WO2019034119A1 - 一种超轻人工介质多层圆柱透镜 - Google Patents

一种超轻人工介质多层圆柱透镜 Download PDF

Info

Publication number
WO2019034119A1
WO2019034119A1 PCT/CN2018/100882 CN2018100882W WO2019034119A1 WO 2019034119 A1 WO2019034119 A1 WO 2019034119A1 CN 2018100882 W CN2018100882 W CN 2018100882W WO 2019034119 A1 WO2019034119 A1 WO 2019034119A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cylindrical lens
dielectric constant
concentric
lens
Prior art date
Application number
PCT/CN2018/100882
Other languages
English (en)
French (fr)
Inventor
肖良勇
任玉文
王建青
王亚
Original Assignee
西安肖氏天线科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安肖氏天线科技有限公司 filed Critical 西安肖氏天线科技有限公司
Priority to US16/491,157 priority Critical patent/US11145987B2/en
Publication of WO2019034119A1 publication Critical patent/WO2019034119A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Definitions

  • the present invention relates to the field of antenna engineering technologies, and in particular, to an ultra-light artificial medium multilayer cylindrical lens.
  • antennas As wireless gateways.
  • the antenna In order to meet the requirements of high gain, low side lobes, narrow beam, wide beam coverage, etc., it is also necessary to increase the network speed and consider the cost and environment. The most important of these is that the antenna must be able to carry large information capacity without increasing its quantity, weight and site.
  • Multi-beam antennas developed in recent years are a solution.
  • Conventional multi-beam antennas are constructed using a multi-beamforming network (BFN) to excite a planar array of radiating elements, or a multi-stage Butler matrix or the like.
  • BFN multi-beamforming network
  • the traditional Longbo ball lens technology has the potential to carry multiple antennas and multiple beams.
  • due to the heavy weight of the Longbo lens and the extremely complicated manufacturing process it has long been used as a target for radar passive target detection, airport runway blind drop, etc. Application, it is difficult to enter the civilian field.
  • the traditional Longbo ball antenna is mainly made by two processes of punching and foaming, and the process is time consuming and the product quality is too heavy.
  • the punching method is very difficult to operate in hole positioning and processing, and because of the large number of holes, there are problems such as deformation and mechanical strength during the manufacturing process, and the robustness between the parts is low, and this design can only be realized.
  • the macroscopic dielectric constant is equivalent. In fact, the efficiency of the lens antenna is very low.
  • the dielectric constant of the material obtained by the conventional foaming method is hard to exceed 1.4, and then it is desired to upgrade.
  • the density of the material is bound to be large, increasing the weight.
  • the density of the foamed material is difficult to precisely control, and the foamed beads are liable to undergo secondary foaming or shrinkage, resulting in a gap between the materials, the dielectric constant is difficult to precisely control.
  • the researchers have worked hard for decades. Recently, the multi-beam Longbo ball lens antenna used in the field of mobile communication has been seen on the market (Matsine Ball, US20110003131A1 used in the millions of mass rally in the US President Trump's inauguration in 2017).
  • the inventor introduced Matsine.
  • Longbo ball is 8 times lighter than natural media material (PTFE) and 3-4 times lighter than the artificial media Longbo ball on the market. It is the lightest artificial medium Longbo ball, and the antenna gain is 21dBi. .
  • the Matsine ball antenna is also equipped with a complex vertical beam downtilt mechanism due to the narrow beamwidth of the vertical plane, which increases the operational difficulty, complexity and cost of the application.
  • Chinese invention patent (201511027751.3: a lightweight medium filled multi-beam cylindrical Longbo lens antenna) discloses a three-layer cylindrical Longbo dielectric lens antenna, the invention mainly through a low dielectric constant disc-shaped base material The upper opening is filled with a high dielectric constant dielectric material to achieve the desired graded dielectric constant, and the density of the holes above the three-layer lens is densely packed from the outside to the inside.
  • this method it is difficult to control the dielectric constant of each lens layer, and it is difficult to obtain the specific dielectric constant value of each layer, and the dielectric constant can only be changed macroscopically.
  • the process of opening holes in the base material is cumbersome, the drilling process is difficult, and the number of holes is large, and the deformation and mechanical strength of the material need to be considered.
  • the lens antenna is flat, and there is no advantage in vertical plane radiation.
  • Chinese invention patent discloses a manufacturing method of a Longbo lens antenna, comprising the following steps: pre-expansion treatment of a foaming raw material; according to the design of each lens layer of the Longbo lens antenna The foaming raw material after pre-expansion is arranged to obtain a foaming raw material particle combination, and a corresponding mold is produced; the foaming raw material particle combination is added to a corresponding mold to be molded, and each lens of the Longbo lens antenna is obtained. Layer; each lens layer is assembled.
  • the invention can improve the accuracy of the dielectric constant of each lens layer of the Longbo lens, the performance of the Longbo lens antenna can be improved.
  • the production process is cumbersome, and the use of the mold is complicated, and the temperature and reaction time are controlled very accurately, and it is difficult to mass-produce.
  • the Aerospace Special Materials and Process Technology Institute applied for a series of patents related to the Longbo lens antenna, including spherical and hemispherical Lombor lenses, which are similar in structure and manufacturing methods.
  • a hemispherical lens antenna consisting of n hemispherical layers with different dielectric constants, which are manufactured using additive materials (usually It is produced by means of 3D printing.
  • the lens produced includes cavities of various shapes and sizes, and finally the gradation of the dielectric constant is achieved.
  • the lens prepared by this method does not require a mold, and the dielectric constant of each layer can be accurately controlled.
  • the use of the additive manufacturing method to manufacture the lens has certain limitations in material selection, and it is impossible to use a foam material having a very low density.
  • PLA or ABS used in the embodiment of the present invention has a large density of materials, and even if a lens is included in the prepared lens, the total apparent density of the lens is difficult to reach a very low level, and the lens weight is made. It is still difficult to have a big breakthrough. When used in the civil field, the quality is still not dominant.
  • Chinese invention patent (200580038415.7: Luneberg dielectric lens and its manufacturing method) discloses a hemispherical dielectric lens comprising a plurality of concentric hemispherical layers, each layer being a thermoplastic resin expanded bead containing 0 to 80% by weight of ceramic Foam moldings.
  • the hemispherical dielectric lens disclosed in the invention can overcome the disadvantages of the conventional antenna to achieve greater gain and lighter weight, the lens manufacturing process needs to mix the ceramic with the foam expansion beads and then use the mold for foaming. The requirements are high and it takes a long time to prepare the mold.
  • the total apparent density of the hemispherical lens provided in the examples is between 0.17 and 0.27 g/cm 3 , although this density is already lower than that of most lenses in the prior art, there is still the possibility of continued optimization.
