板,用紫外固化胶固化封装。
对比例1
准备玻璃基板,旋涂ITO至玻璃基板上形成第一电极层,ITO厚度为0.18mm,方阻为~100Ω/sq;以4000r.p.m.的转速旋涂空穴注入材料PEDOT:PSS溶液(BaytronP VP Al 4083,通过0.45mm N66过滤器过滤)50s至ITO上,150℃下烘烤15分钟,形成厚度为30nm的空穴注入层;将设置了空穴注入层的玻璃基板转移至充满氮气的手套箱(O 2<1ppm,H 2O<1ppm)中,以2000r.p.m.的转速旋涂空穴材料8mg/mL Poly-TPD 45s,130℃下烘烤30分钟,得到厚度为30nm的空穴传输层。以2000r.p.m.的转速旋涂量子点的辛烷溶液,对旋涂后的辛烷溶液进行干燥,形成12nm的量子点发光层,上述量子点的辛烷溶液(在400nm下的光学密度OD值为1.0)在使用前稀释5万倍;以2000r.p.m.的转速旋涂第二载流子材料ZnO纳米颗粒(平均粒径约为50nm)的乙醇溶液(~40mg/mL)45s,干燥后得到厚度为50nm的电子传输层。于热蒸镀机(Trovato 300C)在2*10 -7torr下蒸镀银电极(厚度为100nm),最后盖上盖板,用紫外固化胶固化封装。
上述各实施例和对比例得到的单光子源器件的电致发光光谱通过荧光显微镜系统表征,将单光子源器件置于XYZ平台,介由压电素子进行精确控位,直流电源(Keithley 2400)用来供电致发光,量子点的发光被N.A.为1.46的油浸物镜收集,光子相干性通过具有50:50的分光束器的单光子计数模块(PicoHarp 300)实施(即Hanbury-Brown-Twiss法),发光光谱通过光谱仪(Andor Shamrock 303i)记录。上述所有的测试都在20~22℃的室温及常压条件下进行。检测结果记录在图2至6中。图2~3的光谱通过光纤光谱仪(Ocean Optics,QEPro)得到约1mm 2面积上测得的平均结果。
其中,图2示出了对比例1的单光子源器件在不同电压下的电致发光光谱测试结果图,根据图2可以看出,在400~500nm存在背景杂光,随着电压增加,越明显。
图3示出了实施例1至3和对比例1的单光子源器件在2.8V的电压下的电致发光光谱测试结果图,根据图3可以看出,对比例1在400~500nm存在背景杂光,而实施例1至3(依次对应10.4nm、12nm和17nm的光谱曲线)没有背景杂光,实施例3的光谱为50倍放大的光谱图。
图4示出了实施例1中量子点(在600~660nm发光光谱区间下)和Poly-TPD(在400~500nm发光光谱区间下)随着电压变化的电致发光强度测试结果图。根据图4可以看出,空穴传输层(如图4所示的Poly-TPD EL)的发光很弱,即背景干扰光强度小。
图5示出了实施例1的单光子源器件在2.6V电压下的电致发光的g (2)(τ)曲线图,根据图5可以看出,g (2)(0)的数值接近0,因而单光子效果好。
图6示出了实施例1的单光子源器件在不同电压下的光子数统计曲线图,根据图6可以看出单光子个数为10 2~10 5,说明有效的单光子数多,其中计数率等同于个数。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
在量子点发光层中设置绝缘材料,因为受现有载流子材料选择限制,空穴的传输速度相对于电子的传输速度慢,利用绝缘材料的绝缘性平衡量子点发光层两侧的电子和空穴的平衡注入。同时,在单光子源器件的应用场景下,阻挡电子防止电子直接穿过量子点发光层而直接进入相邻的空穴传输层,如果不对电子进行阻挡的话,会产生因电子在空穴传输层复合发光的背景噪声(杂光),影响单光子效果,而本申请通过在量子点发光层中设置绝缘材料,增加了电子穿过的障碍,进而能够保证量子点发光的单光子效果,从而进一步减小单光子源器件的自相关系数。且至少部分量子点的间距大于等于量子点的发光光谱中心波长,此为实现单光子光源的最低理论要求,如果量子点之间的距离太密,相邻的量子点发光会干扰后期针对各个量子点收集单光子,收集单光子时可以选择性地针对满足发出单光子的对应的量子点收集。