WO2019033837A1 - 阵列基板及其制作方法、显示面板、显示装置 - Google Patents

阵列基板及其制作方法、显示面板、显示装置 Download PDF

Info

Publication number
WO2019033837A1
WO2019033837A1 PCT/CN2018/090373 CN2018090373W WO2019033837A1 WO 2019033837 A1 WO2019033837 A1 WO 2019033837A1 CN 2018090373 W CN2018090373 W CN 2018090373W WO 2019033837 A1 WO2019033837 A1 WO 2019033837A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
array substrate
electrodes
emitter
gate line
Prior art date
Application number
PCT/CN2018/090373
Other languages
English (en)
French (fr)
Inventor
孙世成
王志强
王培�
霍培荣
胡双
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/332,185 priority Critical patent/US10866448B2/en
Publication of WO2019033837A1 publication Critical patent/WO2019033837A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136218Shield electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals

Definitions

  • the present disclosure relates to the field of fingerprint recognition technologies, and in particular, to an array substrate, a method for fabricating the same, a display panel, and a display device.
  • the fingerprint is the texture formed by the skin of the bulge (ridge) and the depression (valley) on the fingertip of the human finger. It is naturally formed in the evolutionary process of human beings. Because fingerprints have the characteristics of lifetime immutability, uniqueness and convenience, they have become synonymous with biometric identification, and are widely used in the field of identity information authentication and identification such as security and attendance.
  • a display device for example, a mobile phone or a tablet computer
  • fingerprint recognition in the field of a display device
  • it can be used for, for example, identity authentication of a user.
  • the integration of the fingerprint recognition part with the display device has received extensive attention.
  • An aspect of the present disclosure provides an array substrate, including: a plurality of data lines and a plurality of gate lines disposed on a base substrate, and a fingerprint identification area; the fingerprint identification area includes: a plurality of transmitting electrodes and the plurality of A plurality of sensing electrodes are disposed at intersection of the transmitting electrodes; each of the transmitting electrodes is electrically connected to one of the gate lines.
  • the extending direction of the plurality of transmitting electrodes is the same as the extending direction of the plurality of gate lines, and the extending directions of the plurality of sensing electrodes are perpendicular to the extending direction of the plurality of transmitting electrodes.
  • a portion of the gate line located in the fingerprint identification area constitutes the transmitting electrode; a width of a portion of the gate line located in the fingerprint identification area is greater than a width of the gate line outside the fingerprint identification area The width of the part.
  • the emitter electrode and the gate line are in different layers, and/or the sensing electrode and the data line are in different layers.
  • the array substrate includes a first driving electrode connected to the data line, and a second driving electrode disposed opposite to the first driving electrode; the first driving electrode is located on the substrate substrate and Between the second drive electrodes.
  • the emitter electrode is of the same material as the first driving electrode; and/or the sensing electrode and the second driving electrode are of the same material.
  • the array substrate includes a first driving electrode connected to the data line, and a second driving electrode disposed opposite to the first driving electrode; the second driving electrode is located on the substrate substrate and Between the first drive electrodes.
  • the transmitting electrode and the second driving electrode are of the same material; and/or the sensing electrode is of the same material as the first driving electrode.
  • each of the emitter electrodes is connected to the corresponding gate line through a plurality of vias.
  • the fingerprint identification area is provided with an alignment mark; and/or, the array substrate further includes a bonding area, and the bonding area is provided with a registration mark.
  • the plurality of sensing electrodes are located on a side of the plurality of transmitting electrodes facing away from the substrate.
  • the array substrate further includes a shielding electrode disposed on a side of the emitter electrode adjacent to the substrate substrate.
  • the array substrate further includes a GOA circuit connected to the plurality of gate lines.
  • Another aspect of the present disclosure also provides a display panel comprising the array substrate of any of the above embodiments.
  • Still another aspect of the present disclosure provides a display device including the above display panel and a fingerprint recognition module connected to the plurality of sensing electrodes.
  • the display panel further includes a source driving circuit, and the fingerprint identification module is integrated in the source driving circuit.
  • a further aspect of the present disclosure further provides a method of fabricating an array substrate, the array substrate comprising a fingerprint identification area, the method comprising: providing a plurality of data lines and a plurality of gate lines on the base substrate; A plurality of emitter electrodes are formed in the region, each emitter electrode being electrically connected to one gate line, respectively; and a plurality of sensing electrodes disposed across the plurality of emitter electrodes are formed in the fingerprint recognition region.
  • the plurality of gate lines comprise a set of gate lines spanning the fingerprint identification area.
  • forming a plurality of transmitting electrodes in the fingerprint identification area each of the transmitting electrodes being electrically connected to one of the gate lines respectively comprises: for each of the group of gate lines spanning the fingerprint identification area, A width of a portion of the gate line located in the fingerprint recognition region is formed to be larger than a width of a portion of the gate line outside the fingerprint recognition region.
  • the plurality of gate lines comprise a set of gate lines spanning the fingerprint identification area.
  • forming a plurality of emitter electrodes in the fingerprint identification region, each of the emitter electrodes being electrically connected to a gate line respectively includes: forming a dielectric layer covering the plurality of gate lines; spanning the fingerprint for the group Identifying each of the gate lines of the region, forming a via in the dielectric layer; an orthographic projection of the gate line on the substrate covers an orthographic projection of the via on the substrate; A plurality of emitter electrodes are formed on the dielectric layer, and each of the emitter electrodes is electrically connected to the gate line through the via holes.
  • FIG. 1 is a schematic structural diagram of an array substrate including a fingerprint identification area according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a fingerprint identification area of an array substrate according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a transmitting electrode of a fingerprint identification area according to an embodiment of the present disclosure
  • 3b is a schematic structural diagram of an array substrate in a fingerprint identification area according to an embodiment of the present disclosure
  • 3c is a schematic structural diagram of another array substrate in a fingerprint identification area according to an embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional structural diagram of an array substrate including a fingerprint identification area according to an embodiment of the present disclosure
  • FIG. 5 is a cross-sectional structural diagram of another array substrate including a fingerprint identification area according to an embodiment of the present disclosure
  • FIG. 6 is a cross-sectional structural diagram of still another array substrate including a fingerprint identification area according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of an array substrate including a fingerprint identification area according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a method for fabricating an array substrate according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a mobile phone including a fingerprint identification area according to an embodiment of the present disclosure.
  • FIG. 9b is a schematic structural diagram of another mobile phone including a fingerprint identification area according to an embodiment of the present disclosure.
  • FIG. 10 is a timing diagram of a gate line input signal according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide an array substrate and a manufacturing method thereof, a display panel, and a display device, which are integrated in an array substrate to improve an integrated control degree of a display device including the fingerprint recognition device.
  • Embodiments of the present disclosure provide an array substrate.
  • the array substrate includes a plurality of data lines 200 and a plurality of gate lines 100 disposed on the base substrate 10, and a fingerprint identification area 01.
  • the fingerprint identification area 01 includes: A plurality of emitter electrodes 101 and a plurality of sensing electrodes 201 disposed across the plurality of emitter electrodes 101; wherein each of the emitter electrodes 101 is electrically connected to a gate line 100, respectively.
  • the emitter electrode and the sensing electrode in the fingerprint recognition device are both disposed on the array substrate, and the emitter electrode is connected to the gate line.
  • the gate driving circuit in the display device can input not only a scan signal to the gate line but also a transmission signal to the emitter electrode through the gate line.
  • the array substrate in the present disclosure may be an array substrate for an LCD (Liquid Crystal Display), or an array substrate for an OLED (Organic Light Emitting Diode) display device. This disclosure does not limit this.
  • the extending direction (ie, the length direction) of the plurality of transmitting electrodes 101 is the same as the extending direction of the plurality of gate lines 100, and the extending direction of the plurality of sensing electrodes 201 is the same as The extending direction of the plurality of emitter electrodes 101 is perpendicular.
  • the direction in which the emitter electrode 101 extends in the present disclosure is not particularly limited.
  • the extending direction of the emitter electrode 101 may also be inconsistent with the extending direction of the gate line 100.
  • the emitter electrode 101 may be at an angle to the gate line 100.
  • the emitter electrode 101 may be linear or curved.
  • the present disclosure does not limit the specific shape of the emitter electrode 101 as long as each emitter electrode is electrically connected to one gate line, and a scan signal is input to the gate line through the gate drive circuit and a transmission signal is input to the emitter electrode.
