WO2019031184A1 - 増幅回路 - Google Patents

増幅回路 Download PDF

Info

Publication number
WO2019031184A1
WO2019031184A1 PCT/JP2018/027077 JP2018027077W WO2019031184A1 WO 2019031184 A1 WO2019031184 A1 WO 2019031184A1 JP 2018027077 W JP2018027077 W JP 2018027077W WO 2019031184 A1 WO2019031184 A1 WO 2019031184A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
transistor
feedback
transistors
feedback circuit
Prior art date
Application number
PCT/JP2018/027077
Other languages
English (en)
French (fr)
Inventor
謙 若木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019031184A1 publication Critical patent/WO2019031184A1/ja
Priority to US16/783,423 priority Critical patent/US11290062B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • H03F1/223Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with MOSFET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45632Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit
    • H03F3/45636Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit by using feedback means
    • H03F3/45641Measuring at the loading circuit of the differential amplifier
    • H03F3/45659Controlling the loading circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to, for example, a low noise amplifier circuit, and more particularly to an amplifier circuit including a feedback circuit.
  • Patent Document 1 discloses an amplifier circuit in which a feedback circuit is connected between an input end and an output end of a transistor for which a signal is input from the outside to a signal input unit.
  • the amplifier circuit disclosed in Patent Document 1 can not switch the characteristics related to gain and linearity according to the use situation.
  • An object of the present invention is to provide an amplifier circuit capable of switching between high gain and high linearity depending on the use situation by switching the feedback circuit.
  • the amplification circuit of the present invention A first transistor to which a signal is externally input to a signal input unit, a load circuit connected between the first transistor and a power supply line, and any position between the load circuit and the first transistor A feedback circuit connected between the input terminal and the signal input of the first transistor,
  • the feedback circuit is a variable impedance circuit including a plurality of passive elements including a resistor, a capacitor, or an inductor, and a switch that switches connection states of the plurality of passive elements.
  • the feedback amount can be determined according to the state of the switch, whereby high gain and high linearity can be switched according to the use situation.
  • the feedback circuit preferably includes a plurality of switches that switch connection states of the plurality of passive elements. Thereby, the amount of feedback can be determined in multiple steps depending on the state of multiple switches, which makes it possible to switch between predetermined gains and linearity in multiple steps.
  • the feedback circuit, the first transistor, and the second transistor are preferably configured in a single die.
  • the amplification circuit with feedback circuit is completed by a single die, so that the amplification circuit can be miniaturized.
  • the feedback circuit is, for example, a feedback circuit connected between a plurality of places between the load circuit and the first transistor and the signal input unit. According to this configuration, it is possible to adjust (set) the linearity by selectively connecting the feedback circuit. For example, it is possible to adjust linearity linearly.
  • the first transistor may be formed of a transistor circuit including a plurality of transistors connected in parallel. This configuration also allows switching between high gain and high linearity depending on the usage situation.
  • the first transistor is formed of a transistor circuit formed of a plurality of transistors connected in parallel
  • the feedback circuit is formed of a plurality of feedback circuits connected to a plurality of transistors of the transistor circuit. This configuration also allows switching between high gain and high linearity depending on the usage situation.
  • the feedback circuit may not be connected to at least one of the plurality of transistors of the transistor circuit.
  • the first transistor is composed of a transistor circuit comprising a plurality of transistors connected in parallel,
  • the semiconductor device may further include a bias circuit that selectively supplies a bias voltage to the plurality of transistors.
  • the effective transistor size of the transistor circuit changes, which makes it possible to widen the characteristic setting range of gain and linearity.
  • the plurality of transistors include transistors having different gate width sizes.
  • the effective size of the first transistor can be set in multiple stages with a small number of transistors, and the characteristic setting range of gain and linearity can be easily broadened.
  • FIG. 1 is a circuit diagram of an amplifier circuit 101 according to the first embodiment.
  • FIG. 2A, FIG. 2B, FIG. 2C, and FIG. 2D are circuit diagrams showing examples of the circuit configuration of the feedback circuit 1.
  • FIG. 3 is a circuit diagram of an amplifier circuit 102 according to the second embodiment.
  • FIG. 4 is a plan view showing the internal structure of the chip of the amplifier circuit 102.
  • FIG. 5 is a circuit diagram of an amplifier circuit 103A according to the third embodiment.
  • FIG. 6 is a circuit diagram of another amplifier circuit 103B of the third embodiment.
  • FIG. 7 is a circuit diagram of still another amplifier circuit 103C of the third embodiment.
  • FIG. 8 is a circuit diagram of an amplifier circuit 104A according to the fourth embodiment.
  • FIG. 9 is a circuit diagram of another amplifier circuit 104B according to the fourth embodiment.
  • FIG. 10 is a circuit diagram of still another amplifier circuit 104C according to the fourth embodiment.
  • FIG. 1 is a circuit diagram of an amplifier circuit 101 according to the first embodiment.
  • the amplifier circuit 101 is an amplifier circuit including a first transistor M1 to which a signal is externally input to a signal input unit Pi, and a load inductor Ld connected between the first transistor M1 and a power supply line Vdd. is there.
  • the amplification circuit 101 is used, for example, as a low noise amplification circuit (LNA) at the first stage of a reception circuit for performing cellular communication.
  • LNA low noise amplification circuit
  • the first transistor M1 is an n-channel MOS-FET.
  • An inductor (feedback inductor) Ls is connected between the source of the first transistor M1 and the ground.
  • the load inductor Ld corresponds to the "load circuit” in the present invention.
  • a feedback circuit 1 is connected between a connection portion Po (the drain of the first transistor M1) between the load inductor Ld and the first transistor M1 and a signal input portion Pi (the gate of the first transistor M1) of the first transistor M1. ing.
  • a capacitor Ci is connected between the signal input terminal Pin of the amplifier circuit 101 and the gate of the first transistor M1. Further, a capacitor Co is connected between the signal output terminal Pout of the amplifier circuit 101 and the connection portion Po.
  • the amplification circuit 101 acts as a source-grounded amplification circuit.
