WO2019033832A1 - 轨道车辆的噪音处理方法、装置、设备及存储介质 - Google Patents

轨道车辆的噪音处理方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2019033832A1
WO2019033832A1 PCT/CN2018/090100 CN2018090100W WO2019033832A1 WO 2019033832 A1 WO2019033832 A1 WO 2019033832A1 CN 2018090100 W CN2018090100 W CN 2018090100W WO 2019033832 A1 WO2019033832 A1 WO 2019033832A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
noise signal
noise
sound
Prior art date
Application number
PCT/CN2018/090100
Other languages
English (en)
French (fr)
Inventor
宫清
孙亚轩
赵永吉
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019033832A1 publication Critical patent/WO2019033832A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/1752Masking
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques

Definitions

  • the present application relates to the field of noise cancellation technology, and in particular, to a noise processing method, device, device and storage medium for a rail vehicle.
  • the straddle monorail vehicle provides an effective solution to the urban congestion problem.
  • the straddle-type monorail vehicle is known as the “blocking artifact”. Compared with the previous rail transit, it has many advantages, such as low cost, short construction period, less space occupation and less noise pollution.
  • Acoustic packaging mainly refers to the sound-absorbing and wrapping process of the noise source, and the sound-absorbing and sound-absorbing treatment is performed on the main noise transmission path with the damping material.
  • the related art has achieved good results in noise processing, but this special noise generated by the motor in the rail vehicle is not satisfactory.
  • the noise of the motor is a result of a combination of noise, including mechanical noise, electromagnetic noise and air noise, especially the high-frequency noise of the motor. It has strong penetrability and subjective feelings are even more irritating. It may even cause physical discomfort, such as dizziness, vomiting, etc.
  • the sound insulating material cannot be used excessively.
  • noise reduction is passive noise reduction, also called physical noise reduction. This type of noise reduction includes structural optimization, resonance elimination, and sound absorption through damping materials. .
  • active noise reduction which produces an acoustic signal that is opposite in phase to the noise signal and phase cancels the low frequency motor noise.
  • the traditional sound-absorbing and sound-absorbing physical noise reduction technology has now become a general-purpose technology, mainly referring to the use of sound insulation, sound absorption, and sound-absorbing materials to achieve noise reduction.
  • the physical noise reduction is limited by the heat dissipation index of the motor, and can only be limited.
  • the high frequency noise of the motor still does not meet the ideal requirements.
  • the frequency of motor noise is very high and the wavelength is very short, it is difficult to capture its phase to generate inverted sound waves to actively cancel. Even if it can capture, it must constantly adjust the search step size. A lot of calculations are very large, and the algorithm is difficult to implement. Even if the algorithm can be implemented, the hardware requirements are high and the cost is high.
  • the purpose of the present application is to provide a method, a device, a device and a storage medium for noise processing of a rail vehicle, which can achieve noise reduction of high frequency noise of the motor, which is less demanding on hardware devices and has lower cost.
  • the present application is implemented in this way.
  • the first aspect of the present application provides a noise processing method for a rail vehicle, where the noise processing method includes:
  • the noise signal When detecting that the rail vehicle is in an inter-station operation process, and the noise signal includes a high frequency noise signal having a frequency greater than a first preset frequency, generating and outputting a subharmonic sound signal according to a frequency of the high frequency noise signal ;
  • a corresponding masking sound signal is output, the sound intensity of the masking sound signal being higher than the sound intensity of the high frequency noise signal.
  • a second aspect of the present application provides a noise processing device for a rail vehicle, the noise processing device comprising:
  • a noise signal acquisition module configured to acquire a noise signal of the rail vehicle, and analyze the noise signal to obtain a frequency of the noise signal
  • a location acquisition module configured to acquire a location where the rail vehicle runs
  • a subharmonic generating module configured to: when detecting that the rail vehicle is in an inter-station operation process, and the noise signal comprises a high frequency noise signal having a frequency greater than a first preset frequency, according to a frequency of the high frequency noise signal Generating and outputting a subharmonic sound signal;
  • a masking signal output module configured to output a corresponding masking sound signal when the rail vehicle is detected to be in a pit stop process or an off-station process, the frequency sound intensity of the masking sound signal being higher than the sound of the high frequency noise signal strength.
  • a third aspect of the present application provides a terminal device, including a memory, a processor, and a computer program stored in the memory and operable on the processor, when the processor executes the computer program The steps of the method as described in the first aspect of the application are achieved.
  • a fourth aspect of the present application provides a computer readable storage medium storing a computer program that, when executed by a processor, implements the steps of the method of the first aspect of the present application.
  • the embodiment of the present application provides a noise processing method, device, device, and storage medium for a rail vehicle, which acquires a noise signal of a rail vehicle and a place where the rail vehicle runs, when the rail vehicle is in an inter-station operation process, and includes a high frequency noise signal.
  • the subharmonic sound signal is generated and output according to the frequency of the high frequency noise signal.
  • the constructed harmonic sound signal is output, the component of the noise high frequency noise signal in the entire sound signal does not change, but the components of other frequency signals increase.
  • FIG. 1 is a flowchart of a method for processing noise of a rail vehicle according to an embodiment of the present application
  • step S101 is a specific flowchart of step S101 in a method for processing noise of a rail vehicle according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of an absolute threshold of experimentally obtained different frequency sound signals in a noise processing method for a rail vehicle provided in FIG. 1;
  • FIG. 4 is a waveform diagram of a constant frequency howling signal in a noise processing method of a rail vehicle according to an embodiment of the present application
  • FIG. 5 is a waveform diagram of a frequency conversion howling signal in a noise processing method of a rail vehicle according to an embodiment of the present application
  • FIG. 6 is a flowchart of a method for processing noise of a rail vehicle according to another embodiment of the present application.
  • FIG. 7 is a flowchart of a method for processing noise of a rail vehicle according to another embodiment of the present application.
  • step S302 is a specific flowchart of step S302 in the noise processing method of the rail vehicle provided in FIG. 7;
  • FIG. 9 is a schematic diagram of a noise signal distribution in a rail vehicle according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a sound signal in a noise processing method of a rail vehicle according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a noise reduction process of a noise processing method for a rail vehicle according to another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a noise processing device for a rail vehicle according to another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a noise processing device for a rail vehicle according to another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a noise processing device for a rail vehicle according to another embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a terminal device according to another embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a terminal device according to another embodiment of the present application.
  • the embodiment of the present application provides a noise processing method inside a rail vehicle. As shown in FIG. 1 , the noise processing method includes:
  • Step S101 Acquire a noise signal of the rail vehicle and a place where the rail vehicle runs, and analyze the noise signal to obtain the frequency of the noise signal.
  • step S101 the location where the rail vehicle is operated can be acquired by the positioning device on the rail vehicle, and the noise signal of the rail vehicle can be obtained by collecting the sound signal in the rail vehicle compartment and then analyzing the sound signal, as step S101.
  • the frequency of the noise signal may be obtained by using steps S1011 to S1012:
  • Step S1011 Acquire a sound signal of the rail vehicle
  • the sound signal may be collected by the sound collecting device, for example, the sound signal of the vehicle is sampled by the microphone within a preset time.
  • Step S1012 Perform spectrum analysis on the sound signal to obtain the frequency of the sound signal, and compare the frequency of the sound signal with the preset frequency to obtain the frequency of the noise signal.
  • step S1012 for example, the collected ambient sound signal is subjected to A/D conversion, and the sound signal is converted into a digital signal, and is controlled by a digital signal processor (Digital Signal Processor, DSP processor) and a numerical analysis function.
  • the embedded software performs spectrum analysis to obtain the frequency of the sound signal, and then separates the noise signal according to the preset frequency.
  • the noise signal can be divided into a high frequency noise signal and a low frequency noise signal, and the detected sound signal having a frequency greater than the first preset frequency is The high frequency noise signal, the first preset frequency may be 3KHZ, and the sound signal whose frequency is less than the second preset frequency is detected as a low frequency noise signal, and the second preset frequency may be 1KHZ.
  • Step S102 When it is detected that the rail vehicle is in the inter-station operation process, and the noise signal includes a high frequency noise signal having a frequency greater than the first preset frequency, the subharmonic sound signal is generated and output according to the frequency of the high frequency noise signal.
  • the running process of the rail vehicle includes an off-site process, an inter-station operation process, and a pit stop process.
  • the off-site process refers to a start acceleration phase of the rail vehicle, and the speed is gradually increased, and the rail vehicle acceleration operation phase or the departure may be set.
  • the preset distance of the station is the off-site process.
  • the inter-station operation process refers to the running state of the rail vehicle between the two stations. It can be approximated as continuous operation at a certain preset speed, or it can be set to run between stations.
  • the preset distance is the running process between stations.
  • the inbound process refers to the braking deceleration phase of the rail vehicle, and the speed is gradually reduced.
  • the deceleration running phase of the rail vehicle or the preset distance entering the station can be set as the inbound process.
  • the frequency component of the high frequency noise signal is acquired, and the noise signal of a certain frequency is subjected to noise reduction processing.
  • the specific noise reduction processing method is to output a subharmonic sound signal based on the original noise signal, wherein the subharmonic sound signal is smaller than the frequency of the noise signal.
  • the subharmonic is the fractional harmonic of a certain frequency.
  • the frequency of the noise signal is 3000 Hz.
  • the signal of 1500 Hz is obtained, and its frequency is 1/2 of the noise signal. This is its fractional harmonic.
  • the frequency ratio of the two is 2 :1, can form a pure octave, belonging to the Concord interval, which sounds more pleasant and mellow.
  • the output sub-harmonic sound signal may be multiple, for example, the simultaneous output frequency is a multi-order sub-harmonic of 1/2, 1/4, 1/8, etc. of the noise signal, for example, the fundamental frequency signal frequency is 1000 Hz, constructed
  • the frequency of the second subharmonic is 500 Hz and 250 Hz
  • the frequency of the constructed three subharmonics is 500 Hz, 250 Hz, and 125 Hz.
  • the pure octave subharmonic frequency is an integer fraction of the fundamental frequency signal frequency
  • the second degree is 16:15
  • the second degree is 9:8
  • the third is 6:5, and so on.
