WO2019034085A1 - 金属屏蔽盖缝隙天线及电子设备 - Google Patents

金属屏蔽盖缝隙天线及电子设备 Download PDF

Info

Publication number
WO2019034085A1
WO2019034085A1 PCT/CN2018/100671 CN2018100671W WO2019034085A1 WO 2019034085 A1 WO2019034085 A1 WO 2019034085A1 CN 2018100671 W CN2018100671 W CN 2018100671W WO 2019034085 A1 WO2019034085 A1 WO 2019034085A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
shield cover
metal shield
conductive
fulcrum
Prior art date
Application number
PCT/CN2018/100671
Other languages
English (en)
French (fr)
Inventor
刘菲
张瑞安
Original Assignee
乐鑫信息科技(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乐鑫信息科技(上海)股份有限公司 filed Critical 乐鑫信息科技(上海)股份有限公司
Priority to US16/630,560 priority Critical patent/US11271286B2/en
Publication of WO2019034085A1 publication Critical patent/WO2019034085A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Definitions

  • the present disclosure relates to the field of wireless communications, for example, to a metal shield cover slot antenna and an electronic device.
  • the performance of the antennas applied on the market is related to the Internet of Things system.
  • the antennas need different debugging and matching for different working environments, and the requirements for antenna performance, volume, appearance, and ease of installation are getting higher and higher. Therefore, how to provide a miniaturized antenna that fully utilizes space and meets basic requirements and improve the integration and application of the Internet of Things system has become an urgent problem to be solved in the field of Internet of Things.
  • the present disclosure provides a metal shield cover slot antenna and an electronic device, which solves the integration and application problem of the volume limit Internet of Things system of the Internet of Things system through a miniaturized antenna capable of fully utilizing space and can meet the requirements, and overcomes the traditional Wireless communication IoT chips use the problem of layout waste and cost increase of on-board or additional Planar Inverted-F Antenna (PIFA) antennas.
  • PIFA Planar Inverted-F Antenna
  • the present invention provides a metal shield cover slot antenna, comprising: a metal shield cover;
  • the metal shield cover includes a plurality of conductive surfaces
  • the metal shielding cover further includes: a slotted slot, an antenna feeding terminal, and an antenna grounding portion;
  • slotted slot is disposed on at least one of the conductive surfaces of the metal shield cover;
  • the antenna ground portion is formed by at least one of the conductive surfaces, is formed by cutting on at least one of the conductive surfaces, or is connected to at least one of the conductive surfaces;
  • the antenna feed terminal is formed by cutting on at least one of the conductive surfaces or connected to at least one of the conductive surfaces;
  • a conductive path is formed along the slotted slot starting from the antenna feed terminal.
  • the antenna ground is configured to be connected to a ground plane
  • the antenna feed terminal is configured to be connected to a radio frequency transceiver circuit
  • the metal shield cover is configured to at least partially overlap the radio frequency transceiver circuit in a vertical direction.
  • the metal shield cover may be a cube, a cylinder or an irregular solid structure.
  • the conductive path is set to one of the following:
  • the conductive path is located in a two-dimensional conductive plane, and the two-dimensional conductive plane is a plane of any one of the conductive surfaces of the metal shield cover or any one of the conductive surfaces;
  • the conductive path is located in a three-dimensional conductive structure, and the three-dimensional conductive structure is formed by a plurality of conductive surfaces of the metal shield cover;
  • the conductive path is located in a three-dimensional conductive structure, and the three-dimensional conductive structure is formed by a plane where the antenna feed terminal is located and a plurality of conductive surfaces of the metal shield cover, wherein the antenna feeds
  • the plane in which the terminal is located is not any one of the conductive faces of the metal shield cover.
  • the metal shield cover slot antenna further includes an antenna fulcrum
  • the antenna fulcrum is formed by cutting at least one of the conductive faces of the metal shield cover, or the antenna fulcrum is coupled to at least one of the conductive faces of the metal shield cover.
  • the antenna feed terminal and the antenna fulcrum are set to one of the following:
  • the antenna feed terminal and the antenna fulcrum are on the same conductive surface of the metal shield cover;
  • the antenna feeding terminal and the antenna fulcrum are respectively located on different conductive surfaces of the metal shielding cover;
  • One of the antenna feed terminal and the antenna fulcrum is on a plane on which any one of the metal shield covers is conductive or any one of the conductive faces, the antenna feed terminal and the antenna fulcrum The other of the two is disposed inside the surrounding structure formed by the plurality of conductive faces of the metal shielding cover and connected to any one or more conductive faces of the metal shielding cover;
  • the antenna feed terminal and the antenna fulcrum are both disposed inside the surrounding structure formed by the plurality of conductive surfaces of the metal shield cover, and are connected to the same conductive surface of the metal shield cover or respectively The different conductive faces of the metal shield cover are connected.
  • the grooved slit is formed on a top surface of the metal shielding cover; the peripheral shape of the grooved slit may be strip, rectangle, circle, ellipse or polygon.
  • the antenna feeding terminal is formed by cutting any one of the vertical conductive surfaces perpendicular to the top surface of the metal shielding cover, or the antenna feeding terminal is connected to the top surface Inner sheet metal structure;
  • the antenna fulcrum is formed by cutting any one of the vertical conductive surfaces perpendicular to the top surface of the metal shield cover, or the antenna fulcrum is a sheet metal structure connected to the inner side of the top surface.
  • the antenna ground portion is formed by at least one of the conductive surfaces, removing a conductive surface of the slotted slot, a position of the antenna feed terminal, and the antenna pivot point on the metal shield cover
  • the antenna ground portion is formed on all remaining conductive surfaces or a portion of the remaining conductive surface after the position.
  • the antenna feed terminal and the antenna ground portion are separated by a gap
  • the antenna feeding terminal and the antenna fulcrum are separated by a conductive surface and a slit, or the antenna feeding terminal and the antenna fulcrum are separated by a gap.
  • the RF transceiver circuitry on the circuit board ; antenna ground of the portion soldered on the circuit board, but not limited to the use or the use of apparatus such as the shield cover clamp the metal shield cover slot antenna Fixedly connected to the circuit board.
  • the circuit board is soldered with a feed pad, a fulcrum pad, and an antenna ground pad;
  • the antenna feed terminal is disposed to be connected to the feed pad; the radio frequency transceiver circuit is configured to be connected to the feed pad through a transmission line; the antenna fulcrum is disposed to be connected to the fulcrum pad; the antenna A ground portion is provided to be connected to the antenna ground pad.
  • the present disclosure also provides an electronic device comprising: a wireless communication system comprising a metal shield cover slot antenna as described above, and a radio frequency transceiver circuit communicably coupled to the metal shield cover slot antenna; A portion of the metal shield cover slot antenna is also coupled to a ground plane disposed by the wireless communication system.
  • the ground plane is provided with a ground reference portion, and the metal shield cover slot antenna is at least partially connected to the reference ground portion.
  • the wireless communication system further includes a transmission line configured to transmit a signal.
  • the wireless communication system further includes an antenna matching circuit, the antenna matching circuit is disposed between the radio frequency transceiver circuit and the feed pad, and the radio frequency transceiver circuit and the a feed pad connection; the metal shield cover slot antenna and the antenna matching circuit at least partially overlap in a vertical direction.