  • the technical problem to be solved by the present invention is to provide a simple processing, an ultra-light quality, and an ultra-wide frequency for the defects of the existing spherical or hemispherical lens, which are difficult to process, excessive in quality, and narrow in beam width on the vertical plane.
  • an ultra-light artificial medium multilayer cylindrical lens comprising n concentric layers having different dielectric constants, and the central cylindrical layer is represented as a first layer, which is a solid cylinder;
  • the second to nth layers are sequentially arranged around the central cylindrical layer, which are respectively n-1 concentric rings, and the n concentric layers are assembled into a multi-layered cylinder, characterized in that the n concentric layers are The electric constant is reduced layer by layer from the first layer to the nth layer, specifically between 2.05 and 1.05;
  • each of the n concentric layers includes a substrate having a low dielectric constant and a high dielectric constant, low specific gravity addition a material;
  • the substrate is a light foaming dielectric material, specifically a material having a density of 0.02-0.03 g/cm 3 ; wherein the content of the added material in the n concentric layers per unit volume is from the first layer to the n-th layer gradually decreases.
  • the light foaming medium material is polystyrene, polyvinyl chloride or polyethylene.
  • the additive material comprises one or more of ceramic powder, aluminum silver powder, and metal wire.
  • the dielectric constant of each concentric layer is determined by the electromagnetic response and density of the additive material contained in each layer.
  • the dielectric constant values of the n concentric layers in the cylindrical lens are determined by testing by a dielectric constant tester.
  • n-1 concentric rings are formed, and the first layer is nested into the cylindrical lens, and the stacking is ensured to be tight between the layers. Gap.
  • the structural parameters and performance parameters of the cylindrical lens are determined according to the actual working needs of the antenna.
  • the structural parameter comprises a diameter, a height, and a number of layers of the cylindrical lens
  • the performance parameter includes a dielectric constant value of each concentric layer.
  • the cylindrical lens has a diameter of 20-90 cm and a height of 20-70 cm.
  • the cylindrical lens has a total apparent density of 0.08-0.095 g/cm 3 .
  • cylindrical lens provided by the present invention can also be used to construct an ultra-wideband multi-beam antenna in an antenna system, and the ultra-wideband refers to a frequency of 0.6 GHz to 28 GHz.
  • the ultra-light artificial medium multilayer cylindrical lens provided by the invention comprises the following steps:
  • step (4) uniformly magnifying the sample of each layer in step (4), forming the 2-n layer into a concentric ring, and assembling the first concentric layer into an n-layer concentric cylinder as a crude cylindrical lens. ;
  • the ultra-light artificial medium lens provided by the present invention changes the dielectric constant of different layers of the lens by adding a high dielectric constant material to the low dielectric constant substrate, and the manufacturing process is simple, convenient, and quick.
  • the dielectric constant of each layer of material can be accurately measured by measurement, which overcomes the problem of mechanical deformation and inaccurate dielectric constant caused by punching in the conventional process, and does not cause secondary foaming which may occur in the foaming process. Or the shrinkage of the material causes a gap between the layers.
  • the artificial medium multilayer cylindrical lens provided by the invention has a simpler manufacturing process, and adopts a cylindrical shape instead of a spherical or hemispherical shape for the antenna, and has multiple beams and vertical The characteristics of the plane pattern width.
  • the artificial medium multilayer cylindrical lens provided by the invention can be made according to the specific needs of the antenna index, and most importantly, the lens produced is ultra-light, ultra-low density, and the total table is The apparent density is only 0.08-0.095 g/cm 3 , which is lower than all artificial medium lenses in the prior art, and has ultra-wideband (even applicable to frequencies above 28 GHz). This will greatly expand the application of the lens in the fifth generation (5G) civil and military fields, and combine with antenna technology to form an artificial medium lens antenna, especially for crowded areas and large data traffic areas.
  • 5G fifth generation
  • the lens provided by the present invention can be applied to the field of antennas, and provides a practical carrier for constructing a multi-beam antenna.
  • the antenna unit is usually fixed on the outside of the artificial medium multilayer cylindrical lens, which can be realized compared with the conventional electronically modulated antenna.
  • the vertical surface lobes are wider and cover, and the field strength is fully dominant in most areas. Therefore, the traditional vertical lobe electric adjustment down-tilt mechanism can be omitted, and the traditional base station antenna (including the Longbo multi-beam antenna) can be used.
  • the two-dimensional scanning in the fixed wide sectorization horizontal and vertical surface coverage simultaneously exist), saving a lot of energy and cost, saving site resources, especially suitable for crowded areas and big data traffic business areas.
  • the artificial medium multilayer cylindrical lens provided by the present invention has a simple manufacturing process, and because the lens is small in volume, ultra-light in weight, and ultra-wide in frequency band, the antenna using the lens can be applied to the military and civilian fields, overcoming the conventional antenna being too bulky. Or the equipment is difficult to enter the shortcomings of the civilian sector.
  • FIG. 1 is a perspective view of a 6-layer cylindrical lens of an artificial medium provided by the present invention.
  • FIG. 2 is a cross-sectional view of a 6-layer cylindrical lens of an artificial medium provided by the present invention
  • FIG 3 is a cross-sectional view of a 10-layer cylindrical lens of an artificial medium provided by the present invention.
  • the invention provides an ultra-light artificial medium multilayer cylindrical lens comprising n concentric layers having different dielectric constants, the central cylindrical layer being represented as a first layer and being a solid cylinder; and sequentially arranged around the central cylindrical layer to the outer jacket
  • the second to nth layers are respectively n-1 concentric rings, and the n concentric layers are assembled into a multi-layered cylinder, characterized in that the dielectric constants of the n concentric layers are from the first layer to the nth
  • the layer is reduced layer by layer, specifically between 2.05 and 1.05; each of the n concentric layers comprises a low dielectric constant substrate and a high dielectric constant, low specific gravity additive material, by adding high in the substrate A dielectric constant material increases its dielectric constant.
  • the substrate is a light foaming medium material, which can be made of the following materials: polyethylene, polystyrene, polytetrafluoroethylene, polypropylene, polyurethane and polyvinyl chloride, wherein the preferred density is 0.02-0.03.
  • the material of g/cm 3 is more preferably polystyrene, polyvinyl chloride or polyethylene.
  • the amount of the additive material contained in the n concentric layers per unit volume is gradually decreased from the first layer to the nth layer, and the additive material is a material having a high dielectric constant, and a substrate having a low dielectric constant With the cooperation, the n concentric layers can realize the dielectric constant gradation.
  • the density and electromagnetic response should be considered.
  • materials with lower density and higher dielectric constant should be selected.