  • Step S103 When it is detected that the rail vehicle is in the inbound or outbound process, a corresponding masking sound signal is output, and the sound intensity of the masking sound signal is higher than the sound intensity of the high frequency noise signal.
  • step S103 when it is detected that the rail vehicle is in the inbound or outbound process, the sound signal is masked, and the low frequency sound signal whose sound intensity is higher than the sound intensity of the high frequency noise signal can be output according to the "masking effect".
  • the "masking effect” can be regarded as a “masking effect” when one sound is used to cover up another sound. When a strong sound conceals a weaker sound, the weaker sound cannot be heard. . When listening to two or more sounds at the same time, the auditory system produces a so-called “masking effect", that is, each pure tone becomes more inaudible or inaudible, or these pure tones are partially or completely "masked".
  • the sound generated by the low-frequency sound signal having a large sound intensity level can well mask the sound generated by the high-frequency sound signal having a small sound intensity level. Due to the above-mentioned masking relationship, the energy of the noise frequency segment on the rail vehicle is analyzed. The result shows that the energy of the high-frequency sound signal with a small sound intensity level is actually much smaller than the energy of the low-frequency sound signal with a large sound intensity level. Therefore, the sound generated by the low-frequency sound signal having a large sound intensity level can be used to mask the sound generated by the high-frequency sound signal having a small sound intensity level.
  • step S103 when the masking sound is played to mask the high frequency noise signal, different voices are played according to the running place of the rail vehicle, for example, when the rail vehicle is started, the station name of the next station can be predicted by voice.
  • Masking the high-frequency noise signal when the rail vehicle is about to arrive at the station brake, the high-frequency noise signal can be masked by the station name of the station to be broadcasted by voice, and when the rail vehicle detects the high-frequency noise signal during the running process, High-frequency noise signals can be masked by playing soothing music in voice.
  • step S102 and step S103 further, when it is detected that the rail vehicle is in an inter-station operation process, and the noise signal includes a high frequency noise signal having a frequency greater than a first preset frequency and when detecting that the rail vehicle is in When the inbound process or the off-station process, and the noise signal includes a high-frequency noise signal having a frequency greater than the first preset frequency, the corresponding masked sound signal may be simultaneously output and a harmonic is generated in the masked sound signal according to the frequency of the high-frequency noise signal
  • the wave sound signal for example, the mask sound signal includes a broadcast sound and a background sound, wherein the broadcast sound is used to mask the low frequency noise signal, and the background sound is a subharmonic sound signal of the high frequency noise signal, which is used to form a harmony sound with the high frequency noise signal. That is, the noise signal of the rail vehicle is eliminated by simultaneously outputting the subharmonic sound signal and the masking sound signal.
  • the embodiment of the present application provides a noise processing method for a rail vehicle, which acquires a noise signal of a rail vehicle and a place where the rail vehicle runs.
  • the rail vehicle is in an inter-station operation process and includes a high frequency noise signal, according to the high frequency noise signal
  • the frequency generates and outputs a subharmonic sound signal.
  • the composition of the noise high frequency noise signal in the entire sound signal does not change, but the components of other frequency signals increase, so that the high frequency noise signal component The proportion becomes smaller, so that the sharpness of the noise signal is reduced.
  • a corresponding masking sound signal is output, and the noise signal is masked by the masking sound signal.
  • generating and outputting a subharmonic sound signal according to the frequency of the high frequency noise signal includes:
  • step S102 generating and outputting a subharmonic sound signal according to the frequency of the high frequency noise signal includes:
  • the above two embodiments respectively correspond to the constant frequency noise signal and the variable frequency noise signal.
  • the frequency of sound can be divided into two categories in general.
  • One type is constant frequency, which is called constant frequency howling, and the other type is frequency conversion. It is called frequency conversion howling, which extracts constant frequency howling signal and frequency conversion respectively.
  • the howling signals correspond to FIG. 4 and FIG. 5 respectively. From FIG. 4 and FIG. 5, the constant frequency howling and the frequency conversion howling can be visually displayed, that is, the function is different when the subharmonic sound signal is generated. So be treated differently. For example, as shown in Fig.
  • the signal is a sinusoidal signal
  • the noise is eliminated when constructing the octave harmonic component.
  • a represents the subharmonic amplitude
  • A represents the subharmonic coefficient
  • f represents the frequency of the noise signal
  • t represents the time; as shown in Fig.
  • the signal generation function is also a function of a linear gradient.
  • the order of the subharmonic sound signal may be the second harmonic, the third sub Harmonics, fourth harmonics, etc.
  • the noise processing method includes:
  • Step S201 Acquire a noise signal of the rail vehicle, and analyze the noise signal to obtain the frequency of the noise signal.
  • step S101 This step is the same as that of step S101.
  • step S101 For details, refer to the related description of step S101, and details are not described herein again.
  • Step S202 When detecting that the noise signal includes a high frequency noise signal having a frequency greater than the first preset frequency, generating a subharmonic sound signal according to the frequency of the noise signal, and outputting the subharmonic sound signal and the masking sound signal.
  • step S102 This step is the same as the step S102.
  • steps S102 For details, refer to the related description of step S102, and details are not described herein again.
  • Step S203 sequentially generate and output a multi-component harmonic signal according to the frequency of the high-frequency noise signal, and each component harmonic sound signal includes a sub-harmonic signal or at least two different sub-harmonic signals of different orders.
  • a multi-component harmonic signal can be generated to test the effect of outputting a sound signal after different sub-harmonics, for example, the simultaneous output frequency is 1/2, 1/4, 1/8, etc. of the noise signal.
  • the fundamental frequency signal frequency is 1000Hz
  • the sub-harmonic signal with the frequency of 500Hz can be output first, then the sound is tested, and then the second sub-harmonic signal with the frequency of 500Hz and 250Hz is output, then tested.
  • the three subharmonic frequencies are tested at three frequency sub-harmonic signals of 500 Hz, 250 Hz, and 125 Hz.
  • Step S204 Acquire and output a sound signal after each component harmonic signal, and obtain an evaluation parameter of each group of sound signals, wherein the evaluation parameters include a loudness value, a sharpness value, a jitter value, and a roughness value.
  • step S204 after outputting each component harmonic sound signal, the sound signal of the rail vehicle is collected again, and the evaluation parameters of each group of sound signals are calculated, and the evaluation parameters include a loudness value, a sharpness value, a jitter value, and Roughness value, the calculation model of each evaluation parameter is specifically:
  • the loudness reflects the degree of subjective feeling of the human ear to the sound intensity, and can reflect the loudness of the sound more accurately.
  • the unit of loudness is sone, and the calculation of loudness is calculated by Zwicker method (ISO532B):
  • E rq is the excitation under the absolute hearing threshold
  • E 0 is the excitation under the reference reference sound intensity
  • E is the excitation corresponding to the calculated sound
  • G is the loudness value calculated by the critical band sound level meter.
  • the total loudness N is obtained by integrating the characteristic loudness on the 0 to 24 Bark domain:
  • Sharpness reflecting the harshness of the sound signal, can be used to describe the proportion of high frequency in the sound component.
  • the unit of sharpness is acum.
  • k is a weighting coefficient
  • k 1
  • N'(z) is the characteristic loudness of the critical band
  • Z is the critical band Bark scale
  • N is the total loudness
  • g(z) is the weighting coefficient of Zwicker according to different critical bands.
  • the degree of jitter reflects the subjective perception of the human ear's degree of change in sound and sound. It can be used to describe the low-frequency components of the sound component. Generally, the sound signal of less than 20 Hz is evaluated. The unit of jitter is vacil, and the jitter is not international standard. Using Zwicker's calculation model:
  • F is the jitter degree
  • f mod is the modulation frequency in kHz
  • ⁇ L E is the variation of the sound pressure in the critical band
  • N' max (z) is the maximum value of the characteristic loudness and N' mix (z) is the minimum value of the characteristic loudness.
  • Roughness reflecting the degree of modulation of the sound signal, frequency distribution and amplitude, mainly evaluates the frequency of 20-200 Hz.
  • the unit of roughness is asper. There is no uniform standard for the roughness calculation model. We use the following calculation model. :
  • R is roughness
  • f mod is the modulation frequency in kHz
  • ⁇ L E is the amount of change in sound pressure in the critical band
  • Step S205 Calculate a noise fraction of each set of sound signals according to the evaluation parameters, and output a component harmonic sound signal corresponding to the lowest noise score.
  • step S205 by the calculation of the calculation model of each evaluation parameter in the above step S204, the loudness value, the sharpness value, the jitter value, and the roughness value of the sound signal after the output of the subharmonic sound signal can be respectively obtained.
  • the sharpness value, the jitter value, and the roughness value are respectively identified by V1, V2, and V3.
  • the sharpness of the sound is mainly eliminated, and the rateV1 of the sharpness value can be set to 0.80, and the remaining evaluation values are The weight value is 0.1. It should be noted that different weight values can be set according to different requirements.
  • the sound signal after outputting each component of the harmonic sound signal is resampled, and the evaluation parameters of each group of sound signals are obtained, and finally the subharmonic sound signal with the highest evaluation parameter is obtained, that is, the output is differently harmonic.
  • the sound signal after the wave signal is evaluated, and finally the sub-harmonic signal with the best sound effect is output, thereby improving the comfort of the passenger.
  • the noise processing method includes:
  • Step S301 Acquire a noise signal of the rail vehicle, and analyze the noise signal to obtain the frequency of the noise signal.
  • step S101 This step is the same as that of step S101.
  • step S101 For details, refer to the related description of step S101, and details are not described herein again.
  • Step S302 When detecting that the noise signal includes a low frequency noise signal having a frequency lower than the second preset frequency, outputting a low frequency sound signal having the same amplitude and opposite phase as the low frequency noise signal.
  • step S302 a low frequency sound signal having the same amplitude and opposite phase as the low frequency noise signal is output, including:
  • Step S3021 Acquire the amplitude and phase of the low frequency noise signal.
  • Step S3022 It is determined whether there is a subharmonic sound signal having the same amplitude and phase as the low frequency noise signal, and if yes, step S3023 is performed, otherwise, step S3024 is performed.
