WO2019031425A1 - 運動ニューロン疾患治療剤 - Google Patents

運動ニューロン疾患治療剤 Download PDF

Info

Publication number
WO2019031425A1
WO2019031425A1 PCT/JP2018/029333 JP2018029333W WO2019031425A1 WO 2019031425 A1 WO2019031425 A1 WO 2019031425A1 JP 2018029333 W JP2018029333 W JP 2018029333W WO 2019031425 A1 WO2019031425 A1 WO 2019031425A1
Authority
WO
WIPO (PCT)
Prior art keywords
src
sbma
substituent
motor neuron
results
Prior art date
Application number
PCT/JP2018/029333
Other languages
English (en)
French (fr)
Inventor
円 飯田
雅央 勝野
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2019535633A priority Critical patent/JPWO2019031425A1/ja
Publication of WO2019031425A1 publication Critical patent/WO2019031425A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention belongs to the technical field of therapeutic agents for neuromuscular diseases.
  • the present invention relates to a therapeutic agent for motor neuron disease.
  • the present invention relates to a therapeutic agent for motor neuron disease comprising an Src inhibitor as an active ingredient.
  • Motor neurons are nerve cells that control skeletal muscle. Neurons that leave the cerebrum to the spinal cord or brainstem are called upper neurons, and neurons that continue from the spinal cord or brainstem to the muscles are called lower neurons. Motor neuron disease is a general term for diseases in which muscles of the whole body are gradually atrophy and motor function is lost by degeneration or death of the motor neurons. It usually follows a fatal course due to respiratory failure etc. Specific motor neuron diseases include, for example, upper and lower motor neuron diseases, amyotrophic lateral sclerosis (ALS), and lower motor neuron diseases, bulbar and muscular atrophy ( SBMA: Spinal and bulbar muscular atrophy (SMA) and spinal muscular atrophy (SMA).
  • ALS amyotrophic lateral sclerosis
  • SBMA bulbar and muscular atrophy
  • SMA Spinal and bulbar muscular atrophy
  • SMA spinal muscular atrophy
  • ALS develops after middle age, and symptoms include tendon hyperreflexia, pathological reflex, progressive muscle atrophy and muscle weakness, and motor function disappears in several months to several years. About 5 to 10% are heritable. SBMA occurs in only 1 or 2 adults per 100,000, and affects only adult males. Symptoms include progressive muscle atrophy, muscle weakness, gynecomastia, and glucose intolerance.
  • Pathogenesis includes abnormal elongation of the CAG sequence of the androgen receptor gene (AR). All are intractable, the full spectrum of their molecular pathogenesis is unknown, and no radical treatment has been found.
  • Patent Literature 1 is an example of a therapeutic agent for motor neuron diseases such as ALS.
  • Patent Document 1 discloses a motor neuron disease therapeutic agent containing an oligopeptide represented by Ser-Ala-Leu-Arg-Ser-Ile-Pro-Ala as an active ingredient.
  • Patent Document 2 discloses, for SBMA, a bulbo-spinal muscular atrophy therapeutic agent containing triptan as an active ingredient.
  • Src is known as a proto-oncogene and is a non-receptor tyrosine kinase protein.
  • Src also exists in mammalian genes, and it became known that mutations in the Src gene possessed by normal cells cause canceration of cells.
  • Src gene mutations are rarely seen in human tumors, Src activation is seen in tumors such as colon, liver, lung, breast, pancreas, prostate, blood, etc., and promotes the angiogenesis, proliferation, and invasion pathways.
  • the inhibitor of Src is being developed as a therapeutic agent for chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL).
  • CML chronic myelogenous leukemia
  • ALL acute lymphocytic leukemia
  • motor neuron diseases are intractable diseases that have a fatal course due to respiratory failure and the like. Its molecular pathology is unknown and no fundamental treatment has been found. As one of the factors, although various molecular abnormalities occur in motor neuron disease, it is considered that the essential molecular mechanism contributing to the root of the pathological condition has not been clarified.
  • the present invention relates to treating motor neuron diseases with compounds that identify intracellular signals that strongly contribute to the early pathology of motor neuron diseases and correct the abnormal signals. As a specific object of the present invention, for example, it can be mentioned to provide a novel therapeutic agent for motor neuron disease.
  • the present inventors conducted a timely and comprehensive signal analysis of the spinal cord and skeletal muscle of a disease model mouse exhibiting motor neuron disease using the Bio-Plex multiplex system, and in the spinal cord of the SBMA model mouse, That Src phosphorylation is consistently elevated from before onset to late onset, that it is also elevated in skeletal muscle before onset and early onset, and further that phosphorylation of Stat3 present downstream of Src is not onset It was elevated in the spinal cord and skeletal muscle, and it was found that Src signal is closely related to the pathogenesis of SBMA. In addition, in the spinal cord and skeletal muscle of ALS model mice, increased phosphorylation was observed before onset. Based on these findings, as a result of intensive studies, they have found that Src inhibitors are effective for the treatment of motor neuron diseases, and have completed the present invention.
  • a therapeutic agent for motor neuron disease which comprises an Src inhibitor as an active ingredient.
  • the therapeutic agent according to the above-mentioned [1], wherein the motor neuron disease is bulbar and spinal muscular atrophy (SBMA), amyotrophic lateral sclerosis (ALS), or spinal muscular atrophy (SMA) .
  • SBMA bulbar and spinal muscular atrophy
  • ALS amyotrophic lateral sclerosis
  • SMA spinal muscular atrophy
  • the therapeutic agent according to the above [1] or [2], wherein the Src inhibitor is a compound represented by the following general formula (1) or a pharmaceutically acceptable salt thereof.
  • R 1 represents H, an alkyl which may have a substituent, an aryl which may have a substituent, or a heteroaryl which may have a substituent.
  • R 2 represents H.
  • R 3 represents H or alkyl which may have a substituent.
  • R 4 represents H, aryl which may have a substituent, or heterocycloalkyloxy which may have a substituent.
  • R 5 , R 6 and R 7 are the same or different and each represents H or alkoxy which may have a substituent.
  • R 8 represents H, alkyl which may have a substituent, or cycloalkyl which may have a substituent.
  • [5] A method for treating motor neuron disease, comprising administering a Src inhibitor to a human.
  • SBMA bulbar and spinal muscular atrophy
  • ALS amyotrophic lateral sclerosis
  • SMA spinal muscular atrophy
  • motor neuron diseases (particularly, SBMA and ALS) can be effectively treated.
  • a figure is an electrophoresis photograph by Western blot using mouse spinal cord.
  • the upper three rows show the results before onset (6 weeks old), the middle 3 rows show the results of early onset period (9 weeks old), and the lower three rows show the results after late onset period (13 weeks old).
  • the left 4 columns show the results of wild type mice, and the right 4 columns show the results of SBMA model mice (AR-97Q).
  • Panel B represents the results of quantification of bands in the Western blot in panel A.
  • the vertical axis represents the ratio of the amount of phosphorylated Src protein per total amount of Src protein (p-Src / Src).
  • the left graph shows the results before onset (6 weeks old), the middle graph shows the results before onset (9 weeks old), and the right graph shows the results after late onset (13 weeks old).
  • the left column shows the results of wild type mice, and the right column shows the results of SBMA model mice (AR-97Q).
  • C is a photograph of immunostaining of phosphorylated Src in pre-morbid (6 weeks old) SBMA model mice (AR-97Q).
  • the left picture shows the result of wild type mouse, and the right picture shows the result of SBMA model mouse (AR-97Q).
  • a figure is an electrophoresis photograph by Western blot using mouse skeletal muscle.
  • the upper three rows show the results before onset (6 weeks old), the middle 3 rows show the results of early onset period (9 weeks old), and the lower three rows show the results after late onset period (13 weeks old).
  • the left 4 columns show the results of wild type mice, and the right 4 columns show the results of SBMA model mice (AR-97Q).
  • Panel B represents the results of quantification of bands in the Western blot in panel A.
  • the vertical axis represents the ratio of the amount of phosphorylated Src protein per total amount of Src protein (p-Src / Src).
  • the left graph shows the results before onset (6 weeks old), the middle graph shows the results before onset (9 weeks old), and the right graph shows the results after late onset (13 weeks old).
  • the upper two figures are electrophoresis photographs by western blot using the SBMA cell model (NSC34).
  • the left 4 columns show the results of the control cell model (AR-24Q), and the right 4 columns show the results of the SBMA cell model (AR-97Q).
  • the lower graph shows the quantification results of the western blot bands in the upper two figures.
  • the vertical axis represents the ratio of the amount of phosphorylated Src protein per total amount of Src protein (p-Src / Src).
  • the left two columns show the results of the control cell model (AR-24Q), and the right two columns show the results of the SBMA cell model (AR-97Q).
  • the upper two figures are electrophoresis photographs by western blot using the SBMA cell model (C2C12).
  • the center-left column shows the results of the control cell model (AR-24Q)
  • the center-right column shows the results of the SBMA cell model (AR-97Q).
  • the lower graph shows the quantification results of the western blot bands in the upper two figures.
  • the vertical axis represents the ratio of the amount of phosphorylated Src protein per total amount of Src protein (p-Src / Src).
  • the left two columns show the results of the control cell model (AR-24Q), and the right two columns show the results of the SBMA cell model (AR-97Q).
  • FIG. 10 depicts the effects of Src inhibitors in the SBMA cell model (NSC34).
  • the left end graph shows the result of SKI-1
  • the second graph from the left shows the result of PP2
  • the second graph from the right shows the result of A419259 trihydrochloride
  • the right end graph shows the result of saracatinib.
  • the vertical axis shows the cell survival rate.
  • the left end column shows the result of the control cell model (AR-24Q)
  • the middle and right columns show the result of the SBMA cell model (AR-97Q).
  • FIG. 10 depicts the effects of Src inhibitors in the SBMA cell model (C2C12).
  • the left end graph shows the result of SKI-1
  • the second graph from the left shows the result of PP2
  • the second graph from the right shows the result of A419259 trihydrochloride
  • the right end graph shows the result of saracatinib.
  • the vertical axis shows the cell survival rate.
  • the left end column shows the result of the control cell model (AR-24Q)
  • the middle and right columns show the result of the SBMA cell model (AR-97Q).
  • FIG. 16 depicts the results of transient forced expression of Src in the SBMA cell model (NSC34).
  • the two figures on the right are electrophoresis photographs by Western blot. Among them, the upper figure shows the result of the control cell model (AR-24Q), and the lower figure shows the result of the SBMA cell model (AR-97Q).
  • the graph on the left represents the effect of transient forced expression of Src in control and SBMA cell models.
  • the vertical axis shows the cell survival rate.
  • the left 2 columns show the results of the control cell model (AR-24Q)
  • the right 2 columns show the results of the SBMA cell model (AR-97Q).
  • FIG. 16 depicts the results of transient forced expression of Src in the SBMA cell model (C2C12).
  • the two figures on the right are electrophoresis photographs by Western blot. Among them, the upper figure shows the result of the control cell model (AR-24Q), and the lower figure shows the result of the SBMA cell model (AR-97Q).
  • the graph on the left represents the effect of transient forced expression of Src in control and SBMA cell models.
  • the vertical axis shows the cell survival rate.
  • the left 2 columns show the results of the control cell model (AR-24Q)
  • the right 2 columns show the results of the SBMA cell model (AR-97Q).
  • FIG. 1 It is an electrophoresis photograph by western blot.
  • the left 3 columns show the results in the spinal cord of the SBMA model mouse
  • the right 3 columns show the results in the skeletal muscle of the SBMA model mouse.
  • the left row (0) shows the results for the H 2 O administration group
  • the middle row (B) shows the results for the 0.5 mg / kg / day A419259 trihydrochloride group
  • the right row (A) shows the results.
  • the results for the 5 mg / kg / day A419259 trihydrochloride group are shown respectively.
  • Figure 6 depicts the effect of Src inhibitor (A419259 trihydrochloride) in the SBMA mouse model.
  • the left end graph represents the transition of weight.
  • the vertical axis represents weight (g), and the horizontal axis represents time (week).
  • the second graph from the left shows the transition of grip strength.
  • the vertical axis indicates the grip strength (g) and the horizontal axis indicates the time (week).
  • the second graph from the right represents the transition of motor function.
  • the vertical axis indicates time (seconds) and the horizontal axis indicates time (weeks).
  • the rightmost graph shows the transition of the cumulative survival rate.
  • the horizontal axis shows time (weeks).
  • the left graph shows the results in the spinal cord, and the right graph shows the results in skeletal muscle.
  • the vertical axis indicates the percentage (%) of polyglutamine (1C2) positive cells.
  • the left column shows the result of the control group of the SBMA mouse model, and the right column shows the result of the Src inhibitor administration group to the SBMA mouse model.
  • the agent for treating motor neuron diseases according to the present invention (hereinafter also referred to as “the agent for the present invention”) is characterized by containing an Src inhibitor as an active ingredient.
  • the motor neuron diseases targeted by the therapeutic agent of the present invention are not particularly limited whether they are upper and lower motor neuron diseases or lower motor neuron diseases alone. Specifically, amyotrophic lateral sclerosis (ALS), bulbar and spinal muscular atrophy (SBMA), and spinal muscular atrophy (SMA) can be mentioned.
  • the therapeutic agents of the invention are particularly preferred for the treatment of SBMA.
  • the Src inhibitor contained in the therapeutic agent of the present invention is not particularly limited as long as it effectively inhibits Src.
  • a compound represented by the above general formula (1) hereinafter referred to as “Src compound (1 ) Can be mentioned.
  • aryl include an aromatic hydrocarbon group having 6 to 12 carbon atoms, and specific examples include phenyl, tolyl, xylyl and naphthyl.
  • substituents in the “aryl optionally having substituent (s)” include alkoxy, halogen, phenoxy, a divalent group such as methylenedioxy and ethylenedioxy, which are adjacent to each other on aryl. And those substituted with two carbon atoms. One or more of these may be substituted at any position.