  • the additive material in the present invention is preferably one or more of ceramic powder, aluminum silver powder, and metal wire.
  • the additive material may have a cylindrical shape, a powder shape, a block shape, a needle shape, and a spherical shape. Etc., preferably needle-like or spherical.
  • the cylindrical lens of the present invention When preparing the cylindrical lens of the present invention, firstly, according to the designed dielectric constant value, an additive material selected according to density and electromagnetic response is added to the selected substrate, and a sample of each layer of the substrate is initially prepared. The amount of the additive material per unit volume in each layer is reduced from the first layer to the n-th layer layer by layer. Since the substrate used in the present invention is a low-k dielectric lightweight foam material, after adding a high dielectric constant additive material to the substrate, the dielectric constant value of each concentric layer of the cylindrical lens increases with the unit volume. The amount increases and increases. It should be noted that the outermost layer, that is, the amount of the additive material contained in the nth layer, should be extremely small or 0, to ensure that the outermost dielectric constant is closer to air.
  • the dielectric constant value of each of the preliminary samples was tested using a dielectric constant tester, and the amount of the added material having a high dielectric constant added to each layer was adjusted according to the measured value of the dielectric constant equivalent of +/- 0.05, and Make a sample and retest until a final sample of each concentric layer of substrate meets the initial design requirements for dielectric constant.
  • the concentric layer substrate samples were uniformly enlarged to obtain respective concentric layers.
  • the 2-n layer is then formed into a concentric ring and assembled with the first layer enlarged into a solid cylindrical shape to form a rough product of an n-layer concentric cylindrical lens.
  • the efficiency of the lens is affected by the gap between the layers, the more and the gap, the lower the lens efficiency. This is because when the gap is large, radio waves are unnecessarily reflected or refracted through the air-layer interface, which causes a decrease in antenna gain or an increase in side lobes. Therefore, when assembling n concentric layers into a cylindrical lens, it should be ensured that no gap is left and tightly bonded into a multi-layered cylinder.
  • Each concentric layer substrate sample was re-prepared according to the determined addition amount, and enlarged, and folded into a desired cylindrical lens. Then, the combined cylindrical lens and the antenna unit are combined to form an antenna for measurement, and the gain and direction diagram of the antenna are tested to ensure that various index parameters meet the design requirements.
  • the difference in the electromagnetic response of the added material should affect the value of the dielectric constant. Therefore, the amount of material added in each layer will affect the dielectric constant value of each layer. In essence, the electromagnetic response of the added material will affect the lens.
  • the dielectric constant value of the layer. The influence of the electromagnetic response value of the added material on the performance of the lens is represented by the dielectric constant value tested by the dielectric constant tester and the final measured antenna measurement index. Therefore, it is necessary to comprehensively consider the lens index selection during the production process. Material and amount added.
  • the number, height and diameter of the cylindrical lens used in the present invention, as well as the number of antenna elements, and the arrangement outside the cylindrical lens can be selected or produced according to the application scenario and the antenna index, and can be adapted to various application requirements.
  • the cylindrical lens height provided by the present invention is preferably 20-70 cm, more preferably 25-60 cm, most preferably 30-50 cm, and the diameter of the cylindrical lens is preferably 20-90 cm, more preferably 30-, because satisfactory antenna performance and installation space requirements are required. 60 cm, most preferably 35-50 cm.
  • the "ultra-light" in the ultra-light artificial medium multilayer cylindrical lens provided by the present invention is that after the final preparation of the lens, the total apparent density of the entire lens is 0.08-0.095 g/cm 3 , and the contrast polystyrene density is 1.05 g. /cm 3 can calculate that the ultra-light artificial medium multilayer cylindrical lens provided by the present invention is about 11 times lighter than polystyrene.
  • the ultra-light artificial medium multi-layer cylindrical lens provided by the invention has the characteristics of ultra-wide frequency, in particular, the application frequency can exhibit almost the same performance (dielectric constant, low insertion loss) from 0.6 GHz to 28 GHz and above in mobile communication. ). It has an extremely broad prospect in the field of electromagnetic radiation and scattering.
  • a 6-layer artificial medium cylindrical lens is provided, the lens height is 30 cm, and the diameter is 36 cm.
  • Table 1 shows the specific parameters of each layer index of the lens, and finally The resulting lens has a total apparent density of only 0.092 g/cm 3 , an ultra-low density and an ultra-light quality.
  • the cylindrical lens When the cylindrical lens is applied to a multi-beam antenna, due to the special action of its columnar structure on the elevation plane, a complicated electro-optic down-tilt mechanism can be omitted compared to a conventional spherical or hemispherical lens, such as the present invention.
  • the provided 6-layer cylindrical lens when operating at 2500MHz, the antenna gain obtained by the unit antenna excitation can reach 18.39dBi.
  • a 10-layer artificial medium cylindrical lens having a height of 50 cm and a diameter of 65 cm is provided.
  • Table 2 shows specific parameters of each layer of the lens, and the final lens is prepared.
  • the total apparent density is only 0.086g/cm 3 , the density is ultra-low, the quality is ultra-light, and the application range is wider.
  • the cylindrical lens when applied to construct a multi-beam antenna in an antenna system, it can be combined with the antenna unit to construct a full-frequency 180° sector horizontal coverage antenna of the de-energizing down-tilt mechanism 10, which can save the traditional antenna.
  • the complex vertical beam ESC down-tilt mechanism is installed.
  • the antenna operates at 850MHz/1920MHz, the low-frequency antenna gain can reach 14.6dBi and the high-frequency antenna gain can reach 20dBi.
  • the artificial medium multilayer cylindrical lens provided by the invention has the layer number, the height, the diameter and the dielectric constant of each layer are designed according to the actual needs of the antenna index, and the preparation method is simple, and the obtained dielectric constant value of the lens is more ideal. design. The most important thing is that the lens produced is ultra-light, ultra-low density and ultra-wide application frequency, which will greatly expand the application of the lens in the military and civilian fields, especially in crowded areas and big data traffic areas.
  • the lens provided by the present invention When the lens provided by the present invention is combined as a carrier and an antenna unit, a wider vertical coverage can be achieved, and it is no longer necessary to install a complicated vertical beam down-tilt mechanism, which is not available in the conventional Longbo ball antenna. It is also one of the biggest highlights of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明提供一种超轻人工介质多层圆柱透镜,包括n个介电常数不同的同心层,中心圆柱层表示为第1层,为一个实心圆柱体;围绕中心圆柱层依次向外套叠排列第2至第n层,分别为n-1个同心圆环,n个同心层被装配成一个多层圆柱体,其特征在于,所述n个同心层介电常数由第1层至第n层逐层降低,具体在2.05至1.05间变化;所述n个同心层由低介电常数的基材添加高介电常数、低比重的材料制成。该超轻人工介质圆柱透镜的层数、直径和高度可以根据预定的天线指标要求设计,制成的透镜总表观密度为0.08-0.095g/cm 3,重量超轻,且频率超宽,能够满足各种天线的应用需求,抗老化、无污染,符合环保要求,设计简便,安全可靠,特别适用于密集用户及大数据业务区。

