WO2019035527A1 - 블록체인 기반 전력 거래 운영 시스템, 이의 방법, 그리고 이 방법을 저장한 컴퓨터 판독 가능 저장 매체 - Google Patents

블록체인 기반 전력 거래 운영 시스템, 이의 방법, 그리고 이 방법을 저장한 컴퓨터 판독 가능 저장 매체 Download PDF

Info

Publication number
WO2019035527A1
WO2019035527A1 PCT/KR2018/003678 KR2018003678W WO2019035527A1 WO 2019035527 A1 WO2019035527 A1 WO 2019035527A1 KR 2018003678 W KR2018003678 W KR 2018003678W WO 2019035527 A1 WO2019035527 A1 WO 2019035527A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
network
trading
purchase
transaction
Prior art date
Application number
PCT/KR2018/003678
Other languages
English (en)
French (fr)
Inventor
박중성
권성철
김동주
신창훈
윤지훈
이종욱
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2019035527A1 publication Critical patent/WO2019035527A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/36Payment architectures, schemes or protocols characterised by the use of specific devices or networks using electronic wallets or electronic money safes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/36Payment architectures, schemes or protocols characterised by the use of specific devices or networks using electronic wallets or electronic money safes
    • G06Q20/367Payment architectures, schemes or protocols characterised by the use of specific devices or networks using electronic wallets or electronic money safes involving electronic purses or money safes
    • G06Q20/3678Payment architectures, schemes or protocols characterised by the use of specific devices or networks using electronic wallets or electronic money safes involving electronic purses or money safes e-cash details, e.g. blinded, divisible or detecting double spending
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0613Third-party assisted
    • G06Q30/0619Neutral agent