  • Specific examples of the substituted aryl group include 5-chloro-2,3-benzodioxol-4-yl.
  • heteroaryl examples include those having 3 to 10 carbon atoms, 0 to 1 oxygen atom, 0 to 1 sulfur atom and 0 to 2 nitrogen atoms, and specifically, for example, Mention may be made of 2-pyridyl, 2-furyl, 1,3-thiazol-2-yl.
  • substituent of “optionally substituted heteroaryl” include the same as the substituents of the above-mentioned “optionally substituted aryl”, and more specifically, for example, And N- (2-chloro-6-methylphenyl) -1,3-thiazole-5-carboxamido-2-yl.
  • alkyl for example, linear or branched alkyl having 1 to 4 carbon atoms can be mentioned, and specifically, methyl, ethyl, n-propyl, isopropyl, propyl, n-butyl, Examples include isobutyl, sec-butyl and tert-butyl.
  • substituent of "the alkyl which may have a substituent" a hydroxyl group, alkoxy, a halogen atom etc. are mentioned, for example.
  • cycloalkyl examples include cycloalkyl having 3 to 8 carbon atoms, and specific examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
  • substituent in the “optionally substituted cycloalkyl” include alkyl, piperidyl, piperazinyl, 4-methyl-1-piperazinyl. One or more of these may be substituted at any position.
  • heterocycloalkyl for example, those in which one or more of the constituent carbon atoms of a cycloalkyl having 3 to 8 carbon atoms is replaced with a heteroatom such as nitrogen, oxygen or sulfur can be mentioned.
  • a heteroatom such as nitrogen, oxygen or sulfur
  • tetrahydrofuranyl, oxanyl, oxolanyl, morpholinyl, tetrahydro-2H-pyran-4-yl, piperazinyl can be mentioned.
  • an alkyl is mentioned, for example, and the said alkyl may be substituted by the hydroxyl group, the halogen atom, etc.
  • Heterocycloalkyloxy represents a group in which the above heterocycloalkyl is bonded to one of oxygen atoms, and examples of the substituent in “optionally substituted heterocycloalkyloxy” include Alkyl and alkoxy can be mentioned.
  • alkoxy for example, linear or branched alkyl having 1 to 4 carbon atoms can be mentioned, and specifically, methoxy, ethoxy, propoxy can be mentioned.
  • substituent of “optionally substituted alkoxy” include 4-methyl-1-piperazinyl. One or more of these may be substituted at any position.
  • halogen for example, fluorine, chlorine, bromine and iodine can be mentioned.
  • Src compounds (1) for example, SKI-1, PP2, A419259, saracatinib (Saracatinib), dasatinib (Dasatinib) can be mentioned. These are all known compounds known to have Src inhibitory activity, and have the following structures, respectively.
  • Stereoisomers and optical isomers may exist in the Src compound (1).
  • the pharmaceutically acceptable salt of Src compound (1) is not particularly limited as long as it is pharmaceutically acceptable, but, for example, hydrochloride, sulfate, nitrate, phosphate, carbonate, hydrogen carbonate Salt, hydrobromide, mineral acid salt such as hydroiodide, formate, acetate, propionate, trifluoroacetate, citrate, lactate, tartrate, oxalate, maleic acid Salt, fumarate, mandelate, glutarate, malate, benzoate, phthalate, ascorbate, methanesulfonate, ethanesulfonate, isethionate, benzenesulfonate, p Mention may be made of organic acid salts such as toluene sulfonate, aspartate, glutamate and the like.
  • the pharmaceutically acceptable salts also include hydrates and solvates. Hereinafter, these salts are also referred to as Src compound (1).
  • the Src compound (1) and pharmaceutically acceptable salts thereof can be produced by a conventional method using a compound known per se as a starting material. Further, some Src compounds (1) can be purchased from a reagent maker or the like.
  • the therapeutic agent of the present invention is, for example, preferably in the range of 0.01 to 99.5% by weight, preferably 0.5, of the Src inhibitor used, as it is or in a pharmaceutically acceptable non-toxic and inert carrier. It can be produced by blending in the range of ⁇ 90% by weight.
  • the carrier include solid, semi-solid or liquid diluents, fillers, and other formulation aids. One or more of these can be used.
  • the dosage form of the therapeutic agent of the present invention varies depending on the Src inhibitor and the like used, it is, for example, a solid or liquid dose unit, powder, capsule, tablet, sugar coating, granule, powder, suspension, solution
  • the composition can be in any form of orally administered preparations such as syrups, elixirs and troches, parenteral preparations such as injections, drip preparations and suppositories. It may be a sustained release preparation.
  • the injection may be a ready-to-use injection kit or a drip kit.
  • Powdered powder can be prepared by appropriately sizing the Src inhibitor. Powders can be prepared by mixing the Src inhibitor with appropriate fineness and then similarly finely divided pharmaceutical carriers such as starch, edible carbohydrates such as mannitol. Flavoring agents, preservatives, dispersing agents, coloring agents, flavoring agents and the like can be optionally added.
  • the capsule is first produced by filling the powdery powder as described above or the granulated powder as described in the section of powder or tablet into, for example, a capsule shell such as a gelatin capsule. can do.
  • Lubricants and fluidizers for example, colloidal silica, talc, magnesium stearate, calcium stearate, polyethylene glycol in solid form may be mixed with the powdery ones and then subjected to a filling operation.
  • Disintegrants and solubilizers such as carboxymethylcellulose, carboxymethylcellulose calcium, low-substituted hydroxypropylcellulose, croscarmellose sodium, carboxymethylstarch sodium, calcium carbonate and sodium carbonate, when the capsule is ingested
  • a fine powder of Src inhibitor may be suspended in vegetable oil, polyethylene glycol, glycerin, surfactant, and dispersed, and then wrapped in a gelatin sheet to make a soft capsule.
  • Tablets can be prepared by adding excipients to form a powder mixture, granulating or slugging, and adding a disintegrant or lubricant followed by compression.
  • Powder mixtures can be prepared by mixing the suitably powdered material with the above-described diluents and bases.
  • a binder eg, sodium carboxymethylcellulose, methylcellulose, hydroxypropyl methylcellulose, gelatin, polyvinylpyrrolidone, polyvinyl alcohol
  • a dissolution delaying agent eg, paraffin
  • a resorbing agent eg, quaternary salt
  • An adsorbent eg bentonite, kaolin
  • the powder mixture can be first wetted with a binder such as syrup, starch paste, gum arabic, cellulose solution or polymer solution, stirred and mixed, dried and ground into granules.
  • a binder such as syrup, starch paste, gum arabic, cellulose solution or polymer solution
  • stearic acid, a stearate, a talc, mineral oil etc. as a lubricant to the granules produced in this way, it can prevent adhering to each other.
  • Tablets can also be made by direct compression after mixing the Src inhibitor with a flowable inert carrier, without going through the granulation and slugging steps as described above.
  • the tablets thus produced can be film-coated and sugar-coated.
  • a clear or translucent protective coating consisting of a sealing coat of shellac, a coating of sugar or polymeric material and a polishing coating consisting of wax can also be used.
  • compositions such as solutions, syrups, troches and elixirs, can also be in dosage unit form so that a fixed amount contains a fixed amount of the Src inhibitor.
  • Syrups can be prepared by dissolving the Src inhibitor in a suitable aqueous flavor solution.
  • Elixirs can be prepared by using non-toxic alcoholic carriers.
  • Suspension agents can be prepared by dispersing Src inhibitors etc. in a nontoxic carrier. If necessary, solubilizers and emulsifiers (for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol esters), preservatives, flavor imparting agents (for example, peppermint oil, saccharin), etc. may be added. it can.
  • dosage unit formulations for oral administration can be microencapsulated. The formulation can also provide extended duration of action and sustained release by coating, embedding in polymers, waxes and the like.
  • the parenteral preparation can take the form of liquid dosage units, for example solutions or suspensions, for subcutaneous, intramuscular or intravenous injection.
  • the parenteral dosage form is prepared by suspending or dissolving a fixed amount of the Src inhibitor in a non-toxic liquid carrier compatible with the purpose of injection, such as an aqueous or oily vehicle, and then sterilizing the suspension or solution. It can be manufactured by carrying out. Non-toxic salts and salt solutions can be added to render the injection isotonic. In addition, stabilizers, preservatives, emulsifiers and the like can be added. Similarly, it can be an infusion preparation.
  • Suppositories are Src inhibitors soluble or insoluble in water with a low melting point, such as polyethylene glycol, cacao butter, semi-synthetic fats and oils [eg Witepsol (registered trademark)], higher esters (eg palmitic acid) It can be prepared by dissolving or suspending it in myristyl ester) or a mixture thereof.
  • a low melting point such as polyethylene glycol, cacao butter, semi-synthetic fats and oils [eg Witepsol (registered trademark)], higher esters (eg palmitic acid) It can be prepared by dissolving or suspending it in myristyl ester) or a mixture thereof.
  • the dose of the Src inhibitor in the therapeutic agent of the present invention varies depending on the type of Src inhibitor, type of disease or disorder, patient's condition such as body weight and age, dosage form, administration method, administration route, degree of symptoms and the like.
  • the dose of Src inhibitor is suitably in the range of 0.1 mg / kg to 10 mg / kg per day, and in the range of 0.5 mg / kg to 5 mg / kg
  • the range of 1 mg / kg to 3 mg / kg is more preferable. In some cases, below this may be sufficient, and conversely more doses may be required.
  • administration method of the therapeutic agent of the present invention for example, oral administration, intravenous administration, intraportal administration, subcutaneous administration, intravenous administration, topical administration (eg, transmucosal administration, nasal administration, inhalation administration, transdermal administration)
  • topical administration eg, transmucosal administration, nasal administration, inhalation administration, transdermal administration
  • the number of times of administration varies depending on the type and dose of the active ingredient, dosage form, condition of the patient, etc., it can be administered, for example, once to several times daily or at intervals of one day to several days.
  • the therapeutic agent of the present invention can also be used to prevent or alleviate or improve motor neuron disease. Therefore, the term “therapeutic agent” according to the present invention also includes concepts as “preventive agent”, “improvement agent” and the like.
  • the present invention also includes a method for treating a motor neuron disease (hereinafter referred to as "the treatment method of the present invention"), which comprises administering an Src inhibitor to a human.
  • the treatment method of the present invention although the Src therapeutic agent varies depending on the type of the Src therapeutic agent used, etc., it can be prepared in an appropriate dosage form and administered to humans. As the dosage or the dosage, the administration method, etc., those mentioned above can be mentioned.
  • 18 types of antibody beads were prepared including GAPDH control enzyme.
  • the spinal cord and skeletal muscle were frozen in dry ice-cold acetone immediately after collection from the mouse, and the protocol for sample preparation and assay followed that of the manufacturer. After all the reactions were completed, the fluorescence intensity was measured with Luminex® 200 ⁇ PONET® 3.1 system (Merck Millipore).
  • Immobilon-P transfer membrane manufactured by Merck Millipore
  • a tank blotting apparatus manufactured by Bio-rad
  • ECL TM Rabbit IgG GE Healthcare Co., NA9340
  • ECL TM Mouse IgG GE Healthcare Co., NA9310
  • ECL TM Prime Western Blotting Detection Reagent GE Healthcare Co., RPN2232
  • the signal was amplified and detected by LAS-3000 imaging system (manufactured by Fujifilm Corporation). Thereafter, the band was quantified with IMAGE GAUGE software version 4.22 (manufactured by Fuji Film), and statistically analyzed by SPSS Statistics 24 (manufactured by IBM). The results are shown in FIG. 1 (B) (spinal cord) and FIG. 2 (B) (skeletal muscle).
  • FIG. 2 (A) and FIG. 2 (B) in the analysis of skeletal muscle by Western blot, Src phosphorylation is increased at 6 weeks and 9 weeks in comparison with wild type mice, 13 weeks It was decreasing with age.
  • FIG. 2 (C) in immunostaining of phosphorylated Src, in skeletal muscle of skeletal muscle in skeletal muscle of 6-week-old SBMA mouse model (AR-97Q) compared to control (Wt) The expression of phosphorylated Src was stronger.
  • DHT 5 ⁇ -Dihydrotestosterone
  • SBMA cell model and control cell model are adjusted to a concentration of 2.0 ⁇ 10 5 cells / mL for NSC34 and 1.5 ⁇ 10 5 cells / mL for C2C12, using D-MEM medium supplemented with 10% FCS And seeded in a 24-well plate.
  • NSC34 was replaced with D-MEM medium supplemented with 1% FCS
  • C2C12 was replaced with D-MEM medium supplemented with 2% horse serum, and the cells were cultured for 48 hours. After culture for an additional 24 hours with the addition of 10 nM DHT (ethanol was used as a control), the cells were harvested and subjected to Western blotting.
  • SKI Src kinase inhibitor
  • SKI-1 Abcams, ab 120839
  • PP2 Cayman, 13198
  • A419259 trihydrochloride Tocris, 3914
  • Saracatinib ChemScene, 379231-04
  • DMSO dimethylsulfoxide
  • Control group using control cell model and SBMA cell model 1 ⁇ L of DMSO was administered to 500 ⁇ L of D-MEM medium.
  • DHT was further added to a final concentration of 10 nM and cultured for 24 hours.
  • 50 ⁇ l of Cell Counting Kit-8 manufactured by Dojin Science Laboratories
  • the absorbance was measured by multimode plate reader Enspire (manufactured by PerkinElmer). The protocol followed that of the manufacturer. The results are shown in FIG. 5 and FIG.
  • NSC34 was replaced with D-MEM medium supplemented with 1% FCS
  • C2C12 was replaced with D-MEM medium supplemented with 2% horse serum.
  • DHT was added to a final concentration of 10 nM and allowed to differentiate for another 24 hours.
  • 50 ⁇ L of Cell Counting Kit-8 manufactured by Dojin Science Laboratories
  • 50 ⁇ L of Cell Counting Kit-8 was mixed dropwise to each well, and cultured at 37 ° C. for 4 hours, and then the absorbance was measured by multimode plate reader Enspire (manufactured by PerkinElmer). Under the same conditions, cells were recovered and subjected to Western blotting to confirm the expression level of phosphorylated Src. The results are shown in FIG. 7 and FIG.
  • the therapeutic agent of the present invention is useful, for example, in the treatment of motor neuron diseases such as SBMA, ALS, SMA, etc., and thus, may be used, for example, in the pharmaceutical industry.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、新規な運動ニューロン疾患治療剤を提供することを主な課題とする。 本発明として、例えば、SKI-1、PP2、A419259三塩酸塩、サラカチニブ、ダサチニブなどのSrc阻害薬を有効成分として含有することを特徴とする運動ニューロン疾患治療剤や、当該Src阻害薬をヒトに投与することを含む運動ニューロン疾患の治療方法を挙げることができる。本発明治療剤等は、特に球脊髄性筋萎縮症(SBMA)や筋萎縮性側索硬化症(ALS)、脊髄性筋萎縮症(SMA)といった運動ニューロン疾患に対して有用である。