  • Step S3023 The subharmonic sound signal having the same amplitude and phase as the low frequency noise signal is inversely phase-converted and output.
  • Step S3024 Generate a low-frequency sound signal having the same amplitude and opposite phase as the low-frequency noise signal, wherein the second preset frequency is smaller than the first preset frequency.
  • the phase cancellation technique can be used for noise reduction, and the phase cancellation technique is also called ANC (activity noise control) technology, phase phase
  • ANC activity noise control
  • phase phase The working principle of the elimination technology is to collect the low-frequency noise signal, analyze the phase and amplitude of the low-frequency noise signal, and then select the sub-harmonic sound signal with the same phase and equal amplitude as the low-frequency noise signal to invert the generated sub-harmonic sound signal.
  • the bit transform is used to cancel the original low frequency noise signal, thereby achieving the purpose of noise reduction.
  • the three technical means cooperate with each other to process three different types of noises of the rail vehicle while traveling.
  • the three different types of noise are respectively the first part of the noise between 4000Hz and 5000Hz parallel parts.
  • This type of noise is always present in the motor running state, which is the constant frequency noise of the motor; Is the noise that intersects with the first type of noise, which is generated by the acceleration of the motor rotation.
  • the subjective feeling during the start or braking of the rail vehicle is the howling; the third is between 0 and 1000 Hz.
  • the noise component, the noise frequency of this part is relatively low, is a combination of mechanical noise and other electrical noise, and there are more rough components in the subjective feeling.
  • the three technical means are used to construct the subharmonic sound signal for sound compensation, output the masking sound signal according to the masking effect, and reverse phase cancel the low frequency noise output.
  • the noise components of rail vehicles that are uncomfortable are high-frequency signal noise and low-frequency signal noise, especially high-frequency motor noise. It is difficult to remove the influence of high-frequency motor noise by traditional means.
  • the main cause of this phenomenon is sound signal.
  • the high-frequency noise component is too high, and the proportion of the high-frequency component in the composition of the entire sound signal reflects the harshness of the sound signal, that is, the sharpness. If you want to change the sharpness, you must change the high-frequency noise.
  • the ratio of the signal in the whole component, this change can be divided into two types, active change and passive change.
  • the active change is to change the component of the high-frequency noise signal itself. To make the sharpness a little, you need to increase the high frequency.
  • the harmonic itself is one time the fraction of the fundamental frequency component, and the frequency is smaller than the fundamental frequency.
  • the harmonic is constructed, the high-frequency component of the entire sound signal does not change, but other components increase, so that the proportion of the high-frequency component It becomes smaller, so that the sharpness is reduced and the subjective feeling is improved.
  • block 1 shows the composition principle of vocal music in musical acoustics.
  • the sound is generally composed of two parts, the fundamental frequency component and the harmonic component, which can be simply understood as the fundamental frequency to determine the pitch.
  • the harmonic component determines the tone.
  • the pitch corresponds to the loudness (sound level), and the tone corresponds to the comfort level. If the frequency of the fundamental frequency is X (Hz), the frequency of the harmonic is AX(Hz), BX(Hz). , CX (Hz), DX (Hz) and so on.
  • A, B, C, and D are all positive integers, that is, the harmonic frequency is an integer multiple of the fundamental frequency.
  • Block 2 simply shows the principle of subharmonic structure, which is equivalent to the vocal composition principle. The difference is that the integer multiple becomes one time of the whole fraction. The length change indicates the difference of the subharmonic sound pressure level, which corresponds to the signal amplitude. The difference is that when the amplitude of the subharmonic sound signal decreases linearly in sequence, the noise reduction effect is the best.
  • the same fundamental frequency has many different harmonic components, and the same is true for subharmonics.
  • a harmonic can have many different orders. In music acoustics, the fundamental frequency contains the most concordant of the components of the second and fourth harmonics. In the new energy vehicle, the improvement of sound quality is improved by verifying the harmony composition including the fourth harmonic.
  • the A frequency of the standard small print 1 group is 440 Hz
  • the high octave small character 2 group A frequency is 880 Hz
  • the pure octave frequency ratio is 2:1, that is, in the pure play
  • the vibration of the two strings, the treble will be coincident with the bass every time it is shaken twice, that is, if the subharmonic principle is used here, the fundamental frequency signal will always be used once every 2 vibrations. It coincides with the subharmonic sound signal, and the coincidence rate is so high that it sounds harmonious.
  • the basis in physics is that the higher the stability ratio in harmonic energy, the more synergistic.
  • the intervals of complete harmony in music theory include pure one, pure eight, pure five, pure four, and the frequency ratio of other intervals: small second degree 16:15, major second degree 9:8, small third degree 6:5, major third degree 5: 4, pure four degrees 4:3, increase four degrees 45:32, minus five degrees 64:45, pure five degrees 3:2, small sixth degree 8:5, big sixth degree 5:3, small seven degrees 16:9 Big seventh is 5:27.
  • the frequency component of the noise signal causing discomfort is first determined.
  • the noise signal generated by the motor generally includes a high frequency noise signal of the motor, corresponding to music acoustics.
  • the harmonic composition is used to construct the interval of the subharmonic, and generate four subharmonics, three subharmonics and two subharmonics. For example, if the fundamental frequency signal is 1000 Hz, the fourth harmonic of the octave is generated.
  • the harmonic components of the corresponding pitch changes are respectively generated, and the pitch changes are generally three types: constant, linear decrease, and linear increase. In this way, the octave can generate 9 different harmony components.
  • the fourth harmonic is selected, and the pitch is linearly reduced. Combine into an optimal sound signal.
  • the other low-frequency noise signals in the noise signal need to be collected and analyzed to determine the amplitude and phase of the low-frequency noise.
  • the amplitude and phase of the low-frequency noise signals will be the same.
  • the subharmonic sound signal is inverted, and a part of the low frequency signal can be actively cancelled.
  • the high-frequency noise signal of the motor generated in public transportation such as rail vehicles, and this method is in line with people's common sense and is easy to be accepted.
  • the high-frequency noise signal of the motor is generated when the rail vehicle starts or brakes, and this time it is when the rail vehicle enters or leaves the station.
  • the low-frequency sound signal with high sound pressure level can well mask the high-frequency sound signal of low sound pressure level, so this period masks the high-frequency noise of the motor according to the "masking effect”. It can take the form of a voice broadcast site.
  • voice broadcast is that it is necessary to increase the sound intensity as much as possible, that is, the sound pressure level will be high, which helps to achieve high frequency masking without causing passengers' irritability.
  • the noise processing method of a rail vehicle provided by the present application can be applied to rail transit such as rail vehicles, and can also be used for new energy cars, such as new energy buses or motor-driven facilities.
  • the noise processing method of a rail vehicle provided by the present application is applicable to the improvement, change or reduction of the quality of all acoustic environments.
  • the noise processing method of a rail vehicle provided by the present application is applicable to a noise signal of a frequency band used.
  • the noise processing device 50 includes:
  • the noise signal acquisition module 501 is configured to acquire a noise signal of the rail vehicle, and analyze the noise signal to obtain a frequency of the noise signal;
  • a location obtaining module 511 configured to acquire a location where the rail vehicle runs
  • the subharmonic generation module 502 is configured to generate and output a harmonic according to the frequency of the high frequency noise signal when detecting that the rail vehicle is in the inter-station operation process, and the noise signal includes a high frequency noise signal having a frequency greater than the first preset frequency Wave sound signal;
  • a masking signal output module 510 configured to output a corresponding masking sound signal according to a current location of the rail vehicle when the rail vehicle is in the inbound or outbound process, and the frequency sound intensity of the masking sound signal is higher than The sound of high frequency noise signals is mildly intense.
  • the noise processing device 50 further includes a sound signal acquiring module 503 for collecting a sound signal inside the vehicle and acquiring the frequency of the sound signal.
  • the noise signal acquisition module 501 is configured to perform spectrum analysis on the sound signal to obtain a frequency of the sound signal, and compare the frequency of the sound signal with a preset frequency to obtain a frequency of the noise signal.
  • the noise processing device 50 further includes an inverse transform module 506;
  • the inverse transform module 506 When detecting that the noise signal includes a low frequency noise signal having a frequency lower than the second preset frequency, the inverse transform module 506 outputs a low frequency sound signal having the same amplitude and opposite phase as the low frequency noise signal;
  • the process of the inverse transform module 506 outputting the low frequency sound signal having the same amplitude and opposite phase as the low frequency noise signal is specifically:
  • the subharmonic sound signal having the same amplitude and phase as the low frequency noise signal is inversely phase-converted and output;
  • the low frequency sound signal having the same amplitude and opposite phase as the low frequency noise signal is generated and output, wherein the second preset frequency is smaller than the first preset frequency.
  • the noise processing device 50 further includes a calculation module 504 and a sound signal selection module 505;
  • the sound signal acquiring module 503 respectively collects a plurality of sets of sound signals after outputting the multi-component harmonic sound signals, and the calculating module 504 obtains the evaluation parameters of each set of sound signals, wherein the evaluation parameters include a loudness value, a sharpness value, a jitter value, and The roughness value, each component harmonic sound signal includes a subharmonic signal or at least two different order subharmonic signals; the sound signal selection module 505 is configured to calculate a noise fraction of each set of sound signals according to the evaluation parameter. And output a component of the harmonic signal corresponding to the lowest noise score.
  • Another embodiment of the present application provides a computer readable storage medium having a computer program stored thereon, the computer program being executed by a processor to implement a noise processing method of a rail vehicle in the above embodiment, to avoid Repeat, no longer repeat them here.
  • the computer program when executed by the processor, the functions of the modules/units in the noise processing device of the rail vehicle in the above embodiment are implemented. To avoid repetition, details are not described herein again.
  • Figure 16 is a schematic diagram of a terminal device in this embodiment.
  • the terminal device 6 includes a processor 60, a memory 61, and a computer program 62 stored in the memory 61 and operable on the processor 60.
  • the processor 60 executes the computer program 62 to implement the various steps of the noise processing method of the rail vehicle in the above embodiment, such as steps S101, S102, and S103 shown in FIG.
