WO2019034287A1 - Entraînement présentant un moteur synchrone et un convertisseur - Google Patents

Entraînement présentant un moteur synchrone et un convertisseur Download PDF

Info

Publication number
WO2019034287A1
WO2019034287A1 PCT/EP2018/025198 EP2018025198W WO2019034287A1 WO 2019034287 A1 WO2019034287 A1 WO 2019034287A1 EP 2018025198 W EP2018025198 W EP 2018025198W WO 2019034287 A1 WO2019034287 A1 WO 2019034287A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
inverter
motor
synchronous motor
side terminal
Prior art date
Application number
PCT/EP2018/025198
Other languages
German (de)
English (en)
Inventor
Josef Schmidt
Jürgen BÖCKLE
Adrian Drong
Original Assignee
Sew-Eurodrive Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sew-Eurodrive Gmbh & Co. Kg filed Critical Sew-Eurodrive Gmbh & Co. Kg
Priority to EP18746576.0A priority Critical patent/EP3669449A1/fr
Publication of WO2019034287A1 publication Critical patent/WO2019034287A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking

Definitions

  • the invention relates to a drive comprising a synchronous motor and a converter.
  • a synchronous motor can be fed by a converter, which provides a three-phase voltage system to the synchronous motor.
  • the invention is therefore based on the object to make a synchronous motor easy to operate.
  • the object is achieved in the synchronous motor according to the features specified in claim 1.
  • the drive has a synchronous motor and a converter, from the AC-side terminal of the inverter, the motor phases of the synchronous motor, ie in particular the three supply terminals of the rotating field winding of the stator of the synchronous motor, can be supplied, in particular in generator mode operated synchronous motor, by means of a controllable switch, the three-phase motor voltage, in particular the three motor phases of the
  • Synchronous motor via respective first resistors is fed to a neutral point
  • each motor phase is connected to a respective first terminal of a respective first resistor and the respective second terminals of the first resistors is connected to each other, in particular as a neutral point.
  • the advantage here is that by means of the switch a plurality of electrical lines are separable or connectable.
  • This multi-pole design of the switch allows that when activating the switch, the connections of the motor, so the motor phases, are connected via the first resistors each with a neutral point.
  • the motor voltage that is, the voltage applied to the terminals of the motor three-phase voltage, not directly short-circuited by means of a star point but via interposed first resistors.
  • each of the first resistors is thus one of the motor phase potentials.
  • one of the motor phase voltages is applied to each of the first resistors with respect to the neutral point.
  • the resistors are designed such that their resistance decreases with increasing temperature.
  • an embodiment as an NTC or as a clocked and / or pulse width modulated controlled semiconductor switch is advantageous.
  • the torque of the synchronous motor acts as a braking torque.
  • Synchronous motor that when braking the motor phases through resistors with a
  • the resistors are preferably designed as NTC resistors.
  • NTC resistors are preferably designed as NTC resistors.
  • the inverter has a rectifier whose DC side terminal is connectable to the DC side terminal of an inverter and / or from the DC side terminal of the rectifier of the
  • DC-side connection of the inverter can be supplied.
  • the advantage here is that the rectifier can be fed by an AC power supply network and an intermediate circuit voltage makes the inverter available adjustable.
  • the synchronous motor can be supplied from the AC-side terminal of the inverter, in particular so the rotating field winding of the stator of the synchronous motor.
  • the advantage here is that the inverter has three parallel-connected half-bridges, this parallel circuit of the am
  • each of the half-bridges is composed as a series circuit of two controllable semiconductor switches, each semiconductor switch, a diode is connected in parallel.
  • the power generated by the motor flows to the DC-side connection of the inverter.
  • the power flow from the motor to the inverter is prevented, the
  • the switch is a changeover switch, in particular so that in a first switch position, the inverter provides the motor voltage, ie in particular the three motor phases are connected to the three phases of the inverter, and in a second switch position, the motor voltage over the
  • Motor phases connected poles are selectively connectable only with three poles, which are connected to the AC-side terminal of the inverter, or alternatively connectable to the three poles, each with one of the first three
  • the switch is made in several pieces, so spaced from two or more two- or multi-pole, in particular separately arranged from each other, switches executed, in particular where the separately
  • switches are driven simultaneously and / or are each carried out two or more poles.
  • the advantage here is that the switch from such separately arranged individual switches can be assembled, these individual switches are arranged separately from each other but are controlled simultaneously.
  • the switching operation ie the closing or opening takes place simultaneously.
  • a second resistor is supplied from the voltage present at the DC voltage side of the inverter, in particular so that the upper potential of the DC side terminal of the inverter to the first terminal of the second resistor and the lower potential of the DC side terminal of the inverter is connected to the second terminal of the second resistor.
  • the first resistors and / or the second resistor are each designed as a thermistor or NTC resistor.
  • the advantage here is that a cost-effective design is possible.
  • the characteristic is at