上述各个量子点的间距可以通过控制量子点发光层中量子点的浓度来调整,以尽可能使各个量子点的间距都能大于等于量子点的发光光谱中心波长。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 一种单光子源器件,包括依次叠置的第一电极层(10)、第一载流子传输层(20)、量子点发光层(30)、第二载流子传输层(40)和第二电极层(50),其特征在于,所述量子点发光层(30)包括绝缘材料及分散在所述绝缘材料中的量子点(31),且至少部分所述量子点(31)的相邻间距大于等于所述量子点(31)的发光光谱中心波长。
  2. 根据权利要求1所述的单光子源器件,其特征在于,所述量子点发光层(30)的厚度为h,所述量子点(31)的平均粒径为d,且d<h<2d。
  3. 根据权利要求2所述的单光子源器件,其特征在于,所述量子点发光层(30)中的至少部分所述量子点(31)与所述第二载流子传输层(40)的最短距离为1~4nm,优选为2~3nm,且所述量子点发光层(30)中的至少部分所述量子点(31)与所述第一载流子传输层(20)直接接触,所述第一载流子传输层(20)为空穴传输层,所述第二载流子传输层(40)为电子传输层。
  4. 根据权利要求1所述的单光子源器件,其特征在于,所述绝缘材料的禁带宽度大于所述量子点(31)的禁带宽度2eV以上,优选所述绝缘材料的禁带宽度不小于4eV。
  5. 根据权利要求1所述的单光子源器件,其特征在于,所述量子点(31)在所述量子点发光层(30)的分布密度为小于等于0.1个/平方微米。
  6. 根据权利要求1所述的单光子源器件,其特征在于,所述绝缘材料为聚合物,优选为聚甲基丙烯酸甲酯、聚氯乙烯、聚α-甲基苯乙烯树脂、聚对苯二甲酸丁二醇酯、聚碳酸亚丙酯和聚苯乙烯组成的组中的一种或多种。
  7. 根据权利要求1所述单光子源器件,其特征在于,所述第二载流子的材料为无机氧化物或掺杂无机氧化物,所述无机氧化物选自ZnO、TiO 2、SnO、ZrO 2和Ta 2O 3组成的组中任意一种或多种,所述掺杂无机氧化物中掺杂物选自Li、Mg、Al、Cd、In、Cu、Cs、Ga、Gd和8-羟基喹啉铝组成的组中的一种或多种,且所述掺杂物的掺杂比例为0.001~50wt%。
  8. 根据权利要求1所述单光子源器件,其特征在于,所述第一载流子的材料选自聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)、掺杂聚(全氟乙烯-全氟醚磺酸)的聚噻吩并噻吩、氧化镍、氧化钨、氧化钼、氧化铬、氧化钒、p型氮化镓、MoS 2、WS 2、WSe 2、MoSe 2、聚[N,N'-双(4-丁基苯基)-N,N'-双(苯基)联苯胺]、聚[(9,9-二辛基芴-2,7-二基)-共-(4,4'-(N-(4-仲丁基苯基)二苯胺)]、聚(9-乙烯基咔唑)、聚(9,9-二正辛基芴基-2,7-二基)、2,3,5,6-四氟-7,7,8,8-四氰二甲基对苯醌、聚[(9,9-二正辛基芴基-2,7-二基)-alt-(苯并[2,1,3]噻二唑-4,8-二基)]、4,4'-二(9-咔唑)联苯、4,4',4″-三(咔唑-9-基)三苯胺、N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺、N,N'-双-(1-萘基)-N,N'-二苯基-1,1'-联苯-4,4'-二胺、4-丁基苯基-二苯基胺和N,N'-双(3-甲基苯基)-N,N'-双(苯基)-9,9-螺二芴组成的组中的至少一种。
  9. 根据权利要求1所述的单光子源器件,其特征在于,Hanbury-Brown-Twiss方法测得所述单光子源器件的自相关系数g (2)(0)小于等于0.1,优选为0.04~0.05。
  10. 根据权利要求1所述的单光子源器件,其特征在于,所述单光子源器件的启动电压小于等于3V。