  • the processor 60 executes the computer program 62
  • the functions of the modules/units of the noise processing device of the rail vehicle in the above embodiment are implemented, as shown in FIG. 15, the noise signal acquisition module 501, the subharmonic generation module 502, and the sound signal acquisition module. 503.
  • computer program 62 can be partitioned into one or more modules/units, one or more modules/units being stored in memory 61 and executed by processor 60 to complete the application.
  • the one or more modules/units may be a series of computer program instructions that are capable of performing a particular function, which is used to describe the execution of computer program 62 in terminal device 6.
  • computer program 62 can be partitioned into a synchronization module, a summary module, an acquisition module, a return module (a module in a virtual device).
  • the terminal device 6 can be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the terminal device may include, but is not limited to, the processor 60, the memory 61. It will be understood by those skilled in the art that FIG. 16 is only an example of the terminal device 6, and does not constitute a limitation of the terminal device 6, and may include more or less components than those illustrated, or combine some components or different components.
  • the terminal device may further include an input/output device, a network access device, a bus, and the like.
  • the processor 60 may be a central processing unit (CPU), or may be another general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (Application Specific Integrated Circuit). , referred to as ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 61 may be an internal storage unit of the terminal device 6, such as a hard disk or a memory of the terminal device 6.
  • the memory 61 may also be an external storage device of the terminal device 6, such as a plug-in hard disk equipped with the terminal device 6, a smart memory card (SMC), and a Secure Digital (SD) card. Flash card, etc.
  • the memory 61 may also include both an internal storage unit of the terminal device 6 and an external storage device.
  • the memory 61 is used to store computer programs and other programs and data required by the terminal devices.
  • the memory 61 can also be used to temporarily store data that has been output or is about to be output.
  • each functional unit and module in the foregoing system may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit, and the integrated unit may be implemented by hardware.
  • Formal implementation can also be implemented in the form of software functional units.
  • the specific names of the respective functional units and modules are only for the purpose of facilitating mutual differentiation, and are not intended to limit the scope of protection of the present application.
  • the disclosed device/terminal device and method may be implemented in other manners.
  • the device/terminal device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units.
  • components may be combined or integrated into another system, or some features may be omitted or not performed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated modules/units if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium. Based on such understanding, the present application implements all or part of the processes in the foregoing embodiments, and may also be completed by a computer program to instruct related hardware.
  • the computer program may be stored in a computer readable storage medium. The steps of the various method embodiments described above may be implemented when the program is executed by the processor.
  • the computer program comprises computer program code, which may be in the form of source code, object code form, executable file or some intermediate form.
  • the computer readable medium may include any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM). , random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunications signals, and software distribution media. It should be noted that the content contained in the computer readable medium may be appropriately increased or decreased according to the requirements of legislation and patent practice in a jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, computer readable media It does not include electrical carrier signals and telecommunication signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

一种轨道车辆的噪音处理方法、装置、设备及存储介质,噪音处理方法包括:获取轨道车辆的噪音信号和轨道车辆运行的地点,并对噪音信号进行分析以获取噪音信号的频率(S101);当检测到轨道车辆处于站间运行过程,并且噪音信号包括频率大于第一预设频率的高频噪音信号时,根据高频噪音信号的频率生成并输出分谐波声音信号(S102);当检测到轨道车辆处于进站过程或者离站过程时输出相应的掩蔽声音信号,掩蔽声音信号的声音强度高于高频噪音信号的声音强度(S103)。实现了根据轨道车辆处于不同的地点采用不同的消除噪音的方式,营造了良好的声音环境,进而提高乘客乘车的舒适度。

Description

轨道车辆的噪音处理方法、装置、设备及存储介质
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2017年8月18日提交的、申请名称为“轨道车辆的噪音处理方法、装置、设备及存储介质”的、中国专利申请号“201710711342.8”的优先权。
技术领域
本申请涉及消声技术领域,尤其涉及一种轨道车辆的噪音处理方法、装置、设备及存储介质。
背景技术
跨座式单轨车辆作为一种新型的公共交通工具,给城市拥堵难题提供了一种行之有效的解决方案。跨座式单轨车辆被誉为是“治堵神器”,与以往的轨道交通相比,展现了诸多优势,具有造价小、建设周期短、空间占用少以及噪音污染小等优点。
对于以往传统的轨道交通工具的噪音处理方法,一般为设计前期的结构优化和后期的声学包装处理。声学包装主要是指对噪音源进行吸隔声包裹处理,在主要的噪音传递路径上用阻尼材料进行吸隔声处理等。