Description

一种超轻人工介质多层圆柱透镜 技术领域
本发明涉及天线工程技术领域,尤其涉及一种超轻人工介质多层圆柱透镜。
背景技术
随着移动通信4G、5G、MIMO、卫星通信、雷达、电子战等无线领域市场的需求迅速扩张,对作为无线出入口的天线也提出了新的技术要求。在满足高增益、低副瓣、窄波束、波束覆盖范围广等要求的同时还要提高网速,考虑成本、环境等需要。其中最重要的是天线既要能承载超大信息容量,又不能增加其数量、重量和站址。
近年发展的多波束天线是一种解决方案。传统的多波束天线是用多波束形成网络(BFN)激励辐射单元平面阵列、或用多级巴特勒矩阵等做成。然而,由于存在不对称波束、隔离度、网络损耗导致增益损失、频带窄等问题,使其难以大规模应用。传统的龙伯球透镜技术具有承载多天线、多波束潜力,但由于龙伯透镜重量太重及制造工艺极其复杂,长期以来只能作为雷达无源目标探测、机场跑道盲降等8GHz以上频段少量应用,难以进入民用领域。
传统的龙伯球天线主要通过打孔和发泡两种工艺来制作,过程耗时繁琐且产品质量太重。打孔方式在孔定位和加工上操作难度非常大,而且由于孔的数目较多,制作过程中存在形变和机械强度不足等问题,各部分间的牢固性低,而且这种设计方案只能实现宏观上的介电常数等效,实际上透镜天线的效率非常低;采用发泡方式制作龙伯透镜也存在一定缺陷,传统发泡方法得到的材料介电常数很难超过1.4,再想提升,材料的密度必然会很大,增大重量。而且由于发泡材料的密度难以精确控制,且发泡珠容易发生二次发泡或收缩,导致材料之间存在间隙,其介电常数难以精确控制。
为了解决以上问题,减轻龙伯球的重量,研究人员进行了几十年的努力。最近在市场上已见到应用于移动通信领域的多波束龙伯球透镜天线(在2017年美国特朗普总统就职典的百万群众集会上使用的Matsine Ball,US20110003131A1)该发明人介绍,Matsine龙伯球比天然介质材料(聚四氟乙烯)要轻8倍,比市场上有的人造介质龙伯球要轻3-4倍,是迄今最轻的人造介质龙伯球,天线增益为21dBi。Matsine龙伯球天线与传统移动通信基站天线一样,也配有复杂的垂直波束下倾机构,这是由于垂直面波束宽度窄的缘故,这增加了应用的操作难度、复杂性和成本。
中国发明专利(201511027751.3:一种轻量化介质填充式多波束柱面龙伯透镜天线)公开了一种三层柱面龙伯介质透镜天线,该发明主要通过在低介电常数圆盘状基底材料上开孔填充高介电常数介质材料来实现所需渐变介电常数,三层透镜上面的孔密度由外向内依次变密集。这种方法得到各透镜层的介电常数难以控制,很难得到各层的具体介电常数值,只能从宏观上实现介电常数的变化。且在基底材料上开孔的过程较为繁琐,钻孔加工难度较大,孔数目较多,需考虑材料的形变和机械强度。并且该透镜天线是扁平状的,在垂直面辐射上也没有优势。
中国发明专利(201610393370.5:龙伯透镜天线的制造方法)公开了一种龙伯透镜天线的制造方法,包括如下步骤:对发泡原料进行预发泡处理;根据龙伯透镜天线各透镜层的设计值,对预发泡后的发泡原料进行配置,得到发泡原料粒子组合,并制作对应的模具;将发泡原料粒子组合加入到对应的模具中进行成型,得到龙伯透镜天线的各透镜层;将各透镜层进行组装。该发明虽然能够提高龙伯透镜各透镜层的介电常数的精确度,提高龙伯透镜天线的工作性能。但制作过程较为繁琐,且使用模具复杂,对温度和反应时间控制非常精确,难以大批量生产。
另外,航天特种材料及工艺技术研究所申请了一系列龙伯透镜天线相关专利,包括球形和半球形龙伯透镜,结构和制造方法较为类似。以中国实用新型专利(201520112560.6:一种半球龙伯透镜天线)为例,其公开了一种半球龙伯透镜天线,由n个介电常数不同的半球层组成,该透镜使用增材制造(通常称3D打印)的方式制作,所制作的透镜中包含各种形状、大小的空腔,最终实现介电常数的渐变。使用该方法制备透镜虽然不需要模具,各层介电常数可以得到较为精确的控制,但是,使用增材制造方式来制作透镜在材料的选择上有一定限制,无法使用密度非常低的泡沫类材料。例如该实用新型实施例中使用的PLA或ABS,材料的密度都较大,即使制备的透镜中包含一定的空腔,透镜的总表观密度也很难达到非常低的水平,制作的透镜重量还是很难有大的突破性的降低。应用于民用领域中时质量上仍不占优势。
中国发明专利(200580038415.7:Luneberg介电透镜及其制造方法)公开了一种半球形介电透镜,其包括多个同心的半球层,每层都是含0至80重量%陶瓷的热塑性树脂膨胀珠的泡沫模制品。该发明公开的半球形介电透镜虽然能够克服传统天线的缺点能够实现较大增益且质量较轻,但透镜制造过程中需要将陶瓷与泡沫膨胀珠混合后再使用模具进行发泡,对工 艺条件要求较高,且制备模具花费时间较长。另外,其实施例中提供的半球形透镜总表观密度在0.17-0.27g/cm 3之间,这个密度虽然已经比现有技术中大多数透镜要低,但仍有继续优化的可能。
发明内容
本发明所要解决的技术问题是,针对现有球形或半球形龙伯透镜存在的加工不易、质量过大、垂直面波束宽度窄的缺陷,提供一种加工简单、质量超轻、频率超宽、垂直面波束宽覆盖的人工介质圆柱透镜。
本发明解决其技术问题所采用的技术方案是:一种超轻人工介质多层圆柱透镜,包括n个介电常数不同的同心层,中心圆柱层表示为第1层,为一个实心圆柱体;围绕中心圆柱层依次向外套叠排列第2至第n层,分别为n-1个同心圆环,n个同心层被装配成一个多层圆柱体,其特征在于,所述n个同心层介电常数由第1层至第n层逐层降低,具体在2.05至1.05间变化;所述n个同心层中每层都包括低介电常数的基材和高介电常数、低比重的添加材料;所述基材为轻型发泡介质材料,具体为密度0.02-0.03g/cm 3的材料;其中,每单位体积所述n个同心层中添加材料的含量从第1层至第n层逐渐减少。
