WO2019034004A1 - 一种以双氧水为原料直接制备有机过氧化物的在线全连续流生产工艺 - Google Patents

一种以双氧水为原料直接制备有机过氧化物的在线全连续流生产工艺 Download PDF

Info

Publication number
WO2019034004A1
WO2019034004A1 PCT/CN2018/100109 CN2018100109W WO2019034004A1 WO 2019034004 A1 WO2019034004 A1 WO 2019034004A1 CN 2018100109 W CN2018100109 W CN 2018100109W WO 2019034004 A1 WO2019034004 A1 WO 2019034004A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuous flow
process according
production process
peroxide
unsubstituted
Prior art date
Application number
PCT/CN2018/100109
Other languages
English (en)
French (fr)
Inventor
马兵
潘帅
舒鑫琳
Original Assignee
上海惠和化德生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810887768.3A external-priority patent/CN109384699A/zh
Application filed by 上海惠和化德生物科技有限公司 filed Critical 上海惠和化德生物科技有限公司
Priority to JP2020516669A priority Critical patent/JP6925078B2/ja
Priority to EP18845527.3A priority patent/EP3666755B1/en
Publication of WO2019034004A1 publication Critical patent/WO2019034004A1/zh
Priority to US16/787,022 priority patent/US10947189B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C409/00Peroxy compounds
    • C07C409/32Peroxy compounds the —O—O— group being bound between two >C=O groups
    • C07C409/34Peroxy compounds the —O—O— group being bound between two >C=O groups both belonging to carboxylic acids
    • C07C409/36Diacetyl peroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus

Definitions

  • the invention relates to the field of chemical industry, in particular to an online continuous continuous flow production process for directly preparing organic peroxide by using hydrogen peroxide as a raw material.
  • the organic peroxide is a derivative in which one or two hydrogen atoms in hydrogen peroxide are replaced by an organic group, and the passage is R-O-O-R. Since Brudie's first synthesis of benzoyl peroxide in 1858, it has been more than 100 years old. At present, there are more than 70 varieties of organic peroxides that have been industrialized abroad.
  • the peroxygen bond is split and generates free radicals under illumination or heating conditions, which determines that the peroxide has the following main uses:
  • initiators for producing PVC, PS, LDPE, PVA, coating resins, superabsorbent resins, and certain binders such as special anaerobic adhesives are all organic peroxides.
  • the unsaturated polyester resin is generally a linear polymer obtained by polycondensation of an unsaturated dibasic acid, a saturated dibasic acid and a diol, and the curing initiator is generally an organic peroxide.
  • Organic peroxides are also useful as crosslinkers for LDPE, ethylene vinyl acetate (EVA), ethylene propylene rubber (EPDM) and other synthetic rubbers.
  • the organic peroxide method is used to chemically modify the base PP resin to form a high-flow PP resin with a narrow molecular weight distribution and a large melt flow index, which is also called a controlled rheology PP (CRPP).
  • CRPP controlled rheology PP
  • This is a new use of organic peroxides.
  • the mechanism is that an organic peroxide is caused to decompose to generate a radical; a radical captures a hydrogen atom on a tertiary carbon atom of a PP molecular chain to form a PP molecular chain with a radical; and then a ⁇ -cleavage occurs to obtain a molecule having a lower molecular weight.
  • TBHP t-butyl hydroperoxide
  • phenethyl hydroperoxide phenethyl hydroperoxide
  • propylene is used as a raw material to prepare propylene oxide, which is called haacon method
  • organic peroxide is used as an oxidant.
  • More and more synthetic reactions such as zeolite as a catalyst, tert-butyl or cyclohexyl or cumyl hydroperoxide as an oxidant, cyclohexane oxidation to cyclohexanol, cyclohexanone and adipic acid; molecular sieve
  • a saturated alcohol and an unsaturated alcohol are oxidized to a corresponding carbonyl compound by using t-butyl hydroperoxide as an oxidizing agent under microwave irradiation.
  • Organic peroxides are good bactericides and bleaches because they can liberate reactive oxygen species.
  • peracetic acid has a high-efficiency and rapid killing effect on bacterial propagules, spore fungi, yeasts, etc., and can be used as a fungicide for infectious disease prevention and control, drinking water disinfection and food disinfection.
  • peracetic acid is also used as a bleaching agent for textiles, paper, grease, paraffin and starch; benzoyl peroxide It is also commonly used as a bleaching agent, decolorizing agent, bactericide, and cleaning agent in the industry; peroxy succinic acid and methyl ethyl ketone peroxide are also important bactericides, and are also heavy diesel additives.
  • organic peroxides There are several notable features in the synthesis of organic peroxides: one is strong exotherm, whether it is hydrogen peroxide and alcohol, alkanes, carboxylic acids or anhydrides, alkyl peroxides, dialkyl peroxides or peroxycarboxylic acids.
  • R 1 is selected from a saturated or unsaturated C 1 -C 20 alkyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted heterocyclic aryl group, an unsubstituted or substituted saturated heterocycloalkyl group, an unsubstituted or Substituting partially saturated heterocycloalkyl, unsubstituted or substituted cycloalkyl.
  • R 2 is selected from a saturated or unsaturated C 1 -C 20 alkyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted heterocyclic aryl group, an unsubstituted or substituted saturated heterocycloalkyl group, an unsubstituted or Substituting partially saturated heterocycloalkyl, unsubstituted or substituted cycloalkyl.
  • R 3 is selected from saturated or unsaturated C 1 -C 12 alkyl, unsubstituted or substituted aryl, unsubstituted or substituted heterocyclic aryl, unsubstituted or substituted saturated heterocycloalkyl, unsubstituted or Substituting partially saturated heterocycloalkyl, unsubstituted or substituted cycloalkyl.
  • R 4 or R 4 ' is selected from a saturated or unsaturated C 1 -C 12 alkyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted heterocyclic aryl group, an unsubstituted or substituted saturated heterocycloalkyl group. Unsubstituted or substituted partially saturated heterocycloalkyl, unsubstituted or substituted cycloalkyl.
  • R 5 is selected from saturated or unsaturated C 1 -C 12 alkyl, unsubstituted or substituted aryl, unsubstituted or substituted heterocyclic aryl, unsubstituted or substituted saturated heterocycloalkyl, unsubstituted or Substituting partially saturated heterocycloalkyl, unsubstituted or substituted cycloalkyl.
  • the above reaction time refers to the time required for the reaction material to enter the reactor until the end of the reaction to obtain the crude product of the target product, excluding the post-treatment time.
  • Optimize process conditions and parameters which will greatly consume manpower and material resources and project development time; since the amplification effect is greatly affected by the scale of production, it will change with the change of production volume and there is no regularity, even in industrial production, even in the process of industrial production. Conditions and parameters are adjusted. If the production scale is changed, the optimized process conditions and parameters need to be re-adjusted. The production process lacks flexibility. At the same time, the greatly uncertain amplification effect will affect the stability and reliability of the process, process conditions and parameters. Small fluctuations can greatly affect product quality, Too unstable product quality, difficult to control; in addition, it will bring a potential security risk to the production process.
  • Scaling up effect refers to the research results obtained by using small equipment for chemical process (ie small-scale) experiments (such as laboratory scale), under the same operating conditions and large-scale production equipment (such as industrial scale)
  • small-scale experiments such as laboratory scale
  • large-scale production equipment such as industrial scale
  • the results are often very different.
  • the effect of these differences is called the amplification effect.
  • the reason is mainly that the temperature, concentration, and material residence time distribution in small-scale experimental equipment are different from those in large-scale equipment. That is to say, under the same operating conditions, the results of small-scale experiments cannot be completely repeated on the industrial scale; if the results of the same or similar results as the small-scale experiments are obtained on the industrial scale, it is necessary to optimize the adjustment and change the process parameters and Operating conditions.
  • the amplification effect is a difficult and urgent problem to be solved.
  • the existing oxidation process which also contains Water, H 2 O 2 , salts and raw materials, etc.
  • a post-treatment process to obtain a product that meets the commercially available standards (eg, commercially available t-butyl hydroperoxide is as follows: di-tert-butyl peroxide ⁇ 0.08%, Tert-butanol ⁇ 0.5%, other organic matter ⁇ 0.4%)
  • the post-treatment process may be gas-liquid separation, pH adjustment, oil moisture liquid, vacuum distillation or distillation, flash separation, etc.
  • Chinese patent CN101298429 After the treatment with t-butyl hydroperoxide, the reaction mixture is separated and the oil phase is subjected to vacuum distillation to obtain a product meeting the commercial standard.
  • a versatile apparatus and process can purify various alkyl peroxides, dialkyl peroxides, peroxycarboxylic acids, diacyl peroxide compounds, peroxydicarbonates and peroxydiones.
  • Local production means that the manufacturer places the equipment in the nearest or same location for the end consumer (or downstream user), thus greatly reducing the number of products from the manufacturer to the end consumer (or downstream users).
  • Intermediate links such as warehousing, logistics, etc., save a lot of costs.
  • local production still cannot avoid the storage and transportation of a small number of products, for example, from one workshop of the factory to another, taking products from the production equipment of synthetic products and transporting them to downstream production equipment.
  • On-line manufacturing as a kind of on-site production, refers to the production and use of products at the same time, seamlessly connecting with downstream processes, and synchronous production methods, so that the products are ready for use (produce- To-use), ready-to-use flexible manufacturing.
  • the so-called ready-to-use that is, the output is the use, the production and use of the product at the same time; with the production, it is always ready to produce, no need to wait, on-demand production of zero inventory; plug-and-production production equipment, is Immediately after the production device is started, the product is obtained and produced on demand. After the demand is met, the vehicle can be stopped.
  • the production time of online production can be shortened to more than ten minutes or even minutes, which can be seamlessly connected with the production equipment and production process of downstream users, which fundamentally avoids the storage and transportation of products, saves costs and improves production.
  • the safety also increases production efficiency.
  • the production time refers to the time required from the entry of the raw material into the reactor to the output of the commercially available product, including the reaction time and the post-treatment time, which is also referred to as the residence time in the continuous flow process.
  • the organic peroxide integrated full-continuous flow process and reactor of the invention can be directly and seamlessly connected to the process and reactor of the downstream end user, realizing the ready-to-use and even possible macroscopically no peroxidation in the whole process.
  • the integrated continuous continuous flow process can be directly connected with the polymerizer in the field of polymer material synthesis, the vulcanizing machine of the film industry, etc., forming a continuous and continuous production and use of organic peroxide, subverting the existing production-storage-transport-storage- The production mode is used to realize the new production mode of production and use.
  • the organic peroxide is produced online, that is, ready-to-use, on-demand production, zero inventory and no logistics.
  • bis(2-ethylhexyl peroxydicarbonate) as an initiator is one of the most important low-temperature initiator formulation components for PVC polymerization.
  • the integrated continuous flow process of the present invention can be seamlessly coupled with a PVC polymerizer.
  • the bis(2-ethylhexyl)peroxydicarbonate which meets the commercial standard is discharged from the integrated continuous flow reactor and directly passed into the PVC polymerization vessel to participate in the polymerization reaction.
  • the true output is the use, without the accumulation and storage of organic peroxides, on the one hand greatly improving the safety of the overall process, on the other hand further reducing the production costs of the entire process including downstream products.
  • Chinese patent CN 101287704 reports a method for producing an organic peroxide by a microreaction technique, and the main difference from the present invention is that:
  • the static mixer used does not have heat exchange, but relies on an external heat exchanger for heat exchange. There is no heat exchange when the material contacts.
  • the static mixer does not actually solve the heat transfer problem, so the reaction temperature is low, all organic
  • the peroxide synthesis temperature is below 25 ° C;
  • the reaction time is about 2.5-17min, plus the post-treatment time of 1-2 hours, the production time is more than 1 hour, the production time refers to the feed from the raw material into the reactor
  • the time required to meet the output of the commercially available product is also referred to as the residence time in the continuous flow process;
  • organic peroxides that can be synthesized in this patent include dialkyl peroxides, peroxycarboxylic acids, diacyl peroxides, peroxydicarbonates, peroxydiones, but alkyl peroxides. It cannot be synthesized by this process, and its process still has some limitations.
  • Chinese patent CN 101479239 reports a method for continuously preparing organic peroxides using a plate heat exchanger having high heat exchange capacity, by introducing different reactants at different positions (plates) of the plate heat exchanger, continuously at a given temperature.
  • the selected peroxide is prepared.
  • the synthesis reaction time is in the range of 1 second to 45 seconds in the laboratory scale, and up to 2 minutes to 3 minutes on the industrial scale.
  • the continuous preparation method has certain advantages in production efficiency and safety.
  • the industrial scale reaction time is 2 to 180 times of the laboratory scale, and there is a large
  • the amplification effect of determining greatly increases the difficulty of industrialization.
  • the technical problem to be solved by the present invention is to provide an in-line continuous continuous flow production process for directly preparing an organic peroxide by using hydrogen peroxide as a raw material, wherein the organic peroxide is selected from the group consisting of alkyl peroxidation. , dialkyl peroxide, peroxycarboxylic acid, diacyl peroxide, peroxydicarbonate, peroxydione.
  • the full continuous flow production process provided by the invention effectively integrates the oxidation reaction process and the post-treatment process into one process, and efficiently and quickly obtains an organic peroxide product that meets the commercially available standard, and the production process has no amplification effect, and overcomes the present There are problems in that there are amplification effects, long post-treatment time, and different production processes of different organic peroxides, and it is possible to realize the production of different kinds of organic peroxides in the same plug-and-production integrated continuous flow reactor.
  • the method of the invention enables on-line manufacturing, the production and use of the organic peroxide product are carried out simultaneously, and the production process of the downstream process (the process using the organic peroxide) is seamlessly connected and synchronized.
  • organic peroxides are fundamentally solved.
  • the cost and safety of cold chain storage and transportation, the yield and content of organic peroxide products are high, easy to mass production, greatly reduce production costs, improve the safety of organic peroxide production and downstream product production. .
  • aryl refers to an all-carbon monocyclic or fused polycyclic group of 5 to 12 carbon atoms having a fully conjugated pi-electron system.
  • aromatic rings are: benzene rings, naphthalene rings, and anthracene rings. The aromatic ring may be unsubstituted or substituted.
  • the substituent of the aromatic ring is selected from the group consisting of halogen, nitro, amino, cyano, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, halogenated C 1 -C 6 alkyl, halogenated C 1 -C 6 alkoxy, C 3 -C 6 cycloalkyl, halogenated C 3 -C 6 cycloalkyl.
  • heterocyclic aryl refers to an unsaturated carbocyclic ring of 5 to 12 ring atoms in which one or more carbon atoms are replaced by a hetero atom such as N, O, S or the like.
  • the heteroaryl ring may be a single ring or a double ring, that is, fused by two rings.
  • Specific heterocyclic aryl groups may be: pyridyl, pyrimidinyl, pyrazinyl, isoxazolyl, isothiazolyl, pyrazolyl, thiazolyl, oxazolyl and imidazolyl, and the like.
  • the heterocyclic aryl group can be unsubstituted or substituted.
  • the substituent of the heterocyclic aryl group is selected from the group consisting of halogen, nitro, amino, cyano, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, halogenated C 1 -C 6 alkyl, halogenated C 1 -C 6 alkoxy, C 3 -C 6 cycloalkyl, halogenated C 3 -C 6 cycloalkyl.
  • heterocycloalkyl refers to a monocyclic or fused ring group having from 5 to 12 ring atoms in the ring wherein one or two ring atoms are selected from N, O or S(O) m A hetero atom (where m is an integer from 0 to 2), and the remaining ring atoms are C. These rings may contain one or more double bonds, but these rings do not have a fully conjugated pi-electron system.
  • the unsubstituted heterocycloalkyl group may be a pyrrolidinyl group, a piperidinyl group, a piperazinyl group, a morpholino group, a thiomorpholino group, a homopiperazinyl group or the like.
  • the heterocyclic ring can be unsubstituted or substituted.
  • the substituent of the heterocyclic ring is selected from the group consisting of halogen, nitro, amino, cyano, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, halogenated C 1 -C 6 alkyl, halogenated C 1 -C 6 alkoxy, C 3 -C 6 cycloalkyl, halogenated C 3 -C 6 cycloalkyl.
  • cycloalkyl refers to a saturated monocyclic carbon ring having from 3 to 12 carbon atoms unless a different number of atoms are indicated.
  • the cycloalkyl group includes a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group and the like.
  • a cycloalkyl group can be unsubstituted or substituted.
  • the cycloalkyl group can also be optionally substituted on any available carbon with one or more substituents selected from the group consisting of alkoxy, halogen, haloalkyl such as perfluoroalkyl.
  • alkoxy refers to a group containing -O-alkyl groups.
  • alkoxy examples include, but are not limited to, methoxy, ethoxy, n-propoxy, isopropoxy Base, n-butoxy and tert-butoxy.
  • Alkoxy also includes substituted alkoxy groups. The alkoxy group may be optionally substituted by one or more halogen atoms.
  • alkyl as used in this patent includes both straight chain alkyl and branched alkyl groups.
  • a single alkyl group such as "propyl”
  • a single branched-chain alkyl group such as "isopropyl”
  • C1-6 alkyl includes C1-4 alkyl, C1-3 alkyl, methyl, ethyl, n-propyl, isopropyl and t-butyl.
  • the continuous process refers to the continuous exchange of materials between the production system and the outside world during the production process.
  • the raw materials continuously enter the system and continuously leave the system in the form of products, that is, the products are continuously produced.
  • the continuous-flow process is a kind of continuous process.
  • the process is continuously added to the raw materials, and the products are continuously produced. There is no waiting in the process, that is, the products are continuously produced, which is a kind of “line-line” type.
  • Chemical production process When the process operation reaches a steady state, the state parameters such as composition and temperature of the material at any position in the reactor do not change with time, which is a steady state process, and thus the production process and product quality are stable.
  • a continuous process In a process involving a multi-step reaction, if some of the steps are continuous, the process may be referred to as a continuous process; and only if all the steps are continuous, that is, continuously adding the raw materials and continuously obtaining the product, can be called Continuous flow process.
  • the present invention innovatively provides a fully continuous flow production process for directly preparing an organic peroxide from hydrogen peroxide, a catalyst and an oxidizing substrate, which is produced by using hydrogen peroxide, a catalyst and an oxidizing substrate.
  • organic peroxides are successively obtained through two processes of oxidation and post-treatment, and the production process is carried out in a plug-and-production integrated continuous flow reactor, in which the plug-and-produce
  • the inlet of the integrated continuous flow reactor is continuously added with hydrogen peroxide, a catalyst and an oxidizing substrate, and the target product organic peroxide is continuously obtained at the outlet of the plug-and-production integrated continuous flow reactor.
  • the catalyst is an acid or a base
  • the organic peroxide is selected from the group consisting of an alkyl peroxide, a dialkyl peroxide, a peroxycarboxylic acid, and a diacyl peroxide.
  • the oxidized substrate is selected from the group consisting of an alcohol, a carboxylic acid, an acid anhydride, a ketone, an acid chloride, and a chloroformate.
  • the invention thoroughly improves the prior art process for producing organic peroxide by integrating the reaction process and the advantages of the plug-and-production integrated continuous flow reactor, and can realize the online continuous continuous flow production of the organic peroxide, which will oxidize
  • the process and the post-treatment process are effectively integrated into one process, and the organic peroxide product conforming to the commercially available standard is efficiently and quickly produced in only 6 minutes, and the production process has no amplification effect, overcoming the amplification effect of the prior art,
  • the treatment time is long and the production process of different organic peroxides cannot be universalized, and the production of different kinds of organic peroxides can be realized on the same plug-and-production integrated continuous flow reactor.
  • the production process of the present invention can realize the ready-to-use use of the organic peroxide product, and can seamlessly link and synchronize with the downstream process (the process using the organic peroxide), thereby fundamentally solving the organic peroxide.
  • the cost and safety of cold chain storage and transportation, the yield and content of organic peroxide products are high, easy to mass production, greatly reduce production costs, improve the safety of organic peroxide production and downstream product production. .
  • A is an oxidizing substrate comprising an alcohol, a carboxylic acid, an acid anhydride, a ketone, an acid chloride and a chloroformate
  • C is an alkyl peroxide, a dialkyl peroxide, a peroxycarboxylic acid, a diacyl peroxide , peroxydicarbonate and peroxydiacetone.
  • R 1 is selected from a saturated or unsaturated C 1 -C 20 alkyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted heterocyclic aryl group, an unsubstituted or substituted saturated heterocycloalkyl group, an unsubstituted or Substituting partially saturated heterocycloalkyl, unsubstituted or substituted cycloalkyl.
  • R 2 is selected from a saturated or unsaturated C 1 -C 20 alkyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted heterocyclic aryl group, an unsubstituted or substituted saturated heterocycloalkyl group, an unsubstituted or Substituting partially saturated heterocycloalkyl, unsubstituted or substituted cycloalkyl.