Definitions

  • the present invention relates to a power trading operating technology, and more particularly, to a block chain-based power trading operating system capable of directly trading electricity to a power company or a consumer in real time through a power trading environment based on block chain technology and a method thereof It is about.
  • Electricity is produced by a large power plant, and it is delivered to each customer (customer) along a transmission / distribution line.
  • the purchase and sale of such electricity is divided into three types as follows.
  • Smart Grid technology plays an important role in increasing the efficiency of grid operation by conveying information and conveying various information between various distributed resources and consumers.
  • Smart Grid technology focuses on the operation of the physical power grid, there is a lack of real-time settlement and billing for electricity transactions, and there is still a problem of building a financial system separately have.
  • the present invention provides a block chain-based power trading operating system and a control method thereof that can execute a self-judgment by inputting a judgment of a user so that a power can be automatically traded according to a real-time power market environment and / or condition on behalf of a person There is another purpose.
  • the present invention provides a block chain-based power trading operating system capable of directly trading electricity to a power company or a consumer in real time through a power trading environment based on block chain technology.
  • block chain-based power trading operating system comprises:
  • a plurality of user devices for receiving power from the power grid A plurality of user devices for receiving power from the power grid
  • a block chain-based energy trading platform that enables a distributed digital ledger to perform smart contracts, generate and distribute distributed digital ledgers, and issue a request according to the distributed digital ledgers to the power system operating server And an energy trading server for managing the energy trading server.
  • the plurality of user equipments include a first power trading apparatus which receives a power purchase request for power trading and receives power; A first communicator for transmitting and receiving power transaction data including a power purchase request; And a first smart meter for connecting the purchased power to the power network and calculating the amount of power supplied thereto.
  • the plurality of prosumer devices may further include: a second power trading device for transmitting a power sale request for power trading to supply power; A second communicator for transmitting and receiving power transaction data including a power sale request; And a second smart meter for connecting the purchased power to the power grid and supplying the calculated power to the power grid.
  • the plurality of user equipments or the plurality of prosumer devices may further include a terminal capable of inputting conditions for power trading.
  • the matching may be performed by a power capacity calculated through Mixed Integer Programming considering a preset physical capacity constraint of the power network.
  • the energy trading server may provide a result of the matchable trade that is adjusted by the power plan calculation formula if the physical capacity constraint is violated, (Where, x i (t) is a power purchase volume, c i (t) is the time t i power purchase price from the merchant from the i seller of t time from the mother ship s, p (t) is the power from the utility And e (t) is the power purchase price of the power company at time t).
  • the power network may be an intelligent power network.
  • the matching may be a matching of a transaction amount and a price set through electricity sales and purchase matching by time slot.
  • the plurality of user devices may transmit the cost of the purchase to the energy transaction server in electronic money according to the distributed digital ledger.
  • block chain-based energy trading platform may perform encryption for authentication using an encryption algorithm.
  • the network may be a Peer to Peer (P2P) network.
  • P2P Peer to Peer
  • another embodiment of the present invention provides a method of operating a power supply system, comprising the steps of: (a) making a power purchase request for a plurality of user devices to receive power from a power grid; (b) a plurality of prosumer devices making a power sale request to supply power to the power grid; (c) receiving energy purchase requests from the plurality of user devices that are networked and receiving power sale requests from the plurality of prosumer devices connected to the network; (d) the energy transaction server performs smart contracts through a block-chain-based energy trading platform that enables the distributed digital ledgers by matching the power purchase requests and the power sale requests according to preset power transactions, Creating and distributing distributed digital ledgers; (e) performing a request according to the distributed digital ledgers to the power system operating server in which the energy transaction server operates the power system of the power network; And (f) supplying power to the corresponding prosumer device among the plurality of prosumer devices, and receiving power from the corresponding user device among the plurality of user
  • the step (a) or the step (b) may include inputting a condition for power trading through the terminal.
  • the plurality of user devices transmit the cost of the purchasing according to the distributed digital ledger to the energy transaction server by electronic money.
  • another embodiment of the present invention can provide a computer-readable storage medium storing program code for executing the block chain-based power trading method described above.
  • a small-scale distributed power source company based on a conventional renewable power generation source is not a transaction device for simply selling energy to a power company or a power wholesale market, but a small-scale renewable power generation company, Automated operation suitable for transactions is possible.
  • the expansion of a number of new and renewable power generation companies can greatly contribute to the expansion of the nation's eco-friendly energy resources, and the demand and / or supply through block chains and / or IoT (Internet Of Things) (Eg, load leveling and peak shifts) and / or increased energy self-sufficiency in the region by increasing the resilience of retail electricity energy trading between sellers and buyers.
  • IoT Internet Of Things
  • the electric power company provides the direct electricity customers of the electric energy with services such as the range allowed by the physical power network, the transaction quantity and time matching service within the range, prediction of new and renewable power generation, It is possible to expand the new relay business with the existing classical electricity supply business.
  • FIG. 1 is a conceptual diagram of a smart grid operating environment based on a general ICT (Information and Communications Technologies).
  • FIG. 2 is a conceptual diagram of a typical Smart Grid operating platform and a retail trading platform.
  • FIG. 3 is a block diagram of a block chain-based power trading system according to an embodiment of the present invention.
  • FIG. 4 is a detailed configuration diagram of the user apparatus and the prosumer apparatus shown in FIG.
  • FIG. 5 is a conceptual diagram illustrating a hierarchical structure of the block chain-based power trading operation system shown in FIG.
  • FIG. 6 is a conceptual diagram showing a simplified configuration block diagram of the energy transaction server shown in FIG. 3 and FIG. 5.
  • FIG. 6 is a conceptual diagram showing a simplified configuration block diagram of the energy transaction server shown in FIG. 3 and FIG. 5.
  • FIG. 7 is a flowchart illustrating an energy transaction by a block chain-based energy trading platform according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating an energy transaction process according to an embodiment of the present invention.
  • the first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • An embodiment of the present invention is a system for supplying electric energy or an active demand response (DR) through a distributed power source company including a small-scale renewable generator and an energy storage device (for example, battery)
  • a distributed power source company including a small-scale renewable generator and an energy storage device (for example, battery)
  • DR active demand response
  • an energy storage device for example, battery
  • an ICT-based Smart Grid operating environment includes a power transmission system 10 for power transmission, a power distribution system 130 for power distribution, an intelligent power network optimized for energy efficiency by combining information technology with the existing power grid A micro grid 120, an individual power user 110, and the like.
  • the microgrid 120 includes a building energy management system (BEMS), a community energy management system (CEMS), an energy service company (ESCO), and a factory energy management system (FEMS).
  • BEMS building energy management system
  • CEMS community energy management system
  • ESCO energy service company
  • FEMS factory energy management system
  • the individual power user 110 generates and supplies power to the microgrid 120, or receives power from the microgrid 120.
  • HEMS represents Home Energy Management System.
  • the Smart Grid operating platform comprises an application set 210
  • the retail trading platform 220 comprises processes such as contracting, settlement and billing.
  • the power trading operating system 300 includes a power network 310 for performing power generation and / or power distribution, a power system operating server 350 for operating a power system of the power network, A user device 340 connected to the energy transaction server 330 and the first network 301 to perform a power purchase request, an energy transaction server 330 and a second network 302 A prosumer device 320 connected to perform a power sale request, and the like.
  • the power grid 310 comprises an existing grid, an intelligent grid (i.e., a smart grid), and the like.
  • the intelligent power grid is a system in which an electric company supplies communication to an existing power grid that supplies electricity unilaterally to each household so that electric companies and consumers can exchange information in real time and optimize the production and consumption of electricity.
  • the prosumer device 320 as the seller and the user device 340 as the consumer are in the same (pillar) transformer during the power transaction, they are not subjected to any physical restriction from the power company, In the case of transactions using the company's power grid, it is basically characterized by receiving a license from a power company that owns the power grid after reviewing whether there is a physical problem in the operation of the power grid at the time of the transaction.
  • the first network 301 and the second network 302 are shown separately for the sake of understanding and may be one block chain network. Also, the first network 301 and the second network 302 are peer to peer (P2P) networks.
  • P2P peer to peer
  • the first network 301 and / or the second network 302 may be a Public Switched Telephone Network (PSTN), Public Switched Data Network (PSDN), Integrated Services Digital Networks (ISDN) (BISDN), a local area network (LAN), a metropolitan area network (MAN), a wide area network (WLAN), and the like.
  • PSTN Public Switched Telephone Network
  • PSDN Public Switched Data Network
  • ISDN Integrated Services Digital Networks
  • LAN local area network
  • MAN metropolitan area network
  • WLAN wide area network
  • the present invention is not limited to this and can be applied to various wireless communication systems such as Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Wireless Broadband (WiBro), Wireless Fidelity (WiFi), High Speed Downlink Packet Access (HSDPA) bluetooth). Or a combination of these wired communication networks and wireless communication networks.
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • WiBro Wireless Broadband
  • WiFi Wireless Fidelity
  • the user device 340 corresponds to the buyer side connected to the power network 310 to purchase electric power. To this end, the user device 340 connects to the energy transaction server 330 through the first network 301 to perform a power purchase request.
  • the user device 340 connects to the energy transaction server 330 through the first network 301 to perform a power purchase request.
  • FIG. 1 only one user device 340 is shown for the sake of understanding, but a plurality of user devices are configured.
  • the prosumer device 320 corresponds to a seller side that connects to the power network 310 and sells electric power. To this end, the prosumer device 320 connects to the energy transaction server 330 through the second network 302 to perform a power sale request.
  • the prosumer device 320 connects to the energy transaction server 330 through the second network 302 to perform a power sale request.
  • FIG. 1 only one prosumer device 320 is shown for the sake of understanding, but a plurality of user devices are configured.
  • the energy trading server 330 receives power purchase requests from a plurality of user devices 340 connected to the first network 301 and receives power purchase requests from a plurality of prosumer devices 320 connected to the second network 302 Contracts are made through block chain technology based on the power purchase requests and the power sale requests to enable a distributed digital ledger in a distributed form, and the distributed digital ledgers are generated and distributed, And requests the power system operation server to perform a request according to the ledgers.
  • the user device 340 and / or the prosumer device 320 includes a power transaction device 410 for requesting an energy transaction server 330 to perform power trading, And a smart meter 440 connected to the power network 310 to calculate the amount of electric power generated by the power transaction, and the like. .
  • the power trading device 410 is installed in a general home, a public house, a school, a building of a building, an electric vehicle, an electric power company, and the like.
  • the communicator 430 is connected to the energy trading server 330 via wired / wireless communication via the first and second networks 301 and 302.
  • the terminal 420 may include various terminals for inputting and outputting various information through a communication network.
  • the terminal 420 may be a personal computer (PC), a smart terminal, a PDA (Parental Digital Assistant), a laptop computer, display terminal, and the like.
  • the smart meter 440 may be coupled to an Internet of Things (IOT) device.
  • IOT Internet of Things
  • the prosumer device 320 and the user device 340 may be configured similar to each other, but one side may be a power seller and the other side may be a power buyer, so that the components may be modified and / or modified accordingly.
  • the user device 340 receives the electric power purchase request from the energy transaction server 330 and receives electric power, and can input the electric power purchase condition according to the electric power purchase request.
  • the prosumer device 320 can also supply a power sales request to the energy transaction server 330 to supply power, input conditions for power sales, and generate data according to the power sales request.
  • the energy transaction server 330 includes an equipment API (Application Program Interface) module 520 connected to the IoT equipment 510 of the user equipment 340, A block chain-based energy trading platform 540 connected to the device 340, a power trading operation module 550 for performing power trading using the block chain-based energy trading platform 540, and the like.
  • equipment API Application Program Interface
  • the block chain-based energy trading platform 540 includes a database 531, a power transaction API (Application Program Interface) module 532, an interface module 533, an application function module 534, a management module 535, Module 537, a port listening module 538, a node OS (Operating System) 330, and the like.
  • a power transaction API Application Program Interface
  • an interface module 533 an interface module 533
  • an application function module 534 an application function module
  • management module 535 Module 537
  • Module 537 Module 537
  • a port listening module 538 a node OS (Operating System) 330, and the like.
  • the database 531 includes data for block chain-based power trading operations, personal information of the user, personal information of the prosumer, identification information of the user device 340, identification information of the prosumer device 320, and the like.
  • the database 531 may be provided in the energy transaction server 330 or may be a separate database server.
  • the power trading API module 532 implements power trading, measurement data I / F (InterFace), encryption processing, data inquiry, and node status.
  • the interface module 533 implements IPC (Instruction Per Clock, instruction processing capability per operation speed), WEB3.js, and the like. That is, a web page or the like is provided to a user, a prosumer, an administrator, and the like.