  • the inductor Ls is connected between the source of the first transistor M1 and the ground, a source negative feedback circuit is configured.
  • FIGS. 2A, 2B, 2C, and 2D are circuit diagrams showing examples of the circuit configuration of the feedback circuit 1.
  • a series circuit including capacitors C11 and C12 and resistors R11 and R12, and a switch SW bypassing both ends of the resistor R11 are provided.
  • the example shown in FIG. 2B includes a series circuit including capacitors C11 and C12 and resistors R11, R12 and R13, and switches SW1, SW2 and SW3 bypassing respective ends of the resistors R11, R12 and R13.
  • a series circuit including capacitors C11 and C12 and a resistor R11, and a capacitor C13 connected in parallel to the capacitor C11 via a switch SW are provided.
  • the example shown in FIG. 2D includes a series circuit including a capacitor C11 and a resistor R11, a capacitor C13 connected in parallel to the capacitor C11 via the switch SW1, and a switch SW2 bypassing the resistor R11.
  • the switch is a semiconductor switch such as a transistor or a diode.
  • the feedback circuit is configured by the CR circuit.
  • the amount of feedback and its frequency characteristics are determined by the time constant of CR. Further, the amount of feedback is increased by turning on each of the switches. That is, each switch is a switch that switches the connection state of a plurality of passive elements.
  • the amount of feedback of the feedback circuit 1 can be adjusted by the connection state of the plurality of passive elements switched by the respective switches.
  • each switch may be a switch that switches whether to bypass at least one of the plurality of passive elements included in the feedback circuit 1, and it is not necessary to bypass the plurality of passive elements.
  • the number of the switches included in the feedback circuit 1 may be at least one, and the number of switches is, for example, two or more as shown in FIG. 2 (B) and FIG. 2 (D). It is also good.
  • the circuit configuration of the feedback circuit 1 is not limited to those shown in FIG. 2 (A), FIG. 2 (B), FIG. 2 (C) and FIG. 2 (D), and various modifications may be considered.
  • resistors and capacitors but also inductors may be included. However, it is important that one or more capacitors act as a DC blocking element so that the DC component does not conduct.
  • the feedback circuit 1 is connected between the connection portion Po of the load inductor Ld and the first transistor M1 and the signal input portion Pi of the first transistor M1, that is, Since the feedback path is formed without passing through the impedance matching circuit, the feedback circuit 1 can be configured simply.
  • the amount of feedback can be determined by the state of the switch of the feedback circuit 1, whereby predetermined gain and linearity can be obtained. That is, when the input signal is small and the gain is required more than the linearity, the feedback amount by the feedback circuit 1 is reduced, and when the input signal is large and the linearity more than the gain is required, the feedback circuit 1 Increase the feedback amount by
  • FIG. 3 is a circuit diagram of an amplifier circuit 102 according to the second embodiment.
  • the amplification circuit 102 includes a first transistor M1 to which a signal is externally input to the signal input unit Pi, a load inductor Ld connected between the first transistor M1 and the power supply line Vdd, a load inductor Ld, It is a cascode amplification circuit provided with the 2nd transistor M2 cascode-connected between 1 transistor M1. The gate of the second transistor M2 is grounded via the capacitor Cg. Others are as shown in the first embodiment.
  • the second transistor M2 acts as a high impedance load circuit for the first transistor M1
  • the amplifier circuit 102 acts as an amplifier circuit with low current consumption and high gain.
  • the feedback circuit 1 includes a series circuit of resistors R11 and R12, a capacitor C11, and a switch SW bypassing the resistor R11.
  • the switch SW When the switch SW is off, the feedback amount by the feedback circuit 1 is small, and acts as a high gain amplifier circuit.
  • the switch SW When the switch SW is on, the amount of feedback by the feedback circuit 1 is large, and acts as an amplifier circuit with high linearity.
  • FIG. 4 is a plan view showing the structure inside the chip of the amplifier circuit 102. As shown in FIG. A die 10 is provided inside the chip. On this die 10, the feedback circuit 1 and other parts (main parts of the amplification circuit 102) 2 shown in FIG. 3 are configured.
  • the feedback circuit 1 is configured in a single die together with the first transistor M1, the second transistor M2, and the like, so that the amplification circuit with the feedback circuit is completed with a single die, and thus the amplifier circuit is miniaturized. it can.
  • FIG. 5 is a circuit diagram of an amplifier circuit 103A according to the third embodiment.
  • the amplification circuit 103A includes a first transistor M1 to which a signal is externally input to a signal input unit Pi, a load inductor Ld connected between the first transistor M1 and a power supply line Vdd, a load inductor Ld, and It is a cascode amplification circuit provided with the 2nd transistor M2 cascode-connected between 1 transistor M1. The gate of the second transistor M2 is grounded via the capacitor Cg.
  • An inductor (feedback inductor) Ls is connected between the source of the first transistor M1 and the ground.
  • a feedback circuit 1 is connected between a connection P2 (the drain of the second transistor M2) between the load inductor Ld and the second transistor M2 and the signal input Pi of the first transistor M1 (the gate of the first transistor M1). There is.
  • a capacitor Ci is connected between the signal input terminal Pin of the amplifier circuit 103A and the gate of the first transistor M1.
  • a capacitor Co is connected between the signal output terminal Pout of the amplifier circuit 103A and the connection portion P2.
  • one end of the feedback circuit 1 may be connected to the connection point between the load inductor Ld and the second transistor M2.
  • FIG. 6 is a circuit diagram of another amplifier circuit 103B of this embodiment.
  • the amplifier circuit 103B includes two feedback circuits 1A and 1B.
  • the feedback circuit 1A is connected between a connection portion P1 of the first transistor M1 and the second transistor M2 (the drain of the first transistor M1) and a signal input portion Pi of the first transistor M1 (the gate of the first transistor M1). ing.
  • the feedback circuit 1B is connected between the connection P2 (the drain of the second transistor M2) of the load inductor Ld and the second transistor M2 and the signal input Pi of the first transistor M1 (the gate of the first transistor M1) There is.
  • the feedback circuit 1A includes resistors R11A and R12A, a capacitor C11A, and a switch SWA.
  • the feedback circuit 1B is composed of resistors R11B and R12B, a capacitor C11B and a switch SWB.
  • FIG. 7 is a circuit diagram of another amplifier circuit 103C of this embodiment.
  • the feedback circuit 1 of the amplifier circuit 103C is composed of resistors R11A, R12A, R11B and R12B, a capacitor C11, and switches SWA and SWB.
  • the capacitor C11 corresponds to the capacitors C11A and C11B shown in FIG. 6 (also serves as two capacitors). The other configuration is as shown in FIG.