  • R 3 is selected from saturated or unsaturated C 1 -C 12 alkyl, unsubstituted or substituted aryl, unsubstituted or substituted heterocyclic aryl, unsubstituted or substituted saturated heterocycloalkyl, unsubstituted or Substituting partially saturated heterocycloalkyl, unsubstituted or substituted cycloalkyl.
  • R 4 or R 4 ' is selected from a saturated or unsaturated C 1 -C 12 alkyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted heterocyclic aryl group, an unsubstituted or substituted saturated heterocycloalkyl group. Unsubstituted or substituted partially saturated heterocycloalkyl, unsubstituted or substituted cycloalkyl.
  • R 5 is selected from saturated or unsaturated C 1 -C 12 alkyl, unsubstituted or substituted aryl, unsubstituted or substituted heterocyclic aryl, unsubstituted or substituted saturated heterocycloalkyl, unsubstituted or Substituting partially saturated heterocycloalkyl, unsubstituted or substituted cycloalkyl.
  • R 1 is selected from a saturated or unsaturated C 1 -C 18 alkyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted heterocyclic aryl group, an unsubstituted or substituted saturated heterocycloalkyl group, Unsubstituted or substituted partially saturated heterocycloalkyl, unsubstituted or substituted cycloalkyl.
  • R 2 is selected from a saturated or unsaturated C 1 -C 18 alkyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted heterocyclic aryl group, an unsubstituted or substituted saturated heterocycloalkyl group, an unsubstituted or Substituting partially saturated heterocycloalkyl, unsubstituted or substituted cycloalkyl.
  • R 3 is selected from a saturated or unsaturated C 3 -C 8 alkyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted heterocyclic aryl group, an unsubstituted or substituted saturated heterocycloalkyl group, an unsubstituted or Substituting partially saturated heterocycloalkyl, unsubstituted or substituted cycloalkyl.
  • R 4 or R 4 ' is selected from a saturated or unsaturated C 3 -C 8 alkyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted heterocyclic aryl group, an unsubstituted or substituted saturated heterocycloalkyl group. Unsubstituted or substituted partially saturated heterocycloalkyl, unsubstituted or substituted cycloalkyl.
  • R 5 is selected from saturated or unsaturated C 3 -C 8 alkyl, unsubstituted or substituted aryl, unsubstituted or substituted heterocyclic aryl, unsubstituted or substituted saturated heterocycloalkyl, unsubstituted or Substituting partially saturated heterocycloalkyl, unsubstituted or substituted cycloalkyl.
  • R 1 is more selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, isopentyl, n-pentyl, isoheptyl, octyl, isooctyl , 2,2-dimethylheptyl, decyl, undecyl, phenyl, 2-methylphenyl, 4-methylphenyl, 4-chlorophenyl, 2,4-dichlorophenyl , naphthyl.
  • R 2 is selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, 2-ethylpentyl, isotridecyl, heptadecyl, cyclohexyl, 4-tert-butylcyclohexyl , benzyl, phenoxyethyl.
  • R 3 is selected from the group consisting of tert-butyl, tert-amyl, 2,4,4-trimethyl-2-pentyl, 2,5-dimethylhexyl.
  • R 4 or R 4 ' is more selected from the group consisting of methyl, ethyl, isobutyl, 2-oxopropyl, -(CH 2 ) 5 -.
  • R 5 is selected from the group consisting of methyl and ethyl.
  • R 1 COCl is selected from the group consisting of acetyl chloride, propionyl chloride, butyryl chloride, isobutyryl chloride, valeryl chloride, 2-methylbutyryl chloride, pivaloyl chloride, 2-methylpentanoyl chloride, 2-ethylbutyryl chloride, 2 -ethylhexanoyl chloride, decanoyl chloride, 2,4,4-trimethylpentanoyl chloride, 3,5,5-trimethylhexanoyl chloride, neodecanoyl chloride, decanoyl chloride, lauroyl chloride, benzoyl chloride, 2-methyl Benzoyl chloride, 4-methylbenzoyl chloride, 4-chlorobenzoyl chloride, 2,4-dichlorobenzoyl chloride, naphthoyl chloride.
  • R 2 OCOCl is selected from the group consisting of methyl chloroformate, ethyl chloroformate, n-propyl chloroformate, isopropyl chloroformate, n-butyl chloroformate, sec-butyl chloroformate, 2-ethylhexyl chloroformate, chloroformic acid. Isotridecyl ester, stearyl chloroformate, cyclohexyl chloroformate, 4-tert-butylcyclohexyl chloroformate, benzyl chloroformate, 2-phenoxyethyl chloroformate.
  • R 3 (OH) n is selected from the group consisting of tert-butanol, tert-amyl alcohol, 2,4,4-trimethyl-2-pentanol, and 2,5-dimethyl-2,5-dihydroxyhexane.
  • R 4 R 4' (CO) is selected from the group consisting of methyl ethyl ketone, methyl isobutyl ketone, and acetyl acetonate; and R 4 (CO) is more selected from cyclohexanone.
  • R 5 COOH is selected from the group consisting of acetic acid and propionic acid.
  • (R 5 CO) 2 O is selected from the group consisting of acetic anhydride and propionic anhydride.
  • organic peroxide is selected from the group consisting of:
  • the oxidation substrate is an alcohol; when a peroxycarboxylic acid is produced, the oxidation substrate is a carboxylic acid or an acid anhydride; and a diacyl peroxide is produced.
  • the oxidizing substrate is an acid chloride; when the peroxydicarbonate is produced, the oxidizing substrate is a chloroformate; and when the peroxydiacetone is produced, the oxidizing substrate is a ketone.
  • the solution of the invention starts from hydrogen peroxide, a catalyst and an oxidizing substrate, and can realize the final product ready-to-use, avoids the safety hazard of storing a large number of products, and has no amplification effect, thereby greatly reducing industrial application.
  • the difficulty of the industrialization without the cumbersome and complicated multiple step-by-step amplification and process conditions, parameter adjustment and optimization, can be scaled up to the required production scale, greatly saving manpower and material resources and project development time;
  • the production scale can be flexibly changed without re-adjusting the optimized process conditions and parameters, and the production process is flexible; the non-magnification effect makes the production process stable and reliable, and the fluctuation of process conditions and parameters will not affect the product quality.
  • Product quality is easy to control; this also greatly enhances the safety of the production process.
  • the production process of the invention can complete the multi-step reaction for preparing organic peroxide quickly and continuously at high temperature, and the production time can be shortened to 6 minutes by using the division of the functional unit temperature zone and the optimization of the temperature setting and the synergy of the functional units. , greatly improving the efficiency of the process. It can be seen that the production process of the present invention breaks through the limitations of the prior art, and achieves high efficiency, high quality synthesis of organic peroxides under the harsh and dangerous conditions that cannot be realized by the prior art, and there is no amplification. The effect, which is very suitable for industrial production, is a major breakthrough in this field.
  • the continuous flow process of the invention can realize the final product ready-to-use, avoiding the safety hazard of storing the organic peroxide product; the process stability and the reliability are good, so the product quality is stable and the reproducibility is good; the process has no amplification effect,
  • the invention also solves the problem that the organic peroxide continuous flow process industrialization has the amplification effect; at the same time, the plug-and-production type integrated full-flow flow reactor has short reaction time, small volume, small occupied area and extremely small area because it does not need to delay the pipeline.
  • the land saves plant land and increases production efficiency.
  • the production time of the production process of the present invention is ⁇ 6 min, preferably, the production time is 1 to 6 min; more preferably, the production time is 2 to 5 min; more preferably, the production time is 3 to 4 minutes.
  • the production time refers to the time required from the reaction raw materials (reaction substrate, oxidant and condensing agent) to enter the integrated continuous flow reactor to produce a target product meeting the commercial standard, including the oxidation process time and The time of the post-processing process.
  • the target product organic peroxide obtained by the process of the present invention is a product that meets the standards of commercially available industrial products.
  • the target product organic peroxide is selected from the group consisting of a diacyl peroxide, a peroxydicarbonate, a chloride ion content of the organic peroxide of ⁇ 0.05 wt%, and a content of H 2 O 2 ⁇ 0.1 wt. %.
  • the target product organic peroxide is selected from the group consisting of alkyl peroxides having a content of H 2 O 2 and di-tert-butyl hydroperoxide of ⁇ 0.1% by weight.
  • the target product organic peroxide is selected from the group consisting of a dialkyl peroxide, a peroxycarboxylic acid, a peroxydione, and the H 2 O 2 content in the target product organic peroxide is ⁇ 0.1 wt%. .
  • the temperature of the oxidation process is from 0 to 110 ° C, preferably from 20 to 100 ° C, more preferably from 30 to 90 ° C, still more preferably from 50 to 80 ° C, still more preferably from 60 to 70 ° C.
  • the temperature of the post-treatment process is 0 to 50 ° C, preferably 0 to 40 ° C, more preferably 5 to 30 ° C, still more preferably 5 to 20 ° C, still more preferably 5 to 10 ° C.
  • the yield of the organic peroxide is ⁇ 71%; preferably, the yield of the organic peroxide is ⁇ 85%; more preferably, the yield of the organic peroxide is ⁇ 94%.
  • the content of the organic peroxide is ⁇ 79%; preferably, the content of the organic peroxide is ⁇ 86%; and the content of the organic peroxide is ⁇ 96%.
  • the base is selected from the group consisting of water-soluble metal hydroxides, water-soluble quaternary ammonium hydroxides, water-soluble tertiary amines, water-soluble metal carbonates or water-soluble metal phosphates, preferably alkali metal hydroxides, water-soluble
  • the metal carbonate or alkaline earth metal hydroxide is more preferably lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate.
  • the alkali liquid has a mass concentration of 5% to 45%, preferably 15% to 35%, more preferably 20% to 30%.
  • the acid is selected from all known organic and inorganic acids, preferably sulfuric acid, phosphoric acid, trifluoroacetic acid.
  • the acid solution has a mass concentration of 50% to 90%, preferably 60% to 80%, more preferably 70% to 80%.
  • the hydrogen peroxide concentration is preferably 30% to 50%.
  • the molar ratio of the acid to the oxidizing substrate is from 0.5:1 to 1.1:1, preferably from 0.6:1 to 1:1, more preferably from 0.7:1 to 0.9:1.
  • the molar ratio of hydrogen peroxide to the oxidizing substrate is from 0.5:1 to 2.5:1, preferably from 0.6:1 to 2:1, more preferably from 0.7:1 to 1.15:1, still more preferably from 0.8:1 to 1.05:1.
  • the molar ratio of the base to the oxidizing substrate is from 1:1 to 1.4:1, preferably from 1.1:1 to 1.3:1, more preferably from 1.15:1 to 1.2:1.
  • the acid flow rate is 0.03 to 5 L/h, preferably 0.03 to 4 L/h, and more preferably 0.03 to 3 L/h.
  • the lye flow rate is 1 to 5 L/h, preferably 1.5 to 4 L/h, and more preferably 1.8 to 2.5 L/h.
  • the hydrogen peroxide flow rate is from 0.3 to 4 L/h, preferably from 0.3 to 3 L/h, more preferably from 0.3 to 2 L/h.
  • the oxidizing substrate flow rate is 1 to 5 L/h, preferably 1.5 to 4 L/h, more preferably 2 to 3 L/h.
  • the organic peroxide is t-butyl hydroperoxide
  • the oxidation substrate is t-butanol
  • the catalyst is an acid, wherein:
  • the hydrogen peroxide has a mass concentration of 30% to 50%.
  • the temperature of the oxidation process is from 0 to 110 ° C, preferably from 20 to 100 ° C, more preferably from 30 to 90 ° C, still more preferably from 50 to 80 ° C, still more preferably from 60 to 70 ° C.
  • the temperature of the post-treatment process is 0-50 ° C, preferably 0-40 ° C, more preferably 5-30 ° C, more preferably 5-20 ° C, more preferably 5-10 ° C.
  • the continuous flow process has a production time of ⁇ 4 min.
  • the production time is 1 to 3 min; more preferably, the production time is 2 to 3 min.
  • the yield of the t-butyl hydroperoxide is ⁇ 71%; preferably, the yield of the t-butyl hydroperoxide is ⁇ 81%.
  • the content of the t-butyl hydroperoxide is ⁇ 80%; preferably, the content of the t-butyl hydroperoxide is ⁇ 84%.
  • the content of other organic peroxide impurities (H 2 O 2 and di-tert-butyl hydroperoxide) in the t-butyl hydroperoxide is 0.05 to 0.08 wt%.
  • the acid is selected from all known organic and inorganic acids, preferably sulfuric acid, phosphoric acid, trifluoroacetic acid.
  • the acid solution has a mass concentration of 50% to 90%, preferably 60% to 80%, more preferably 70% to 80%.
  • the acid flow rate is 1 to 3 L/h, preferably 1.5 to 2.5 L/h, and more preferably 1.5 to 2 L/h.
  • the hydrogen peroxide flow rate is from 1 to 3 L/h, preferably from 1.5 to 2.5 L/h, more preferably from 1.5 to 2 L/h.
  • the t-butanol flow rate is from 1 to 4 L/h, preferably from 1.5 to 3 L/h, more preferably from 2 to 3 L/h.
  • the molar ratio of the acid to tert-butanol is from 0.5:1 to 1:1, preferably from 0.5:1 to 0.9:1, more preferably from 0.5:1 to 0.7:1, still more preferably from 0.5:1 to 0.6:1.
  • the molar ratio of hydrogen peroxide to tert-butanol is from 0.8:1 to 1.2:1, preferably from 0.9:1 to 1.1:1, more preferably from 0.9:1 to 1.05:1.
  • the organic peroxide is t-amyl hydroperoxide
  • the oxidation substrate is t-amyl alcohol
  • the catalyst is an acid, wherein:
  • the hydrogen peroxide has a mass concentration of 30% to 50%.
  • the temperature of the oxidation process is from 0 to 110 ° C, preferably from 20 to 100 ° C, more preferably from 30 to 90 ° C, still more preferably from 50 to 80 ° C, still more preferably from 60 to 70 ° C.
  • the temperature of the post-treatment process is 0-50 ° C, preferably 0-40 ° C, more preferably 5-30 ° C, more preferably 5-20 ° C, more preferably 5-10 ° C.
  • the continuous flow process has a production time of ⁇ 4 min.
  • the production time is 1 to 3 min; more preferably, the production time is 2 to 3 min.
  • the yield of the tert-amyl hydroperoxide is ⁇ 73%; preferably, the yield of the tert-amyl hydroperoxide is ⁇ 79%.
  • the content of the tert-amyl hydroperoxide is ⁇ 83.9%; preferably, the content of the tert-amyl hydroperoxide is ⁇ 84%.
  • the content of H 2 O 2 in the tert-amyl hydrogen peroxide is 0.05 to 0.08 wt%.
  • the acid is selected from all known organic and inorganic acids, preferably sulfuric acid, phosphoric acid, trifluoroacetic acid.
  • the acid solution has a mass concentration of 50% to 90%, preferably 60% to 80%, more preferably 70% to 80%.
  • the acid flow rate is 1 to 3 L/h, preferably 1.5 to 2.5 L/h, and more preferably 1.5 to 2 L/h.
  • the hydrogen peroxide flow rate is from 1 to 3 L/h, preferably from 1.5 to 2.5 L/h, more preferably from 1.5 to 2 L/h.
  • the tertiary pentanol has a flow rate of 1 to 4 L/h, preferably 1.5 to 3 L/h, more preferably 2 to 3 L/h.
  • the molar ratio of the acid to tert-amyl alcohol is from 0.8:1 to 1.1:1, preferably from 0.9:1 to 1:1, more preferably from 0.95:1 to 1:1.
  • the molar ratio of the hydrogen peroxide to the tert-amyl alcohol is from 0.9:1 to 1.3:1, preferably from 1:1 to 1.25:1, more preferably from 1.14:1 to 1.2:1.
  • the organic peroxide is bis(3,5,5-trimethylhexanoyl) peroxide
  • the oxidizing substrate is 3,5,5-trimethylhexanoyl chloride
  • the catalyst is a base, of which, preferably:
  • the hydrogen peroxide has a mass concentration of 30% to 50%.
  • the temperature of the oxidation process is from 0 to 110 ° C, preferably from 20 to 100 ° C, more preferably from 30 to 90 ° C, still more preferably from 50 to 80 ° C, still more preferably from 60 to 70 ° C.
  • the temperature of the post-treatment process is 0-50 ° C, preferably 0-40 ° C, more preferably 5-30 ° C, more preferably 5-20 ° C, more preferably 5-10 ° C.
  • the continuous flow process has a production time of ⁇ 4 min.
  • the production time is 1 to 3 min; more preferably, the production time is 2 to 3 min.
  • the yield of the bis(3,5,5-trimethylhexanoyl)peroxide is ⁇ 91%; preferably, the bis(3,5,5-trimethylhexanoyl)peroxide is received.
  • the rate is ⁇ 92%.
  • the content of the bis(3,5,5-trimethylhexanoyl)peroxide is ⁇ 91%; preferably, the content of the bis(3,5,5-trimethylhexanoyl)peroxide is ⁇ 93%.
  • the target product bis(3,5,5-trimethylhexanoyl)peroxide has a chloride ion content of 0.02 to 0.05% by weight and a H 2 O 2 content of 0.05 to 0.1% by weight.
  • the base is selected from the group consisting of water-soluble metal hydroxides, water-soluble quaternary ammonium hydroxides, water-soluble tertiary amines, water-soluble metal carbonates or water-soluble metal phosphates, preferably alkali metal hydroxides, water-soluble metal carbonates
  • the salt or alkaline earth metal hydroxide is more preferably lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate.
  • the alkali solution has a mass concentration of 5% to 45%, preferably 15% to 35%, more preferably 20% to 30%.
  • the lye flow rate is 1 to 4 L/h, preferably 1.5 to 3 L/h, and more preferably 1.8 to 2.5 L/h.
  • the hydrogen peroxide flow rate is from 0.3 to 1 L/h, preferably from 0.5 to 0.8 L/h, more preferably from 0.6 to 0.7 L/h.
  • the flow rate of the 3,5,5-trimethylhexanoyl chloride is 1 to 3 L/h, preferably 1.5 to 2.5 L/h, more preferably 1.5 to 2 L/h.
  • the molar ratio of the hydrogen peroxide to the 3,5,5-trimethylhexanoyl chloride is from 0.5:1 to 0.8:1, preferably from 0.55:1 to 0.75:1, more preferably from 0.6:1 to 0.7:1.
  • the molar ratio of the base to 3,5,5-trimethylhexanoyl chloride is from 1:1 to 1.4:1, preferably from 1.1:1 to 1.3:1, more preferably from 1.15:1 to 1.2:1.
  • the organic peroxide is bis(2-ethylhexyl)dicarbonate
  • the oxidizing substrate is 2-ethylhexyl chloroformate
  • the catalyst is a base, wherein, preferably, of:
  • the hydrogen peroxide has a mass concentration of 30% to 50%.
  • the temperature of the oxidation process is from 0 to 110 ° C, preferably from 20 to 100 ° C, more preferably from 30 to 90 ° C, still more preferably from 50 to 80 ° C, still more preferably from 60 to 70 ° C.
  • the temperature of the post-treatment process is 0-50 ° C, preferably 0-40 ° C, more preferably 5-30 ° C, more preferably 5-20 ° C, more preferably 5-10 ° C.
  • the continuous flow process has a production time of ⁇ 4 min.
  • the production time is 1 to 3 min; more preferably, the production time is 2 to 3 min.
  • the yield of the bis(2-ethylhexyl)peroxydicarbonate is ⁇ 86.5%; preferably, the yield of the bis(2-ethylhexyl)peroxydicarbonate is ⁇ 90%.
  • the content of bis(2-ethylhexyl)peroxydicarbonate is ⁇ 95%; preferably, the content of bis(2-ethylhexyl)peroxydicarbonate is ⁇ 96%.
  • the target product has a chloride ion content of 0.02 to 0.05% by weight in bis(2-ethylhexyl) dicarbonate and a content of H 2 O 2 of 0.05 to 0.1% by weight.
  • the base is selected from the group consisting of water-soluble metal hydroxides, water-soluble quaternary ammonium hydroxides, water-soluble tertiary amines, water-soluble metal carbonates or water-soluble metal phosphates, preferably alkali metal hydroxides, water-soluble metal carbonates
  • a salt or an alkaline earth metal hydroxide is more preferably sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate or lithium hydroxide.
  • the alkali solution has a mass concentration of 5% to 45%, preferably 15% to 35%, more preferably 20% to 30%.
  • the lye flow rate is 1 to 4 L/h, preferably 1.5 to 3 L/h, and more preferably 1.8 to 2.5 L/h.
  • the hydrogen peroxide flow rate is from 0.3 to 1 L/h, preferably from 0.5 to 0.8 L/h, more preferably from 0.6 to 0.7 L/h.
  • the flow rate of the 2-ethylhexyl chloroformate is from 1 to 3 L/h, preferably from 1.5 to 2.5 L/h, more preferably from 1.5 to 2 L/h.
  • the molar ratio of the hydrogen peroxide to the 2-ethylhexyl chloroformate is from 0.5:1 to 0.8:1, preferably from 0.55:1 to 0.75:1, more preferably from 0.6:1 to 0.7:1.
  • the molar ratio of the base to 2-ethylhexyl chloroformate is from 1:1 to 1.4:1, preferably from 1.1:1 to 1.3:1, more preferably from 1.15:1 to 1.2:1.
  • mass concentration of hydrogen peroxide, catalyst and oxidized substrate used in actual production will have a deviation of mass concentration of ⁇ 2 percentage points; ⁇ 3 ° C deviation; production time will have a deviation of ⁇ 5 s.
  • the reactor may be a modular structure, the structure and quantity of the design module, the modules included in each temperature zone, and the development of specific process conditions and parameters, including the division and temperature setting of each temperature zone, etc.
  • the synergy of various factors makes this continuous flow process possible. It is also possible to further combine the temperature and material concentration, the material ratio and the material flow rate to match the reaction progress, and obtain a better reaction effect.
  • the material comprises each raw material and each intermediate product of the reaction process, wherein the material concentration comprises the concentration of each raw material and the concentration of each intermediate product, and the ratio of the materials comprises the ratio of each raw material and the concentration of each intermediate product.
  • the material flow rate includes the flow rate of each raw material and the flow rate of each intermediate product.
  • the plug-and-production integrated continuous flow reactor adopts a unitized structure including an oxidation unit and a post-processing unit, wherein:
  • the oxidation unit is used for the reaction of hydrogen peroxide, a catalyst, and an oxidizing substrate to form an alkyl peroxide, a dialkyl peroxide, a peroxycarboxylic acid, a diacyl peroxide, a peroxydicarbonate, and a peroxydiester.
  • the post-treatment unit is used for the post treatment of alkyl peroxides, dialkyl peroxides, peroxycarboxylic acids, diacyl peroxides, peroxydicarbonates and peroxydicarbones.
  • the temperature of the oxidizing unit is from 0 to 110 ° C, preferably from 20 to 100 ° C, more preferably from 30 to 90 ° C, still more preferably from 50 to 80 ° C, still more preferably from 60 to 70 ° C.
  • the temperature of the post-treatment unit is 0-50 ° C, preferably 0-40 ° C, more preferably 5-30 ° C, more preferably 5-20 ° C, more preferably 5-10 ° C.
  • the plug-and-production integrated continuous flow reactor employs a unitized structure, each of the units independently comprising more than one reaction
  • the reactor module or the reactor module group wherein the reactor module group is composed of a plurality of reactor modules connected in series or in parallel, and the units are connected in series with each other.
  • the plug-and-production integrated continuous flow reactor adopts a unitized structure, and each of the units includes at least one temperature zone, each The temperature zones independently comprise more than one reactor module or group of reactor modules, wherein the reactor module group consists of a plurality of reactor modules connected in series or in parallel, with each temperature zone being connected in series with each other.