  11. 根据权利要求1所述的单光子源器件,其特征在于,当收集物镜的数值孔径等于1.46时,每秒接收到的所述单光子源器件的单光子个数为10 3~10 5
  12. 一种权利要求1至11中任一项所述的单光子源器件的制备方法,其特征在于,所述制备方法包括:
    步骤S1,在基板上设置第一电极层(10);
    步骤S2,在所述第一电极层(10)的远离所述基板的表面上设置第一载流子传输层(20);
    步骤S3,在所述第一载流子传输层(20)的远离所述第一电极层(10)的表面上设置量子点发光层(30);
    步骤S4,在所述量子点发光层(30)的远离所述第一载流子传输层(20)的表面上设置第二载流子传输层(40);以及
    步骤S5,在所述第二载流子传输层(40)的远离所述量子点发光层(30)的表面上设置第二电极层(50),其中,所述步骤S3包括:
    采用溶液法在所述第一载流子传输层(20)上设置量子点发光层(30)原材料,所述量子点发光层(30)原材料包括量子点溶液和液态的绝缘材料;
    对所述量子点发光层(30)原材料进行干燥,得到所述量子点发光层(30)。
  13. 根据权利要求12所述的制备方法,其特征在于,所述步骤S3包括:
    采用溶液法在所述第一载流子传输层(20)上设置量子点溶液,形成量子点溶液层;
    采用溶液法在所述量子点溶液层上设置液态的所述绝缘材料,形成包括所述量子点溶液和液态的所述绝缘材料的量子点发光层(30)原材料;以及
    对所述量子点发光层(30)原材料进行干燥,得到所述量子点发光层(30);
    或者所述步骤S3包括:
    将所述量子点溶液和液态的所述绝缘材料混合,形成混合物;
    采用溶液法在所述第一载流子传输层(20)上设置所述混合物;以及
    对所述混合物进行干燥,得到所述量子点发光层(30);
    或者所述步骤S3包括:
    将所述量子点溶液和第一浓度的液态的所述绝缘材料混合,形成第一混合物;
    采用溶液法在所述第一载流子传输层(20)上设置所述第一混合物,形成第一混合物层;
    在所述第一混合物层上设置第二浓度的所述绝缘材料,形成包括所述量子点溶液和液态的所述绝缘材料的量子点发光层(30)原材料;其中,所述第一浓度小于所述第二浓度;以及
    对所述量子点发光层(30)原材料进行干燥,得到所述量子点发光层(30)。
  14. 根据权利要求12所述的制备方法,其特征在于,所述溶液法选自喷墨打印、狭缝涂布、旋转涂布、喷涂组成的组中的任意一种。
  15. 一种量子通信系统,包括单光子源器件,其特征在于,所述单光子源器件为权利要求1至11中任一项所述的单光子源器件。
  16. 一种量子计量系统,包括单光子源器件,其特征在于,所述单光子源器件为权利要求1至11中任一项所述的单光子源器件。
  17. 一种量子计算系统,包括单光子源器件,其特征在于,所述单光子源器件为权利要求1至11中任一项所述的单光子源器件。
PCT/CN2018/098222 2017-08-21 2018-08-02 单光子源器件、其制备方法及其应用 WO2019037580A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/639,735 US11094907B2 (en) 2017-08-21 2018-08-02 Single photon source device, a preparation method thereof and applications of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710719676.XA CN107681059B (zh) 2017-08-21 2017-08-21 单光子源器件、其制备方法及其应用
CN201710719676.X 2017-08-21