  • the radio frequency transceiver circuit includes a radio frequency transceiver operating in one or more radio frequency communication bands; the radio frequency communication band includes a Wireless Fidelity (WIFI) band at 2.4 GHz, 5 GHz The WIFI band at the location, or the Bluetooth communication band at 2.4 GHz.
  • WIFI Wireless Fidelity
  • the present disclosure provides a metal shield cover slot antenna and an electronic device, which fully utilizes the internal space of the electronic device, and also ensures good communication performance; effectively reduces the size and cost of the wireless communication module; and can also be used for some wear.
  • Class-like wireless communication devices under the basic performance requirements, save the layout space of local wireless communication circuits, and better meet the requirements of various applications.
  • FIG. 1 is a schematic diagram showing the layout of a slot antenna including a radio frequency transceiver circuit and a metal shield cover provided in Embodiment 1;
  • Embodiment 2 is a schematic diagram of an electronic device provided in Embodiment 1;
  • FIG. 3 is a schematic view showing a slotted slot of a metal shield cover slot antenna according to Embodiment 1;
  • FIG. 4a is a front elevational view of a metal shield cover slot antenna provided in Embodiment 1;
  • FIG. 4b is a schematic diagram of an antenna grounding portion provided in Embodiment 1;
  • FIG. 5 is a schematic rear view of a metal shield cover slot antenna according to Embodiment 1;
  • FIG. 6 is a front perspective view of a metal shield cover slot antenna provided in Embodiment 1;
  • FIG. 7 is a top plan view of a radio frequency transceiver circuit and a metal shield cover slot antenna according to Embodiment 1;
  • FIG. 8a is a front elevational view of a metal shield cover slot antenna provided in Embodiment 2;
  • FIG. 8b is a schematic diagram of an antenna grounding portion provided in Embodiment 2;
  • FIG. 9 is a schematic diagram of a metal shield cover slot antenna provided in Embodiment 4.
  • FIG. 10 is a schematic diagram showing preliminary data of electromagnetic characteristics provided in Embodiment 4.
  • 11a is a schematic diagram of a metal shield cover slot antenna provided in Embodiment 3.
  • Figure 11b is a schematic diagram of the antenna grounding portion provided in the third embodiment.
  • FIG. 12 is a schematic diagram showing preliminary data of electromagnetic characteristics provided in the third embodiment.
  • the present disclosure provides a metal shield cover slot antenna and an electronic device.
  • the present disclosure is described below in conjunction with the accompanying drawings and embodiments, but does not constitute a limitation of the present disclosure.
  • An electronic device 5 provided by the present disclosure includes a wireless communication system 7, a storage and processing circuit 6, as shown in FIGS. 1 and 2, the wireless communication system 7 includes a metal shield cover slot antenna 2 and wireless communication based on short distance and long distance RF transceiver circuit 4.
  • the wireless communication system 7 may further include a transmission line for transmitting signals, and the transmission line is connected to the radio frequency transceiver circuit 4, the antenna matching circuit 3, and the metal shield cover slot antenna 2.
  • the RF transceiver circuit 4 and the antenna matching circuit 3 are mounted on a Printed Circuit Board (PCB) 1.
  • the metal shield cover slot antenna 2 at least partially covers the RF transceiver circuit 4 and the antenna matching circuit in the vertical direction. 3.
  • the metal shield cover slot antenna 2 is connected to the circuit board 1.
  • the antenna matching circuit 3 is designed as needed; the RF transceiver circuit 4 can be in the WIFI (Institute of Electrical and Electronics Engineers, IEEE 802.11) band at 2.4 GHz and 5 GHz, and the 2.4 GHz Bluetooth communication band. The operation is performed, but the radio frequency transceiver circuit 4 is not limited to operate in the above communication band.
  • WIFI Institute of Electrical and Electronics Engineers, IEEE 802.11
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the metal shield cover slot antenna 2 includes a metal shield cover 8 .
  • Each surface of the metal shield cover 8 is a conductive surface.
  • the metal shield cover 8 includes a slotted slot 9 and an antenna feed terminal 15 .
  • the metal shielding cover 8 may be a cube, a cylinder or an irregular three-dimensional structure.
  • a groove is formed in the top surface of the metal shield cover 8 to form a slotted slit 9, and an effective conductive path can be obtained to radiate the microwave signal.
  • the arrows in Figures 3 and 4a indicate the effective conductive path direction, i.e., starting from the antenna feed terminal 15, forming the effective conductive path along the peripheral structure of the slotted slot 9.
  • the peripheral shape of the slotted slit 9 may be a rectangle, a circle, an ellipse or other polygon.
  • adjusting the shape, width and length of the slotted slot 9 can meet the actual requirements of the radiation shielding efficiency and directivity of the metal shield cover slot antenna 2.
  • the antenna feed terminal 15 and the antenna fulcrum 14 may be formed by cutting on any conductive surface on the metal shield cover 8. As shown in FIG. 4a, FIG. 5 and FIG. 7, in this embodiment, one of the vertical conductive surfaces of the metal shield cover 8 is cut (the vertical conductive surface is perpendicular to the top surface of the metal shield cover 8) to form an antenna feed. Terminal 15 and antenna fulcrum 14. One end of the antenna feed terminal 15 is connected to the top edge, and the other end of the antenna feed terminal 15 is soldered to the feed pad 15a on the circuit board 1. One end of the antenna fulcrum 14 is connected to the top edge, and the other end of the antenna fulcrum 14 is soldered to the fulcrum pad 14a on the circuit board 1.
  • the antenna grounding portion 9a includes a first antenna grounding portion 10, a second antenna grounding portion 11, a third antenna grounding portion 12, and a fourth antenna grounding portion 13, Correspondingly formed on four vertical conductive surfaces.
  • the circuit board 1 has a first ground pad 10a, a second ground pad 11a, a third ground pad 12a, and a fourth ground pad 13a.
  • the first antenna ground portion 10 is soldered to the first ground pad 10a
  • the second antenna ground portion 11 is soldered to the second ground pad 11a
  • the third antenna ground portion 12 is soldered to the third ground pad 12a.
  • the planar antenna ground portion 13 is soldered to the fourth ground pad 13a.
  • the antenna fulcrum 14 and the antenna feed terminal 15 are on the same vertical conductive surface, and the cutting gap 16 is formed by cutting the vertical conductive surface where the antenna feed terminal 15 is located, so that the antenna feed terminal 15 is connected to the second surface.
  • a space is formed between the ground portions 11.
  • the antenna fulcrum 14 is placed as needed according to the slotted slits 9 of different shapes, and the position of the antenna fulcrum 14 may be on the surface of the metal shield cover 8 or may be separately placed on the metal shield cover slot antenna. In the interior of the 2, the antenna fulcrum 14 may not be provided in some implementation applications.
  • the radio frequency transceiver circuit 4 is connected to the antenna matching circuit 3 through the first transmission line 271, and the antenna matching circuit 3 is connected to the feeding pad 15a through the third transmission line 273, and the antenna feeding terminal and the feeding pad on the circuit board 1 15a is soldered to achieve connection of the RF transceiver circuit 4 to the antenna feed terminal.
  • the antenna matching circuit 3 includes a second transmission line 272, a first element 3a, a second element 3b, and a third element 3c; the second transmission line 272 is disposed between the first element 3a and the second element 3b, and the third element 3c and the The two transmission lines 272 are connected, and the third element 3c is grounded at the same time.
  • the first element 3a, the second element 3b, and the third element 3c in the antenna matching circuit 3 may be passive elements such as an inductor, a capacitor, and a resistor.
  • the internal structure of the antenna matching circuit 3 in the first embodiment is shown by a broken line in Fig. 7, and the internal structure is T-shaped.
  • the antenna matching circuit 3 is not limited to this T type, and may be of various rational structures such as a PI type.
  • the number of electronic components used for matching is not limited to the three electronic components in the first embodiment, and the antenna matching circuit 3 may be composed of other numbers of electronic components.
  • the antenna matching circuit 3 is not essential.