Description

運動ニューロン疾患治療剤
 本発明は、神経筋疾患の治療剤の技術分野に属する。本発明は、運動ニューロン疾患治療剤に関するものである。詳しくは、本発明は、Src阻害薬を有効成分として含有する運動ニューロン疾患治療剤に関するものである。
 運動ニューロンは、骨格筋を支配する神経細胞である。大脳から出て脊髄または脳幹に至るまでの神経単位を上位ニューロンといい、脊髄または脳幹から筋肉まで続いている神経単位を下位ニューロンという。
 運動ニューロン疾患は、当該運動ニューロンが変性ないし死滅することによって、全身の筋肉が徐々に萎縮し、運動機能が失われていく病気の総称である。通常、呼吸不全などにより致命的な経過を辿る。具体的な運動ニューロン疾患としては、例えば、上位および下位の運動ニューロン疾患である筋萎縮性側索硬化症(ALS:Amyotrophic lateral sclerosis)、下位運動ニューロンのみの疾患である球脊髄性筋萎縮症(SBMA:Spinal and bulbar muscular atrophy)や脊髄性筋萎縮症(SMA:Spinal muscular atrophy)が挙げられる。この中、ALSは、中年以降に発症し、症状としては、腱反射亢進、病的反射、進行性の筋萎縮や筋力低下をきたし、数ヶ月から数年で運動機能が廃絶する。5~10%程度が遺伝性である。SBMAは、10万人に一人か二人の割合で、成人男性のみに発症し、症状としては、進行性の筋萎縮や筋力低下、女性化乳房、耐糖能異常を呈する。病因としては、アンドロゲン受容体遺伝子(AR)のCAG配列の異常伸長が挙げられる。いずれも難治性であり、その分子病態の全容は不明であり、根本的治療法は見出されていない。
 運動ニューロン疾患に対して、これまで動物モデルを用いた解析により低分子化合物などを用いた分子標的治療が開発され前臨床試験では有効性が示されている。しかし、その殆どについて臨床試験では有効性が示されていない。このような状況において、リルゾール(Riluzole、リルテック(登録商標))がALS治療剤として製造承認されている。
 ALSなどの運動ニューロン疾患の治療剤を開示するものとして、例えば、特許文献1が挙げられる。特許文献1には、Ser-Ala-Leu-Arg-Ser-Ile-Pro-Alaで示されるオリゴペプチドを有効成分として含有する運動ニューロン疾患治療剤が開示されている。また、特許文献2には、SBMAについて、トリプタンを有効成分として含有する球脊髄性筋萎縮症治療薬が開示されている。
 一方、Srcは、がん原遺伝子として知られており、非受容体体型チロシンキナーゼタンパク質である。1970年代に、哺乳動物の遺伝子にもSrcが存在することが発見され、正常細胞が持つSrc遺伝子の変異が細胞の癌化を引き起こすことが知られるようになった。
 ヒトの腫瘍ではSrcの遺伝子変異はほとんどみられないものの、結腸、肝臓、肺、乳房、膵臓、前立腺、血液などの腫瘍でSrcの活性化がみられ、血管新生、増殖、浸潤経路を促進する。そのSrcの阻害剤は、慢性骨髄性白血病(CML)や急性リンパ性白血病(ALL)の治療剤として開発されている。
 このように、Srcは、癌との関係では一般に知られているが、運動ニューロン疾患との関係は知られていない。
国際公開第2005/099741号 国際公開第2011/068208号
 前記の通り、運動ニューロン疾患は呼吸不全などにより致命的な経過を辿る難治性疾患である。その分子病態は不明であり、根本的治療法は見出されていない。その一つの要因として、運動ニューロン疾患では様々な分子異常が生じているものの、病態の根幹に寄与する本質的分子メカニズムが明らかになっていないことが考えられる。
 本発明は、運動ニューロン疾患の早期病態に強く寄与する細胞内シグナルを同定し、その異常シグナルを是正する化合物により、運動ニューロン疾患を治療することに関するものである。本発明の具体的な課題としては、例えば、新規な運動ニューロン疾患治療剤を提供することを挙げることができる。
 本発明者らは、Bio-Plexマルチプレックスシステムを用いて、運動ニューロン疾患を呈する病態モデルマウスの脊髄および骨格筋の経時的かつ網羅的なシグナル解析を行ったところ、SBMAモデルマウスの脊髄において、Srcのリン酸化が発症前から発症後期まで一貫して上昇していること、骨格筋においても発症前や発症前期で上昇していること、さらにSrcの下流に存在するStat3のリン酸化が発症前から脊髄や骨格筋で上昇し、SrcシグナルがSBMAの病態に大きく関連していることを突き止めた。また、ALSモデルマウスの脊髄や骨格筋でも発症前にリン酸化の上昇を認めた。こうした知見に基づき、鋭意研究を重ねた結果、Src阻害薬が運動ニューロン疾患の治療に有効であることを見出し、本発明を完成するに到った。
 本発明として、例えば、下記を挙げることができる。
[1]Src阻害薬を有効成分として含有することを特徴とする、運動ニューロン疾患治療剤。
[2]運動ニューロン疾患が、球脊髄性筋萎縮症(SBMA)、筋萎縮性側索硬化症(ALS)、または脊髄性筋萎縮症(SMA)である、上記[1]に記載の治療剤。
[3]Src阻害薬が、次の一般式(1)で表される化合物またはその医薬上許容される塩である、上記[1]または[2]に記載の治療剤。
Figure JPOXMLDOC01-appb-C000002
 式(1)中、Rは、H、置換基を有していてもよいアルキル、置換基を有していてもよいアリール、または置換基を有していてもよいヘテロアリールを表す。Rは、Hを表す。Rは、Hまたは置換基を有していてもよいアルキルを表す。
 XおよびYは、XがHを表し、Yが置換基を有していてもよいヘテロシクロアルキルを表すか、またはXとYとが一緒になって-C(R)=C(R)-C(R)=C(R)-、-C(R)=C(R)-N(R)-、または-C(R)=N-N(R)-を表す。Rは、H、置換基を有していてもよいアリール、または置換基を有していてもよいヘテロシクロアルキルオキシを表す。R、R、およびRは、同一または異なって、Hまたは置換基を有していてもよいアルコキシを表す。Rは、H、置換基を有していてもよいアルキル、または置換基を有していてもよいシクロアルキルを表す。
[4]Src阻害薬が、SKI-1、PP2、A419259、サラカチニブ(Saracatinib)、もしくはダサチニブ(Dasatinib)、またはそれらの医薬上許容される塩である、上記[1]~[3]のいずれか一項に記載の治療剤。
[5]Src阻害薬をヒトに投与することを含む、運動ニューロン疾患の治療方法。
[6]運動ニューロン疾患が、球脊髄性筋萎縮症(SBMA)、筋萎縮性側索硬化症(ALS)、または脊髄性筋萎縮症(SMA)である、上記[5]に記載の治療方法。
[7]Src阻害薬が、前記一般式(1)で表される化合物またはその医薬上許容される塩である、上記[5]または[6]に記載の治療方法。
[8]Src阻害薬が、SKI-1、PP2、A419259、サラカチニブ(Saracatinib)、もしくはダサチニブ(Dasatinib)、またはそれらの医薬上許容される塩である、上記[5]~[7]のいずれか一項に記載の治療方法。
 本発明によれば、運動ニューロン疾患(特にSBMAやALS)を効果的に治療することができる。
A図は、マウス脊髄を用いたウエスタンブロットによる電気泳動写真である。上3段は発症前(6週齢)の結果を、中3段は発症前期(9週齢)の結果を、下3段は発症後期(13週齢)の結果を、それぞれ示す。また、各バンドにおいて、左4列は野生型マウスの結果を、右4列はSBMAモデルマウス(AR-97Q)の結果を、それぞれ示す。B図は、A図におけるウエスタンブロットのバンドの定量結果を表す。縦軸は、Srcの総タンパク量あたりのSrcのリン酸化タンパク量の比を示す(p-Src/Src)。左グラフは発症前(6週齢)の結果を、中グラフは発症前期(9週齢)の結果を、右グラフは発症後期(13週齢)の結果を、それぞれ示す。各グラフにおいて、左カラムは野生型マウスの結果を、右カラムはSBMAモデルマウス(AR-97Q)の結果を、それぞれ示す。C図は、発症前(6週齢)のSBMAモデルマウス(AR-97Q)におけるリン酸化Srcの免疫染色の写真である。左写真は野生型マウスの結果を、右写真はSBMAモデルマウス(AR-97Q)の結果を、それぞれ示す。 A図は、マウス骨格筋を用いたウエスタンブロットによる電気泳動写真である。上3段は発症前(6週齢)の結果を、中3段は発症前期(9週齢)の結果を、下3段は発症後期(13週齢)の結果を、それぞれ示す。また、各バンドにおいて、左4列は野生型マウスの結果を、右4列はSBMAモデルマウス(AR-97Q)の結果を、それぞれ示す。B図は、A図におけるウエスタンブロットのバンドの定量結果を表す。縦軸は、Srcの総タンパク量あたりのSrcのリン酸化タンパク量の比を示す(p-Src/Src)。左グラフは発症前(6週齢)の結果を、中グラフは発症前期(9週齢)の結果を、右グラフは発症後期(13週齢)の結果を、それぞれ示す。各グラフにおいて、左カラムは野生型マウスの結果を、右カラムはSBMAモデルマウス(AR-97Q)の結果を、それぞれ示す。C図は、発症前(6週齢)のSBMAモデルマウス(AR-97Q)におけるリン酸化Srcの免疫染色の写真である。左写真は野生型マウスの結果を、右写真はSBMAモデルマウス(AR-97Q)の結果を、それぞれ示す。
上側の2図は、SBMA細胞モデル(NSC34)を用いたウエスタンブロットによる電気泳動写真である。当該2図において、左4列はコントロール細胞モデル(AR-24Q)の結果を、右4列はSBMA細胞モデル(AR-97Q)の結果を、それぞれ示す。下側のグラフは、上側の2図におけるウエスタンブロットのバンドの定量結果を表す。縦軸は、Srcの総タンパク量あたりのSrcのリン酸化タンパク量の比を示す(p-Src/Src)。左2カラムはコントロール細胞モデル(AR-24Q)の結果を、右2カラムはSBMA細胞モデル(AR-97Q)の結果を、それぞれ示す。
上側の2図は、SBMA細胞モデル(C2C12)を用いたウエスタンブロットによる電気泳動写真である。当該2図において、中央から左の列はコントロール細胞モデル(AR-24Q)の結果を、中央から右列はSBMA細胞モデル(AR-97Q)の結果を、それぞれ示す。下側のグラフは、上側の2図におけるウエスタンブロットのバンドの定量結果を表す。縦軸は、Srcの総タンパク量あたりのSrcのリン酸化タンパク量の比を示す(p-Src/Src)。左2カラムは、コントロール細胞モデル(AR-24Q)の結果を、右2カラムは、SBMA細胞モデル(AR-97Q)の結果を、それぞれ示す。 SBMA細胞モデル(NSC34)におけるSrc阻害薬の効果を表す。左端グラフはSKI-1の結果を、左から2番目のグラフはPP2の結果を、右から2番目のグラフはA419259三塩酸塩の結果を、右端グラフはサラカチニブの結果を、それぞれ示す。各グラフにおいて、縦軸は細胞生存割合を示す。また、各グラフにおいて、左端カラムはコントロール細胞モデル(AR-24Q)の結果を、真ん中と右カラムはSBMA細胞モデル(AR-97Q)の結果を、それぞれ示す。 SBMA細胞モデル(C2C12)におけるSrc阻害薬の効果を表す。左端グラフはSKI-1の結果を、左から2番目のグラフはPP2の結果を、右から2番目のグラフはA419259三塩酸塩の結果を、右端グラフはサラカチニブの結果を、それぞれ示す。各グラフにおいて、縦軸は細胞生存割合を示す。また、各グラフにおいて、左端カラムはコントロール細胞モデル(AR-24Q)の結果を、真ん中と右カラムはSBMA細胞モデル(AR-97Q)の結果を、それぞれ示す。