  • the first resistors and / or the second resistor are each designed as a controllable semiconductor switch, in particular wherein the
  • Semiconductor switch pulse width modulated drive signals are supplied, in particular via a galvanic coupling.
  • the advantage here is that the course of the characteristic is controllable by appropriate control of the semiconductor switch.
  • in particular depends on the control signal of a
  • the AC-side connection of the inverter can be disconnected by means of the switch from the motor connection.
  • the advantage here is that the multi-pole executed switch not only the motor phases over the first resistors with makes the star point connectable but also the AC-side terminal of the inverter is disconnected from the engine.
  • the DC voltage side terminal of the rectifier can be separated by means of the switch from the DC side terminal of
  • the switch is designed multipolar.
  • the advantage here is that the switch is compact executable.
  • the switch as a contactor, in particular
  • the drive is shown schematically outlined, wherein by means of a control 23, a switch 22 is controlled, by means of which the three motor phases of the synchronous motor M are short-circuited.
  • FIG. 3 shows a drive according to the invention in which, in contrast to FIG. 2, an additional resistor 31 is arranged in each motor phase. In addition, another resistor 30 is provided for discharging the DC link.
  • FIG. 4 shows a drive according to the invention, in which, in contrast to FIG. 2, an additional resistor 31 is arranged in each motor phase, wherein additionally a separation of the intermediate circuit is made possible.
  • FIG. 5 shows a drive according to the invention in which, in contrast to FIG. 2, an additional resistor 31 is arranged in each motor phase.
  • an inventive drive is shown, in which a resistor 30 is provided for discharging the intermediate circuit and a separation of the rectifier 20 of the synchronous motor M feeding inverter is possible.
  • FIG. 8 a motor contactor having a changeover switch is provided, with which either the inverter 21 feeds the motor M or, alternatively, short circuiting with existing additional resistors 31 in the motor phases is made possible.
  • FIG. 9 shows a semiconductor arrangement 90 for discharging the intermediate circuit, wherein the rectifier 20 can be disconnected.
  • the synchronous motor has a speed-dependent torque characteristic 1 which, in comparison to a speed-dependent effect in the short-circuit current path when resistors are present
  • Torque characteristic 2 has no plateau. When decreasing speed from a rated speed, characteristic 1 is an increasing
  • the characteristic curve 2 has a substantially constant torque, that is to say torque that is independent of the rotational speed over a wide rotational speed range.
  • characteristic curve 2 starting from a high rated speed during braking, a constant torque is generated which drops to zero shortly before the standstill.
  • the frictional force of the transmission becomes effective in the low speed range, and the course of the torque generated by the motor is insignificant.
  • a drive is schematically outlined, which has a fed by a converter synchronous motor M.
  • a three-phase connected to the public AC power supply rectifier 20 is used to provide a unipolar voltage.
  • This inverter 21 has three parallel-connected half-bridges, which are supplied from the unipolar voltage and in each case a series connection of two controllable Have semiconductor switches, which are preferably controlled pulse width modulated. Each of the semiconductor switches is connected in parallel with a diode.
  • Short circuit can be effected, which leads to the characteristic curve 1.
  • the short-circuiting can be effected by arranging a respective resistor 31 in each of the motor phases.
  • Synchronous motor generated in regenerative operation generated three-phase voltage not only the AC-side terminal of the inverter 21 but also via the intermediate resistors 31 a neutral point when the driver 23 drives the switch to close and thus the star point is effective.
  • the diodes of the inverter cause a rectification of the generated
  • resistors 31 and 30 are preferably thermistors and / or NTC
  • deceleration is also enabled only by the effected star point and the resistors 31 assigned to the respective motor phase.
  • FIG. 9 in contrast to FIG. 6, the resistor 30 of FIG. 6, which is provided for discharging the capacitor C, is replaced by a controllable semiconductor switch 90.
  • the semiconductor switch 90 In the conducting state, the semiconductor switch 90 causes a short circuit of the upper and lower DC link potential of the converter. So a quick unloading of the
  • the semiconductor switch 90 has a residual conductivity and heats up accordingly. In this way, the electrical energy is converted into heat. In order to avoid overheating of the semiconductor switch 90, it is not permanently replaced in the conductive state but only in sections. For this purpose it is a clocked
  • a signal electronics which is preferably pulse width modulated.
  • a model value for the temperature is determined in the signal electronics. The closer the temperature approaches a threshold value, the shorter the pulse widths of the pulses causing the conductive state.
  • the resistors 30 and 31 of FIGS. 2 to 8 are each replaced by a controllable semiconductor arrangement 90.
  • the control signals are preferably via a galvanic isolation to the
  • a series circuit of a controllable semiconductor switch and a braking resistor is connected in parallel directly in the figures 1 to 9. In this way, an additional deceleration can be achieved if the generator-generated power is at least partially made available to the AC-side terminal of the inverter 21 and thus voltage is provided on the DC side terminal of the inverter 21 in particular and the voltage applied to the capacitor C voltage exceeds a threshold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

L'invention concerne un entraînement présentant un moteur synchrone et un convertisseur, les phases du moteur synchrone, donc en particulier les trois raccordements d'alimentation de l'enroulement à champ tournant du stator du moteur synchrone, pouvant être alimentées à partir du raccordement côté tension alternative de l'onduleur. En particulier dans le cas d'un moteur synchrone entraîné par un générateur, la tension triphasée du moteur, en particulier les trois phases du moteur synchrone, peut être respectivement amenée à un point neutre, en particulier court-circuitée, par l'intermédiaire de premières résistances respectives et/ou, en particulier dans le cas d'un moteur synchrone entraîné par un générateur, chaque phase du moteur est connectée au moyen d'un commutateur commandable à respectivement un raccordement d'une première résistance concernée et les seconds raccordements concernés des premières résistances peuvent être connectés les uns aux autres, en particulier en tant que point neutre.
PCT/EP2018/025198 2017-08-16 2018-07-16 Entraînement présentant un moteur synchrone et un convertisseur WO2019034287A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18746576.0A EP3669449A1 (fr) 2017-08-16 2018-07-16 Entraînement présentant un moteur synchrone et un convertisseur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017007696.0 2017-08-16
DE102017007696 2017-08-16

Publications (1)

Publication Number Publication Date
WO2019034287A1 true WO2019034287A1 (fr) 2019-02-21

Family

ID=63041955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/025198 WO2019034287A1 (fr) 2017-08-16 2018-07-16 Entraînement présentant un moteur synchrone et un convertisseur

Country Status (3)

Country Link
EP (1) EP3669449A1 (fr)
DE (1) DE102018005575A1 (fr)
WO (1) WO2019034287A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020123849A1 (de) 2020-09-14 2022-03-17 Miele & Cie. Kg Elektrischer Motor mit Thermoschutz
DE102022000172A1 (de) 2021-02-04 2022-08-04 Sew-Eurodrive Gmbh & Co Kg Schaltungseinheit und Antriebseinheit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29813080U1 (de) * 1998-07-22 1998-10-15 Siemens AG, 80333 München Schutzeinrichtung gegen Spannungsrückwirkung permanenterregter elektrischer Antriebe
JP2002044973A (ja) * 2000-07-27 2002-02-08 Toyo Electric Mfg Co Ltd 永久磁石モータの制御装置
US20040155623A1 (en) * 2003-02-12 2004-08-12 Samsung Electronics Motor power supply
DE102006051319A1 (de) * 2006-10-31 2008-05-08 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Traktionsantrieb eines Schienenfahrzeugs zum Antreiben und zum generatorischen Bremsen mit Lastkorrektur
JP2011101482A (ja) * 2009-11-05 2011-05-19 Okuma Corp モータシステム
EP2372860A1 (fr) * 2010-03-30 2011-10-05 Converteam Technology Ltd Circuits de protection et procédés pour machines électriques
US20130056985A1 (en) * 2011-09-07 2013-03-07 Delta Electronics (Shanghai) Co., Ltd. Wind-power generation system with over-speed protection and method of operating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29813080U1 (de) * 1998-07-22 1998-10-15 Siemens AG, 80333 München Schutzeinrichtung gegen Spannungsrückwirkung permanenterregter elektrischer Antriebe
JP2002044973A (ja) * 2000-07-27 2002-02-08 Toyo Electric Mfg Co Ltd 永久磁石モータの制御装置
US20040155623A1 (en) * 2003-02-12 2004-08-12 Samsung Electronics Motor power supply
DE102006051319A1 (de) * 2006-10-31 2008-05-08 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Traktionsantrieb eines Schienenfahrzeugs zum Antreiben und zum generatorischen Bremsen mit Lastkorrektur
JP2011101482A (ja) * 2009-11-05 2011-05-19 Okuma Corp モータシステム
EP2372860A1 (fr) * 2010-03-30 2011-10-05 Converteam Technology Ltd Circuits de protection et procédés pour machines électriques
US20130056985A1 (en) * 2011-09-07 2013-03-07 Delta Electronics (Shanghai) Co., Ltd. Wind-power generation system with over-speed protection and method of operating the same

Also Published As

Publication number Publication date
DE102018005575A1 (de) 2019-02-21
EP3669449A1 (fr) 2020-06-24

Similar Documents

Publication Publication Date Title
EP2776272B1 (fr) Procédé et dispositif de commande d'un moteur électrique
EP2510613B1 (fr) Agencement onduleur pour le fonctionnement d'un moteur électrique
DE102014223227A1 (de) Antriebseinrichtung und Verfahren zum Betrieb einer Antriebseinrichtung
DE112018003754T5 (de) Invertersteuerungsvorrichtung
EP3201034B1 (fr) Frein électrique fiable pour un moteur synchrone
DE102016222163B3 (de) Kraftfahrzeug-Bordnetz und Verfahren zum Betrieb eines Kraftfahrzeug-Bordnetzes
WO2015090754A1 (fr) Dispositif et procédé pour faire fonctionner une machine électrique
DE102014222256A1 (de) Verfahren zum Umschalten eines Betriebszustands einer elektrischen Maschine und Vorrichtung zum Umschalten eines Betriebszustands einer elektrischen Maschine
EP2573928A1 (fr) Protection à maximum de courant et blocage à retour de courant dans un onduleur indirect d'une machine à courant alternatif
WO2014180906A2 (fr) Batterie d'entrainement pour le fonctionnement en n phases d'un moteur électrique, système d'entraînement et procédé de fonctionnement d'un système d'entraînement
WO2019034287A1 (fr) Entraînement présentant un moteur synchrone et un convertisseur
DE102016217494A1 (de) Verfahren zum Betreiben eines Stromrichters sowie danach arbeitender Stromrichter
DE102014222163A1 (de) Elektrische Maschine zur Energieversorgung eines Kraftfahrzeugbordnetzes
WO2015169479A1 (fr) Procédé de basculement d'un état de fonctionnement d'un moteur électrique et dispositif de basculement d'un état de fonctionnement d'un moteur électrique
WO2013041202A2 (fr) Moteur électrique notamment moteur à commutation de polarités, procédé pour faire fonctionner un moteur électrique et moteur électrique
DE102009007961A1 (de) Antriebssystem und Verfahren zum Betreiben eines Antriebssystems
DE102016223539A1 (de) Schutzvorrichtung für ein elektrisches Antriebssystem, elektrisches Antriebssystem und Verfahren zum Betrieb eines elektrischen Antriebssystems
EP3163733A1 (fr) Convertisseur pour une machine électrique, dispositif d'entraînement électrique pour un véhicule automobile et procédé de fonctionnement d'un convertisseur
DE102016200663A1 (de) Verfahren zum Regeln der Zwischenkreisspannung eines Hybrid- oder Elektro-Fahrzeugs nach Abtrennen der Hochvoltbatterie
WO2015000669A1 (fr) Procédé permettant d'éviter les couples freineurs dans des machines synchrones à excitation permanente
DE102016010740A1 (de) Betreiben eines Antriebsstranges durch kurzzeitigen aktiven Kurzschluss
DE102014223224A1 (de) Antriebseinrichtung und Verfahren zum Betrieb einer Antriebseinrichtung
EP3921936B1 (fr) Système d'entraînement pourvu d'un onduleur et d'un moteur électrique et procédé pour faire fonctionner un système d'entraînement
DE102017213775A1 (de) Invertersteuervorrichtung und Invertersteuerverfahren
DE102016001474A1 (de) Antrieb aufweisend einen von einem Umrichter speisbaren Elektromotor, insbesondere Drehstrommotor, und Verfahren zum Betreiben eines Antriebs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18746576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018746576

Country of ref document: EP

Effective date: 20200316