优选地,所述轻型发泡介质材料为聚苯乙烯、聚氯乙烯或聚乙烯。
优选地,所述添加材料包括陶瓷粉、铝银粉、金属丝中的一种或几种。
优选地,各同心层介电常数由各层中包含所述添加材料的电磁响应和密度决定。
其中,所述圆柱透镜中n个同心层的介电常数值是通过通过介电常数测试仪测试确定的。
其中,所述第2至第n个同心层制备完成后形成n-1个同心圆环,并与所述第1层套叠成所述圆柱透镜,套叠时应保证各层之间紧密无缝隙。
其中,所述圆柱透镜的结构参数和性能参数根据天线的实际工作需要确定。
优选地,所述结构参数包括所述圆柱透镜的直径、高度、层数,所述性能参数包括各同心层的介电常数值。
优选地,所述圆柱透镜的直径为20-90cm,高度为20-70cm。
其中,所述圆柱透镜的总表观密度为0.08-0.095g/cm 3
另外,本发明提供的圆柱透镜还可用于天线系统中构造超宽频多波束天线,所述超宽频是指频率为0.6GHz-28GHz。
本发明提供的超轻人工介质多层圆柱透镜,其制作方法包括如下步骤:
(1)选取轻型发泡介质材料作为基材;
(2)确定人工介质多层圆柱透镜的各项参数;
(3)向所述基材中加入不同配比的高介电常数、低比重的添加材料,初制各层基片小样,测试各层基片小样的介电常数值;
(4)根据所测各层基片小样的介电常数值调整每层中添加材料的量,最终得到符合介电常数设计要求的各层基片小样;
(5)将步骤(4)中各层基片小样均匀放大,将第2-n层制成同心圆环,并与第1个同心层装配成n层同心圆柱体,作为粗制的圆柱透镜;
(6)将初制的圆柱透镜在天线测量的微波暗室检验,测试天线的增益、方向图,根据天线参数调整各同心层的介电常数值;
(7)根据第(6)步确定的介电常数值最终确定各同心层中应加入的添加材料的量;
(8)制备各同心层基片小样,并参考步骤(5)的方式放大、套叠成所需圆柱透镜;
(9)测试制得的圆柱透镜的与天线单元结合后形成天线的增益、方向图,直至符合设计要求。
与现有技术相对比,本发明产生的有益效果是:
(1)本发明提供的超轻人工介质透镜通过将高介电常数材料加入低介电常数基材中的方法来改变透镜不同层的介电常数,制作工艺简单,方便快捷,且最终制得的各层材料介电常数可通过测量得到精确值,克服了传统工艺中打孔容易造成的机械形变以及介电常数不准确的问题,也不会出现发泡工艺中可能出现的二次发泡或材料收缩造成各层之间有间隙的情况。
(2)与传统球形或半球形龙伯透镜相比,本发明提供的人工介质多层圆柱透镜制作工艺更为简单,选用圆柱形代替球形或半球形,用于天线中,具备多波束且垂直平面方向图宽的特性。
(3)本发明提供的人工介质多层圆柱透镜,其层数、高度以及直径都可以根据天线指标的具体需要制作,最重要的是,制得的透镜质量超轻,密度超低,总表观密度仅为0.08-0.095g/cm 3,低于现有技术中所有人工介质透镜,而且具有超宽频(甚至可应用于28GHz以上频率)特性。这将大大拓宽该透镜在第五代(5G)民用及军用领域的应用,与天线技术结合成人工介质透镜天线,尤其适用于人群密集区域及大数据流量业务区。
(4)本发明提供的透镜能够应用于天线领域,为构建多波束天线提供实用载体,使用时,通常将天线单元固定在人工介质多层圆柱透镜外侧,与传统的电调天线相比能够实现垂直面波瓣更宽覆盖,且在覆盖大部分区域内场强全面占优,因此能够省去传统的垂直波瓣电调下倾机构,能够将传统基站天线(包括龙伯球多波束天线)中的二维扫描固定宽扇区化(水平面及垂直面宽覆盖同时存在),节省大量能耗及成本,节省站点资源,特别适用于人群密集区域及大数据流量业务区。
(5)本发明提供的人工介质多层圆柱透镜,制造工艺简单,且由于透镜体积较小,重量超轻,频带超宽,使用该透镜的天线能够应用于军民领域,克服了传统天线过于笨重或设备复杂难以进入民用领域的缺点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是本发明提供的人工介质6层圆柱透镜立体图;
图2是本发明提供的人工介质6层圆柱透镜横截面图;
图3是本发明提供的人工介质10层圆柱透镜横截面图。
具体实施方式
本发明提供的一种超轻人工介质多层圆柱透镜,包括n个介电常数不同的同心层,中心圆柱层表示为第1层,为一个实心圆柱体;围绕中心圆柱层依次向外套叠排列第2至第n层,分别为n-1个同心圆环,n个同心层被装配成一个多层圆柱体,其特征在于,所述n个同心层介电常数由第1层至第n层逐层降低,具体在2.05至1.05间变化;所述n个同心层中每层都包括低介电常数的基材和高介电常数、低比重的添加材料,通过在基材中添加高介电常数的材料提高其介电常数。
其中,所述基材为轻型发泡介质材料,可以由以下的材料所制成:聚乙烯,聚苯乙烯,聚四氟乙烯,聚丙烯,聚氨酯和聚氯乙烯,其中优选密度为0.02-0.03g/cm 3的材料,更优选为聚苯乙烯、聚氯乙烯或聚乙烯。
其中,每单位体积所述n个同心层中所包含添加材料的量从第1层至第n层逐渐减少,所述添加材料为介电常数较高的材料,与低介电常数的基材配合,使n个同心层能够实现介电常数渐变。在选择添加材料时,应考虑其密度和电磁响应,为拓宽透镜的应用范围,降低透镜质量,应尽量选择密度较低而介电常数较高的材料。综合考虑以上因素,本发明中所述添加材料优选为陶瓷粉、铝银粉、金属丝中的一种或几种,该添加材料外形上可以为圆柱状、粉末状、块状、针状、球状等,优选为针状或球状。
制备本发明所述的圆柱透镜时,首先根据设计的介电常数值,在所选基材中加入根据密度和电磁响应选择的添加材料,初制出各层基片小样。各层中每单位体积所含添加材料的量由第1层向第n层逐层减少。由于本发明所用基材是低介电常数的轻质泡沫材料,在基材中添加高介电常数的添加材料后,圆柱透镜的各个同心层的介电常数值会随着单位体积中添加材料量的增加而提高。应当注意,最外层也就是第n层中所含添加材料的量应该极少,也可以为0,以保证最外层介电常数更接近空气。