  • the RF transceiver circuit 4 mounted on the circuit board 1 can be directly connected to the antenna feeding pad 15a through a transmission line, thereby enabling the RF transceiver circuit 4 and the antenna feeding terminal. Connect and send and receive signals.
  • At least a portion of the metal shield cover slot antenna 2 overlaps with the antenna matching circuit 3 in a vertical direction, and at least a portion of the metal shield cover slot antenna 2 overlaps with the RF transceiver circuit 4 in the vertical direction.
  • the metal shield cover slot antenna 2 can also completely cover the RF transceiver circuit 4 and the antenna matching circuit 3, which also reduces the Specific Absorption Rate (SAR) value of the electromagnetic radiation while achieving wireless communication. Therefore, the metal shield cover slot antenna 2 can also be used for wearable wireless communication devices. When the basic performance requirements are met, the layout space of the local wireless communication circuit is saved, and the requirements of different applications are better met.
  • SAR Specific Absorption Rate
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 8 is a front view of the metal shield cover slot antenna 2 of the second embodiment, the metal shield cover slot antenna 2 includes a metal shield cover 24, and the metal shield cover 24 includes an antenna feed terminal 17 and an antenna support point 23, The antenna ground portion 22a and the slotted slit 25 on the top surface.
  • the arrow in Fig. 8a indicates the effective conductive path direction, i.e., from the antenna feed terminal 17, along the peripheral structure of the slotted slit 25 to form the effective conductive path.
  • the antenna ground portion 22a is a first antenna ground portion 22, a second antenna ground portion 20, and a third antenna ground portion 21 on each vertical conductive surface.
  • the antenna feed terminal 17 and the antenna fulcrum 23 are formed by cutting different conductive faces on the metal shield cover 24.
  • the antenna fulcrum 23 is disposed on the conductive surface of the second antenna grounding portion 20, and two portions of the second antenna grounding portion 20 are spaced apart on both sides of the antenna fulcrum 23.
  • An antenna feeding terminal 17 is disposed on the other conductive surface of the metal shielding cover 24, for example, the conductive surface on which the fourth antenna grounding portion 19 is located, and the cutting slit 18 is formed by cutting the conductive surface, and further at the antenna feeding terminal 17 A space is formed between the fourth antenna ground portion 19.
  • the impedance and bandwidth of the metal shield cover slot antenna 2 can be adjusted and optimized. Therefore, the position of the antenna feed terminal can be flexibly set according to the application scenario.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 11a is a schematic view of the metal shield cover slot antenna 2 in the third embodiment.
  • the metal shield cover slot antenna 2 includes a metal shield cover 33 including an antenna feed terminal 31, an antenna fulcrum 30, an antenna ground portion 40a, and a slotted slot 32 on the top surface.
  • the arrow in Fig. 11a indicates the effective conductive path direction, i.e., starting from the antenna feed terminal 31, forming the effective conductive path along the peripheral structure of the slotted slot 32.
  • the conductive cover surface remaining after the top surface of the slotted slit 32, the antenna feed terminal 31, and the antenna fulcrum 30 are removed from the metal shield cover 33 at least partially forms the antenna ground portion 40a.
  • the antenna feed terminal 31 and the antenna fulcrum 30 are formed by cutting different conductive faces on the metal shield cover 33.
  • the antenna ground portion 40a is a first antenna ground portion 40, a second antenna ground portion 38, and a third antenna ground portion 39 on each vertical conductive surface.
  • the fourth antenna grounding portion 37 has one end connected to the top surface and the other end soldered to the corresponding ground pad on the circuit board 1.
  • the antenna feed terminal 31 and the antenna fulcrum 30 are formed by cutting different conductive faces on the metal shield cover 33.
  • the antenna feeding terminal 31 is disposed on the conductive surface where the fourth antenna grounding portion 37 is located, and the cutting gap 34 is formed by cutting the conductive surface, and further, the antenna feeding terminal 31 and the fourth antenna grounding portion 37 are formed. Intervals are formed.
  • An antenna fulcrum 30 is disposed on the other conductive surface of the metal shield cover 33, for example, the conductive surface on which the first antenna ground portion 40 is located, such that one side of the antenna fulcrum 30 and the first antenna ground portion 40 are left. interval.
  • the biggest difference from the second embodiment is that the vertical conductive surfaces between the antenna fulcrum 30 and the antenna feed terminal 31 in the third embodiment are all cut off.
  • the impedance and bandwidth of the metal shield cover slot antenna 2 can be adjusted and optimized. Therefore, the position of the antenna feed terminal can be flexibly set according to the specific application scenario.
  • the abscissa represents the signal frequency in FIG. 12
  • the ordinate represents the return loss S11 value obtained by the simulation.
  • the frequency points m1, m2, and m3 of the 2.4 GHz wireless communication band are all shown in FIG. 12 to satisfy the basic signal transmission requirements.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 9 is a schematic view of the metal shield cover slot antenna 2 in the fourth embodiment.
  • the metal shield cover slot antenna 2 includes a metal shield cover 35 that includes an antenna feed terminal 29, an antenna fulcrum 28, an antenna ground portion 41a, and a slotted slit 36 on the top surface.
  • the arrows in FIG. 9 indicate the effective conductive path direction, that is, from the antenna feed terminal 29, the effective conductive path is formed along the peripheral structure of the slotted slit 36.
  • the top surface of the metal shield cover 35 on which the slotted slit 36 is located is removed, and at least a part of the antenna ground portion 41a is formed.
  • the antenna feeding terminal 29 and the antenna fulcrum 28 are both disposed in the inner space of the metal shielding cover 35, and neither the wire feeding terminal 29 nor the antenna fulcrum 28 are on any one of the conductive surfaces of the metal shielding cover 35. Moreover, the antenna feed terminal 29 and the antenna fulcrum 28 are also on different planes from one or more of the conductive faces of the metal shield cover 35 itself.
  • the antenna feeding terminal 29 and the antenna fulcrum 28 can be formed by using a metal structure such as a probe, a cylinder, a square column, a regular sheet, etc., and the antenna feeding terminal 29 and the antenna fulcrum 28 are connected to the inside of the metal shielding cover 35, Each of the ends is connected to the inner top surface of the metal shield cover 35, and the other end is soldered to the feed pad and the fulcrum pad on the circuit board 1, respectively.
  • a metal structure such as a probe, a cylinder, a square column, a regular sheet, etc.
  • the antenna ground portions 41a of the metal shield cover 35 are each connected to the top surface at one end and soldered to the corresponding ground pads on the circuit board 1 at the other end.
  • the antenna impedance can be adjusted. bandwidth. Adjusting the width and length of the slotted slit 36 can adjust the resonant frequency of the antenna operation.
  • FIG. 10 preliminary data of electromagnetic characteristics embodied in Embodiment 3 can be given by using electromagnetic simulation software.
  • the abscissa represents the signal frequency
  • the ordinate represents the return loss S11 value obtained by the simulation.
  • S11 takes the minimum value
  • two valley values appear in FIG. 10
  • the metal shield cover slot antenna 2 in the third embodiment exhibits a certain dual-frequency characteristic
  • the signal frequencies respectively correspond to the WIFI at 2.4 GHz.
  • the frequency band, the Bluetooth communication band and the WIFI band at 5 GHz indicate that it can be applied to certain special scenarios.
  • the frequency points m6, m7, m8, m9, and m10 of the wireless communication band are all satisfied with the basic signal transmission requirements.
  • the antenna feeding terminal and the antenna fulcrum can be formed by cutting a metal shielding cover body; or can be generated by using a metal structure such as a probe, a cylinder, a square column, and a regular sheet. And connected to the inside of the metal shield cover.