  • IPC Instruction Per Clock, instruction processing capability per operation speed
  • WEB3.js and the like. That is, a web page or the like is provided to a user, a prosumer, an administrator, and the like.
  • Application function module 534 implements cryptography, smart contract, mining, and the like.
  • the password can be a bitcoin, an altcoin, a litecoin, or the like.
  • Smart contracts operate on block chains.
  • the management module 535 implements peer-to-peer protocol management, an agreement manager, an encryption algorithm, and an account manager.
  • the virtual machine module 537 can create a smart contract only in a language available in the special virtual machine EVM (Ethereum Virtual Machine).
  • EVM Evolution Virtual Machine
  • the port listening module 536 executes a query on the ports to check the status of the ports.
  • a node operating system (OS) 536 is an operating system that implements a block chain based energy trading platform.
  • the power trading operation module 550 monitors the power information of the power network 310 using the block chain-based energy trading platform 540, manages the measurement information on the power information, . It also performs authentication, customer information, and overall system management.
  • the power trading operation module 550 enables all the power trading participants on the block-chain network to automatically trade power according to the power trading conditions set in its power trading apparatus 410 (FIG. 4).
  • the user 530 as a power purchaser may be a building 541, a utility 542, an electric car user 543, a home 544, a manager 545, a smart terminal app user 546, and the like. Therefore, the user can input the desired power trading condition to the power trading apparatus 340 through the user terminal 420 (FIG. 4).
  • a home or a multi-family house can be accessed via a user smart meter 440, a school building, a public institution, etc. can be accessed through a building management system (BEMS) You can enter the terms of the electricity trading.
  • BEMS building management system
  • an application program can be installed in a smart terminal to remotely input power trading conditions.
  • the Internet of Things (IOT) equipment 510 has a function of sensing the power information of the systems 511, 512 and 513 provided on the user device 340 side and transmitting the sensed power information to the energy transaction server 330 .
  • the system includes, for example, a building energy management system 511, a power transmission system 512, an electric vehicle charging infrastructure 513, and the like.
  • the power information includes load amount, SOC (State Of Charge), power generation amount, power amount, consumption amount, and the like.
  • FIG. 6 is a conceptual diagram showing a simplified configuration block diagram of the energy transaction server shown in FIG. 3 and FIG. 5.
  • the energy trading server 330 can be divided into three functional layers. That is, a connection providing module 623 for providing a connection with an external device on an operating system (OS), a transaction for operating on a block chain-based energy trading platform (540 in FIG. 5) An environment providing module 622, and a service providing module 621 for providing various service functions.
  • OS operating system
  • An environment providing module 622 for providing various service functions.
  • connection providing module 623 is a function for an interface between the block chain-based energy trading platform 540 and the power trading device 410 (FIG. 4), a block chain-based smart contract, and mining .
  • connection environment provision module 622 stores data acquired from the connected devices, operates transaction conditions on the block chain-based energy trading platform 540, and provides an access environment to the user.
  • the service providing module 621 provides a variety of service functions to the participants of the power trading.
  • the service functions that can be provided to the participants of the electricity trading are the optimal matching service (A) considering all participating distributed resources and consumers, the compensation service (B) for the power reserve proposal, which can help the stable operation of the power system, , Virtual Power Plant (VPP) operation service (C) as a service that collects various distributed resources and acts as a power sales agent for wholesale market.
  • A the optimal matching service
  • B the compensation service
  • C Virtual Power Plant
  • FIG. 7 is a flowchart illustrating an energy transaction by a block chain-based energy trading platform according to an embodiment of the present invention.
  • an input block 710 according to a block chain-based energy trading platform (540 of FIG. 5) first receives a condition entered by a subject purchasing power for power purchase in a power trading device (410 of FIG. 4) (1).
  • X i (t) is the power purchase amount from the i-th seller at time t
  • c i (t) is the power purchase from the i-seller at time t
  • (T) is the power purchase price of the utilities at time t
  • d (t) is the power purchase price at time t
  • t (t) This is a predicted load pattern, which is a predicted power load pattern based on past periodic data or current weather information.
  • x i (t) is a power purchase volume
  • c i from a time t i-seller (t) is the power purchase price from the time t of the i seller
  • p (t) is a power purchases from the power company
  • e ( (t) is the power purchase price of the power company at time t
  • y (t) is the power generation through self-distributed power source (including energy storage) at time t
  • s (t) (T) is the amount of electricity required to reduce to the demand response
  • r (t) is the compensation cost for the demand response.
  • Equation (1) if there is an infrastructure for charging an electric car of its own infrastructure, and the electric power can be sold or purchased through a plurality of electric vehicles, there may be an electric vehicle among the sellers of x i (t).
  • the electric vehicle among the sellers of x i (t).
  • u (t), v (t) and w (t) are binary functions (0 or 1) representing the behavior of retail transactions, wholesale transactions and demand responses, The other behavior is zero.
  • the electric power seller on the block chain-based energy trading platform 540 can be an electric vehicle in addition to the form having the direct distributed resource itself as shown in Equation (2).
  • the intention of a company having direct distributed resources among those who want to sell electric power is the same as in Equation 2 and its conditional expression. This is because minimizing one's own cost due to the pairwise nature of the optimization function is the same as maximizing one's own profit.
  • an electric car In the case of an electric car, it is a position to purchase electricity by connecting to a charging facility. However, when the car is parked for a long time in the parking lot and connected to the charging facility, the user sets the final charge amount of the battery, have.
  • the setting of the intention to sell electric power can be set through an application program (for example, an app, etc.) of a remote terminal device such as an electric vehicle charging facility or a smart terminal, and can be expressed as shown in Equation (4).
  • x i (t) is a power purchase volume
  • c i from a time t i-seller (t) is the power purchase price from the time t of the i seller
  • p (t) is a power purchases from the power company
  • e ( (t) is the power purchase price of the utility at time t
  • ev (t) is the sales power through the self-battery at time t
  • disc (t) is the power sale price at time t.
  • the electric car since the electric car must have a certain amount of remaining capacity of the battery after the final charge, the following conditional expression is included.
  • the charge remaining amount SOC of the battery can be expressed by the efficiency eff for charge / discharge, and the discharge amount of the battery j with respect to the time t is ev j (t).
  • the SOC is the cumulative energy amount from the past charge / discharge, the input / output power eff (x i (t-1) ) + p (t) -ev i (t).
  • the charge / discharge output of the battery should be within the physical capacity of the battery, it is important to limit the upper limit and the lower limit in an appropriate range in consideration of the life of the battery as follows.
  • it can be a limit range for the battery life of a maker of an electric car, and a SOC range of a battery energy to be sold for a vehicle owner.
  • the power sales block 730 sells the power according to the power trading conditions as described above (3).
  • the power transactions on the real-time block-chain-based energy trading platform 540 At the contract acceptance block 740, the power transactions on the real-time block-chain-based energy trading platform 540
  • the contract approval and approval is performed through the result of the power system operation server (350 in FIG. 3) which judges whether there is no physical problem in the operation of the power system (4).
  • the described optimum matching service (A), compensation service (B), and virtual power plant operation service (C) may be provided.
  • the energy transaction server 330 receives the power amount of the distributed resources and the consumer demand amount information of the corresponding power trading time zone before the predetermined time of the power trading, It is a service that provides information to participants so that there is no problem in system operation. It can be expressed by the following equation.
  • x i (t) is the power purchase price from the seller of the time t at the bus s
  • c i (t) is the power purchase price from the i seller at time t
  • p (t) is the power purchase price of the utility at time t.
  • e (t) is the power purchase price of the utility at time t.
  • D i (t) is the demand of k consumers at time t, which means the supply and demand balance of distributed generation of resources and load at each time t.
  • conditional expression for securing the stable operation of the power system uses the electric power algebraic expression used in the electric engineering, and the calculation result can be called from the electric power algae calculation function in the power system operation server 350 of the utility company .
  • Equation (7) the distributed resources are the same as the generators at each located bus, and the power purchase amount from the power company can be considered as power supplied through the transmission / distribution line, and the expression is as follows.
  • PF sr is the amount of power purchased from the power company supplied through the transmission / distribution line
  • equation for calculating the power flow which is the power flow of the physical transmission / distribution line
  • PF sr and QF sr are the active power and reactive power tidal currents in the buses with distributed resources and demand resources (load) and in the transmission / distribution lines connected to them, and V s and V r are the points ⁇ s and ⁇ s are the phases of each bus voltage.
  • the concept of a bus in a distribution system can be seen as a transformer in which distributed resources are connected to a substation where each distribution line branches.
  • G l , B l , and B c are the conductance, susceptance, and capacitance of the line, respectively.
  • the physical capacity constraints of the distribution line ie, power grid 310) between the transformer buses where each distributed resource and demand resource are connected in the substation bus line are as follows.
  • TP and TQ l l is the effective power capacity and reactive power capacity that can be sent in each transmission / distribution line.
  • the solution result of Equation (7) is derived by the seller, the sales amount, the buyer, and the purchase amount for the power trade on the block chain, and therefore performs the operation by Mixed Integer Programming.
  • the compensation service (B) for the power generation reserve proposal which can help the stable operation of the power system, can also be called as a result of calculating the power system operation reserve reserve and the sensitivity calculation in the power system operation server 350 of the power company.
  • the required amount of active power and the cost of the supply duration can be determined and presented to the customer who is a retail trade participant.
  • VPP virtual power plant
  • C operation service
  • the payment block 750 pays when the power is supplied according to the contract approval at the contract acceptance block 740 and the power supply is confirmed (567).
  • FIG. 8 is a flowchart illustrating an energy transaction process according to an embodiment of the present invention.
  • the power sales request data and / or the power purchase request data acquired through the power trading apparatus 410 are input to the block chain-based energy trading platform 540 provided in the energy trading server 330 Step S810).
  • Step S820 the inputted power sale request data and / or the power purchase request data are stored in the operation database (531 in FIG. 5) of the energy transaction server 330 and the block chain agreement process is performed in the block chain-based energy trading platform 540 (Step S820).
  • step S820 a matching between the seller and the buyer's transaction amount and the price set is generated through the electricity sales and purchase matching algorithm.
  • the block-chain-based energy trading platform 540 of the energy trading server 330 computes a power generation amount and / or load prediction for a future power trading time, and calculates a power generation amount and / (Step S830, S840, S850) whether there is a physical capacity constraint in the system analysis model.
  • step S850 if the result of the examination is that the physical capacity constraint of the power network 310 is not violated, the smart contracting and distributed digital ledger is generated through the smart contract of the block-chain energy trading platform 540 (step S860).
  • the electronic money issuance and the transaction price are transmitted to the energy transaction server 330 (block-chain electronic money issuance and transaction fee) (Steps S870 and S880).
  • the energy transaction server 330 block-chain electronic money issuance and transaction fee
  • commissions can be electronic money generated as a result of smart contracts.
  • step S870 If it is determined in step S870 that the transaction is not confirmed according to the contract, the settlement based on the promised power trading agreement placebos condition is executed (step S871). Even in this case, electronic money can be used.
  • step S850 if it is determined in step S850 that the physical capacity constraint of the power network 310 is violated, the matching result of the reconciliable set of transactions is announced to the seller and the buyer through the power supply plan calculation formula in consideration of the physical capacity constraint And receives the power sale and purchase intention again (steps S851 and S852).
  • the power plan calculation formula is the result of Equation (7).
  • steps S810 to S850 are repeated until the violation of the physical capacity constraint is eliminated.
  • the smart transaction function of the block chain performs a primary trade matching, and if the transaction is a possible transaction due to physical capacity constraints, the power system operation server 350 ).
  • module refers to a unit for processing at least one function or operation, which may be implemented by hardware, software, or a combination of hardware and software.
  • DSP digital signal processor
  • PLD programmable logic device
  • FPGA field programmable gate array
  • processor a controller, a microprocessor, and the like, which are designed to perform the above- , Other electronic units, or a combination thereof.
  • DSP programmable logic device
  • FPGA field programmable gate array
  • processor a controller, a microprocessor, and the like, which are designed to perform the above- , Other electronic units, or a combination thereof.
  • the software may be stored in a memory unit and executed by a processor.
  • the memory unit or processor may employ various means well known to those skilled in the art.
  • block chain-based power trading operation may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer-readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, and the like, alone or in combination.
  • the program instructions (code) recorded on the medium may be those specially designed and constructed for the present invention or may be available to those skilled in the computer software.
  • Examples of computer-readable media include magnetic media such as hard disks, floppy disks and magnetic tape; optical media such as CD-ROMs and DVDs; magnetic media such as floppy disks; Magneto-optical media, and hardware devices specifically configured to store and execute program instructions such as ROM, RAM, flash memory, and the like.
  • the medium may be a transmission medium such as an optical or metal line, a wave guide, or the like, including a carrier wave for transmitting a signal designating a program command, a data structure, or the like.
  • Examples of program instructions include machine language code such as those produced by a compiler, as well as high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware devices described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.