随后使用介电常数测试仪测试各初制小样的介电常数值,根据测量所得介电常数等效值的+/-0.05调整每层中所加高介电常数的添加材料的量,并重新制作小样,重新测试,直至最终得到符合介电常数初始设计要求的各同心层基片小样。
将各同心层基片小样均匀放大,得到各个同心层。随后将第2-n层制成同心圆环,与放大成实心圆柱状的第1层装配在一起,形成一个n层同心圆柱透镜的粗制品。应当注意,透镜的效率会受到各层之间间隙的影响,间隙越多、越大,透镜效率越低。这是因为,缝隙大时,无线电波通过空气—层界面时会被不必要地反射或折射,这将导致天线增益的减少或旁瓣的增加。因此,在将n个同心层装配成圆柱透镜时应尽量保证不留缝隙,紧密粘接成多层圆柱体。
将以上制得的初制圆柱透镜与天线技术结合成人工介质透镜天线,在天线测量的微波暗室检验,测试天线的增益、方向图,根据天线参数调整各同心层的介电常数值;测试天线的增益、方向图(具体见本发明人的其他发明专利申请:201711016223.7:基于人工介质圆柱透镜扇区多波束天线;201711016267.X:基于人工介质圆柱透镜高楼覆盖多波束天线;201711009402.8:基于人工介质圆柱透镜全向多波束天线),根据天线参数调整各同心层的介电常数值,最终确定各同心层中应加入的添加材料的量。
根据确定的添加量重新制备各同心层基片小样,并放大,套叠成所需圆柱透镜。随后对制得的圆柱透镜与天线单元结合后形成天线进行测量,测试天线的增益、方向图,保证各项指标参数符合设计要求。
应当注意,添加材料的电磁响应不同应当会影响到介电常数值,所以每层中添加材料的量不同会影响各层小样的介电常数值,实质上也是添加材料的电磁响应不同影响透镜各层的介电常数值。添加材料的电磁响应值对透镜性能的影响是通过介电常数测试仪测试的介电常数值以及最后制成的天线测量指标表现出来的,因此在制作过程中要综合考虑透镜各项指标选择添加材料及添加量。
本发明所用圆柱透镜的层数、高度、直径,以及天线单元的个数,在圆柱透镜外的排列方式等均可以根据应用场景和天线指标选择或制作,可适应各种应用需要。
因为需要令人满意的天线性能和安装空间需求,本发明提供的圆柱透镜高度优选20-70cm,更优选25-60cm,最优选30-50cm,圆柱透镜的直径优选20-90cm,更优选30-60cm,最优选35-50cm。
本发明提供的超轻人工介质多层圆柱透镜中所述“超轻”是在透镜最终制备完成后,整个透镜的总表观密度为0.08-0.095g/cm 3,对比聚苯乙烯密度1.05g/cm 3可计算出本发明提供的超轻人工介质多层圆柱透镜比聚苯乙烯约轻11倍。与中国发明专利(200580038415.7:Luneberg介电透镜及其制造方法)中实施例透露的透镜总表观密度0.17-0.27g/cm 3相比,本发明提供的透镜密度比它低2-3倍,与传统天线相比较也具有极大优势。这一超轻特性使它的应用范围比过去将大大扩展。
本发明提供的超轻人工介质多层圆柱透镜具有频率超宽的特性,具体是指其应用频率可从移动通信的0.6GHz直至28GHz及以上频段呈现几乎相同的性能(介电常数、低插损)。使它在电磁辐射和散射领域具有极其广阔前景。
下面结合附图,对本发明的具体实施方式作详细的说明。
实施例1:
参考图1和图2所示,在本发明的一个实施例中,提供一种6层人工介质圆柱透镜,透镜高度为30cm,直径为36cm,表1为透镜各层指标的具体参数,最终制成的透镜总表观密度仅为0.092g/cm 3,密度超低,质量超轻。
表1
1层 2层 3层 4层 5层 6层
设计介电常数值 1.85 1.6 1.45 1.3 1.15 1.08
最终介电常数值 1.85+/-0.05 1.6+/-0.05 1.45+/-0.06 1.3+/-0.07 1.15+/-0.03 1.08+/-0.03
内径(mm) 95.5 156.4 208.6 256.9 311.4
外径(mm) 95.4 156.3 208.4 256.8 311.2 360.2
当该圆柱透镜应用于多波束天线中时,由于其柱状结构在俯仰面上的特殊作用,与传统球形或半球形龙伯透镜相比,能够省去复杂的电调下倾机构,例如本发明提供的6层圆柱透镜,在2500MHz频率下工作时,单元天线激励所得到的天线增益能达到18.39dBi。
实施例2:
参考图3所示,在本发明的另一个实施例中,提供一种10层人工介质圆柱透镜,高度为50cm,直径为65cm,表2为透镜各层指标的具体参数,最终制成的透镜总表观密度仅为0.086g/cm 3,密度超低,质量超轻,应用范围更广。
表2
Figure PCTCN2018100882-appb-000001
另外,当该圆柱透镜应用于天线系统中构造多波束天线时,其与天线单元结合可构造一种去电调下倾机构10波束全频180°扇区水平覆盖天线,能够省去传统天线中安装的复杂的垂直波束电调下倾机构,该天线在850MHz/1920MHz频率下工作时,低频天线增益能够达到14.6dBi,高频天线增益能够达到20dBi。
本发明所提供的人工介质多层圆柱透镜,其层数、高度、直径以及各层介电常数都是根据天线指标实际需要设计,且制备方法简便,制得的透镜介电常数值更符合理想设计。最重 要的是,制得的透镜质量超轻,密度超低,应用频率超宽,这将大大拓宽该透镜在军民领域的应用,尤其适用于人群密集区域及大数据流量业务区。
当本发明提供的透镜作为载体与天线单元结合后,能够实现垂直面更宽覆盖,不再需要安装复杂的垂直波束下倾机构,这也是传统龙伯球天线所不具备的。也是本发明的最大亮点之一。
上文所述的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并不是用以限制本发明的保护范围,在所属技术领域普通技术人员所具备的知识范围内,在不脱离本发明宗旨的前提下作出的各种变化均属于本发明的保护范围。