SBMA細胞モデル(NSC34)におけるSrcの一過性強制発現の結果を表す。右側の2図は、ウエスタンブロットによる電気泳動写真である。その中、上側の図はコントロール細胞モデル(AR-24Q)の結果を、下側の図はSBMA細胞モデル(AR-97Q)の結果を、それぞれ示す。左側のグラフは、コントロール細胞モデルとSBMA細胞モデルにおけるSrcの一過性強制発現の効果を表す。縦軸は細胞生存割合を示す。また、当該グラフにおいて、左2カラムはコントロール細胞モデル(AR-24Q)の結果を、右2カラムはSBMA細胞モデル(AR-97Q)の結果を、それぞれ示す。 SBMA細胞モデル(C2C12)におけるSrcの一過性強制発現の結果を表す。右側の2図は、ウエスタンブロットによる電気泳動写真である。その中、上側の図はコントロール細胞モデル(AR-24Q)の結果を、下側の図はSBMA細胞モデル(AR-97Q)の結果を、それぞれ示す。左側のグラフは、コントロール細胞モデルとSBMA細胞モデルにおけるSrcの一過性強制発現の効果を表す。縦軸は細胞生存割合を示す。また、当該グラフにおいて、左2カラムはコントロール細胞モデル(AR-24Q)の結果を、右2カラムはSBMA細胞モデル(AR-97Q)の結果を、それぞれ示す。
ウエスタンブロットによる電気泳動写真である。当該バンドにおいて、左3列はSBMAモデルマウスの脊髄における結果を、右3列はSBMAモデルマウスの骨格筋における結果を、それぞれ示す。当該2図において、左列(0)はHO投与群の結果を、中列(B)は0.5mg/kg/dayのA419259三塩酸塩投与群の結果を、右列(A)は5mg/kg/dayのA419259三塩酸塩投与群の結果を、それぞれ示す。 SBMAマウスモデルにおけるSrc阻害薬(A419259三塩酸塩)の効果を表す。左端グラフは、体重の推移を表す。縦軸は体重(g)を、横軸は時間(週)を、それぞれ示す。左から2つ目のグラフは、握力の推移を表す。縦軸は握力(g)を、横軸は時間(週)を、それぞれ示す。右から2つ目のグラフは、運動機能の推移を表す。縦軸は時間(秒)を、横軸は時間(週)を、それぞれ示す。右端グラフは、累積生存率の推移を表す。横軸は時間(週)を示す。また、各グラフにおいて、淡実線はSrc阻害薬の投与群(N=21)の結果を、濃実線は対照群(N=19)の結果を、それぞれ示す。
免疫染色の写真である。左側の2写真はSBMAマウスモデルの対照群の結果を、右側の2写真はSBMAマウスモデルへのSrc阻害薬投与群の結果を、それぞれ示す。 ポリグルタミン(1C2)陽性細胞の増加度合いを表す。右側の4写真は、免疫染色の写真である。当該写真において、左2写真はSBMAマウスモデルの対照群(脊髄および骨格筋)の結果を、右2写真はSBMAマウスモデルへのSrc阻害薬投与群(脊髄および骨格筋)の結果を、それぞれ示す。左側の2つのグラフは、上記免疫染色写真の結果をグラフに表したものである。左グラフは脊髄での結果を、右グラフは骨格筋での結果を、それぞれ示す。各グラフにおいて、縦軸はポリグルタミン(1C2)陽性細胞の割合(%)を示す。また、各グラフにおいて、左カラムはSBMAマウスモデルの対照群の結果を、右カラムはSBMAマウスモデルへのSrc阻害薬投与群の結果を、それぞれ示す。
 本発明に係る運動ニューロン疾患治療剤(以下、「本発明治療剤」ともいう。)は、Src阻害薬を有効成分として含有することを特徴とする。
 本発明治療剤が対象とする運動ニューロン疾患は、上位および下位の運動ニューロン疾患であっても、下位運動ニューロンのみの疾患であっても特に制限されない。具体的には、筋萎縮性側索硬化症(ALS)、球脊髄性筋萎縮症(SBMA)、脊髄性筋萎縮症(SMA)を挙げることができる。本発明治療剤は、特にSBMAの治療に好ましい。
 本発明治療剤に含まれるSrc阻害薬としては、Srcを効果的に阻害するものであれば特に制限されないが、例えば、前記一般式(1)で表される化合物(以下、「Src化合物(1)」という。)を挙げることができる。
 ここで、Src化合物(1)における置換基について、以下に説明する。
 「アリール」としては、例えば、炭素数6~12の芳香族炭化水素基を挙げることができ、具体的には、フェニル、トリル、キシリル、ナフチルを挙げることができる。「置換基を有していてもよいアリール」における置換基としては、例えば、アルコキシ、ハロゲン、フェノキシの他、2価の基であるメチレンジオキシ、エチレンジオキシ等であって、アリール上の隣接する2つの炭素原子に置換されるものを挙げることができる。これらが任意の位置に1以上置換されうる。置換アリール基の具体例としては、5-クロロ-2,3-ベンゾジオキソール-4-イルが挙げられる。
 「ヘテロアリール」としては、例えば、炭素数3~10、酸素原子0~1、硫黄原子0~1、窒素原子0~2で構成されるものを挙げることができ、具体的には、例えば、2-ピリジル、2-フリル、1,3-チアゾール-2-イルを挙げることができる。「置換基を有していてもよいヘテロアリール」における置換基としては、上記「置換基を有していてもよいアリール」における置換基と同様のものが挙げられ、より具体的には、例えば、N-(2-クロロ-6-メチルフェニル)-1,3-チアゾール-5-カルボキサミド-2-イルが挙げられる。
 「アルキル」としては、例えば、炭素数1~4の直鎖状または分岐鎖状のアルキルを挙げることができ、具体的には、メチル、エチル、n-プロピル、イソプロピル、プロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチルを挙げることができる。「置換基を有していてもよいアルキル」の置換基としては、例えば、水酸基、アルコキシ、ハロゲン原子等が挙げられる。
 「シクロアルキル」としては、例えば、炭素数3~8のシクロアルキルを挙げることができ、具体的には、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチルを挙げることができる。「置換基を有していてもよいシクロアルキル」における置換基としては、例えば、アルキル、ピペリジル、ピペラジニル、4-メチル-1-ピペラジニルを挙げることができる。これらが任意の位置に1以上置換されうる。
 「ヘテロシクロアルキル」としては、例えば、炭素数3~8のシクロアルキルの構成炭素原子の1以上が窒素、酸素または硫黄のようなヘテロ原子に置き換わったものを挙げることができる。具体的には、例えば、テトラヒドロフラニル、オキサニル、オキソラニル、モルホリニル、テトラヒドロ-2H-ピラン-4-イル、ピペラジニルを挙げることができる。「置換基を有していてもよいヘテロシクロアルキル」の置換基としては、例えば、アルキルが挙げられ、当該アルキルは水酸基、ハロゲン原子等で置換されていてもよい。
 「ヘテロシクロアルキルオキシ」は、酸素原子の1つの結合手に上記ヘテロシクロアルキルが結合した基を表し、「置換基を有していてもよいヘテロシクロアルキルオキシ」における置換基としては、例えば、アルキル、アルコキシを挙げることができる。
 「アルコキシ」としては、例えば、炭素数1~4の直鎖状または分岐鎖状のアルキルを挙げることができ、具体的には、メトキシ、エトキシ、プロポキシを挙げることができる。「置換基を有していてもよいアルコキシ」における置換基としては、例えば、4-メチル-1-ピペラジニルを挙げることができる。これらが任意の位置に1以上置換されうる。
 「ハロゲン」としては、例えば、フッ素、塩素、臭素、ヨウ素を挙げることができる。
 より具体的なSrc化合物(1)としては、例えば、SKI-1、PP2、A419259、サラカチニブ(Saracatinib)、ダサチニブ(Dasatinib)を挙げることができる。これらは、いずれもSrc阻害作用を有することが知られている公知化合物であり、それぞれ下記のような構造を有する。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 Src化合物(1)には、立体異性体や光学異性体が存在しうる。
 また、Src化合物(1)の医薬上許容される塩としては、医薬上許容されるものであれば特に制限されないが、例えば、塩酸塩、硫酸塩、硝酸塩、リン酸塩、炭酸塩、炭酸水素塩、臭化水素酸塩、ヨウ化水素酸塩などの無機酸塩、ギ酸塩、酢酸塩、プロピオン酸塩、トリフルオロ酢酸塩、クエン酸塩、乳酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩、フマル酸塩、マンデル酸塩、グルタル酸塩、リンゴ酸塩、安息香酸塩、フタル酸塩、アスコルビン酸塩、メタンスルホン酸塩、エタンスルホン酸塩、イセチオン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩、アスパラギン酸塩、グルタミン酸塩などの有機酸塩を挙げることができる。当該医薬上許容される塩には、水和物や溶媒和物も含まれる。これらの塩も含めて、以下、Src化合物(1)ともいう。
 Src化合物(1)およびその医薬上許容される塩は、それ自身公知の化合物を出発原料として、常法により製造することができる。また、Src化合物(1)によっては、試薬メーカー等から購入することもできる。
 本発明治療剤は、例えば、用いるSrc阻害薬を、そのまま又は医薬上許容される無毒性かつ不活性な担体中に、0.01~99.5重量%の範囲内で、好ましくは0.5~90重量%の範囲内で配合することによって製造することができる。
 上記担体として、固形、半固形又は液状の希釈剤、充填剤、その他の処方用の助剤を挙げることができる。これらを一種又は二種以上用いることができる。
 本発明治療剤の剤型としては、用いるSrc阻害薬などによって異なるが、例えば、固形又は液状の用量単位で、末剤、カプセル剤、錠剤、糖衣剤、顆粒剤、散剤、懸濁剤、液剤、シロップ剤、エリキシル剤、トローチ剤等の経口投与製剤、注射剤、点滴製剤、坐剤等の非経口投与製剤のいずれの形態をもとることができる。徐放性製剤であってもよい。注射剤は、用時調製の注射用キットないし点滴用キットであってもよい。
 末剤は、Src阻害薬を適当な細かさにすることにより製造することができる。
 散剤は、Src阻害薬を適当な細かさにし、次いで同様に細かくした医薬用担体、例えば、澱粉、マンニトールのような可食性炭水化物と混合することにより製造することができる。任意に風味剤、保存剤、分散剤、着色剤、香料等を添加することができる。
 カプセル剤は、まず上述のようにして粉末状となった末剤や散剤あるいは錠剤の項で述べるように顆粒化したものを、例えば、ゼラチンカプセルのようなカプセル外皮の中へ充填することにより製造することができる。滑沢剤や流動化剤、例えば、コロイド状のシリカ、タルク、ステアリン酸マグネシウム、ステアリン酸カルシウム、固形のポリエチレングリコールを粉末状のものに混合し、その後充填操作を行うことにより製造することもできる。崩壊剤や可溶化剤、例えば、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、低置換度ヒドロキシプロピルセルロース、クロスカルメロースナトリウム、カルボキシメチルスターチナトリウム、炭酸カルシウム、炭酸ナトリウムを添加すれば、カプセル剤が摂取されたときの医薬の有効性を改善することができる。また、Src阻害薬の微粉末を植物油、ポリエチレングリコール、グリセリン、界面活性剤中に懸濁分散し、これをゼラチンシートで包んで軟カプセル剤とすることもできる。