相关技术在噪音处理方面已经取得了很好的效果,但对于轨道车辆中的电机产生的这种特殊噪音还是效果不理想。一方面,电机的噪音是一种噪音综合的结果,包括机械噪音、电磁噪音以及空气噪音,尤其是电机的高频噪音,有很强的穿透性,主观感受上更是令人烦躁无比,甚至会引起生理不适,例如头晕、呕吐等;另一方面由于电机的特殊性,考虑到散热问题,不能过多使用吸隔声材料。
相关的技术方案中降噪的方式主要有两种,一种降噪方式是被动降噪,也叫做物理降噪,该种降噪方式包括结构优化、消除共振以及通过阻尼材料进行吸隔声等。另外一种降噪方式是有源降噪,产生与噪音信号相位相反的声信号,对低频的电机噪音进行相位抵消。
传统的吸隔声物理降噪技术现在已成为通用技术,主要指采用隔音、吸音、消音材料达到降低噪音的效果。但物理降噪受电机散热指标的制约,只能有限采用,对于电机的高频噪音还是达不到理想的要求。另一方面,由于电机噪音的频率很高,波长很短,所以很难去捕捉它的相位来生成反相声波来主动抵消,即使能够捕捉,也要不断去调整搜索步长, 这样循环次数会非常多,运算量很大,算法实现起来较为困难,即使算法能够实现,对硬件的要求也会很高,成本高昂。
发明内容
本申请的目的在于提供一种轨道车辆的噪音处理方法、装置、设备及存储介质,能够实现对电机的高频噪音的降噪,对硬件设备的要求不高并且成本较低。
本申请是这样实现的,本申请第一方面提供一种轨道车辆的噪音处理方法,所述噪音处理方法包括:
获取所述轨道车辆的噪音信号和所述轨道车辆运行的地点,并对所述噪音信号进行分析以获取所述噪音信号的频率;
当检测到所述轨道车辆处于站间运行过程,并且所述噪音信号包括频率大于第一预设频率的高频噪音信号时,根据所述高频噪音信号的频率生成并输出分谐波声音信号;
当检测到所述轨道车辆处于进站过程或者离站过程时,输出相应的掩蔽声音信号,所述掩蔽声音信号的声音强度高于所述高频噪音信号的声音强度。
本申请第二方面提供一种轨道车辆的噪音处理装置,所述噪音处理装置包括:
噪音信号获取模块,用于获取所述轨道车辆的噪音信号,并对所述噪音信号进行分析以获取所述噪音信号的频率;
位置获取模块,用于获取所述轨道车辆运行的地点;
分谐波生成模块,用于当检测到所述轨道车辆处于站间运行过程,并且所述噪音信号包括频率大于第一预设频率的高频噪音信号时,根据所述高频噪音信号的频率生成并输出分谐波声音信号;
掩蔽信号输出模块,用于当检测到所述轨道车辆处于进站过程或者离站过程时,输出相应的掩蔽声音信号,所述掩蔽声音信号的频率声音强度高于所述高频噪音信号的声音强度。
本申请第三方面提供一种终端设备,其特征在于,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如本申请第一方面所述方法的步骤。
本申请第四方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如本申请第一方面所述方法的步骤。
本申请实施例提供一种轨道车辆的噪音处理方法、装置、设备及存储介质,获取轨道车辆的噪音信号和轨道车辆运行的地点,当轨道车辆处于站间运行过程,并且包括高频噪 音信号时,根据高频噪音信号的频率生成并输出分谐波声音信号,当输出所构造得分谐波声音信号以后,整个声音信号中的噪音高频噪音信号的成分没有变化,但其他频率信号的成分增加,使得高频噪音信号成分的比例变小,从而使得噪音信号的尖锐度减小;当检测到轨道车辆处于进站过程或者离站过程时,输出相应的掩蔽声音信号,通过掩蔽声音信号对噪音信号进行掩蔽。由此,实现了根据轨道车辆处于不同的地点,采用不同的消除噪音的方式,进而营造了一个良好的车内声音环境,进而提高乘客乘车的舒适度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一种实施例提供的一种轨道车辆的噪音处理方法的流程图;
图2是本申请一种实施例提供的一种轨道车辆的噪音处理方法中步骤S101的具体流程图;
图3是图1提供的一种轨道车辆的噪音处理方法中经过实验获得的不同频率声音信号的绝对闻阈示意图;
图4是本申请一种实施例提供的一种轨道车辆的噪音处理方法中的恒频啸叫信号波形图;
图5是本申请一种实施例提供的一种轨道车辆的噪音处理方法中的变频啸叫信号波形图;
图6是本申请另一种实施例提供的一种轨道车辆的噪音处理方法的流程图;
图7是本申请另一种实施例提供的一种轨道车辆的噪音处理方法的流程图;
图8是图7提供的一种轨道车辆的噪音处理方法中步骤S302的具体流程图;
图9是本申请一种实施例提供的一种轨道车辆内的噪音信号分布示意图;
图10是本申请另一种实施例提供的一种轨道车辆的噪音处理方法中的声音信号的组成结构示意图;
图11是本申请另一种实施例提供的一种轨道车辆的噪音处理方法的降噪过程示意图。
图12是本申请另一种实施例提供的一种轨道车辆的噪音处理装置的结构示意图;
图13是本申请另一种实施例提供的一种轨道车辆的噪音处理装置的结构示意图;
图14是本申请另一种实施例提供的一种轨道车辆的噪音处理装置的结构示意图;
图15是本申请另一种实施例提供的终端设备的结构示意图;
图16是本申请另一种实施例提供的终端设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
为了说明本申请的技术方案,下面通过具体实施例来进行说明。
本申请实施例提供一种轨道车辆内部的噪音处理方法,如图1所示,该噪音处理方法包括:
步骤S101.获取轨道车辆的噪音信号和轨道车辆运行的地点,并对噪音信号进行分析以获取噪音信号的频率。
在步骤S101中,获取轨道车辆运行的地点可以通过轨道车辆上的定位装置进行获取,获取轨道车辆的噪音信号可以通过采集轨道车辆车厢内的声音信号,再对声音信号进行分析获得,作为步骤S101中获取轨道车辆的噪音信号的一种实施方式,如图2所示,可以采用步骤S1011至步骤S1012获取噪音信号的频率:
步骤S1011.采集轨道车辆的声音信号;
在步骤S1011中,可以通过声音采集器件采集声音信号,例如,通过麦克风在预设时间内对车内声音信号进行采样。
步骤S1012.对声音信号进行频谱分析获取声音信号的频率,并将声音信号的频率与预设频率进行对比以获取噪音信号的频率。
在步骤S1012中,例如,将采集到的环境声音信号经过A/D转换,将声音信号转换为数字信号,并由数字信号处理器(DigitalSignalProcessor,简称为:DSP处理器)和具有数值分析功能的嵌入式软件进行频谱分析获取声音信号的频率,再根据预设频率分离出噪音信号,噪音信号可以分为高频噪音信号和低频噪音信号,检测到频率为大于第一预设频率的声音信号为高频噪音信号,第一预设频率可以为3KHZ,检测到频率为小于第二预设频率的声音信号为低频噪音信号,第二预设频率可以为1KHZ。
步骤S102.当检测到轨道车辆处于站间运行过程,并且噪音信号包括频率大于第一预设频率的高频噪音信号时,根据高频噪音信号的频率生成并输出分谐波声音信号。
在步骤S102中,轨道车辆的运行过程包括离站过程、站间运行过程以及进站过程,离站过程指轨道车辆的起步加速阶段,速度逐渐增大,可以设定轨道车辆加速运行阶段或者 离开车站的预设距离为离站过程,站间运行过程是指轨道车辆在两个车站之间的运行状态,可以近似视为以某一预设速度持续运行,也可以设定运行在车站之间的预设距离为站间运行过程,进站过程指轨道车辆的刹车减速阶段,速度逐渐减小,可以设定轨道车辆减速运行阶段或者进入车站的预设距离为进站过程。
当检测到轨道车辆处于站间运行过程,并且当前处理的噪音信号包括高频噪音信号时,获取该高频噪音信号的频率组成,对其中的某个频率的噪音信号进行降噪处理。具体的降噪处理方法为在原有噪音信号的基础上输出分谐波声音信号,其中分谐波声音信号小于噪声信号的频率。分谐波就是某一个频率的分数谐波,比如噪声信号的频率为3000Hz,获取1500Hz的信号,其频率是噪声信号的1/2,这就是它的分数谐波,两者的频率比是2:1,可以构成纯八度音程,属于协和音程,即听起来比较悦耳、融合的声音。输出的分谐波声音信号可以为多个,例如同时输出频率是噪声信号的1/2、1/4、1/8等多阶次分谐波,例如,基频信号频率为1000Hz,构造的二次分谐波的频率为500Hz和250Hz,构造的的三次分谐波的频率为500Hz、250Hz、125Hz。对于纯八度音程分谐波的频率为基频信号频率的整数分之一,还可以构造频率为基频信号频率非整数分之一的分谐波信号,例如根据其他音程的频率比进行构造,例如小二度16:15、大二度9:8、小三度6:5等等。
步骤S103.当检测到轨道车辆处于进站过程或者离站过程时,输出相应的掩蔽声音信号,掩蔽声音信号的声音强度高于高频噪音信号的声音强度。
在步骤S103中,当检测到轨道车辆处于进站过程或者离站过程时,掩蔽声音信号,可以根据“掩蔽效应”输出声音强度高于高频噪音信号的声音强度的低频声音信号。其中,“掩蔽效应”可以视为用一种声音去掩盖掉另一种声音,当一个较强的声音将一个较弱的声音隐蔽使较弱的声音不能听到的现象称为“掩蔽效应”。当同时聆听两个或者多个声音时,听觉系统会产生所谓的“掩蔽效应”,即每个纯音都会变得更听不清或者听不清,或者说这些纯音被部分地或完全的“掩蔽”掉,如图3所示,实验结论表明,频率为3000-5000Hz的绝对闻阈最低,比其余高频声音信号和低频声音信号的闻阈小的多,这是由于人的外耳道会在4000Hz时产生共振,所以高频声音信号产生的声音能很容易的就掩蔽掉低频声音信号产生的声音,并且高频声音信号产生的声音不需要很高的声压级。但如果想用相同声压级的低频声音信号产生的声音去掩蔽高频声音信号产生的声音时,就很难实现。从图3中可以看出,还有一种情况是采用声强级很大的低频声音信号产生的声音也能很好的去掩蔽掉声强级很小的高频声音信号产生的声音。由于存在上述掩蔽关系,通过对轨道车辆上的噪音频率段能量进行了分析,结果表明声强级很小的高频声音信号的能量确实比声强级大的低频声音信号的能量小的多,所以可以用声强级大的低频声音信号产生的声音去掩蔽声 强级小的高频声音信号产生的声音。
在步骤S103中,当播放掩蔽声音对高频噪音信号进行掩蔽时,根据轨道车辆的运行地点的不同,播放不同的语音,例如,当轨道车辆启动时时,可以通过语音预告下一站的站名对高频噪音信号进行掩蔽,当轨道车辆即将到站刹车时时,可以通过语音播放即将到站的站名对高频噪音信号进行掩蔽,当轨道车辆在运行过程时检测到高频噪音信号时,可以通过语音播放舒缓的音乐对高频噪音信号进行掩蔽。
在步骤S102和步骤S103中,进一步的,当检测到所述轨道车辆处于站间运行过程,并且所述噪音信号包括频率大于第一预设频率的高频噪音信号时以及当检测到轨道车辆处于进站过程或者离站过程,并且噪音信号包括频率大于第一预设频率的高频噪音信号时,可以同时输出相应的掩蔽声音信号并根据高频噪音信号的频率在掩蔽声音信号中生成分谐波声音信号,例如,掩蔽声音信号包括播音和背景音,其中播音用于对低频噪音信号进行掩蔽,背景音为高频噪音信号的分谐波声音信号,用于与高频噪音信号形成和声,即通过同时输出分谐波声音信号和掩蔽声音信号对轨道车辆的噪音信号进行消除。
本申请实施例提供一种轨道车辆的噪音处理方法,获取轨道车辆的噪音信号和轨道车辆运行的地点,当轨道车辆处于站间运行过程,并且包括高频噪音信号时,根据高频噪音信号的频率生成并输出分谐波声音信号,当输出所构造得分谐波声音信号以后,整个声音信号中的噪音高频噪音信号的成分没有变化,但其他频率信号的成分增加,使得高频噪音信号成分的比例变小,从而使得噪音信号的尖锐度减小。当检测到轨道车辆处于进站过程或者离站过程时,输出相应的掩蔽声音信号,通过掩蔽声音信号对噪音信号进行掩蔽。由此,实现了根据轨道车辆处于不同的地点采用不同的消除噪音的方式,进而营造了一个良好的车内声音环境,进而提高乘客乘车的舒适度。
对于上述实施例中的步骤S102,作为一种实施方式,根据高频噪音信号的频率生成并输出分谐波声音信号,包括:
当高频噪音信号的频率为恒定值时,生成并输出分谐波声音信号为y=asin(2×pi×A×f×t),其中,a为分谐波声音信号的振幅,A为分谐波系数,f为高频噪音信号的频率,t为时间。
作为步骤S102的另一种实施方式,根据高频噪音信号的频率生成并输出分谐波声音信号,包括:
当高频噪音信号的频率为线性渐变值时,生成并输出分谐波声音信号为Y=Ky+b,其中,y=asin(2×pi×A×f×t),a为分谐波声音信号的振幅,A为分谐波系数,f为高频噪音 信号的频率,t为时间,b为常数。