Abstract

블록체인 기반 전력 거래 운영 시스템 및 방법이 제공된다. 상기 블록체인 기반 전력 거래 운영 시스템은, 전력망으로부터 전력을 구매하여 공급받는 다수의 사용자 장치, 상기 전력망에 전력을 판매하여 공급하는 다수의 프로슈머 장치, 상기 전력망의 전력 계통을 운영하는 전력 계통 운용 서버, 및 블록체인 기반 에너지 거래 플랫폼을 통해 스마트 계약 체결들을 수행하고 해당 분산 디지털 원장들을 생성 배포하고 상기 분산 디지털 원장들에 따른 요청을 상기 전력 계통 운용 서버에 명령하여 수행하는 에너지 거래 서버를 포함한다.

Description

블록체인 기반 전력 거래 운영 시스템, 이의 방법, 그리고 이 방법을 저장한 컴퓨터 판독 가능 저장 매체
본 발명은 전력 거래 운영 기술에 관한 것으로서, 더 상세하게는 블록체인 기술 기반의 전력거래 환경을 통해 실시간으로 전력회사 또는 소비자에게 직접 전기를 거래할 수 있는 블록체인 기반 전력 거래 운영 시스템 및 이의 방법에 대한 것이다.
전기라는 재화는 대형 발전소에서 전기를 생산하여, 송/배전 선로를 따라 각 수요처(고객)에게로 전달되며, 이러한 전기를 사고파는 것은 다음과 같이 크게 세 가지 정도의 형태로 나누어져 있다.
첫째, 정부 또는 정부 산하 기관(Utility)의 강력한 통제하에서 각 고객의 전기 사용분에 대한 계량을 통한 단순 요금 과금 형태이다. 이는 일반적으로 저개발국에서 이루어지는 형태로 전기라는 재화에 대한 시장이 없는 형태이다.
둘째, 우리나라와 같이 전기를 사고파는 도매시장은 있지만, 여전히 정부와 기간이 통재하는 형태이다.
마지막으로, 북미나 유럽 일부 국가 등 정부와 기관은 국가 기간망인 전력시스템의 안정적인 운영을 위한 강력한 감독만 할 뿐, 전기재화의 거래는 순수 시장의 원리원칙에서 작동하도록 한 시장의 형태이다.
하지만, 이러한 전력산업에 커다란 변화를 가지고 온 것이 신재생전원들을 포함한 소형 분산전원들이다. 이러한 분산전원들로 인해 더 이상 도매시장 유무 문제나 형태의 문제가 아니라 새로운 시장 환경이 필요로 해졌다. 분산전원은 그 용량에 따라 송전선로에 접속되기도 하지만, 이제까지의 대형발전소와는 달리 배전선로에 접속되어 수요과 함께 발전소가 있는 형태로 산업의 형태를 바꾸어가고 있다.
이러한 변화들로, 전기의 수요처인 도시와 거리가 먼 대형 발전소로부터의 송전에만 의지하여 송전에 대한 손실과 운영의 어려움을 겪던 전력산업에 커다란 변화가 시작되었다.
스마트 그리드 기술은 다양한 분산자원과 소비자 사이에 여러 정보를 전달하고 의향을 전달함으로써 전력망 운용의 효율을 증대시키는데 많은 역할을 하고 있다. 하지만, 이러한 스마트 그리드 기술은 물리적인 전력망을 운영하는데 초점을 두고 있기 때문에 전력거래에 대한 정산 및 과금의 실시간성은 부족하며, 또한 현물에 대한 금융거래이기 때문에 금융시스템을 따로 구축해야 한다는 문제점 역시 여전히 가지고 있다.
따라서, 사람을 대신하여 실시간 전력시장 환경 및 조건에 따라 자동으로 전력을 거래할 수 있도록 사용자의 판단을 입력받아 스스로 실행하는 장치와 그 운영기술이 필요하다. 또한, 이렇게 자동화된 전력거래가 투명함과 신뢰성을 가진 금융거래여야만 할 것이다. 즉, 소규모 분산자원과 소비자 사이의 전기 재화 거래를 위한 자동화 기반의 전력거래 장치 및 운영기술이 필요한 실정이다.
본 발명은 위 배경기술에 따른 블록체인 기술 기반의 전력거래 환경을 통해 실시간으로 전력회사 또는 소비자에게 직접 전기를 거래할 수 있는 블록체인 기반 전력 거래 운영 시스템 및 이의 제어 방법을 제공하는데 그 목적이 있다.
또한, 본 발명은 사람을 대신하여 실시간 전력시장 환경 및/또는 조건에 따라 자동으로 전력을 거래할 수 있도록 사용자의 판단을 입력받아 스스로 실행할 수 있는 블록체인 기반 전력 거래 운영 시스템 및 이의 제어 방법을 제공하는데 다른 목적이 있다.
또한, 본 발명은 소규모 분산자원과 소비자 사이의 전기 재화 거래를 위한 자동화 기반의 전력 거래 운영 시스템 및 이의 제어 방법을 제공하는데 또 다른 목적이 있다.
본 발명은 위에서 제시된 과제를 달성하기 위해, 블록체인 기술 기반의 전력거래 환경을 통해 실시간으로 전력회사 또는 소비자에게 직접 전기를 거래할 수 있는 블록체인 기반 전력 거래 운영 시스템을 제공한다.
상기 블록체인 기반 전력 거래 운영 시스템은,
전력망;
상기 전력망으로부터 전력을 구매하여 공급받는 다수의 사용자 장치;
상기 전력망에 전력을 판매하여 공급하는 다수의 프로슈머 장치;
상기 전력망의 전력 계통을 운영하는 전력 계통 운용 서버; 및
네트워크로 연결되는 다수의 사용자 장치로부터 전력 구매 요청들을 수신하고, 상기 네트워크로 연결되는 다수의 프로슈머 장치로부터 전력 판매 요청들을 수신하고, 상기 전력 구매 요청들과 상기 전력 판매 요청들을 미리 설정되는 전력 거래에 따라 매칭하여 분산 디지털 원장을 가능하게 하는 블록체인 기반 에너지 거래 플랫폼을 통해 스마트 계약 체결들을 수행하고 해당 분산 디지털 원장들을 생성 배포하고 상기 분산 디지털 원장들에 따른 요청을 상기 전력 계통 운용 서버에 명령하여 수행하는 에너지 거래 서버;를 포함하는 것을 특징으로 한다.
이때, 상기 다수의 사용자 장치는, 전력 거래를 위한 전력 구매 요청을 전달하여 전력을 공급받는 제 1 전력 거래 장치; 전력 구매 요청을 포함하는 전력 거래 데이터를 송수신하는 제 1 통신기; 및 구매한 전력을 상기 전력망에 연결하여 공급받아 전력량을 산출하는 제 1 스마트 미터;를 포함하는 것을 특징으로 할 수 있다.
또한, 상기 다수의 프로슈머 장치는, 전력 거래를 위한 전력 판매 요청을 전달하여 전력을 공급하는 제 2 전력 거래 장치; 전력 판매 요청을 포함하는 전력 거래 데이터를 송수신하는 제 2 통신기; 및 구매한 전력을 상기 전력망에 연결하여 공급하고 전력량을 산출하는 제 2 스마트 미터;를 포함하는 것을 특징으로 할 수 있다.
또한, 상기 다수의 사용자 장치 또는 다수의 프로슈머 장치는, 전력 거래에 대한 조건을 입력할 수 있는 단말기;를 더 포함하는 것을 특징으로 할 수 있다.
또한, 상기 매칭은 상기 전력망의 미리 설정되는 물리적 용량 제약을 고려하여 혼합 정수 계획법(Mixed Integer Programming)을 통해 연산되는 전력 용량에 의해 이루어지는 것을 특징으로 할 수 있다.
또한, 상기 에너지 거래 서버는 상기 물리적 용량 제약에 위배되면 전원 계획 계산식에 의해 조정된 거래 가능 매칭 결과를 제공하며, 상기 전원 계획 계산식은 수학식
Figure PCTKR2018003678-appb-I000001
(여기서, xi(t)는 모선 s에서 t시간의 i 판매자로부터의 전력 구매량, ci(t)는 t 시간의 i 판매자로부터의 전력구매 가격이고, p(t)는 전력회사로부터의 전력구매량, e(t)는 t시간의 전력회 사의 전력구매 가격이다)으로 정의되는 것을 특징으로 할 수 있다.
또한, 상기 전력망은 지능형 전력망인 것을 특징으로 할 수 있다.
또한, 상기 매칭은 시간대별 전력 판매 및 구매 매칭을 통한 거래량과 가격 셋의 매칭인 것을 특징으로 할 수 있다.
또한, 상기 다수의 사용자 장치는 상기 분산 디지털 원장에 따라 상기 구매에 대한 비용을 전자화폐로 상기 에너지 거래 서버에 전달하는 것을 특징으로 할 수 있다.
또한, 상기 블록체인 기반 에너지 거래 플랫폼은 암호화 알고리즘을 이용하여 인증을 위한 암호화를 수행하는 것을 특징으로 할 수 있다.
또한, 상기 네트워크는 P2P(Peer to Peer) 네트워크인 것을 특징으로 할 수 있다.
다른 한편으로, 본 발명의 다른 일실시예는, (a) 다수의 사용자 장치가 전력망으로부터 전력을 공급받기 위해 전력 구매 요청을 하는 단계; (b) 다수의 프로슈머 장치가 상기 전력망에 전력을 공급하기 위해 전력 판매 요청을 하는 단계; (c) 에너지 거래 서버가 네트워크로 연결되는 상기 다수의 사용자 장치로부터 전력 구매 요청들을 수신하고, 상기 네트워크로 연결되는 상기 다수의 프로슈머 장치로부터 전력 판매 요청들을 수신하는 단계; (d) 상기 에너지 거래 서버가 상기 전력 구매 요청들과 상기 전력 판매 요청들을 미리 설정되는 전력 거래에 따라 매칭하여 분산 디지털 원장을 가능하게 하는 블록체인 기반 에너지 거래 플랫폼을 통해 스마트 계약 체결들을 수행하고 해당 분산 디지털 원장들을 생성 배포하는 단계; (e) 상기 에너지 거래 서버가 상기 전력망의 전력 계통을 운영하는 전력 계통 운용 서버에 상기 분산 디지털 원장들에 따른 요청을 수행하는 단계; 및 (f) 상기 다수의 프로슈머 장치 중 해당 프로슈머 장치가 전력을 공급하고, 상기 다수의 사용자 장치 중 해당 사용자 장치가 전력을 공급받는 단계;를 포함하는 것을 특징으로 하는 블록체인 기반 전력 거래 운영 방법을 제공할 수 있다.
이때, 상기 (a) 단계 또는 (b) 단계는, 단말기를 통하여 전력 거래에 대한 조건을 입력하는 단계;를 포함하는 것을 특징으로 할 수 있다.
또한, 상기 (f) 단계는, 상기 다수의 사용자 장치가 상기 분산 디지털 원장에 따라 상기 구매에 대한 비용을 전자화폐로 상기 에너지 거래 서버에 전달하는 단계;를 포함하는 것을 특징으로 할 수 있다.
또 다른 한편으로, 본 발명의 또 다른 일실시예는, 위에서 기술된 블록체인 기반 전력 거래 운용 방법을 실행하는 프로그램 코드를 저장한 컴퓨터 판독 가능 저장 매체를 제공할 수 있다.
본 발명에 따르면, 기존의 신재생발전원 기반 소규모 분산전원 사업자가 단순히 전력회사나 전력 도매시장에 에너지를 판매하기 위한 거래장치가 아닌, 소규모 신재생발전 사업자가 직접 고객에게 전력을 판매하기 위한 소매거래에 적합한 자동화된 운영이 가능하다.
또한, 본 발명의 다른 효과로서는 다수의 신재생발전 사업자 확대에 따라 국가적인 친환경 에너지자원의 확대에 큰 도움이 될 수 있고, 블록체인 및/또는 IoT(Internet Of Things)를 통해 수요 및/또는 공급의 탄력성을 높여 판매자와 구매자간 소매 전기 에너지 거래 시장을 활발하게 함으로써 해당 지역의 전체적인 부하를 평준화(Load Leveling and Peak Shift) 및/또는 지역내 에너지 자립율을 높일 수 있다는 점을 들 수 있다.
또한, 본 발명의 또 다른 효과로서는 전력회사는 전기 에너지의 직거래 고객들에게 물리적 전력망이 허용하는 범위와 그 범위 내에서 거래 가능한 거래량 및 시간 매칭 서비스, 신재생발전 예측 및 부하량 예측 등의 서비스를 제공함으로써 기존의 고전적인 전기공급 사업과 함께 신규 중계사업을 확장할 수 있다는 점을 들 수 있다.
도 1은 일반적인 ICT(Information and Communications Technologies) 기반의 스마트 그리드 운영 환경의 개념도이다.
도 2는 일반적인 스마트 그리드 운영 플랫폼 및 소매거래 플랫폼의 개념도이다.
도 3은 본 발명의 일실시예에 따른 블록체인 기반 전력 거래 운영 시스템의 구성도이다.
도 4는 도 3에 도시된 사용자 장치 및 프로슈머 장치의 상세 구성도이다.
도 5는 도 3에 도시된 블록체인 기반 전력 거래 운용 시스템의 계층 구조도를 표현한 개념도이다.
도 6은 도 3 및 도 5에 도시된 에너지 거래 서버의 간략화된 구성 블럭도를 보여주는 개념도이다.
도 7은 본 발명의 일실시예에 따른 블록체인 기반 에너지 거래 플랫폼에 의해 에너지 거래를 보여주는 절차도이다.
도 8은 본 발명의 일실시예에 따른 에너지 거래 과정을 보여주는 흐름도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세한 설명에 구체적으로 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야한다.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용한다. 제 1, 제 2등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다. "및/또는" 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미가 있는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않아야 한다.
이하 첨부된 도면을 참조하여 본 발명의 일실시예에 따른 블록체인 기반 전력 거래 운영 시스템, 이의 방법을 상세하게 설명하기로 한다.
본 발명의 일실시예는 소규모 신재생 발전기를 포함한 분산전원 사업자와 에너지 저장 장치(예를 들면, 배터리) 또는 이를 탑재한 전기 차량을 통해 전기 에너지를 공급하거나 능동적인 수요반응(DR : Demand Response)을 수행할 수 있는 분산자원 사업자가 거래의 내역이 투명하고 신뢰성이 담보되는 블록체인 기술 기반의 전력거래 환경을 통해 실시간으로 전력회사 또는 소비자에게 직접 전기를 거래할 수 있는 시스템을 구현한다.
도 1은 일반적인 ICT(Information and Communications Technologies) 기반의 스마트 그리드 운영 환경의 개념도이다. 도 1을 참조하면, ICT 기반의 스마트 그리드 운용 환경은 전력을 송전하는 송전 계통(10), 전력을 배전하는 배전 계통(130), 기존 전력망에 정보기술을 접목하여 에너지 효율을 최적화한 지능형 전력망인 마이크로 그리드(120), 개별 전력 사용자(110) 등으로 구성된다.
마이크로 그리드(120)는 BEMS(Building Energy Management System), CEMS(Community Energy Management System), ESCO(Energy Servic Company), FEMS(Factory Energy Management System) 등으로 이루어진다.