  • FIGS. 6 and 7 it is possible to provide a feedback circuit connected between a plurality of points (P1, P2) between the load inductor Ld and the first transistor M1 and the signal input part Pi.
  • This configuration also provides high gain and high linearity.
  • the connection of the selective feedback circuit can adjust the linearity. For example, it is possible to adjust linearity linearly.
  • FIG. 8 is a circuit diagram of an amplifier circuit 104A according to the fourth embodiment.
  • the amplification circuit 104A is a load circuit formed by a parallel circuit of a load inductor Ld and a capacitor Cd connected between the first transistor circuit MM1 to which a signal is externally input, and the first transistor circuit MM1 and the power supply line Vdd.
  • a second transistor M2 cascode-connected between the load circuit and the first transistor circuit MM1. The gate of the second transistor M2 is grounded via the capacitor Cg.
  • An inductor (feedback inductor) Ls is connected between the source of the first transistor circuit MM1 and the ground.
  • the first transistor circuit MM1 is composed of a plurality of transistors M11, M12... M13 connected in parallel.
  • the gates of the transistors M11, M12 and M13 are connected to the signal input terminal Pin via the capacitors Ci1, Ci2 and Ci3, respectively.
  • a feedback circuit 1A is connected between the drain and gate of the transistor M11, a feedback circuit 1B is connected between the drain and gate of the transistor M12, and a feedback circuit 1C is connected between the drain and gate of the transistor M13. Is connected.
  • the gates of the transistors M11, M12 and M13 are connected to the bias circuit 3 via the resistors R1, R2 and R3.
  • the bias circuit 3 applies a bias voltage to the gates of the transistors M11, M12, and M13 so that the transistors M11, M12, and M13 selectively enter the active state / non-active state.
  • the gate voltage Vg 0 is set to non-active, and a predetermined positive voltage is applied to the gate to set the active state.
  • the transistor in the non-active state is cut off, and the drain and source are substantially open.
  • FIG. 9 is a circuit diagram of another amplifier circuit 104B according to the fourth embodiment.
  • the connection configuration of the feedback circuit is different from that of the amplification circuit 104A shown in FIG.
  • the first transistor circuit MM1 of the amplifier circuit 104B is provided with a transistor not connected to the feedback circuit.
  • the other configuration is as shown in FIG.
  • the feedback circuit 1A is connected between the drain and gate of the transistor M11, and the feedback circuit 1C is connected between the drain and gate of the transistor M13.
  • the feedback circuit is not connected. According to this configuration, it is possible to adjust (set) the linearity by selectively connecting the feedback circuit. For example, it is possible to adjust linearity linearly.
  • the number of transistors connected in parallel can be switched by selectively supplying a bias voltage to the plurality of transistors M11, M12,... M13.
  • the effective transistor size (equivalent size) of the first transistor circuit MM1 can be changed to thereby determine the gain and the linearity. That is, when the input signal is small and the gain is required more than linearity (in the case of gain emphasis), the number of transistors to be operated among the plurality of transistors M11, M12. In the case where linearity is required rather than gain (in the case of emphasis on linearity), the number of transistors to be operated among the plurality of transistors M11, M12... M13 is reduced.
  • FIG. 10 is a circuit diagram of still another amplifier circuit 104C according to the fourth embodiment.
  • the configuration of the first transistor circuit MM1 and the connection configuration of the feedback circuit are different from those of the amplifier circuits 104A and 104B shown in FIGS.
  • the feedback circuit 1 is connected between the connection portion P1 of the first transistor circuit MM1 and the second transistor M2 and the signal input portion Pi of the first transistor circuit MM1.
  • the gates of the transistors M11 and M12 are connected to the signal input unit Pi via the capacitors Ci1 and Ci2.
  • the first transistor circuit MM1 is composed of transistors M11 and M12 having different gate widths.
  • the gate widths of the transistor M11 and the transistor M12 are in a 1: 2 relationship.
  • the bias circuit 3 can set the application state of the bias voltage to the transistors M11 and M12 to one of four (as a square of 2), and four effective transistor sizes of the first transistor circuit MM1 (as a square of 2) It can be set to As a result, the effective size of the first transistor circuit MM1 can be set in multiple stages with a small number of transistors, and the characteristic setting range of gain and linearity can be easily widened. That is, when the input signal is small and the gain is required more than linearity, the effective size of the first transistor circuit MM1 is increased, and when the input signal is large and the linearity is required more than the gain, 1. Reduce the effective size of the transistor circuit MM1.
  • the first transistor circuit MM1 may be configured of three or more transistors. In that case, if the gate width is in the relationship of 2 0 : 2 1 : 2 2 : 2 3 : ..., that is, if the ratio of the power of 2 is set, the first transistor circuit can be realized with a small number of transistors.
  • the effective transistor size of MM1 can be set to a larger number of stages, and the characteristic setting range of gain and linearity can be easily broadened.
  • predetermined gain and linearity can be obtained by controlling not only the feedback amount of the feedback circuit 1 but also the effective transistor size (effective gate width) of the first transistor circuit MM1. Further, by combining the control of the feedback amount and the control of the transistor size, the setting range of the gain and the linearity can be broadened.
  • the gate bias voltages of the plurality of transistors constituting the first transistor circuit MM1 are controlled, but a predetermined transistor among the plurality of transistors is switched.
  • the circuit may be configured to selectively connect in parallel.
  • the cascode amplification circuit is configured by cascode connection of one second transistor M2, but the second transistor M2 includes a plurality of transistors connected in series. It may be done. Further, in this case, a feedback circuit may be connected between the connection point of the second transistors among the plurality of second transistors and the signal input portion Pi of the first transistor circuit MM1. If the second transistor is a plurality of transistors connected in series, the output impedance can be adjusted. Therefore, impedance matching with the circuit in the subsequent stage can be facilitated. In addition, it is possible to adjust the current consumption.
  • Transistor M2 second transistor P1, P2: connection part Pi: signal input part Pin: signal input end Po: connection part Pout: signal output end R1, R2, R3: resistance R11, R12, R13: resistance R11A, R12A, R11B , R12B: resistances SW, SW1, SW2, SW3: switches SWA, SWB: switches Vdd: power supply lines 1, 1A, 1B, 1C: feedback circuit 2: main amplification circuit 3: bias circuit 10: dies 101, 102, 103A , 103B, 103C, 104A, 104B. 104C ... amplification circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