上述两种实施方式分别对应恒频噪音信号和变频噪音信号,例如,通过对新能源车的电机高频噪音的研究,当电机转速达到一定的值时,会产生啸叫声,这种啸叫声的频率总体上可以分为两类,一类是频率不变的,称之为恒频啸叫,另一类是变频的,称之为变频啸叫,分别提取恒频啸叫信号和变频啸叫信号,分别对应于图4和图5,从图4和图5中就可以直观显示了恒频啸叫和变频啸叫,即在产生分谐波声音信号的时候发生函数是不一样的,所以要区分对待。举例说明,如图4可知,电机啸叫的恒定频率为f=5050Hz,假设此信号为正弦信号,通过研究发现,对于这一频率的电机信号构造,构造八度音程谐波成分时消除噪音的效果最好,于是生成频率为f/2=2525Hz的正弦分谐波声音信号,恒频时的发声函数为y=asin(2*pi*A*f*t),K表示渐变频率的斜率,a表示分谐波振幅,A表示分谐波系数,f表示噪音信号的频率,t表示时间;如图4所示,当电机啸叫是一个从3500Hz到4300Hz线性递增的频率,那么此时的信号发生函数也是一个线性渐变的函数,变频时的发声函数应该为Y=Ky+b,y=asin(2*pi*A*f*t)。
需要说明的是,在实际的操作中,不仅仅考虑频率关系,还需要考虑分谐波成分的阶次和振幅变化,例如分谐波声音信号的阶次可以是二次分谐波、三次分谐波、四次分谐波等等。
本申请另一种实施例提供一种轨道车辆的噪音处理方法,如图6所示,该噪音处理方法包括:
步骤S201.获取轨道车辆的噪音信号,并对噪音信号进行分析以获取噪音信号的频率。
该步骤与步骤S101相同,具体可参见步骤S101的相关描述,在此不再赘述。
步骤S202.当检测到噪音信号包括频率大于第一预设频率的高频噪音信号时,根据噪音信号的频率生成分谐波声音信号,并输出分谐波声音信号以及掩蔽声音信号。
该步骤与步骤S102相同,具体可参见步骤S102的相关描述,在此不再赘述。
步骤S203.根据高频噪音信号的频率依次生成并输出多组分谐波信号,每组分谐波声音信号包括一个分谐波信号或者至少两个阶次不同的分谐波信号。
在步骤S203中,可以生成多组分谐波信号,以测试输出不同分谐波后的声音信号的效果,例如同时输出频率是噪声信号的1/2、1/4、1/8等多阶次分谐波,基频信号频率为1000Hz,可以先输出频率为500Hz的分谐波信号后进行采集声音测试,再输出频率为500Hz和250Hz的二次分谐波信号后进行测试,然后再输出三次分谐波的频率为500Hz、250Hz、125Hz的三次分谐波信号后进行测试。
步骤S204.采集输出每组分谐波信号后的声音信号,获取每组声音信号的评价参数,其中,评价参数包括响度值、尖锐度值、抖动度值以及粗糙度值。
在步骤S204中,在输出每组分谐波声音信号后,对轨道车辆的声音信号进行再次采集,并计算每组声音信号的评价参数,评价参数包括响度值、尖锐度值、抖动度值以及粗糙度值,每个评价参数的计算模型具体为:
响度,反映人耳对声音强弱的主观感受程度,能够比较准确的反映声音的响亮程度,响度的单位是sone,对响度的计算采用Zwicker法(ISO532B)计算模型:
N'=0.08(E rq/E 0) 0.23[(0.5+0.5E/E rq)-1](sone G/Bark)
上式中E rq是绝对听阈下的激励,E 0是参考基准声强下的激励,E是被计算声音所对应的激励,G是由临界频带声级计计算而得到的响度值。
在0至24Bark域上对特征响度进行积分,即可得到总响度N:
Figure PCTCN2018090100-appb-000001
尖锐度,反映声音信号的刺耳程度,可以用来描述声音成分中高频的比例大小,尖锐度的单位是acum,尖锐度的计算没有国际标准,经过前辈学者的研究发现,Zwicker提出的计算模型,较为符合我们的听觉特性,故选择Zwicker的计算模型:
Figure PCTCN2018090100-appb-000002
上式中k是加权系数,k=1,N'(z)是临界频带的特征响度,Z是临界频带Bark尺度,N是总响度,g(z)是Zwicker依据不同临界频带的加权系数,表达式为
Figure PCTCN2018090100-appb-000003
抖动度,反映人耳对声音响亮变化程度的主观感受,可以用来描述声音成分中的低频成分,一般是对小于20Hz的声音信号进行评价,抖动度单位是vacil,抖动度没有国际标准,依然采用Zwicker的计算模型:
Figure PCTCN2018090100-appb-000004
上式中,F是抖动度;f mod是调制频率,单位是kHz;f 0是调制基频(f 0=4Hz);ΔL E是临界频带里声压的变化量,计算公式是:
Figure PCTCN2018090100-appb-000005
式中N' max(z)是特征响度的最大值,N' mix(z)是特征响度的最小值。
粗糙度,反映声音信号调制的程度、频率分布和幅度大小等特征,主要对20—200Hz的频率进行评估,粗糙度的单位是asper,粗糙度计算模型没有统一的标准,我们采用如下的计算模型:
Figure PCTCN2018090100-appb-000006
上式中,R是粗糙度;f mod是调制频率,单位是kHz;ΔL E是临界频带里声压的变化量,计算方法与上面一样。
步骤S205.根据评价参数计算输出每组声音信号的噪音分数,并输出最低噪音分数所对应的一组分谐波声音信号。
在步骤S205中,通过上述步骤S204中各评价参数的计算模型的计算,分别可以获取到输出分谐波声音信号后的声音信号的响度值、尖锐度值、抖动度值以及粗糙度值,当响度值达到预设值时,根据评价分数计算公式进行计算,声音信号的评价分数Score,其中Score=ScoreV1×rateV1+ScoreV2×rateV2+ScoreV3×rateV3,ScoreV为每个评价参数的值,rateV为每个评价参数的权重值。尖锐度值、抖动度值以及粗糙度值分别采用V1、V2以及V3标识,在本实施例中主要是对声音的尖锐度进行消除,可以设置尖锐度值的rateV1为0.80,其余评价分数值的权重值为0.1,应当说明的是,可以根据不同的需求设置不同的权重值。
本申请实施例通过对输出每组分谐波声音信号后的声音信号进行再采样,获取每组声音信号的评价参数,最终获取到评价参数最高的分谐波声音信号,即对输出不同分谐波信号后的声音信号进行测评,最终输出声音效果最好的分谐波信号,提高乘客乘车的舒适度。
本申请另一种实施例提供一种轨道车辆的噪音处理方法,如图7所示,该噪音处理方法包括:
步骤S301.获取轨道车辆的噪音信号,并对噪音信号进行分析以获取噪音信号的频率。
该步骤与步骤S101相同,具体可参见步骤S101的相关描述,在此不再赘述。
步骤S302.当检测到噪音信号包括频率小于第二预设频率的低频噪音信号时,输出与低频噪音信号的幅度相同以及相位相反的低频声音信号。
如图8所示,在步骤S302中,输出与低频噪音信号的幅度相同以及相位相反的低频声音信号,包括:
步骤S3021.获取低频噪音信号的幅度和相位。
步骤S3022.判断是否存在与低频噪音信号的幅度和相位相同的分谐波声音信号,是,则执行步骤S3023,否,则执行步骤S3024。
步骤S3023.将与低频噪音信号的幅度和相位相同的分谐波声音信号进行反相位变换后输出。
步骤S3024.生成与低频噪音信号的幅度相同以及相位相反的低频声音信号后输出,其中,所述第二预设频率小于所述第一预设频率。
在上述步骤S3021至S3024中,当检测到噪音信号中包括低于1KHZ的低频噪音信号时,可以采用相位相消技术进行降噪,相位相消技术也叫做ANC(activity noise control)技术,相位相消技术的工作原理是采集低频噪音信号,分析低频噪音信号的相位和振幅,然后在已生成的分谐波声音信号中选取与低频噪音信号相位相同并且振幅相等的分谐波声音信号进行反相位变换,去抵消原有低频噪音信号,从而达到降噪的目的。
本申请实施例中采用了三种技术手段,三种技术手段互相配合,可以对轨道车辆在行进中的三种不同类型的噪声进行处理。如图9所述,三种不同类型的噪声分别为第一种是4000Hz到5000Hz之间平行部分的噪声,这类噪声在电机运转状态下是一直存在的,就是电机恒频噪声;第二种是与第一种噪声相交,倾斜部分的噪声,这一部分是由电机转动的加速度产生的,在轨道车辆启动或者制动过程中的主观感受为啸叫声;第三种是0至1000Hz之间的噪声成分,这一部分的噪声频率相对较低,是机械噪声和其它电器噪声的综合,主观感受中粗糙感成分较多。三种技术手段为构造分谐波声音信号进行声音补偿、根据掩蔽效应输出掩蔽声音信号和对低频噪音输出进行反相位相消,通过以上三种方式的相互配合,改善了轨道车辆内的声音环境,提升了乘客的舒适度。
下面以对轨道车辆的噪音进行处理为例,对本申请的技术构思进行详细说明:
轨道车辆让人感觉不舒服的噪音成分有高频信号噪音和低频信号噪音,尤其是高频电机噪音,利用传统手段很难去除高频电机噪音的影响,造成这一现象的主要原因是声音信号中高频的噪音成分过高,高频成分在整个声音信号的成分中的比例反映了声音信号的刺 耳程度,也就是尖锐度的大小,如果想改变尖锐度的大小,就要去改变高频噪音信号在整个成分中的比例,这种改变可以分为两种,主动改变和被动改变,主动改变就是改变高频噪音信号自身的成分的多少,想要使尖锐度大一点,就需要增加高频成分,想要使尖锐度小一点,就需要减少高频成分。被动改变是改变除了高频成分以外的其它频率成分,想要使尖锐度大一点,就需要减少其它频率成分,想要使尖锐度小一点,就需要增加其它频率成分。但是当一款新能源车成型以后,电机等相关结构也就固定了,所以新能源车所产生的噪音频率也是固定的,没有办法去减少电机的高频噪音信号。所以只能采用被动改变的方法,即增加其它频率成分的比例,于是这就引出我们的构造方法:分谐波构造,而且上面的分析也为分谐波构造的正确性提供了理论依据,分谐波本身就是基频成分的分数之一倍,频率是比基频小的,当构造分谐波以后,整个声音信号的高频成分没有变化,但其他的成分增加,使得高频成分的比例变小,从而使得尖锐度减小,主观感受提高。
因为轨道车辆中的电机高频噪音会引起人们很大的不适感,所以只是对尖锐度的改善做了举例说明,若在其他的声环境中,可能尖锐度就不是主要的因素了,需要对其他的参数进行处理,方法类似,此处不进行一一举例说明。
下面从音乐声学的角度去解读分谐波构造的机制和一般规律:
如图10所示,框图1中显示了在音乐声学中声乐的组成原理,声音一般都是由两部分组成的,基频成分和谐波成分,可以简单的理解为基频决定了音高,谐波成分决定了音色,音高对应于响度(声强级),音色对应于舒适程度,若基频的频率为X(Hz),则谐波的频率为AX(Hz)、BX(Hz)、CX(Hz)、DX(Hz)等等。
其中A、B、C、D都为正整数也就是说谐波频率是基频频率整数倍。框图2中简单的显示了分谐波构造的原理,等同于声乐组成原理,不同的是整数倍变成了整分数之一倍,长度变化表示分谐波声压级的不同,对应于信号幅度的不同,当分谐波声音信号的幅度依次线性减小时,降噪的效果最好。同一基频有很多不同的谐波组成,分谐波也是如此,而一个谐波又可以有很多不同阶次的组成,在音乐声学中,基频包含二次和四次谐波的成分最协和,在新能源车中通过验证包含四次谐波的和声组成对提高声品质改善最大。
在音乐声学中,标准音小字1组的A频率是440Hz,高八度的小字2组A频率是880Hz,可以看出纯八度的频率比是2:1,也就是说,在弹奏纯八度时,两个音弦的震动,高音每震动2次,就会有一次跟低音是重合的,即此处若用分谐波原理来解释:基频信号每振动2次总会有一次与分谐波声音信号重合,重合率如此之高,所以听起来和谐。在物理学中的依据是,谐波能量中稳合比例越高,则越协和。乐理中完全协和的音程包括纯一、纯八、纯五、纯四,其他音程的频率比:小二度16:15,大二度9:8,小三度6:5,大三度5:4,纯 四度4:3,增四度45:32,减五度64:45,纯五度3:2,小六度8:5,大六度5:3,小七度16:9,大七度5:27。