 錠剤は、賦形剤を加えて粉末混合物を作り、顆粒化もしくはスラグ化し、次いで崩壊剤又は滑沢剤を加えた後、打錠することにより製造することができる。
 粉末混合物は、適当に粉末化された物質を上述の希釈剤やベースと混合することにより製造することができる。必要に応じて、結合剤(例えば、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシプロピルメチルセルロース、ゼラチン、ポリビニルピロリドン、ポリビニルアルコール)、溶解遅延化剤(例えば、パラフィン)、再吸収剤(例えば、四級塩)、吸着剤(例えばベントナイト、カオリン)等を添加することができる。
 粉末混合物は、まず結合剤、例えば、シロップ、澱粉糊、アラビアゴム、セルロース溶液又は高分子物質溶液で湿らせ、攪拌混合し、これを乾燥、粉砕して顆粒とすることができる。このように粉末を顆粒化する代わりに、まず打錠機にかけた後、得られる不完全な形態のスラグを破砕して顆粒にすることも可能である。このようにして作られる顆粒に、滑沢剤としてステアリン酸、ステアリン酸塩、タルク、ミネラルオイル等を添加することにより、互いに付着することを防ぐことができる。
 また、錠剤は、上述のように顆粒化やスラグ化の工程を経ることなく、Src阻害薬を流動性の不活性担体と混合した後に直接打錠することによっても製造することができる。
 こうして製造された錠剤にフィルムコーティングや糖衣を施すことができる。シェラックの密閉被膜からなる透明又は半透明の保護被覆、糖や高分子材料の被覆及びワックスよりなる磨上被覆をも用いることができる。
 他の経口投与製剤、例えば、液剤、シロップ剤、トローチ剤、エリキシル剤もまたその一定量がSrc阻害薬の一定量を含有するように用量単位形態にすることができる。
 シロップ剤は、Src阻害薬を適当な香味水溶液に溶解して製造することができる。エリキシル剤は、非毒性のアルコール性担体を用いることにより製造することができる。
 懸濁剤は、Src阻害薬等を非毒性担体中に分散させることにより製造することができる。必要に応じて、可溶化剤や乳化剤(例えば、エトキシ化されたイソステアリルアルコール類、ポリオキシエチレンソルビトールエステル類)、保存剤、風味付与剤(例えば、ペパーミント油、サッカリン)等を添加することができる。
 必要であれば、経口投与のための用量単位処方をマイクロカプセル化することができる。当該処方はまた、被覆をしたり、高分子・ワックス等中に埋め込んだりすることにより作用時間の延長や持続放出をもたらすこともできる。
 非経口投与製剤は、皮下・筋肉又は静脈内注射用とした液状用量単位形態、例えば、溶液や懸濁液の形態をとることができる。当該非経口投与製剤は、Src阻害薬の一定量を、注射の目的に適合する非毒性の液状担体、例えば、水性や油性の媒体に懸濁し又は溶解し、次いで当該懸濁液又は溶液を滅菌することにより製造することができる。注射液を等張にするために非毒性の塩や塩溶液を添加することができる。また、安定剤、保存剤、乳化剤等を添加することもできる。同様に点滴製剤とすることもできる。
 坐剤は、Src阻害薬を低融点の水に可溶又は不溶の固体、例えば、ポリエチレングリコール、カカオ脂、半合成の油脂[例えば、ウイテプゾール(登録商標)]、高級エステル類(例えば、パルミチン酸ミリスチルエステル)又はそれらの混合物に溶解又は懸濁させて製造することができる。
 本発明治療剤におけるSrc阻害薬の投与量は、Src阻害薬の種類、疾患ないし障害の種類、体重、年齢等の患者の状態、剤形、投与方法、投与経路、症状の程度等によって異なる。一般には成人(体重60kg)に対して、Src阻害薬の用量として、1日当たり0.1mg/kg~10mg/kgの範囲内が適当であり、0.5mg/kg~5mg/kgの範囲内が好ましく、1mg/kg~3mg/kgの範囲内がより好ましい。場合によっては、これ以下でも足りるし、また逆にこれ以上の用量を必要とするときもある。
 本発明治療剤の投与方法としては、例えば、経口投与、静脈内投与、門脈内投与、皮下投与、点滴投与、局所投与(例、経粘膜投与、経鼻投与、吸入投与、経皮投与)を挙げることができる。投与回数は、有効成分の種類や用量、剤形、患者の状態等によって異なるが、例えば、1日1回~数回又は1日~数日間の間隔で投与することができる。
 本発明治療剤は、運動ニューロン疾患を予防するため、あるいは緩和、改善するためなどに用いることもできる。それ故、本発明に係る「治療剤」には、「予防剤」や「改善剤」等としての概念も含まれる。
 また、本発明には、Src阻害薬をヒトに投与することを含む、運動ニューロン疾患の治療方法(以下、「本発明治療方法」という。)も含まれる。
 本発明治療方法において、Src治療薬は、用いるSrc治療薬の種類などによっても異なるが、適当な剤型に調製してヒトに投与することができる。その投与量ないし用法用量、投与方法などは、前記したものを挙げることができる。
 次に試験例を掲げて本発明を更に詳しく説明するが、本発明はそれら試験例に限定されるものではない。
[試験例1]脊髄・骨格筋におけるSrcシグナル上昇の確認
(1)実験方法
 SBMAのマウスモデルであるヒト変異AR(アンドロゲン受容体)トランスジェニックマウス(AR-97Q)と、ALSのマウスモデルである変異SOD1トランスジェニックマウス(G93A)について、これらのモデルマウスの主として3つの病期(発症前、発症前期、発症後期)における脊髄と骨格筋とから抽出したタンパク質サンプルを用い、Bio-plex Pro Cell Signaling Assay(Bio-rad社製)を行った。SBMAマウスモデル(AR-97Q)は、「Katsuno,et al.,Neuron.2002」の記載に基づき、ヒト変異ARをBDF1マウスの受精卵にマイクロインジェクションすることにより作成した。SOD1トランスジェニックマウス(G93A)は、The Jackson laboratory(No.002726)より購入した。抗体ビーズの種類は、GAPDH対照酵素を含めて18種類準備した。脊髄と骨格筋はマウスから採取後直ちにドライアイスで冷却したアセトンにより凍結し、サンプル調製やアッセイのプロトコールはメーカーのものに従った。全ての反応が終了した後、Luminex(登録商標)200 xPONET(登録商標)3.1システム(Merck Millipore社製)で蛍光強度を測定した。
(2)結果
 SBMAマウスモデル(AR-97Q)の脊髄において、Srcは、野生型マウスと比較して発症前(6週齢)から発症後期(13週齢)まで一貫して有意差をもち上昇していた。またSrcは骨格筋においても発症前にリン酸化が上昇していた。さらにSrcの下流に存在するStat3も脊髄と骨格筋で発症前にリン酸化が有意に上昇していた。SOD1マウス(G93A)の脊髄と骨格筋においても、コントロールと比較して有意ではないもののSrcのリン酸化が1.2倍以上上昇していた。
(3)発症前にSBMAマウスモデルとALSマウスモデルの脊髄と骨格筋でSrcのリン酸化が上昇しており、Srcシグナルが両疾患に共通する早期病態シグナルである可能性が示された。
[試験例2]脊髄・骨格筋におけるSrcリン酸化の検討
(1)方法
1.ウエスタンブロット
 6週齢、9週齢、13週齢のSBMAモデルマウス(AR-97Q)から採取し凍結した脊髄と骨格筋を、バッファー(50mM Tris・HCl(pH 8.0)、150mM NaCl、1% Nonidet P-40、0.5% deoxycholate、0.1% SDS、1mM 2-mercaptoethanol、Halt Protease and Phosphatase Inhibitor Cocktail(ThermoScientific社製,Waltham,MA,USA))を用いてホモジナイズした。その後超音波処理を行い、2500×gで15分間遠心した。上清を回収し、DCTM protein assay regent(Bio-rad社製)を用いてタンパク濃度を測定した。タンパク濃度を調整した上で試料用緩衝液(2ME+)(Wako社製)と混合し、95℃で5分間denatureした。サンプルを各々同量ずつゲル(SuperSepTMAce,5-20%,17well(Wako社製))にアプライし、イージーセパレーターTM(Wako社製)で200V、70分間電気泳動を行った。その結果を図1(A)(脊髄)、図2(A)(骨格筋)に示す。
 その後、タンク式ブロッティング装置(Bio-rad社製)によりImmobilon-P transfer membrane(Merck Millipore社製)へ転写した。2%アルブミン溶液で1時間撹拌しブロッキングを行い、一次抗体としてphospho-Src Family(Tyr416)抗体(Cell signaling Technology社製、#2123、1:1000)、Src抗体(Cell signaling Technology社製、#2123、1:1000)、glyceraldehyde-3-phosphate dehydrogenase(GAPDH)抗体(Merck Millipore社製、MAB374、1:2000)を用いた。二次抗体はECLTM Rabbit IgG(GE Healthcare社製、NA9340)もしくはECLTM Mouse IgG(GE Healthcare社製、NA9310)を用い、ECLTM Prime Western Blotting Detection Reagent(GE Healthcare社製、RPN2232)によりシグナルを増強させ、LAS-3000 imaging system(富士フィルム社製)で検出した。その後IMAGE GAUGE software version 4.22 (富士フィルム社製)でbandの定量を行い、SPSS Statistics 24(IBM社製)で統計解析した。その結果を図1(B)(脊髄)、図2(B)(骨格筋)に示す。
2.免疫染色
 6週齢のSBMAモデルマウス(AR-97Q)から脊髄と骨格筋を採取後、10%中性緩衝ホルマリン液で後固定しパラフィンで包埋した。脊髄の染色にはphospho-Src抗体(santa cruz社製、sc-101802、1:500)、骨格筋の染色にはphospho-Src抗体(Abcam社製、ab47411、1:1000)を用いた。二次抗体はDako Envision+ System- HRP Labelled Polymer Anti-Rabbit(Dako社製、K4003)を使用し、DAB+ Chromogen(Dako社製、K3468)で発色した。その結果を図1(C)(脊髄)、図2(C)(骨格筋)に示す。
(2)結果
 図1(A)および図1(B)に示した通り、ウエスタンブロットによる脊髄の解析では、SBMAマウスモデルの脊髄で6週齢、9週齢、13週齢とも野生型マウスと比較してSrcのリン酸化が上昇していた。なお、リン酸化タンパク量は、ウエスタンブロットの総タンパク量あたりのリン酸化タンパク量の比により評価した。
 また、図1(C)に示した通り、リン酸化Srcの免疫染色では、6週齢のSBMAマウスモデル(AR-97Q)の脊髄ではコントロール(Wt)と比較して、運動ニューロンの細胞質にリン酸化Srcの発現がより強かった。