  • the units further include a buffer vessel (buffer vessel), the buffer is a container having a certain volume, and is mainly used for buffering the pressure fluctuation of the system and balancing the flow difference, so that the system works more smoothly.
  • a buffer vessel buffer vessel
  • the buffer is a container having a certain volume, and is mainly used for buffering the pressure fluctuation of the system and balancing the flow difference, so that the system works more smoothly.
  • the number of inlets of the plug-and-production type that is, the integrated continuous flow reactor, is one or more, and the number of the outlets of the plug-and-production integrated continuous flow reactor is 1 or more.
  • the reactor module is optionally any reactor capable of realizing a continuous flow process, the reactor being selected from the group consisting of a microreactor, a Tandem loop reactor, and a tube. Any one or any of a variety of Tubular reactors.
  • the microreactor also known as a microstructure reactor or a microchannel reactor, is a device in which a chemical reaction occurs in a limited area with a general lateral dimension of 1 mm or less. The form is a miniature size channel.
  • a tandem coil reactor that is, a reactor in which a coil reactor is connected in series by a pipe, wherein the coil reactor is in the form of a tubular reactor.
  • the tubular reactor is a continuous operation reactor with a tubular shape and a large aspect ratio which appeared in the middle of the last century.
  • Such a reactor can be very long; it can be a single tube or a plurality of tubes in parallel; it can be an empty tube or a filling tube.
  • the reactor may be one or more.
  • the reactor channel is made of single crystal silicon, special glass, ceramic, stainless steel or metal alloy coated with a corrosion resistant coating, and polytetrafluoroethylene.
  • reactor modules, the reactor module groups, the reactor modules and the reactor module groups are respectively connected in series or in parallel.
  • continuous flow production process is carried out in a plug-and-play integrated all-continuous flow reactor comprising four temperature zones.
  • the continuous flow production process oxidation unit comprises three temperature zones, namely a temperature zone 1, a temperature zone 2 and a temperature zone 3, and the post-processing unit comprises one temperature zone, which is a temperature zone 4.
  • the continuous flow production process includes the following steps:
  • reaction liquid flowing out of the temperature zone 3 enters the post-treatment unit, and is sequentially subjected to post-treatment through the temperature zone 4 to obtain a product.
  • the temperature of the temperature zone 1 is 0 to 60 ° C, preferably 0 to 40 ° C, more preferably 5 to 30 ° C, still more preferably 5 to 20 ° C, still more preferably 5 to 10 ° C.
  • the temperature of the temperature zone 2 is 30 to 110 ° C, preferably 40 to 100 ° C, more preferably 50 to 90 ° C, still more preferably 60 to 80 ° C, still more preferably 65 to 70 ° C.
  • the temperature of the temperature zone 3 is 0 to 50 ° C, preferably 0 to 40 ° C, more preferably 5 to 30 ° C, still more preferably 5 to 20 ° C, still more preferably 5 to 10 ° C.
  • the temperature of the temperature zone 4 is 0 to 50 ° C, preferably 0 to 40 ° C, more preferably 5 to 30 ° C, still more preferably 5 to 20 ° C, still more preferably 5 to 10 ° C.
  • the organic peroxide is t-butyl hydroperoxide
  • the oxidation substrate is t-butanol
  • the catalyst is an acid
  • the temperature of the temperature zone 1 is 0 to 40 ° C, preferably 5 to 30 ° C, more preferably 5 to 20 ° C, still more preferably 5 to 10 ° C.
  • the temperature of the temperature zone 2 is 40 to 100 ° C, preferably 50 to 90 ° C, more preferably 60 to 85 ° C, still more preferably 70 to 80 ° C.
  • the temperature of the temperature zone 3 is 0 to 40 ° C, more preferably 5 to 30 ° C, still more preferably 5 to 20 ° C, still more preferably 5 to 10 ° C.
  • the temperature of the temperature zone 4 is 0 to 40 ° C, more preferably 5 to 30 ° C, still more preferably 5 to 20 ° C, still more preferably 5 to 10 ° C.
  • the yield of the t-butyl hydroperoxide is ⁇ 71%; preferably, the yield of the t-butyl hydroperoxide is ⁇ 81%.
  • the content of the t-butyl hydroperoxide is ⁇ 80%; preferably, the content of the t-butyl hydroperoxide is ⁇ 84%.
  • the content of other organic peroxide impurities (H 2 O 2 and di-tert-butyl hydroperoxide) in the t-butyl hydroperoxide is 0.05 to 0.08 wt%.
  • the hydrogen peroxide has a mass concentration of 30% to 50%.
  • the acid is selected from all known organic and inorganic acids, preferably sulfuric acid, phosphoric acid, trifluoroacetic acid.
  • the acid solution has a mass concentration of 50% to 90%, preferably 60% to 80%, more preferably 70% to 80%.
  • the acid flow rate is 1 to 3 L/h, preferably 1.5 to 2.5 L/h, and more preferably 1.5 to 2 L/h.
  • the hydrogen peroxide flow rate is from 1 to 3 L/h, preferably from 1.5 to 2.5 L/h, more preferably from 1.5 to 2 L/h.
  • the t-butanol flow rate is from 1 to 4 L/h, preferably from 1.5 to 3 L/h, more preferably from 2 to 3 L/h.
  • the molar ratio of the acid to tert-butanol is from 0.5:1 to 1:1, preferably from 0.5:1 to 0.9:1, more preferably from 0.5:1 to 0.7:1, still more preferably from 0.5:1 to 0.6:1.
  • the molar ratio of hydrogen peroxide to tert-butanol is from 0.8:1 to 1.2:1, preferably from 0.9:1 to 1.1:1, more preferably from 0.9:1 to 1.05:1.
  • the organic peroxide is tert-amyl hydroperoxide
  • the oxidation substrate is tert-amyl alcohol
  • the catalyst is an acid
  • the temperature of the temperature zone 1 is 0 to 40 ° C, preferably 5 to 30 ° C, more preferably 5 to 20 ° C, still more preferably 5 to 10 ° C.
  • the temperature of the temperature zone 2 is 40 to 100 ° C, preferably 50 to 90 ° C, more preferably 60 to 85 ° C, still more preferably 70 to 80 ° C.
  • the temperature of the temperature zone 3 is 0 to 40 ° C, more preferably 5 to 30 ° C, still more preferably 5 to 20 ° C, still more preferably 5 to 10 ° C.
  • the temperature of the temperature zone 4 is 0 to 40 ° C, more preferably 5 to 30 ° C, still more preferably 5 to 20 ° C, still more preferably 5 to 10 ° C.
  • the yield of the tert-amyl hydroperoxide is ⁇ 73%; preferably, the yield of the tert-amyl hydroperoxide is ⁇ 79%.
  • the content of the tert-amyl hydroperoxide is ⁇ 83.9%; preferably, the content of the tert-amyl hydroperoxide is ⁇ 84%.
  • the content of H 2 O 2 in the t-butyl hydroperoxide is 0.05 to 0.08 wt%.
  • the hydrogen peroxide has a mass concentration of 30% to 50%.
  • the acid is selected from all known organic and inorganic acids, preferably sulfuric acid, phosphoric acid, trifluoroacetic acid.
  • the acid solution has a mass concentration of 50% to 90%, preferably 60% to 80%, more preferably 70% to 80%.
  • the acid flow rate is 1 to 3 L/h, preferably 1.5 to 2.5 L/h, and more preferably 1.5 to 2 L/h.
  • the hydrogen peroxide flow rate is from 1 to 3 L/h, preferably from 1.5 to 2.5 L/h, more preferably from 1.5 to 2 L/h.
  • the tertiary pentanol has a flow rate of 1 to 4 L/h, preferably 1.5 to 3 L/h, more preferably 2 to 3 L/h.
  • the molar ratio of the acid to tert-amyl alcohol is from 0.8:1 to 1.1:1, preferably from 0.9:1 to 1:1, more preferably from 0.95:1 to 1:1.
  • the molar ratio of the hydrogen peroxide to the tert-amyl alcohol is from 0.9:1 to 1.3:1, preferably from 1:1 to 1.25:1, more preferably from 1.14:1 to 1.2:1.
  • the organic peroxide is bis(3,5,5-trimethylhexanoyl) peroxide
  • the oxidizing substrate is 3,5,5-trimethylhexanoyl chloride
  • the catalyst Is a base, wherein: preferred:
  • the temperature of the temperature zone 1 is 0 to 20 ° C, preferably 0 to 10 ° C, more preferably 5 to 10 ° C.
  • the temperature of the temperature zone 2 is 30 to 90 ° C, preferably 40 to 80 ° C, more preferably 50 to 70 ° C, still more preferably 60 to 70 ° C.
  • the temperature of the temperature zone 3 is 0 to 40 ° C, preferably 5 to 30 ° C, more preferably 5 to 20 ° C, still more preferably 5 to 10 ° C.
  • the temperature of the temperature zone 4 is 0 to 40 ° C, preferably 5 to 30 ° C, more preferably 5 to 20 ° C, still more preferably 5 to 10 ° C.
  • the yield of the bis(3,5,5-trimethylhexanoyl)peroxide is ⁇ 91%; preferably, the bis(3,5,5-trimethylhexanoyl)peroxide is received.
  • the rate is ⁇ 92%.
  • the content of the bis(3,5,5-trimethylhexanoyl)peroxide is ⁇ 91%; preferably, the content of the bis(3,5,5-trimethylhexanoyl)peroxide is ⁇ 93%.
  • the target product bis(3,5,5-trimethylhexanoyl)peroxide has a chloride ion content of 0.02 to 0.05% by weight and a H 2 O 2 content of 0.05 to 0.1% by weight.
  • the hydrogen peroxide has a mass concentration of 30% to 50%.
  • the base is selected from the group consisting of water-soluble metal hydroxides, water-soluble quaternary ammonium hydroxides, water-soluble tertiary amines, water-soluble metal carbonates or water-soluble metal phosphates, preferably alkali metal hydroxides, water-soluble metal carbonates
  • the salt or alkaline earth metal hydroxide is more preferably lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate.
  • the alkali solution has a mass concentration of 5% to 45%, preferably 15% to 35%, more preferably 20% to 30%.
  • the lye flow rate is 1 to 4 L/h, preferably 1.5 to 3 L/h, and more preferably 1.8 to 2.5 L/h.
  • the hydrogen peroxide flow rate is from 0.3 to 1 L/h, preferably from 0.5 to 0.8 L/h, more preferably from 0.6 to 0.7 L/h.
  • the flow rate of the 3,5,5-trimethylhexanoyl chloride is 1 to 3 L/h, preferably 1.5 to 2.5 L/h, more preferably 1.5 to 2 L/h.
  • the molar ratio of the hydrogen peroxide to the 3,5,5-trimethylhexanoyl chloride is from 0.5:1 to 0.8:1, preferably from 0.55:1 to 0.75:1, more preferably from 0.6:1 to 0.7:1.
  • the molar ratio of the base to 3,5,5-trimethylhexanoyl chloride is from 1:1 to 1.4:1, preferably from 1.1:1 to 1.3:1, more preferably from 1.15:1 to 1.2:1.
  • the organic peroxide is bis(2-ethylhexyl)dicarbonate
  • the oxidizing substrate is 2-ethylhexyl chloroformate
  • the catalyst is a base, of which preferred :
  • the temperature of the temperature zone 1 is 0 to 20 ° C, preferably 0 to 10 ° C, more preferably 5 to 10 ° C.
  • the temperature of the temperature zone 2 is 10 to 40 ° C, preferably 15 to 35 ° C, more preferably 20 to 30 ° C.
  • the temperature of the temperature zone 3 is 0 to 20 ° C, preferably 0 to 10 ° C, more preferably 5 to 10 ° C.
  • the temperature of the temperature zone 4 is 0 to 20 ° C, preferably 0 to 10 ° C, more preferably 5 to 10 ° C.
  • the yield of the bis(2-ethylhexyl)peroxydicarbonate is ⁇ 86.5%; preferably, the yield of the bis(2-ethylhexyl)peroxydicarbonate is ⁇ 90%.
  • the content of bis(2-ethylhexyl)peroxydicarbonate is ⁇ 95%; preferably, the content of bis(2-ethylhexyl)peroxydicarbonate is ⁇ 96%.
  • the target product has a chloride ion content of 0.02 to 0.05% by weight in bis(2-ethylhexyl) dicarbonate and a content of H 2 O 2 of 0.05 to 0.1% by weight.
  • the hydrogen peroxide has a mass concentration of 30% to 50%.
  • the base is selected from the group consisting of water-soluble metal hydroxides, water-soluble quaternary ammonium hydroxides, water-soluble tertiary amines, water-soluble metal carbonates or water-soluble metal phosphates, preferably alkali metal hydroxides, water-soluble metal carbonates
  • a salt or an alkaline earth metal hydroxide is more preferably sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate or lithium hydroxide.
  • the alkali solution has a mass concentration of 5% to 45%, preferably 15% to 35%, more preferably 20% to 30%.
  • the lye flow rate is 1 to 4 L/h, preferably 1.5 to 3 L/h, and more preferably 1.8 to 2.5 L/h.
  • the hydrogen peroxide flow rate is from 0.3 to 1 L/h, preferably from 0.5 to 0.8 L/h, more preferably from 0.6 to 0.7 L/h.
  • the flow rate of the 2-ethylhexyl chloroformate is from 1 to 3 L/h, preferably from 1.5 to 2.5 L/h, more preferably from 1.5 to 2 L/h.
  • the molar ratio of the hydrogen peroxide to the 2-ethylhexyl chloroformate is from 0.5:1 to 0.8:1, preferably from 0.55:1 to 0.75:1, more preferably from 0.6:1 to 0.7:1.
  • the molar ratio of the base to 2-ethylhexyl chloroformate is from 1:1 to 1.4:1, preferably from 1.1:1 to 1.3:1, more preferably from 1.15:1 to 1.2:1.
  • mass concentration of hydrogen peroxide, catalyst and oxidized substrate used in actual production will have a deviation of mass concentration of ⁇ 2 percentage points.
  • a second object of the present invention is to provide a plug-and-play integrated continuous flow reactor dedicated to any one form of online full continuous flow production process as described above, said integrated continuous flow reactor
  • the unitized structure comprises an oxidation unit and an aftertreatment unit, wherein: the oxidation unit is used for hydrogen peroxide, a catalyst, an oxidation substrate to react to form an alkyl peroxide, a dialkyl peroxide, a peroxycarboxylic acid, and a second Acyl peroxide, peroxydicarbonate and peroxydione, said post-treatment unit for alkyl peroxides, dialkyl peroxides, peroxycarboxylic acids, diacyl peroxides, peroxidation Post-treatment of dicarbonate and peroxydione.
  • a third object of the present invention is to provide a plug-and-play integrated continuous flow reactor dedicated to any form of on-line full continuous flow production as described above, said integrated continuous flow reactor
  • each of the units independently comprises more than one reactor module or group of reactor modules, wherein the reactor module group is composed of a plurality of reactor modules connected in series or in parallel, and the units are connected in series with each other.
  • a fourth object of the present invention is to provide a plug-and-play integrated continuous flow reactor dedicated to any one form of online full continuous flow production process as described above, said integrated continuous flow reactor Using a unitized structure, each of said units corresponds to at least one temperature zone, each temperature zone independently comprising more than one reactor module or group of reactor modules, wherein the reactor module group is connected in series or in parallel by a plurality of reactor modules Composition, each temperature zone is connected in series with each other.
  • the above three continuous flow reactors can further be:
  • the units further include a buffer vessel (buffer vessel), the buffer is a container having a certain volume, and is mainly used for buffering the pressure fluctuation of the system and balancing the flow difference, so that the system works more smoothly.
  • a buffer vessel buffer vessel
  • the buffer is a container having a certain volume, and is mainly used for buffering the pressure fluctuation of the system and balancing the flow difference, so that the system works more smoothly.
  • the number of the integrated continuous flow reactor feed ports is one or more, and the number of the integrated continuous flow reactor discharge ports is one or more.
  • the reactor module is optionally any reactor capable of realizing a continuous flow process, the reactor being selected from the group consisting of a microreactor, a Tandem loop reactor, and a tube. Any one or any of a variety of Tubular reactors.
  • the microreactor also known as a microstructure reactor or a microchannel reactor, is a device in which a chemical reaction occurs in a limited area with a general lateral dimension of 1 mm or less. The form is a miniature size channel.
  • a tandem coil reactor i.e., a reactor in which a coil reactor is connected in series by a pipe, wherein the coil reactor is in the form of a tubular reactor.
  • the tubular reactor is a continuous operation reactor with a tubular shape and a large aspect ratio which appeared in the middle of the last century.
  • Such a reactor can be very long; it can be a single tube or a plurality of tubes in parallel; it can be an empty tube or a filling tube.
  • the reactor may be one or more.
  • the reactor channel is made of single crystal silicon, special glass, ceramic, stainless steel or metal alloy coated with a corrosion resistant coating, and polytetrafluoroethylene.
  • reactor modules, the reactor module groups, the reactor modules and the reactor module groups are respectively connected in series or in parallel.
  • the integrated continuous flow reactor comprises four temperature zones.
  • the plug-and-production integrated continuous flow reactor comprises at least four temperature zones.
  • the oxidation unit corresponds to the temperature zone 1 to the temperature zone 3
  • the post-processing unit corresponds to the temperature zone 4.
  • the temperature of the temperature zone 1 is 0 to 60 ° C, preferably 0 to 40 ° C, more preferably 5 to 30 ° C, still more preferably 5 to 20 ° C, still more preferably 5 to 10 ° C.
  • the temperature of the temperature zone 2 is 30 to 110 ° C, preferably 40 to 100 ° C, more preferably 50 to 90 ° C, still more preferably 60 to 80 ° C, still more preferably 65 to 70 ° C.
  • the temperature of the temperature zone 3 is 0 to 50 ° C, preferably 0 to 40 ° C, more preferably 5 to 30 ° C, still more preferably 5 to 20 ° C, still more preferably 5 to 10 ° C.
  • the temperature of the temperature zone 4 is 0 to 50 ° C, preferably 0 to 40 ° C, more preferably 5 to 30 ° C, still more preferably 5 to 20 ° C, still more preferably 5 to 10 ° C.
  • a fifth object of the present invention is to provide a chemical production process comprising the online continuous continuous flow production process for directly preparing an organic peroxide from an alcohol or an alkane according to the present invention, and one or more Subsequent production process.
  • the chemical production process may be a polymerization process, and the organic peroxide produced by the online full continuous flow production process of the present invention acts as an initiator of the polymerization process, and seamlessly interfaces the process of the present invention with the polymerization process. It can form a complete continuous production and use of organic peroxides, subvert the existing production-storage-transport-storage-use production mode, and realize a new production mode of production and use.
  • a sixth object of the present invention is to provide a chemical production facility comprising the plug-and-production integrated continuous flow reactor of the online full continuous flow production process of any one of the forms described in the present invention, And one or more subsequent production equipment.
  • the chemical production equipment may be a polymer production equipment
  • the plug-and-play integrated continuous flow reactor of the present invention can directly interface with the polymerization tank, and can form an organic peroxide production and use.
  • the full continuous production equipment subverting the existing production-storage-transport-storage-use production mode, to achieve a new production mode of production and use.
  • the present invention has the following beneficial effects:
  • High-efficiency continuous flow synthesis of organic peroxides is realized on a plug-and-production integrated continuous flow reactor. That is, the reactants are continuously fed into the reactor and the product is continuously collected. Thanks to the optimization of the temperature division of the functional unit and the optimization of the temperature setting, the efficiency of the process is greatly improved. Production time is up to 6 minutes.
  • the process safety is greatly improved.
  • the liquid holding capacity of the reactor refers to the total volume of the reaction materials stored in the reactor at any time when the operation reaches a steady state.
  • two functional units including oxidation units, are designed in the plug-and-production integrated continuous flow reactor.
  • An aftertreatment unit wherein: said oxidizing unit is reacted with hydrogen peroxide, a catalyst, an oxidizing substrate to form an alkyl peroxide, a dialkyl peroxide, a peroxycarboxylic acid, a diacyl peroxide, a peroxydicarbonate And a peroxydione, the post-treatment unit for alkyl peroxides, dialkyl peroxides, peroxycarboxylic acids, diacyl peroxides, peroxydicarbonates, and peroxydicarbones Separation and purification.
  • the product quality is stable and reproducible due to stable flow rate and stable production process.
  • the plug-and-production integrated continuous flow reactor is small in size and small in area, which greatly saves the land for the plant.
  • Figure 1 is a process diagram of a full continuous flow production process of the present invention.
  • Figure 2 is a schematic illustration of the integrated reactor of the present invention.
  • concentrations in the examples of the present invention are all mass concentrations, the content of the products is determined by effective oxygen content titration (iodine method), the chloride ion content is detected by an ion detector, and other organic peroxides are passed through high performance liquid chromatography (HPLC).
  • effective oxygen content titration iodine method
  • chloride ion content is detected by an ion detector
  • HPLC high performance liquid chromatography
  • the content of other organic peroxides (H 2 O 2 and dialkyl peroxide) of the alkyl peroxide product in the present invention is 0.05-0.1 wt%;
  • the content of H 2 O 2 of the dialkyl oxide, peroxycarboxylic acid and peroxydione products is 0.05-0.1 wt%;
  • the content of chloride ion of the diacyl peroxide and peroxydicarbonate products is 0.02-0.05 wt%, H
  • the 2 O 2 content is 0.05-0.1% by weight. There is no need to delay the line in the reactor.
  • mass concentration of hydrogen peroxide, catalyst and oxidized substrate used in actual production will have a deviation of mass concentration of ⁇ 2 percentage points; ⁇ 3 ° C deviation; production time will have a deviation of ⁇ 5 s.
  • NSC904 2,4,4-trimethyl-2-pentanol
  • IPCF isopropyl chloroformate
  • MIBK methyl isobutyl ketone
  • raw material 1 aqueous hydrogen peroxide solution
  • raw material 2 alkaline solution
  • raw material 3 oxidized substrate
  • the reaction is complete; the effluent zone 3 reaction liquid enters the temperature zone 4 and the product is post-treated to obtain a product.
  • the feed rate 1 represents the feed rate of the feedstock 1
  • the feed rate 2 represents the feed rate of the feedstock 2
  • the feed rate 3 represents the feed rate of the feedstock 3.
  • the raw material 1 (acid solution), the raw material 2 (oxidized substrate) and the raw material 3 (aqueous hydrogen peroxide solution) are successively fed into the continuous reactor by a constant flow pump, and sequentially enter the temperature zone 1 to the temperature zone.
  • the reaction is complete; the effluent zone 3 reaction liquid enters the temperature zone 4 and the product is post-treated to obtain a product.
  • the feed rate 1 represents the feed rate of the feedstock 1
  • the feed rate 2 represents the feed rate of the feedstock 2
  • the feed rate 3 represents the feed rate of the feedstock 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种以双氧水为原料直接制备有机过氧化物的在线全连续流生产工艺,所述的生产工艺以双氧水、催化剂和氧化底物为起始原料,连续依次经氧化和后处理得到指定过氧化物,所述的生产工艺在即插即产型一体化全连续流反应器中进行。与传统的生产工艺相比较,所述的生产工艺生产时间缩短95%以上,无放大效应,且实现零库存,产品指标稳定,重现性好。

Description

一种以双氧水为原料直接制备有机过氧化物的在线全连续流生产工艺 技术领域
本发明涉及化工领域,具体涉及一种以双氧水为原料直接制备有机过氧化物的在线全连续流生产工艺。
背景技术
有机过氧化物是过氧化氢中的一个或两个氢原子被有机基团取代之后的衍生物,其通为R-O-O-R。自1858年Brudie第一次合成过氧化苯甲酰以来,已经历了100多年的历史。目前,国外已工业化的有机过氧化物有70多个品种。
由于其特殊的结构,在光照或加热条件下,过氧键发生均裂,产生自由基,这决定了过氧化物具有以下主要用途∶
1.自由基聚合引发剂
这是有机过氧化物的最主要用途。目前,生产PVC、PS、LDPE、PVA、涂料用树脂、高吸水性树脂及某些粘合剂如专用厌氧胶等的引发剂均是有机过氧化物。
2.不饱和聚酯的固化引发剂
不饱和聚酯树脂一般是由不饱和二元酸、饱和二元酸和二元醇缩聚而成的线型聚合物,其固化引发剂一般为有机过氧化物。
3.高分子交联剂
有机过氧化物还可用作LDPE、乙烯-醋酸乙烯共聚物(EVA)、乙丙橡胶(EPDM)和其它合成橡胶的交联剂。
4.用于高分子降解制备特种高分子
如采用有机过氧化物方法对基础PP树脂进行化学改性,生成分子量分布较窄,熔体流动指数较大的高流动性PP树脂,又称可控流变性PP(CRPP)。这是有机过氧化物的新用途。其机理为,引发有机过氧化物使之分解产生自由基;自由基夺取PP分子链叔碳原子上的氢原子,形成带自由基的PP分子链;接着发生β断裂,得到分子量较低的分子链;再经过链转移,继续进行降解反应,最终自由基进行复合、接合反应,使降解反应终止。目前世界上许多树脂生产公司已经采用该法并投入工业化生产。此外,采用有机过氧化物降解也是制备PP蜡的主要途径之一。
5.有机合成氧化剂
目前工业上主要以叔丁基过氧化氢(TBHP)或苯乙基过氧化氢为氧化剂,以丙烯为原料制备环氧丙烷即所谓哈康法;近年来以有机过氧化物为氧化剂进行的有机合成反应越来越多,如以沸石为催化剂,以叔丁基或环己基或异丙苯基过氧化氢作氧化剂,将环己烷氧化成环己醇、环己酮和己二酸;以分子筛为催化剂,在微波辐射下,以叔丁基过氧化氢为氧化剂,将饱和醇和不饱和醇氧化为相应的羰基化合物等。
6.杀菌剂、漂白剂及其它
由于过氧化物能分解放出活性氧,所以有机过氧化物都是很好的杀菌剂和漂白剂。如过氧乙酸对细菌繁殖体、芽胞真菌、酵母菌等具有高效、快速杀灭作用,可作为杀菌剂用于传染病防控、饮用水消毒和食品消毒等。使用中常配成0.2%~0.4%的水溶液,广泛用于医疗器械和食品工业的消毒;此外,过氧乙酸还用作纺织品、纸张、油脂、石蜡和淀粉的漂白剂;过氧化苯甲酰在工业上也常用作漂白剂、脱色剂、杀菌剂、清洗剂;过氧化丁二酸及过氧化甲乙酮也是重要的杀菌剂,而且还是重柴油添加剂。
有机过氧化物应用极其广泛,因此开发有机过氧化物的连续生产工艺具有现实意义和远大前景。
有机过氧化物合成反应过程有几个显著的特征∶一是强放热,无论是双氧水和醇、烷烃、羧酸或酸酐合成烷基过氧化物、二烷基过氧化物或过氧羧酸,还是双氧水和酰氯、氯甲酸酯或酮合成二酰基过氧化物、过氧化二碳酸酯或过氧化缩二酮,都是强放热反应,因此需要反应装置具备很好的换热效果以保证反应不飞温不失控;二是往往是油水两相或气液两相反应,因此良好的传质极其重要;三是有机过氧化物都为易燃易爆且极不稳定的化合物,为保证工艺安全性最好反应在短时间完成,即产即用,零库存,对于某些超低温有机过氧化物更是如此。
现有工艺反应通式如下:
Figure PCTCN2018100109-appb-000001
R 1选自饱和或不饱和的C 1-C 20烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基。
R 2选自饱和或不饱和的C 1-C 20烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基。
R 3选自饱和或不饱和的C 1-C 12烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基。
R 4或R 4’选自饱和或不饱和的C 1-C 12烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基。
R 5选自饱和或不饱和的C 1-C 12烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基。
现在虽然已有少量的有机过氧化物的连续制备工艺开发出来,但是已有工艺存在的问题是∶一是有些连续工艺短时间内无法反应完全,需要使用延迟管线延长反应时间来提高转化率,由此造成生产效率下降。如中国专利CN104370789A中提到连续工艺合成过氧化二碳酸双(2-乙基己酯)工艺中,先将三种原料先后送入微反应器中反应,然后进入延长管线进一步充分反应得到产品,反应时间约为4-9min,上述反应时间是指反应物料进入反应器中到反应结束得到目标产品粗品所需的时间,不包括后处理的时间。二是不可避免存在放大效应,这为进一步的工业化应用带来诸多不确定性,例如,由于放大效应具有不确定性且受到生产规模的影响很大,具有放大效应的工艺过程在向工业化放大时,需要多次逐级放大,每次放大过程都要重新调整优化工艺条件和参数,例如,根据生产需要调节生产量的时候,就会涉及到放大过程,每次生产量的调节都需要重新调整优化工艺条件和参数,这会极大地消耗人力物力和项目开发时间;由于放大效应受到生产规模的影响很大,会随着生产量的变化而变化且没有规律性,在工业化生产中,即使工艺条件和参数调整到位,如果改变产品生产规模,也需要重新调整优化工艺条件和参数,生产过程缺乏灵活性;同时大幅度不确定的放大效应会影响工艺的稳定性和可靠性,工艺条件和参数的微小波动都可能极大地影响产品质量,使得产品质量不稳定,难以控制;另外,这也会给生产过程带来潜在的安全风险。
放大效应(Scaling up Effect),是指利用小型设备进行化工过程(即小规模)实验(例如实验室规模)得出的研究结果,在相同的操作条件下与大型生产装置(例如工业化规模)得出的结果往往有很大差别。有关这些差别的影响称为放大效应。其原因主要是小规模的实验设备中的温度、浓度、物料停留时间分布与大规模设备中的不同。也就是说,相同的操作条件下,无法在工业化规模上完全重复小规模实验的研究结果;若要在工业化规模上得到与小规模实验相同或近似的结果,需要通过优化调整,改变工艺参数和操作条件。对于化工过程来说,放大效应是一个难度较大而且迫切需要解决的问题。如果不解决,会导致生产过程和产品质量具有很大的不确定性,一是直接导致下游产品的质量不稳定,难以控制;二是不确定性会带来生产过程工艺参数波动,进而导致无法有效控制生产过程,使得生产安全性不能得到保证,为生产过程埋下诸多安全隐患。
同时,现有氧化过程后得到的只是烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯和过氧化缩二酮粗品,其中还含有水、H 2O 2、盐和原料等,需经过后处理过程后才能得到符 合市售标准的产品(如市售叔丁基过氧化氢要求如下∶二叔丁基过氧化物≤0.08%,叔丁醇≤0.5%,其他有机物≤0.4%),所述后处理过程可以是气液分离、调节pH值、油水分液、减压精馏或蒸馏、闪蒸分离等,中国专利CN101298429中提到叔丁基过氧化氢后处理方法为反应混合物分液后油相减压精馏得到符合市售标准的产品。现有后处理过程耗时通常在数小时左右,处理周期长,效率低,同时还需要单独专用设备如精馏塔等,不同有机过氧化物后处理过程也不同,现有工艺中也没有一种通用的设备和工艺能做到可以纯化各种不同烷基过氧化物、二烷基过氧化物、过氧羧酸、过氧化二酰基化合物、过氧化二碳酸酯和过氧化缩二酮。
现地生产是指生产厂家将设备安置到终端消费者(或下游使用者)就近或同一地点进行生产,从而很大程度减少了从生产厂家到终端消费者(或下游使用者)之间的众多中间环节如仓储,物流等,节约了大量成本。但是现地生产仍无法避免少量产品的储存和运输,例如,从工厂的一个车间运送到另一个车间,从合成产品的生产设备取出产品并运送至下游的生产设备。在线生产(on-line manufacturing)作为现地生产的一种,是指产品的生产和使用同时进行,与下游工艺无缝衔接、同步联动的生产方式,从而实现产品的即产即用(produce-to-use)、随用随产(ready-to-use)的弹性生产模式(flexible manufacturing)。实现在线生产,需要借助于即插即产型生产装置(plug-and-produce system)。所谓即产即用,就是产出即使用,产品的生产和使用同时进行;随用随产,就是随时需要随时产出,无须等待,按需生产零库存;即插即产型生产装置,就是生产装置开动后即时获得产品,按需生产,满足需求后即可停车。在线生产的生产时间可以缩短至十余分钟甚至数分钟内,可以和下游使用者的生产设备和生产工艺实现无缝对接,从根本上避免了产品的储存和运输,节约了成本、提高了生产的安全性,也提高了生产效率。所述的生产时间是指从原料进入反应器到符合市售产品输出所需的时间,包括反应时间和后处理时间,在连续流工艺中也称其为停留时间(residence time)。在线生产作为一种高度灵活的生产方式,除了与其它现地生产方式一样可以节约大量仓储、物流等成本外,同时能有效地满足快速、个性化和定制化的产品需求,也符合工业化4.0和智能制造主导的第四次工业革命的发展方向。
本发明的有机过氧化物一体化全连续流工艺和反应器,可以直接无缝衔接到下游终端用户的工艺和反应器上,实现即产即用甚至可能实现整个工艺过程中宏观上没有过氧化羧酸酯、过氧化碳酸酯或过氧化缩酮的累积和累积过程。一体化全连续流工艺可直接与高分子材料合成领域的聚合釜,胶片工业的硫化机等连接,形成有机过氧化物的生产和使用的全连续,颠覆现有生产-存储-运输-储存-使用的生产模式,实现生产即使用的新型生产模式,有机过氧化物在线生产,即产即用,按需生产,零库存无物流。例如过氧化二碳酸双(2-乙基己酯)作为引发剂,是目前PVC聚合最重要的低温引发剂配方组分之一,本发明的一体化连续流工艺可以与PVC聚合釜无缝衔接,符合市售标准的过氧化二碳酸双(2-乙基己酯)从一体化连续流反应器流出后,直接通入PVC聚合釜中参与聚合反应。真正做到产出即使用,没有有机过氧化物的累积和储存,一方面大大提高了整体工艺的安全性,另一方面进一步降低了包括下游产品在内的整个工艺的生产成本。
中国专利CN 101287704报道了通过微反应技术生产有机过氧化物的方法,与本发明的主要区别在于∶
一是使用的静态混合器本身不带换热,而是依靠外接热交换器进行换热,物料接触时没有换热,静态混合器实际并没有解决换热问题,因此反应温度较低,所有有机过氧化物合成温度都在25℃以下;
二是由于使用了较低的反应温度,其反应时间为2.5-17min左右,加上后处理时间1-2小时,生产时间均大于1小时,所述的生产时间是指从原料进入反应器到符合市售产品输出所需的时间,在连续流工艺中也称其为停留时间(residence time);
三是该专利中优选直接或间接使用了高频振动的辅助,高频振动如超声等的使用必然存在放大效应;
四是该专利所能合成的有机过氧化物包括二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯、过氧化缩二酮,但是烷基过氧化物并不能通过该工艺合成,其工艺仍存在一些局限。
中国专利CN 101479239报道了使用具有高热交换能力的板式换热器来连续制备有机过氧化物的方法,通过在板式换热器不同位置(板块)引入不同的反应物,在给定的温度下连续制备选定的过氧化物。合成反应时间在实验室规模为1秒到45秒的范围内,而在工业规模上最高达2分钟到3分钟。相比间歇工艺,该连续制备方法在生产效率和安全性上有一定的优势,但是由于不可避免地存在了放大效应,其工业规模反应时间是实验室规模的2~180倍,存在大幅度不确定(反应时间2~180倍极宽范围的延长)的放大效应,大大增加了工业化的难度。
综上,有机过氧化物现有生产工艺中存在诸多问题∶需要对大量有机过氧化物(烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯和过氧化缩二酮)进行纯化、存储和运输,使得工艺存在极大的安全隐患;尚无法实现以双氧水、催化剂、氧化底物为原料直接得到符合市售标准产品的连续流工艺,因此无法做到上述有机过氧化物真正意义上的在线生产,也就无法从根本上解决有机过氧化物生产和使用中巨大的安全风险并降低生产和使用成本。此外,现有工艺均存在不同程度的放大效应, 导致向工业化放大时会消耗大量人力物力且存在诸多不确定性;放大后工艺可靠性也存在问题,导致产品质量不稳定,难以控制;并且生产过程缺乏灵活性并且会有潜在的安全风险;由于反应温度低,导致生产时间过长且产率不高,降低了生产效率,这些都增加了工业化的难度。而无法实现大规模生产,就限制了其应用。因此,需要寻找一种操作简单安全,高效,能够在线生产,易于大规模生产且无放大效应的有机过氧化物的全连续流生产工艺。
发明内容
针对现有技术是不足,本发明所要解决的技术问题是,提供一种以双氧水为原料直接制备有机过氧化物的在线全连续流生产工艺,所述的有机过氧化物选自烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯、过氧化缩二酮。本发明提供的全连续流生产工艺将氧化反应过程与后处理过程有效地整合为一个工艺,高效、快速地制得符合市售标准的有机过氧化物产品,生产工艺无放大效应,克服了现有技术存在放大效应、后处理时间长、不同有机过氧化物的生产工艺无法通用的问题,可以在同一台即插即产型一体化连续流反应器上实现不同种有机过氧化物的生产。本发明的方法能够实现在线生产(on-line manufacturing),所述有机过氧化物产品的生产和使用同时进行,与下游工艺(使用有机过氧化物的工艺)无缝衔接、同步联动的生产方式,从而实现有机过氧化物产品的即产即用(produce-to-use)、随用随产(ready-to-use)的弹性生产模式(flexible manufacturing),从根本上解决了有机过氧化物冷链仓储和运输的成本及安全性问题,制得的有机过氧化物产品产率和含量高,易于大规模生产,大幅度降低生产成本、提高有机过氧化物生产和下游产品生产的安全性。
术语说明:本专利所用术语“芳基”是指5到12个碳原子的全碳单环或稠合多环基团,具有完全共轭的π电子系统。芳环的非限制性实例有∶苯环、萘环和蒽环。芳环可以是无取代或取代的。芳环的取代基选自卤素、硝基、氨基、氰基、羟基、C 1-C 6烷基、C 1-C 6烷氧基、卤代C 1-C 6烷基、卤代C 1-C 6烷氧基、C 3-C 6环烷基、卤代C 3-C 6环烷基。
本专利所用术语“杂环芳基”指5到12个环原子的不饱和的碳环,其中一个或多个碳原子被杂原子如N、O、S等置换。杂芳环可以是单环,也可以是双环,即通过两个环稠合而成。具体的杂环芳基可以是∶吡啶基,嘧啶基,吡嗪基,异恶唑基,异噻唑基、吡唑基、噻唑基、恶唑基和咪唑基等。杂环芳基可以是无取代或取代的。杂环芳基的取代基选自卤素、硝基、氨基、氰基、羟基、C 1-C 6烷基、C 1-C 6烷氧基、卤代C 1-C 6烷基、卤代C 1-C 6烷氧基、C 3-C 6环烷基、卤代C 3-C 6环烷基。
本专利所用术语“杂环烷基”指单环或稠合环基团,在环中具有5到12个环原子,其中一个或两个环原子是选自N、O或S(O) m(其中m是0至2的整数)的杂原子,其余环原子是C。这些环可以包含一个或多个双键,但这些环不具有完全共轭的π电子系统。无取代的杂环烷基的可以是吡咯烷基、哌啶基、哌嗪基、吗啉代基、硫代吗啉代基、高哌嗪基等。杂环可以是无取代或取代的。杂环的取代基选自卤素、硝基、氨基、氰基、羟基、C 1-C 6烷基、C 1-C 6烷氧基、卤代C 1-C 6烷基、卤代C 1-C 6烷氧基、C 3-C 6环烷基、卤代C 3-C 6环烷基。
本专利所用术语“环烷基”是指具有3到12个碳原子的饱和单环碳环,除非指明不同数目的原子。环烷基包括环丙基、环丁基、环戊基、环己基、环庚基和环辛基等。环烷基可以是无取代或取代的。环烷基还可任选在任何可利用碳上被一个或多个选自烷氧基、卤素、卤代烷基如全氟烷基等取代基取代。
本专利所用术语“烷氧基”是指含有-O-烷基基团,本专利所用“烷氧基”的实例包括但不限于甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基和叔丁氧基。“烷氧基”还包括取代烷氧基。烷氧基可任选被一个或多个卤素原子取代。
本专利所用术语“烷基”包括直链烷基和支链烷基。如提及单个烷基如“丙基”,则只特指直链烷基,如提及单个支链烷基如“异丙基”,则只特指支链烷基。例如,“C1-6烷基”包括C1-4烷基、C1-3烷基、甲基、乙基、正丙基、异丙基和叔丁基。
连续工艺(continuous process)是指生产过程中生产系统与外界存在物料不断地交换,原料连续不断地进入系统,并以产品形式连续不断地离开系统,即产品被源源不断地生产出来。连续流工艺(continuous-flow process)作为连续工艺的一种,过程中连续加入原料,连续生产制得产品,过程中没有停留等待,即产品被源源不断地生产出来,是一种“流水线”式的化工生产过程。当工艺操作达到定态时,反应器内任何位置上物料的组成、温度等状态参数不随时间而变化,是稳态过程,因而生产过程和产品质量都是稳定的。在包含有多步反应的工艺中,如果其中某几个步骤是连续的,该工艺可以称为连续工艺;而只有所有步骤都是连续的,即连续加入原料,连续得出产品,才能称为连续流工艺。
为解决本发明的技术问题,本发明创新性地提供一种由双氧水、催化剂和氧化底物直接制备有机过氧化物的全连续流生产工艺,所述的生产工艺以双氧水、催化剂和氧化底物为起始反应原料,连续依次经氧化、后处理两个过程制得有机过氧化物,所述的生产工艺在即插即产型一体化全连续流反应器中进行,在所述即插即产型一体化全连续流反应器的进料口不间断加入双氧水、催化剂和氧化底物,在所述即插即产 型一体化全连续流反应器出料口不间断得到目标产品有机过氧化物,所述的生产工艺无放大效应,所述的催化剂为酸或碱,所述的有机过氧化物选自烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯、过氧化缩二酮;所述的氧化底物选自:醇、羧酸、酸酐、酮、酰氯、氯甲酸酯。
本发明通过集成反应工艺和即插即产型一体化连续流反应器的优势,彻底改进了现有技术生产有机过氧化物的工艺,能够实现有机过氧化物的在线全连续流生产,将氧化过程与后处理过程有效地整合为一个工艺,仅在6分钟内高效、快速地制得符合市售标准的有机过氧化物产品,生产工艺无放大效应,克服了现有技术存在放大效应、后处理时间长、不同有机过氧化物的生产工艺无法通用的问题,可以在同一台即插即产型一体化连续流反应器上实现不同种有机过氧化物的生产。特别地,本发明的生产工艺能够实现有机过氧化物产品的即产即用,可以与下游工艺(使用有机过氧化物的工艺)无缝衔接、同步联动,从根本上解决了有机过氧化物冷链仓储和运输的成本及安全性问题,制得的有机过氧化物产品产率和含量高,易于大规模生产,大幅度降低生产成本、提高有机过氧化物生产和下游产品生产的安全性。
本发明工艺路线通式如下:
Figure PCTCN2018100109-appb-000002
其中,A为氧化底物,包括醇、羧酸、酸酐、酮、酰氯和氯甲酸酯,C为烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯和过氧化缩二酮。
进一步地,A为酰氯的通式为R 1COCl;A为氯甲酸酯的通式为R 2OCOCl;A为醇的通式为R 3(OH) n,其中n=1,2,3...;A为酮的通式R 4R 4’(CO)或R 4(CO)(环内酮);A为羧酸的通式为R 5COOH;A为羧酸酐的通式为(R 5CO) 2O或R 5(CO) 2O(环内酸酐)。
C为二酰基过氧化物的通式为R 1(COO) 2;C为过氧化二碳酸酯的通式为R 2(OCOO) 2;C为烷基过氧化物的通式为R 3(OOH) n,其中n=1,2,3...;C为二烷基过氧化物的通式为R 3OOR 3,其中n=1;C为过氧化缩二酮的通式为R 4(OOOH) 2;C为过氧羧酸的通式为R 5OOOH。
R 1选自饱和或不饱和的C 1-C 20烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基。
R 2选自饱和或不饱和的C 1-C 20烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基。
R 3选自饱和或不饱和的C 1-C 12烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基。
R 4或R 4’选自饱和或不饱和的C 1-C 12烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基。
R 5选自饱和或不饱和的C 1-C 12烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基。
进一步地,R 1选自饱和或不饱和的C 1-C 18烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基。
R 2选自饱和或不饱和的C 1-C 18烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基。
R 3选自饱和或不饱和的C 3-C 8烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基。
R 4或R 4’选自饱和或不饱和的C 3-C 8烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基。
R 5选自饱和或不饱和的C 3-C 8烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基。
进一步地,R 1更选自甲基、乙基、丙基、异丙基、丁基、仲丁基、叔丁基、异戊基、正戊基、异庚基、辛基、异辛基、2,2-二甲基庚基、壬基、十一烷基、苯基、2-甲基苯基、4-甲基苯基、4-氯苯基、2,4-二氯苯基、萘基。
R 2选自甲基、乙基、丙基、异丙基、丁基、仲丁基、2-乙基戊基、异十三烷基、十七烷基、环己基、4-叔丁基环己基、苄基、苯氧乙基。
R 3选自叔丁基、叔戊基、2,4,4-三甲基-2-戊基、2,5-二甲基己基。
R 4或R 4’更选自甲基、乙基、异丁基、2-氧代丙基、-(CH 2) 5-。
R 5选自甲基、乙基。
进一步地,R 1COCl选自乙酰氯、丙酰氯、丁酰氯、异丁酰氯、戊酰氯、2-甲基丁酰氯、新戊酰氯、 2-甲基戊酰氯、2-乙基丁酰氯、2-乙基己酰氯、壬酰氯,2,4,4-三甲基戊酰氯、3,5,5-三甲基己酰氯、新癸酰氯、癸酰氯、月桂酰氯、苯甲酰氯、2-甲基苯甲酰氯、4-甲基苯甲酰氯、4-氯苯甲酰氯、2,4-二氯苯甲酰氯、萘甲酰氯。
R 2OCOCl选自氯甲酸甲酯、氯甲酸乙酯、氯甲酸正丙酯、氯甲酸异丙酯、氯甲酸正丁酯、氯甲酸仲丁酯、氯甲酸2-乙基己酯、氯甲酸异十三烷基酯、氯甲酸硬脂酯、氯甲酸环己酯、氯甲酸4-叔丁基环己酯、氯甲酸苄酯、氯甲酸2-苯氧基乙酯。
R 3(OH) n选自叔丁醇、叔戊醇、2,4,4-三甲基-2-戊醇、2,5-二甲基-2,5双羟基己烷。
R 4R 4’(CO)选自甲乙酮、甲基异丁酮、乙酰丙酮;R 4(CO)更选自环己酮。
R 5COOH选自乙酸、丙酸。
(R 5CO) 2O选自乙酸酐、丙酸酐。
进一步地,所述的有机过氧化物选自:
过氧化二异丁酰CAS No.:3437-84-1、过氧化二碳酸双(3-甲氧基丁酯)CAS No.:52238-68-3、过氧化二碳酸双(乙氧基己酯)CAS No.:763-69-9、过氧化二碳酸二异丙酯CAS No.:105-64-6、过氧化二碳酸双丁酯CAS No.:16215-49-9、二(3,5,5-三甲基己酰)过氧化物CAS No.:3851-87-4、过氧化二碳酸双(2-乙基己酯)CAS No.:16111-62-9、过氧化甲乙酮CAS No.:1338-23-4、过氧化乙酰丙酮CAS No.:37187-22-7、过氧化甲基异丁基酮CAS No.:37206-20-5、叔丁基过氧化氢CAS No.:75-91-2、过氧化二叔丁基CAS No.:110-05-4、叔戊基过氧化氢CAS No.:3425-61-4、过氧化二叔戊基CAS No.:10508-09-5、过氧乙酸CAS No.:79-21-0、1,1,3,3-四甲基丁基过氧化氢CAS No.:5809-08-5。
进一步地,生产烷基过氧化物、二烷基过氧化物时,所述氧化底物为醇;生产过氧羧酸时,所述氧化底物为羧酸或酸酐;生产二酰基过氧化物时,所述氧化底物为酰氯;生产过氧化二碳酸酯时,所述氧化底物为氯甲酸酯;生产过氧化缩二酮时,所述氧化底物为酮。
由于本发明的解决方案以双氧水、催化剂和氧化底物为起始原料,且可以实现最终产品即产即用,避免存储大量产品的安全隐患,同时也不存在放大效应,极大地降低了工业化应用的难度,在向工业化放大时,无需经历繁琐复杂的多次逐级放大和工艺条件、参数的调整优化,即可一次放大到所需要的生产规模,极大地节约了人力物力和项目开发时间;在工业化生产中,无需重新调整优化工艺条件和参数,即可灵活改变产品生产规模,生产过程灵活性好;无放大效应使得生产过程稳定可靠,工艺条件和参数的波动也不会影响产品质量,产品质量易于控制;这也极大地提升了生产过程的安全性。
本发明的生产工艺可以在高温下快速、连续地完成制备有机过氧化物的多步反应,利用功能单元温区划分和温度设置的优化以及功能单元的协同作用,生产时间可缩短至6分钟内,大大提升了工艺的效率。可见,本发明的生产工艺突破了现有技术的限制,在现有技术无法实现的苛刻、危险的条件下,成功了实现了有机过氧化物的高效率、高质量的合成,并且不存在放大效应,非常适合工业化生产,是本领域的一项重大突破。
本发明的连续流工艺可以实现最终产品即产即用,避免存储有机过氧化物产品的安全隐患;工艺稳定性和可靠性好,因而产品质量稳定、重现性好;工艺也没有放大效应,也解决了有机过氧化物连续流工艺工业化存在放大效应的问题;同时该即插即产型即一体化全连续流反应器由于无需延迟管线,反应时间短,体积小,占地面积小,极大地节约了厂房用地和提高了生产效率。
进一步地,本发明生产工艺的生产时间≤6min,优选的,所述的生产时间为1~6min;更优选的,所述的生产时间为2~5min;更优选的,所述的生产时间为3~4min。所述的生产时间是指从反应原料(反应底物、氧化剂和缩合剂)进入所述一体化连续流反应器到制得符合市售标准的目标产品输出所需的时间,包括氧化过程时间和后处理过程的时间。
本发明工艺制得的目标产品有机过氧化物是符合市售工业品标准的产品。
进一步地,所述目标产物有机过氧化物选自二酰基过氧化物、过氧化二碳酸酯,所述有机过氧化物中的氯离子含量≤0.05wt%,H 2O 2的含量≤0.1wt%。
进一步地,所述目标产品有机过氧化物选自烷基过氧化物,所述烷基过氧化物中H 2O 2和二叔丁基过氧化氢的含量≤0.1wt%。
进一步地,所述目标产品有机过氧化物选自二烷基过氧化物、过氧羧酸、过氧化缩二酮,所述目标产品有机过氧化物中的H 2O 2含量≤0.1wt%。
进一步地,所述氧化过程的温度为0-110℃,优选20-100℃,更优选30-90℃,更优选50-80℃,更优选60-70℃。
进一步地,所述后处理过程的温度为0-50℃,优选0-40℃,更优选5-30℃,更优选5-20℃,更优选5-10℃。
进一步地,所述有机过氧化物的收率≥71%;优选的,所述有机过氧化物的收率≥85%;更优选的,所述有机过氧化物的收率≥94%。
进一步地,所述有机过氧化物的含量≥79%;优选的,所述有机过氧化物的含量≥86%;所述有机过氧化物的含量≥96%。
进一步地,所述碱选自水溶性金属氢氧化物、水溶性季铵氢氧化物、水溶性叔胺、水溶性金属碳酸盐或水溶性金属磷酸盐,优选碱金属氢氧化物、水溶性金属碳酸盐或碱土金属氢氧化物,更优选氢氧化锂、氢氧化钠、氢氧化钾、碳酸钠、碳酸钾。
进一步地,所述碱液质量浓度为5%~45%,优选15%~35%,更优选20%~30%。
进一步地,所述酸选自所有已知的有机酸和无机酸,优选硫酸、磷酸、三氟乙酸。
进一步地,所述酸液质量浓度50%-90%,优选60%-80%,更优选70%-80%。
进一步地,所述双氧水浓度优选30%~50%。
进一步地,酸和氧化底物的摩尔比为0.5∶1~1.1∶1,优选0.6∶1~1∶1,更优选0.7∶1~0.9∶1。
进一步地,双氧水和氧化底物的摩尔比为0.5∶1~2.5∶1,优选0.6∶1~2∶1,更优选0.7∶1~1.15∶1,更优选0.8∶1~1.05∶1。
进一步地,碱和氧化底物的摩尔比为1∶1~1.4∶1,优选1.1∶1~1.3∶1,更优选1.15∶1~1.2∶1。
进一步地,酸液流速为0.03~5L/h,优选0.03~4L/h,更优选0.03~3L/h。
进一步地,碱液流速为1~5L/h,优选1.5~4L/h,更优选1.8~2.5L/h。
进一步地,双氧水流速为0.3~4L/h,优选0.3~3L/h,更优选0.3~2L/h。
进一步地,氧化底物流速为1~5L/h,优选1.5~4L/h,更优选2~3L/h。
进一步地,所述有机过氧化物为叔丁基过氧化氢,所述氧化底物为叔丁醇,所述催化剂为酸,其中,优选的:
所述双氧水质量浓度为30%~50%。
所述氧化过程的温度为0-110℃,优选20-100℃,更优选30-90℃,更优选50-80℃,更优选60-70℃。
所述后处理过程的温度为0-50℃,优选0-40℃,更优选5-30℃,更优选5-20℃,更优选5-10℃。
所述全连续流工艺生产时间≤4min,优选的,所述的生产时间为1~3min;更优选的,所述的生产时间为2~3min。
所述叔丁基过氧化氢的收率≥71%;优选的,所述叔丁基过氧化氢的收率≥81%。
所述叔丁基过氧化氢的含量≥80%;优选的,所述叔丁基过氧化氢的含量≥84%。
所述叔丁基过氧化氢中其他有机过氧化物杂质(H 2O 2和二叔丁基过氧化氢)的含量为0.05~0.08wt%。
所述酸选自所有已知的有机酸和无机酸,优选硫酸、磷酸、三氟乙酸。
所述酸液质量浓度50%-90%,优选60%-80%,更优选70%-80%。
所述酸液流速为1~3L/h,优选1.5~2.5L/h,更优选1.5~2L/h。
所述双氧水流速为1~3L/h,优选1.5~2.5L/h,更优选1.5~2L/h。
所述叔丁醇流速为1~4L/h,优选1.5~3L/h,更优选2~3L/h。
所述酸和叔丁醇的摩尔比为0.5∶1~1∶1,优选0.5∶1~0.9∶1,更优选0.5∶1~0.7∶1,更优选0.5∶1~0.6∶1。
所述双氧水和叔丁醇的摩尔比为0.8∶1~1.2∶1,优选0.9∶1~1.1∶1,更优选0.9∶1~1.05∶1。
进一步地,所述有机过氧化物为叔戊基过氧化氢,所述氧化底物为叔戊醇,所述催化剂为酸,其中,优选的:
所述双氧水质量浓度为30%~50%。
所述氧化过程的温度为0-110℃,优选20-100℃,更优选30-90℃,更优选50-80℃,更优选60-70℃。
所述后处理过程的温度为0-50℃,优选0-40℃,更优选5-30℃,更优选5-20℃,更优选5-10℃。
所述全连续流工艺生产时间≤4min,优选的,所述的生产时间为1~3min;更优选的,所述的生产时间为2~3min。
所述叔戊基过氧化氢的收率≥73%;优选的,所述叔戊基过氧化氢的收率≥79%。
所述叔戊基过氧化氢的含量≥83.9%;优选的,所述叔戊基过氧化氢的含量≥84%。
所述叔戊基过氧化氢中H 2O 2的含量为0.05~0.08wt%。
所述酸选自所有已知的有机酸和无机酸,优选硫酸、磷酸、三氟乙酸。
所述酸液质量浓度50%-90%,优选60%-80%,更优选70%-80%。
所述酸液流速为1~3L/h,优选1.5~2.5L/h,更优选1.5~2L/h。
所述双氧水流速为1~3L/h,优选1.5~2.5L/h,更优选1.5~2L/h。
所述叔戊醇流速为1~4L/h,优选1.5~3L/h,更优选2~3L/h。
所述酸和叔戊醇的摩尔比为0.8∶1~1.1∶1,优选0.9∶1~1∶1,更优选0.95∶1~1∶1。
所述双氧水和叔戊醇的摩尔比为0.9∶1~1.3∶1,优选1∶1~1.25∶1,更优选1.14∶1~1.2∶1。
进一步地,所述所述有机过氧化物为二(3,5,5-三甲基己酰)过氧化物,所述氧化底物为3,5,5-三甲基己酰氯,所述催化剂为碱,其中,优选的:
所述双氧水质量浓度为30%~50%。
所述氧化过程的温度为0-110℃,优选20-100℃,更优选30-90℃,更优选50-80℃,更优选60-70℃。
所述后处理过程的温度为0-50℃,优选0-40℃,更优选5-30℃,更优选5-20℃,更优选5-10℃。
所述全连续流工艺生产时间≤4min,优选的,所述的生产时间为1~3min;更优选的,所述的生产时间为2~3min。
所述二(3,5,5-三甲基己酰)过氧化物的收率≥91%;优选的,所述二(3,5,5-三甲基己酰)过氧化物的收率≥92%。
所述二(3,5,5-三甲基己酰)过氧化物的含量≥91%;优选的,所述二(3,5,5-三甲基己酰)过氧化物的含量≥93%。
所述目标产物二(3,5,5-三甲基己酰)过氧化物中的氯离子含量为0.02~0.05wt%,H 2O 2的含量为0.05~0.1wt%。
所述碱选自水溶性金属氢氧化物、水溶性季铵氢氧化物、水溶性叔胺、水溶性金属碳酸盐或水溶性金属磷酸盐,优选碱金属氢氧化物、水溶性金属碳酸盐或碱土金属氢氧化物,更优选氢氧化锂、氢氧化钠、氢氧化钾、碳酸钠、碳酸钾。
所述碱液质量浓度为5%~45%,优选15%~35%,更优选20%~30%。
所述碱液流速为1~4L/h,优选1.5~3L/h,更优选1.8~2.5L/h。
所述双氧水流速为0.3~1L/h,优选0.5~0.8L/h,更优选0.6~0.7L/h。
所述3,5,5-三甲基己酰氯流速为1~3L/h,优选1.5~2.5L/h,更优选1.5~2L/h。
所述双氧水和3,5,5-三甲基己酰氯的摩尔比为0.5∶1~0.8:1,优选0.55∶1~0.75∶1,更优选0.6∶1~0.7∶1。
所述碱和3,5,5-三甲基己酰氯的摩尔比为1:1~1.4:1,优选1.1:1~1.3:1,更优选1.15:1~1.2:1。
进一步地,所述所述有机过氧化物为过氧化二碳酸双(2-乙基己酯),所述氧化底物为氯甲酸-2乙基己酯,所述催化剂为碱,其中,优选的:
所述双氧水质量浓度为30%~50%。
所述氧化过程的温度为0-110℃,优选20-100℃,更优选30-90℃,更优选50-80℃,更优选60-70℃。
所述后处理过程的温度为0-50℃,优选0-40℃,更优选5-30℃,更优选5-20℃,更优选5-10℃。
所述全连续流工艺生产时间≤4min,优选的,所述的生产时间为1~3min;更优选的,所述的生产时间为2~3min。
所述过氧化二碳酸双(2-乙基己酯)的收率≥86.5%;优选的,所述过氧化二碳酸双(2-乙基己酯)的收率≥90%。
所述过氧化二碳酸双(2-乙基己酯)的含量≥95%;优选的,所述过氧化二碳酸双(2-乙基己酯)的含量≥96%。
所述目标产物过氧化二碳酸双(2-乙基己酯)中的氯离子含量为0.02~0.05wt%,H 2O 2的含量为0.05~0.1wt%。
所述碱选自水溶性金属氢氧化物、水溶性季铵氢氧化物、水溶性叔胺、水溶性金属碳酸盐或水溶性金属磷酸盐,优选碱金属氢氧化物、水溶性金属碳酸盐或碱土金属氢氧化物,更优选氢氧化钠、氢氧化钾、碳酸钠、碳酸钾或氢氧化锂。
所述碱液质量浓度为5%~45%,优选15%~35%,更优选20%~30%。
所述碱液流速为1~4L/h,优选1.5~3L/h,更优选1.8~2.5L/h。
所述双氧水流速为0.3~1L/h,优选0.5~0.8L/h,更优选0.6~0.7L/h。
所述氯甲酸-2-乙基己酯流速为为1~3L/h,优选1.5~2.5L/h,更优选1.5~2L/h。
所述双氧水和氯甲酸-2-乙基己酯的摩尔比为0.5∶1~0.8∶1,优选0.55∶1~0.75∶1,更优选0.6∶1~0.7∶1。
所述碱和氯甲酸-2-乙基己酯的摩尔比为1∶1~1.4∶1,优选1.1∶1~1.3∶1,更优选1.15∶1~1.2∶1。
需要说明的是,实际生产中(包括实验室、中试、实际生产过程中)所用的双氧水、催化剂和氧化底物质量浓度均会有±2个百分点的质量浓度的偏差;温区温度会有±3℃的偏差;生产时间会有±5s的偏差。
为满足连续流工艺的条件,本发明开发了专门的一体化反应器。所述的反应器可以是模块化的结构,需要设计模块的组织方式、数量,各温区包含的模块,还需要开发针对性的工艺条件和参数,包括各温区的划分和温度设置,以上各种因素发生协同作用,使得这一连续流工艺得以实现。还可以进一步地结合各温度与物料浓度、物料配比和物料流速,使之与反应进程相匹配,得到更好的反应效果。所述的物料包含各原料、反应过程的各中间产物,所述的物料浓度包含各原料的浓度、各中间产物的浓度,所述的物料配比包含各原料的配比、各中间产物的浓度,所述的物料流速包含各原料的流速、各中间产物的流速。
进一步地,为与有机过氧化物的全连续流生产工艺相匹配,所述即插即产型一体化全连续流反应器采用单元化结构,包括氧化单元和后处理单元,其中∶所述的氧化单元用于双氧水、催化剂、氧化底物反应生成烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯和过氧化缩二酮,所述后处理单元用于烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯和过氧化缩二酮的后处理。
进一步地,所述氧化单元的温度为0-110℃,优选20-100℃,更优选30-90℃,更优选50-80℃,更优选60-70℃。
进一步地,所述后处理单元的温度为0-50℃,优选0-40℃,更优选5-30℃,更优选5-20℃,更优选5-10℃。
进一步地,为与有机过氧化物的全连续流生产工艺相匹配,所述即插即产型一体化全连续流反应器采用单元化结构,每个所述的单元独立地包含一个以上的反应器模块或反应器模块组,其中反应器模块组由多个反应器模块串联或并联组成,各单元之间相互串联。
进一步地,为与有机过氧化物的全连续流生产工艺相匹配,所述即插即产型一体化全连续流反应器采用单元化结构,每个所述的单元包含至少一个温区,每个温区独立地包含一个以上的反应器模块或反应器模块组,其中反应器模块组由多个反应器模块串联或并联组成,各温区之间相互串联。
进一步地,所述的单元之间还进一步包含缓冲器(Buffer vessel),所述的缓冲器为具有一定容积的容器,主要用于缓冲系统的压力波动和平衡流量差异,使系统工作更平稳。
进一步地,所述即插即产型即一体化全连续流反应器进料口的数量为1个或多个,所述即插即产型一体化全连续流反应器出料口的数量为1个或多个。
进一步地,所述的反应器模块任选是任意一种能实现连续流工艺的反应器,所述的反应器选自微反应器(Microreactor),串联盘管反应器(Tandem loop reactor),管式反应器(Tubular reactor)的任意一种或任意多种。所述的微反应器,又称微结构反应器或微通道反应器,是一种在其中化学反应发生在普遍侧向尺寸在1mm及以下的有限区域内的设备,这类有限区域最典型的形式即是微型尺寸通道。串联盘管反应器,即用管道将盘管反应器串联起来组成的反应器,其中盘管反应器是将管式反应器做成盘管的形式。管式反应器是上个世纪中叶出现的一种呈管状、长径比很大的连续操作反应器。这种反应器可以很长;可以单管也可以多管并联;可以空管,也可以是填充管。
进一步地,反应器可以是一台或多台。
进一步地,所述反应器通道的材质为单晶硅、特种玻璃、陶瓷、涂有耐腐涂层的不锈钢或金属合金、聚四氟乙烯。
进一步地,所述的反应器模块之间、反应器模块组之间、反应器模块和反应器模块组之间均分别是串联或并联。
进一步地,所述的连续流生产工艺在包含4个温区的即插即产型一体化全连续流反应器中进行。
进一步地,所述的连续流生产工艺氧化单元包含3个温区,分别为温区1,温区2和温区3,后处理单元包含1个温区,为温区4。
进一步地,所述的连续流生产工艺包括如下步骤∶
(a)将双氧水、催化剂、氧化底物输送进氧化单元,依次经过温区1-温区3,完全反应生成相应的烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯和过氧化缩二酮。
(b)流出温区3的反应液进入后处理单元,依次经过温区4进行后处理,得到产品。
进一步地,所述温区1的温度为0~60℃,优选0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
进一步地,所述温区2的温度为30~110℃,优选40~100℃,更优选50~90℃,更优选60~80℃,更优选65~70℃。
进一步地,所述温区3的温度为0~50℃,优选0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
进一步地,所述温区4的温度为0~50℃,优选0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
进一步地,所述有机过氧化物为叔丁基过氧化氢时,所述氧化底物为叔丁醇,所述催化剂为酸,其中,优选的:
所述温区1的温度为0~40℃,优选5~30℃,更优选5~20℃,更优选5~10℃。
所述温区2的温度为40~100℃,优选50~90℃,更优选60~85℃,更优选70~80℃。
所述温区3的温度为0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
所述温区4的温度为0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
所述叔丁基过氧化氢的收率≥71%;优选的,所述叔丁基过氧化氢的收率≥81%。
所述叔丁基过氧化氢的含量≥80%;优选的,所述叔丁基过氧化氢的含量≥84%。
所述叔丁基过氧化氢中其他有机过氧化物杂质(H 2O 2和二叔丁基过氧化氢)的含量为0.05~0.08wt%。
所述双氧水质量浓度为30%~50%。
所述酸选自所有已知的有机酸和无机酸,优选硫酸、磷酸、三氟乙酸。
所述酸液质量浓度50%-90%,优选60%-80%,更优选70%-80%。
所述酸液流速为1~3L/h,优选1.5~2.5L/h,更优选1.5~2L/h。
所述双氧水流速为1~3L/h,优选1.5~2.5L/h,更优选1.5~2L/h。
所述叔丁醇流速为1~4L/h,优选1.5~3L/h,更优选2~3L/h。
所述酸和叔丁醇的摩尔比为0.5∶1~1∶1,优选0.5∶1~0.9∶1,更优选0.5∶1~0.7∶1,更优选0.5∶1~0.6∶1。
所述双氧水和叔丁醇的摩尔比为0.8∶1~1.2∶1,优选0.9∶1~1.1∶1,更优选0.9∶1~1.05∶1。
进一步地,所述有机过氧化物为叔戊基过氧化氢时,所述氧化底物为叔戊醇,所述催化剂为酸,其中,优选的:
所述温区1的温度为0~40℃,优选5~30℃,更优选5~20℃,更优选5~10℃。
所述温区2的温度为40~100℃,优选50~90℃,更优选60~85℃,更优选70~80℃。
所述温区3的温度为0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
所述温区4的温度为0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
所述叔戊基过氧化氢的收率≥73%;优选的,所述叔戊基过氧化氢的收率≥79%。
所述叔戊基过氧化氢的含量≥83.9%;优选的,所述叔戊基过氧化氢的含量≥84%。
所述叔丁基过氧化氢中H 2O 2的含量为0.05~0.08wt%。
所述双氧水质量浓度为30%~50%。
所述酸选自所有已知的有机酸和无机酸,优选硫酸、磷酸、三氟乙酸。
所述酸液质量浓度50%-90%,优选60%-80%,更优选70%-80%。
所述酸液流速为1~3L/h,优选1.5~2.5L/h,更优选1.5~2L/h。
所述双氧水流速为1~3L/h,优选1.5~2.5L/h,更优选1.5~2L/h。
所述叔戊醇流速为1~4L/h,优选1.5~3L/h,更优选2~3L/h。
所述酸和叔戊醇的摩尔比为0.8∶1~1.1∶1,优选0.9∶1~1∶1,更优选0.95∶1~1∶1。
所述双氧水和叔戊醇的摩尔比为0.9∶1~1.3∶1,优选1∶1~1.25∶1,更优选1.14∶1~1.2∶1。
进一步地,所述有机过氧化物为二(3,5,5~三甲基己酰)过氧化物时,所述氧化底物为3,5,5-三甲基己酰氯,所述催化剂为碱,其中,优选的:
所述温区1的温度为0~20℃,优选0~10℃,更优选5~10℃。
所述温区2的温度为30~90℃,优选40~80℃,更优选50~70℃,更优选60~70℃。
所述温区3的温度为0~40℃,优选5~30℃,更优选5~20℃,更优选5~10℃。
所述温区4的温度为0~40℃,优选5~30℃,更优选5~20℃,更优选5~10℃。
所述二(3,5,5-三甲基己酰)过氧化物的收率≥91%;优选的,所述二(3,5,5-三甲基己酰)过氧化物的收率≥92%。
所述二(3,5,5-三甲基己酰)过氧化物的含量≥91%;优选的,所述二(3,5,5-三甲基己酰)过氧化物的含量≥93%。
所述目标产物二(3,5,5-三甲基己酰)过氧化物中的氯离子含量为0.02~0.05wt%,H 2O 2的含量为0.05~0.1wt%。
所述双氧水质量浓度为30%~50%。
所述碱选自水溶性金属氢氧化物、水溶性季铵氢氧化物、水溶性叔胺、水溶性金属碳酸盐或水溶性金属磷酸盐,优选碱金属氢氧化物、水溶性金属碳酸盐或碱土金属氢氧化物,更优选氢氧化锂、氢氧化钠、氢氧化钾、碳酸钠、碳酸钾。
所述碱液质量浓度为5%~45%,优选15%~35%,更优选20%~30%。
所述碱液流速为1~4L/h,优选1.5~3L/h,更优选1.8~2.5L/h。
所述双氧水流速为0.3~1L/h,优选0.5~0.8L/h,更优选0.6~0.7L/h。
所述3,5,5-三甲基己酰氯流速为1~3L/h,优选1.5~2.5L/h,更优选1.5~2L/h。
所述双氧水和3,5,5-三甲基己酰氯的摩尔比为0.5∶1~0.8:1,优选0.55∶1~0.75∶1,更优选0.6∶1~0.7∶1。
所述碱和3,5,5-三甲基己酰氯的摩尔比为1:1~1.4:1,优选1.1:1~1.3:1,更优选1.15:1~1.2:1。
进一步地,所述有机过氧化物为过氧化二碳酸双(2~乙基己酯)时,所述氧化底物为氯甲酸-2乙基己酯,所述催化剂为碱,其中,优选的:
所述温区1的温度为0~20℃,优选0~10℃,更优选5~10℃。
所述温区2的温度为10~40℃,优选15~35℃,更优选20~30℃。
所述温区3的温度为0~20℃,优选0~10℃,更优选5~10℃。
所述温区4的温度为0~20℃,优选0~10℃,更优选5~10℃。
所述过氧化二碳酸双(2-乙基己酯)的收率≥86.5%;优选的,所述过氧化二碳酸双(2-乙基己酯)的收率≥90%。
所述过氧化二碳酸双(2-乙基己酯)的含量≥95%;优选的,所述过氧化二碳酸双(2-乙基己酯)的含量≥96%。
所述目标产物过氧化二碳酸双(2-乙基己酯)中的氯离子含量为0.02~0.05wt%,H 2O 2的含量为0.05~0.1wt%。
所述双氧水质量浓度为30%~50%。
所述碱选自水溶性金属氢氧化物、水溶性季铵氢氧化物、水溶性叔胺、水溶性金属碳酸盐或水溶性金属磷酸盐,优选碱金属氢氧化物、水溶性金属碳酸盐或碱土金属氢氧化物,更优选氢氧化钠、氢氧化钾、碳酸钠、碳酸钾或氢氧化锂。
所述碱液质量浓度为5%~45%,优选15%~35%,更优选20%~30%。
所述碱液流速为1~4L/h,优选1.5~3L/h,更优选1.8~2.5L/h。
所述双氧水流速为0.3~1L/h,优选0.5~0.8L/h,更优选0.6~0.7L/h。
所述氯甲酸-2-乙基己酯流速为为1~3L/h,优选1.5~2.5L/h,更优选1.5~2L/h。
所述双氧水和氯甲酸-2-乙基己酯的摩尔比为0.5∶1~0.8∶1,优选0.55∶1~0.75∶1,更优选0.6∶1~0.7∶1。
所述碱和氯甲酸-2-乙基己酯的摩尔比为1∶1~1.4∶1,优选1.1∶1~1.3∶1,更优选1.15∶1~1.2∶1。
需要说明的是,实际生产中(包括实验室、中试、实际生产过程中)所用的双氧水、催化剂和氧化底物质量浓度均会有±2个百分点的质量浓度的偏差。
本发明的第二个目的是提供一种专用于如前所述任何一种形式的在线全连续流生产工艺的即插即产型一体化连续流反应器,所述的一体化连续流反应器采用单元化结构,包括氧化单元和后处理单元,其中:所述的氧化单元用于双氧水、催化剂、氧化底物反应生成烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯和过氧化缩二酮,所述后处理单元用于烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯和过氧化缩二酮的后处理。
本发明的第三个目的是提供一种专用于如前所述任何一种形式的在线全连续流生产工艺的即插即产型一体化连续流反应器,所述的一体化连续流反应器采用单元化结构,每个所述的单元独立地包含一个以上的反应器模块或反应器模块组,其中反应器模块组由多个反应器模块串联或并联组成,各单元之间相互串联。
本发明的第四个目的是提供一种专用于如前所述任何一种形式的在线全连续流生产工艺的即插即产型一体化连续流反应器,所述的一体化连续流反应器采用单元化结构,每个所述的单元对应至少一个温区,每个温区独立地包含一个以上的反应器模块或反应器模块组,其中反应器模块组由多个反应器模块串联或并联组成,各温区之间相互串联。
以上三种连续流反应器进一步可以是:
进一步地,所述的单元之间还进一步包含缓冲器(Buffer vessel),所述的缓冲器为具有一定容积的容器,主要用于缓冲系统的压力波动和平衡流量差异,使系统工作更平稳。
进一步地,所述一体化连续流反应器进料口的数量为1个或多个,所述一体化连续流反应器出料口的数量为1个或多个。
进一步地,所述的反应器模块任选是任意一种能实现连续流工艺的反应器,所述的反应器选自微反应器(Microreactor),串联盘管反应器(Tandem loop reactor),管式反应器(Tubular reactor)的任意一种或任意多种。所述的微反应器,又称微结构反应器或微通道反应器,是一种在其中化学反应发生在普遍侧向尺寸在1mm及以下的有限区域内的设备,这类有限区域最典型的形式即是微型尺寸通道。串联盘管反 应器,即用管道将盘管反应器串联起来组成的反应器,其中盘管反应器是将管式反应器做成盘管的形式。管式反应器是上个世纪中叶出现的一种呈管状、长径比很大的连续操作反应器。这种反应器可以很长;可以单管也可以多管并联;可以空管,也可以是填充管。
进一步地,反应器可以是一台或多台。
进一步地,所述反应器通道的材质为单晶硅、特种玻璃、陶瓷、涂有耐腐涂层的不锈钢或金属合金、聚四氟乙烯。
进一步地,所述的反应器模块之间、反应器模块组之间、反应器模块和反应器模块组之间均分别是串联或并联。
进一步地,所述的一体化连续流反应器包含4个温区。
进一步地,所述的即插即产型一体化全连续流反应器至少包含4个温区。
进一步地,所述氧化单元对应温区1~温区3,所述后处理单元对应温区4。
进一步地,所述温区1的温度为0~60℃,优选0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
进一步地,所述温区2的温度为30~110℃,优选40~100℃,更优选50~90℃,更优选60~80℃,更优选65~70℃。
进一步地,所述温区3的温度为0~50℃,优选0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
进一步地,所述温区4的温度为0~50℃,优选0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
本发明的第五个目的是提供一种化工生产工艺,所述的化工生产工艺包含本发明所述的由醇或烷烃直接制备有机过氧化物的在线全连续流生产工艺,以及一个或多个后续的生产工艺。例如,所述的化工生产工艺可以是聚合工艺,本发明所述的在线全连续流生产工艺生产的有机过氧化物作为聚合工艺的引发剂,将本发明的工艺与聚合反应工艺无缝对接,可以形成有机过氧化物的生产和使用的全连续,颠覆现有生产-存储-运输-储存-使用生产模式,实现生产即使用的新型生产模式。
本发明的第六个目的是提供一种化工生产设备,所述的化工生产设备包含本发明所述任何一种形式的在线全连续流生产工艺的即插即产型一体化连续流反应器,以及一个或多个后续的生产设备。例如,所述的化工生产设备可以是聚合物生产设备,本发明所述的即插即产型一体化连续流反应器可直接与聚合釜无缝对接,可以形成有机过氧化物的生产和使用的全连续生产设备,颠覆现有生产-存储-运输-储存-使用生产模式,实现生产即使用的新型生产模式。
本发明与现有技术的比较,有益效果如下∶
1、在即插即产型一体化全连续流反应器上实现了有机过氧化物高效的连续流合成。即,反应物不断地输入反应器里,并连续地收集产品。借助于功能单元温区划分和温度设置的优化,大大提升了工艺的效率。生产时间至多为6分钟。
2、工艺安全性极大提升,连续流反应器相对较小的持液量和优良的传热特性,加之较短的反应时间(6分钟以内)使得该工艺过程更为安全。其中所述的反应器持液量是指当操作达到定态时,任一时刻反应器中存有的反应物料的总体积。
3、根据有机过氧化物不同的自加速分解温度和热稳定性以及使用原料的物理、化学性质,在即插即产型一体化全连续流反应器中设计了2大功能单元,包括氧化单元和后处理单元,其中∶所述的氧化单元用双氧水、催化剂、氧化底物反应生成烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯和过氧化缩二酮,所述后处理单元用于烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯和过氧化缩二酮的分离提纯。通过2个功能单元协同作用,克服了现有技术的缺陷,实现了有机过氧化物的高效率、高质量、大规模生产。
4、在即插即产型一体化全连续流反应器中,由于流速稳定、生产过程稳定,因而产品质量稳定、重现性好。
5、该工艺在工业化规模上依然在6分钟内完成反应,产品含量和收率与实验室规模时基本相同,未发现放大效应,解决了有机过氧化物连续流工艺工业化放大的问题。
6、该即插即产型一体化全连续流反应器体积小,占地面积小,极大地节约了厂房用地。
附图说明
图1本发明全连续流生产工艺工艺图。
图2是本发明所述的一体化反应器的示意图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应该理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明的讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明实施例中的浓度均为质量浓度,产物的含量利用有效含氧量滴定(碘量法)测得,氯离子含量通过 离子检测仪检测,其他有机过氧化物通过高效液相色谱(HPLC)或者有效含氧量滴定(碘量法)检测,本发明中烷基过氧化物产品其他有机过氧化物(H 2O 2和二烷基过氧化物)含量为0.05-0.1wt%;过氧化二烷基、过氧化羧酸和过氧化缩二酮产品H 2O 2含量为0.05-0.1wt%;过氧化二酰基和过氧化二碳酸酯产品氯离子含量为0.02-0.05wt%,H 2O 2含量为0.05-0.1wt%。反应器中无需延迟管线。
需要说明的是,实际生产中(包括实验室、中试、实际生产过程中)所用的双氧水、催化剂和氧化底物质量浓度均会有±2个百分点的质量浓度的偏差;温区温度会有±3℃的偏差;生产时间会有±5s的偏差。
实施例中使用下列缩写:
TBA:叔丁醇
TAA:叔戊醇
2-EHCF:2-乙基己基氯甲酸酯
NSC904:2,4,4-三甲基-2-戊醇
IBCL:异丁酰氯
TMHC:3,5,5-三甲基己酰氯
MEK:甲乙酮
IPCF:氯甲酸异丙酯
ACAC:乙酰丙酮
3-MOCF:3-甲氧基丁基氯甲酸酯
2-EOCF:2-乙氧基乙基氯甲酸酯
BCF:氯甲酸丁酯
MIBK:甲基异丁酮
AC 2O:酸酐
实施例1-8二(3,5,5-三甲基己酰)过氧化物的制备
如图1和图2所示,将原料1(双氧水水溶液)、原料2(碱溶液)和原料3(氧化底物)以恒流泵先后输送进连续反应器,依次进入温区1至温区3中,反应完全;流出温区3反应液进入温区4将产品进行后处理,得到产品。其中,进料速率1代表原料1的进料速率,进料速率2代表原料2的进料速率,进料速率3代表原料3的进料速率。
Figure PCTCN2018100109-appb-000003
Figure PCTCN2018100109-appb-000004
实施例9-18叔丁基过氧化氢的制备
如图1和图2所示,将原料1(酸溶液)、原料2(氧化底物)和原料3(双氧水水溶液)以恒流泵先后输送进连续反应器,依次进入温区1至温区3中,反应完全;流出温区3反应液进入温区4将产品进行后处理,得到产品。其中,进料速率1代表原料1的进料速率,进料速率2代表原料2的进料速率,进料速率3代表原料3的进料速率。
Figure PCTCN2018100109-appb-000005
Figure PCTCN2018100109-appb-000006
实施例19-28叔戊基过氧化氢的制备
采用实施例9-18的操作方法。
Figure PCTCN2018100109-appb-000007
Figure PCTCN2018100109-appb-000008
实施例29-36过氧化二碳酸双(2-乙基己酯)的制备
采用实施例1-8的操作方法。
Figure PCTCN2018100109-appb-000009
Figure PCTCN2018100109-appb-000010
实施例37-38 1,1,3,3-四甲基丁基过氧化氢的制备
采用实施例9-18的操作方法。
Figure PCTCN2018100109-appb-000011
具体实施例对应有机过氧化物如下:
Figure PCTCN2018100109-appb-000012
实施例39-43
采用实施例9-18的操作方法。
Figure PCTCN2018100109-appb-000013
实施例44-48
采用实施例1-8的操作方法。
Figure PCTCN2018100109-appb-000014
Figure PCTCN2018100109-appb-000015
实施例49
采用实施例9-18的操作方法。
Figure PCTCN2018100109-appb-000016
从上述实施例中可以看到,本发明所述连续流合成有机过氧化物在时间有着巨大的的优势,从现有工艺的几个小时缩短到了6分钟以内,且在总体收率和含量较现有工艺提升明显。同时,从实施例5和8,9和18,19和28,35和36可见,放大规模后收率并没有变化,反应时间也没又增加,说明本发明不存在放大效应。
对比例1 二(3,5,5-三甲基己酰)过氧化物的制备
Figure PCTCN2018100109-appb-000017
Figure PCTCN2018100109-appb-000018
从上述对比例1中可以看到,本发明工艺与中国专利CN101287704A有着本质的区别,并且在较高温度和很短的时间内完成反应,收率和含量保持不变,反应时间缩短82%以上。

Claims (123)

  1. 一种由双氧水、催化剂和氧化底物直接制备有机过氧化物的在线全连续流生产工艺,所述的生产工艺以双氧水、催化剂和氧化底物为起始反应原料,连续依次经氧化、后处理两个工艺制得有机过氧化物,所述的生产工艺在即插即产型一体化全连续流反应器中进行,在所述即插即产型一体化全连续流反应器的进料口不间断加入双氧水、催化剂和氧化底物,在所述即插即产型一体化全连续流反应器出料口不间断得到目标产品有机过氧化物,所述的生产工艺无放大效应,所述的催化剂为酸或碱,所述的有机过氧化物选自烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯、过氧化缩二酮;所述的氧化底物选自:醇、羧酸、酸酐、酮、酰氯、氯甲酸酯。
    所述工艺路线通式如下:
    Figure PCTCN2018100109-appb-100001
    其中,A为氧化底物,包括醇、羧酸、酸酐、酮、酰氯和氯甲酸酯,C为烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯和过氧化缩二酮。
  2. 根据权利要求1所述的在线全连续流生产工艺,其特征在于:
    A为酰氯的通式为R 1COCl;A为氯甲酸酯的通式为R 2OCOCl;A为醇的通式为R 3(OH) n,其中n=1,2,3...;A为酮的通式R 4R 4’(CO)或R 4(CO)(环内酮);A为羧酸的通式为R 5COOH;A为羧酸酐的通式为(R 5CO) 2O或R 5(CO) 2O(环内酸酐);
    C为二酰基过氧化物的通式为R 1(COO) 2;C为过氧化二碳酸酯的通式为R 2(OCOO) 2;C为烷基过氧化物的通式为R 3(OOH) n,其中n=1,2,3...;C为二烷基过氧化物的通式为R 3OOR 3,其中n=1;C为过氧化缩二酮的通式为R 4(OOOH) 2;C为过氧羧酸的通式为R 5OOOH;
    R 1选自饱和或不饱和的C 1-C 20烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基;
    R 2选自饱和或不饱和的C 1-C 20烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基;
    R 3选自饱和或不饱和的C 1-C 12烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基;
    R 4或R 4’选自饱和或不饱和的C 1-C 12烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基;
    R 5选自饱和或不饱和的C 1-C 12烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基;
    优选的,
    R 1选自饱和或不饱和的C 1-C 18烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基;
    R 2选自饱和或不饱和的C 1-C 18烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基;
    R 3选自饱和或不饱和的C 3-C 8烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基;
    R 4或R 4’选自饱和或不饱和的C 3-C 8烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基;
    R 5选自饱和或不饱和的C 3-C 8烷基、无取代或取代的芳基、无取代或取代的杂环芳基、无取代或取代的饱和的杂环烷基、无取代或取代部分饱和的杂环烷基,无取代或取代的环烷基;
    优选的,
    R 1选自甲基、乙基、丙基、异丙基、丁基、仲丁基、叔丁基、异戊基、正戊基、异庚基、辛基、异辛基、2,2-二甲基庚基、壬基、十一烷基、苯基、2-甲基苯基、4-甲基苯基、4-氯苯基、2,4-二氯苯基、萘基;
    R 2选自甲基、乙基、丙基、异丙基、丁基、仲丁基、2-乙基戊基、异十三烷基、十七烷基、环己基、4-叔丁基环己基、苄基、苯氧乙基;
    R 3选自叔丁基、叔戊基、2,4,4-三甲基-2-戊基、2,5-二甲基己基;
    R 4或R 4’选自甲基、乙基、异丁基、2-氧代丙基、-(CH 2) 5-;
    R 5选自甲基、乙基;
    优选的,
    R 1COCl选自乙酰氯、丙酰氯、丁酰氯、异丁酰氯、戊酰氯、2-甲基丁酰氯、新戊酰氯、2-甲基戊酰氯、2-乙基丁酰氯、2-乙基己酰氯、壬酰氯,2,4,4-三甲基戊酰氯、3,5,5-三甲基己酰氯、新癸酰氯、癸酰氯、月桂酰氯、苯甲酰氯、2-甲基苯甲酰氯、4-甲基苯甲酰氯、4-氯苯甲酰氯、2,4-二氯苯甲酰氯、萘甲酰氯;
    R 2OCOCl选自氯甲酸甲酯、氯甲酸乙酯、氯甲酸正丙酯、氯甲酸异丙酯、氯甲酸正丁酯、氯甲酸仲丁酯、氯甲酸2-乙基己酯、氯甲酸异十三烷基酯、氯甲酸硬脂酯、氯甲酸环己酯、氯甲酸4-叔丁基环己酯、氯甲酸苄酯、氯甲酸2-苯氧基乙酯;
    R 3(OH) n选自叔丁醇、叔戊醇、2,4,4-三甲基-2-戊醇、2,5-二甲基-2,5双羟基己烷;
    R 4R 4’(CO)选自甲乙酮、甲基异丁酮、乙酰丙酮;R 4(CO)选自环己酮;
    R 5COOH选自乙酸、丙酸;
    (R 5CO) 2O选自乙酸酐、丙酸酐;
  3. 根据权利要求1所述的在线全连续流生产工艺,其特征在于,所述的有机过氧化物选自:
    过氧化二异丁酰CAS No.:3437-84-1、过氧化二碳酸双(3-甲氧基丁酯)CAS No.:52238-68-3、过氧化二碳酸双(乙氧基己酯)CAS No.:763-69-9、过氧化二碳酸二异丙酯CAS No.:105-64-6、过氧化二碳酸双丁酯CAS No.:16215-49-9、二(3,5,5-三甲基己酰)过氧化物CAS No.:3851-87-4、过氧化二碳酸双(2-乙基己酯)CAS No.:16111-62-9、过氧化甲乙酮CAS No.:1338-23-4、过氧化乙酰丙酮CAS No.:37187-22-7、过氧化甲基异丁基酮CAS No.:37206-20-5、叔丁基过氧化氢CAS No.:75-91-2、过氧化二叔丁基CAS No.:110-05-4、叔戊基过氧化氢CAS No.:3425-61-4、过氧化二叔戊基CAS No.:10508-09-5、过氧乙酸CAS No.:79-21-0、1,1,3,3-四甲基丁基过氧化氢CAS No.:5809-08-5。
  4. 根据权利要求1所述的在线全连续流生产工艺,其特征在于:生产烷基过氧化物、二烷基过氧化物时,所述氧化底物为醇;生产过氧羧酸时,所述氧化底物为羧酸或酸酐;生产二酰基过氧化物时,所述氧化底物为酰氯;生产过氧化二碳酸酯时,所述氧化底物为氯甲酸酯;生产过氧化缩二酮时,所述氧化底物为酮。
  5. 根据权利要求1-4任一项所述的在线全连续流生产工艺,其特征在于:所述生产工艺的生产时间≤6min,优选的,所述的生产时间为1~6min;更优选的,所述的生产时间为2~5min;更优选的,所述的生产时间为3~4min。
  6. 根据权利要求1-4任一项所述的在线全连续流生产工艺,其特征在于:所述目标产物有机过氧化物选自二酰基过氧化物、过氧化二碳酸酯,所述有机过氧化物中的氯离子含量≤0.05wt%,H 2O 2的含量≤0.1wt%。
  7. 根据权利要求1-4任一项所述的在线全连续流生产工艺,其特征在于:所述目标产品有机过氧化物选自烷基过氧化物,所述烷基过氧化物中H 2O 2和二叔丁基过氧化氢的含量≤0.1wt%。
  8. 根据权利要求1-4任一项所述的在线全连续流生产工艺,其特征在于:所述目标产品有机过氧化物选自二烷基过氧化物、过氧羧酸、过氧化缩二酮,所述目标产品有机过氧化物中的H 2O 2含量≤0.1wt%。
  9. 根据权利要求1-4任一项所述的在线全连续流生产工艺,其特征在于:所述氧化过程的温度为0-110℃,优选20-100℃,更优选30-90℃,更优选50-80℃,更优选60-70℃。
  10. 根据权利要求1-4任一项所述的在线全连续流生产工艺,其特征在于:所述后处理过程的温度为0-50℃,优选0-40℃,更优选5-30℃,更优选5-20℃,更优选5-10℃。
  11. 根据权利要求1-4任一项所述的在线全连续流生产工艺,其特征在于:所述有机过氧化物的收率≥71%;优选的,所述有机过氧化物的收率≥85%;更优选的,所述有机过氧化物的收率≥94%。
  12. 根据权利要求1-4任一项所述的在线全连续流生产工艺,其特征在于:所述有机过氧化物的含量≥79%;优选的,所述有机过氧化物的含量≥86%;所述有机过氧化物的含量≥96%。
  13. 根据权利要求1-4任一项所述的在线全连续流生产工艺,其特征在于:所述碱选自水溶性金属氢氧化物、水溶性季铵氢氧化物、水溶性叔胺、水溶性金属碳酸盐或水溶性金属磷酸盐,优选碱金属氢氧化物、水溶性金属碳酸盐或碱土金属氢氧化物,更优选氢氧化锂、氢氧化钠、氢氧化钾、碳酸钠、碳酸钾。
  14. 根据权利要求1-4任一项所述的在线全连续流生产工艺,其特征在于:所述碱液质量浓度为5%~45%,优选15%~35%,更优选20%~30%。
  15. 根据权利要求1-4任一项所述的在线全连续流生产工艺,其特征在于:所述酸选自所有已知的有机酸和无机酸,优选硫酸、磷酸、三氟乙酸。
  16. 根据权利要求1-4任一项所述的在线全连续流生产工艺,其特征在于:所述酸液质量浓度50%-90%,优选60%-80%,更优选70%-80%。
  17. 根据权利要求1-4任一项所述的在线全连续流生产工艺,其特征在于:所述双氧水浓度优选30%~50%。
  18. 根据权利要求1-4任一项所述的在线全连续流生产工艺,其特征在于:酸和氧化底物的摩尔比为0.5∶1~1.1∶1,优选0.6∶1~1∶1,更优选0.7∶1~0.9∶1。
  19. 根据权利要求1-4任一项所述的在线全连续流生产工艺,其特征在于:双氧水和氧化底物的摩尔比为0.5∶1~2.5∶1,优选0.6∶1~2∶1,更优选0.7∶1~1.15∶1,更优选0.8∶1~1.05∶1。
  20. 根据权利要求1-4任一项所述的在线全连续流生产工艺,其特征在于:碱和氧化底物的摩尔比为1∶1~1.4∶1,优选1.1∶1~1.3∶1,更优选1.15∶1~1.2∶1。
  21. 根据权利要求1-20任一项所述的在线全连续流生产工艺,其特征在于:所述有机过氧化物为叔丁基过氧化氢,所述氧化底物为叔丁醇,所述催化剂为酸。
  22. 根据权利要求21所述的在线全连续流生产工艺,其特征在于:所述双氧水质量浓度为30%~50%。
  23. 根据权利要求21所述的在线全连续流生产工艺,其特征在于:所述氧化过程的温度为0-110℃,优选20-100℃,更优选30-90℃,更优选50-80℃,更优选60-70℃。
  24. 根据权利要求21所述的在线全连续流生产工艺,其特征在于:所述后处理过程的温度为0-50℃,优选0-40℃,更优选5-30℃,更优选5-20℃,更优选5-10℃。
  25. 根据权利要求21所述的在线全连续流生产工艺,其特征在于:所述全连续流工艺生产时间≤4min,优选的,所述的生产时间为1~3min;更优选的,所述的生产时间为2~3min。
  26. 根据权利要求21所述的在线全连续流生产工艺,其特征在于:所述叔丁基过氧化氢的收率≥71%;优选的,所述叔丁基过氧化氢的收率≥81%。
  27. 根据权利要求21所述的在线全连续流生产工艺,其特征在于:所述叔丁基过氧化氢的含量≥80%;优选的,所述叔丁基过氧化氢的含量≥84%。
  28. 根据权利要求21所述的在线全连续流生产工艺,其特征在于:所述叔丁基过氧化氢中H 2O 2和二叔丁基过氧化氢的含量为0.05~0.08wt%。
  29. 根据权利要求21所述的在线全连续流生产工艺,其特征在于:所述酸选自所有已知的有机酸和无机酸,优选硫酸、磷酸、三氟乙酸。
  30. 根据权利要求21所述的在线全连续流生产工艺,其特征在于:所述酸液质量浓度50%-90%,优选60%-80%,更优选70%-80%。
  31. 根据权利要求21所述的在线全连续流生产工艺,其特征在于:所述酸和叔丁醇的摩尔比为0.5∶1~1∶1,优选0.5∶1~0.9∶1,更优选0.5∶1~0.7∶1,更优选0.5∶1~0.6∶1。
  32. 根据权利要求21所述的在线全连续流生产工艺,其特征在于:所述双氧水和叔丁醇的摩尔比为0.8∶1~1.2∶1,优选0.9∶1~1.1∶1,更优选0.9∶1~1.05∶1。
  33. 根据权利要求1-20任一项所述的在线全连续流生产工艺,其特征在于:所述有机过氧化物为叔戊基过氧化氢,所述氧化底物为叔戊醇,所述催化剂为酸。
  34. 根据权利要求33所述的在线全连续流生产工艺,其特征在于:所述双氧水质量浓度为30%~50%。
  35. 根据权利要求33所述的在线全连续流生产工艺,其特征在于:所述氧化过程的温度为0-110℃,优选20-100℃,更优选30-90℃,更优选50-80℃,更优选60-70℃。
  36. 根据权利要求33所述的在线全连续流生产工艺,其特征在于:所述后处理过程的温度为0-50℃,优选0-40℃,更优选5-30℃,更优选5-20℃,更优选5-10℃。
  37. 根据权利要求33所述的在线全连续流生产工艺,其特征在于:所述全连续流工艺生产时间≤4min,优选的,所述的生产时间为1~3min;更优选的,所述的生产时间为2~3min。
  38. 根据权利要求33所述的在线全连续流生产工艺,其特征在于:所述叔戊基过氧化氢的收率≥73%;优选的,所述叔戊基过氧化氢的收率≥79%。
  39. 根据权利要求33所述的在线全连续流生产工艺,其特征在于:所述叔戊基过氧化氢的含量≥83.9%;优选的,所述叔戊基过氧化氢的含量≥84%。
  40. 根据权利要求33所述的在线全连续流生产工艺,其特征在于:所述叔戊基过氧化氢中H 2O 2的含量为0.05~0.08wt%。
  41. 根据权利要求33所述的在线全连续流生产工艺,其特征在于:所述酸选自所有已知的有机酸和无机酸,优选硫酸、磷酸、三氟乙酸。
  42. 根据权利要求33所述的在线全连续流生产工艺,其特征在于:所述酸液质量浓度50%-90%,优选60%-80%,更优选70%-80%。
  43. 根据权利要求33所述的在线全连续流生产工艺,其特征在于:所述酸和叔戊醇的摩尔比为0.8∶1~1.1∶1,优选0.9∶1~1∶1,更优选0.95∶1~1∶1。
  44. 根据权利要求33所述的在线全连续流生产工艺,其特征在于:所述双氧水和叔戊醇的摩尔比为0.9∶1~1.3∶1,优选1∶1~1.25∶1,更优选1.14∶1~1.2∶1。
  45. 根据权利要求1-20任一项所述的在线全连续流生产工艺,其特征在于:所述有机过氧化物为二(3,5,5-三甲基己酰)过氧化物,所述氧化底物为3,5,5-三甲基己酰氯,所述催化剂为碱。
  46. 根据权利要求45所述的在线全连续流生产工艺,其特征在于:所述双氧水质量浓度为30%~50%。
  47. 根据权利要求45所述的在线全连续流生产工艺,其特征在于:所述氧化过程的温度为0-110℃,优选20-100℃,更优选30-90℃,更优选50-80℃,更优选60-70℃。
  48. 根据权利要求45所述的在线全连续流生产工艺,其特征在于:所述后处理过程的温度为0-50℃,优选0-40℃,更优选5-30℃,更优选5-20℃,更优选5-10℃。
  49. 根据权利要求45所述的在线全连续流生产工艺,其特征在于:所述全连续流工艺生产时间≤4min,优选的,所述的生产时间为1~3min;更优选的,所述的生产时间为2~3min。
  50. 根据权利要求45所述的在线全连续流生产工艺,其特征在于:所述二(3,5,5-三甲基己酰)过氧化物的收率≥91%;优选的,所述二(3,5,5-三甲基己酰)过氧化物的收率≥92%。
  51. 根据权利要求45所述的在线全连续流生产工艺,其特征在于:所述二(3,5,5-三甲基己酰)过氧化物的含量≥91%;优选的,所述二(3,5,5-三甲基己酰)过氧化物的含量≥93%。
  52. 根据权利要求45所述的在线全连续流生产工艺,其特征在于:所述二(3,5,5-三甲基己酰)过氧化物中的氯离子含量为0.02~0.05wt%,H 2O 2的含量为0.05~0.1wt%。
  53. 根据权利要求45所述的在线全连续流生产工艺,其特征在于:所述碱选自水溶性金属氢氧化物、水溶性季铵氢氧化物、水溶性叔胺、水溶性金属碳酸盐或水溶性金属磷酸盐,优选碱金属氢氧化物、水溶性金属碳酸盐或碱土金属氢氧化物,更优选氢氧化锂、氢氧化钠、氢氧化钾、碳酸钠、碳酸钾。
  54. 根据权利要求45所述的在线全连续流生产工艺,其特征在于:所述碱液质量浓度为5%~45%,优选15%~35%,更优选20%~30%。
  55. 根据权利要求45所述的在线全连续流生产工艺,其特征在于:所述双氧水和3,5,5-三甲基己酰氯的摩尔比为0.5∶1~0.8:1,优选0.55∶1~0.75∶1,更优选0.6∶1~0.7∶1。
  56. 根据权利要求45所述的在线全连续流生产工艺,其特征在于:所述碱和3,5,5-三甲基己酰氯的摩尔比为1:1~1.4:1,优选1.1:1~1.3:1,更优选1.15:1~1.2:1。
  57. 根据权利要求1-20任一项所述的在线全连续流生产工艺,其特征在于:所述有机过氧化物为过氧化二碳酸双(2-乙基己酯),所述氧化底物为氯甲酸-2乙基己酯,所述催化剂为碱。
  58. 根据权利要求57所述的在线全连续流生产工艺,其特征在于:所述双氧水质量浓度为30%~50%。
  59. 根据权利要求57所述的在线全连续流生产工艺,其特征在于:所述氧化过程的温度为0-110℃,优选20-100℃,更优选30-90℃,更优选50-80℃,更优选60-70℃。
  60. 根据权利要求57所述的在线全连续流生产工艺,其特征在于:所述后处理过程的温度为0-50℃,优选0-40℃,更优选5-30℃,更优选5-20℃,更优选5-10℃。
  61. 根据权利要求57所述的在线全连续流生产工艺,其特征在于:所述全连续流工艺生产时间≤4min,优选的,所述的生产时间为1~3min;更优选的,所述的生产时间为2~3min。
  62. 根据权利要求57所述的在线全连续流生产工艺,其特征在于:所述过氧化二碳酸双(2-乙基己酯)的收率≥86.5%;优选的,所述过氧化二碳酸双(2-乙基己酯)的收率≥90%。
  63. 根据权利要求57所述的在线全连续流生产工艺,其特征在于:所述过氧化二碳酸双(2-乙基己酯)的含量≥95%;优选的,所述过氧化二碳酸双(2-乙基己酯)的含量≥96%。
  64. 根据权利要求57所述的在线全连续流生产工艺,其特征在于:所述过氧化二碳酸双(2-乙基己酯)中的氯离子含量为0.02~0.05wt%,H 2O 2的含量为0.05~0.1wt%。
  65. 根据权利要求57所述的在线全连续流生产工艺,其特征在于:所述碱选自水溶性金属 氢氧化物、水溶性季铵氢氧化物、水溶性叔胺、水溶性金属碳酸盐或水溶性金属磷酸盐,优选碱金属氢氧化物、水溶性金属碳酸盐或碱土金属氢氧化物,更优选氢氧化钠、氢氧化钾、碳酸钠、碳酸钾或氢氧化锂。
  66. 根据权利要求57所述的在线全连续流生产工艺,其特征在于:所述碱液质量浓度为5%~45%,优选15%~35%,更优选20%~30%。
  67. 根据权利要求57所述的在线全连续流生产工艺,其特征在于:所述双氧水和氯甲酸-2-乙基己酯的摩尔比为0.5∶1~0.8∶1,优选0.55∶1~0.75∶1,更优选0.6∶1~0.7∶1。
  68. 根据权利要求57所述的在线全连续流生产工艺,其特征在于:所述碱和氯甲酸-2-乙基己酯的摩尔比为1∶1~1.4∶1,优选1.1∶1~1.3∶1,更优选1.15∶1~1.2∶1。
  69. 根据权利要求1-68任一项所述的在线全连续流生产工艺,其特征在于:所述即插即产型一体化连续流反应器采用单元化结构,包括氧化单元和后处理单元,其中:所述的氧化单元用于双氧水、催化剂、氧化底物反应生成有机过氧化物,所述后处理单元用于所述有机过氧化物的后处理,所述的有机过氧化物选自烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯和过氧化缩二酮。
  70. 根据权利要求69所述的在线全连续流生产工艺,其特征在于:所述氧化单元的温度为0-110℃,优选20-100℃,更优选30-90℃,更优选50-80℃,更优选60-70℃。
  71. 根据权利要求69所述的在线全连续流生产工艺,其特征在于:所述后处理单元的温度为0-50℃,优选0-40℃,更优选5-30℃,更优选5-20℃,更优选5-10℃。
  72. 根据权利要求1-68任一项所述的在线全连续流合成工艺,其特征在于:所述即插即产型一体化连续流反应器采用单元化结构,每个所述的单元独立地包含一个以上的反应器模块或反应器模块组,其中反应器模块组由多个反应器模块串联或并联组成,各单元之间相互串联。
  73. 根据权利要求1-68任一项所述的在线全连续流合成工艺,其特征在于:所述即插即产型一体化连续流反应器采用单元化结构,每个所述的单元包含至少一个温区,每个温区独立地包含一个以上的反应器模块或反应器模块组,其中反应器模块组由多个反应器模块串联或并联组成,各温区之间相互串联。
  74. 根据权利要求1-68任一项所述的在线全连续流合成工艺,其特征在于:所述的单元之间还进一步包含缓冲器。
  75. 根据权利要求1-74任一项所述的在线全连续流合成工艺,其特征在于:所述一体化连续流反应器进料口的数量为1个或多个,所述一体化连续流反应器出料口的数量为1个或多个。
  76. 根据权利要求1-74任一项所述的在线全连续流合成工艺,其特征在于:所述的反应器模块任选是任意一种能实现连续流工艺的反应器,所述的反应器选自微反应器、串联盘管反应器、管式反应器的任意一种或任意多种。
  77. 根据权利要求1-74任一项所述的在线全连续流合成工艺,其特征在于:所述的反应器可以是一台或多台。
  78. 根据权利要求1-74任一项所述的在线全连续流合成工艺,其特征在于:所述反应器通道的材质为单晶硅、特种玻璃、陶瓷、涂有耐腐涂层的不锈钢或金属合金、聚四氟乙烯。
  79. 根据权利要求1-78任一项所述的在线全连续流合成工艺,其特征在于:所述的连续流生产工艺在包含4个温区的即插即产型一体化全连续流反应器中进行。
  80. 根据权利要求69-78任一项所述的在线全连续流合成工艺,其特征在于:所述的连续流生产工艺氧化单元包含3个温区,分别为温区1,温区2和温区3,后处理单元包含1个温区,为温区4。
  81. 根据权利要求79或80所述的在线全连续流合成工艺,其特征在于:所述的连续流生产 工艺包括如下步骤∶
    (a)将双氧水、催化剂、氧化底物输送进氧化单元,依次经过温区1-温区3,完全反应生成相应的烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯和过氧化缩二酮;
    (b)流出温区3的反应液进入后处理单元,依次经过温区4进行后处理,得到产品。
  82. 根据权利要求81所述的在线全连续流合成工艺,其特征在于:所述温区1的温度为0~60℃,优选0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
  83. 根据权利要求81所述的在线全连续流合成工艺,其特征在于:所述温区2的温度为30~110℃,优选40~100℃,更优选50~90℃,更优选60~80℃,更优选65~70℃。
  84. 根据权利要求81所述的在线全连续流合成工艺,其特征在于:所述温区3的温度为0~50℃,优选0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
  85. 根据权利要求81所述的在线全连续流合成工艺,其特征在于:所述温区4的温度为0~50℃,优选0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
  86. 根据权利要求81-85任一项所述的在线全连续流合成工艺,其特征在于:所述有机过氧化物为叔丁基过氧化氢,所述氧化底物为叔丁醇,所述催化剂为酸。
  87. 根据权利要求86所述的在线全连续流合成工艺,其特征在于:所述温区1的温度为0~40℃,优选5~30℃,更优选5~20℃,更优选5~10℃。
  88. 根据权利要求86所述的在线全连续流合成工艺,其特征在于:所述温区2的温度为40~100℃,优选50~90℃,更优选60~85℃,更优选70~80℃。
  89. 根据权利要求86所述的在线全连续流合成工艺,其特征在于:所述温区3的温度为0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
  90. 根据权利要求86所述的在线全连续流合成工艺,其特征在于:所述温区4的温度为0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
  91. 根据权利要求81-85任一项所述的在线全连续流合成工艺,其特征在于:所述有机过氧化物为叔戊基过氧化氢时,所述氧化底物为叔戊醇,所述催化剂为酸。
  92. 根据权利要求91所述的在线全连续流合成工艺,其特征在于:所述温区1的温度为0~40℃,优选5~30℃,更优选5~20℃,更优选5~10℃。
  93. 根据权利要求91所述的在线全连续流合成工艺,其特征在于:所述温区2的温度为40~100℃,优选50~90℃,更优选60~85℃,更优选70~80℃。
  94. 根据权利要求91所述的在线全连续流合成工艺,其特征在于:所述温区3的温度为0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
  95. 根据权利要求91所述的在线全连续流合成工艺,其特征在于:所述温区4的温度为0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
  96. 根据权利要求81-85任一项所述的在线全连续流合成工艺,其特征在于:所述有机过氧化物为二(3,5,5~三甲基己酰)过氧化物,所述氧化底物为3,5,5-三甲基己酰氯,所述催化剂为碱。
  97. 根据权利要求96所述的在线全连续流合成工艺,其特征在于:所述温区1的温度为0~20℃,优选0~10℃,更优选5~10℃。
  98. 根据权利要求96所述的在线全连续流合成工艺,其特征在于:所述温区2的温度为30~90℃,优选40~80℃,更优选50~70℃,更优选60~70℃。
  99. 根据权利要求96所述的在线全连续流合成工艺,其特征在于:所述温区3的温度为0~40℃,优选5~30℃,更优选5~20℃,更优选5~10℃。
  100. 根据权利要求96所述的在线全连续流合成工艺,其特征在于:所述温区4的温度为0~40℃,优选5~30℃,更优选5~20℃,更优选5~10℃。
  101. 根据权利要求81-85任一项所述的在线全连续流合成工艺,其特征在于:所述有机过氧化物为过氧化二碳酸双(2~乙基己酯),所述氧化底物为氯甲酸-2乙基己酯,所述催化剂为碱。
  102. 根据权利要求101所述的在线全连续流合成工艺,其特征在于:所述温区1的温度为0~20℃,优选0~10℃,更优选5~10℃。
  103. 根据权利要求101所述的在线全连续流合成工艺,其特征在于:所述温区2的温度为10~40℃,优选15~35℃,更优选20~30℃。
  104. 根据权利要求101所述的在线全连续流合成工艺,其特征在于:所述温区3的温度为0~20℃,优选0~10℃,更优选5~10℃。
  105. 根据权利要求101所述的在线全连续流合成工艺,其特征在于:所述温区4的温度为0~20℃,优选0~10℃,更优选5~10℃。
  106. 一种专用于权利要求1-105任一项所述的在线全连续流生产工艺的即插即产型一体化连续流反应器,其特征在于:所述的一体化连续流反应器采用单元化结构,包括氧化单元和后处理单元,其中:所述的氧化单元用于双氧水、催化剂、氧化底物反应生成有机过氧化物,所述后处理单元用于所述有机过氧化物的后处理,所述的有机过氧化物选自烷基过氧化物、二烷基过氧化物、过氧羧酸、二酰基过氧化物、过氧化二碳酸酯和过氧化缩二酮。
  107. 一种专用于权利要求1-105任一项所述的在线全连续流生产工艺的即插即产型一体化连续流反应器,其特征在于:所述的一体化连续流反应器采用单元化结构,每个所述的单元独立地包含一个以上的反应器模块或反应器模块组,其中反应器模块组由多个反应器模块串联或并联组成,各单元之间相互串联。
  108. 一种专用于权利要求1-105任一项所述的在线全连续流生产工艺的即插即产型一体化连续流反应器,其特征在于:所述的一体化连续流反应器采用单元化结构,每个所述的单元对应至少一个温区,每个温区独立地包含一个以上的反应器模块或反应器模块组,其中反应器模块组由多个反应器模块串联或并联组成,各温区之间相互串联。
  109. 根据权利要求106-108任一项所述的连续流合成工艺,其特征在于:所述的单元之间还进一步包含缓冲器。
  110. 根据权利要求106-108任一项所述的一体化连续流反应器,其特征在于:所述一体化连续流反应器进料口的数量为1个或多个,所述一体化连续流反应器出料口的数量为1个或多个。
  111. 根据权利要求106-108任一项所述的一体化连续流反应器,其特征在于:所述的反应器模块任选是任意一种能实现连续流工艺的反应器,所述的反应器选自微反应器、串联盘管反应器、管式反应器的任意一种或任意多种。
  112. 根据权利要求106-108任一项所述的一体化连续流反应器,其特征在于:所述的反应器可以是一台或多台。
  113. 根据权利要求106-108任一项所述的一体化连续流反应器,其特征在于:所述的反应器模块之间、反应器模块组之间、反应器模块和反应器模块组之间均分别是串联或并联。
  114. 根据权利要求106-108任一项所述的一体化连续流反应器,其特征在于:所述反应器通道的材质为单晶硅、特种玻璃、陶瓷、涂有耐腐涂层的不锈钢或金属合金、聚四氟乙烯。
  115. 根据权利要求106-108任一项所述的一体化连续流反应器,其特征在于:所述的一体化连续流反应器包含4个温区。
  116. 根据权利要求106-108任一项所述的一体化连续流反应器,其特征在于:所述的即插即产型一体化全连续流反应器至少包含4个温区。
  117. 根据权利要求116所述的一体化连续流反应器,其特征在于:所述氧化单元对应温区1~温区3,所述后处理单元对应温区4。
  118. 根据权利要求116所述的一体化连续流反应器,其特征在于:所述温区1的温度为0~60℃,优选0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
  119. 根据权利要求116所述的一体化连续流反应器,其特征在于:所述温区2的温度为30~110℃,优选40~100℃,更优选50~90℃,更优选60~80℃,更优选65~70℃。
  120. 根据权利要求116所述的一体化连续流反应器,其特征在于:所述温区3的温度为0~50℃,优选0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
  121. 根据权利要求116所述的一体化连续流反应器,其特征在于:所述温区4的温度为0~50℃,优选0~40℃,更优选5~30℃,更优选5~20℃,更优选5~10℃。
  122. 一种化工生产工艺,其特征在于:所述的化工生产工艺包含权利要求1-105任一项所述的在线全连续流生产工艺,以及一个或多个后续的生产工艺。
  123. 一种化工生产设备,其特征在于:所述的化工生产设备包含权利要求106-121任一项所述的即插即产型一体化连续流反应器,以及一个或多个后续的生产设备。
PCT/CN2018/100109 2017-08-12 2018-08-10 一种以双氧水为原料直接制备有机过氧化物的在线全连续流生产工艺 WO2019034004A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020516669A JP6925078B2 (ja) 2017-08-12 2018-08-10 過酸化水素を原料として有機過酸化物を直接製造するオンライン完全連続ストリーム生産プロセス
EP18845527.3A EP3666755B1 (en) 2017-08-12 2018-08-10 Online full continuous flow production process for directly preparing organic peroxide with hydrogen peroxide as raw material
US16/787,022 US10947189B2 (en) 2017-08-12 2020-02-11 Online continuous flow process for the synthesis of organic peroxides using hydrogen peroxide as raw material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710688666.4 2017-08-12
CN201710688666 2017-08-12
CN201810887768.3 2018-08-06
CN201810887768.3A CN109384699A (zh) 2017-08-12 2018-08-06 一种以双氧水为原料直接制备有机过氧化物的在线全连续流生产工艺

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/787,022 Continuation US10947189B2 (en) 2017-08-12 2020-02-11 Online continuous flow process for the synthesis of organic peroxides using hydrogen peroxide as raw material

Publications (1)

Publication Number Publication Date
WO2019034004A1 true WO2019034004A1 (zh) 2019-02-21

Family

ID=65362768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100109 WO2019034004A1 (zh) 2017-08-12 2018-08-10 一种以双氧水为原料直接制备有机过氧化物的在线全连续流生产工艺

Country Status (1)

Country Link
WO (1) WO2019034004A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075236A (en) * 1976-09-30 1978-02-21 Pennwalt Corporation Continuous manufacture of peroxyesters
CN101023058A (zh) * 2004-07-28 2007-08-22 佩雷根系统有限公司 现场和按需生产含水过乙酸的连续法
CN101287704A (zh) 2005-10-14 2008-10-15 埃尔费尔德微技术Bts有限责任公司 通过微反应技术生产有机过氧化物的方法
CN101298429A (zh) 2008-05-30 2008-11-05 浙江时代金科过氧化物有限公司 一种叔丁基过氧化氢及二叔丁基过氧化物的制备方法
CN101479239A (zh) 2006-04-27 2009-07-08 阿克马法国公司 用于合成选定的有机过氧化物的方法
CN104370789A (zh) 2014-11-26 2015-02-25 淄博正华助剂股份有限公司 连续流制备过氧化二碳酸双(2-乙基己基)酯(ehp)的方法
CN107698479A (zh) * 2016-08-18 2018-02-16 上海惠和化德生物科技有限公司 一种无放大效应的过氧化‑2‑乙基己基碳酸叔丁酯的连续流合成工艺
CN108250176A (zh) * 2016-12-19 2018-07-06 上海惠和化德生物科技有限公司 一种氟代碳酸乙烯酯的快速连续流合成工艺

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075236A (en) * 1976-09-30 1978-02-21 Pennwalt Corporation Continuous manufacture of peroxyesters
US4075236B1 (zh) * 1976-09-30 1985-09-24
CN101023058A (zh) * 2004-07-28 2007-08-22 佩雷根系统有限公司 现场和按需生产含水过乙酸的连续法
CN101287704A (zh) 2005-10-14 2008-10-15 埃尔费尔德微技术Bts有限责任公司 通过微反应技术生产有机过氧化物的方法
CN101479239A (zh) 2006-04-27 2009-07-08 阿克马法国公司 用于合成选定的有机过氧化物的方法
CN101298429A (zh) 2008-05-30 2008-11-05 浙江时代金科过氧化物有限公司 一种叔丁基过氧化氢及二叔丁基过氧化物的制备方法
CN104370789A (zh) 2014-11-26 2015-02-25 淄博正华助剂股份有限公司 连续流制备过氧化二碳酸双(2-乙基己基)酯(ehp)的方法
CN107698479A (zh) * 2016-08-18 2018-02-16 上海惠和化德生物科技有限公司 一种无放大效应的过氧化‑2‑乙基己基碳酸叔丁酯的连续流合成工艺
CN108250176A (zh) * 2016-12-19 2018-07-06 上海惠和化德生物科技有限公司 一种氟代碳酸乙烯酯的快速连续流合成工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3666755A4 *

Similar Documents

Publication Publication Date Title
US10947189B2 (en) Online continuous flow process for the synthesis of organic peroxides using hydrogen peroxide as raw material
CN108863760B (zh) 一种利用微通道反应器连续化生产乙醛酸的方法
CN105732356A (zh) 以臭氧、单重态氧原子自由基或氢氧自由基制备羧酸或苯基酮的方法
CN103570667B (zh) 一种连续制备ε一己内酯的方法
CN106278861A (zh) 一种制备取代苯乙酸的方法
CN109096144A (zh) 一种合成二乙基羟胺的方法
JP6925079B2 (ja) アルコール又はアルカンから有機過酸化物を直接製造するオンライン完全連続ストリーム生産プロセス
WO2016002649A1 (ja) イソブチレンの製造方法、メタクリル酸の製造方法、およびメタクリル酸メチルの製造方法
CN111302915A (zh) 一种微通道连续化臭氧氧化制备茴香醛的方法
CN108218699B (zh) 酸性离子液体催化合成3,5-二叔丁基-4-羟基苯甲酸正十六酯的方法
CN104193670B (zh) 一种催化氧化乙苯及其衍生物制备芳酮的方法
WO2019034004A1 (zh) 一种以双氧水为原料直接制备有机过氧化物的在线全连续流生产工艺
EA026117B1 (ru) Способ получения (мет)акриловой кислоты (варианты) и способы получения ее (со)полимеров
He et al. Metal free oxidation of alkyl substituted aromatics with aqueous tert-butyl hydroperoxide under microwave irradiation
CN107032993A (zh) 一种气相光催化甲醇和乙醇一次性合成多种酯类的Au催化剂的制备及应用
CN113845417B (zh) 利用连续流微通道反应器氧化合成(±)-萘普生的方法
WO2019034006A1 (zh) 一种由醇或烷烃直接制备有机过氧化物的在线全连续流生产工艺
CN109836311B (zh) 一种室温下胺调控木质素模型分子断裂的方法
CN109574814A (zh) 一种甲苯液相催化氧化制备苯甲醛和苯甲醇的方法
CN113548995A (zh) 一种α-吡咯烷酮的制备方法
CN106431829A (zh) 一种利用微反应装置制备反式1,2‑环己二醇的方法
CN112851496A (zh) 一种对甲基苯甲酸的制备方法
CN102260170B (zh) 微波管道化生产乙酸正t酯的方法
US2967197A (en) Difunctional aliphatic compounds prepared from peroxides and halogens
CN112661679B (zh) 一种氨基乙硫醇的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516669

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018845527

Country of ref document: EP

Effective date: 20200309