増幅回路(102)は、信号入力部(Pi)に外部から信号が入力される第1トランジスタ(M1)と、当該第1トランジスタ(M1)と電源ライン(Vdd)との間に接続された負荷インダクタ(Ld)と、を備える。また、増幅回路(102)は、負荷インダクタ(Ld)と第1トランジスタ(M1)との間のいずれかの位置と、第1トランジスタ(M1)の信号入力部(Pi)と、の間に接続された帰還回路(1)を備える。この帰還回路(1)の帰還量によって、利得と線形性が適宜定められる。

Description

増幅回路
 本発明は、例えば低雑音増幅回路に関し、特に帰還回路を含む増幅回路に関する。
 信号入力部に外部から信号が入力されるトランジスタに対して、そのトランジスタの入力端と出力端との間に帰還回路が接続された増幅回路は、例えば特許文献1に示されている。
特開2000-59148号公報
 特許文献1に示されている増幅回路では、その使用状況に応じて、利得および線形性に関する特性を切り替えることができない。
 本発明の目的は、帰還回路の切替により、使用状況に応じて高利得性と高線形性とを切り替えることのできる増幅回路を提供することにある。
(1)本発明の増幅回路は、
 信号入力部に外部から信号が入力される第1トランジスタと、当該第1トランジスタと電源ラインとの間に接続された負荷回路と、前記負荷回路と前記第1トランジスタとの間のいずれかの位置と前記第1トランジスタの信号入力部との間に接続された帰還回路と、を備え、
 前記帰還回路は、抵抗、キャパシタ、またはインダクタを含む複数の受動素子と、これら複数の受動素子の接続状態を切り替えるスイッチと、を有する可変インピーダンス回路であることを特徴とする。
 上記構成により、スイッチの状態によって帰還量を定めることができ、そのことで、使用状況に応じて高利得性と高線形性とが切り替えられる。
(2)前記帰還回路は、前記複数の受動素子の接続状態を切り替える複数のスイッチを有することが好ましい。これにより、複数のスイッチの状態によって帰還量を複数段階に定めることができ、そのことで、複数段階での所定の利得および線形性の切替が可能となる。
(3)前記負荷回路と前記第1トランジスタとの間にカスコード接続された、単一または複数の第2トランジスタを更に備えることが好ましい。この構成により、低消費電流且つ高利得の増幅回路が構成される。
(4)前記帰還回路、前記第1トランジスタおよび前記第2トランジスタは単一のダイに構成されることが好ましい。これにより、単一のダイで帰還回路付き増幅回路が完結するので、増幅回路が小型化できる。
(5)前記帰還回路は、例えば前記負荷回路と前記第1トランジスタとの間の複数箇所と、前記信号入力部との間に接続された帰還回路である。この構成によれば、選択的な帰還回路の接続によって、線形性の調整(設定)ができる。例えば、線形性を段階的に調整することが可能となる。
(6)前記第1トランジスタは並列接続された複数のトランジスタによるトランジスタ回路で構成されていてもよい。この構成によっても、使用状況に応じて高利得性と高線形性とが切り替え可能である。
(7)前記第1トランジスタは並列接続された複数のトランジスタによるトランジスタ回路で構成され、前記帰還回路は、前記トランジスタ回路の複数のトランジスタに接続された複数の帰還回路で構成されることが好ましい。この構成によっても、使用状況に応じて高利得性と高線形性とが切り替え可能である。
(8)前記トランジスタ回路の前記複数のトランジスタのうち、少なくとも一つのトランジスタには前記帰還回路が接続されない構成であってもよい。
(9)前記第1トランジスタは並列接続された複数のトランジスタによるトランジスタ回路で構成され、
 前記複数のトランジスタに対して選択的にバイアス電圧を供給するバイアス回路を更に備えたことを特徴とする。
 上記構成により、複数のトランジスタに対して選択的にバイアス電圧を供給することで、トランジスタ回路の実効トランジスタサイズが変化し、そのことで、利得および線形性の特性設定範囲を広くすることができる。
(10)前記複数のトランジスタは、ゲート幅のサイズが互いに異なるトランジスタを含むことが好ましい。これにより、少ないトランジスタの数で、第1トランジスタの実効サイズを多数段階に設定でき、利得および線形性の特性設定範囲を容易に広くすることができる。
 本発明によれば、使用状況に応じて高利得性と高線形性とを切り替えることのできる増幅回路が得られる。
図1は第1の実施形態に係る増幅回路101の回路図である。 図2(A)、図2(B)、図2(C)、図2(D)は帰還回路1の回路構成の例を示す回路図である。 図3は第2の実施形態に係る増幅回路102の回路図である。 図4は増幅回路102のチップ内部の構造を示す平面図である。 図5は第3の実施形態に係る増幅回路103Aの回路図である。 図6は第3の実施形態の別の増幅回路103Bの回路図である。 図7は第3の実施形態の更に別の増幅回路103Cの回路図である。 図8は第4の実施形態に係る増幅回路104Aの回路図である。 図9は第4の実施形態に係る別の増幅回路104Bの回路図である。 図10は第4の実施形態に係る更に別の増幅回路104Cの回路図である。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明または理解の容易性を考慮して、便宜上実施形態を分けて示すが、異なる実施形態で示した構成の部分的な置換または組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