Claims (10)

  1. 一种超轻人工介质多层圆柱透镜,包括n个介电常数不同的同心层,中心圆柱层表示为第1层,为一个实心圆柱体;围绕中心圆柱层依次向外套叠排列第2至第n层,分别为n-1个同心圆环,n个同心层被装配成一个多层圆柱体,其特征在于,
    所述n个同心层介电常数由第1层至第n层逐层降低,具体在2.05至1.05间变化;
    所述n个同心层中每层都包括低介电常数的基材和高介电常数、低比重的添加材料;
    所述基材为轻型发泡介质材料,具体为密度0.02-0.03g/cm 3的材料;
    其中,每单位体积所述n个同心层中添加材料的含量从第1层至第n层逐渐减少。
  2. 如权利要求1所述的圆柱透镜,其特征在于,所述轻型发泡介质材料为聚苯乙烯、聚氯乙烯或聚乙烯。
  3. 如权利要求1所述的圆柱透镜,其特征在于,所述添加材料包括陶瓷粉、铝银粉、金属丝中的一种或几种。
  4. 如权利要求1所述的圆柱透镜,其特征在于,各同心层介电常数由各层中包含所述添加材料的电磁响应和密度决定。
  5. 如权利要求1所述的圆柱透镜,其特征在于,所述圆柱透镜中n个同心层的介电常数值通过介电常数测试仪测试确定。
  6. 如权利要求1所述的圆柱透镜,其特征在于,所述第2至第n个同心层制备完成后形成n-1个同心圆环,并与所述第1层套叠成所述圆柱透镜,套叠时应保证各层之间紧密无缝隙。
  7. 如权利要求1所述的圆柱透镜,其特征在于,所述圆柱透镜的结构参数和性能参数根据天线的实际工作需要确定。
  8. 如权利要求7所述的圆柱透镜,其特征在于,所述结构参数包括所述圆柱透镜的直径、高度、层数,所述性能参数包括各同心层的介电常数值。
  9. 如权利要求1-8中任一项所述的圆柱透镜,其特征在于,所述圆柱透镜的总表观密度为0.08-0.095g/cm 3
  10. 将权利要求9所述的圆柱透镜应用于天线系统中构造超宽频多波束天线的应用,所述超宽频是指频率为0.6GHz-28GHz。
PCT/CN2018/100882 2017-08-18 2018-08-16 一种超轻人工介质多层圆柱透镜 WO2019034119A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/491,157 US11145987B2 (en) 2017-08-18 2018-08-16 Ultralight artificial medium multilayer cylindrical lens

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710713195 2017-08-18
CN201710713195.8 2017-08-18
CN201711122204.2A CN107959122B (zh) 2017-08-18 2017-11-14 一种超轻人工介质多层圆柱透镜
CN201711122204.2 2017-11-14

Publications (1)

Publication Number Publication Date
WO2019034119A1 true WO2019034119A1 (zh) 2019-02-21

Family

ID=61964573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100882 WO2019034119A1 (zh) 2017-08-18 2018-08-16 一种超轻人工介质多层圆柱透镜

Country Status (3)

Country Link
US (1) US11145987B2 (zh)
CN (1) CN107959122B (zh)
WO (1) WO2019034119A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739551A (zh) * 2019-10-29 2020-01-31 Oppo广东移动通信有限公司 阵列透镜、透镜天线和电子设备
WO2024139658A1 (zh) * 2022-12-31 2024-07-04 京信通信技术(广州)有限公司 透镜天线

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107959122B (zh) * 2017-08-18 2019-03-12 西安肖氏天线科技有限公司 一种超轻人工介质多层圆柱透镜
CN109004372B (zh) * 2018-07-31 2024-02-02 南京濠暻通讯科技有限公司 一种扁平化的龙伯透镜天线
CN109149122B (zh) * 2018-09-06 2020-10-16 西安电子科技大学 一种基于3d打印的透镜和透镜天线
US11552390B2 (en) * 2018-09-11 2023-01-10 Rogers Corporation Dielectric resonator antenna system
CN109638473B (zh) * 2019-01-14 2020-08-28 北京交通大学 透镜天线及透镜天线制作方法
CN109950700B (zh) * 2019-03-01 2020-07-10 浙江大学 一种基于多层共形菲涅尔表面的电扫描透镜天线
CN109994837A (zh) * 2019-03-26 2019-07-09 佛山市粤海信通讯有限公司 龙伯透镜的生产方法
CN110689994B (zh) * 2019-09-10 2020-10-30 佛山市粤海信通讯有限公司 电磁介质颗粒及电磁介质颗粒生产方法
CN110615909B (zh) * 2019-09-18 2021-01-15 广东福顺天际通信有限公司 介质材料及介质材料生产方法
CN110729565B (zh) * 2019-10-29 2021-03-30 Oppo广东移动通信有限公司 阵列透镜、透镜天线和电子设备
CN110797667B (zh) * 2019-11-07 2021-07-23 中信科移动通信技术股份有限公司 透镜天线及透镜天线的制备方法
CN111262042B (zh) * 2020-01-17 2020-12-25 西安海天天线科技股份有限公司 一种人工介质多层柱状透镜制造方法
CN111509398B (zh) * 2020-04-26 2022-04-12 成都新光微波工程有限责任公司 一种低密度人工介质龙伯透镜的制备方法
CN111613900B (zh) * 2020-05-29 2021-06-11 西安海天天线科技股份有限公司 一种人工介质多层球透镜制造方法
CN111710987B (zh) * 2020-06-04 2021-09-24 广东福顺天际通信有限公司 一种龙伯透镜及该龙伯透镜的生产方法
CN111786125B (zh) * 2020-06-28 2021-09-17 北京高信达通信科技股份有限公司 介质圆柱透镜及介质膜、介质圆柱透镜制作方法
CN112407196B (zh) * 2020-12-04 2022-05-31 广东福顺天际通信有限公司 一种救生圈
CN112498631A (zh) * 2020-12-04 2021-03-16 广东福顺天际通信有限公司 一种反射透镜结构救生圈
CN112662060B (zh) * 2020-12-18 2022-11-04 广东盛路通信有限公司 一种龙伯透镜天线介质材料及其制备方法和应用
CN112736485B (zh) * 2020-12-29 2022-02-01 苏州申赛新材料有限公司 一种发泡龙勃透镜及其制备工艺
CN112852069A (zh) * 2021-01-13 2021-05-28 苏州纳绎博纳米科技有限公司 一种轻量化5g基站通讯天线罩壳的材料及制作方法
CN113185750A (zh) * 2021-04-26 2021-07-30 中国工程物理研究院流体物理研究所 一种微波介质材料及其制备方法、应用
CN113363731B (zh) * 2021-06-03 2022-04-12 中国电子科技集团公司第二十九研究所 一种低剖面低损耗Rotman透镜
CN113314855B (zh) * 2021-07-29 2021-12-14 佛山市粤海信通讯有限公司 电磁波透镜、电磁波透镜生产方法和透镜天线
CN113708078A (zh) * 2021-08-30 2021-11-26 中信科移动通信技术股份有限公司 透镜天线及介质透镜的制备方法
CN113839217B (zh) * 2021-08-31 2024-01-26 广东盛路通信科技股份有限公司 龙伯透镜及三维龙伯透镜
CN113745847A (zh) * 2021-09-09 2021-12-03 西安海天天线科技股份有限公司 一种人工介质透镜的制作方法
CN114421176A (zh) * 2021-11-08 2022-04-29 广州司南技术有限公司 基于人造介电材料的电磁透镜
CN114843791B (zh) * 2022-03-25 2023-12-01 深圳市南斗星科技有限公司 圆柱形人工介质透镜天线及制作方法
CN114639969B (zh) * 2022-05-19 2022-08-26 西安海天天线科技股份有限公司 5G massive MIMO人工介质透镜天线及其人工介质透镜
CN116247442B (zh) * 2023-02-06 2024-02-23 广东福顺天际通信有限公司 一种电磁波透镜及电磁波透镜的生产方法
CN117154417B (zh) * 2023-10-30 2024-02-20 广东福顺天际通信有限公司 一种可压缩形变的电磁波透镜及反射器
CN117293560B (zh) * 2023-11-24 2024-03-15 陕西海积信息科技有限公司 超宽带双极化透镜天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4430832A1 (de) * 1994-05-23 1995-11-30 Horn Wolfgang Mehrstrahlantenne, Sende-/Empfangseinrichtung und Betriebsverfahren dazu
CN105470659A (zh) * 2015-12-31 2016-04-06 电子科技大学 一种轻量化介质填充式多波束柱面龙伯透镜天线
CN105659434A (zh) * 2013-09-09 2016-06-08 康普北卡罗来纳州公司 带透镜基站天线
CN107959122A (zh) * 2017-08-18 2018-04-24 西安肖氏天线科技有限公司 一种超轻人工介质多层圆柱透镜