  • the emitter electrode 101 extends in the same direction as the gate line 100.
  • the extending direction of the sensing electrode 201 is not particularly limited as long as the sensing electrode 201 and the transmitting electrode 101 are disposed to intersect with each other to form a matrix-arranged fingerprint sensing unit (that is, a grid report structure).
  • the direction of extension of the sensing electrode 201 is perpendicular to the direction in which the emitter electrode 101 extends.
  • the extending direction of the emitter electrode 101 is the same as the extending direction of the gate line 100, and the extending direction of the sensing electrode 201 is perpendicular to the extending direction of the emitter electrode 101.
  • the specific settings of the transmitting electrode 101 and the sensing electrode 201 are further described below.
  • the emitter electrode 101 can be directly formed by the portion of the gate line 100 located in the fingerprint recognition area 01, that is, the emitter electrode 101 and the gate line 100 are of a unitary structure, which can be produced by one fabrication process.
  • the width of the portion of the gate line 100 located in the fingerprint recognition area 01 is larger than the width of the portion of the gate line 100 outside the fingerprint recognition area 01 to implement the fingerprint recognition function.
  • the emitter electrode 101 and the gate line 100 are located in different layers, that is, two independent portions of the emitter electrode 101 and the gate line 100 are electrically connected, for example, by two manufacturing processes. be made of.
  • the sensing electrode 201 can be made of the same material as the data line 200, that is, the sensing electrode 201 and the data line 200 are fabricated by one manufacturing process, but the two are not electrically connected.
  • the width of the sensing electrode 201 may be greater than the width of the data line 200.
  • the data line 200 is linear and passes through the fingerprint identification area 01; as shown in FIG. 3c, the data line 200 is located at the fingerprint identification area 01.
  • the bending occurs and the fingerprint identification area 01 is bypassed; the present disclosure does not limit this, and can be designed according to actual needs.
  • the sensing electrode 201 may also be located at a different layer from the data line 200, that is, the sensing electrode 201 and the data line 200 are fabricated by two manufacturing processes.
  • the data line 200 may bypass the fingerprint recognition area 01 or may pass through the fingerprint recognition area 01.
  • the sensing electrode 201 and the data line 200 are located in different layers, and generally an insulating layer is disposed therebetween, as shown in FIG. 2 and FIG. 4, the sensing electrode 201 and the data There may be overlapping regions between the lines 200, i.e., the orthographic projections of the two on the substrate may have overlapping portions.
  • the data signal loaded on the data line 200 may interfere with the induced signal on the sensing electrode 201. Therefore, in actual control, it is necessary to turn off (or pull down) the electrical signal on the data line 200 during the fingerprint recognition phase to ensure that the fingerprint recognition device can normally acquire the fingerprint image.
  • the emitter electrode 101 and the gate line 100 are located in different layers and the sensing electrode 201 and the data line 200 are located in different layers.
  • the array substrate may have other film layers in addition to the gate lines 100 and the data lines 200.
  • two drive electrodes eg, pixel electrodes and common electrodes
  • the emitter electrode 101, the sensing electrode 201, and other conductive film layers in the array substrate can be fabricated by the same manufacturing process.
  • Two alternative arrangements are provided below, but the disclosure is not limited thereto.
  • the array substrate includes a first driving electrode D1 connected to the data line 200 and a second driving electrode D2 disposed opposite to the first driving electrode D1;
  • the first driving electrode D1 is located between the base substrate 10 and the second driving electrode D2; wherein the transmitting electrode 101 and the first driving electrode D1 are in the same layer (ie, through the same manufacturing process)
  • the sensing electrode 201 and the second driving electrode D2 are made of the same material (that is, processed by the same manufacturing process).
  • the emitter electrode 101 is of the same material as the first driving electrode D1. Therefore, in the schematic diagram of FIG. 4, the first driving electrode D1 is blocked by the emitter electrode 101.
  • the driving electrode is a pixel electrode; and for the array substrate of the OLED display device, the driving electrode is an anode or a cathode connected to the data line; wherein, for the array substrate of the LCD, the The array substrate may be a TN (Twist Nematic) type, an ADS (Advanced-Super Dimensional Switching, ADS, Advanced Super-Dimensional Field Switch) type, or an IPS (In Plane Switch) type.
  • TN Transmission Nematic
  • ADS Advanced-Super Dimensional Switching
  • ADS Advanced Super-Dimensional Field Switch
  • IPS In Plane Switch
  • the array substrate includes a first driving electrode connected to the data line, and a second driving electrode disposed opposite to the first driving electrode; the second driving electrode is located at Between the substrate substrate and the first driving electrode; wherein the emitter electrode and the second driving electrode are made of the same material (that is, processed by the same manufacturing process); and/or the sensing The electrode is made of the same material as the first driving electrode (ie, processed by the same manufacturing process).
  • the array substrate includes a first drive electrode coupled to the data line 200 and a second drive electrode disposed opposite the first drive electrode.
  • the array substrate may be of the ADS type, the IPS type (differential interval setting), or the like.
  • the first driving electrode is a pixel electrode
  • the second driving electrode is a common electrode.
  • the first driving electrode is an anode (or cathode) connected to the data line
  • the second driving electrode is a cathode (or anode).
  • each of the emitter electrodes 101 is connected to a corresponding gate line 100 through a plurality of vias 102.
  • FIG. 4 shows that one or more insulating layers may be disposed between the gate line 100 and the first driving electrode D1. (depending on the actual type of array substrate). Therefore, for the emitter electrode 101, it is necessary to connect to the gate line 100 through a via hole on the insulating layer.
  • each of the emitter electrodes 101 is connected to a corresponding gate line 100 through a plurality of vias 102.
  • a plurality of via holes 102 are disposed along the extending direction of the gate line 100, so that the emitter electrode 101 and the gate line 100 are connected at a plurality of points through the via hole 102, thereby reducing the emitter electrode 101 and Contact resistance between the gate lines 100.
  • the emitter electrode 101 and the sensing electrode 201 can be arranged, for example, in the following several ways.
  • the emitter electrode 101 and the gate line 100 are two portions located in different layers and electrically connected, and the sensing electrode 201 and the data line 200 are two portions located in different layers.
  • FIG. 6 illustrated by taking the data line 200 through the fingerprint recognition area 01 as an example
  • the emitter electrode 101 and the gate line 100 are in an integrated structure in the same layer
  • the sensing electrode 201 is in the same layer as the data line 200.
  • the same material that is, processed by the same production process).
  • the sensing electrode 201 and the data line 200 are two portions located in different layers (ie, through two fabrication processes), and the emitter electrode 101 and the gate line 100 are of the same structure of the same layer.
  • the sensing electrode 201 and the data line 200 are made of the same material (that is, processed by the same manufacturing process), and the emitter electrode 101 and the gate line 100 are two portions which are located in different layers and are electrically connected.
  • the disclosure is not limited in this respect, and may be determined according to the needs of the actual fingerprint identification device and the type of the array substrate.
  • the fingerprint identification area 01 is provided with a pair. Bit mark 20.
  • the alignment mark 20 is disposed in the bonding region.
  • the alignment mark 20 may be disposed in the vicinity of a Bonding Bump of a fan-out area.
  • the traces in the trace area can generally be made of titanium-aluminum-titanium (Ti-Al-Ti) material, and a single layer wiring is adopted.
  • the plurality of sensing electrodes 201 are located on a side of the plurality of transmitting electrodes 101 facing away from the base substrate 101. Since the plurality of sensing electrodes 201 are located on a side of the plurality of transmitting electrodes 101 facing away from the base substrate 101, when the user's finger is placed on the top side of the embodiment shown in FIG. The sensing electrode 201 is better able to sense the pattern of the fingerprint.
  • the plurality of sensing electrodes 201 may also be located on a side of the plurality of transmitting electrodes 101 facing the base substrate 101 (ie, The plurality of sensing electrodes 201 are located between the plurality of emitter electrodes 101 and the base substrate 101). With such an arrangement, a portion of the display image corresponding to the fingerprint recognition area is not occluded during fingerprint recognition. Such an arrangement can be applied, for example, in a transparent display device or a translucent display device, further improving the user's experience.
  • the array substrate further includes the transmitting electrode 101 disposed near the substrate.
  • the shield electrode 300 on the substrate 10 side. That is, at least in the fingerprint recognition area 01, the shield electrode is disposed on the side of the emitter electrode 101 close to the base substrate 10.
  • the shielding electrode 300 is generally mainly made of a metal material, and one end is grounded.
  • the array substrate in the present disclosure further includes a GOA (Gate Driver on Array) circuit connected to the plurality of gate lines. That is, the gate drive circuit is a GOA circuit.
  • the GOA circuit can realize input of a scan signal to the gate line, and can also transmit an electrode input transmit signal.
  • FIG. 7 is an example in which the GOA circuit is disposed on both sides of the gate line 100 as an example.
  • the present disclosure is not limited thereto, and a single-side GOA circuit of the gate line 100 may be employed.