 図1は第1の実施形態に係る増幅回路101の回路図である。この増幅回路101は、信号入力部Piに外部から信号が入力される第1トランジスタM1と、この第1トランジスタM1と電源ラインVddとの間に接続された負荷インダクタLdと、を備える増幅回路である。この増幅回路101は例えばセルラー通信を行う受信回路の初段の低雑音増幅回路(LNA)として用いられる。
 第1トランジスタM1はnチャンネルMOS-FETである。この第1トランジスタM1のソースと接地との間にインダクタ(帰還インダクタ)Lsが接続されている。
 本実施形態において、負荷インダクタLdは本発明における「負荷回路」に相当する。この負荷インダクタLdと第1トランジスタM1との接続部Po(第1トランジスタM1のドレイン)と第1トランジスタM1の信号入力部Pi(第1トランジスタM1のゲート)との間に帰還回路1が接続されている。
 増幅回路101の信号入力端Pinと第1トランジスタM1のゲートとの間にはキャパシタCiが接続されている。また、増幅回路101の信号出力端Poutと、上記接続部Poとの間にはキャパシタCoが接続されている。
 増幅回路101はソース接地型増幅回路として作用する。この例では、第1トランジスタM1のソースと接地との間にインダクタLsが接続されているので、ソース負帰還回路が構成されている。
 図2(A)、図2(B)、図2(C)、図2(D)は上記帰還回路1の回路構成の例を示す回路図である。
 図2(A)に示す例では、キャパシタC11,C12および抵抗R11,R12よる直列回路と、抵抗R11の両端をバイパスするスイッチSWとを備える。図2(B)に示す例では、キャパシタC11,C12および抵抗R11,R12,R13を含む直列回路と、抵抗R11,R12,R13のそれぞれの両端をバイパスするスイッチSW1,SW2,SW3を備える。図2(C)に示す例では、キャパシタC11,C12および抵抗R11よる直列回路と、キャパシタC11に対してスイッチSWを介して並列接続されるキャパシタC13とを備える。図2(D)に示す例では、キャパシタC11および抵抗R11よる直列回路と、キャパシタC11に対してスイッチSW1を介して並列接続されるキャパシタC13と、抵抗R11をバイパスするスイッチSW2を備える。
 図2(A)、図2(B)、図2(C)、図2(D)のいずれの例でも、スイッチはトランジスタやダイオード等の半導体スイッチである。これらの例では、CR回路によって帰還回路が構成されている。そして、CRの時定数によって、帰還量およびその周波数特性が定められる。また、上記各スイッチをオンすることにより帰還量が大きくなる。すなわち、上記各スイッチは、複数の受動素子の接続状態を切り替えるスイッチである。上記各スイッチにより切り替えられた複数の受動素子の接続状態により、帰還回路1の帰還量を調整することができる。なお、上記各スイッチは、帰還回路1に含まれる複数の受動素子のうち少なくとも1つの受動素子をバイパスするか否かを切り替えるスイッチであればよく、必ずしも複数の受動素子をバイパスする必要はない。また、帰還回路1に含まれる上記各スイッチの個数は少なくとも1つあればよく、スイッチの個数が、例えば図2(B)および図2(D)に示すように2つ以上の複数であってもよい。帰還回路1の回路構成は図2(A)、図2(B)、図2(C)、図2(D)に示したものに限らず、様々な変形例が考えられる。また、抵抗とキャパシタだけでなくインダクタを含んでもよい。但し、直流成分が導通しないように、一つまたは複数のキャパシタが直流遮断用の素子として作用することが重要である。
 上記構成により、帰還回路1は、負荷インダクタLdと第1トランジスタM1との接続部Poと第1トランジスタM1の信号入力部Piとの間に接続されるので、すなわち、増幅回路の入出力部のインピーダンス整合回路を介さずに帰還経路が構成されるので、帰還回路1を簡素に構成できる。また、帰還回路1のスイッチの状態によって帰還量を定めることができ、そのことで、所定の利得および線形性が得られる。つまり、入力信号が小さくて、線形性より利得が必要な場合には、帰還回路1による帰還量を小さくし、入力信号が大きくて、利得よりも線形性が必要な場合には、帰還回路1による帰還量を大きくする。
《第2の実施形態》
 第2の実施形態では、カスコード増幅回路に適用した例を示す。図3は第2の実施形態に係る増幅回路102の回路図である。この増幅回路102は、信号入力部Piに外部から信号が入力される第1トランジスタM1と、この第1トランジスタM1と電源ラインVddとの間に接続された負荷インダクタLdと、負荷インダクタLdと第1トランジスタM1との間にカスコード接続された第2トランジスタM2を備えるカスコード増幅回路である。第2トランジスタM2のゲートはキャパシタCgを介して接地されている。その他は第1の実施形態で示したとおりである。
 本実施形態によれば、第2トランジスタM2は第1トランジスタM1に対して高インピーダンスの負荷回路として作用し、増幅回路102は、低消費電流且つ高利得の増幅回路として作用する。
 帰還回路1は抵抗R11,R12およびキャパシタC11の直列回路と抵抗R11をバイパスするスイッチSWとで構成されている。スイッチSWがオフの状態で、帰還回路1による帰還量は小さく、高利得の増幅回路として作用する。スイッチSWがオンの状態では、帰還回路1による帰還量が大きく、高線形性の増幅回路として作用する。