Publications (1)

Publication Number Publication Date
WO2019037580A1 true WO2019037580A1 (zh) 2019-02-28

Family

ID=61136091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098222 WO2019037580A1 (zh) 2017-08-21 2018-08-02 单光子源器件、其制备方法及其应用

Country Status (3)

Country Link
US (1) US11094907B2 (zh)
CN (1) CN107681059B (zh)
WO (1) WO2019037580A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107681059B (zh) 2017-08-21 2019-07-16 浙江大学 单光子源器件、其制备方法及其应用
CN110718636A (zh) * 2018-07-11 2020-01-21 Tcl集团股份有限公司 量子点发光二极管及其制备方法
US11705535B2 (en) * 2019-08-05 2023-07-18 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Nano-indent process for creating single photon emitters in a two-dimensional materials platform
CN110379932A (zh) * 2019-08-08 2019-10-25 上海南麟电子股份有限公司 一种电驱动量子点单光子源及其制备方法
CN111117357B (zh) * 2019-12-24 2022-08-19 阜阳欣奕华材料科技有限公司 一种量子点墨水、电致发光器件
CN111416053B (zh) * 2020-05-11 2023-05-30 京东方科技集团股份有限公司 一种量子点发光器件及其制备方法、显示面板、显示装置
CN113871542B (zh) * 2020-06-30 2023-10-24 京东方科技集团股份有限公司 发光二极管器件及其制备方法、显示面板
CN112750955A (zh) * 2020-12-30 2021-05-04 Tcl科技集团股份有限公司 一种量子点发光二极管及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN106384765A (zh) * 2016-11-03 2017-02-08 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN106816539A (zh) * 2016-12-08 2017-06-09 瑞声科技(南京)有限公司 量子点发光二极管装置及其制造方法
CN107681059A (zh) * 2017-08-21 2018-02-09 浙江大学 单光子源器件、其制备方法及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533770B (zh) * 2009-04-14 2011-11-23 长春理工大学 一种定位生长低密度InAs量子点的MBE外延方法
CN102290435B (zh) * 2011-09-14 2013-11-06 青岛理工大学 一种大面积量子点及其阵列制造方法
CN105261707B (zh) * 2015-09-08 2017-06-06 河南大学 一种新型量子点发光器件
CN105449112B (zh) * 2016-01-12 2018-04-20 纳晶科技股份有限公司 量子点电致发光器件、具有其的显示装置与照明装置
CN106374051A (zh) * 2016-11-15 2017-02-01 Tcl集团股份有限公司 一种qled、制备方法及发光装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN106384765A (zh) * 2016-11-03 2017-02-08 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN106816539A (zh) * 2016-12-08 2017-06-09 瑞声科技(南京)有限公司 量子点发光二极管装置及其制造方法
CN107681059A (zh) * 2017-08-21 2018-02-09 浙江大学 单光子源器件、其制备方法及其应用

Also Published As

Publication number Publication date
CN107681059B (zh) 2019-07-16
US11094907B2 (en) 2021-08-17
CN107681059A (zh) 2018-02-09
US20200194702A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2019037580A1 (zh) 单光子源器件、其制备方法及其应用
US11870004B2 (en) Metal oxide nanoparticles surface-treated with metal ion, quantum dot-light-emitting device comprising the same and method for fabricating the same
US10897023B2 (en) All quantum dot based optoelectronic device
US10665805B2 (en) Light-emitting diode and light-emitting device including the same
US9054330B2 (en) Stable and all solution processable quantum dot light-emitting diodes
US20150228850A1 (en) Transparent quantum dot light-emitting diodes with dielectric/metal/dielectric electrode
KR102581601B1 (ko) 발광 특성이 향상된 양자 발광다이오드 및 이를 포함하는 양자 발광 장치
KR20220002454A (ko) 반도체 입자들을 포함하는 안정화된 잉크 및 그 용도
KR102583620B1 (ko) 발광다이오드 및 이를 포함하는 발광장치
CN110416421A (zh) 一种量子点薄膜及量子点发光二极管
JP2008300270A (ja) 発光素子
Zhao et al. High efficiency blue light-emitting devices based on quantum dots with core-shell structure design and surface modification
TW202044608A (zh) 包含電洞傳遞層之量子點發光二極體
TW202036928A (zh) 包含摻雜ZnO電子傳遞層之量子點發光二極體
CN106784369A (zh) 一种阵列结构量子点发光二极管器件及其制备方法
US20240067872A1 (en) Quantum dot film and preparation method therefor, photoelectric device, display apparatus and preparation method for quantum dot light-emitting device
WO2021136119A1 (zh) 一种量子点发光二极管及其制备方法
CN211719621U (zh) 一种量子点器件及显示装置
CN116782726A (zh) 薄膜及其制备方法、发光器件及其制备方法、显示装置
US20240090255A1 (en) Electron transport material and preparation method therefor, and manufacturing method for display device
CN116156918A (zh) 一种纳米材料及其制备方法、电子传输薄膜及光电器件
Dong Efficiency Boost of QLED by Optimizing Electron Transport Layer Interface
CN117255603A (zh) 薄膜的处理方法、光电器件及其制备方法、显示装置
CN116143162A (zh) 纳米颗粒及其制备方法、电子传输层、量子点发光二极管
CN116425711A (zh) 化合物、发光器件及其制备方法与显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847346

Country of ref document: EP

Kind code of ref document: A1