  • Embodiments of the present disclosure provide a method of fabricating an array substrate, the array substrate including a fingerprint identification area. As shown in FIG. 8, the manufacturing method includes the following steps.
  • Step S101 a plurality of data lines and a plurality of gate lines are disposed on the base substrate.
  • Step S102 forming a plurality of transmitting electrodes in the fingerprint identification area, and each of the transmitting electrodes is electrically connected to one of the gate lines.
  • Step S103 forming a plurality of sensing electrodes disposed across the plurality of transmitting electrodes in the fingerprint identification area.
  • the emitter electrode and the sensing electrode in the fingerprint recognition device are both disposed on the array substrate, and the emitter electrode is connected to the gate line.
  • the gate driving circuit in the display device can input not only a scan signal to the gate line but also a transmission signal to the emitter electrode through the gate line.
  • step S102 will be further described below.
  • the plurality of gate lines 100 include a set of gate lines that span the fingerprint identification area 01.
  • the step S102 may specifically include: forming, for each of the set of gate lines 100 across the fingerprint identification area, a width of a portion of the gate line 100 located in the fingerprint identification area 01 to be larger than the gate line 100 is located at a width of a portion other than the fingerprint recognition area 01.
  • the plurality of gate lines 100 include a set of gate lines that span the fingerprint identification area 01.
  • the step S102 may also include: forming a dielectric layer covering the plurality of gate lines (as shown by 12 and 13 in FIG. 4); for each of the gate lines 100 spanning the fingerprint identification area, A via hole 102 is formed in the dielectric layer, and an orthographic projection of the gate line 100 on the base substrate 10 covers an orthographic projection of the via hole 102 on the base substrate 10; on the dielectric layer A plurality of emitter electrodes 101 are formed, and each emitter electrode 101 is electrically connected to the gate line 100 through the via 102.
  • forming on the substrate substrate does not absolutely mean forming a certain component directly on the substrate substrate, according to the actual fabrication process of the array substrate and the present disclosure.
  • the base substrate may have other components or layers.
  • the foregoing method embodiment is a manufacturing method provided by the foregoing embodiment of the array substrate, and other related specific information of the method embodiment may refer to the foregoing embodiment of the array substrate, and details are not described herein again.
  • the shield electrode 300 is formed on the fingerprint identification area 01 on the base substrate 10, and the shield electrode 300 may mainly be a molybdenum Mo material.
  • a buffer layer, an active layer, a gate insulating layer 11 (GI), a gate layer (including a gate, a gate line 100, and the like) are formed on the base substrate on which the shield electrode 300 is formed, which is not shown in FIG.
  • a buffer layer and an active layer are shown.
  • the gate insulating layer 11 is mainly composed of silicon nitride, silicon oxide, silicon oxynitride or the like, the gate layer is mainly composed of molybdenum Mo material, and the active layer may be LTPS (Low Temperature p-Si, low temperature).
  • the polysilicon) technology forms a thin film layer mainly composed of a p-Si material.
  • an interlayer dielectric layer 12 is formed on a base substrate on which a gate layer (including a gate electrode, a gate line 100, and the like) is formed, wherein the interlayer dielectric layer 12 is mainly made of silicon nitride, oxidized. Silicon, silicon oxynitride and other materials.
  • a data layer (including the data line 200, the source and the drain, etc.) is formed on the base substrate on which the interlayer dielectric layer 12 is formed, wherein the data layer is mainly made of titanium-aluminum-titanium (Ti-Al-Ti) material. composition.
  • a flat layer 13 (PLN) is formed on the base substrate on which the data layer (including the data line 200, the source drain, and the like) is formed, and a plurality of via holes 102 extending in the direction in which the gate line 100 extends, wherein the flat layer 13 is mainly composed of an organic resin.
  • a first transparent conductive layer is formed on the base substrate on which the flat layer 13 is formed, wherein the first transparent conductive layer may be indium tin oxide (ITO), and the first driving electrode (for example, the common electrode C) is formed by a patterning process.
  • ITO indium tin oxide
  • the first driving electrode for example, the common electrode C
  • the emitter electrode 101, and the emitter electrode 101 can be electrically connected to the gate line 100 through the via 102.
  • a protective layer 14 (PVX) is formed on the base substrate on which the first driving electrode and the emitter electrode 101 are formed, wherein the protective layer 14 is mainly composed of a material such as silicon nitride, silicon oxide, silicon oxynitride or the like.
  • a second transparent conductive layer is formed on the base substrate on which the protective layer 14 is formed, wherein the second transparent conductive layer may be indium tin oxide (ITO), and a second driving electrode (for example, the pixel electrode P-) is formed by a patterning process. ITO, and not shown in the drawing) and the sensing electrode 201.
  • ITO indium tin oxide
  • the array substrate may also include other fabrication steps, which are not described herein again.
  • the patterning process may include a photolithography process, or include a photolithography process and an etching step, and may also include other processes for forming a predetermined pattern, such as printing, inkjet, etc.;
  • the engraving process refers to a process of forming a pattern by using a photoresist, a mask, an exposure machine, or the like including a process of film formation, exposure, and development.
  • the corresponding patterning process can be selected in accordance with the structure formed in the present disclosure.
  • the embodiment of the present disclosure further provides a display panel including the foregoing array substrate, which has the same structure and advantageous effects as the array substrate provided by the foregoing embodiments. Since the foregoing embodiment has been described in detail for the structure and advantageous effects of the array substrate, details are not described herein again.
  • An embodiment of the present disclosure further provides a display device including the foregoing display panel surface, a gate driving circuit connected to the gate line in the array substrate of the display panel, a source driving circuit connected to the data line in the array substrate, and an array A fingerprint identification module in which the sensing electrodes are connected in the substrate.
  • the display device includes the aforementioned array substrate, and has the same structure and advantageous effects as the array substrate provided in the foregoing embodiment. Since the foregoing embodiment has been described in detail for the structure and advantageous effects of the array substrate, details are not described herein again.
  • the display device may be a liquid crystal display device or an organic light emitting diode display device.
  • the display device may be any product or component having a display function such as a liquid crystal display, a liquid crystal television, a digital photo frame, a mobile phone, or a tablet computer.
  • the gate driving circuit may be a gate driving IC or a GOA circuit.
  • the present disclosure may alternatively adopt a GOA circuit; the source driving circuit may generally be a source driving IC.
  • the fingerprint identification module may be a separately provided fingerprint recognition IC, or the fingerprint recognition module may be integrated into the source driver IC, which is not limited in the disclosure. As long as the fingerprint recognition module reads the sensing signal on the sensing electrode, the fingerprint image can be acquired. Of course, in order to improve the integration degree of the display device, optionally, the fingerprint recognition module may be integrated into the source driver IC.
  • the present disclosure can be applied not only to a COG product, but also to a mobile phone having a fingerprint recognition function, which may be a COG-type conventional screen ratio product as shown in FIG. 9a.
  • the fingerprint recognition area 01 sets a dummy gate to satisfy a direct transmission of a transmission signal to a transmitting electrode through a gate driving circuit (for example, a GOA).
  • a gate driving circuit for example, a GOA
  • the present disclosure is also applicable to COF products, such as COF products for ultra-high screen ratio products and similar HIC products (for example, ultra-high screen ratio type mobile phones with fingerprint recognition function as shown in FIG. 9b).
  • the added value including the fingerprint recognition type display product can be further improved by adopting the design of the present disclosure.
  • the high PPI (Pixels Per Inch) characteristic of the current display products can ensure the recognition clarity of the fingerprint recognition device.
  • the arrangement density of the emitter electrode and the sensing electrode can be selected to be a high resolution of 256 x 300.
  • the gate lines are sequentially scanned in the Nth row, the N+1th row, and the N+2th row, where N is a positive integer.
  • the input frequency may be 60 Hz, and the input signal (voltage) is 5 V, but is not limited thereto. While a signal is input to the gate line 100 of the fingerprint identification area 01, a transmission signal is input to the transmission electrode 101.
  • the sensing electrode 201 located in the fingerprint recognition area 01 is pressed by the finger, the valley and the ridge of the finger fingerprint are opposite to the electrodes of the fingerprint sensing unit arranged in a matrix in the fingerprint identification device (the sensing electrode is opposite to the transmitting electrode)
  • the distance between the capacitors of the position is different, resulting in different sensing capacitances.
  • the source driving IC connected to the sensing electrode reads the sensing capacitance signal on the sensing electrode, and converts the different sensing capacitance signal into two-dimensional image data, thereby acquiring a grayscale image of the fingerprint information of the user.
  • the emitter electrode and the sensing electrode in the fingerprint recognition device are all disposed on the array substrate, and the emitter electrode is connected to the gate line.
  • the gate driving circuit in the display device can input not only a scan signal to the gate line but also a transmission signal to the emitter electrode through the gate line.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Image Input (AREA)