基于以上的心理声学和音乐声学的相关知识,就可以进行分谐波构造了,而且可以保证科学性和正确性。如图11所示,在进行一个分谐波构造时首先确定引起不适的噪音信号的频率组成,在轨道车辆处于工作状态下,其所产生的噪音信号一般包括电机高频噪音信号,对应音乐声学谐波组成来对分谐波进行音程构造,生成四次分谐波、三次分谐波和两次分谐波,举例说明:基频信号为1000Hz,则生成八度的四次分谐波为500Hz、250Hz、125Hz、62.5Hz;三次谐波为500Hz、250Hz、125Hz;两次谐波为500Hz、250Hz。然后分别生成对应的音高变化的谐波成分,音高变化一般是三种:不变、线性减小以及线性增大。这样八度这一种音程就可以生成9中不同的和声组成,经过对输出分谐波声音信号后的声音信号的测量,最终选出四次分谐波,音高线性减小的和声组合为最优声音信号。
如图11所示,同时需要对噪音信号中其他的低频噪音信号进行采集分析,确定这些低频噪音的幅度和相位,在生成分谐波声音信号以后,将与这些低频噪音信号的幅度和相位相同的分谐波声音信号进行反相处理,可以主动抵消一部分的低频信号。
此外,对于轨道车辆这种公共交通中产生的电机高频噪音信号,还有一个比较简单实现的方法,并且这种方法符合人们生活常理,易于被人们接受。电机高频噪音信号是在轨道车辆启动或者制动的时候产生的,而这个时候正是轨道车辆进站或者离站的时候。通过上面的“掩蔽效应”理论可知,高声压级的低频声音信号可以很好的掩蔽低声压级的高频声音信号,所以这一时段根据“掩蔽效应”去掩蔽电机高频噪音,具体可以利用语音播报站点的形式,语音播报的一个优势在于,需要尽可能增加声音强度,就是声压级会很高,这有助于实现高频的掩蔽,而且不引起乘客的烦躁感。
本申请提供的一种轨道车辆的噪音处理方法可以用于轨道车辆等轨道交通,也可以用于新能源轿车,例如新能源巴士或以电机为驱动的设施设备。
本申请提供的一种轨道车辆的噪音处理方法适用于一切声环境品质的提高、改变或者降低。
本申请提供的一种轨道车辆的噪音处理方法适用于所用频段的噪音信号。
本申请另一种实施例提供一种轨道车辆的噪音处理装置50,如图12所示,该噪音处理装置50包括:
噪音信号获取模块501,用于获取轨道车辆的噪音信号,并对噪音信号进行分析以获取噪音信号的频率;
位置获取模块511,用于获取轨道车辆运行的地点;
分谐波生成模块502,用于当检测到轨道车辆处于站间运行过程,并且噪音信号包括频率大于第一预设频率的高频噪音信号时,根据高频噪音信号的频率生成并输出分谐波声音信号;
掩蔽信号输出模块510,用于当检测到所述轨道车辆处于进站过程或者离站过程时,根据所述轨道车辆运行的当前地点输出相应的掩蔽声音信号,掩蔽声音信号的频率声音强度高于高频噪音信号的声音轻度强度。
进一步的,如图13所示,噪音处理装置50还包括声音信号获取模块503,用于采集车辆内部的声音信号,获取声音信号的频率。
噪音信号获取模块501用于对声音信号进行频谱分析获取声音信号的频率,并将声音信号的频率与预设频率进行对比以获取噪音信号的频率。
作为一种实施方式,当高频噪音信号的频率为恒定值时,分谐波生成模块502用于生成并输出分谐波声音信号为y=asin(2×pi×A×f×t),其中,a为分谐波声音信号的振幅,A为分谐波系数,f为高频噪音信号的频率,t为时间;
当高频噪音信号的频率为线性渐变值时,分谐波声生成模块502用于生成并输出分谐波声音信号为Y=Ky+b,其中,y=asin(2×pi×A×f×t),a为分谐波声音信号的振幅,A为分谐波系数,f为高频噪音信号的频率,t为时间,b为常数。
进一步的,如图14所示,噪音处理装置50还包括反相变换模块506;
当检测到噪音信号包括频率小于第二预设频率的低频噪音信号时,反相变换模块506输出与低频噪音信号的幅度相同以及相位相反的低频声音信号;
反相变换模块506输出与低频噪音信号的幅度相同以及相位相反的低频声音信号的过程具体为:
获取低频噪音信号的幅度和相位;
判断是否存在与低频噪音信号的幅度和相位相同的分谐波声音信号;
当判断结果为是时,将与低频噪音信号的幅度和相位相同的分谐波声音信号进行反相位变换后输出;
当判断结果为否时,则生成与低频噪音信号的幅度相同以及相位相反的低频声音信号后输出,其中,第二预设频率小于所述第一预设频率。
进一步的,如图15所示,噪音处理装置50还包括计算模块504和声音信号选择模块505;
声音信号获取模块503分别采集输出多组分谐波声音信号后的多组声音信号,计算模 块504获取每组声音信号的评价参数,其中,评价参数包括响度值、尖锐度值、抖动度值以及粗糙度值,每组分谐波声音信号包括一个分谐波信号或者至少两个阶次不同的分谐波信号;声音信号选择模块505用于根据评价参数计算输出每组声音信号的噪音分数,并输出最低噪音分数所对应的一组分谐波声音信号。
上述终端设备中模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请另一种实施例提供一计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例中的轨道车辆的噪音处理方法,为避免重复,这里不再赘述。或者,该计算机程序被处理器执行时实现上述实施例中轨道车辆的噪音处理装置中各模块/单元的功能,为避免重复,这里不再赘述。
图16是本实施例中终端设备的示意图。如图16所示,终端设备6包括处理器60、存储器61以及存储在存储器61中并可在处理器60上运行的计算机程序62。处理器60执行计算机程序62时实现上述实施例中轨道车辆的噪音处理方法的各个步骤,例如图1所示的步骤S101、S102和S103。或者,处理器60执行计算机程序62时实现上述实施例中轨道车辆的噪音处理装置各模块/单元的功能,如图15所示噪音信号获取模块501、分谐波生成模块502、声音信号获取模块503、计算模块504、声音信号选择模块505、反向变换模块506、掩蔽信号输出模块510以及位置获取模块511的功能。
示例性的,计算机程序62可以被分割成一个或多个模块/单元,一个或者多个模块/单元被存储在存储器61中,并由处理器60执行,以完成本申请。一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序62在终端设备6中的执行过程。例如,计算机程序62可以被分割成同步模块、汇总模块、获取模块、返回模块(虚拟装置中的模块)。
该终端设备6可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。终端设备可包括,但不仅限于,处理器60、存储器61。本领域技术人员可以理解,图16仅仅是终端设备6的示例,并不构成对终端设备6的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如终端设备还可以包括输入输出设备、网络接入设备、总线等。
所称处理器60可以是中央处理单元(Central Processing Unit,简称为CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,简称为DSP)、专用集成电路 (Application Specific Integrated Circuit,简称为ASIC)、现成可编程门阵列(Field-Programmable Gate Array,简称为FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器61可以是终端设备6的内部存储单元,例如终端设备6的硬盘或内存。存储器61也可以是终端设备6的外部存储设备,例如终端设备6上配备的插接式硬盘,智能存储卡(Smart Media Card,简称为SMC),安全数字(Secure Digital,简称为SD)卡,闪存卡(Flash Card)等。进一步地,存储器61还可以既包括终端设备6的内部存储单元也包括外部存储设备。存储器61用于存储计算机程序以及终端设备所需的其他程序和数据。存储器61还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装 置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种轨道车辆的噪音处理方法,其特征在于,所述噪音处理方法包括:
    获取所述轨道车辆的噪音信号和所述轨道车辆运行的地点,并对所述噪音信号进行分析以获取所述噪音信号的频率;
    当检测到所述轨道车辆处于站间运行过程,并且所述噪音信号包括频率大于第一预设频率的高频噪音信号时,根据所述高频噪音信号的频率生成并输出分谐波声音信号;
    当检测到所述轨道车辆处于进站过程或者离站过程时,输出相应的掩蔽声音信号,所述掩蔽声音信号的声音强度高于所述高频噪音信号的声音强度。
  2. 如权利要求1所述的噪音处理方法,其特征在于,根据所述高频噪音信号的频率生成并输出分谐波声音信号,包括:
    当所述高频噪音信号的频率为恒定值时,生成并输出分谐波声音信号为y=asin(2×pi×A×f×t),其中,a为所述分谐波声音信号的振幅,A为分谐波系数,f为所述高频噪音信号的频率,t为时间。
  3. 如权利要求1所述的噪音处理方法,其特征在于,根据所述高频噪音信号的频率生成并输出分谐波声音信号,包括:
    当所述高频噪音信号的频率为线性渐变值时,生成并输出分谐波声音信号为Y=Ky+b,其中,y=asin(2×pi×A×f×t),a为所述分谐波声音信号的振幅,A为分谐波系数,f为所述高频噪音信号的频率,t为时间,b为常数。
  4. 如权利要求1至3任意一项所述的噪音处理方法,其特征在于,获取轨道车辆的噪音信号,并对所述噪音信号进行分析以获取所述噪音信号的频率,之后还包括:
    当检测到所述噪音信号包括频率小于第二预设频率的低频噪音信号时,输出与所述低频噪音信号的幅度相同以及相位相反的低频声音信号。
  5. 如权利要求4所述的噪音处理方法,其特征在于,输出与所述低频噪音信号的幅度相同以及相位相反的低频声音信号,包括:
    获取所述低频噪音信号的幅度和相位;
    判断是否存在与所述低频噪音信号的幅度和相位相同的分谐波声音信号,是,则将与所述低频噪音信号的幅度和相位相同的分谐波声音信号进行反相位变换后输出,否,则生成与所述低频噪音信号的幅度相同以及相位相反的低频声音信号后输出,其中,所述第二预设频率小于所述第一预设频率。
  6. 如权利要求1至5中任意一项所述的噪音处理方法,其特征在于,根据所述高频噪 音信号的频率生成并输出分谐波声音信号,包括:
    根据所述高频噪音信号的频率依次生成并输出多组分谐波信号,每组分谐波声音信号包括一个分谐波信号或者至少两个阶次不同的分谐波信号;
    采集输出每组分谐波信号后的声音信号,获取每组声音信号的评价参数,其中,所述评价参数包括响度值、尖锐度值、抖动度值以及粗糙度值;
    根据所述评价参数计算输出所述每组声音信号的噪音分数,并输出最低噪音分数所对应的一组分谐波声音信号。
  7. 一种轨道车辆的噪音处理装置,其特征在于,所述噪音处理装置包括:
    噪音信号获取模块,用于获取所述轨道车辆的噪音信号,并对所述噪音信号进行分析以获取所述噪音信号的频率;
    位置获取模块,用于获取所述轨道车辆运行的地点;
    分谐波生成模块,用于当检测到所述轨道车辆处于站间运行过程时并且所述噪音信号包括频率大于第一预设频率的高频噪音信号时,用于根据所述高频噪音信号的频率生成并输出分谐波声音信号;
    掩蔽信号输出模块,用于当检测到所述轨道车辆处于进站过程或者离站过程时,输出相应的掩蔽声音信号,所述掩蔽声音信号的频率声音强度高于所述高频噪音信号的声音强度。
  8. 如权利要求7所述的噪音处理装置,其特征在于,当所述高频噪音信号的频率为恒定值时,所述分谐波生成模块生成并输出的分谐波声音信号为y=asin(2×pi×A×f×t),其中,a为分谐波声音信号的振幅,A为分谐波系数,f为高频噪音信号的频率,t为时间;
    当所述高频噪音信号的频率为线性渐变值时,所述分谐波生成模块生成并输出的分谐波声音信号为Y=Ky+b,其中,y=asin(2×pi×A×f×t),a为分谐波声音信号的振幅,A为分谐波系数,f为高频噪音信号的频率,t为时间,b为常数。
  9. 如权利要求7或8所述的噪音处理装置,其特征在于,所述噪音处理装置还包括反相变换模块;
    当检测到所述噪音信号包括频率小于第二预设频率的低频噪音信号时,所述反相变换模块输出与所述低频噪音信号的幅度相同以及相位相反的低频声音信号;