Abstract

本文公开了一种金属屏蔽盖缝隙天线,包括:金属屏蔽盖体;所述金属屏蔽盖体包括多个导电面,所述金属屏蔽盖体还包括:开槽缝隙、天线馈电端子以及天线接地部;所述开槽缝隙设置在所述金属屏蔽盖体的至少一个所述导电面上,所述天线接地部由至少一个所述导电面形成、在至少一个所述导电面上切割形成、或者与至少一个所述导电面连接;所述天线馈电端子在至少一个所述导电面上切割形成,或者与至少一个所述导电面连接;从天线馈电端子沿着开槽缝隙形成导电路径。本文还公开了一种电子设备。

Description

金属屏蔽盖缝隙天线及电子设备
本申请要求在2017年8月15日提交中国专利局、申请号为201710697038.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及无线通信领域,例如涉及一种金属屏蔽盖缝隙天线及电子设备。
背景技术
近年来,随着多种电子通信设备(例如,物联网技术)的快速发展与应用,以及智能终端的普及,对系统集成度的要求也越来越高。基于应用场景的限制,存在系统体积足够小且便于集成在诸如便携音箱、灯具、开关等多种应用中的需求,因此,物联网系统体积是制约物联网的进一步发展一个因素,存在如何使天线足够小且便于安装的问题。
目前,市面上所应用的天线的性能与物联网系统有关,天线对于不同的工作环境要进行不同的调试匹配,对天线性能、体积、外观、安装方便等要求越来越高。因此,如何提供一种充分利用空间且性能满足基本要求的小型化天线,提高物联网系统的集成度与应用,成为了物联网领域亟待解决的问题。
发明内容
本公开提供一种金属屏蔽盖缝隙天线及电子设备,通过一种能充分利用空间且能满足要求的小型化天线,解决物联网系统体积限制物联网系统的集成和应用问题,还克服了传统的无线通信物联网芯片使用板载或额外平面倒F天线(Planar Inverted-F Antenna,PIFA)天线的布局浪费和成本提升的问题。
本公开提供的一种金属屏蔽盖缝隙天线,包括:金属屏蔽盖体;
所述金属屏蔽盖体包括多个导电面;
所述金属屏蔽盖体还包括:开槽缝隙、天线馈电端子以及天线接地部;
其中,所述开槽缝隙设置在所述金属屏蔽盖体的至少一个所述导电面上;
所述天线接地部由至少一个所述导电面形成、在至少一个所述导电面上切割形成、或者与至少一个所述导电面连接;
所述天线馈电端子在至少一个所述导电面上切割形成,或者与至少一个所述导电面连接;
从所述天线馈电端子开始沿所述开槽缝隙形成导电路径。
在一实施例中,所述天线接地部配置为与接地平面连接;
所述天线馈电端子配置为与射频收发电路连接;
所述金属屏蔽盖体配置为与所述射频收发电路在垂直方向上至少部分重叠。
在一实施例中,所述金属屏蔽盖体可为立方体、圆柱体或不规则立体结构。
在一实施例中,所述导电路径设置为以下之一:
所述导电路径位于二维导电平面中,所述二维导电平面是所述金属屏蔽盖体的任意一个导电面或任意一个导电面所在的平面;
所述导电路径位于三维立体导电结构体中,所述三维立体导电结构体由所述金属屏蔽盖体的多个导电面形成;
所述导电路径位于三维立体导电结构体中,所述三维立体导电结构体由所述天线馈电端子所在的平面及所述金属屏蔽盖体的多个导电面形成,其中,所述天线馈电端子所在的平面不是所述金属屏蔽盖体的任意一个导电面。
在一实施例中,金属屏蔽盖缝隙天线还包括天线支点;
所述天线支点在所述金属屏蔽盖体的至少一个所述导电面上切割形成,或 者所述天线支点与所述金属屏蔽盖体的至少一个所述导电面连接。
在一实施例中,所述天线馈电端子和所述天线支点设置为以下之一:
所述天线馈电端子和所述天线支点处在所述金属屏蔽盖体的同一导电面上;
所述天线馈电端子和所述天线支点分别处在所述金属屏蔽盖体的不同导电面上;
所述天线馈电端子与所述天线支点二者中的一个处在所述金属屏蔽盖体的任意一个导电上或任意一个导电面所在的平面上,所述天线馈电端子与所述天线支点二者中的另一个设置在所述金属屏蔽盖体的多个导电面形成的包围结构的内部并与所述金属屏蔽盖体的任意一个或多个导电面连接;
所述天线馈电端子和所述天线支点均设置在所述金属屏蔽盖体的多个导电面形成的包围结构的内部,并与所述金属屏蔽盖体的同一导电面连接或分别与所述金属屏蔽盖体的不同导电面连接。
在一实施例中,所述开槽缝隙形成在所述金属屏蔽盖体的顶面上;所述开槽缝隙的外围形状可为条状、矩形、圆形、椭圆形或多边形。
在一实施例中,所述天线馈电端子是通过切割所述金属屏蔽盖体上垂直于所述顶面的任意一个垂直导电面形成,或者所述天线馈电端子是连接于所述顶面内侧的薄片金属结构;
所述天线支点是通过切割所述金属屏蔽盖体上垂直于所述顶面的任意一个垂直导电面形成,或者所述天线支点是连接于所述顶面内侧的薄片金属结构。
在一实施例中,当所述天线接地部由至少一个所述导电面形成时,在金属屏蔽盖体上除去开槽缝隙所在导电面、所述天线馈电端子的位置、以及所述天线支点的位置后的所有剩余导电面或一部分剩余导电面上,形成所述天线接地部。
在一实施例中,所述天线馈电端子与所述天线接地部之间通过缝隙隔开;
所述天线馈电端子与所述天线支点之间通过导电面和缝隙隔开,或者,所述天线馈电端子与所述天线支点之间通过缝隙隔开。
在一实施例中,所述射频收发电路设置在电路板上;所述天线接地部焊接在所述电路板上,或者使用但不限于使用屏蔽盖夹 等装置将所述金属屏蔽盖缝隙天线固定连接在所述电路板上。
在一实施例中,所述电路板上焊接有馈电焊盘、支点焊盘以及天线接地焊盘;
所述天线馈电端子设置为与所述馈电焊盘连接;所述射频收发电路设置为通过传输线与所述馈电焊盘连接;所述天线支点设置为与所述支点焊盘连接;所述天线接地部设置为与所述天线接地焊盘连接。
本公开还提供了一种电子设备,它包含:无线通信系统,所述无线通信系统包括如上文所述的金属屏蔽盖缝隙天线,和与所述金属屏蔽盖缝隙天线通信连接的射频收发电路;所述金属屏蔽盖缝隙天线的一部分还连接到所述无线通信系统设置的接地平面。
在一实施例中,所述接地平面设有接地参考部分,所述金属屏蔽盖缝隙天线至少部分与所述参考接地部分连接。
在一实施例中,所述无线通信系统还包括传输线,所述传输线设置为传输信号。
在一实施例中,所述无线通信系统还包括天线匹配电路,所述天线匹配电路设置于所述射频收发电路和馈电焊盘之间,通过所述传输线分别与所述射频收发电路和所述馈电焊盘连接;所述金属屏蔽盖缝隙天线与所述天线匹配电路在垂直方向至少部分重叠。
在一实施例中,所述射频收发电路包含工作在一个或多个射频通信频带的射频收发器;所述射频通信频带包含2.4吉赫兹GHz处的无线保真(Wireless Fidelity,WIFI)频带、5GHz处的WIFI频带、或2.4GHz处的蓝牙通信频带。