Abstract

一种阵列基板及其制作方法、显示面板、显示装置。所述阵列基板包括设置于衬底基板上的多条数据线和多条栅线以及指纹识别区域。其中,所述指纹识别区域包括:多个发射电极和与所述多个发射电极交叉设置的多个感应电极;每个发射电极分别与一条栅线电连接。

Description

阵列基板及其制作方法、显示面板、显示装置
相关申请
本申请要求保护在2017年8月15日提交的申请号为201710700498.6的中国专利申请的优先权,该申请的全部内容以引用的方式结合到本文中。
技术领域
本公开涉及指纹识别技术领域,尤其涉及一种阵列基板及其制作方法、显示面板、显示装置。
背景技术
指纹是人类手指末端指腹上由凸起(脊)和凹陷(谷)的皮肤所形成的纹路,它是人类进化过程式中自然形成的。由于指纹具有终身不变性、唯一性以及便捷性等特点,因此成为生物特征识别的代名词,广泛的应用在安防、考勤等身份信息认证识别领域。
以指纹识别在显示装置(例如手机或者平板电脑等)领域的应用为例,可以用于例如对用户进行身份认证识别。指纹识别部分与显示器件的集成得到了广泛关注。
公开内容
本公开一方面提供一种阵列基板,包括:设置于衬底基板上的多条数据线和多条栅线、以及指纹识别区域;所述指纹识别区域包括:多个发射电极和与所述多个发射电极交叉设置的多个感应电极;每个发射电极分别与一条栅线电连接。
可选的,所述多个发射电极的延伸方向与所述多条栅线的延伸方向相同,所述多个感应电极的延伸方向与所述多个发射电极的延伸方向垂直。
可选的,所述栅线位于所述指纹识别区域中的部分构成所述发射电极;所述栅线位于所述指纹识别区域中的部分的宽度大于所述栅线位于所述指纹识别区域以外的部分的宽度。
可选的,所述发射电极与所述栅线位于不同层,和/或,所述感应 电极与所述数据线位于不同层。
可选的,所述阵列基板包括与所述数据线连接的第一驱动电极、以及与所述第一驱动电极相对设置的第二驱动电极;所述第一驱动电极位于所述衬底基板和所述第二驱动电极之间。所述发射电极与所述第一驱动电极同层同材料;和/或,所述感应电极与所述第二驱动电极同层同材料。
可选的,所述阵列基板包括与所述数据线连接的第一驱动电极、以及与所述第一驱动电极相对设置的第二驱动电极;所述第二驱动电极位于所述衬底基板和所述第一驱动电极之间。所述发射电极与所述第二驱动电极同层同材料;和/或,所述感应电极与所述第一驱动电极同层同材料。
可选的,每个发射电极通过多个过孔与对应的栅线连接。
可选的,所述指纹识别区域设置有对位标记;和/或,所述阵列基板进一步包括结合区域,所述结合区域设置有对位标记。
可选的,所述多个感应电极位于所述多个发射电极背离所述衬底基板的一侧。
可选的,所述阵列基板还包括设置于所述发射电极靠近所述衬底基板一侧的屏蔽电极。
可选的,所述阵列基板还包括与所述多条栅线相连的GOA电路。
本公开另一方面还提供一种显示面板,包括以上任一实施例所述的阵列基板。
本公开再一方面还提供一种显示装置,包括上述的显示面板、以及与所述多个感应电极连接的指纹识别模块。
可选的,所述显示面板还包括源极驱动电路,所述指纹识别模块集成于所述源极驱动电路中。
本公开又一方面还提供一种阵列基板的制作方法,所述阵列基板包括指纹识别区域;所述方法包括:在衬底基板上设置多条数据线和多条栅线;在所述指纹识别区域内形成多个发射电极,每个发射电极分别与一条栅线电连接;以及在所述指纹识别区域内形成与所述多个发射电极交叉设置的多个感应电极。
可选的,所述多条栅线包括一组横跨所述指纹识别区域的栅线。其中,在所述指纹识别区域内形成多个发射电极,每个所述发射电极 分别与一条栅线电连接包括:对于该组横跨所述指纹识别区域的栅线中的每一条,将该栅线位于所述指纹识别区域中的部分的宽度形成为大于所述栅线位于所述指纹识别区域以外的部分的宽度。
可选的,所述多条栅线包括一组横跨所述指纹识别区域的栅线。其中,在所述指纹识别区域内形成多个发射电极,每个所述发射电极分别与一条栅线电连接包括:形成覆盖所述多条栅线的介质层;对于该组横跨所述指纹识别区域的栅线中的每一条,在所述介质层中形成过孔;该栅线在所述衬底基板上的正投影覆盖所述过孔在所述衬底基板上的正投影;在所述介质层上形成多个发射电极,每个发射电极通过所述过孔与所述栅线电连接。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种包括指纹识别区域的阵列基板的结构示意图;
图2为本公开实施例提供的一种阵列基板的指纹识别区域的结构示意图;
图3a为本公开实施例提供的一种指纹识别区域的发射电极的结构示意图;
图3b为本公开实施例提供的一种阵列基板在指纹识别区域的结构示意图;
图3c为本公开实施例提供的另一种阵列基板在指纹识别区域的结构示意图;
图4为本公开实施例提供的一种包括指纹识别区域的阵列基板的剖面结构示意图;
图5为本公开实施例提供的另一种包括指纹识别区域的阵列基板的剖面结构示意图;
图6为本公开实施例提供的再一种包括指纹识别区域的阵列基板 的剖面结构示意图;
图7为本公开实施例提供的一种包括指纹识别区域的阵列基板的结构示意图;
图8为本公开实施例提供的一种阵列基板的制作方法的流程图;
图9a为本公开实施例提供的一种包括指纹识别区域的手机的结构示意图;
图9b为本公开实施例提供的另一种包括指纹识别区域的手机的结构示意图;以及
图10为本公开实施例提供的一种栅线输入信号的时序图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的实施例提供一种阵列基板及其制作方法、显示面板、显示装置,通过将指纹识别器件集成于阵列基板中,以提高包括指纹识别器件的显示装置的集成化控制程度。
本公开实施例提供一种阵列基板。如图1和图2所示,所述阵列基板包括设置于衬底基板10上的多条数据线200和多条栅线100、以及指纹识别区域01;其中,所述指纹识别区域01包括:多个发射电极101和与所述多个发射电极101交叉设置的多个感应电极201;其中,每个发射电极101分别与一条栅线100电连接。
在本公开的实施例中,指纹识别器件中的发射电极和感应电极均设置于阵列基板上,且发射电极与栅线连接。该阵列基板在应用于显示装置时,显示装置中的栅极驱动电路不仅可以向栅线输入扫描信号,还可以通过栅线向发射电极输入发射信号。由此,提高了包括指纹识别器件的显示装置的集成化控制程度,并且减少了配件采购、简化了组装工艺。
需要说明的是,本公开中的阵列基板可以是用于LCD(Liquid Crystal Display,液晶显示装置)的阵列基板,也可以是用于OLED (Organic Light Emitting Diode,有机发光二极管)显示装置的阵列基板,本公开对此不作限定。
在一些实施例中,如图2所示,多个发射电极101的延伸方向(即,长度方向)与多条栅线100的延伸方向相同,所述多个感应电极201的延伸方向与所述多个发射电极101的延伸方向垂直。本公开中对于发射电极101的延伸方向不作具体限定。发射电极101的延伸方向也可以与栅线100的延伸方向不一致。例如,发射电极101可以与栅线100呈一定的夹角。发射电极101可以是直线状,也可以是曲线状。本公开对发射电极101的具体形状不作限定,只要保证每一发射电极分别与一条栅线电连接,在通过栅极驱动电路向栅线输入扫描信号以及向发射电极输入发射信号即可。为了简化制作工艺,以及保证发射电极与栅线的有效连接,可选的,发射电极101的延伸方向与栅线100的延伸方向相同。