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081239A (en) * 1998-10-23 2000-06-27 Gradient Technologies, Llc Planar antenna including a superstrate lens having an effective dielectric constant
US6219006B1 (en) * 1999-02-17 2001-04-17 Ail Systems, Inc. High efficiency broadband antenna
AU2003903409A0 (en) * 2003-07-02 2003-07-17 Commonwealth Scientific And Industrial Research Organisation Composite dielectric materials
DE602005020467D1 (de) 2004-09-10 2010-05-20 Sumitomo Electric Industries Dielektrische luneberglinse und verfahren zu ihrer herstellung
CA2709271C (en) * 2007-12-17 2016-02-23 Matsing Pte. Ltd. An artificial dielectric material and a method of manufacturing the same
CN101976755A (zh) * 2010-08-30 2011-02-16 电子科技大学 一种基于新型开孔结构的高效率介质透镜天线
CN102176545B (zh) * 2011-01-12 2015-06-17 电子科技大学 一种分层数目最少的电大尺寸高效龙伯透镜天线
US9397407B2 (en) * 2012-12-20 2016-07-19 Canon Kabushiki Kaisha Antenna system
CN205122778U (zh) 2015-02-16 2016-03-30 航天特种材料及工艺技术研究所 一种半球龙伯透镜天线
WO2017090401A1 (ja) * 2015-11-24 2017-06-01 株式会社村田製作所 ルネベルグレンズアンテナ装置
JP6521099B2 (ja) * 2016-01-07 2019-05-29 株式会社村田製作所 ルネベルグレンズアンテナ装置
CN106099382A (zh) 2016-06-02 2016-11-09 深圳贝斯特网联通讯设备有限公司 龙伯透镜天线的制造方法
CN107959121B (zh) 2017-08-18 2019-01-18 西安肖氏天线科技有限公司 基于人工介质圆柱透镜扇区多波束天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4430832A1 (de) * 1994-05-23 1995-11-30 Horn Wolfgang Mehrstrahlantenne, Sende-/Empfangseinrichtung und Betriebsverfahren dazu
CN105659434A (zh) * 2013-09-09 2016-06-08 康普北卡罗来纳州公司 带透镜基站天线
CN105470659A (zh) * 2015-12-31 2016-04-06 电子科技大学 一种轻量化介质填充式多波束柱面龙伯透镜天线
CN107959122A (zh) * 2017-08-18 2018-04-24 西安肖氏天线科技有限公司 一种超轻人工介质多层圆柱透镜

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739551A (zh) * 2019-10-29 2020-01-31 Oppo广东移动通信有限公司 阵列透镜、透镜天线和电子设备
CN110739551B (zh) * 2019-10-29 2021-09-28 Oppo广东移动通信有限公司 阵列透镜、透镜天线和电子设备
WO2024139658A1 (zh) * 2022-12-31 2024-07-04 京信通信技术(广州)有限公司 透镜天线

Also Published As

Publication number Publication date
CN107959122A (zh) 2018-04-24
US11145987B2 (en) 2021-10-12
CN107959122B (zh) 2019-03-12
US20190393614A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
WO2019034119A1 (zh) 一种超轻人工介质多层圆柱透镜
CN107946774B (zh) 基于人工介质圆柱透镜全向多波束天线
CN111262042B (zh) 一种人工介质多层柱状透镜制造方法
Jandi et al. Design of a compact dual bands patch antenna for 5G applications
CN107275788B (zh) 一种基于金属微扰结构的毫米波扇形波束柱面龙伯透镜天线
CN105470659A (zh) 一种轻量化介质填充式多波束柱面龙伯透镜天线
EP3876349B1 (en) Cylindrical luneburg lens antenna and cylindrical luneburg lens antenna array
CN104103898B (zh) 高透波低rcs天线罩
CN105098345B (zh) 一种采用双谐振相移单元的宽带反射阵天线
CN107425279A (zh) 一种基于液晶超材料的二维龙伯透镜天线
CN110336135A (zh) 基于3d打印机设计的低成本龙伯透镜天线
Hamid et al. Design of an X-band microwave magnetic absorber composed of multimode dielectric resonator array
CN115107304A (zh) 一种龙伯透镜半球的制备方法及龙伯透镜天线
Alqadami et al. Multi-band antenna array based on double negative metamaterial for multi automotive applications
Boyko et al. EBG metamaterial ground plane for mitigation of multipath signals in GNSS antenna
CN112186351B (zh) 天线罩的球面等积比共形映射方法
Zhou et al. An omnidirectional vertical-polarized C-V2X antenna with high gain and low profile
CN112467397A (zh) 一种相控阵天线单元及模组
He et al. All-dielectric ultra broadband MIMO Luneburg lens with sub-diffraction resolution
Liu et al. A dielectric lens antenna design by using the effective medium theories
Ullah et al. Design and analysis of compact metamaterial MIMO antenna for WLAN applications
Yaziz et al. A Comparison of the Bandwidth Coverage for Different Metasurface Reflector Shapes
Özkeser et al. Design and Fabrication of Annular Microstrip Patch Antenna with Slotted Hexagonal Patch for 3.5 GHz Operation Frequency
Sanz-Izquierdo et al. MIMO LTE vehicular antennas on 3D printed cylindrical forms
Zhang et al. 3d-printed planar graded index lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845550

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18845550

Country of ref document: EP

Kind code of ref document: A1