本公开提供了一种金属屏蔽盖缝隙天线及电子设备,在充分利用电子设备内部空间,同时也保证了良好的通信性能;有效地降低了无线通信模块的体积和成本;还可用于某些穿戴类无线通信设备,在满足基本性能要求下,节约了局部无线通信电路的布局空间,更好地满足各种不同应用的要求。
附图说明
图1为实施例一提供的包含射频收发电路与金属屏蔽盖缝隙天线的布局示意图;
图2为实施例一提供的电子设备的示意图;
图3为实施例一提供的金属屏蔽盖缝隙天线的开槽缝隙示意图;
图4a为实施例一提供的金属屏蔽盖缝隙天线的正面示意图;
图4b为实施例一提供的天线接地部示意图;
图5为实施例一提供的金属屏蔽盖缝隙天线的背面示意图;
图6为实施例一提供的金属屏蔽盖缝隙天线的正面立体图;
图7为实施例一提供的射频收发电路与金属屏蔽盖缝隙天线的俯视示意图;
图8a为实施例二提供的金属屏蔽盖缝隙天线的正面示意图;
图8b为实施例二提供的天线接地部示意图;
图9为实施例四提供的金属屏蔽盖缝隙天线示意图;
图10为实施例四提供的电磁特性初步数据示意图;
图11a为实施例三提供的金属屏蔽盖缝隙天线示意图;
图11b为实施例三提供的天线接地部示意图;
图12为实施例三提供的电磁特性初步数据示意图。
其中,1.电路板;2.金属屏蔽盖缝隙天线;3.天线匹配电路;3a.第一元件;3b.第二元件;3c.第三元件;4.射频收发电路;5.电子设备;6.存储和处理电路;7.无线通信系统;8.金属屏蔽盖体;9.开槽缝隙;9a.天线接地部;10.第一面天线接地部;11.第二面天线接地部;12.第三面天线接地部;13.第四面天线接地部;10a.第一接地焊盘;11a.第二接地焊盘;12a.第三接地焊盘;13a.第四接地焊盘;14a.支点焊盘;14.天线支点;15.天线馈电端子;15a.馈电焊盘;16.切割缝隙;17.天线馈电端子;18.切割缝隙;19.第四面天线接地部;20.第二面天线接地部;21.第三面天线接地部;22.第一面天线接地部;22a.天线接地部;23.天线支点;24.金属屏蔽盖体;25.开槽缝隙;271.第一传输线;272.第二传输线;273.第三传输线;28.天线支点;29.天线馈电端子;30.天线支点;31.天线馈电端子;32.开槽缝隙;33.金属屏蔽盖体;34.切割缝隙;35.金属屏蔽盖体;35-1.开口边沿直线;36.开槽缝隙;37.第四面天线接地部;38.第二面天线接地部;39.第三面天线接地部;40.第一面天线接地部;40a.天线接地部;41.第二面天线接地部;41a.天线接地部。
具体实施方式
本公开提供了一种金属屏蔽盖缝隙天线及电子设备,下面结合附图与实施方式对本公开做说明,但不构成对本公开的限制。
本公开提供的一种电子设备5包含无线通信系统7、存储和处理电路6,如图1和图2所示,无线通信系统7包括金属屏蔽盖缝隙天线2和基于短距离和长距离无线通信的射频收发电路4。无线通信系统7还可以包含传输信号的传输 线,传输线连接射频收发电路4、天线匹配电路3以及金属屏蔽盖缝隙天线2。
如图1所示,射频收发电路4和天线匹配电路3安装在电路板(Printed Circuit Board,PCB)1上,金属屏蔽盖缝隙天线2在垂直方向上至少部分覆盖射频收发电路4与天线匹配电路3,金属屏蔽盖缝隙天线2与电路板1连接。其中,天线匹配电路3是按需设计的;射频收发电路4可在2.4GHz和5GHz处的WIFI(电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11)频带以及2.4GHz蓝牙通信频带进行工作,但射频收发电路4并不局限于在上述通信频带工作。
实施例一:
如图4a所示,金属屏蔽盖缝隙天线2包含金属屏蔽盖体8,金属屏蔽盖体8的每个表面均为导电面,金属屏蔽盖体8包含开槽缝隙9、天线馈电端子15、天线支点14以及天线接地部9a。其中,金属屏蔽盖体8可以为立方体、圆柱体或不规则立体结构。
如图3所示,在金属屏蔽盖体8的顶面上开槽,形成开槽缝隙9,能得到有效导电路径来辐射微波信号。图3和图4a中的箭头指示为有效导电路径方向,即从天线馈电端子15开始,沿开槽缝隙9的外围结构而形成该有效导电路径。开槽缝隙9的外围形状可以是矩形、圆形、椭圆形或者其他多边形。
其中,调节开槽缝隙9的形状、宽度以及长度,可以满足金属屏蔽盖缝隙天线2有关辐射效率和方向性的实际要求。
天线馈电端子15和天线支点14可以在金属屏蔽盖体8上的任意导电面上通过切割形成。结合图4a、图5和图7所示,本实施例中切割金属屏蔽盖体8的其中一个垂直导电面(该垂直导电面与金属屏蔽盖体8的顶面垂直),形成了天线馈电端子15和天线支点14。天线馈电端子15的一端与顶面边缘连接,天 线馈电端子15的另一端焊接于电路板1上的馈电焊盘15a。天线支点14的一端与顶面边缘连接,天线支点14的另一端焊接于电路板1上的支点焊盘14a。
在金属屏蔽盖体8上除去开槽缝隙9所在的顶面、天线馈电端子15以及天线支点14后剩余的导电面,至少有部分形成天线接地部9a。在一实施例中,如图4b所示,该天线接地部9a包括第一面天线接地部10、第二面天线接地部11、第三面天线接地部12和第四面天线接地部13,对应形成在四个垂直导电面上。
电路板1上有第一接地焊盘10a、第二接地焊盘11a、第三接地焊盘12a以及第四接地焊盘13a。第一面天线接地部10与第一接地焊盘10a焊接,第二面天线接地部11与第二接地焊盘11a焊接,第三面天线接地部12与第三接地焊盘12a焊接,第四面天线接地部13与第四接地焊盘13a焊接。
如图4a所示,天线支点14与天线馈电端子15在同一垂直导电面上,通过切割天线馈电端子15所在的垂直导电面产生切割缝隙16,从而在天线馈电端子15与第二面接地部11之间形成间隔。通过调节天线馈电端子15的宽度和切割缝隙16的大小,可调整并优化金属屏蔽盖缝隙天线2的天线阻抗和通信频带带宽。
在一实施例中,根据不同形状的开槽缝隙9,按需来放置天线支点14,且天线支点14的位置可以在金属屏蔽盖体8的表面上,也可单独放置在金属屏蔽盖缝隙天线2的内部,在部分实施应用中也可以不设置天线支点14。
如图7所示,射频收发电路4通过第一传输线271连接天线匹配电路3,天线匹配电路3通过第三传输线273连接馈电焊盘15a,且天线馈电端子与电路板1上的馈电焊盘15a焊接,从而实现了射频收发电路4与天线馈电端子的连接。
天线匹配电路3中包含第二传输线272、第一元件3a、第二元件3b以及第三元件3c;第二传输线272设置在第一元件3a和第二元件3b之间,第三元件 3c与第二传输线272连接,且第三元件3c同时接地。天线匹配电路3中的第一元件3a、第二元件3b、以及第三元件3c可以是电感、电容、电阻等无源元件。