同理,对于感应电极201的延伸方向也不作具体限定,只要保证感应电极201与发射电极101交叉设置能够形成矩阵排列的指纹感应单元(也即网格报点结构)即可。为了便于加工制作,可选的,感应电极201的延伸方向与发射电极101的延伸方向垂直。为了便于说明,在以下实施例中,发射电极101的延伸方向与栅线100的延伸方向相同,感应电极201的延伸方向与发射电极101的延伸方向垂直。
具体的,以下对发射电极101和感应电极201的具体设置做进一步的说明。
例如,可以如图3a所示,发射电极101可以直接由栅线100位于指纹识别区域01中的部分构成,即发射电极101与栅线100为一体式结构,可以通过一次制作工艺制得。该栅线100位于指纹识别区域01中的部分的宽度大于栅线100位于指纹识别区域01以外的部分的宽度,以实现指纹识别功能。
又例如,也可以如图2和图4所示,发射电极101与栅线100位于不同层,即发射电极101与栅线100为电连接的两个独立部分,两者例如通过两次制作工艺制得。
例如,如图6所示,感应电极201可以与数据线200同层同材料,即感应电极201与数据线200通过一次制作工艺制得,但两者不电连接。为了保证实现指纹识别功能,感应电极201的宽度可以大于数据 线200的宽度。
在此情况下,对于数据线200的设置情况,可以如图3b所示,数据线200为直线型,穿过指纹识别区域01;也可以图3c所示,数据线200在指纹识别区域01位置处发生弯曲,绕过指纹识别区域01;本公开对此不做限定,可以根据实际的需要进行设计。
又例如,也可以如图2、图4和图5所示,感应电极201也可以与数据线200位于不同层,即感应电极201与数据线200通过两次制作工艺制得。在该情况下,数据线200可以绕过指纹识别区域01,也可以穿过指纹识别区域01。不同之处在于,在该情况下,由于感应电极201与数据线200位于不同层,且一般的两者之间设置有绝缘层,因此,如图2和图4所示,感应电极201与数据线200之间可以具有交叠区域,即两者在衬底基板上的正投影可以具有重叠部分。
此处需要说明的是,在数据线200穿过指纹识别区域01的情况下(参考图3b或者图2),数据线200上加载的数据信号可能对感应电极201上的感应信号造成干扰。因此在实际的控制中,需要在指纹识别阶段,关闭(或者拉低)数据线200上的电信号,以保证指纹识别器件能够正常的获取指纹图像。
在此基础上,以下对于发射电极101与栅线100位于不同层并且感应电极201与数据线200位于不同层的实施例做进一步的说明。
本领域的技术人员应当理解到,阵列基板上除了栅线100、数据线200以外,还可以具有其他的膜层。例如,位于每一亚像素中用于驱动该亚像素发光的两个驱动电极(例如,像素电极和公共电极)。因此,为了简化制作工艺,降低制作成本,可以采用将发射电极101、感应电极201与阵列基板中的其他导电膜层采用同一次制作工艺制作。以下提供两种可选的设置方式,但本公开并不限制于此。
在一些实施例中,如图4所示,所述阵列基板包括与所述数据线200连接的第一驱动电极D1、以及与所述第一驱动电极D1相对设置的第二驱动电极D2;所述第一驱动电极D1位于所述衬底基板10和所述第二驱动电极D2之间;其中,所述发射电极101与所述第一驱动电极D1同层同材料(即通过同一次制作工艺加工制成);和/或,所述感应电极201与所述第二驱动电极D2同层同材料(即通过同一次制作工艺加工制成)。该实施例中,所述发射电极101与所述第一驱动电 极D1同层同材料,因此在图4的示意图中,所述第一驱动电极D1被所述发射电极101所遮挡。
其中,对于LCD的阵列基板而言,该驱动电极为像素电极;对于OLED显示装置的阵列基板而言,该驱动电极为与数据线连接的阳极或者阴极;其中对于LCD的阵列基板而言,该阵列基板可以是TN(Twist Nematic,扭曲向列)型、ADS(Advanced-Super Dimensional Switching,简称为ADS,高级超维场开关)型、IPS(In Plane Switch,横向电场效应)型等。
类似地,在一些实施例中,所述阵列基板包括与所述数据线连接的第一驱动电极、以及与所述第一驱动电极相对设置的第二驱动电极;所述第二驱动电极位于所述衬底基板和所述第一驱动电极之间;其中,所述发射电极与所述第二驱动电极同层同材料(即通过同一次制作工艺加工制成);和/或,所述感应电极与所述第一驱动电极同层同材料(即通过同一次制作工艺加工制成)。
在一些实施例中,在阵列基板包括与数据线200连接的第一驱动电极以及与第一驱动电极相对设置的第二驱动电极。对于LCD的阵列基板而言,该阵列基板可以是ADS型、IPS型(异层间隔设置)等。其中,第一驱动电极为像素电极,第二驱动电极为公共电极。对于OLED显示装置的阵列基板而言,第一驱动电极为与数据线连接的阳极(或阴极),第二驱动电极为阴极(或阳极)。
例如,如图4所示,在发射电极101与第一驱动电极D1同层同材料的情况下,应当理解到,栅线100与第一驱动电极D1之间可以设置有一层或多层绝缘层(根据阵列基板的实际类型而定)。因此,对于发射电极101而言,需要通过位于绝缘层上的过孔与栅线100连接。在一些实施例中,如图4所示,每个发射电极101通过多个过孔102与对应的栅线100连接。可选的,如图4所示,沿栅线100的延伸方向,设置有多个过孔102,以使得发射电极101与栅线100通过过孔102多点连接,从而能够降低发射电极101与栅线100之间的接触电阻。
综上所述,根据本公开的方案,可以例如以以下的几种方式来布置发射电极101和感应电极201。如图4所示,发射电极101与栅线100为位于不同层、且电连接的两个部分,感应电极201与数据线200为位于不同层的两个部分。如图6所示(示意的以数据线200穿过指 纹识别区域01为例进行说明的),发射电极101与栅线100为同层设置的一体式结构,感应电极201与数据线200同层同材料(即通过同一次制作工艺加工制成)。如图5所示,感应电极201与数据线200为位于不同层(即通过两次制作工艺)的两个部分,发射电极101与栅线100为同层同材料的一体式结构。当然,也可以是感应电极201与数据线200同层同材料(即通过同一次制作工艺加工制成),发射电极101与栅线100为位于不同层、且电连接的两个部分。本公开对此均不作限定,可以根据实际的指纹识别器件的需要,以及阵列基板的类型而定。
在此基础上,为了保证指纹识别器件中的其他部件(例如,封装盖板)能够准确的安装至指纹识别区域01中,可选的,如图7所示,在指纹识别区域01设置有对位标记20。当然,为了保证在结合区域(Bonding Area)能够准确结合栅极驱动电路或者源极驱动电路,同样可选的,如图7所示,在结合区域设置有对位标记20。例如,可以在扇形走线区(Fan-Out)的结合图案(Bonding Bump)附近设置对位标记20。其中,走线区中的走线一般可以选用钛-铝-钛(Ti-Al-Ti)材质构成,采用单层布线的方式。
在一些实施例中,如图4所示,所述多个感应电极201位于所述多个发射电极101背离所述衬底基板101的一侧。由于所述多个感应电极201位于所述多个发射电极101背离所述衬底基板101的一侧,当用户的手指放置在如图4所示实施例的顶部一侧时,所述多个感应电极201能够更好地感应指纹的图案。
类似地,为了在如图4所示实施例的底部一侧实现指纹识别,所述多个感应电极201也可以位于所述多个发射电极101面对所述衬底基板101的一侧(即,所述多个感应电极201位于所述多个发射电极101和所述衬底基板101之间)。利用这样的布置,在指纹识别期间,对应于所述指纹识别区域的一部分显示图像也不会被遮挡。这样的布置形式可以例如应用在透明显示装置或半透明显示装置中,进一步改善了用户的体验。
更进一步的,为了减少外电场对指纹识别区域01中发射电极和感应电极上的信号造成干扰,降低噪音,如图4所示,可选的,阵列基板还包括设置于发射电极101靠近衬底基板10一侧的屏蔽电极300。 即,至少在指纹识别区域01中发射电极101靠近衬底基板10一侧设置屏蔽电极。当然,该屏蔽电极300一般主要由金属材质构成,且一端接地。
另外,为了满足市场对显示产品的窄边框需求,如图7所示,本公开中的阵列基板还包括与所述多条栅线相连的GOA(Gate Driver on Array,阵列基板行驱动)电路,即栅极驱动电路为GOA电路。通过该GOA电路能够实现向栅线输入扫描信号,还可以发射电极输入发射信号。其中,图7中是以采用栅线100的双侧均设置GOA电路为例进行说明的。本公开并不限制于此,也可以采用栅线100的单侧设置GOA电路。
本公开实施例提供一种阵列基板的制作方法,所述阵列基板包括指纹识别区域。如图8所示,该制作方法包括以下步骤。
步骤S101、在衬底基板上设置多条数据线和多条栅线。
步骤S102、在所述指纹识别区域内形成多个发射电极,每个发射电极分别与一条栅线电连接。
步骤S103、在所述指纹识别区域内形成与所述多个发射电极交叉设置的多个感应电极。
在本公开的实施例中,指纹识别器件中的发射电极和感应电极均设置于阵列基板上,且发射电极与栅线连接。该阵列基板在应用于显示装置时,显示装置中的栅极驱动电路不仅可以向栅线输入扫描信号,还可以通过栅线向发射电极输入发射信号。由此,提高了包括指纹识别器件的显示装置的集成化控制程度,并且减少了配件采购、简化了组装工艺。
以下对上述步骤S102做进一步的说明。
例如,可参考图3a,所述多条栅线100包括一组横跨所述指纹识别区域01的栅线。该步骤S102具体可以包括:对于该组横跨所述指纹识别区域的栅线100中的每一条,将该栅线100位于所述指纹识别区域01中的部分的宽度形成为大于所述栅线100位于所述指纹识别区域01以外的部分的宽度。
又例如,可参考图4,所述多条栅线100包括一组横跨所述指纹识别区域01的栅线。该步骤S102也可以包括:形成覆盖所述多条栅线的介质层(如图4中的12和13所示);对于该组横跨所述指纹识别 区域的栅线100中的每一条,在所述介质层中形成过孔102,该栅线100在所述衬底基板10上的正投影覆盖所述过孔102在所述衬底基板10上的正投影;在所述介质层上形成多个发射电极101,每个发射电极101通过所述过孔102与所述栅线100电连接。
需要说明的是,该方法实施例中“在衬底基板上形成......”并不绝对是指直接在衬底基板上形成某元件,根据阵列基板的实际制作工艺以及本公开中方案,该衬底基板可能还具有其他的元件或膜层。另外,上述方法实施例是对前述阵列基板的实施例提供的一种制作方法,该方法实施例的其他相关具体信息,可参考前述阵列基板的实施例,此处不再赘述。
示意的,结合例如图4所示的阵列基板的实施例,以下提供一种阵列基板的具体制作方法。
首先,在衬底基板10上的指纹识别区域01形成屏蔽电极300,该屏蔽电极300可以主要采用钼Mo材料。
然后,在形成屏蔽电极300的衬底基板上形成缓冲层(Buffer)、有源层、栅极绝缘层11(GI)、栅极层(包括栅极、栅线100等),图4中未示出缓冲层(Buffer)、有源层。
其中,上述栅极绝缘层11的主要由氮化硅、氧化硅、氮氧化硅等材料组成,栅极层主要采用钼Mo材质组成,有源层可以是采用LTPS(Low Temperature p-Si,低温多晶硅)技术形成的主要由p-Si材料构成的薄膜层。
接下来,在形成有栅极层(包括栅极、栅线100等)的衬底基板上形成层间介电层12(ILD),其中,层间介电层12主要由氮化硅、氧化硅、氮氧化硅等材质组成。
然后,在形成有层间介电层12的衬底基板上形成数据层(包括数据线200、源漏极等),其中,数据层主要由钛-铝-钛(Ti-Al-Ti)材质组成。
接下来,在形成有数据层(包括数据线200、源漏极等)的衬底基板上形成平坦层13(PLN),以及沿栅线100延伸方向的多个过孔102,其中,平坦层13主要由有机树脂组成。
然后,在形成有平坦层13的衬底基板上形成第一透明导电层,其中,第一透明导电层可采用氧化铟锡(ITO),并通过构图工艺形成第 一驱动电极(例如公共电极C-ITO,且图中未示出)和发射电极101,并且发射电极101能够通过过孔102与栅线100电连接。
接下来,在形成有第一驱动电极和发射电极101的衬底基板上形成保护层14(PVX),其中,保护层14主要由氮化硅、氧化硅、氮氧化硅等材质组成。
然后,在形成保护层14的衬底基板上形成第二透明导电层,其中,第二透明导电层可采用氧化铟锡(ITO),并通过构图工艺形成第二驱动电极(例如像素电极P-ITO,且图中未示出)和感应电极201。
当然,该阵列基板的还可以包括其他的制作步骤,此处不再一一赘述。
需要说明的是,在本公开中,构图工艺,可指包括光刻工艺,或,包括光刻工艺以及刻蚀步骤,同时还可以包括打印、喷墨等其他用于形成预定图形的工艺;光刻工艺,是指包括成膜、曝光、显影等工艺过程的利用光刻胶、掩模板、曝光机等形成图形的工艺。可根据本公开中所形成的结构选择相应的构图工艺。
本公开实施例还提供一种显示面板,包括前述的阵列基板,具有与前述实施例提供的阵列基板相同的结构和有益效果。由于前述实施例已经对阵列基板的结构和有益效果进行了详细的描述,此处不再赘述。
本公开实施例还提供一种显示装置,包括前述的显示板面,以及与显示面板的阵列基板中栅线连接的栅极驱动电路、与阵列基板中数据线连接的源极驱动电路以及与阵列基板中感应电极连接的指纹识别模块。该显示装置包括前述的阵列基板,具有与前述实施例提供的阵列基板相同的结构和有益效果。由于前述实施例已经对阵列基板的结构和有益效果进行了详细的描述,此处不再赘述。
此处需要说明的是,第一,在本公开实施例中,显示装置可以是液晶显示装置或有机发光二极管显示装置。例如,该显示装置可以为液晶显示器、液晶电视、数码相框、手机或平板电脑等任何具有显示功能的产品或者部件。
第二,上述栅极驱动电路可以栅极驱动IC,也可以是GOA电路,本公开可选的采用GOA电路;上述源极驱动电路一般可以是源极驱动IC。