개별 전력 사용자(110)는 전력을 생산하여 마이크로 그리드(120)에 공급하거나, 마이크로 그리도(120)로부터 전력을 공급받는다. 여기서, HEMS는 Home Energy Management System을 나타낸다.
도 2는 일반적인 스마트 그리드 운영 플랫폼 및 소매거래 플랫폼의 개념도이다. 도 2를 참조하면, 스마트 그리드 운영 플랫폼은 어플리케이션 세트(210)로 구성되며, 소매거래 플랫폼(220)은 계약, 정산 및 과금 등의 프로세스로 이루어진다.
도 3은 본 발명의 일실시예에 따른 블록체인 기반 전력 거래 운영 시스템(300)의 구성도이다. 도 3을 참조하면, 전력 거래 운영 시스템(300)은, 전력 생산 또는/및 전력 배분을 수행하는 전력망(310), 상기 전력망의 전력 계통을 운영하는 전력 계통 운용 서버(350), 에너지 거래를 수행하는 에너지 거래 서버(330), 에너지 거래 서버(330)와 제 1 네트워크(301)로 연결되어 전력 구매 요청을 수행하는 사용자 장치(340), 에너지 거래 서버(330)와 제 2 네트워크(302)로 연결되어 전력 판매 요청을 수행하는 프로슈머 장치(device)(320) 등을 포함하여 구성될 수 있다.
전력망(310)은 기존 전력망, 지능형 전력망(즉 스마트 그리드) 등을 포함하여 구성된다. 지능형 전력망은 전기회사가 각 가정으로 일방적으로 전기를 공급하는 기존 전력망에 통신기능을 더해 전기회사와 소비자가 실시간으로 정보를 주고받으며 전기의 생산과 소비를 최적화하도록 한 시스템이다.
본 발명의 일실시예에 따르면, 전력 거래 중 판매자인 프로슈머 장치(320)와 소비자인 사용자 장치(340)가 동일 (주상)변압기에 있는 경우에는 전력회사로부터 아무런 물리적 제한을 받지 않지만, 그 외 전력회사의 전력망을 사용하는 거래에 있어서는 기본적으로 전력망을 소유한 전력회사로부터 거래 당시의 전력망 운영의 물리적 문제가 없는지 검토 후에 거래 허가를 받는 것을 특징으로 할 수 있다.
제 1 네트워크(301) 및 제 2 네트워크(302)는 이해를 위해 분리 도시한 것으로, 하나의 블록체인 네트워크일 수 있다. 또한, 제 1 네트워크(301) 및 제 2 네트워크(302)는 P2P(Peer to Peer) 네트워크가 된다.
이러한 P2P 네트워크를 위해, 제 1 네트워크(301) 및/또는 제 2 네트워크(302)는 공중교환 전화망(PSTN), 공중교환 데이터망(PSDN), 종합정보통신망(ISDN: Integrated Services Digital Networks), 광대역 종합 정보 통신망(BISDN: Broadband ISDN), 근거리 통신망(LAN: Local Area Network), 대도시 지역망(MAN: Metropolitan Area Network), 광역 통신망(WLAN: Wide LAN) 등이 될 수 있다, 그러나, 본 발명은 이에 한정되지는 않으며, 무선 통신망인 CDMA(Code Division Multiple Access), WCDMA(Wideband Code Division Multiple Access), Wibro(Wireless Broadband), WiFi(Wireless Fidelity), HSDPA(High Speed Downlink Packet Access) 망, 블루투쓰(bluetooth) 등이 될 수 있다. 또는, 이들 유선 통신망 및 무선 통신망의 조합일 수 있다.
사용자 장치(340)는 전력망(310)에 연결하여 전력을 구매하는 구매자측에 해당한다. 이를 위해, 사용자 장치(340)는 에너지 거래 서버(330)에 제 1 네트워크(301)를 통해 연결하여 전력 구매 요청을 수행한다. 물론, 도 1에서는 이해의 편의를 위해 하나의 사용자 장치(340)만을 도시하였으나, 다수의 사용자 장치들이 구성된다.
또한, 프로슈머 장치(320)는 전력망(310)에 연결하여 전력을 판매하는 판매자측에 해당한다. 이를 위해 프로슈머 장치(320)는 에너지 거래 서버(330)에 제 2 네트워크(302)를 통해 연결하여 전력 판매 요청을 수행한다. 물론, 도 1에서는 이해의 편의를 위해 하나의 프로슈머 장치(320)만을 도시하였으나, 다수의 사용자 장치들이 구성된다.
에너지 거래 서버(330)는 제 1 네트워크(301)로 연결되는 다수의 사용자 장치(340)로부터 전력 구매 요청들을 수신하고, 제 2 네트워크(302)로 연결되는 다수의 프로슈머 장치(320)로부터 전력 판매 요청들을 수신하고, 상기 전력 구매 요청들과 상기 전력 판매 요청들을 매칭하여 분산 형태의 분산 디지털 원장을 가능하게 하는 블록체인 기술 기반을 통해 계약 체결들을 수행하고 해당 분산 디지털 원장들을 생성 배포하고 상기 분사 디지털 원장들에 따른 요청을 상기 전력 계통 운용 서버에 명령하여 수행한다.
도 4는 도 3에 도시된 사용자 장치 및 프로슈머 장치의 상세 구성도이다. 도 4를 참조하면, 사용자 장치(340) 및/또는 프로슈머 장치(320)는 에너지 거래 서버(330)에 전력 거래를 요청하여 전력 거래를 수행하는 전력 거래 장치(device)(410), 전력 거래에 대한 조건을 입력할 수 있는 단말기(420), 전력 거래에 따라 발생하는 전력 거래 데이터를 송수신하는 통신기(430), 전력망(310)에 연결하여 전력 거래에 따른 전력량을 산출하는 스마트 미터(440) 등으로 구성될 수 있다.
전력 거래 장치(410)는 일반 가정, 공공 주택, 학교, 빌딩의 건물, 전기차(Electric Vehicle), 전력 회사 등에 설치된다.
통신기(430)는 제 1 및 제 2 네트워크(301,302)를 통해 유무선 통신으로 에너지 거래 서버(330)에 연결된다.
단말기(420)는 통신망을 통해 각종 정보를 입출력하는 다양한 단말이 포함될 수 있으며, 예를 들어 PC(Personal Computer), 스마트 단말, PDA(Pernal Digital Assistant), 랩탑 컴퓨터(Laptop Computer) 및 IHD(In home display) 단말 등이 포함될 수 있다.
스마트 미터(440)는 IOT(Internet of Things) 장비와 연결될 수 있다.
물론, 프로슈머 장치(320) 및 사용자 장치(340)는 서로 유사하게 구성될 수도 있으나, 한측은 전력 판매자이고 다른 한측은 전력 구매자이므로 그에 맞게 구성 요소들이 변형 및/또는 수정되어 구성될 수도 있다.
부연하면, 사용자 장치(340)는 전력 구매 요청을 에너지 거래 서버(330)에 전달하여 전력을 공급받게 되며, 이러한 전력 구매 요청에 따라 전력 구매에 대한 조건을 입력할 수 있고, 이러한 전력 구매 요청에 따른 데이터를 생성한다.
유사하게, 프로슈머 장치(320)도 에너지 거래 서버(330)에 전력 판매 요청을 전달하여 전력을 공급하고, 전력 판매에 대한 조건을 입력할 수 있고, 전력 판매 요청에 따른 데이터를 생성한다.
도 5는 도 3에 도시된 블록체인 기반 전력 거래 운용 시스템의 계층 구조도를 표현한 개념도이다. 도 5를 참조하면, 에너지 거래 서버(330)는, 사용자 장치(340)의 IoT 장비(510)와 연결되는 장비 API(Application Program Interface) 모듈(520), 이 장비 API 모듈(520)을 통해 사용자 장치(340)와 연결되는 블록체인 기반 에너지 거래 플랫폼(540), 이 블록체인 기반 에너지 거래 플랫폼(540)을 이용하여 전력 거래를 수행하는 전력 거래 운영 모듈(550) 등을 구비한다.
블록체인 기반 에너지 거래 플랫폼(540)은, 데이터베이스(531), 전력 거래 API(Application Program Interface) 모듈(532), 인터페이스 모듈(533), 적용 기능 모듈(534), 관리 모듈(535), 가상 머신 모듈(537), 포트 리스닝 모듈(538), 노드 OS(Operating System)(330) 등이 구비된다.
데이터베이스(531)에는 블록체인 기반 전력 거래 운용을 위한 데이터, 사용자의 인적 정보, 프로슈머의 인적 정보, 사용자 장치(340)의 식별정보, 프로슈머 장치(320)의 식별정보, 등을 구비한다. 데이터베이스(531)는 에너지 거래 서버(330)에 구비될 수도 있고, 별도의 데이터베이스 서버로 구성할 수도 있다.
전력 거래 API 모듈(532)은 전력 거래, 계측 자료 I/F(InterFace), 암호 처리, 자료 조회, 노드 상태 등을 구현한다.
인터페이스 모듈(533)은 IPC(Instruction Per Clock, 작동속도당 명령 처리 능력), WEB3.js 등을 구현한다. 즉, 사용자, 프로슈머, 관리자 등에게 웹페이지 등을 제공한다.
적용 기능 모듈(534)은 암호 화폐, 스마트 계약(smart contract), 채굴(mining) 등을 구현한다. 암호 화폐는 비트 코인(bitcoin), 알트코인(altcoin), 라이트 코인(litecoin) 등이 될 수 있다. 스마트 계약은 블록체인 위에서 동작한다.
관리 모듈(535)은 P2P(Peer-to-peer) 프로토콜 관리, 합의 매니저, 암호화 알고리즘, 계정 매니저 등을 구현한다.
가상 머신 모듈(537)은 특수한 가상 머신인 EVM(Ethereum Virtual Machine)에서 사용 가능한 언어로만 스마트 컨트랙트를 작성할 수 있다.
포트 리스닝 모듈(536)은 포트들에 대하여 쿼리를 실행하여 포트들의 상태를 확인한다. 노드 OS(Operating System)(536)는 블록체인 기반 에너지 거래 플랫폼을 실행하는 운용 체제이다.
도 5를 계속 참조하면, 전력 거래 운영 모듈(550)은 블록체인 기반 에너지 거래 플랫폼(540)을 이용하여 전력망(310)의 전력 정보를 모니터링하고, 전력 정보에 대한 계측 정보를 관리하며, 전력 정보를 배포한다. 또한, 인증, 고객 정보, 전체적인 시스템 관리 등을 수행한다.
따라서, 전력 거래 운영 모듈(550)은 블록체인 네트워크상의 모든 전력 거래 참여자가 자신의 전력 거래 장치(도 4의 410)에 설정한 전력 거래 조건에 따라 전력을 자동으로 거래할 수 있게 한다.
전력 구매자인 사용자(530)로는 건물(541), 전력회사(542), 전기차 사용자(543), 가정(544), 관리자(545), 스마트 단말 앱 사용자(546) 등이 될 수 있다. 따라서, 사용자는 자신이 원하는 전력 거래 조건을 사용자 단말기(도 4의 420)를 통해 전력 거래 장치(340)에 입력할 수 있다. 물론, 이러한 사용자 단말기를 통하지 않고서도, 가정집이나 공동주택은 사용자 스마트 미터(440)를 통해, 학교, 빌딩, 공공기관 등은 빌딩 관리 시스템(BEMS: Building Energy Management System)을 통해, 전기차는 충전기를 통해 전력거래 조건을 입력할 수 있다. 물론, 스마트 단말에 어플리케이션 프로그램을 설치하여 전력 거래 조건을 원격에서 입력할 수 있다.
이와 유사하게 전력 판매자인 프로슈머에도 변형 수정하여 적용될 수 있다.
IoT(Internet of Things) 장비(510)는 사용자 장치(340)측에 구성되어 사용자 장치(340)가 구비되는 시스템(511,512,513)의 전력 정보를 센싱하여 에너지 거래 서버(330)에 전송하는 기능을 역할을 한다. 시스템으로는 예를 들면, 건물 에너지 관리 시스템(511), 전력 전송 시스템(512), 전기차 충전 인프라(513) 등을 들 수 있다.
전력 정보로는 부하량, SOC(State Of Charge), 발전량, 전력량, 소비량 등을 들 수 있다.
도 6은 도 3 및 도 5에 도시된 에너지 거래 서버의 간략화된 구성 블럭도를 보여주는 개념도이다. 도 6을 참조하면, 에너지 거래 서버(330)는, 크게 세가지 기능 계층으로 구분할 수 있다. 즉, 운영 시스템(OS) 위에 외부 장치와의 접속을 제공하는 접속 제공 모듈(623), 블록체인 기반 에너지 거래 플랫폼(도 5의 540) 상의 거래 상황 등을 운영하며 사용자에게 접속환경을 제공하는 접속 환경 제공 모듈(622), 및 다양한 서비스 기능들을 제공하는 서비스 제공 모듈(621) 등으로 구성된다.
접속 제공 모듈(623)은 블록체인 기반 에너지 거래 플랫폼(540)과 전력 거래 장치(도 4의 410)와의 접속(interface), 블록체인 기반의 스마트 계약, 마이닝(즉 전자화폐 발행)을 위한 기능이다.
접속 환경 제공 모듈(622)은 접속된 장치들로부터 취득한 데이터를 저장하고 블록체인 기반 에너지 거래 플랫폼(540)상의 거래 상황 등을 운영하며 사용자에게 접속환경을 제공한다.
서비스 제공 모듈(621)은 전력거래를 관장하는 주체가 전력거래 참여자들에게 다양한 서비스 기능들을 제공한다.
전력거래 참여자들에게는 제공할 수 있는 서비스 기능들은 전체 참여한 분산자원과 소비자원을 고려한 최적 거래 조합(matching) 서비스(A), 전력시스템의 안정적인 운영을 도울 수 있는 발전력 예비력 제안에 대한 보상 서비스(B), 다양한 분산자원을 모아 대리로 도매시장에 전력판매를 대행하는 서비스로 가상 발전소(VPP ; Virtual Power Plant) 운영 서비스(C)이다.
도 7은 본 발명의 일실시예에 따른 블록체인 기반 에너지 거래 플랫폼에 의해 에너지 거래를 보여주는 절차도이다. 도 7을 참조하면, 블록체인 기반 에너지 거래 플랫폼(도 5의 540)에 따른 입력 블럭(710)은 먼저 전력을 구매하는 주체가 전력 구매에 대해 입력한 조건을 전력 거래 장치(도 4의 410))를 통해 입력받는다(①).
요청 블럭(720)은 입력받은 조건을 전력 구매자가 승인하면 블록체인 기반 에너지 거래 플랫폼(540) 상에 전력 요청이 되며, 이때 전력 구매자는 거래 일일 전 또는 수 시간 전 전력 판매자의 판매조건 또는 전력회사가 제공하는 전력 판매 조건을 수신하여 자신의 전력구매 조건을 설정할 수 있으며, 수학식 1과 같이 나타낸다(②).
[수학식 1]