 図4は増幅回路102のチップ内部の構造を示す平面図である。チップ内部にはダイ10が設けられている。このダイ10に、図3に示した帰還回路1およびその他の部分(増幅回路102の主要部)2が構成されている。
 このように、帰還回路1が第1トランジスタM1および第2トランジスタM2等とともに単一のダイに構成されることにより、単一のダイで帰還回路付き増幅回路が完結するので、増幅回路が小型化できる。
《第3の実施形態》
 第3の実施形態では、第2の実施形態で示したものとは帰還回路の接続経路が異なる増幅回路の例を示す。
 図5は第3の実施形態に係る増幅回路103Aの回路図である。この増幅回路103Aは、信号入力部Piに外部から信号が入力される第1トランジスタM1と、この第1トランジスタM1と電源ラインVddとの間に接続された負荷インダクタLdと、負荷インダクタLdと第1トランジスタM1との間にカスコード接続された第2トランジスタM2を備えるカスコード増幅回路である。第2トランジスタM2のゲートはキャパシタCgを介して接地されている。
 第1トランジスタM1のソースと接地との間にはインダクタ(帰還インダクタ)Lsが接続されている。
 負荷インダクタLdと第2トランジスタM2との接続部P2(第2トランジスタM2のドレイン)と第1トランジスタM1の信号入力部Pi(第1トランジスタM1のゲート)との間に帰還回路1が接続されている。
 増幅回路103Aの信号入力端Pinと第1トランジスタM1のゲートとの間にはキャパシタCiが接続されている。また、増幅回路103Aの信号出力端Poutと、上記接続部P2との間にはキャパシタCoが接続されている。
 このように、帰還回路1の一端は負荷インダクタLdと第2トランジスタM2との接続点に接続されていてもよい。
 図6は本実施形態の別の増幅回路103Bの回路図である。この増幅回路103Bは、二つの帰還回路1A,1Bを備えている。帰還回路1Aは第1トランジスタM1と第2トランジスタM2との接続部P1(第1トランジスタM1のドレイン)と第1トランジスタM1の信号入力部Pi(第1トランジスタM1のゲート)との間に接続されている。帰還回路1Bは負荷インダクタLdと第2トランジスタM2との接続部P2(第2トランジスタM2のドレイン)と第1トランジスタM1の信号入力部Pi(第1トランジスタM1のゲート)との間に接続されている。
 帰還回路1Aは抵抗R11A,R12A、キャパシタC11AおよびスイッチSWAで構成されている。同様に、帰還回路1Bは抵抗R11B,R12B、キャパシタC11BおよびスイッチSWBで構成されている。
 図7は本実施形態の更に別の増幅回路103Cの回路図である。この増幅回路103Cの帰還回路1は、抵抗R11A,R12A,R11B,R12B、キャパシタC11およびスイッチSWA,SWBで構成されている。キャパシタC11は図6に示したキャパシタC11A,C11Bに相当する(二つのキャパシタを兼ねている)。その他の構成は図6に示したとおりである。
 図6、図7に示すように、負荷インダクタLdと第1トランジスタM1との間の複数箇所(P1,P2)と、信号入力部Piとの間に接続された帰還回路を設けてもよい。この構成によっても、高利得且つ高線形性が得られる。また、選択的な帰還回路の接続によって、線形性の調整ができる。例えば、線形性を段階的に調整することが可能となる。
《第4の実施形態》
 第4の実施形態では、第1トランジスタの制御によって所定の利得および線形性を得るようにした増幅回路について示す。
 図8は第4の実施形態に係る増幅回路104Aの回路図である。この増幅回路104Aは、外部から信号が入力される第1トランジスタ回路MM1と、この第1トランジスタ回路MM1と電源ラインVddとの間に接続された、負荷インダクタLd、キャパシタCdの並列回路による負荷回路と、この負荷回路と第1トランジスタ回路MM1との間にカスコード接続された第2トランジスタM2を備えるカスコード増幅回路である。第2トランジスタM2のゲートはキャパシタCgを介して接地されている。
 第1トランジスタ回路MM1のソースと接地との間にはインダクタ(帰還インダクタ)Lsが接続されている。
 第1トランジスタ回路MM1は並列接続された複数のトランジスタM11,M12・・・M13で構成されている。トランジスタM11,M12,M13のゲートは、それぞれキャパシタCi1,Ci2,Ci3を介して信号入力端Pinに接続されている。また、トランジスタM11のドレイン・ゲート間には帰還回路1Aが接続されていて、トランジスタM12のドレイン・ゲート間には帰還回路1Bが接続されていて、トランジスタM13のドレイン・ゲート間には帰還回路1Cが接続されている。
 また、各トランジスタM11,M12,M13のゲートは抵抗R1,R2,R3を介してバイアス回路3に接続されている。
 バイアス回路3はトランジスタM11,M12,M13が選択的にActive状態/非Active状態となるように、それらのゲートに対してバイアス電圧を印加する。例えば、トランジスタM11,M12,M13がエンハンスメント型のn型MOS-FETであれば、ゲート電圧Vg = 0 とすることで非Activeとし、所定の正電圧をゲートに印加することでActive状態とする。非Active状態のトランジスタはカットオフ状態であり、ドレイン・ソース間は実質的にオープンとなる。