另外,对于上述与感应电极连接的指纹识别模块而言,该指纹识别模块可以是单独设置的指纹识别IC,也可以是将该指纹识别模块集成于源极驱动IC中,本公开对此不作限定,只要通过该指纹识别模块读取感应电极上的感应信号,实现指纹图像的获取即可。当然,为了提高显示装置的集成化程度,可选的,可以将指纹识别模块集成于源极驱动IC中。
还需要说明的是,按照本公开的设计方案,本公开不仅可以适用于COG产品,以具有指纹识别功能的手机为例,可以是如图9a所示的COG类常规屏占比产品,可以在指纹识别区域01设置虚拟栅线(Dummy Gate),以满足通过栅极驱动电路(例如GOA)直接向发射电极输入发射信号。当然,本公开也可以适用于COF产品,例如COF产品中针对超高屏占比产品以及类似HIC产品(例如,如图9b所示的具有指纹识别功能的超高屏占比类手机)。采用本公开的设计方案能够进一步的提高包括指纹识别类显示产品的附加值。
另外,采用本公开的设计方案,利用目前显示类产品的高PPI(Pixels Per Inch,像素密度)特性,能够保证指纹识别器件的识别清晰度。例如,一般的,发射电极和感应电极的设置密度可以选用256×300的高分辨率。
以下,以图9b所示的手机为例,对手机的指纹识别过程做进一步的说明。
利用GOA的移位寄存器功能,如图10所示,将栅线依次按照第N行、第N+1行、第N+2行进行逐行扫描,其中N为正整数。具体的,输入频率可以为60Hz,输入信号(电压)为5V,但不限制于此。向指纹识别区域01的栅线100输入信号的同时,向发射电极101输入发射信号。此时,位于指纹识别区域01与的感应电极201在受到手指按压时,手指指纹的谷和脊相对于指纹识别器件中呈矩阵排布的指纹感应单元的电极(感应电极与发射电极正对的位置的电容)之间的距离不同,而产生不同的感应电容。然后,通过与感应电极连接的源极驱动IC读取感应电极上的感应电容信号,并将该不同的感应电容信号转化为二维图像数据,从而获取用户的指纹信息的灰度图像。
在本公开实施例提供的阵列基板及其制作方法、显示面板、显示装置中,指纹识别器件中的发射电极和感应电极均设置于阵列基板上, 且发射电极与栅线连接。该阵列基板在应用于显示装置时,显示装置中的栅极驱动电路不仅可以向栅线输入扫描信号,还可以通过栅线向发射电极输入发射信号。由此,提高了包括指纹识别器件的显示装置的集成化控制程度,并且减少了配件采购、简化了组装工艺。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种阵列基板,包括:设置于衬底基板上的多条数据线和多条栅线、以及指纹识别区域;
    其中,所述指纹识别区域包括:多个发射电极和与所述多个发射电极交叉设置的多个感应电极;
    其中,每个发射电极分别与一条栅线电连接。
  2. 根据权利要求1所述的阵列基板,其中,所述多个发射电极的延伸方向与所述多条栅线的延伸方向相同,所述多个感应电极的延伸方向与所述多个发射电极的延伸方向垂直。
  3. 根据权利要求1所述的阵列基板,其中,所述栅线位于所述指纹识别区域中的部分构成所述发射电极;其中,所述栅线位于所述指纹识别区域中的部分的宽度大于所述栅线位于所述指纹识别区域以外的部分的宽度。
  4. 根据权利要求1所述的阵列基板,其中,所述发射电极与所述栅线位于不同层,和/或,所述感应电极与所述数据线位于不同层。
  5. 根据权利要求4所述的阵列基板,其中,所述阵列基板包括与所述数据线连接的第一驱动电极、以及与所述第一驱动电极相对设置的第二驱动电极;所述第一驱动电极位于所述衬底基板和所述第二驱动电极之间;
    其中,所述发射电极与所述第一驱动电极同层同材料;和/或,所述感应电极与所述第二驱动电极同层同材料。
  6. 根据权利要求4所述的阵列基板,其中,所述阵列基板包括与所述数据线连接的第一驱动电极、以及与所述第一驱动电极相对设置的第二驱动电极;所述第二驱动电极位于所述衬底基板和所述第一驱动电极之间;
    其中,所述发射电极与所述第二驱动电极同层同材料;和/或,所述感应电极与所述第一驱动电极同层同材料。
  7. 根据权利要求4-6任一项所述的阵列基板,其中,每个发射电极通过多个过孔与对应的栅线连接。
  8. 根据权利要求1所述的阵列基板,其中,所述指纹识别区域设置有对位标记;和/或,所述阵列基板进一步包括结合区域,所述结合 区域设置有对位标记。
  9. 根据权利要求1所述的阵列基板,其中,所述多个感应电极位于所述多个发射电极背离所述衬底基板的一侧。
  10. 根据权利要求9所述的阵列基板,还包括设置于所述发射电极靠近所述衬底基板一侧的屏蔽电极。
  11. 根据权利要求1所述的阵列基板,还包括与所述多条栅线相连的GOA电路。
  12. 一种显示面板,包括权利要求1-11任一项所述的阵列基板。
  13. 一种显示装置,包括权利要求12所述的显示面板、以及与所述多个感应电极连接的指纹识别模块。
  14. 根据权利要求13所述的显示装置,其中,所述显示面板还包括源极驱动电路,所述指纹识别模块集成于所述源极驱动电路中。
  15. 一种阵列基板的制作方法,所述阵列基板包括指纹识别区域;所述方法包括:
    在衬底基板上设置多条数据线和多条栅线;
    在所述指纹识别区域内形成多个发射电极,每个发射电极分别与一条栅线电连接;以及
    在所述指纹识别区域内形成与所述多个发射电极交叉设置的多个感应电极。
  16. 根据权利要求15所述的制作方法,其中,所述多条栅线包括一组横跨所述指纹识别区域的栅线;其中,在所述指纹识别区域内形成多个发射电极,每个所述发射电极分别与一条栅线电连接包括:
    对于该组横跨所述指纹识别区域的栅线中的每一条,将该栅线位于所述指纹识别区域中的部分的宽度形成为大于所述栅线位于所述指纹识别区域以外的部分的宽度。
  17. 根据权利要求15所述的制作方法,其中,所述多条栅线包括一组横跨所述指纹识别区域的栅线;其中,在所述指纹识别区域内形成多个发射电极,每个所述发射电极分别与一条栅线电连接包括:
    形成覆盖所述多条栅线的介质层;
    对于该组横跨所述指纹识别区域的栅线中的每一条,在所述介质层中形成过孔;该栅线在所述衬底基板上的正投影覆盖所述过孔在所述衬底基板上的正投影;
    在所述介质层上形成多个发射电极,每个发射电极通过所述过孔与所述栅线电连接。
PCT/CN2018/090373 2017-08-15 2018-06-08 阵列基板及其制作方法、显示面板、显示装置 WO2019033837A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/332,185 US10866448B2 (en) 2017-08-15 2018-06-08 Array substrate, method for manufacturing the same, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710700498.6 2017-08-15
CN201710700498.6A CN107272244B (zh) 2017-08-15 2017-08-15 一种阵列基板及其制作方法、显示面板、显示装置

Publications (1)

Publication Number Publication Date
WO2019033837A1 true WO2019033837A1 (zh) 2019-02-21

Family

ID=60077333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090373 WO2019033837A1 (zh) 2017-08-15 2018-06-08 阵列基板及其制作方法、显示面板、显示装置

Country Status (3)

Country Link
US (1) US10866448B2 (zh)
CN (1) CN107272244B (zh)
WO (1) WO2019033837A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107272244B (zh) 2017-08-15 2020-12-08 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示面板、显示装置
CN108089756A (zh) * 2017-12-29 2018-05-29 云谷(固安)科技有限公司 一种触控面板及其驱动控制方法、触控显示装置
CN108108717B (zh) * 2018-01-03 2020-06-05 京东方科技集团股份有限公司 指纹识别面板及其制备方法、驱动方法和指纹识别装置
CN108711378B (zh) * 2018-04-28 2021-01-05 厦门天马微电子有限公司 显示面板和显示装置
CN108877621B (zh) 2018-06-29 2022-02-25 厦门天马微电子有限公司 一种显示面板和显示装置
CN109491120B (zh) * 2018-12-03 2021-07-23 厦门天马微电子有限公司 显示面板和显示装置
CN109638046B (zh) * 2018-12-07 2020-10-16 武汉华星光电半导体显示技术有限公司 具有屏下指纹识别的oled显示装置
CN109637367B (zh) * 2018-12-28 2020-12-18 厦门天马微电子有限公司 显示面板和显示装置
KR102674822B1 (ko) * 2019-06-28 2024-06-13 삼성디스플레이 주식회사 전자 장치
CN110427874B (zh) * 2019-07-31 2021-12-24 京东方科技集团股份有限公司 一种显示面板及显示装置
CN110472547B (zh) * 2019-08-07 2021-08-27 上海天马有机发光显示技术有限公司 一种显示模组和显示装置
WO2021026711A1 (zh) * 2019-08-12 2021-02-18 京东方科技集团股份有限公司 栅极驱动方法、栅极驱动电路和显示装置
CN110676217B (zh) * 2019-10-09 2021-12-10 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
KR20210138211A (ko) 2020-05-11 2021-11-19 삼성디스플레이 주식회사 표시 패널 및 이를 구비하는 표시 장치
CN112309943B (zh) * 2020-09-30 2023-06-30 晶科能源股份有限公司 硅片标识的识别方法、硅片打标方法以及硅片
CN112420799B (zh) * 2020-11-20 2024-03-05 京东方科技集团股份有限公司 一种显示基板、显示面板及显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6055324A (en) * 1997-06-30 2000-04-25 Nec Corporation Fingerprint image entry device of electrostatic capacitance sensing type
US20030016024A1 (en) * 2001-07-12 2003-01-23 Sharp Kabushiki Kaisha Uneven pattern detector and uneven pattern detecting method
US20140218327A1 (en) * 2012-04-29 2014-08-07 Weidong Shi Method and Apparatuses of Transparent Fingerprint Imager Integrated with Touch Display Device
CN105159506A (zh) * 2015-09-30 2015-12-16 信利光电股份有限公司 具有指纹识别功能的触控屏及显示面板、触控显示装置
CN106024836A (zh) * 2016-06-03 2016-10-12 京东方科技集团股份有限公司 带指纹识别功能的显示面板及制备方法、显示设备
CN106529463A (zh) * 2016-10-28 2017-03-22 京东方科技集团股份有限公司 一种指纹识别显示面板、显示装置和指纹识别方法
CN106778508A (zh) * 2016-11-22 2017-05-31 维沃移动通信有限公司 一种指纹识别方法及移动终端
CN107092901A (zh) * 2017-06-02 2017-08-25 京东方科技集团股份有限公司 一种触控面板的指纹识别方法及制备方法
CN107272244A (zh) * 2017-08-15 2017-10-20 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示面板、显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920640A (en) * 1997-05-16 1999-07-06 Harris Corporation Fingerprint sensor and token reader and associated methods
CN104103239B (zh) * 2014-06-23 2016-05-04 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法
CN104112120B (zh) * 2014-06-26 2018-09-18 京东方科技集团股份有限公司 指纹识别显示驱动电路和显示装置
CN104317467B (zh) * 2014-11-06 2018-01-05 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104898892B (zh) * 2015-07-09 2017-11-17 京东方科技集团股份有限公司 一种触控显示面板及其制作方法、触控显示装置
CN105183252B (zh) * 2015-08-13 2016-11-02 京东方科技集团股份有限公司 一种阵列基板、触摸显示屏、显示装置、驱动方法
CN105956584A (zh) * 2016-06-30 2016-09-21 京东方科技集团股份有限公司 指纹识别模组及其制作方法和驱动方法、显示装置
KR102609068B1 (ko) * 2016-09-23 2023-12-05 엘지디스플레이 주식회사 구동 회로 및 구동 회로의 센싱부
KR102663555B1 (ko) * 2016-10-07 2024-05-08 삼성디스플레이 주식회사 지문 인식 센서를 포함하는 표시 장치
CN106409224A (zh) * 2016-10-28 2017-02-15 京东方科技集团股份有限公司 像素驱动电路、驱动电路、显示基板和显示装置
KR102295068B1 (ko) * 2017-03-31 2021-08-31 삼성디스플레이 주식회사 표시 장치 및 그의 구동 방법
US20180349669A1 (en) * 2017-06-02 2018-12-06 Samsung Electronics Co., Ltd. Operating method of optical fingerprint sensor, operating method of electronic device including the optical fingerprint sensor, and display device including the optical fingerprint sensor
CN107039002B (zh) * 2017-06-05 2019-09-06 京东方科技集团股份有限公司 一种像素电路及显示面板
US20190095000A1 (en) * 2017-09-26 2019-03-28 Wuhan China Star Optoelectronics Technology Co., Ltd Mutual capacitance touch display panel with fingerprint recognition and liquid crystal display apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6055324A (en) * 1997-06-30 2000-04-25 Nec Corporation Fingerprint image entry device of electrostatic capacitance sensing type
US20030016024A1 (en) * 2001-07-12 2003-01-23 Sharp Kabushiki Kaisha Uneven pattern detector and uneven pattern detecting method
US20140218327A1 (en) * 2012-04-29 2014-08-07 Weidong Shi Method and Apparatuses of Transparent Fingerprint Imager Integrated with Touch Display Device
CN105159506A (zh) * 2015-09-30 2015-12-16 信利光电股份有限公司 具有指纹识别功能的触控屏及显示面板、触控显示装置
CN106024836A (zh) * 2016-06-03 2016-10-12 京东方科技集团股份有限公司 带指纹识别功能的显示面板及制备方法、显示设备
CN106529463A (zh) * 2016-10-28 2017-03-22 京东方科技集团股份有限公司 一种指纹识别显示面板、显示装置和指纹识别方法
CN106778508A (zh) * 2016-11-22 2017-05-31 维沃移动通信有限公司 一种指纹识别方法及移动终端
CN107092901A (zh) * 2017-06-02 2017-08-25 京东方科技集团股份有限公司 一种触控面板的指纹识别方法及制备方法
CN107272244A (zh) * 2017-08-15 2017-10-20 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示面板、显示装置

Also Published As

Publication number Publication date
US10866448B2 (en) 2020-12-15
CN107272244B (zh) 2020-12-08
US20190227362A1 (en) 2019-07-25
CN107272244A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2019033837A1 (zh) 阵列基板及其制作方法、显示面板、显示装置
WO2016123985A1 (zh) 阵列基板及其制作方法和驱动方法、显示装置
KR102354925B1 (ko) 표시장치와 그의 제조방법
EP3605207B1 (en) Array substrate, display screen, and electronic device
US11580912B2 (en) Display device
CN110349976B (zh) 阵列基板及其制备方法、显示面板和显示装置
US20180197924A1 (en) Touch sensor and display device having touch sensor
CN109634467B (zh) 一种阵列基板及其制备方法
US10789444B2 (en) Display apparatus
CN109541842B (zh) 显示面板
US10001858B2 (en) Substrate including thin film transistor for touch display
US20160283001A1 (en) Display panel, driving method thereof, and display device
US7371624B2 (en) Method of manufacturing thin film semiconductor device, thin film semiconductor device, electro-optical device, and electronic apparatus
JP2002151522A (ja) アクティブマトリクス基板及びその製造方法ならびに表示装置
JP2007510949A (ja) タッチスクリーン機能を有する液晶表示装置及びその製造方法
US10386977B2 (en) Display device including sensor capacitor and light emitting device that contact same face of insulating layer
JP2022519265A (ja) タッチセンサ及びアンテナを含む画像表示装置
US11855110B2 (en) Fingerprint sensor, method for manufacturing fingerprint sensor, and display device including fingerprint sensor
US11385732B2 (en) Array substrate, manufacturing method thereof, touch display panel and touch display device
US20190042021A1 (en) Fingerprint recognizing sensor and touch screen device including the same
WO2019007090A1 (zh) 触控基板及其制作方法、内嵌式触控面板
US11943965B2 (en) Display device including a lower electrode
WO2021238139A1 (zh) 传感器、显示面板及显示装置
TW202334864A (zh) 螢幕下指紋辨識電路及其層疊結構、顯示面板與指紋擷取方法
KR102510942B1 (ko) 유기발광 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18846542

Country of ref document: EP

Kind code of ref document: A1