Figure PCTKR2018003678-appb-I000002
여기서, 수학식 1은 순수 전력을 구매하는 수요 입장의 전력구매 수식이며, xi(t)는 t시간의 i 판매자로부터의 전력 구매량, ci(t)는 t시간의 i 판매자로부터의 전력구매 가격이고 u(t)는 t시간의 전력구매 의향, p(t)는 전력 회사로부터의 전력 구매량, e(t)는 t시간의 전력회사의 전력 구매 가격, d(t)는 t시간의 전력부하 예측량으로 일정 주기 과거 데이터 또는 현재의 기상정보를 통한 전력부하 예측패턴이다.
즉, 거래일전 또는 거래 수 시간 전 전력 판매자 또는 전력 회사의 시간대별 전력 판매 가격을 보고 수학식 1에 시간대별 전력 구매량과 구매의향 금액 상한인 설정비용을 설정할 수 있으며, 스마트 미터에 적합한 입력 조건일 것이다. 만약 분산자원을 가지고 있는 주체로서 전력을 판매할 수 있거나, 전력시장의 수요반응을 위해 소비를 줄일 수 있는 시장참여자라면 전력 구매 조건을 다음의 수학식 2와 같이 나타낼 수 있다.
[수학식 2]
Figure PCTKR2018003678-appb-I000003
여기서, xi(t)는 t시간의 i 판매자로부터의 전력 구매량, ci(t)는 t시간의 i 판매자로부터의 전력구매 가격이고, p(t)는 전력회사로부터의 전력구매량, e(t)는 t시간의 전력회사의 전력구매 가격, y(t)는 t시간의 자체 분산전원(에너지 저장 장치 포함)을 통한 발전력, s(t)는 t시간의 전력판매 가격, a(t)는 해당 정부의 신재생 발전량 보조금 시장에서의 가격이고, dr(t)는 수요반응(demand response)으로 줄이기 위한 전력량, r(t)는 수요반응에 대한 보상비용이다.
수학식 1과 달리 자신이 가진 인프라 중 전기차 충전 인프라가 있고, 다수의 전기차를 통해 전력을 판매 또는 구매할 수 있다면, xi(t)의 판매자 중에는 전기차가 있을 수 있다. 전체적으로, 자체 분산전원으로 프로슈머-이용자(즉 소비자)간 전력거래를 하는 경우에는 정부보조금이 있는 도매시장에 전력거래를 할 수 없을 것이고, 동시에 수요반응 시장에서의 거래도 불가능하다. 같은 맥락으로 도매시장에서의 전력거래를 수행할 경우 소매거래와 수요반응 시장의 거래가 불가능할 것이고, 수요반응 시장에서 거래를 할 경우 소매거래와 도매거래가 불가능할 것이며, 이는 다음과 같은 조건식으로 표현할 수 있다.
[수학식 3]
Figure PCTKR2018003678-appb-I000004
여기서, u(t)와 v(t)와 w(t)는 각각 소매거래, 도매거래, 수요반응의 행위를 나타내는 2진 함수(0 또는 1)이며, 각 행위 중 하나가 결정(1)되면 다른 행위는 0이 된다.
블록체인 기반 에너지 거래 플랫폼(540) 상의 전력 판매자는 상기 수학식2와 같이 자신이 직접 분산자원을 가진 형태 외에 전기차가 될 수 있다. 전력을 판매하고자 하는 사업자 중 직접 분산자원을 가진 사업자의 의향은 수학식 2와 그 조건식과 같다. 이는 최적화 함수의 쌍대성에 기인하여 자신의 비용을 최소하는 것과 자신의 이익을 최대화하는 해가 같기 때문이다.
또한, 전기차의 경우는 주로 충전시설에 접속하여 전기를 구매하는 입장이지만, 장시간 주차장에 주차하면서 충전시설과 연결된 경우에는 자신이 최종적으로 원하는 배터리 충전량을 설정하고, 그 외에 시간에는 전력을 판매할 수 있다. 이러한 전력판매 의향 설정은 전기차 충전시설, 스마트 단말과 같은 원격 단말장치의 응용 프로그램(예를 들면, 앱 등을 들 수 있음)을 통해 설정할 수 있고 수학식 4와 같이 표현할 수 있다.
[수학식 4]
Figure PCTKR2018003678-appb-I000005
여기서, xi(t)는 t시간의 i 판매자로부터의 전력 구매량, ci(t)는 t시간의 i 판매자로부터의 전력구매 가격이고, p(t)는 전력회사로부터의 전력 구매량, e(t)는 t시간의 전력회사의 전력구매 가격, ev(t)는 t시간의 전기차 자체 배터리를 통한 판매 전력, disc(t)는 t시간의 전력판매 가격이다. 단 전기차는 최종 충전 후 일정량 배터리의 잔량이 있어야 운행이 가능할 것이기 때문에 다음과 같은 조건식을 포함한다.
[수학식 5]
Figure PCTKR2018003678-appb-I000006
배터리의 경우, 충/방전에 대한 효율 eff로 배터리의 충전잔량 SOC를 표현할 수 있으며, 이때 시간 t에 대한 배터리 j의 방전량은 evj(t)이다. 다만, SOC는 과거 충/방전으로부터의 누적 에너지량이기 때문에 t시간 현재의 SOC 계산에서는 초기 상태인 (t-1)시간의 SOC 값에 효율 eff를 고려한 입/출력 전력인 eff(xi(t) + p(t)-evi(t)의 합으로 표현한다.
또한, 배터리의 충/방전 출력은 배터리의 물리적 용량 이내에 있어야 하므로 다음과 같이 배터리의 수명을 고려하여 적정 범위로 상한 제약 및 하한 제약을 주는 것이 중요하다.
[수학식 6]
Figure PCTKR2018003678-appb-I000007
즉, 전기차의 제조사 입장에서는 배터리 수명 보장에 대한 한계범위일 수 있고, 차량 소유주의 경우는 판매하고자 하는 배터리 에너지의 SOC 범위로 이해할 수 있다.
도 7을 참조하여 계속 설명하면, 전력 판매 블럭(730)은 위에서 기술한 바와 같이, 전력 거래 조건에 맞추어 전력을 판매한다(③).
계약 승인 블럭(740)에서 실시간 블록체인 기반 에너지 거래 플랫폼(540) 상의 전력거래는
전력계통의 운영상 물리적으로 문제가 없는지 여부를 판단하는 전력 계통 운영 서버(도 3의 350)의 결과를 통해 계약 허가 및 승인을 한다(④).
이때, 기술된 최적 거래 조합(matching) 서비스(A), 보상 서비스(B), 가상 발전소 운영 서비스(C)가 제공될 수 있다.
최적 거래 조합 서비스(A)의 경우, 에너지 거래 서버(330)가 전력거래 일정시간 전에 해당 전력거래 시간대의 분산자원의 전력량과 소비자 수요량 정보를 수신하여, 공급과 수요의 최소비용으로 거래가 이루어지는 동시에 전력 계통 운영상의 문제가 없도록 참여자들에게 정보를 제공하는 서비스이며, 다음의 수학식으로 표현할 수 있다.
[수학식 7]
Figure PCTKR2018003678-appb-I000008
여기서, xi(t)는 모선 s에서 t시간의 i 판매자로부터의 전력 구매량, ci(t)는 t시간의 i 판매자로부터의 전력구매 가격이고, p(t)는 전력회사로부터의 전력구매량, e(t)는 t시간의 전력회사의 전력구매 가격이다. 여기에 소비자의 수요량을 매칭시키기 위한 조건식은 다음과 같다.
[수학식 8]
Figure PCTKR2018003678-appb-I000009
여기서, Di(t)는 t시간의 k 소비자의 수요량이고, 각 t시간 별 분산자원의 발전량과 부하량의 수급 균형을 의미한다. 또한, 전력계통의 안정적인 운영을 담보하기 위한 조건식은 통상 전기공학에서 사용하는 전력조류 계산식을 사용하며, 전력회사의 전력 계통 운영서버(350) 내부의 전력조류 계산 기능으로부터 계산결과를 호출할 수 있다.
수학식 7에서 분산자원은 각 위치한 모선에서의 발전기들과 같고, 전력회사로부터의 전력 구매량은 송/배전선로를 통해 공급받는 전력이라고 생각할 수 있으며 이에 대한 표현은 다음과 같다.
[수학식 9]
Figure PCTKR2018003678-appb-I000010
여기서, PFsr은 송/배전선로 l을 통해 공급받는 전력회사로부터의 전력구매량이고, 물리적송/배전선의 전력 흐름인 전력조류 계산식은 다음과 같다.
[수학식 10]
Figure PCTKR2018003678-appb-I000011
여기서, PFsr와 QFsr는 분산자원과 수요자원(부하)이 있는 모선과 이에 연결된 송/배전선로에서의 유효전력조류와 무효전력조류이며, Vs와 Vr는 전력을 송출하는 지점과 수전하는 지점의 모선 전압이고, δs과 δs는 각 모선전압의 위상이다. 배전계통에서 모선의 개념은 각 배전선로가 분기하는 변전소와 분산자원이 연계되어있는 변압기로 볼 수 있다. Gl,Bl,Bc는 각각 선로의 컨덕턴스(conductance)와 써셉턴스(susceptance), 커패시턴스(capacitance)이다. 또, 변전소 모선에서 각 분산자원과 수요자원이 연계되어있는 변압기 모선 사이의 배전선로(즉 전력망(310))의 물리적 용량 제약은 다음과 같다.
[수학식 11]
Figure PCTKR2018003678-appb-I000012
여기서, TPl와 TQl는 각각 송/배전 선로에 보낼 수 있는 유효전력 용량과 무효전력 용량이다. 수학식 7의 해 결과는 블록체인 상 전력거래를 하기 위한 판매자와 판매량, 구매자와 구매량 등으로 도출되므로 혼합 정수 계획법(Mixed Integer Programming)으로 연산을 수행한다.
전력 시스템의 안정적인 운영을 도울 수 있는 발전력 예비력 제안에 대한 보상 서비스(B)역시 전력회사의 전력 계통 운영 서버(350) 내 전력계통 운전 예비력 계산, 민감도 계산 등을 결과로 호출할 수 있다. 또한, 필요한 유효 전력량과 공급 지속 시간의 비용을 결정하여 소매거래 참여자인 고객에게 제시할 수 있다.
마지막으로 다양한 분산자원을 모아 대리로 도매시장에 전력판매를 대행하는 서비스로 가상발전소(VPP ; Virtual Power Plant) 운영 서비스(C)의 경우, 다양한 분산 자원 소유자와는 직거래 계약을 맺고, 이를 모아 도매전력시장에 입찰하여 얻는 수익을 나누는 형태이다.
지불 블럭(750)은 계약 승인 블럭(740)에서 계약 승인에 따라 전력 공급이 이루어지고 전력 공급이 확인되면 대금을 지불한다(⑤⑥⑦).
도 8은 본 발명의 일실시예에 따른 에너지 거래 과정을 보여주는 흐름도이다. 도 8을 참조하면, 전력 거래 장치(410)를 통해 취득된 전력 판매 요청 데이터 및/또는 전력 구매 요청 데이터가 에너지 거래 서버(330)에 구비되는 블록체인 기반 에너지거래 플랫폼(540)에 입력된다(단계 S810).
이후, 입력된 전력 판매 요청 데이터 및/또는 전력 구매 요청 데이터는 에너지 거래 서버(330)의 운영 데이터베이스(도 5의 531)에 저장되며, 블록체인 기반 에너지 거래 플랫폼(540)에서 블록체인 합의 과정을 통한 거래 시간대별 전력 판매 및 구매 매칭 알고리즘을 통해 판매자와 구매자의 거래량과 가격 셋(set)의 매칭이 생성된다(단계 S820).
이후, 에너지 거래 서버(330)의 블록체인 기반 에너지 거래 플랫폼(540)은 향후 전력거래 시간 동안의 발전량 및/또는 부하량 예측을 연산하며, 연산된 결과와 상기 거래의 매칭결과를 토대로 전력계통의 운영상에 물리적 용량 제약이 없는지 계통해석 모델을 통해 검토한다(단계 S830,S840,S850).
단계 S850에서, 검토 결과, 이때 전력망(310)의 물리적 용량 제약에 위배되지 없는 경우에는 블록체인 에너지 거래 플랫폼(540)의 스마트 계약을 통해 스마트계약 체결 및 분산 디지털 원장을 생성한다(단계 S860).
체결된 전력 거래의 결과는 공급되는 전력량을 체크하는 스마트 미터(440))를 통해 확인되면, 계약 내용대로 거래가 확인이 될 경우 블록체인 전자화폐 발행 및 거래 대금을 에너지 거래 서버(330)에 전달한다(단계 S870,S880). 물론, 전력 거래에 참여하는 판매자와 구매자는 전력회사의 전력망 사용시에 수수료를 지급하며, 수수료는 스마트 계약의 결과로 생성된 전자화폐가 될 수 있다.
단계 S870에서, 계약 내용대로 거래가 확인되지 않는 경우에는 별도로 약속한 전력거래 계약 위약 약관에 따른 정산이 시행된다(단계 S871). 이 경우에도 전자화폐가 사용될 수 있다.
한편, 단계 S850에서, 검토 결과, 전력망(310)의 물리적 용량 제약에 위배되면, 물리적 용량 제약조건을 고려한 전원 계획 계산식을 통해 판매자와 구매자에게 조정된 거래가능 셋(set)의 매칭 결과를 공표하고 다시 전력 판매 및 구매 의향을 입력받는다(단계 S851,S852). 여기서 전원 계획 계산식은 수학식 7의 결과이다.
전력 판매와 구매 셋의 물리적 용량 제약 위배가 있는 경우에는 물리적 용량 제약의 위배가 해소될 때까지 단계 S810 내지 S850이 반복 수행된다.
부연하면, 전력 거래 요청이 블록체인 기반 에너지 플랫폼(540)에 전달되면, 블록체인의 스마트 계약 기능을 통해 1차로 거래 매칭이 이루어지고, 이 거래가 물리적 용량 제약으로 가능한 거래인지 전력 계통 운영 서버(350)의 계산을 통해 검증 받는다.
명세서에 기재된 "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
하드웨어 구현에 있어, 상술한 기능을 수행하기 위해 디자인된 ASIC(application specific integrated circuit), DSP(digital signal processing), PLD(programmable logic device), FPGA(field programmable gate array), 프로세서, 제어기, 마이크로프로세서, 다른 전자 유닛 또는 이들의 조합으로 구현될 수 있다. 소프트웨어 구현에 있어, 상술한 기능을 수행하는 모듈로 구현될 수 있다. 소프트웨어는 메모리 유닛에 저장될 수 있고, 프로세서에 의해 실행된다. 메모리 유닛이나 프로세서는 당업자에게 잘 알려진 다양한 수단을 채용할 수 있다.
또한, 본 발명에 따른 블록체인 기반 전력 거래 운영은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다.
상기 매체에 기록되는 프로그램 명령(코드)은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다.
상기 매체는 프로그램 명령, 데이터 구조 등을 지정하는 신호를 전송하는 반송파를 포함하는 광 또는 금속선, 도파관등의 전송 매체일 수도 있다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.

Claims (20)

  1. 전력망;
    상기 전력망으로부터 전력을 구매하여 공급받는 다수의 사용자 장치;
    상기 전력망에 전력을 판매하여 공급하는 다수의 프로슈머 장치;
    상기 전력망의 전력 계통을 운영하는 전력 계통 운용 서버; 및
    네트워크로 연결되는 다수의 사용자 장치로부터 전력 구매 요청들을 수신하고, 상기 네트워크로 연결되는 다수의 프로슈머 장치로부터 전력 판매 요청들을 수신하고, 상기 전력 구매 요청들과 상기 전력 판매 요청들을 미리 설정되는 전력 거래에 따라 매칭하여 분산 디지털 원장을 가능하게 하는 블록체인 기반 에너지 거래 플랫폼을 통해 스마트 계약 체결들을 수행하고 해당 분산 디지털 원장들을 생성 배포하고 상기 분산 디지털 원장들에 따른 요청을 상기 전력 계통 운용 서버에 명령하여 수행하는 에너지 거래 서버;
    를 포함하는 것을 특징으로 하는 블록체인 기반 전력 거래 운영 시스템.
  2. 제 1 항에 있어서,
    상기 다수의 사용자 장치는, 전력 거래를 위한 전력 구매 요청을 전달하여 전력을 공급받는 제 1 전력 거래 장치; 전력 구매 요청을 포함하는 전력 거래 데이터를 송수신하는 제 1 통신기; 및 구매한 전력을 상기 전력망에 연결하여 공급받아 전력량을 산출하는 제 1 스마트 미터;를 포함하는 것을 특징으로 하는 블록체인 기반 전력 거래 운영 시스템.
  3. 제 1 항에 있어서,
    상기 다수의 프로슈머 장치는, 전력 거래를 위한 전력 판매 요청을 전달하여 전력을 공급하는 제 2 전력 거래 장치; 전력 판매 요청을 포함하는 전력 거래 데이터를 송수신하는 제 2 통신기; 및 구매한 전력을 상기 전력망에 연결하여 공급하고 전력량을 산출하는 제 2 스마트 미터;를 포함하는 것을 특징으로 하는 블록체인 기반 전력 거래 운영 시스템.
  4. 제 2 항 또는 제 3 항에 있어서,
    상기 다수의 사용자 장치 또는 다수의 프로슈머 장치는, 전력 거래에 대한 조건을 입력할 수 있는 단말기;를 더 포함하는 것을 특징으로 하는 블록체인 기반 전력 거래 운영 시스템.
  5. 제 1 항에 있어서,
    상기 매칭은 상기 전력망의 미리 설정되는 물리적 용량 제약을 고려하여 혼합 정수 계획법(Mixed Integer Programming)을 통해 연산되는 전력 용량에 의해 이루어지는 것을 특징으로 하는 블록체인 기반 전력 거래 운영 시스템.
  6. 제 5 항에 있어서,
    상기 에너지 거래 서버는 상기 물리적 용량 제약에 위배되면 전원 계획 계산식에 의해 조정된 거래 가능 매칭 결과를 제공하며, 상기 전원 계획 계산식은 수학식
    Figure PCTKR2018003678-appb-I000013
    (여기서, xi(t)는 모선 s에서 t시간의 i 판매자로부터의 전력 구매량, ci(t)는 t 시간의 i 판매자로부터의 전력구매 가격이고, p(t)는 전력회사로부터의 전력구매량, e(t)는 t시간의 전력회 사의 전력구매 가격이다)으로 정의되는 것을 특징으로 하는 블록체인 기반 전력 거래 운영 시스템.
  7. 제 1 항에 있어서,
    상기 전력망은 지능형 전력망인 것을 특징으로 하는 블록체인 기반 전력 거래 운영 시스템.
  8. 제 1 항에 있어서,
    상기 매칭은 시간대별 전력 판매 및 구매 매칭을 통한 거래량과 가격 셋의 매칭인 것을 특징으로 하는 블록체인 기반 전력 거래 운영 시스템.
  9. 제 1 항에 있어서,
    상기 다수의 사용자 장치는 상기 분산 디지털 원장에 따라 상기 구매에 대한 비용을 전자화폐로 상기 에너지 거래 서버에 전달하는 것을 특징으로 하는 블록체인 기반 전력 거래 운영 시스템.
  10. 제 1 항에 있어서,
    상기 블록체인 기반 에너지 거래 플랫폼은 암호화 알고리즘을 이용하여 인증을 위한 암호화를 수행하는 것을 특징으로 하는 블록체인 기반 전력 거래 운영 시스템.
  11. 제 1 항에 있어서,
    상기 네트워크는 P2P(Peer to Peer) 네트워크인 것을 특징으로 하는 블록체인 기반 전력 거래 운영 시스템.
  12. (a) 다수의 사용자 장치가 전력망으로부터 전력을 공급받기 위해 전력 구매 요청을 하는 단계;
    (b) 다수의 프로슈머 장치가 상기 전력망에 전력을 공급하기 위해 전력 판매 요청을 하는 단계;
    (c) 에너지 거래 서버가 네트워크로 연결되는 상기 다수의 사용자 장치로부터 전력 구매 요청들을 수신하고, 상기 네트워크로 연결되는 상기 다수의 프로슈머 장치로부터 전력 판매 요청들을 수신하는 단계;
    (d) 상기 에너지 거래 서버가 상기 전력 구매 요청들과 상기 전력 판매 요청들을 미리 설정되는 전력 거래에 따라 매칭하여 분산 디지털 원장을 가능하게 하는 블록체인 기반 에너지 거래 플랫폼을 통해 스마트 계약 체결들을 수행하고 해당 분산 디지털 원장들을 생성 배포하는 단계;
    (e) 상기 에너지 거래 서버가 상기 전력망의 전력 계통을 운영하는 전력 계통 운용 서버에 상기 분산 디지털 원장들에 따른 요청을 수행하는 단계; 및
    (f) 상기 다수의 프로슈머 장치 중 해당 프로슈머 장치가 전력을 공급하고, 상기 다수의 사용자 장치 중 해당 사용자 장치가 전력을 공급받는 단계;
    를 포함하는 것을 특징으로 하는 블록체인 기반 전력 거래 운영 방법.
  13. 제 12 항에 있어서,
    상기 (a) 단계 또는 (b) 단계는, 단말기를 통하여 전력 거래에 대한 조건을 입력하는 단계;를 포함하는 것을 특징으로 하는 블록체인 기반 전력 거래 운영 방법.
  14. 제 12 항에 있어서,
    상기 매칭은 상기 전력망의 미리 설정되는 물리적 용량 제약을 고려하여 혼합 정수 계획법(Mixed Integer Programming)을 통해 연산되는 전력 용량에 의해 이루어지는 것을 특징으로 하는 블록체인 기반 전력 거래 운영 방법.
  15. 제 14 항에 있어서,
    상기 에너지 거래 서버는 상기 물리적 용량 제약에 위배되면 전원 계획 계산식에 의해 조정된 거래 가능 매칭 결과를 제공하며, 상기 전원 계획 계산식은 수학식
    Figure PCTKR2018003678-appb-I000014
    (여기서, xi(t)는 모선 s에서 t시간의 i 판매자로부터의 전력 구매량, ci(t)는 t 시간의 i 판매자로부터의 전력구매 가격이고, p(t)는 전력회사로부터의 전력구매량, e(t)는 t시간의 전력회 사의 전력구매 가격이다)으로 정의되는 것을 특징으로 하는 블록체인 기반 전력 거래 운영 방법.
  16. 제 12 항에 있어서,
    상기 전력망은 지능형 전력망인 것을 특징으로 하는 블록체인 기반 전력 거래 운영 방법.
  17. 제 12 항에 있어서,
    상기 매칭은 시간대별 전력 판매 및 구매 매칭을 통한 거래량과 가격 셋의 매칭인 것을 특징으로 하는 블록체인 기반 전력 거래 운영 방법.
  18. 제 12 항에 있어서,
    상기 (f) 단계는, 상기 다수의 사용자 장치가 상기 분산 디지털 원장에 따라 상기 구매에 대한 비용을 전자화폐로 상기 에너지 거래 서버에 전달하는 단계;를 포함하는 것을 특징으로 하는 블록체인 기반 전력 거래 운영 방법.
  19. 제 12 항에 있어서,
    상기 블록체인 기반 에너지 거래 플랫폼은 암호화 알고리즘을 이용하여 인증을 위한 암호화를 수행하는 것을 특징으로 하는 블록체인 기반 전력 거래 운영 방법.
  20. 제 12 항에 따른 블록체인 기반 전력 거래 운용 방법을 실행하는 프로그램 코드를 저장한 컴퓨터 판독 가능 저장 매체.
PCT/KR2018/003678 2017-08-17 2018-03-28 블록체인 기반 전력 거래 운영 시스템, 이의 방법, 그리고 이 방법을 저장한 컴퓨터 판독 가능 저장 매체 WO2019035527A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0104289 2017-08-17
KR1020170104289A KR101976401B1 (ko) 2017-08-17 2017-08-17 블록체인 기반 전력 거래 운영 시스템, 이의 방법, 그리고 이 방법을 저장한 컴퓨터 판독 가능 저장 매체

Publications (1)

Publication Number Publication Date
WO2019035527A1 true WO2019035527A1 (ko) 2019-02-21

Family

ID=65361962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003678 WO2019035527A1 (ko) 2017-08-17 2018-03-28 블록체인 기반 전력 거래 운영 시스템, 이의 방법, 그리고 이 방법을 저장한 컴퓨터 판독 가능 저장 매체

Country Status (2)

Country Link
KR (1) KR101976401B1 (ko)
WO (1) WO2019035527A1 (ko)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109902952A (zh) * 2019-02-26 2019-06-18 广东工业大学 一种基于区块链的光伏微电网电力智能交易系统及方法
CN109978347A (zh) * 2019-03-07 2019-07-05 国网冀北电力有限公司技能培训中心 基于区块链技术的含分布式发电的社区能源自治方法
CN110033137A (zh) * 2019-04-17 2019-07-19 中国联合网络通信集团有限公司 基于区块链的无人售货营业网点的运营方法及系统
CN110349026A (zh) * 2019-07-12 2019-10-18 贵州电网有限责任公司 基于区块链的分散自治能源互联网能量交易与能量系统
CN110969436A (zh) * 2019-12-25 2020-04-07 赫普科技发展(北京)有限公司 一种带数字资产的区块链电表
CN111078815A (zh) * 2019-12-12 2020-04-28 浙江华云信息科技有限公司 一种电网数据的混合加载方法
CN111507696A (zh) * 2020-04-10 2020-08-07 杭州能链科技有限公司 基于区块链的电力交易方法、装置及存储介质
CN111612189A (zh) * 2020-04-28 2020-09-01 国网河北省电力有限公司电力科学研究院 基于区块链技术的智慧能源结算电力单元设备及方法
CN111612190A (zh) * 2020-04-28 2020-09-01 国网河北省电力有限公司电力科学研究院 基于区块链技术的智慧能源结算系统及方法
KR20200103502A (ko) * 2019-02-25 2020-09-02 한국전자통신연구원 에너지 비용 최적화를 위한 블록체인 기반 에너지 거래 시스템에서 단말 장치 및 그 동작 방법
CN112418915A (zh) * 2020-11-09 2021-02-26 浙江浙能电力股份有限公司萧山发电厂 基于区块链储能系统的电力安全交易方法
CN112465290A (zh) * 2020-10-13 2021-03-09 国网上海市电力公司 一种基于区块链的用电容量均衡方法
CN112650935A (zh) * 2021-01-25 2021-04-13 梁志彬 应用于电商云业务环境的智能化信息处理方法及云服务器
CN112767148A (zh) * 2021-01-08 2021-05-07 合肥工业大学 基于区块链和分布式优化的电力交易方法和系统
CN112952847A (zh) * 2021-04-06 2021-06-11 合肥工业大学 考虑用电需求弹性的多区域主动配电系统调峰优化方法
CN113034011A (zh) * 2021-03-30 2021-06-25 广东电网有限责任公司 电力资源调度方法、装置、计算机设备和存储介质
CN113033964A (zh) * 2020-08-03 2021-06-25 赫普能源环境科技股份有限公司 分布式用户储能电量及电费结算系统和结算方法
CN113360569A (zh) * 2021-06-03 2021-09-07 沈阳工业大学 基于储能参数选择与容量分解的电网区块链架构方法
CN113450183A (zh) * 2021-06-15 2021-09-28 西安交通大学 基于区块链的电动汽车p2p电力交易方法、系统及设备
EP3886034A1 (en) * 2020-03-27 2021-09-29 Honda Motor Co., Ltd. Power trading system and management apparatus
CN113469459A (zh) * 2021-07-22 2021-10-01 苏州玛旭自动化科技有限公司 基于区块链的能源电力供需系统
CN113673987A (zh) * 2020-05-14 2021-11-19 上海电盛科技有限公司 基于区块链的退役电池管理方法及设备
WO2023045654A1 (zh) * 2021-09-22 2023-03-30 国网区块链科技(北京)有限公司 一种基于区块链的绿电认证方法、装置及系统
TWI813079B (zh) * 2021-11-24 2023-08-21 大陸商國創移動能源創新中心(江蘇)有限公司 用於電能交易的區塊鏈系統
CN113673987B (zh) * 2020-05-14 2024-05-10 居晓军 基于区块链的退役电池管理方法及设备

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102009841B1 (ko) * 2019-03-21 2019-08-12 공인환 블록체인 기반의 에너지 거래 방법, 시스템 및 프로그램
KR102276795B1 (ko) * 2019-03-28 2021-07-14 주식회사 온오프시스템 블록체인 기반의 무선 충전을 위한 방법 및 이 방법을 수행하는 프로그램이 기록된 컴퓨터 판독 가능한 기록매체
KR20210041457A (ko) 2019-10-07 2021-04-15 주식회사 블록체인기술연구소 퍼블릭 블록체인 네트워크 기반의 빅데이터 분석을 통한 신재생에너지 공급인증서(rec) 거래 시스템 및 방법
KR20210041456A (ko) 2019-10-07 2021-04-15 주식회사 블록체인기술연구소 퍼블릭 블록체인 네트워크 기반의 신재생에너지 공급인증서(rec) 거래 시스템 및 방법
KR20210067125A (ko) * 2019-11-29 2021-06-08 한국전력공사 블록체인 기반 전력 거래 시스템 및 방법
KR102559101B1 (ko) 2020-02-24 2023-07-25 한국전자통신연구원 전력 계량 장치, 전력 계량 서버 및 블록 체인 기반의 전력 계량 방법
KR102456609B1 (ko) * 2020-09-02 2022-10-21 한국에너지기술연구원 블록체인 기반 수요반응 계약 방법
KR102501608B1 (ko) * 2020-09-14 2023-02-21 한국전력공사 분산자원 통합 운영 방법
KR102574493B1 (ko) * 2020-10-12 2023-09-01 아주대학교산학협력단 P2p 전력 거래를 위한 계통 이용 수수료 산정 장치 및 방법
KR102511012B1 (ko) * 2020-10-26 2023-03-15 한전케이디엔주식회사 블록체인 기반의 수요자원 관리 장치 및 그 방법
KR102652226B1 (ko) * 2020-11-16 2024-03-28 옴니시스템 주식회사 계시별 요금제를 기초로 비용 절약을 위한 전력 공급 서비스를 제공하기 위한 시스템 및 이를 위한 방법
KR102564995B1 (ko) * 2020-11-27 2023-08-07 조선대학교산학협력단 블록체인 기반 선불결제 서비스 지원 전력거래시스템
KR20220074556A (ko) * 2020-11-27 2022-06-03 (주)누리플렉스 양방향 충전 및 방전을 이용한 가상 발전소 운용 방법 및 장치
KR102503091B1 (ko) * 2021-01-12 2023-02-23 인하대학교 산학협력단 장·단기간 지연보상을 활용한 강화학습 기반 자동 p2p 에너지 거래 방법
KR20220106400A (ko) 2021-01-22 2022-07-29 서강대학교산학협력단 하이퍼레저 블록체인 네트워크를 기반으로 한 p2p 에너지 거래 시스템
KR102601006B1 (ko) * 2021-07-28 2023-11-13 주식회사 레플러스 기업 ppa를 위한 re100 중개거래 서비스 장치 및 방법
KR102560045B1 (ko) * 2021-10-22 2023-07-25 조선대학교산학협력단 컨슈머와 프로슈머간 전력거래가 가능한 블록체인을 이용한 전력거래시스템
KR20230121441A (ko) * 2022-02-11 2023-08-18 중앙대학교 산학협력단 스마트 에너지 거래 시스템 및 방법
KR102645163B1 (ko) * 2022-04-07 2024-03-11 정수현 신재생 에너지 트레이딩 시스템 및 방법
WO2023195759A1 (ko) * 2022-04-07 2023-10-12 정수현 신재생 에너지 트레이딩 시스템 및 방법
KR20240037074A (ko) 2022-09-14 2024-03-21 한국전력정보(주) 블록체인 기반 에너지 거래 게이트웨이 및 이를 운용하는 방법
KR102647061B1 (ko) * 2022-11-01 2024-03-14 (주)띵스파이어 에너지 거래 vup플랫폼을 이용한 에너지가격 결정방법
KR102646327B1 (ko) * 2022-11-02 2024-03-12 (주)띵스파이어 에너지 거래 vup플랫폼

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012235644A (ja) * 2011-05-06 2012-11-29 Ntt Data Corp 電力シミュレーション装置、電力シミュレーション方法、電力シミュレーションプログラム
JP2013097495A (ja) * 2011-10-31 2013-05-20 Sony Corp 情報処理装置、サーバ装置、電力取引決済システム、電力取引の決済方法、及び情報処理方法
JP2015171233A (ja) * 2014-03-07 2015-09-28 株式会社日立製作所 需要家機器運用管理システムおよび方法
KR101757802B1 (ko) * 2016-10-19 2017-07-14 주식회사 아이디알서비스 소규모 발전량을 거래하는 프로슈머 전력거래시스템

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4261409B2 (ja) 2004-03-31 2009-04-30 財団法人電力中央研究所 電力安定供給システムおよび方法
KR101075958B1 (ko) 2009-11-16 2011-10-21 일진전기 주식회사 분산전원의 전력 거래 시스템 및 거래 방법
KR101035398B1 (ko) 2010-11-22 2011-05-20 (주)에코브레인 특정지점 기상예측 기반 신재생에너지 발전량 실시간 예측방법 및 그 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012235644A (ja) * 2011-05-06 2012-11-29 Ntt Data Corp 電力シミュレーション装置、電力シミュレーション方法、電力シミュレーションプログラム
JP2013097495A (ja) * 2011-10-31 2013-05-20 Sony Corp 情報処理装置、サーバ装置、電力取引決済システム、電力取引の決済方法、及び情報処理方法
JP2015171233A (ja) * 2014-03-07 2015-09-28 株式会社日立製作所 需要家機器運用管理システムおよび方法
KR101757802B1 (ko) * 2016-10-19 2017-07-14 주식회사 아이디알서비스 소규모 발전량을 거래하는 프로슈머 전력거래시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Retrieved from the Internet <URL:https://www.eiricor.kr/community/post2.php?m=view&gubun=201705&num=10294&pg=6&seGubun=&seGubunl=&SnxGubun=%C6%F7%BD%BA%C5%CD&searchBy=&searchWord=> *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102487863B1 (ko) * 2019-02-25 2023-01-12 한국전자통신연구원 에너지 비용 최적화를 위한 블록체인 기반 에너지 거래 시스템에서 단말 장치 및 그 동작 방법
KR20200103502A (ko) * 2019-02-25 2020-09-02 한국전자통신연구원 에너지 비용 최적화를 위한 블록체인 기반 에너지 거래 시스템에서 단말 장치 및 그 동작 방법
CN109902952A (zh) * 2019-02-26 2019-06-18 广东工业大学 一种基于区块链的光伏微电网电力智能交易系统及方法
CN109978347A (zh) * 2019-03-07 2019-07-05 国网冀北电力有限公司技能培训中心 基于区块链技术的含分布式发电的社区能源自治方法
CN109978347B (zh) * 2019-03-07 2023-04-07 国网冀北电力有限公司技能培训中心 基于区块链技术的含分布式发电的社区能源自治方法
CN110033137A (zh) * 2019-04-17 2019-07-19 中国联合网络通信集团有限公司 基于区块链的无人售货营业网点的运营方法及系统
CN110033137B (zh) * 2019-04-17 2021-06-29 中国联合网络通信集团有限公司 基于区块链的无人售货营业网点的运营方法及系统
CN110349026A (zh) * 2019-07-12 2019-10-18 贵州电网有限责任公司 基于区块链的分散自治能源互联网能量交易与能量系统
CN110349026B (zh) * 2019-07-12 2020-08-25 贵州电网有限责任公司 基于区块链的分散自治能源互联网能量交易与能量系统
CN111078815B (zh) * 2019-12-12 2023-08-15 浙江华云信息科技有限公司 一种电网数据的混合加载方法
CN111078815A (zh) * 2019-12-12 2020-04-28 浙江华云信息科技有限公司 一种电网数据的混合加载方法
CN110969436A (zh) * 2019-12-25 2020-04-07 赫普科技发展(北京)有限公司 一种带数字资产的区块链电表
US11677241B2 (en) 2020-03-27 2023-06-13 Honda Motor Co., Ltd. Power trading system and management apparatus
EP3886034A1 (en) * 2020-03-27 2021-09-29 Honda Motor Co., Ltd. Power trading system and management apparatus
CN111507696A (zh) * 2020-04-10 2020-08-07 杭州能链科技有限公司 基于区块链的电力交易方法、装置及存储介质
CN111612190A (zh) * 2020-04-28 2020-09-01 国网河北省电力有限公司电力科学研究院 基于区块链技术的智慧能源结算系统及方法
CN111612189A (zh) * 2020-04-28 2020-09-01 国网河北省电力有限公司电力科学研究院 基于区块链技术的智慧能源结算电力单元设备及方法
CN113673987B (zh) * 2020-05-14 2024-05-10 居晓军 基于区块链的退役电池管理方法及设备
CN113673987A (zh) * 2020-05-14 2021-11-19 上海电盛科技有限公司 基于区块链的退役电池管理方法及设备
CN113033964A (zh) * 2020-08-03 2021-06-25 赫普能源环境科技股份有限公司 分布式用户储能电量及电费结算系统和结算方法
CN112465290A (zh) * 2020-10-13 2021-03-09 国网上海市电力公司 一种基于区块链的用电容量均衡方法
CN112418915B (zh) * 2020-11-09 2024-04-30 浙江浙能电力股份有限公司萧山发电厂 基于区块链储能系统的电力安全交易方法
CN112418915A (zh) * 2020-11-09 2021-02-26 浙江浙能电力股份有限公司萧山发电厂 基于区块链储能系统的电力安全交易方法
CN112767148A (zh) * 2021-01-08 2021-05-07 合肥工业大学 基于区块链和分布式优化的电力交易方法和系统
CN112767148B (zh) * 2021-01-08 2022-09-06 合肥工业大学 基于区块链和分布式优化的电力交易方法和系统
CN112650935A (zh) * 2021-01-25 2021-04-13 梁志彬 应用于电商云业务环境的智能化信息处理方法及云服务器
CN113034011A (zh) * 2021-03-30 2021-06-25 广东电网有限责任公司 电力资源调度方法、装置、计算机设备和存储介质
CN112952847B (zh) * 2021-04-06 2022-09-16 合肥工业大学 考虑用电需求弹性的多区域主动配电系统调峰优化方法
CN112952847A (zh) * 2021-04-06 2021-06-11 合肥工业大学 考虑用电需求弹性的多区域主动配电系统调峰优化方法
CN113360569B (zh) * 2021-06-03 2023-10-13 沈阳工业大学 基于储能参数选择与容量分解的电网区块链架构方法
CN113360569A (zh) * 2021-06-03 2021-09-07 沈阳工业大学 基于储能参数选择与容量分解的电网区块链架构方法
CN113450183A (zh) * 2021-06-15 2021-09-28 西安交通大学 基于区块链的电动汽车p2p电力交易方法、系统及设备
CN113450183B (zh) * 2021-06-15 2024-03-29 西安交通大学 基于区块链的电动汽车p2p电力交易方法、系统及设备
CN113469459A (zh) * 2021-07-22 2021-10-01 苏州玛旭自动化科技有限公司 基于区块链的能源电力供需系统
WO2023045654A1 (zh) * 2021-09-22 2023-03-30 国网区块链科技(北京)有限公司 一种基于区块链的绿电认证方法、装置及系统
TWI813079B (zh) * 2021-11-24 2023-08-21 大陸商國創移動能源創新中心(江蘇)有限公司 用於電能交易的區塊鏈系統

Also Published As

Publication number Publication date
KR20190019422A (ko) 2019-02-27
KR101976401B1 (ko) 2019-05-09

Similar Documents

Publication Publication Date Title
WO2019035527A1 (ko) 블록체인 기반 전력 거래 운영 시스템, 이의 방법, 그리고 이 방법을 저장한 컴퓨터 판독 가능 저장 매체
Wei et al. Charging strategies of EV aggregator under renewable generation and congestion: A normalized Nash equilibrium approach
Logenthiran et al. Multi-agent system for energy resource scheduling of integrated microgrids in a distributed system
Meng et al. Distribution LMP-based economic operation for future smart grid
US20200161858A1 (en) Systems And Methods For Energy Crowdsourcing And Peer-To-Peer Energy Trading
Fu et al. A combined framework for service identification and congestion management
Balijepalli et al. SmartGrid initiatives and power market in India
WO2016152116A1 (ja) 電力流通管理装置及び方法
Yao et al. Optimal prosumers’ peer-to-peer energy trading and scheduling in distribution networks
Yang et al. A penalty scheme for mitigating uninstructed deviation of generation outputs from variable renewables in a distribution market
WO2020204262A1 (ko) 분산자원 활용 관리방법 및 서버, 이를 포함하는 마이크로그리드 전력 거래 시스템
CN107038654A (zh) 基于云计算的供电公司用电力营销管理信息系统
CN113643131A (zh) 基于区块链的微电网分布式能源交易方法与系统
Stefan et al. Blockchain-based self-consumption optimisation and energy trading in renewable energy communities
Golosova et al. Review of the blockchain technology in the energy sector
Chanthong et al. Blockchain and smart contract payment for electric vehicle charging
CN110599304B (zh) 一种基于区块链的分布式能源交易系统及构建方法
Danai et al. Scheduling energy and ancillary service in the new ontario electricity market
Nappu LMP-lossless for congested power system based on DC-OPF
Dong et al. Efficient and privacy-preserving decentralized energy trading scheme in a blockchain environment
WO2020008623A1 (ja) リソース融通支援システム、リソース融通支援方法、および、リソース融通支援装置
JP7450164B2 (ja) 電力アセット管理装置、電力アセット管理システム、電力アセット管理方法、および電力アセット管理プログラム
Mostafa et al. A prospective model of Bangladesh electricity market
WO2020091095A1 (ko) 광고 트래픽 거래 서비스 제공 방법 및 그 장치
Svetec et al. Options for Application of Distributed Ledger Technologies in Development and Operation of Energy Communities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845575

Country of ref document: EP

Kind code of ref document: A1