 図2(A)および図2(B)に示した通り、ウエスタンブロットによる骨格筋の解析では、6週齢、9週齢で野生型マウスと比較してSrcのリン酸化が上昇し、13週齢では低下していた。また、図2(C)に示した通り、リン酸化Srcの免疫染色では、6週齢のSBMAマウスモデル(AR-97Q)の骨格筋ではコントロール(Wt)と比較して、骨格筋の細胞質にリン酸化Srcの発現がより強かった。
(3)ウエスタンブロットと免疫染色の結果は、試験例1に係るBio-plex Pro Cell Signaling Assayの結果と同様であり、リン酸化SrcはSBMAマウスモデルの脊髄と骨格筋において発症前から上昇していることが確認された。
[試験例3]神経幹細胞および筋芽細胞におけるSrcリン酸化の検討
(1)実験方法
 マウス神経幹細胞であるNSCとマウス筋芽細胞であるC2C12に、24個もしくは97個のCAG繰り返し配列を有するfull length アンドロゲン(AR)(AR-24QまたはAR-97Q)をLipofectamine2000(Invitrogen社製)を用いてトランスフェクションした。AR-97QはSBMA細胞モデル、AR-24Qはコントロール細胞モデルとして用いた。プロトコールはメーカーのものに従った。トランスフェクションの翌日に、各細胞の培養液中にG418 disulfate salt solution(Sigma社製、G8168)が400μg/mLになるように添加し、5日~7日毎に継代を繰り返し、単一細胞のコロニーを複数ピックアップした。それぞれのコロニーをD-MEMで培養後、最終濃度10nMの5α-Dihydrotestosterone(DHT)(Sigma社製)を添加し、24時間後に細胞を回収した。ウエスタンブロットによりfull length ARの発現量やDHTに対する反応を確認して安定発現株を作成した。
 これらのSBMA細胞モデルとコントロール細胞モデルを、NSC34は2.0×10個/mL、C2C12は1.5×10個/mLの濃度に調整し、10%FCS添加D-MEM培地を用いて24ウエルプレートに播種した。翌日にNSC34は1%FCS添加D-MEM培地に、C2C12は2%馬血清添加D-MEM培地に交換し48時間培養した。10nMのDHT(コントロールにはエタノールを使用した)を添加しさらに24時間培養後、細胞を回収しウエスタンブロットを行った。一次抗体としてphospho-Src Family抗体(Cell signaling Technology社製、#2123、1:1000)、Src抗体(Cell signaling Technology社製、#2123、1:1000)、GAPDH抗体(Merck Millipore社製、MAB374、1:2000)を用いた。その結果を図3および図4に示す。
(2)結果
 図3および図4に示した通り、NSC34とC2C12共に、コントロール細胞モデル(AR-24Q)と比較してSBMA細胞モデル(AR-97Q)においてリン酸化Srcの発現が上昇し、SBMA細胞モデル(AR-97Q)にDHTを添加するとリン酸化Srcはさらに上昇した。
(3)SBMA細胞モデルではコントロール細胞モデルと比較してリン酸化Srcが上昇しており、SBMAマウスモデルにおける変化(野生型マウスと比較してリン酸化Srcが上昇)と同様であった。
[試験例4]SBMA細胞モデルにおけるSrc阻害薬の効果検証
(1)実験方法
 NSC34(AR-24Q、AR-97Q)は2.0×10個/mLの濃度に、C2C12(AR-24Q、AR-97Q)は1.5×10個/mLの濃度に、それぞれ調整し、10%FCS添加D-MEM培地を用いて24ウエルプレートに播種した。翌日、NSC34は1%FCS添加D-MEM培地に、C2C12は2%馬血清添加D-MEM培地に交換し分化を48時間行った。Src kinase inhibitor(SKI)であるSKI-1(Abcams社製、ab120839)、PP2(Cayman社製、13198)、A419259三塩酸塩(Tocris社製、3914)、またはSaracatinib(ChemScene社、379231-04-6)をジメチルスルホキシド(DMSO)(Sigma社製)で溶解して0.1mMに調整し、D-MEM培地500μLに対して1μLの薬剤を投与して、最終濃度0.2μMになるようにSBMA細胞モデルに投与した。コントロール細胞モデルとSBMA細胞モデルを用いた対照群にはD-MEM培地500μLに対してDMSOを1μL投与した。さらにDHTを最終濃度が10nMになるように添加し、24時間培養した。Cell Counting Kit-8(同仁科学研究所社製)を各ウエルに50μL滴下混合し、4時間37℃下で培養した後、マルチモードプレートリーダーEnspire(PerkinElmer社製)により吸光度測定した。プロトコールはメーカーのものに従った。その結果を図5および図6に示す。
(2)結果
 図5、図6に示した通り、いずれのSrc阻害薬も、SBMA細胞モデル(神経・筋)の生存率を有意に改善した。従って、SBMA細胞モデルにおいて、Srcシグナル阻害は細胞活性を改善させることが明らかである。
[試験例5]SBMA細胞モデルにおけるSrcの一過性強制発現
(1)実験方法
 NSC34(AR-24Q、AR-97Q)は2.0×10個/mLの濃度に、C2C12(AR-24Q、AR-97Q)は1.5×10個/mLの濃度に、それぞれ調整し、10%FCS添加D-MEM培地を用いて24ウエルプレートに播種した。翌日にpcDNA3 c-SRC(Addgene社製 #42206)をLipofectamine2000(Invitrogen社製)を用いてトランスフェクションした。プロトコールはメーカーのものに従った。4時間後、NSC34は1%FCS添加D-MEM培地に、C2C12は2%馬血清添加D-MEM培地に交換した。24時間分化後、DHTを最終濃度が10nMになるように添加し、さらに24時間分化させた。そこでCell Counting Kit-8(同仁科学研究所社製)を各ウエルに50μL滴下混合し、4時間37℃下で培養した後、マルチモードプレートリーダーEnspire(PerkinElmer社製)にて吸光度を測定した。また同条件において細胞を回収してウエスタンブロットを行い、リン酸化Srcの発現量を確認した。その結果を図7および図8に示す。
(2)結果
 図7、図8に示した通り、AR-24QおよびAR-97Qにおいて、NSC34とC2C12ともSrcを一過性強制発現させると、Srcとリン酸化Srcの発現量は上昇し、細胞活性は有意に低下した。従って、SBMA細胞モデル(神経・筋)において、Srcシグナル活性化は細胞死を引き起こすことが明らかである。
[試験例6]SBMAマウスモデルにおけるSrc阻害薬の効果検証1
(1)実験方法
 Src阻害薬の一つであるA419259三塩酸塩10mgを1540μLの水に溶解し10mMに調整した。A:5mg/kg/dayもしくはB:0.5mg/kg/dayを一匹当たり300μLずつ腹腔内投与するようにさらに水で希釈した。6週齢のSBMAマウスモデルに対して一日おきに計3回腹腔内投与し、最終日の投与4時間後に解剖して脊髄と骨格筋を採取した。リン酸化SrcとSrcの他に、生存シグナルの代表的分子であるp-p42MAPK(Thr202/Tyr204)(Cell signaling Technology社製、#4370)、p42MAPK(Cell signaling Technology社製、#4695)、p-p38MAPK(Thr180/Tyr182)(Cell signaling Technology社製、#4511)、p38MAPK(Cell signaling Technology社製、#9212)の発現量もウエスタンブロットにより確認した。その結果を図9に示す。
(2)結果
 図9に示した通り、SBMAマウスモデルの脊髄と骨格筋とも、Src阻害薬であるA419259三塩酸塩の投与により、濃度依存的にリン酸化Srcの発現量が低下した。一方、p42MAPK、p38MAPKのリン酸化レベルと総タンパク量は変化しなかった。従って、A419259三塩酸塩は、SBMAモデルマウスの骨格筋だけでなく、脳血液関門を通過して脊髄にも到達しSrcシグナルを阻害することが明らかである。
[試験例7]SBMAマウスモデルにおけるSrc阻害薬の効果検証2
(1)実験方法
 A419259三塩酸塩を6週齢のSBMAマウスモデルに対して0.5mg/kg/dayずつ3日に一回腹腔内投与し、対照群(溶媒である水を腹腔内投与、N=19)とA419259三塩酸塩投与群(N=21)で、体重・握力・Rotarod試験・生存率を比較した。握力(Grip)は斉藤式マウス用握力測定装置(MUROMACHI社製)を用いて測定した。運動機能(Rotarod試験)は、Economex rotarod (Colombus Instruments社製)を用いて、回転(16/分)するロッド上に各マウスを3分間乗せ落下するまでの時間を測定した。体重、握力、運動機能については13週齢においてSPSS Statistics 24を用いてt検定を行った。また、各群のマウスの生存率をKaplan-Meierを用いてデータ解析した。その結果を図10に示す。
(2)結果
 図10に示した通り、体重、握力、運動機能、生存率の各評価において、Src阻害薬であるA419259三塩酸塩の投与により有意な改善効果を示した。従って、SBMAマウスモデルにおいて、Srcシグナル阻害は表現型を改善させることが明らかである。
[試験例8]SBMAマウスモデルにおけるSrc阻害薬の効果検証3
(1)実験方法
 SBMAマウスモデルに6週齢からA419259三塩酸塩を投与し、13週齢で解剖を行った。薄切した脊髄のパラフィン切片を電子レンジで賦活化し、Anti-Choline Aceetyltransferase(ChAT)(Merck Millipore社製、AB144P、1:2000)で免疫染色した。HE染色は骨格筋の凍結切片を準備し型通り行った。その結果を図11に示す。
(2)結果
 図11に示した通り、運動ニューロンサイズ(ChAT染色)、筋線維(HE染色)の大きさはA419259三塩酸塩の投与により改善した。従って、Src阻害薬であるA419259三塩酸塩はSBMAモデルマウスの運動ニューロンと骨格筋の萎縮を改善させることが明らかである。
[試験例9]SBMAマウスモデルにおけるSrc阻害薬の効果検証4
(1)実験方法
 SBMAマウスモデルに6週齢からA419259三塩酸塩を投与し、13週齢で解剖を行った。脊髄と骨格筋の薄切検体をギ酸で賦活化し、Polyglutamine(1C2)(Merck Millipore社製、MAB1574、1:20000)で染色した。脊髄のポリグルタミン(1C2)陽性細胞については、各群3匹ずつ10切片における前角の運動ニューロンを対象にして陽性細胞の割合を計算した。骨格筋については、各群3匹ずつ10切片における500線維以上の骨格筋の核を対象にして陽性細胞の割合を計算し、SPSS Statistics 24を用いてt検定を行った。その結果を図12に示す。
(2)結果
 図12に示した通り、1C2陽性細胞は、脊髄と骨格筋とも治療前後で変化はなかった。従って、Src阻害薬であるA419259三塩酸塩の作用点はポリグルタミンの凝集を減らすことではなく、ポリグルタミン凝集の下流であると考えられる。
 本発明治療剤は、SBMAやALS、SMAなどの運動ニューロン疾患を治療など行う場合に有用であるから、例えば医薬品産業において利用可能性がある。

Claims (8)

  1. Src阻害薬を有効成分として含有することを特徴とする、運動ニューロン疾患治療剤。
  2. 運動ニューロン疾患が、球脊髄性筋萎縮症(SBMA)、筋萎縮性側索硬化症(ALS)、または脊髄性筋萎縮症(SMA)である、請求項1に記載の治療剤。
  3. Src阻害薬が、次の一般式(1)で表される化合物またはその医薬上許容される塩である、請求項1または2に記載の治療剤。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、Rは、H、置換基を有していてもよいアルキル、置換基を有していてもよいアリール、または置換基を有していてもよいヘテロアリールを表す。Rは、Hを表す。Rは、Hまたは置換基を有していてもよいアルキルを表す。
     XおよびYは、XがHを表し、Yが置換基を有していてもよいヘテロシクロアルキルを表すか、またはXとYとが一緒になって-C(R)=C(R)-C(R)=C(R)-、-C(R)=C(R)-N(R)-、または-C(R)=N-N(R)-を表す。Rは、H、置換基を有していてもよいアリール、または置換基を有していてもよいヘテロシクロアルキルオキシを表す。R、R、およびRは、同一または異なって、Hまたは置換基を有していてもよいアルコキシを表す。Rは、H、置換基を有していてもよいアルキル、または置換基を有していてもよいシクロアルキルを表す。
  4. Src阻害薬が、SKI-1、PP2、A419259、サラカチニブ(Saracatinib)、もしくはダサチニブ(Dasatinib)、またはそれらの医薬上許容される塩である、請求項1~3のいずれか一項に記載の治療剤。
  5. Src阻害薬をヒトに投与することを含む、運動ニューロン疾患の治療方法。
  6. 運動ニューロン疾患が、球脊髄性筋萎縮症(SBMA)、筋萎縮性側索硬化症(ALS)、または脊髄性筋萎縮症(SMA)である、請求項5に記載の治療方法。
  7. Src阻害薬が、前記一般式(1)で表される化合物またはその医薬上許容される塩である、請求項5または6に記載の治療方法。
  8. Src阻害薬が、SKI-1、PP2、A419259、サラカチニブ(Saracatinib)、もしくはダサチニブ(Dasatinib)、またはそれらの医薬上許容される塩である、請求項5~7のいずれか一項に記載の治療方法。
PCT/JP2018/029333 2017-08-10 2018-08-06 運動ニューロン疾患治療剤 WO2019031425A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019535633A JPWO2019031425A1 (ja) 2017-08-10 2018-08-06 運動ニューロン疾患治療剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-154884 2017-08-10
JP2017154884 2017-08-10

Publications (1)

Publication Number Publication Date
WO2019031425A1 true WO2019031425A1 (ja) 2019-02-14

Family

ID=65271216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029333 WO2019031425A1 (ja) 2017-08-10 2018-08-06 運動ニューロン疾患治療剤

Country Status (2)

Country Link
JP (1) JPWO2019031425A1 (ja)
WO (1) WO2019031425A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020058072A1 (en) * 2018-09-18 2020-03-26 Société des Produits Nestlé S.A. Src inhibitor compounds for skeletal muscle modulation, methods and uses thereof
WO2022230851A1 (ja) * 2021-04-30 2022-11-03 国立大学法人東海国立大学機構 筋萎縮性側索硬化症の予防及び/又は治療剤

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015070071A2 (en) * 2013-11-08 2015-05-14 President And Fellows Of Harvard College Methods for promoting motor neuron survival

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015070071A2 (en) * 2013-11-08 2015-05-14 President And Fellows Of Harvard College Methods for promoting motor neuron survival

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BEAU, J. M. L. ET AL.: "Increased Expression of pp60c-src Protein-Tyrosine Kinase During Peripheral Nerve Regeneration", JOURNAL OF NEUROSCIENCE RESEARCH, vol. 28, 1991, pages 299 - 309, XP055692695 *
IMAMURA, K. ET AL.: "The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis", SCIENCE TRANSLATIONAL MEDICINE, vol. 9, no. eaaf3962, May 2017 (2017-05-01), pages 1 - 10, XP055618416, DOI: 10.1126/scitranslmed.aaf3962 *
IMAMURA, KEIKO ET AL.: "Src/c-Abl pathway on ALS treatment", CLINICAL IMMUNOLOGY & ALLERGOLOGY, vol. 69, no. 3, 25 March 2018 (2018-03-25), pages 303 - 306, ISSN: 1881-1930 *
KATSUMATA, R. ET AL.: "c-Abl Inhibition Delays Motor Neuron Degeneration in the G93A Mouse , an Animal Model of Amyotrophic Lateral Sclerosis", PLOS ONE, vol. 7, no. 9, e46185, 2012, pages 1 - 14, XP055370442 *
KIRIS, E. ET AL.: "Src Familiy Kinase Inhibitors Antagonize the Toxicity of Multiple Serotypes of Botulinum Neurotoxin in Human Embryonic Stem Cell -Derived Motor Neurons", NEUROTOXICITY RESEARCH, vol. 27, 2015, pages 384 - 398, XP035445550, DOI: 10.1007/s12640-015-9526-z *
MAKHORTOVA, N. R. ET AL.: "A screen for regulators of survival of motor neuron protein levels", NATURE CHEMICAL BIOLOGY, vol. 7, no. 8, 2011, pages 544 - 552, XP055161041, DOI: 10.1038/nchembio.595 *
TRIEU, V. N. ET AL.: "A Specific Inhibitor of Janus Kinase-3 Increases Survival in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 267, 2000, pages 22 - 25, XP001018912, DOI: 10.1006/bbrc.1999.1905 *
vol. 33, 30 October 2017 (2017-10-30), pages 3 - 7 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020058072A1 (en) * 2018-09-18 2020-03-26 Société des Produits Nestlé S.A. Src inhibitor compounds for skeletal muscle modulation, methods and uses thereof
WO2022230851A1 (ja) * 2021-04-30 2022-11-03 国立大学法人東海国立大学機構 筋萎縮性側索硬化症の予防及び/又は治療剤

Also Published As

Publication number Publication date
JPWO2019031425A1 (ja) 2020-08-13

Similar Documents

Publication Publication Date Title
Ma et al. The role of the unfolded protein response in tumour development: friend or foe?
TWI396532B (zh) 用視黃基衍生物治療眼疾之方法及組合物
JP2009508959A (ja) 認識機能の改善のためのロシグリタゾンおよびドネペジルの組合せ
JP2021113819A (ja) 皮膚におけるc−Jun N末端キナーゼの阻害の測定方法
CN105008394A (zh) 治疗结肠直肠癌的方法
JP2018198615A (ja) 疾病の発症又は進行の一因となる異常スプライシングを抑制できる物質のスクリーニング方法
US20200345746A1 (en) Oxazine Derivative for Use in the Prevention of Alzheimer's Disease in at Risk Patents
CA2961380A1 (en) Methods and compositions for treating psychotic disorders
WO2019031425A1 (ja) 運動ニューロン疾患治療剤
US20080027052A1 (en) Methods for treating cystic kidney disease
US20210403432A1 (en) Compositions and methods for suppressing and/or treating metabolic diseases and/or a clinical condition thereof
EP3316877B1 (en) Ado-resistant cysteamine analogs and uses thereof
JP2021500331A (ja) Tdp−43関連疾患の予防及び治療
EP2992879B1 (en) Pharmaceutical composition for inhibiting autophagy of motor neurons and use thereof
BR112019011334A2 (pt) uso de 5-[[4-[2-[5-(1-hidroxietil)piridin-2-il]etoxi]fenil]metil]-1,3-tiazolidina-2,4-diona e seus sais
CA3145661A1 (en) Composition for preventing or treating parkinson's disease comprising o-cyclic phytosphingosine-1-phosphate
JP2018538344A (ja) アリピプラゾール及びシロスタゾールを用いた医薬
JP2022507812A (ja) 神経変性、筋変性及びリソソーム蓄積障害を治療するための組成物及び方法
JP2010502644A (ja) Wrn結合分子を用いる治療方法
US9457016B2 (en) Methods for treating polycystic kidney disease
EP4316481A1 (en) Erdosteine, salts, enantiomers or metabolites thereof for use in the treatment of acute and chronic pain states
KR102535840B1 (ko) 2,3,5-치환된 싸이오펜 화합물의 위장관기질종양 예방, 개선 또는 치료 용도
JP7285599B2 (ja) 筋萎縮性側索硬化症治療剤及び治療用組成物
WO2016078044A1 (zh) 用于治疗癌症的药物组合物以及筛选药物的生物标记
KR100851678B1 (ko) Ppar-감마 수용체의 활성화에 반응하는 질병의 치료에유용한 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535633

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844598

Country of ref document: EP

Kind code of ref document: A1