    所述反相变换模块输出与所述低频噪音信号的幅度相同以及相位相反的低频声音信号的过程具体为:
    获取所述低频噪音信号的幅度和相位;
    判断是否存在与所述低频噪音信号的幅度和相位相同的分谐波声音信号;
    当判断结果为是时,将与所述低频噪音信号的幅度和相位相同的分谐波声音信号进行反相位变换后输出;
    当判断结果为否时,则生成与所述低频噪音信号的幅度相同以及相位相反的低频声音信号后输出,其中,所述第二预设频率小于所述第一预设频率。
  10. 一种终端设备,其特征在于,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至6任一项所述方法的步骤。
  11. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述方法的步骤。
PCT/CN2018/090100 2017-08-18 2018-06-06 轨道车辆的噪音处理方法、装置、设备及存储介质 WO2019033832A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710711342.8 2017-08-18
CN201710711342.8A CN109410907B (zh) 2017-08-18 2017-08-18 云轨的噪音处理方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2019033832A1 true WO2019033832A1 (zh) 2019-02-21

Family

ID=65361709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090100 WO2019033832A1 (zh) 2017-08-18 2018-06-06 轨道车辆的噪音处理方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN109410907B (zh)
WO (1) WO2019033832A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113125000A (zh) * 2021-04-20 2021-07-16 中国汽车工程研究院股份有限公司 一种车内空调系统异响等级评判方法
CN114575225A (zh) * 2021-06-28 2022-06-03 长城汽车股份有限公司 搓板路面识别方法、装置、介质和控制器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112399035B (zh) * 2019-08-15 2022-06-14 浙江宇视科技有限公司 一种拾音模块与电机模块联动控制方法、装置及摄像机
CN112506341B (zh) * 2020-12-01 2022-05-03 瑞声新能源发展(常州)有限公司科教城分公司 一种振动效果的生成方法、装置、终端设备及存储介质
CN114640939B (zh) * 2020-12-16 2024-03-19 惠州比亚迪电子有限公司 一种音频播放装置的检测方法、装置、系统及存储介质
CN114241800B (zh) * 2022-02-28 2022-05-27 天津市北海通信技术有限公司 一种智能报站辅助系统
CN114550740B (zh) * 2022-04-26 2022-07-15 天津市北海通信技术有限公司 噪声下的语音清晰度算法及其列车音频播放方法、系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104340114A (zh) * 2013-08-09 2015-02-11 通用汽车环球科技运作有限责任公司 掩蔽车辆噪声
CN105067099A (zh) * 2015-08-13 2015-11-18 南京大学(苏州)高新技术研究院 一种用于地铁环境振动与噪声联合测试的方法与系统
CN105872908A (zh) * 2016-05-23 2016-08-17 北京长安汽车工程技术研究有限责任公司 一种制动系统降噪方法及装置
CN106257582A (zh) * 2015-06-18 2016-12-28 现代自动车株式会社 燃烧噪声掩蔽控制装置及方法
CN106256612A (zh) * 2015-06-18 2016-12-28 现代自动车株式会社 用于掩蔽车辆噪声的系统及其方法
CN106671912A (zh) * 2015-11-06 2017-05-17 现代自动车株式会社 车辆燃烧噪声掩蔽控制装置以及使用其的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3420463A1 (de) * 1984-06-01 1985-12-05 Uwe 6500 Mainz Brückner Vorrichtung zur beschallung
CN1801611B (zh) * 2005-12-20 2010-05-05 深圳兰光电子集团有限公司 一种低音增效处理的方法和装置
US9299337B2 (en) * 2011-01-11 2016-03-29 Bose Corporation Vehicle engine sound enhancement
CN106910492A (zh) * 2017-04-01 2017-06-30 广州日滨科技发展有限公司 一种电梯轿厢的噪声主动控制方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104340114A (zh) * 2013-08-09 2015-02-11 通用汽车环球科技运作有限责任公司 掩蔽车辆噪声
CN106257582A (zh) * 2015-06-18 2016-12-28 现代自动车株式会社 燃烧噪声掩蔽控制装置及方法
CN106256612A (zh) * 2015-06-18 2016-12-28 现代自动车株式会社 用于掩蔽车辆噪声的系统及其方法
CN105067099A (zh) * 2015-08-13 2015-11-18 南京大学(苏州)高新技术研究院 一种用于地铁环境振动与噪声联合测试的方法与系统
CN106671912A (zh) * 2015-11-06 2017-05-17 现代自动车株式会社 车辆燃烧噪声掩蔽控制装置以及使用其的方法
CN105872908A (zh) * 2016-05-23 2016-08-17 北京长安汽车工程技术研究有限责任公司 一种制动系统降噪方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113125000A (zh) * 2021-04-20 2021-07-16 中国汽车工程研究院股份有限公司 一种车内空调系统异响等级评判方法
CN113125000B (zh) * 2021-04-20 2022-11-29 中国汽车工程研究院股份有限公司 一种车内空调系统异响等级评判方法
CN114575225A (zh) * 2021-06-28 2022-06-03 长城汽车股份有限公司 搓板路面识别方法、装置、介质和控制器
CN114575225B (zh) * 2021-06-28 2023-10-27 长城汽车股份有限公司 搓板路面识别方法、装置、介质和控制器

Also Published As

Publication number Publication date
CN109410907A (zh) 2019-03-01
CN109410907B (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2019033832A1 (zh) 轨道车辆的噪音处理方法、装置、设备及存储介质
CN109300465B (zh) 新能源车及其主动降噪方法和系统
BRPI0911587B1 (pt) Sistema de manipulação de gama dinâmica e método para compensação de ruído ambiente em uma localização de reprodução
EP3703048B1 (en) Active noise reduction method and system, and vehicle using alternative energy
CN103137136A (zh) 声音处理装置
WO2018184434A1 (zh) 新能源车及其主动降噪方法、系统
JP2014130251A (ja) 会話保護システム及び会話保護方法
Lehtonen et al. Audibility of aliasing distortion in sawtooth signals and its implications for oscillator algorithm design
Konrad-Martin et al. Time-frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: Testing cochlear model predictions
JP2007180922A (ja) ノイズキャンセルヘッドホン
JPH10503908A (ja) オーディオ信号の調性を決定するための方法および装置
Moore Interference effects and phase sensitivity in hearing
CN111128208B (zh) 一种便携式激励器
CN103035250A (zh) 音频编码装置
Steinmetzger et al. No evidence for a benefit from masker harmonicity in the perception of speech in noise
CN108574912B (zh) 新能源车及提高新能源车内声品质的方法、系统
WO2019033827A1 (zh) 车辆内部的噪声消除方法、装置、设备及存储介质
Kang et al. Quality index of dual shell horns of passenger cars based on a spectrum decay slope
Pendharkar Auralization of road vehicles using spectral modeling synthesis
Soeta et al. Comparison of noise characteristics in airplanes and high-speed trains
JP6232710B2 (ja) 録音音声の明瞭化装置
US20240009421A1 (en) Emotional care apparatus and method thereof
Kinoshita et al. Examination of Acoustic Features for discriminating between Real and Loudspeaker speeches
Rahali et al. Enhancement of noise-suppressed speech by spectral processing implemented in a digital signal processor
Aichinger et al. Assessment and psychoacoustic modelling of auditory streams in diplophonic voice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18846117

Country of ref document: EP

Kind code of ref document: A1