 図9は第4の実施形態に係る別の増幅回路104Bの回路図である。図8に示した増幅回路104Aとは、帰還回路の接続構成が異なる。この増幅回路104Bの第1トランジスタ回路MM1には、帰還回路を接続しないトランジスタを備えている。その他の構成は図8に示したとおりである。
 図9に示す例では、トランジスタM11のドレイン・ゲート間に帰還回路1Aが接続されていて、トランジスタM13のドレイン・ゲート間に帰還回路1Cが接続されているが、トランジスタM12のドレイン・ゲート間には帰還回路が接続されていない。この構成によれば、選択的な帰還回路の接続によって、線形性の調整(設定)ができる。例えば、線形性を段階的に調整することが可能となる。
 図8、図9に示した構成により、複数のトランジスタM11,M12・・・M13に対して選択的にバイアス電圧を供給することで、並列接続されるトランジスタの数を切り替えることができる。このことで、第1トランジスタ回路MM1の実効トランジスタサイズ(等価的サイズ)を変化させ、そのことで、利得および線形性を定めることができる。つまり、入力信号が小さくて、線形性より利得が必要な場合(利得重視の場合)には、複数のトランジスタM11,M12・・・M13のうち動作させるトランジスタの数を増やし、入力信号が大きくて、利得よりも線形性が必要な場合(線形性重視の場合)には、複数のトランジスタM11,M12・・・M13のうち動作させるトランジスタの数を少なくする。
 図10は第4の実施形態に係る更に別の増幅回路104Cの回路図である。図8、図9に示した増幅回路104A,104Bとは、第1トランジスタ回路MM1の構成と帰還回路の接続構成が異なる。
 図10の増幅回路104Cでは、第1トランジスタ回路MM1と第2トランジスタM2との接続部P1と第1トランジスタ回路MM1の信号入力部Piとの間に帰還回路1が接続されている。そして、トランジスタM11,M12のゲートはキャパシタCi1,Ci2を介して信号入力部Piに接続されている。
 第1トランジスタ回路MM1は、ゲート幅が異なるトランジスタM11,M12で構成されている。トランジスタM11とトランジスタM12のゲート幅は1:2の関係にある。バイアス回路3はトランジスタM11,M12に対するバイアス電圧の印加状態を4通り(2の2乗通り)のいずれかに設定でき、第1トランジスタ回路MM1の実効トランジスタサイズを4通り(2の2乗通り)に設定することができる。このことにより、少ないトランジスタ数でありながら、第1トランジスタ回路MM1の実効サイズを多数段階に設定でき、利得および線形性の特性設定範囲を容易に広くすることができる。つまり、入力信号が小さくて、線形性より利得が必要な場合には、第1トランジスタ回路MM1の実効サイズを大きくし、入力信号が大きくて、利得よりも線形性が必要な場合には、第1トランジスタ回路MM1の実効サイズを小さくする。
 なお、第1トランジスタ回路MM1を3つ以上のトランジスタで構成してもよい。その場合に、ゲート幅が20:21:22:23:・・・の関係であれば、すなわち2のべき乗の比率に設定すれば、少ないトランジスタ数でありながら、第1トランジスタ回路MM1の実効トランジスタサイズをより多数段階に設定でき、利得および線形性の特性設定範囲を容易に広くすることができる。
 本実施形態によれば、帰還回路1の帰還量の制御だけでなく、第1トランジスタ回路MM1の実効トランジスタサイズ(実効ゲート幅)を制御することで、所定の利得および線形性が得られる。また、帰還量の制御とトランジスタサイズの制御とを組み合わせることにより、利得と線形性の設定範囲を広くできる。
 図8、図9、図10に示した例では、第1トランジスタ回路MM1を構成する複数のトランジスタのゲートバイアス電圧を制御するように構成したが、複数のトランジスタのうち所定のトランジスタを、スイッチを介して選択的に並列接続するように回路を構成してもよい。
 なお、第2~第4の実施形態では、1つの第2トランジスタM2をカスコード接続してカスコード増幅回路を構成した例を示したが、第2トランジスタM2は、直列接続された複数のトランジスタで構成されていてもよい。また、この場合に、複数の第2トランジスタのうち、第2トランジスタ同士の接続点と第1トランジスタ回路MM1の信号入力部Piとの間に帰還回路が接続されてもよい。第2トランジスタが、直列接続された複数のトランジスタであれば、出力インピーダンスの調整が可能となる。そのため、後段の回路とインピーダンス整合をとりやすくなる。また、消費電流の調整も可能となる。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
C11,C11A,C11B,C12,C13…キャパシタ
Cg…キャパシタ
Ci,Ci1,Ci2,Ci3…キャパシタ
Co…キャパシタ
Ld…負荷インダクタ
Ls…インダクタ
M1…第1トランジスタ
MM1…第1トランジスタ回路
M11,M12,M13…トランジスタ
M2…第2トランジスタ
P1,P2…接続部
Pi…信号入力部
Pin…信号入力端
Po…接続部
Pout…信号出力端
R1,R2,R3…抵抗
R11,R12,R13…抵抗
R11A,R12A,R11B,R12B…抵抗
SW,SW1,SW2,SW3…スイッチ
SWA,SWB…スイッチ
Vdd…電源ライン
1,1A,1B,1C…帰還回路
2…増幅回路主要部
3…バイアス回路
10…ダイ
101,102,103A,103B,103C,104A,104B,104C…増幅回路