图7中虚线标注所示为实施例一中天线匹配电路3的内部结构,该内部结构为T型。但天线匹配电路3并不局限于此T型,还可是PI型等多种合理的结构。其中用于匹配的电子元件个数也不局限于实施例一中的三个电子元件,还可由其他数量的电子元件来组成天线匹配电路3。
其中,天线匹配电路3并不是必须的,在部分实施应用中,安装在电路板1上的射频收发电路4可直接通过传输线连接天线馈电焊盘15a,从而使射频收发电路4与天线馈电端子连接,进行信号收发。
如图6所示,金属屏蔽盖缝隙天线2至少有部分与天线匹配电路3在垂直方向上重叠,金属屏蔽盖缝隙天线2至少有部分与射频收发电路4在垂直方向上重叠。
金属屏蔽盖缝隙天线2还可以完全覆盖射频收发电路4和天线匹配电路3,这在实现无线通信的同时,也降低了电磁辐射特定吸收率(Specific Absorption Rate,SAR)值。所以金属屏蔽盖缝隙天线2还可用于穿戴类无线通信设备,在满足基本性能要求下,节约了局部无线通信电路的布局空间,更好地满足不同应用的要求。
实施例二:
如图8a所示为实施例二的金属屏蔽盖缝隙天线2的正面示意图,金属屏蔽盖缝隙天线2包含金属屏蔽盖体24,该金属屏蔽盖体24包含天线馈电端子17、天线支点23、天线接地部22a和顶面上的开槽缝隙25。
图8a中的箭头指示为有效导电路径方向,即从天线馈电端子17开始,沿开槽缝隙25的外围结构而形成该有效导电路径。
在金属屏蔽盖体24上除去开槽缝隙25所在的顶面、天线馈电端子17和天线支点23后剩余的导电面,至少部分形成天线接地部22a。在实施例二中,如图8b所示,该天线接地部22a分别为在每个垂直导电面上的第一面天线接地部22、第二面天线接地部20、第三面天线接地部21以及第四面天线接地部19,其各自有一端连接顶面,另一端焊接在电路板1上对应的接地焊盘上。
在实施例二中,通过切割金属屏蔽盖体24上的不同导电面,形成天线馈电端子17和天线支点23。
其中,天线支点23设置在第二面天线接地部20所在的导电面,天线支点23的两侧有间隔地分布着第二面天线接地部20的两个部分。
在金属屏蔽盖体24上的另一个导电面,例如第四面天线接地部19所在的导电面上设置天线馈电端子17,通过切割该导电面产生切割缝隙18,进而在天线馈电端子17与第四面天线接地部19之间形成间隔。
通过调节天线馈电端子17的宽度和切割缝隙18的大小,可调整并优化金属屏蔽盖缝隙天线2的阻抗和带宽。所以天线馈电端子的位置可根据应用场景来灵活设置。
实施例三:
如图11a所示为实施例三中的金属屏蔽盖缝隙天线2示意图。金属屏蔽盖缝隙天线2包含金属屏蔽盖体33,该金属屏蔽盖体33包含天线馈电端子31、天线支点30、天线接地部40a和顶面上的开槽缝隙32。
图11a中的箭头指示为有效导电路径方向,即从天线馈电端子31开始,沿开槽缝隙32的外围结构而形成该有效导电路径。
在金属屏蔽盖体33上除去开槽缝隙32所在的顶面、天线馈电端子31和天线支点30后剩余的导电面,至少有部分形成天线接地部40a。
在实施例三中,通过切割金属屏蔽盖体33上的不同导电面形成天线馈电端子31和天线支点30。在一实施例中,如图11b所示,该天线接地部40a分别为在每个垂直导电面上的第一面天线接地部40、第二面天线接地部38、第三面天线接地部39和第四面天线接地部37,其各自有一端连接顶面,另一端焊接在电路板1上对应的接地焊盘上。
在实施例三中,通过切割金属屏蔽盖体33上的不同导电面形成天线馈电端子31和天线支点30。
其中,天线馈电端子31设置在第四面天线接地部37所在的导电面,通过切割该导电面产生切割缝隙34,进而在天线馈电端子31的一侧与第四面天线接地部37之间形成间隔。
在金属屏蔽盖体33上的另一个导电面,例如第一面天线接地部40所在的导电面上设置天线支点30,使天线支点30的一侧与第一面天线接地部40之间留有间隔。而与实施例二最大的不同在于,实施例三中天线支点30到天线馈电端子31之间的垂直导电面全部切除。
通过调节天线馈电端子31的宽度和切割缝隙34的大小,可调整并优化金属屏蔽盖缝隙天线2的阻抗和带宽。所以天线馈电端子的位置可根据具体应用场景来灵活设置。
如图12所示,运用电磁仿真软件得到的实施例三中电磁特性初步数据,图12中横坐标代表信号频率,纵坐标代表仿真得到的回波损耗S11值。本实施例仿真模型工作在2.4GHz,当m1=2.45GHz时,S11值最小。图12中列举了2.4GHz无线通信频带的频点m1、m2、m3都满足基本信号传输要求。
实施例四:
如图9所示为实施例四中的金属屏蔽盖缝隙天线2示意图。金属屏蔽盖缝 隙天线2包含金属屏蔽盖体35,该金属屏蔽盖体35包含天线馈电端子29、天线支点28、天线接地部41a和顶面上的开槽缝隙36。
图9中的箭头指示为有效导电路径方向,即从天线馈电端子29开始,沿开槽缝隙36的外围结构而形成该有效导电路径。
在金属屏蔽盖体35上除去开槽缝隙36所在的顶面,至少有部分形成天线接地部41a。
实施例四中,天线馈电端子29和天线支点28都设置在金属屏蔽盖体35的内部空间中,线馈电端子29和天线支点28均不在金属屏蔽盖体35的任何一导电面上。而且,天线馈电端子29和天线支点28也分别与金属屏蔽盖体35本身的一个或多个导电面处在不同的平面上。
其中,可利用探针、圆柱、方柱、规则薄片等金属结构来形成天线馈电端子29和天线支点28,再将天线馈电端子29和天线支点28与金属屏蔽盖体35的内部连接,其各自一端均连接在金属屏蔽盖体35的内部顶面上,另一端分别焊接在电路板1上的馈电焊盘和支点焊盘。
金属屏蔽盖体35的天线接地部41a均是一端连接顶面,另一端焊接在电路板1上对应的接地焊盘上。
通过调整天线馈电端子29与金属屏蔽盖体35的开口边沿直线35-1的X方向距离和天线馈电端子29到第二面天线接地部41的Y方向距离的大小,可以调整天线阻抗、带宽。调节开槽缝隙36的宽度、长度可以来调节天线工作的谐振频率。
如图10所示,运用电磁仿真软件可以给出实施例三中体现的电磁特性初步数据,图10中横坐标代表信号频率,纵坐标代表仿真得到的回波损耗S11值。当S11取最小值时,图10中有两个谷值出现,由此得出,实施例三中金属屏蔽 盖缝隙天线2显示出一定的双频特性,信号频率分别对应于2.4GHz处的WIFI频带、蓝牙通信频带和5GHz处的WIFI频带,说明其可应用于某些特殊场景,图10中列举了无线通信频段的频点m6、m7、m8、m9、m10都满足基本信号传输要求。
可见,根据应用场景和性能要求,天线馈电端子与天线支点可通过切割金属屏蔽盖体形成;也可利用探针、圆柱、方柱、规则薄片等金属结构生成,
Figure PCTCN2018100671-appb-000001
Figure PCTCN2018100671-appb-000002
并与金属屏蔽盖体内部连接。

Claims (17)

  1. 一种金属屏蔽盖缝隙天线,包括:金属屏蔽盖体;
    所述金属屏蔽盖体包括多个导电面;
    所述金属屏蔽盖体还包括:开槽缝隙、天线馈电端子以及天线接地部;
    其中,所述开槽缝隙设置在所述金属屏蔽盖体的至少一个所述导电面上;
    所述天线接地部由至少一个所述导电面形成、在至少一个所述导电面上切割形成、或者与至少一个所述导电面连接;
    所述天线馈电端子在至少一个所述导电面上切割形成,或者与至少一个所述导电面连接;
    从所述天线馈电端子开始沿所述开槽缝隙形成导电路径。
  2. 根据权利要求1所述的金属屏蔽盖缝隙天线,还包括:
    所述天线接地部配置为与接地平面连接;
    所述天线馈电端子配置为与射频收发电路连接;
    所述金属屏蔽盖体配置为与所述射频收发电路在垂直方向上至少部分重叠。
  3. 根据权利要求1或2所述的金属屏蔽盖缝隙天线,其中,所述金属屏蔽盖体为立方体、圆柱体、或不规则立体结构。
  4. 根据权利要求1、2或3所述的金属屏蔽盖缝隙天线,其中,所述导电路径设置为以下之一:
    所述导电路径位于二维导电平面中,所述二维导电平面是所述金属屏蔽盖体的任意一个导电面或任意一个导电面所在的平面;
    所述导电路径位于三维立体导电结构体中,所述三维立体导电结构体由所述金属屏蔽盖体的多个导电面形成;
    所述导电路径位于三维立体导电结构体中,所述三维立体导电结构体由所述天线馈电端子所在的平面及所述金属屏蔽盖体的多个导电面形成,其中,所 述天线馈电端子所在的平面不是所述金属屏蔽盖体的任意一个导电面。
  5. 根据权利要求1所述的金属屏蔽盖缝隙天线,其中,所述金属屏蔽盖缝隙天线还包括天线支点;
    所述天线支点在所述金属屏蔽盖体的至少一个所述导电面上切割形成;或者
    所述天线支点与所述金属屏蔽盖体的至少一个所述导电面连接。
  6. 根据权利要求5所述的金属屏蔽盖缝隙天线,其中,所述天线馈电端子和所述天线支点设置为以下之一:
    所述天线馈电端子和所述天线支点处在所述金属屏蔽盖体的同一导电面上;
    所述天线馈电端子和所述天线支点分别处在所述金属屏蔽盖体的不同导电面上;
    所述天线馈电端子与所述天线支点二者中的一个处在所述金属屏蔽盖体的任意一个导电面或任意一个导电面所在的平面上,所述天线馈电端子与所述天线支点二者中的另一个设置在所述金属屏蔽盖体的多个导电面形成的包围结构的内部并与所述金属屏蔽盖体的任意一个或多个导电面连接;
    所述天线馈电端子和所述天线支点均设置在所述金属屏蔽盖体的多个导电面形成的包围结构的内部,并与所述金属屏蔽盖体的同一导电面连接或分别与所述金属屏蔽盖体的不同导电面连接。
  7. 根据权利要求1-3、6任一项所述的金属屏蔽盖缝隙天线,其中,所述开槽缝隙形成在所述金属屏蔽盖体的顶面上;所述开槽缝隙的外围形状可为条状、矩形、圆形、椭圆形或多边形。
  8. 根据权利要求7所述的金属屏蔽盖缝隙天线,其中:
    所述天线馈电端子是通过切割所述金属屏蔽盖体上垂直于所述顶面的任意 一个垂直导电面形成,或者所述天线馈电端子是连接于所述顶面内侧的薄片金属结构;
    所述天线支点是通过切割所述金属屏蔽盖体上垂直于所述顶面的任意一个垂直导电面形成,或者所述天线支点是连接于所述顶面内侧的薄片金属结构。
  9. 根据权利要求5-8任一项所述的金属屏蔽盖缝隙天线,其中,
    当所述天线接地部由至少一个所述导电面形成时,在金属屏蔽盖体上除去开槽缝隙所在导电面、所述天线馈电端子的位置、以及所述天线支点的位置后的所有剩余导电面或部分剩余导电面上,形成所述天线接地部。
  10. 根据权利要求9所述的金属屏蔽盖缝隙天线,其中:
    所述天线馈电端子与所述天线接地部之间通过缝隙隔开;
    所述天线馈电端子与所述天线支点之间通过导电面和缝隙隔开,或者,所述天线馈电端子与所述天线支点之间通过缝隙隔开。
  11. 根据权利要求2所述的金属屏蔽盖缝隙天线,还包括:
    所述射频收发电路设置在电路板上;
    所述天线接地部焊接在所述电路板上,或者所述金属屏蔽盖缝隙天线通过屏蔽盖夹具固定连接至所述电路板。
  12. 根据权利要求11所述的金属屏蔽盖缝隙天线,其中:
    所述电路板上有馈电焊盘、支点焊盘以及天线接地焊盘;
    所述天线馈电端子设置为与所述馈电焊盘连接;所述射频收发电路设置为通过传输线与所述馈电焊盘连接;
    所述天线支点设置为与所述支点焊盘连接;
    所述天线接地部设置为与所述天线接地焊盘连接。
  13. 一种电子设备,包括:
    无线通信系统,所述无线通信系统包括权利要求1~12任一项所述的金属屏蔽盖缝隙天线,和与所述金属屏蔽盖缝隙天线通信连接的射频收发电路;所述金属屏蔽盖缝隙天线的一部分还连接到所述无线通信系统设置的接地平面。
  14. 根据权利要求13所述的电子设备,其中:
    所述接地平面设有接地参考部分,所述金属屏蔽盖缝隙天线至少部分与所述参考接地部分连接。
  15. 根据权利要求13所述的电子设备,其中,所述无线通信系统还包括传输线,所述传输线设置为传输信号。
  16. 根据权利要求15所述的电子设备,其中,所述无线通信系统还包括天线匹配电路;所述天线匹配电路设置于所述射频收发电路和馈电焊盘之间,通过所述传输线分别与所述射频收发电路和所述馈电焊盘连接;
    所述金属屏蔽盖缝隙天线与所述天线匹配电路在垂直方向至少部分重叠。
  17. 根据权利要求13所述的电子设备,其中,所述射频收发电路包括工作在一个或多个射频通信频带的射频收发器;其中,所述射频通信频带包括2.4吉赫兹GHz处的无线保真WIFI频带、5GHz处的WIFI频带、或2.4GHz处的蓝牙通信频带。
PCT/CN2018/100671 2017-08-15 2018-08-15 金属屏蔽盖缝隙天线及电子设备 WO2019034085A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/630,560 US11271286B2 (en) 2017-08-15 2018-08-15 Metal shielding cover slot antenna and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710697038.2 2017-08-15
CN201710697038.2A CN107394392A (zh) 2017-08-15 2017-08-15 一种金属屏蔽盖缝隙天线及电子设备

Publications (1)

Publication Number Publication Date
WO2019034085A1 true WO2019034085A1 (zh) 2019-02-21

Family

ID=60354665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100671 WO2019034085A1 (zh) 2017-08-15 2018-08-15 金属屏蔽盖缝隙天线及电子设备

Country Status (3)

Country Link
US (1) US11271286B2 (zh)
CN (1) CN107394392A (zh)
WO (1) WO2019034085A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418497A (zh) * 2019-08-22 2019-11-05 京信通信技术(广州)有限公司 Pcb板拼接结构及天线装置
CN113055103A (zh) * 2021-03-10 2021-06-29 安徽超清科技股份有限公司 一种5g移动通信信号全方位测试设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394392A (zh) * 2017-08-15 2017-11-24 乐鑫信息科技(上海)有限公司 一种金属屏蔽盖缝隙天线及电子设备
CN111602291B (zh) * 2018-01-22 2021-07-27 亚萨合莱有限公司 具有缝隙天线的电子锁
CN109121296B (zh) * 2018-08-20 2020-07-28 维沃移动通信有限公司 一种电路板、移动终端和电路板走线方法
CN109742509A (zh) * 2019-01-25 2019-05-10 四川爱联科技有限公司 一种nb-iot模组
CN111834751B (zh) * 2019-04-18 2022-11-04 杭州海康威视数字技术股份有限公司 一种缝隙天线和包括该缝隙天线的电子设备
CN115377653A (zh) * 2021-05-18 2022-11-22 广州视源电子科技股份有限公司 一种扬声器模组和电子设备
KR20230031398A (ko) * 2021-08-27 2023-03-07 주식회사 아모텍 안테나 기능을 갖는 쉴드 캔
WO2024028107A1 (en) 2022-08-01 2024-02-08 Signify Holding B.V. Radiofrequency communication arrangement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120157175A1 (en) * 2010-12-20 2012-06-21 Golko Albert J Peripheral Electronic Device Housing Members with Gaps and Dielectric Coatings
CN104505574A (zh) * 2014-12-29 2015-04-08 上海安费诺永亿通讯电子有限公司 一种用于全金属结构通信终端设备的可调天线
CN104518280A (zh) * 2013-09-27 2015-04-15 汤姆逊许可公司 电子设备的天线组件
CN105071038A (zh) * 2015-08-14 2015-11-18 南京物联传感技术有限公司 一种带金属边框的电子锁的天线装置
CN107394392A (zh) * 2017-08-15 2017-11-24 乐鑫信息科技(上海)有限公司 一种金属屏蔽盖缝隙天线及电子设备
CN207282717U (zh) * 2017-08-15 2018-04-27 乐鑫信息科技(上海)有限公司 一种金属屏蔽盖缝隙天线及电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573869B2 (en) * 2001-03-21 2003-06-03 Amphenol - T&M Antennas Multiband PIFA antenna for portable devices
US20030107881A1 (en) * 2001-12-11 2003-06-12 Ngk Insulators, Ltd. Setting construction of shield case or planar antenna on circuit board
JP3916068B2 (ja) * 2002-11-06 2007-05-16 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 無線装置
JP2005151343A (ja) * 2003-11-18 2005-06-09 Alps Electric Co Ltd スロットアンテナ装置
JP4053973B2 (ja) * 2003-12-02 2008-02-27 アルプス電気株式会社 スロットアンテナ装置
US7768462B2 (en) * 2007-08-22 2010-08-03 Apple Inc. Multiband antenna for handheld electronic devices
CN201294259Y (zh) * 2008-07-22 2009-08-19 比亚迪股份有限公司 一种内置双频手机天线
US8576130B2 (en) * 2010-10-22 2013-11-05 Pittsburgh Glass Works, Llc Wideband antenna
JP5660857B2 (ja) * 2010-11-10 2015-01-28 富士通テン株式会社 アンテナ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120157175A1 (en) * 2010-12-20 2012-06-21 Golko Albert J Peripheral Electronic Device Housing Members with Gaps and Dielectric Coatings
CN104518280A (zh) * 2013-09-27 2015-04-15 汤姆逊许可公司 电子设备的天线组件
CN104505574A (zh) * 2014-12-29 2015-04-08 上海安费诺永亿通讯电子有限公司 一种用于全金属结构通信终端设备的可调天线
CN105071038A (zh) * 2015-08-14 2015-11-18 南京物联传感技术有限公司 一种带金属边框的电子锁的天线装置
CN107394392A (zh) * 2017-08-15 2017-11-24 乐鑫信息科技(上海)有限公司 一种金属屏蔽盖缝隙天线及电子设备
CN207282717U (zh) * 2017-08-15 2018-04-27 乐鑫信息科技(上海)有限公司 一种金属屏蔽盖缝隙天线及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418497A (zh) * 2019-08-22 2019-11-05 京信通信技术(广州)有限公司 Pcb板拼接结构及天线装置
CN113055103A (zh) * 2021-03-10 2021-06-29 安徽超清科技股份有限公司 一种5g移动通信信号全方位测试设备

Also Published As

Publication number Publication date
US20210091455A1 (en) 2021-03-25
US11271286B2 (en) 2022-03-08
CN107394392A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2019034085A1 (zh) 金属屏蔽盖缝隙天线及电子设备
CN106887671B (zh) 移动装置
US9590304B2 (en) Broadband antenna
KR100661892B1 (ko) 안테나 및 집적형 안테나 장치
US9300055B2 (en) Mobile device with two antennas and antenna switch modules
TWI599095B (zh) 天線結構及應用該天線結構的無線通訊裝置
TWI622230B (zh) 天線結構及具有該天線結構的無線通訊裝置
TW201433000A (zh) 天線組件及具有該天線組件的無線通訊裝置
US8259021B2 (en) Electromagnetic radiation apparatus and method for forming the same
TW201511406A (zh) 寬頻天線
WO2015014200A1 (zh) 一种印制天线和终端设备
CN103972649A (zh) 天线组件及具有该天线组件的无线通信装置
EP2375488B1 (en) Planar antenna and handheld device
CN108172983B (zh) 遥控器
EP4266497A1 (en) Electronic device
TWI573322B (zh) 天線組件及具有該天線組件之無線通訊裝置
US20180034157A1 (en) Antenna system for matching an impedance
TWI599107B (zh) Gps天線、主板及無線通訊裝置
US8659481B2 (en) Internal printed antenna
TWI587571B (zh) 天線組件
CN108199140B (zh) 遥控器
CN106602241B (zh) 八频段天线
CN215989221U (zh) 天线装置及电子设备
JP5859064B2 (ja) 多周波アンテナ
CN113540790B (zh) Mimo天线及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18846246

Country of ref document: EP

Kind code of ref document: A1