Claims (10)

  1.  信号入力部に外部から信号が入力される第1トランジスタと、当該第1トランジスタと電源ラインとの間に接続された負荷回路と、前記負荷回路と前記第1トランジスタとの間のいずれかの位置と前記第1トランジスタの信号入力部との間に接続された帰還回路と、を備え、
     前記帰還回路は、抵抗、キャパシタ、またはインダクタを含む複数の受動素子と、これら複数の受動素子の接続状態を切り替えるスイッチと、を有する可変インピーダンス回路であることを特徴とする増幅回路。
  2.  前記帰還回路は、前記複数の受動素子の接続状態を切り替える複数のスイッチを有する、請求項1に記載の増幅回路。
  3.  前記負荷回路と前記第1トランジスタとの間にカスコード接続された、単一または複数の第2トランジスタを更に備える、請求項1または2に記載の増幅回路。
  4.  前記帰還回路、前記第1トランジスタおよび前記第2トランジスタは単一のダイに構成された、請求項3に記載の増幅回路。
  5.  前記帰還回路は、前記負荷回路と前記第1トランジスタとの間の複数箇所と、前記信号入力部との間に接続された帰還回路である、請求項1から4のいずれかに記載の増幅回路。
  6.  前記第1トランジスタは並列接続された複数のトランジスタによるトランジスタ回路で構成される、
     請求項1から5のいずれかに記載の増幅回路。
  7.  前記帰還回路は、前記トランジスタ回路の複数のトランジスタに接続された複数の帰還回路で構成される、
     請求項6に記載の増幅回路。
  8.  前記トランジスタ回路の前記複数のトランジスタのうち、少なくとも一つのトランジスタには前記帰還回路が接続されない、請求項7に記載の増幅回路。
  9.  前記複数のトランジスタに対して選択的にバイアス電圧を供給するバイアス回路を更に備えたことを特徴とする、請求項6から8のいずれかに記載の増幅回路。
  10.  前記複数のトランジスタは、ゲート幅のサイズが互いに異なるトランジスタを含む、請求項6から9のいずれかに記載の増幅回路。
PCT/JP2018/027077 2017-08-10 2018-07-19 増幅回路 WO2019031184A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/783,423 US11290062B2 (en) 2017-08-10 2020-02-06 Amplifier circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017156172 2017-08-10
JP2017-156172 2017-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/783,423 Continuation US11290062B2 (en) 2017-08-10 2020-02-06 Amplifier circuit

Publications (1)

Publication Number Publication Date
WO2019031184A1 true WO2019031184A1 (ja) 2019-02-14

Family

ID=65272178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027077 WO2019031184A1 (ja) 2017-08-10 2018-07-19 増幅回路

Country Status (2)

Country Link
US (1) US11290062B2 (ja)
WO (1) WO2019031184A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107552A (ja) * 1996-09-30 1998-04-24 Nec Corp 負帰還増幅回路
JP2001094357A (ja) * 1999-09-21 2001-04-06 Nippon Telegr & Teleph Corp <Ntt> 線形高出力増幅装置
JP2008098771A (ja) * 2006-10-06 2008-04-24 Niigata Seimitsu Kk 低雑音増幅器
WO2010082235A1 (ja) * 2009-01-13 2010-07-22 パナソニック株式会社 可変利得増幅器およびそれを備えた高周波信号受信装置
JP2013236410A (ja) * 2006-02-27 2013-11-21 Mitsubishi Electric Corp 可変利得増幅器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147559A (en) 1998-07-30 2000-11-14 Philips Electronics North America Corporation Noise figure and linearity improvement technique using shunt feedback
JP2011023841A (ja) 2009-07-14 2011-02-03 New Japan Radio Co Ltd 広帯域利得可変型増幅器
KR101266918B1 (ko) * 2009-09-14 2013-05-24 한국전자통신연구원 가변이득 광대역 피드백 저 잡음 증폭기
JP2012099914A (ja) 2010-10-29 2012-05-24 Asahi Kasei Electronics Co Ltd 広帯域増幅器
US9831841B2 (en) * 2014-06-28 2017-11-28 Skyworks Solutions, Inc. Switchable base feed circuit for radio-frequency power amplifiers
US10211795B2 (en) * 2016-07-21 2019-02-19 Skyworks Solutions, Inc. Impedance transformation circuit and overload protection for low noise amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107552A (ja) * 1996-09-30 1998-04-24 Nec Corp 負帰還増幅回路
JP2001094357A (ja) * 1999-09-21 2001-04-06 Nippon Telegr & Teleph Corp <Ntt> 線形高出力増幅装置
JP2013236410A (ja) * 2006-02-27 2013-11-21 Mitsubishi Electric Corp 可変利得増幅器
JP2008098771A (ja) * 2006-10-06 2008-04-24 Niigata Seimitsu Kk 低雑音増幅器
WO2010082235A1 (ja) * 2009-01-13 2010-07-22 パナソニック株式会社 可変利得増幅器およびそれを備えた高周波信号受信装置

Also Published As

Publication number Publication date
US20200177134A1 (en) 2020-06-04
US11290062B2 (en) 2022-03-29

Similar Documents

Publication Publication Date Title
US7420423B2 (en) Active balun device
US7088180B2 (en) Programmable gain current amplifier
TWI225729B (en) Improved variable gain amplifier
US7321266B2 (en) Current-matching variable gain amplifier
KR102256958B1 (ko) 증폭 회로
US11201594B2 (en) Cascode amplifier circuit
JP5523619B2 (ja) 可変利得増幅器
JP5490549B2 (ja) 半導体集積回路およびそれを用いた差動増幅器およびバッファアンプ
JPH05259765A (ja) 高周波高出力増幅装置
JP2007259409A (ja) 可変利得増幅器
CN112106293B (zh) 放大电路
KR20200052696A (ko) 낮은 위상 변화를 갖는 광대역 가변 이득 증폭기
US7443240B2 (en) AM intermediate frequency variable gain amplifier circuit, variable gain amplifier circuit and its semiconductor integrated circuit
US9136806B2 (en) Amplifier circuit
JP2014072696A (ja) 電子回路
WO2019031184A1 (ja) 増幅回路
KR100783495B1 (ko) 프로그래머블 이득 제어 증폭기
JP4693706B2 (ja) スタンバイ機能付き増幅器
KR101653903B1 (ko) 비선형 증폭단을 이용한 선형 증폭기
WO2018037688A1 (ja) 信号増幅装置
JP3708869B2 (ja) 高周波回路
US11777463B2 (en) Multipath programmable gain instrumentation amplifier frontend
JPH0794975A (ja) 高周波hicモジュール
JP2008042625A (ja) 半導体増幅装置
JP2022122807A (ja) 電力増幅回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP