WO2019030876A1 - Component allocation device - Google Patents

Component allocation device Download PDF

Info

Publication number
WO2019030876A1
WO2019030876A1 PCT/JP2017/029009 JP2017029009W WO2019030876A1 WO 2019030876 A1 WO2019030876 A1 WO 2019030876A1 JP 2017029009 W JP2017029009 W JP 2017029009W WO 2019030876 A1 WO2019030876 A1 WO 2019030876A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mounting
imaging
abnormality
illumination
Prior art date
Application number
PCT/JP2017/029009
Other languages
French (fr)
Japanese (ja)
Inventor
雅史 天野
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2017/029009 priority Critical patent/WO2019030876A1/en
Priority to JP2019535523A priority patent/JP6804653B2/en
Publication of WO2019030876A1 publication Critical patent/WO2019030876A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • This specification discloses a component allocation device.
  • Patent Document 1 discloses an arrangement determination method for determining the arrangement of components in each component supply unit of a plurality of component mounters so that the mounting time of each component mounter can be balanced best.
  • the following blocks are sequentially executed in this sequencing method. That is, for the first block, a component arrangement table is created in which the mounting speed is arranged in the order of high to low, or the component shape is sorted in the order of small to large.
  • component supply units are allocated in order from the upstream component mounting machine without changing the order of components in the component array table, and boundaries between component mounting machines are initialized on the component array table.
  • the next block repeats the calculation of the mounting time for each component mounting machine after moving the boundary between the component mounting machines on the component array table, and the parts are balanced so that the mounting time for each component mounting machine can be most balanced.
  • the arrangement of parts in the parts supply unit is determined.
  • the above-described arrangement determination method is premised on a state in which no abnormality has occurred in all the component mounting machines, and some cameras among the imaging devices for imaging components that the plurality of component mounting machines have respectively No mention is made of the case where an abnormality occurs.
  • an abnormality occurs in some imaging devices, if the arrangement of the components is determined so that the mounting of the components is not allocated at all to the component mounting machine having the imaging device in which the abnormality occurs, the mounting efficiency significantly decreases.
  • the present disclosure relates to the mounting efficiency of the entire mounting line even when an abnormality occurs in at least a part of the functions of any of the imaging devices of the plurality of component mounters constituting the mounting line.
  • the main object of the present invention is to provide a parts allocation apparatus that can suppress the decrease in
  • the present disclosure takes the following measures in order to achieve the above-mentioned main objects.
  • the component allocation device of the present disclosure is a component allocation device that allocates components to be mounted on each component mounter in a mounting line including a plurality of component mounters having image pickup devices for component imaging, and a plurality of the component mounters are When an abnormality occurs in at least a part of the functions of any of the imaging devices among the imaging devices that each has, mounting of a component that requires the use of the function in which the abnormality occurs is another imaging device in which the abnormality does not occur
  • the gist of the present invention is to assign the component mounting machine of the item (b) to the component mounting machine having the imaging device in which the abnormality has occurred.
  • the component allocation device of the present disclosure uses the function in which the abnormality occurs.
  • the necessary component mounting is allocated to other component mounting machines having an imaging device in which no abnormality has occurred.
  • the component allocation device of the present disclosure allocates components that do not require the use of the function in which the abnormality has occurred to a component mounter having an imaging device in which the abnormality has occurred.
  • the allocation apparatus of the present disclosure can suppress a decrease in mounting efficiency over the entire mounting line, as compared to one in which no component is allocated to a component mounter having an imaging device in which an abnormality has occurred.
  • FIG. 1 is a block diagram of a component mounting system 1;
  • FIG. 2 is a block diagram of a component mounter 10;
  • FIG. 6 is a configuration diagram of a head 30 and a part camera 40.
  • FIG. 6 is a block diagram showing an electrical connection relationship between a control device 70 and a management device 100. It is a flow chart which shows an example of parts allocation processing.
  • FIG. 7 is an explanatory view showing how parts are allocated to the mounters A to C.
  • FIG. 7 is an explanatory view showing how parts are allocated to the mounters A to C.
  • FIG. 7 is an explanatory view showing how parts are allocated to the mounters A to C.
  • It is a block diagram of the head 130 of a modification.
  • FIG. 1 is a block diagram of the component mounting system 1.
  • FIG. 2 is a block diagram of the component mounter 10.
  • FIG. 3 is a block diagram of the head 30 and the part camera 40.
  • FIG. 4 is a block diagram showing the electrical connection between the control device 70 and the management device 100.
  • the horizontal direction in FIG. 2 is the X-axis direction
  • the front-rear direction is the Y-axis direction
  • the vertical direction is the Z-axis direction.
  • the component mounting system 1 is provided with the screen printing machine 2, the component mounting machine 10, the reflow oven 4, the management apparatus 100 which manages the whole system, etc., as shown in FIG.
  • the screen printing machine 2 prints a wiring pattern (solder surface) on the lower substrate B via the pattern holes by pressing the solder on the screen while rolling the solder on the screen with a squeegee into the pattern holes formed in the screen.
  • the component mounter 10 adsorbs an electronic component (hereinafter simply referred to as "component") P and mounts it on a substrate B on which solder is printed.
  • the reflow furnace 4 melts the solder on the substrate B by heating the substrate B on which the component is mounted, and performs solder bonding.
  • the component mounting machine 10 mounts various components P having different sizes and shapes, such as chip components such as chip resistors and irregular shaped components such as connectors, and IC components such as QFP (Quad Flat Package) and BGA (Ball Grid Array). It is configured as a possible universal mounter. As shown in FIG. 2, the component mounter 10 includes a component supply device 22, a substrate transfer device 24, an XY robot 26, a head 30, a mark camera 28, a part camera 40, and a control device 70 (see FIG. 4). .
  • the component mounting system 1 of the present embodiment includes a plurality of component mounters 10 having the same configuration.
  • the component supply device 22 supplies the component P to the component supply position.
  • the component supply device 22 is mounted on the front of the component mounter 10 so as to be arranged along the X-axis direction (left-right direction), and has a tape containing a plurality of components (chip components etc.) P of the same type. It includes a tape feeder for supplying, and a tray feeder for supplying a tray installed at the front of the component mounter 10 and containing a plurality of components (such as IC components) P of the same type.
  • the substrate transfer device 24 has a pair of conveyor belts which are provided at intervals in the front and rear direction and are spanned in the left-right direction.
  • the substrate B is transported by the conveyor belt of the substrate transport device 24 from left to right in the drawing.
  • the XY robot 26 moves the head 30 in the XY axis direction.
  • a Y-axis slider 26b which is movably supported and movable in the Y-axis direction (front-rear direction) by the drive of a Y-axis motor.
  • the head 30 is detachably attached to the X-axis slider 26a.
  • the head 30 removed from one component mounter 10 can be attached to another component mounter 10 of the component mounting system 1.
  • the head 30 is a rotary head, and as shown in FIG. 3, a head body 31 as a rotating body, and a plurality of nozzle holders 32 arranged circumferentially with respect to the head body 31 and supported so as to be able to move up and down. Equipped with A suction nozzle 33 is removably attached to the tip of each nozzle holder 32. Further, although not shown, the head 30 rotates an R-axis motor for rotating the head main body 31 so as to turn the plurality of nozzle holders 32 around the central axis of the head main body 31 and rotates the plurality of nozzle holders 32 around their respective axes. And a Z-axis motor for moving up and down the nozzle holder 32 (suction nozzle 33) at a predetermined turning position among the plurality of nozzle holders 32.
  • the mark camera 28 is provided on the head 30, and picks up an image of the component P supplied from the component supply device 22 from above to recognize the position of the component, and is attached to the substrate B transported by the substrate transport device 24.
  • the reference mark is imaged from above to recognize the substrate position.
  • the parts camera 40 is detachably provided between the parts supply device 22 and the substrate transfer device 24.
  • the part camera 40 removed from a certain component mounter 10 can be attached to another component mounter 10 of the component mounting system 1.
  • the parts camera 40 captures an image of a component sucked by the head 30 from below and recognizes the suction posture (suction deviation).
  • the parts camera 40 includes an illumination device 41, a lens 48, and an imaging device 49 (CCD, CMOS, etc.).
  • the illumination device 41 includes a side illumination unit 42 and an epi-illumination unit (coaxial epi-illumination unit) 44.
  • the side-reflection illumination unit 42 applies light obliquely to the subject, and includes a plurality of light emitters (LEDs) 43 arranged in a ring around the lens 48 in top view.
  • LEDs light emitters
  • the epi-illumination unit 44 applies light to the subject from the same direction as the optical axis of the lens 48, and the half mirror 46 and the half mirror 46 disposed at an oblique angle of 45 degrees with respect to the optical axis of the lens 48.
  • a light emitter (LED) 45 for emitting light in a direction (horizontal direction) orthogonal to the optical axis of the lens 48.
  • the illumination device 41 emits total illumination that emits light from the side illumination portion 42 and the epi illumination portion 44, side illumination that emits light only from the side illumination portion 42, and illuminates light from only the epi illumination portion 44.
  • a plurality of illumination patterns including coaxial illumination (coaxial illumination).
  • the part camera 40 switches the illumination pattern to any of a plurality of illumination patterns by setting the shape data of the component P, and under the optimum imaging condition for each component type Take an image.
  • the part camera 40 irradiates the light by total illumination so that uniform light can be applied to the parts P to obtain stable reflected light. Take an image.
  • the parts camera 40 performs imaging by emitting light by side-illumination in order to clearly grasp the outline of the terminal P with respect to the component P having a ball-shaped terminal such as a BGA (Ball Grid Array).
  • BGA Ball Grid Array
  • the control device 70 is configured as a microprocessor centering on the CPU 71 and, in addition to the CPU 71, includes a ROM 72, an HDD 73, a RAM 74, an input / output interface 75, and the like. These are connected via a bus 76.
  • a position sensor (not shown) that detects the position of the XY robot 26 in the XY axis direction, image signals from the part camera 40 and the mark camera 28, and the like are input to the control device 70.
  • the control device 70 the component supply device 22 and the substrate transfer device 24, the X axis motor and Y axis motor of the XY robot 26, Z axis motor of the head 30, R axis motor and ⁇ axis motor, parts camera 40, mark Various control signals to the camera 28 and the like are output.
  • the management apparatus 100 is configured, for example, as a general-purpose computer, and includes a CPU 101, a ROM 102, an HDD 103, a RAM 104, an input / output interface 105, and the like as shown in FIG.
  • An input signal from the input device 107 is input to the management apparatus 100 via the input / output interface 105.
  • a display signal to the display 108 is output from the management device 100 via the input / output interface 105.
  • the HDD 103 stores job information and a part allocation program.
  • the job information is information for instructing each component mounter 10 to perform the suction operation and the mounting operation, and information on the substrate B, information on the type of the component P (shape data), a target of the component P The mounting position, information on the head 30, and the like are included.
  • the component allocation program is a program for allocating components P (tape feeders and tray feeders) to be mounted on the component mounters 10 so that the mounting operation performed by the component mounters 10 is optimized. .
  • the management device 100 is communicably connected to the control devices 70 of the plurality of component mounters 10, and exchanges various information and control signals with the plurality of component mounters 10.
  • the component mounting process is executed by the control device 70 of each component mounter 10 when receiving job information from the management device 100.
  • the CPU 71 of the control device 70 controls the XY robot 26 to move the head 30 above the component supply position, and controls the Z-axis motor to supply the component to the component supply position. P is adsorbed to the adsorption nozzle 33.
  • the CPU 71 repeats the operation of controlling the R-axis motor to turn the nozzle holder 32 and controlling the Z-axis motor to cause the next suction nozzle 33 to suction the component P until the planned number of components P is suctioned. .
  • the CPU 71 controls the XY robot 26 to move the head 30 above the part camera 40, and controls the part camera 40 to image the part P attracted to the suction nozzle 33.
  • the control of the parts camera 40 controls the illumination device 41 so that light is emitted by the illumination pattern suitable for imaging of the part P based on the shape data of the adsorbed part P, and imaging is performed so that the part P is imaged It is performed by controlling the element 49.
  • the CPU 71 irradiates light with the corresponding illumination pattern and picks up an image for each component type Do.
  • the CPU 71 determines the suction position shift of the component P sucked by the suction nozzle 33 based on the obtained captured image, and corrects the target mounting position of the component P. Then, the CPU 71 controls the XY robot 26 to move the suction nozzle 33 above the target mounting position, lower the suction nozzle 33 by the Z-axis motor, mount the component P on the substrate B, and mount the component. finish. The CPU 71 repeats the operation of mounting each component P at each target mounting position when the component P is suctioned by the plurality of suction nozzles 33.
  • FIG. 5 is a flowchart showing an example of component allocation processing executed by the CPU 101 of the management apparatus 100.
  • the CPU 101 of the management device 100 first determines whether the component P to be mounted on each component mounter 10 has been allocated (S100). If the CPU 101 determines that allocation has not been completed, it allocates components P to be mounted to each of the component mounters 10 in a combination in which the mounting efficiency is highest in the component mounting system 1 (S110).
  • the CPU 101 extracts all combinations of components P that can be allocated to each component mounter 10.
  • the CPU 101 calculates the required time (mounting time) when each component mounting machine 10 performs the mounting operation in the extracted combination. Then, the CPU 101 determines a combination with the smallest difference in mounting time of the component mounters 10 as a combination with the highest mounting efficiency. On the other hand, when the CPU 101 determines that the assignment is completed, the processing of S110 is skipped.
  • the CPU 101 determines whether or not a failure occurs in the partial illumination of the illumination device 41 (S120).
  • the failure of the partial illumination means a failure of one of the side illumination unit 42 and the incident illumination unit 44.
  • total illumination and side illumination can not be performed when the side illumination unit 42 fails, and total illumination and incident illumination can not be performed when the incident illumination unit 44 fails.
  • the failure of the partial illumination can be determined based on, for example, the luminance value of the captured image obtained by capturing the part P by the part camera 40.
  • the CPU 101 determines that a failure does not occur in the partial lighting of the lighting device 41, it ends the component allocation process.
  • the CPU 101 determines that a failure occurs in the partial lighting of the lighting device 41, the restriction that the component P requiring imaging using the broken lighting is not allocated to the component mounting machine 10 in which the partial lighting fails.
  • the allocation of the component P to each component mounting machine 10 is changed so that the mounting efficiency becomes the highest (S130), and the component allocation processing is ended.
  • the CPU 101 among all the combinations extracted in the process of S110, a component that requires imaging using the failed illumination with respect to the component mounter 10 in which the partial illumination has failed. Extract combinations excluding combinations that allocate P.
  • the CPU 101 calculates the mounting time of each component mounting machine 10 in each of the extracted combinations, and determines the combination with the smallest difference in mounting time of each component mounting machine 10.
  • CPU101 allocates the components P which should be mounted with respect to each component mounting machine 10 in consideration of the said other restrictions, when there exist other restrictions other than the failure of a part illumination.
  • Other restrictions include, for example, the restriction on the mounting order of the parts P due to the size of the parts P, the mounting position, and the electrical characteristics.
  • FIG. 6 to 8 are explanatory diagrams showing how parts are allocated to component mounters A to C.
  • FIG. For convenience of explanation, the component mounting system in the figure is provided with three component mounters A to C. If no failure occurs in any of the lighting devices of the component mounters A to B, the management device allocates the components 1 to 9 to be mounted to the respective component mounters A to C so as to achieve the highest mounting efficiency. .
  • the component mounter A requires the component 1 that requires imaging using a total illumination, the component 4 that requires imaging using an epi-illumination, and imaging using a side-illuminated illumination Part 7 is allocated.
  • the component mounting machine B is allocated a component 2 that requires imaging using a total illumination, a component 5 that requires imaging using an epi-illumination, and a component 8 that requires imaging using a side-illuminated illumination .
  • the component mounting machine C is allocated a component 3 that requires imaging using a total illumination, a component 6 that requires imaging using an epi-illumination, and a component 9 that requires imaging using a side-illuminated illumination .
  • the management device is, as shown in FIG. 7, another component 7 to 9 assigned to the component mounting machine B without failure It is conceivable that components are allocated to the component mounting machines A and C and no component is allocated to the component mounting machine B at all.
  • the mounting time of the other component mounting machines A and C is increased, and the mounting efficiency is significantly reduced.
  • the management apparatus as shown in FIG. Allocating to C, instead, parts 7 and 9 which do not require total illumination and epi-illumination (parts requiring side illumination) 7 and 9 are allocated to the component mounting machine B. As a result, it is possible to balance the mounting time in each of the component mounting machines A to C, and to suppress the reduction in mounting efficiency.
  • the part camera 40 corresponds to an imaging device
  • the component mounter 10 corresponds to a component mounter
  • the management device 100 corresponds to a component allocation device.
  • the illumination device 41 corresponds to the illumination device
  • the imaging device 49 corresponds to the imaging device.
  • the management apparatus 100 (parts allocation apparatus) according to the present embodiment described above is abnormal when at least a part of functions of one of the part cameras 40 of the part mounters 10 respectively has an abnormality.
  • the part mounting machine 10 having the part camera 40 in which no abnormality has occurred is allocated to the mounting of the part that requires the use of the function that has occurred.
  • the management apparatus 100 allocates the mounting of a component that does not require the use of the function in which the abnormality has occurred to the component mounter 10 having the part camera 40 in which the abnormality has occurred.
  • the management apparatus 100 can suppress a decrease in mounting efficiency in the entire mounting line, as compared with the case where no component is allocated to the component mounting machine 10 having the part camera 40 in which the abnormality has occurred.
  • the plurality of component mounters 10 have the side radiation irradiating unit 42 and the epi-illumination irradiating unit 44 as the lighting device 41 of the part camera 40, switch the illumination for each component type and It was assumed to be imaging.
  • the plurality of component mounters 10 have a plurality of side-reflection illumination units with different angles at which light impinges on the subject as the illumination device 41 of the part camera 40, and switches the illumination for each component type May be taken.
  • the management apparatus mounts the parts that require the use of the part of the side-mounted lighting units. Is allocated to the other component mounting machine in which the part of the side illumination units does not break down; instead, the mounting of parts that do not require the use of the part of the side illumination units is performed in the part of the side illumination units Assigns to the failed component mounting machine.
  • the plurality of component mounters 10 have the side radiation irradiating unit 42 and the epi-illumination irradiating unit 44 as the illumination device 41 of the part camera 40, and switch the illumination pattern for each component type Was taken.
  • the plurality of component mounters 10 have a plurality of illumination units (red, blue, etc.) capable of emitting light of different colors as the illumination device 41 of the part camera 40, and switch the illumination color for each component type
  • the component P may be imaged.
  • the management apparatus performs the mounting of the parts that require the use of the lighting unit.
  • the lighting unit is allocated to the other component mounting machine which has not failed, and instead, the mounting of components which do not require the use of the lighting unit is allocated to the component mounting machine in which the lighting unit is broken.
  • the plurality of component mounters 10 are provided with the parts camera 40 that images the component P absorbed by the suction nozzle 33 from below.
  • the plurality of component mounters 10 may be provided with a side camera 138 that images the component P sucked by the suction nozzle 33 from the side.
  • the side camera 138 is provided on the head 130.
  • the management apparatus is a component that does not have a failure in the side surface camera 138 that is a component requiring imaging by the side camera 138.
  • the parts which are allocated to the mounting machine 10 and which do not require imaging with the side camera 138 are allocated to the part mounting machine 10 in which the side camera 138 has failed.
  • the head 130 is detachably attached to the X-axis slider 26a of the component mounter 10, similarly to the head 30 of the embodiment.
  • the component mounter 10 can replace and attach the head 130 and the head 30.
  • the CPU 101 assigns the component P to be mounted to each component mounter 10 taking into consideration the other constraints.
  • the CPU 101 may be able to extract only allocations in which the balance of mounting times of the component mounting machines 10 is significantly lost. After determining the allocation of the component P with the smallest difference in the mounting time of each component mounter 10, the CPU 101 may determine whether the difference in the mounting time exceeds a predetermined value.
  • each component mounter 10 in the case of replacement may also be considered. For example, with respect to a tall component having a height in the height direction, there may be a case where a constraint to be mounted at the end of the component mounter 10 on the most downstream side of the component mounting system 1 is provided. This is because the tall component becomes an obstacle after the tall component is mounted, making it difficult to mount other components. For example, in the example of FIG.
  • the component 9 when the component 9 is the tall component to be mounted at the end, the component 9 can not be allocated to the component mounter B as shown in FIG. Assigned to If the CPU 101 determines that the difference in mounting time of each component mounting machine exceeds a predetermined value as a result of allocation, the CPU 101 is provided in the part camera 40 provided in the component mounting machine C and the component mounting machine B It is also possible to consider the assignment in the case of replacing the selected parts camera 40.
  • the present disclosure is applicable to, for example, the manufacturing industry of component mounting machines and component mounting systems.

Abstract

A component allocation device that allocates components to be mounted, to each component mounting machine in a mounting line comprising a plurality of component mounting machines having an imaging device for capturing images of components. If an error has occurred in at least some functions in one of the imaging devices among the imaging devices provided in each of the plurality of component mounting machines, this component allocation device: allocates component mounting requiring the use of a function for which an error has occurred to another component mounting machine having an imaging device that does not have an error; and allocates the mounting of components not requiring the use of the function having the error to the component mounting machine having the imaging device having the error.

Description

部品割付装置Parts allocation device
 本明細書は、部品割付装置について開示する。 This specification discloses a component allocation device.
 従来より、実装ラインを構成する複数台の部品実装機にそれぞれ実装すべき部品を割り付けるものが知られている。例えば、特許文献1には、部品実装機ごとの実装時間のバランスが最もとれるように複数台の部品実装機の各部品供給部における部品の配列を決定する配列決定方法が開示されている。この配列決定方法は、以下のブロックが順次実行される。すなわち、最初のブロックは、実装速度が高速から低速の順番に並ぶようにするか、部品形状の大きさが小から大の順番に並ぶようにソートした部品配列表を作成する。次のブロックは、部品配列表の部品の順番を変えることなく、上流の部品実装機から順に部品供給部を割り付けて部品配列表上に部品実装機間の境界を初期設定する。その次のブロックは、部品配列表上において部品実装機間の境界を移動した後に部品実装機ごとの実装時間を算出することを繰り返し、部品実装機ごとの実装時間のバランスが最もとれるように部品実装機間の境界を部品配列表上に設定することにより、部品供給部における部品の配列を決定する。 2. Description of the Related Art Conventionally, it has been known to allocate components to be mounted on a plurality of component mounters constituting a mounting line. For example, Patent Document 1 discloses an arrangement determination method for determining the arrangement of components in each component supply unit of a plurality of component mounters so that the mounting time of each component mounter can be balanced best. The following blocks are sequentially executed in this sequencing method. That is, for the first block, a component arrangement table is created in which the mounting speed is arranged in the order of high to low, or the component shape is sorted in the order of small to large. In the next block, component supply units are allocated in order from the upstream component mounting machine without changing the order of components in the component array table, and boundaries between component mounting machines are initialized on the component array table. The next block repeats the calculation of the mounting time for each component mounting machine after moving the boundary between the component mounting machines on the component array table, and the parts are balanced so that the mounting time for each component mounting machine can be most balanced. By setting boundaries between mounting machines on the parts array table, the arrangement of parts in the parts supply unit is determined.
特開2007-49190号公報Japanese Patent Application Publication No. 2007-49190
 しかしながら、上述した配列決定方法は、全ての部品実装機に異常が生じていない状態を前提とするものであり、複数の部品実装機がそれぞれ有する部品撮像用の撮像装置のうち一部のカメラに異常が生じた場合については何ら言及されていない。例えば、一部の撮像装置に異常が生じた場合、異常が生じた撮像装置を有する部品実装機に部品の実装が全く割り付けられないように部品の配列を決定すると、実装効率が大幅に低下してしまう。 However, the above-described arrangement determination method is premised on a state in which no abnormality has occurred in all the component mounting machines, and some cameras among the imaging devices for imaging components that the plurality of component mounting machines have respectively No mention is made of the case where an abnormality occurs. For example, when an abnormality occurs in some imaging devices, if the arrangement of the components is determined so that the mounting of the components is not allocated at all to the component mounting machine having the imaging device in which the abnormality occurs, the mounting efficiency significantly decreases. It will
 本開示は、実装ラインを構成する複数の部品実装機がそれぞれ有する撮像装置のうちいずれかの撮像装置の少なくとも一部の機能に異常が生じた場合であっても、実装ライン全体での実装効率の低下を抑制することができる部品割当装置を提供することを主目的とする。 The present disclosure relates to the mounting efficiency of the entire mounting line even when an abnormality occurs in at least a part of the functions of any of the imaging devices of the plurality of component mounters constituting the mounting line. The main object of the present invention is to provide a parts allocation apparatus that can suppress the decrease in
 本開示は、上述の主目的を達成するために以下の手段を採った。 The present disclosure takes the following measures in order to achieve the above-mentioned main objects.
 本開示の部品割付装置は、部品撮像用の撮像装置を有する部品実装機を複数備える実装ラインにおける各部品実装機に実装すべき部品を割り付ける部品割付装置であって、複数の前記部品実装機がそれぞれ有する撮像装置のうちいずれかの撮像装置の少なくとも一部の機能に異常が生じた場合、該異常が生じた機能の使用が必要な部品の実装を前記異常が生じていない撮像装置を有する他の部品実装機に割り付け、前記異常が生じた機能の使用が不要な部品の実装を前記異常が生じた撮像装置を有する部品実装機に割り付けることを要旨とする。 The component allocation device of the present disclosure is a component allocation device that allocates components to be mounted on each component mounter in a mounting line including a plurality of component mounters having image pickup devices for component imaging, and a plurality of the component mounters are When an abnormality occurs in at least a part of the functions of any of the imaging devices among the imaging devices that each has, mounting of a component that requires the use of the function in which the abnormality occurs is another imaging device in which the abnormality does not occur The gist of the present invention is to assign the component mounting machine of the item (b) to the component mounting machine having the imaging device in which the abnormality has occurred.
 このように、複数の部品実装機がそれぞれ有する撮像装置のうちいずれかの撮像装置の少なくとも一部の機能に異常が生じた場合、本開示の部品割付装置は、異常が生じた機能の使用が必要な部品の実装を異常が生じていない撮像装置を有する他の部品実装機に割り付ける。また、本開示の部品割付装置は、異常が生じた機能の使用が不要な部品の実装を異常が生じた撮像装置を有する部品実装機に割り付ける。これにより、本開示の割付装置は、異常が生じた撮像装置を有する部品実装機に全く部品を割り付けないものに比して、実装ライン全体での実装効率の低下を抑制することができる。 As described above, when an abnormality occurs in at least a part of the function of any one of the imaging devices included in each of the plurality of component mounters, the component allocation device of the present disclosure uses the function in which the abnormality occurs. The necessary component mounting is allocated to other component mounting machines having an imaging device in which no abnormality has occurred. Further, the component allocation device of the present disclosure allocates components that do not require the use of the function in which the abnormality has occurred to a component mounter having an imaging device in which the abnormality has occurred. As a result, the allocation apparatus of the present disclosure can suppress a decrease in mounting efficiency over the entire mounting line, as compared to one in which no component is allocated to a component mounter having an imaging device in which an abnormality has occurred.
部品実装システム1の構成図である。FIG. 1 is a block diagram of a component mounting system 1; 部品実装機10の構成図である。FIG. 2 is a block diagram of a component mounter 10; ヘッド30およびパーツカメラ40の構成図である。FIG. 6 is a configuration diagram of a head 30 and a part camera 40. 制御装置70と管理装置100の電気的な接続関係を示すブロック図である。FIG. 6 is a block diagram showing an electrical connection relationship between a control device 70 and a management device 100. 部品割付処理の一例を示すフローチャートである。It is a flow chart which shows an example of parts allocation processing. 部品実装機A~Cに対する部品の割付の様子を示す説明図である。FIG. 7 is an explanatory view showing how parts are allocated to the mounters A to C. 部品実装機A~Cに対する部品の割付の様子を示す説明図である。FIG. 7 is an explanatory view showing how parts are allocated to the mounters A to C. 部品実装機A~Cに対する部品の割付の様子を示す説明図である。FIG. 7 is an explanatory view showing how parts are allocated to the mounters A to C. 変形例のヘッド130の構成図である。It is a block diagram of the head 130 of a modification.
 次に、本開示を実施するための形態について図面を参照しながら説明する。 Next, an embodiment for carrying out the present disclosure will be described with reference to the drawings.
 図1は、部品実装システム1の構成図である。図2は、部品実装機10の構成図である。図3は、ヘッド30およびパーツカメラ40の構成図である。図4は、制御装置70と管理装置100の電気的な接続関係を示すブロック図である。なお、本実施形態において、図2の左右方向がX軸方向であり、前後方向がY軸方向であり、上下方向がZ軸方向である。 FIG. 1 is a block diagram of the component mounting system 1. FIG. 2 is a block diagram of the component mounter 10. FIG. 3 is a block diagram of the head 30 and the part camera 40. As shown in FIG. FIG. 4 is a block diagram showing the electrical connection between the control device 70 and the management device 100. As shown in FIG. In the present embodiment, the horizontal direction in FIG. 2 is the X-axis direction, the front-rear direction is the Y-axis direction, and the vertical direction is the Z-axis direction.
 部品実装システム1は、図1に示すように、スクリーン印刷機2や部品実装機10、リフロー炉4、システム全体を管理する管理装置100などを備える。スクリーン印刷機2は、スキージによりスクリーン上のはんだをローリングさせながらスクリーンに形成されたパターン孔に押し込むことでそのパターン孔を介して下方の基板Bに配線パターン(はんだ面)を印刷する。部品実装機10は、電子部品(以下、単に「部品」という)Pを吸着してはんだが印刷された基板Bに実装する。リフロー炉4は、部品を実装した基板Bを加熱することにより基板B上のはんだを溶かしてはんだ接合を行なう。 The component mounting system 1 is provided with the screen printing machine 2, the component mounting machine 10, the reflow oven 4, the management apparatus 100 which manages the whole system, etc., as shown in FIG. The screen printing machine 2 prints a wiring pattern (solder surface) on the lower substrate B via the pattern holes by pressing the solder on the screen while rolling the solder on the screen with a squeegee into the pattern holes formed in the screen. The component mounter 10 adsorbs an electronic component (hereinafter simply referred to as "component") P and mounts it on a substrate B on which solder is printed. The reflow furnace 4 melts the solder on the substrate B by heating the substrate B on which the component is mounted, and performs solder bonding.
 部品実装機10は、チップ抵抗などのチップ部品やコネクタなどの異形部品、QFP(Quad Flat Package)やBGA(Ball Grid Array)などのIC部品など、サイズや形状の異なる多様な部品Pの実装が可能な汎用実装機として構成されている。この部品実装機10は、図2に示すように、部品供給装置22や基板搬送装置24、XYロボット26、ヘッド30、マークカメラ28、パーツカメラ40、制御装置70(図4参照)などを備える。本実施形態の部品実装システム1は、同じ構成の部品実装機10を複数備える。 The component mounting machine 10 mounts various components P having different sizes and shapes, such as chip components such as chip resistors and irregular shaped components such as connectors, and IC components such as QFP (Quad Flat Package) and BGA (Ball Grid Array). It is configured as a possible universal mounter. As shown in FIG. 2, the component mounter 10 includes a component supply device 22, a substrate transfer device 24, an XY robot 26, a head 30, a mark camera 28, a part camera 40, and a control device 70 (see FIG. 4). . The component mounting system 1 of the present embodiment includes a plurality of component mounters 10 having the same configuration.
 部品供給装置22は、部品Pを部品供給位置へ供給するものである。この部品供給装置22は、部品実装機10の前部にX軸方向(左右方向)に沿って配列されるように装着され同一種類の複数の部品(チップ部品など)Pが収容されたテープを供給するテープフィーダや、部品実装機10の前部に設置され同一種類の複数の部品(IC部品など)Pが収容されたトレイを供給するトレイフィーダを含む。 The component supply device 22 supplies the component P to the component supply position. The component supply device 22 is mounted on the front of the component mounter 10 so as to be arranged along the X-axis direction (left-right direction), and has a tape containing a plurality of components (chip components etc.) P of the same type. It includes a tape feeder for supplying, and a tray feeder for supplying a tray installed at the front of the component mounter 10 and containing a plurality of components (such as IC components) P of the same type.
 基板搬送装置24は、図2に示すように、前後に間隔を開けて設けられ左右方向に架け渡された1対のコンベアベルトを有している。基板Bは、基板搬送装置24のコンベアベルトにより図中、左から右へと搬送される。 As shown in FIG. 2, the substrate transfer device 24 has a pair of conveyor belts which are provided at intervals in the front and rear direction and are spanned in the left-right direction. The substrate B is transported by the conveyor belt of the substrate transport device 24 from left to right in the drawing.
 XYロボット26は、ヘッド30をXY軸方向に移動させるものである。このXYロボット26は、図2に示すように、ヘッド30が取り付けられX軸モータの駆動によりX軸方向(左右方向)に移動可能なX軸スライダ26aと、X軸スライダ26aをX軸方向に移動自在に支持すると共にY軸モータの駆動によりY軸方向(前後方向)に移動可能なY軸スライダ26bと、を備える。 The XY robot 26 moves the head 30 in the XY axis direction. As shown in FIG. 2, in the XY robot 26, an X-axis slider 26a to which the head 30 is attached and which can move in the X-axis direction (horizontal direction) by driving an X-axis motor, and the X-axis slider 26a in the X-axis direction And a Y-axis slider 26b which is movably supported and movable in the Y-axis direction (front-rear direction) by the drive of a Y-axis motor.
 ヘッド30は、X軸スライダ26aに着脱可能に取り付けられる。ある部品実装機10から取り外されたヘッド30は、部品実装システム1の他の部品実装機10に取り付け可能である。 The head 30 is detachably attached to the X-axis slider 26a. The head 30 removed from one component mounter 10 can be attached to another component mounter 10 of the component mounting system 1.
 ヘッド30は、ロータリヘッドであり、図3に示すように、回転体としてのヘッド本体31と、ヘッド本体31に対して周方向に配列され且つ昇降可能に支持された複数のノズルホルダ32と、を備える。各ノズルホルダ32の先端部には、吸着ノズル33が着脱可能に取り付けられる。また、ヘッド30は、図示しないが、複数のノズルホルダ32をヘッド本体31の中心軸周りに旋回させるようヘッド本体31を回転させるR軸モータや、複数のノズルホルダ32をそれぞれその軸周りに回転させるθ軸モータ、複数のノズルホルダ32のうち所定の旋回位置にあるノズルホルダ32(吸着ノズル33)を昇降させるZ軸モータ、を備える。 The head 30 is a rotary head, and as shown in FIG. 3, a head body 31 as a rotating body, and a plurality of nozzle holders 32 arranged circumferentially with respect to the head body 31 and supported so as to be able to move up and down. Equipped with A suction nozzle 33 is removably attached to the tip of each nozzle holder 32. Further, although not shown, the head 30 rotates an R-axis motor for rotating the head main body 31 so as to turn the plurality of nozzle holders 32 around the central axis of the head main body 31 and rotates the plurality of nozzle holders 32 around their respective axes. And a Z-axis motor for moving up and down the nozzle holder 32 (suction nozzle 33) at a predetermined turning position among the plurality of nozzle holders 32.
 マークカメラ28は、ヘッド30に設けられており、部品供給装置22により供給される部品Pを上方から撮像して部品位置を認識したり、基板搬送装置24により搬送される基板Bに付される基準マークを上方から撮像して基板位置を認識したりする。 The mark camera 28 is provided on the head 30, and picks up an image of the component P supplied from the component supply device 22 from above to recognize the position of the component, and is attached to the substrate B transported by the substrate transport device 24. The reference mark is imaged from above to recognize the substrate position.
 パーツカメラ40は、部品供給装置22と基板搬送装置24との間に着脱可能に設けられている。ある部品実装機10から取り外されたパーツカメラ40は、部品実装システム1の他の部品実装機10に取り付け可能である。 The parts camera 40 is detachably provided between the parts supply device 22 and the substrate transfer device 24. The part camera 40 removed from a certain component mounter 10 can be attached to another component mounter 10 of the component mounting system 1.
 パーツカメラ40は、ヘッド30に吸着された部品を下方から撮像してその吸着姿勢(吸着ずれ)を認識する。このパーツカメラ40は、図3に示すように、照明装置41と、レンズ48と、撮像素子49(CCDやCMOSなど)と、を備える。照明装置41は、側射照明部42と、落射照明部(同軸落射照明部)44と、を含む。側射照明部42は、被写体に対して斜めに光を当てるものであり、上面視においてレンズ48の周囲にリング状に配列された複数の発光体(LED)43を有する。落射照明部44は、被写体に対してレンズ48の光軸と同じ方向から光を当てるものであり、レンズ48の光軸に対して斜め45度に配置されたハーフミラー46と、ハーフミラー46に対してレンズ48の光軸と直交する方向(水平方向)に光を照射する発光体(LED)45と、を有する。照明装置41は、側射照明部42および落射照明部44から光を照射する全射照明と、側射照明部42のみから光を照射する側射照明と、落射照明部44のみから光を照射する落射照明(同軸落射照明)と、を含む複数の照明パターンを有している。部品実装機10は汎用実装機として構成されているため、パーツカメラ40は、部品Pの形状データの設定によって照明パターンを複数の照明パターンのいずれかに切り替え、部品種ごとに最適な撮像条件で撮像を行なう。例えば、パーツカメラ40は、部品実装機10が実装可能な多くの部品Pについては、当該部品Pに均一な光を当てて安定した反射光が得られるように全射照明により光を照射して撮像を行なう。また、パーツカメラ40は、BGA(Ball Grid Array)などボール状端子を有する部品Pについては、端子の輪郭をはっきりと捉えるために側射照明により光を照射して撮像を行なう。 The parts camera 40 captures an image of a component sucked by the head 30 from below and recognizes the suction posture (suction deviation). As shown in FIG. 3, the parts camera 40 includes an illumination device 41, a lens 48, and an imaging device 49 (CCD, CMOS, etc.). The illumination device 41 includes a side illumination unit 42 and an epi-illumination unit (coaxial epi-illumination unit) 44. The side-reflection illumination unit 42 applies light obliquely to the subject, and includes a plurality of light emitters (LEDs) 43 arranged in a ring around the lens 48 in top view. The epi-illumination unit 44 applies light to the subject from the same direction as the optical axis of the lens 48, and the half mirror 46 and the half mirror 46 disposed at an oblique angle of 45 degrees with respect to the optical axis of the lens 48. And a light emitter (LED) 45 for emitting light in a direction (horizontal direction) orthogonal to the optical axis of the lens 48. The illumination device 41 emits total illumination that emits light from the side illumination portion 42 and the epi illumination portion 44, side illumination that emits light only from the side illumination portion 42, and illuminates light from only the epi illumination portion 44. And a plurality of illumination patterns including coaxial illumination (coaxial illumination). Since the component mounter 10 is configured as a general-purpose mounter, the part camera 40 switches the illumination pattern to any of a plurality of illumination patterns by setting the shape data of the component P, and under the optimum imaging condition for each component type Take an image. For example, with respect to many parts P that can be mounted by the part mounter 10, the part camera 40 irradiates the light by total illumination so that uniform light can be applied to the parts P to obtain stable reflected light. Take an image. Further, the parts camera 40 performs imaging by emitting light by side-illumination in order to clearly grasp the outline of the terminal P with respect to the component P having a ball-shaped terminal such as a BGA (Ball Grid Array).
 制御装置70は、図4に示すように、CPU71を中心とするマイクロプロセッサとして構成されており、CPU71の他に、ROM72やHDD73、RAM74、入出力インタフェース75などを備える。これらはバス76を介して接続されている。制御装置70には、例えば、XYロボット26のXY軸方向の位置を検知する図示しない位置センサからの位置信号や、パーツカメラ40およびマークカメラ28からの各画像信号などが入力されている。一方、制御装置70からは、部品供給装置22や基板搬送装置24、XYロボット26のX軸モータおよびY軸モータ、ヘッド30のZ軸モータ,R軸モータおよびθ軸モータ、パーツカメラ40、マークカメラ28などへの各種制御信号が出力されている。 As shown in FIG. 4, the control device 70 is configured as a microprocessor centering on the CPU 71 and, in addition to the CPU 71, includes a ROM 72, an HDD 73, a RAM 74, an input / output interface 75, and the like. These are connected via a bus 76. For example, position signals from a position sensor (not shown) that detects the position of the XY robot 26 in the XY axis direction, image signals from the part camera 40 and the mark camera 28, and the like are input to the control device 70. On the other hand, from the control device 70, the component supply device 22 and the substrate transfer device 24, the X axis motor and Y axis motor of the XY robot 26, Z axis motor of the head 30, R axis motor and θ axis motor, parts camera 40, mark Various control signals to the camera 28 and the like are output.
 管理装置100は、例えば汎用のコンピュータとして構成され、図4に示すように、CPU101やROM102、HDD103、RAM104、入出力インタフェース105などを備える。管理装置100には、入力デバイス107からの入力信号が入出力インタフェース105を介して入力されている。管理装置100からは、ディスプレイ108への表示信号が入出力インタフェース105を介して出力されている。HDD103には、ジョブ情報や部品割付プログラムなどが記憶されている。ここで、ジョブ情報には、各部品実装機10に対して吸着動作および実装動作を指示するための情報であり、基板Bに関する情報や部品Pの種類に関する情報(形状データ)、部品Pの目標実装位置、ヘッド30に関する情報などが含まれる。また、部品割付プログラムは、各部品実装機10により実行される実装動作が最適化されるよう各部品実装機10にそれぞれ実装すべき部品P(テープフィーダやトレイフィーダ)を割り付けるためのプログラムである。管理装置100は、複数の部品実装機10の制御装置70とそれぞれ通信可能に接続され、複数の部品実装機10との間で各種情報や制御信号のやり取りを行なう。 The management apparatus 100 is configured, for example, as a general-purpose computer, and includes a CPU 101, a ROM 102, an HDD 103, a RAM 104, an input / output interface 105, and the like as shown in FIG. An input signal from the input device 107 is input to the management apparatus 100 via the input / output interface 105. A display signal to the display 108 is output from the management device 100 via the input / output interface 105. The HDD 103 stores job information and a part allocation program. Here, the job information is information for instructing each component mounter 10 to perform the suction operation and the mounting operation, and information on the substrate B, information on the type of the component P (shape data), a target of the component P The mounting position, information on the head 30, and the like are included. The component allocation program is a program for allocating components P (tape feeders and tray feeders) to be mounted on the component mounters 10 so that the mounting operation performed by the component mounters 10 is optimized. . The management device 100 is communicably connected to the control devices 70 of the plurality of component mounters 10, and exchanges various information and control signals with the plurality of component mounters 10.
 次に、部品実装システム1を構成する各部品実装機10が実行する部品実装処理について説明する。部品実装処理は、管理装置100からジョブ情報を受信したときに各部品実装機10の制御装置70によりそれぞれ実行される。部品実装処理が実行されると、制御装置70のCPU71は、XYロボット26を制御してヘッド30を部品供給位置の上方へ移動させ、Z軸モータを制御して部品供給位置に供給された部品Pを吸着ノズル33に吸着させる。CPU71は、予定した数の部品Pが吸着されるまで、R軸モータを制御してノズルホルダ32を旋回させ、Z軸モータを制御して次の吸着ノズル33に部品Pを吸着させる動作を繰り返す。続いて、CPU71は、XYロボット26を制御してヘッド30をパーツカメラ40の上方に移動させ、パーツカメラ40を制御して吸着ノズル33に吸着させた部品Pを撮像する。パーツカメラ40の制御は、吸着した部品Pの形状データに基づいて当該部品Pの撮像に適した照明パターンにより光が照射されるよう照明装置41を制御し、当該部品Pが撮像されるよう撮像素子49を制御することにより行なわれる。なお、CPU71は、ヘッド30が有する複数の吸着ノズル33に撮像条件が異なる複数種類の部品Pが吸着されている場合には、それぞれに対応する照明パターンにより光を照射して部品種ごとに撮像を行なう。そして、CPU71は、得られた撮像画像に基づいて吸着ノズル33に吸着された部品Pの吸着位置ずれを判定して、当該部品Pの目標実装位置を補正する。そして、CPU71は、XYロボット26を制御して吸着ノズル33を目標実装位置の上方へ移動させ、Z軸モータにより吸着ノズル33を下降させ、部品Pを基板B上に実装して部品実装処理を終了する。CPU71は、複数の吸着ノズル33に部品Pが吸着されている場合には、各部品Pをそれぞれの目標実装位置に実装する動作を繰り返す。 Next, the component mounting process performed by each component mounter 10 configuring the component mounting system 1 will be described. The component mounting process is executed by the control device 70 of each component mounter 10 when receiving job information from the management device 100. When the component mounting process is executed, the CPU 71 of the control device 70 controls the XY robot 26 to move the head 30 above the component supply position, and controls the Z-axis motor to supply the component to the component supply position. P is adsorbed to the adsorption nozzle 33. The CPU 71 repeats the operation of controlling the R-axis motor to turn the nozzle holder 32 and controlling the Z-axis motor to cause the next suction nozzle 33 to suction the component P until the planned number of components P is suctioned. . Subsequently, the CPU 71 controls the XY robot 26 to move the head 30 above the part camera 40, and controls the part camera 40 to image the part P attracted to the suction nozzle 33. The control of the parts camera 40 controls the illumination device 41 so that light is emitted by the illumination pattern suitable for imaging of the part P based on the shape data of the adsorbed part P, and imaging is performed so that the part P is imaged It is performed by controlling the element 49. When a plurality of types of components P with different imaging conditions are adsorbed by the plurality of suction nozzles 33 of the head 30, the CPU 71 irradiates light with the corresponding illumination pattern and picks up an image for each component type Do. Then, the CPU 71 determines the suction position shift of the component P sucked by the suction nozzle 33 based on the obtained captured image, and corrects the target mounting position of the component P. Then, the CPU 71 controls the XY robot 26 to move the suction nozzle 33 above the target mounting position, lower the suction nozzle 33 by the Z-axis motor, mount the component P on the substrate B, and mount the component. finish. The CPU 71 repeats the operation of mounting each component P at each target mounting position when the component P is suctioned by the plurality of suction nozzles 33.
 次に、管理装置100が実行する部品割付処理(部品割付プログラム)について説明する。図5は、管理装置100のCPU101により実行される部品割付処理の一例を示すフローチャートである。部品割付処理が実行されると、管理装置100のCPU101は、まず、各部品実装機10にそれぞれ実装すべき部品Pを割付済みであるか否かを判定する(S100)。CPU101は、割付済みでないと判定すると、部品実装システム1において実装効率が最も高くなる組み合わせで各部品実装機10に対してそれぞれ実装すべき部品Pを割り付ける(S110)。ここで、S110の処理では、例えば、CPU101は、各部品実装機10に割り付け可能な部品Pの全ての組み合わせを抽出する。次に、CPU101は、抽出した組み合わせにおいて各部品実装機10が実装動作を行なった場合の所要時間(実装時間)を算出する。そして、CPU101は、各部品実装機10の実装時間の差が最も少ない組み合わせを、実装効率が最も高くなる組み合わせとして決定する。一方、CPU101は、割付済みであると判定すると、S110の処理をスキップする。 Next, component allocation processing (component allocation program) executed by the management apparatus 100 will be described. FIG. 5 is a flowchart showing an example of component allocation processing executed by the CPU 101 of the management apparatus 100. When the component allocation process is executed, the CPU 101 of the management device 100 first determines whether the component P to be mounted on each component mounter 10 has been allocated (S100). If the CPU 101 determines that allocation has not been completed, it allocates components P to be mounted to each of the component mounters 10 in a combination in which the mounting efficiency is highest in the component mounting system 1 (S110). Here, in the process of S110, for example, the CPU 101 extracts all combinations of components P that can be allocated to each component mounter 10. Next, the CPU 101 calculates the required time (mounting time) when each component mounting machine 10 performs the mounting operation in the extracted combination. Then, the CPU 101 determines a combination with the smallest difference in mounting time of the component mounters 10 as a combination with the highest mounting efficiency. On the other hand, when the CPU 101 determines that the assignment is completed, the processing of S110 is skipped.
 次に、CPU101は、照明装置41の一部照明に故障が発生したか否かを判定する(S120)。一部照明の故障は、本実施形態では、側射照明部42および落射照明部44のうちの片方の故障を意味する。照明装置41は、側射照明部42が故障すると、全射照明と側射照明とが実行不能となり、落射照明部44が故障すると、全射照明と落射照明とが実行不能となる。一部照明の故障は、例えば、パーツカメラ40により部品Pを撮像して得られる撮像画像の輝度値に基づいて判定することができる。また、一部照明の故障は、照明装置41に側射照明部42の近傍と落射照明部44の近傍とにそれぞれ光センサを設け、各光センサにより検出される信号に基づいて判定することもできる。CPU101は、照明装置41の一部照明に故障が発生していないと判定すると、部品割付処理を終了する。 Next, the CPU 101 determines whether or not a failure occurs in the partial illumination of the illumination device 41 (S120). In the present embodiment, the failure of the partial illumination means a failure of one of the side illumination unit 42 and the incident illumination unit 44. In the illumination device 41, total illumination and side illumination can not be performed when the side illumination unit 42 fails, and total illumination and incident illumination can not be performed when the incident illumination unit 44 fails. The failure of the partial illumination can be determined based on, for example, the luminance value of the captured image obtained by capturing the part P by the part camera 40. In addition, it is also possible to provide an optical sensor in the vicinity of the side illumination part 42 and the vicinity of the epi-illumination part 44 in the illumination device 41 based on the signals detected by the respective optical sensors. it can. When the CPU 101 determines that a failure does not occur in the partial lighting of the lighting device 41, it ends the component allocation process.
 一方、CPU101は、照明装置41の一部照明に故障が発生したと判定すると、一部照明が故障した部品実装機10に対して故障した照明を用いた撮像が必要な部品Pを割り付けない制約の下で、実装効率が最も高くなるよう各部品実装機10に対する部品Pの割り付けを変更して(S130)、部品割付処理を終了する。ここで、S130の処理では、例えば、CPU101は、S110の処理で抽出される全ての組み合わせのうち、一部照明が故障した部品実装機10に対して故障した照明を用いた撮像が必要な部品Pを割り付ける組み合わせを除いた組み合わせを抽出する。そして、CPU101は、抽出した各組み合わせにおける各部品実装機10の実装時間を算出し、各部品実装機10の実装時間の差が最も少ない組み合わせを決定する。なお、CPU101は、一部照明の故障以外に他の制約がある場合には、当該他の制約も考慮に入れて、各部品実装機10に対して実装すべき部品Pを割り当てる。他の制約としては、例えば、部品Pのサイズ、実装位置、電気特性などの都合による部品Pの実装順序に関する制約などがある。 On the other hand, when the CPU 101 determines that a failure occurs in the partial lighting of the lighting device 41, the restriction that the component P requiring imaging using the broken lighting is not allocated to the component mounting machine 10 in which the partial lighting fails. Below, the allocation of the component P to each component mounting machine 10 is changed so that the mounting efficiency becomes the highest (S130), and the component allocation processing is ended. Here, in the process of S130, for example, the CPU 101, among all the combinations extracted in the process of S110, a component that requires imaging using the failed illumination with respect to the component mounter 10 in which the partial illumination has failed. Extract combinations excluding combinations that allocate P. Then, the CPU 101 calculates the mounting time of each component mounting machine 10 in each of the extracted combinations, and determines the combination with the smallest difference in mounting time of each component mounting machine 10. In addition, CPU101 allocates the components P which should be mounted with respect to each component mounting machine 10 in consideration of the said other restrictions, when there exist other restrictions other than the failure of a part illumination. Other restrictions include, for example, the restriction on the mounting order of the parts P due to the size of the parts P, the mounting position, and the electrical characteristics.
 図6~図8は、部品実装機A~Cに対する部品の割付の様子を示す説明図である。説明の都合上、図中の部品実装システムは、3つの部品実装機A~Cを備えるものとした。部品実装機A~Bの照明装置のいずれにも故障が生じていない場合、管理装置は、実装効率が最も高くなるよう各部品実装機A~Cに対して実装すべき部品1~9を割り付ける。図6の例では、部品実装機Aには、全射照明を用いた撮像が必要な部品1と、落射照明を用いた撮像が必要な部品4と、側射照明を用いた撮像が必要な部品7とが割り付けられる。部品実装機Bには、全射照明を用いた撮像が必要な部品2と、落射照明を用いた撮像が必要な部品5と、側射照明を用いた撮像が必要な部品8とが割り付けられる。部品実装機Cには、全射照明を用いた撮像が必要な部品3と、落射照明を用いた撮像が必要な部品6と、側射照明を用いた撮像が必要な部品9とが割り付けられる。部品実装機Bにおいて一部照明として落射照明部が故障した場合、管理装置は、図7に示すように、部品実装機Bに割り付けられていた部品7~9を照明装置に故障がない他の部品実装機A,Cに割り付け、部品実装機Bに全く部品を割り付けないことが考えられる。しかし、この場合、他の部品実装機A,Cの実装時間が増え、実装効率が大幅に低下してしまう。これに対して、管理装置は、図8に示すように、部品実装機Bに割り付けられていた全射照明が必要な部品2と落射照明が必要な部品5とを他の部品実装機A,Cに割り付け、代わりに、全射照明と落射照明とが不要な部品(側射照明が必要な部品)7,9を部品実装機Bに割り付ける。これにより、各部品実装機A~Cでの実装時間のバランスをとることができ、実装効率の低下を抑制することができる。 6 to 8 are explanatory diagrams showing how parts are allocated to component mounters A to C. FIG. For convenience of explanation, the component mounting system in the figure is provided with three component mounters A to C. If no failure occurs in any of the lighting devices of the component mounters A to B, the management device allocates the components 1 to 9 to be mounted to the respective component mounters A to C so as to achieve the highest mounting efficiency. . In the example of FIG. 6, the component mounter A requires the component 1 that requires imaging using a total illumination, the component 4 that requires imaging using an epi-illumination, and imaging using a side-illuminated illumination Part 7 is allocated. The component mounting machine B is allocated a component 2 that requires imaging using a total illumination, a component 5 that requires imaging using an epi-illumination, and a component 8 that requires imaging using a side-illuminated illumination . The component mounting machine C is allocated a component 3 that requires imaging using a total illumination, a component 6 that requires imaging using an epi-illumination, and a component 9 that requires imaging using a side-illuminated illumination . When the epi-illumination part breaks down as a part of the illumination in the component mounting machine B, the management device is, as shown in FIG. 7, another component 7 to 9 assigned to the component mounting machine B without failure It is conceivable that components are allocated to the component mounting machines A and C and no component is allocated to the component mounting machine B at all. However, in this case, the mounting time of the other component mounting machines A and C is increased, and the mounting efficiency is significantly reduced. On the other hand, as shown in FIG. 8, the management apparatus, as shown in FIG. Allocating to C, instead, parts 7 and 9 which do not require total illumination and epi-illumination (parts requiring side illumination) 7 and 9 are allocated to the component mounting machine B. As a result, it is possible to balance the mounting time in each of the component mounting machines A to C, and to suppress the reduction in mounting efficiency.
 ここで、実施形態の主要な要素と請求の範囲に記載した本開示の主要な要素との対応関係について説明する。即ち、パーツカメラ40が撮像装置に相当し、部品実装機10が部品実装機に相当し、管理装置100が部品割付装置に相当する。また、照明装置41が照明装置に相当し、撮像素子49が撮像素子に相当する。 Here, the correspondence between the main elements of the embodiment and the main elements of the present disclosure described in the claims will be described. That is, the part camera 40 corresponds to an imaging device, the component mounter 10 corresponds to a component mounter, and the management device 100 corresponds to a component allocation device. Further, the illumination device 41 corresponds to the illumination device, and the imaging device 49 corresponds to the imaging device.
 以上説明した本実施形態の管理装置100(部品割付装置)は、複数の部品実装機10がそれぞれ有するパーツカメラ40のうちいずれかのパーツカメラの少なくとも一部の機能に異常が生じた場合、異常が生じた機能の使用が必要な部品の実装を異常が生じていないパーツカメラ40を有する他の部品実装機10に割り付ける。また、管理装置100は、異常が生じた機能の使用が不要な部品の実装を異常が生じたパーツカメラ40を有する部品実装機10に割り付ける。これにより、管理装置100は、異常が生じたパーツカメラ40を有する部品実装機10に全く部品を割り付けないものに比して、実装ライン全体での実装効率の低下を抑制することができる。 The management apparatus 100 (parts allocation apparatus) according to the present embodiment described above is abnormal when at least a part of functions of one of the part cameras 40 of the part mounters 10 respectively has an abnormality. The part mounting machine 10 having the part camera 40 in which no abnormality has occurred is allocated to the mounting of the part that requires the use of the function that has occurred. Further, the management apparatus 100 allocates the mounting of a component that does not require the use of the function in which the abnormality has occurred to the component mounter 10 having the part camera 40 in which the abnormality has occurred. As a result, the management apparatus 100 can suppress a decrease in mounting efficiency in the entire mounting line, as compared with the case where no component is allocated to the component mounting machine 10 having the part camera 40 in which the abnormality has occurred.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It is needless to say that the present invention is not limited to the above-mentioned embodiment at all, and can be implemented in various modes within the technical scope of the present invention.
 例えば、上述した実施形態では、複数の部品実装機10は、パーツカメラ40の照明装置41として、側射照射部42および落射照射部44を有し、部品種ごとに照明を切り替えて部品Pを撮像するものとした。しかし、複数の部品実装機10は、パーツカメラ40の照明装置41として、それぞれ被写体に対して光が当たる角度が異なる複数の側射照明部を有し、部品種ごとに照明を切り替えて部品Pを撮像するものとしてもよい。この場合、例えば、複数の部品実装機のうちいずれかの部品実装機において一部の側射照明部が故障すると、管理装置は、当該一部の側射照明部の使用が必要な部品の実装を当該一部の側射照明部が故障していない他の部品実装機に割り付け、代わって、当該一部の側射照明部の使用が不要な部品の実装を当該一部の側射照明部が故障した部品実装機に割り付ける。 For example, in the embodiment described above, the plurality of component mounters 10 have the side radiation irradiating unit 42 and the epi-illumination irradiating unit 44 as the lighting device 41 of the part camera 40, switch the illumination for each component type and It was assumed to be imaging. However, the plurality of component mounters 10 have a plurality of side-reflection illumination units with different angles at which light impinges on the subject as the illumination device 41 of the part camera 40, and switches the illumination for each component type May be taken. In this case, for example, when a part of the side-mounted lighting units breaks down in any of the plurality of component mounters, the management apparatus mounts the parts that require the use of the part of the side-mounted lighting units. Is allocated to the other component mounting machine in which the part of the side illumination units does not break down; instead, the mounting of parts that do not require the use of the part of the side illumination units is performed in the part of the side illumination units Assigns to the failed component mounting machine.
 また、上述した実施形態では、複数の部品実装機10は、パーツカメラ40の照明装置41として、側射照射部42および落射照射部44を有し、部品種ごとに照明パターンを切り替えて部品Pを撮像するものとした。しかし、複数の部品実装機10は、パーツカメラ40の照明装置41として、異なる色の光を照射可能な複数の照明部(赤色や青色など)を有し、部品種ごとに照明色を切り替えて部品Pを撮像するものとしてもよい。この場合、例えば、複数の部品実装機のうちいずれかの部品実装機において一部の照明部が故障すると、管理装置は、当該一部の照明部の使用が必要な部品の実装を当該一部の照明部が故障していない他の部品実装機に割り付け、代わって、当該一部の照明部の使用が不要な部品の実装を当該一部の照明部が故障した部品実装機に割り付ける。 Further, in the above-described embodiment, the plurality of component mounters 10 have the side radiation irradiating unit 42 and the epi-illumination irradiating unit 44 as the illumination device 41 of the part camera 40, and switch the illumination pattern for each component type Was taken. However, the plurality of component mounters 10 have a plurality of illumination units (red, blue, etc.) capable of emitting light of different colors as the illumination device 41 of the part camera 40, and switch the illumination color for each component type The component P may be imaged. In this case, for example, when one of the plurality of component mounting machines has a failure in a part of the lighting units, the management apparatus performs the mounting of the parts that require the use of the lighting unit. The lighting unit is allocated to the other component mounting machine which has not failed, and instead, the mounting of components which do not require the use of the lighting unit is allocated to the component mounting machine in which the lighting unit is broken.
 また、上述した実施形態では、複数の部品実装機10は、吸着ノズル33に吸着した部品Pを下方から撮像するパーツカメラ40を備えるものとした。しかし、複数の部品実装機10は、図9に示すように、吸着ノズル33に吸着された部品Pを側方から撮像する側面カメラ138を備えるものとしてもよい。側面カメラ138は、ヘッド130に設けられている。この場合、管理装置は、複数の部品実装機10のうちいずれかの側面カメラ138に故障が生じた場合、側面カメラ138での撮像が必要な部品を側面カメラ138が故障していない他の部品実装機10に割り付け、側面カメラ138での撮像が不要な部品を側面カメラ138が故障した部品実装機10に割り付ける。なお、ヘッド130は、実施形態のヘッド30と同様に、部品実装機10のX軸スライダ26aに着脱可能に取り付けられる。部品実装機10は、ヘッド130とヘッド30とを交換して取り付け可能である。 Further, in the above-described embodiment, the plurality of component mounters 10 are provided with the parts camera 40 that images the component P absorbed by the suction nozzle 33 from below. However, as shown in FIG. 9, the plurality of component mounters 10 may be provided with a side camera 138 that images the component P sucked by the suction nozzle 33 from the side. The side camera 138 is provided on the head 130. In this case, when a failure occurs in any of the plurality of component mounters 10 in the side surface camera 138, the management apparatus is a component that does not have a failure in the side surface camera 138 that is a component requiring imaging by the side camera 138. The parts which are allocated to the mounting machine 10 and which do not require imaging with the side camera 138 are allocated to the part mounting machine 10 in which the side camera 138 has failed. The head 130 is detachably attached to the X-axis slider 26a of the component mounter 10, similarly to the head 30 of the embodiment. The component mounter 10 can replace and attach the head 130 and the head 30.
 上述した実施形態では、CPU101は、一部照明の故障以外に他の制約がある場合には、当該他の制約も考慮に入れて、各部品実装機10に対して実装すべき部品Pを割り当てた。しかし、CPU101は、各制約を考慮した結果、各部品実装機10の実装時間のバランスが著しくくずれた割り付けしか抽出できない場合がある。CPU101は、各部品実装機10の実装時間の差が最も少ない部品Pの割り付けを決定した後、その実装時間の差が所定値を超えるか否かを判断してもよい。CPU101は、所定値を超えると判断した場合は、各部品実装機10のパーツカメラ40および/あるいは各部品実装機10のヘッド30とヘッド130を部品実装システム1内の他の部品実装機10と交換した場合の各部品実装機10への部品Pの割り付けも考慮してよい。例えば、高さ方向に背の高い背高部品については、部品実装システム1の最下流の部品実装機10で最後に実装する制約が設けられている場合がある。背高部品が装着された後に背高部品が障害となり、他の部品を実装することが困難となるためである。例えば図6の例において、部品9が最後に実装すべき背高部品であった場合、図8のように部品9を部品実装機Bに割り付けすることはできず、部品9は部品実装機Cに割り付けされる。CPU101が、割り付けの結果、各部品実装機の実装時間の差が所定値を超えると判断したのであれば、CPU101は、部品実装機Cに設けられたパーツカメラ40と、部品実装機Bに設けられたパーツカメラ40を交換した場合の割り付けを考慮してもよい。 In the embodiment described above, when there are other constraints besides the failure of the partial illumination, the CPU 101 assigns the component P to be mounted to each component mounter 10 taking into consideration the other constraints. The However, as a result of considering each constraint, the CPU 101 may be able to extract only allocations in which the balance of mounting times of the component mounting machines 10 is significantly lost. After determining the allocation of the component P with the smallest difference in the mounting time of each component mounter 10, the CPU 101 may determine whether the difference in the mounting time exceeds a predetermined value. If the CPU 101 determines that the predetermined value is exceeded, the part camera 40 of each component mounting machine 10 and / or the head 30 of each component mounting machine 10 and the head 130 together with other component mounting machines 10 in the component mounting system 1 The allocation of the component P to each component mounter 10 in the case of replacement may also be considered. For example, with respect to a tall component having a height in the height direction, there may be a case where a constraint to be mounted at the end of the component mounter 10 on the most downstream side of the component mounting system 1 is provided. This is because the tall component becomes an obstacle after the tall component is mounted, making it difficult to mount other components. For example, in the example of FIG. 6, when the component 9 is the tall component to be mounted at the end, the component 9 can not be allocated to the component mounter B as shown in FIG. Assigned to If the CPU 101 determines that the difference in mounting time of each component mounting machine exceeds a predetermined value as a result of allocation, the CPU 101 is provided in the part camera 40 provided in the component mounting machine C and the component mounting machine B It is also possible to consider the assignment in the case of replacing the selected parts camera 40.
 本開示は、部品実装機や部品実装システムの製造産業などに利用可能である。 The present disclosure is applicable to, for example, the manufacturing industry of component mounting machines and component mounting systems.
 1 部品実装システム、2 スクリーン印刷機、4 リフロー炉、10 部品実装機、22 部品供給装置、24 基板搬送装置、26 XYロボット、26a X軸スライダ、26b Y軸スライダ、28 マークカメラ、30,130 ヘッド、31 ヘッド本体、32 ノズルホルダ、33 吸着ノズル、40 パーツカメラ、41 照明装置、42 側射照明部、43 発光体、44 落射照明部、45 発光体、46 ハーフミラー、48 レンズ、49 撮像素子、70 制御装置、71 CPU、72 ROM 73 HDD、74 RAM、75 入出力インタフェース、76 バス、100 管理装置、101 CPU、102 ROM、103 HDD、104 RAM、105 入出力インタフェース、107 入力デバイス、108 ディスプレイ、138 側面カメラ、B 基板、P 部品。 DESCRIPTION OF SYMBOLS 1 component mounting system, 2 screen printing machine, 4 reflow oven, 10 component mounting machine, 22 components supply apparatus, 24 board | substrate conveyance apparatus, 26 XY robot, 26a X axis slider, 26b Y axis slider, 28 mark camera, 30,130 Head, 31 head body, 32 nozzle holder, 33 suction nozzle, 40 parts camera, 41 illumination devices, 42 side illumination units, 43 luminous bodies, 44 epi-illumination units, 45 luminous bodies, 46 half mirrors, 48 lenses, 49 imaging Element, 70 controller, 71 CPU, 72 ROM 73 HDD, 74 RAM, 75 I / O interface, 76 bus, 100 management device, 101 CPU, 102 ROM, 103 HDD, 104 RAM, 105 I / O interface, 107 input Device, 108 display, 138 side cameras, B substrate, P component.

Claims (5)

  1.  部品撮像用の撮像装置を有する部品実装機を複数備える実装ラインにおける各部品実装機に実装すべき部品を割り付ける部品割付装置であって、
     複数の前記部品実装機がそれぞれ有する撮像装置のうちいずれかの撮像装置の少なくとも一部の機能に異常が生じた場合、該異常が生じた機能の使用が必要な部品の実装を前記異常が生じていない撮像装置を有する他の部品実装機に割り付け、前記異常が生じた機能の使用が不要な部品の実装を前記異常が生じた撮像装置を有する部品実装機に割り付ける、
     部品割付装置。
    A component allocation apparatus for allocating components to be mounted on each component mounter in a mounting line including a plurality of component mounters having image pickup devices for component imaging,
    When an abnormality occurs in at least a part of the function of any one of the imaging devices included in each of the plurality of component mounters, the abnormality causes the mounting of a component that requires the use of the function in which the abnormality occurs. Assigning the component mounting machine having an imaging device to another component mounting machine having an imaging device in which the abnormality has occurred and assigning the mounting of a component which does not require the use of the function having the abnormality to the other component mounting machine having the imaging device having the imaging device.
    Parts allocation device.
  2.  請求項1に記載の部品割付装置であって、
     前記撮像装置は、異なる複数の照射パターンのうちいずれかの照射パターンにより前記部品に光を照射する照明装置と、該部品の反射光を受光して該部品を撮像する撮像素子とを有し、
     前記複数の照射パターンのうち一部の照射パターンを用いた部品の撮像を実行不能な異常が生じた場合、前記異常が生じた照射パターンを用いた撮像が必要な部品の実装を前記異常が生じていない撮像装置を有する他の部品実装機に割り付け、前記異常が生じた照射パターンを用いた撮像が不要な部品の実装を前記異常が生じた撮像装置を有する部品実装機に割り付ける、
     部品割付装置。
    A parts allocation apparatus according to claim 1, wherein
    The imaging device includes an illumination device that irradiates light to the component according to any of a plurality of different irradiation patterns, and an imaging device that receives the reflected light of the component and picks up the component.
    When an abnormality that makes it impossible to perform imaging of a part using a part of the plurality of irradiation patterns occurs, the abnormality causes the mounting of a part that requires imaging using the irradiation pattern in which the abnormality has occurred. Assigning to other component mounting machine having an imaging device that does not have an imaging device, and assigning mounting of a component that does not require imaging using the irradiation pattern in which the abnormality has occurred to a component mounting machine having an imaging device in which the abnormality has occurred;
    Parts allocation device.
  3.  請求項2に記載の部品割付装置であって、
     前記複数の照射パターンとして、前記部品に対して照射する光の角度が異なる複数の照射角度を含む、
     部品割付装置。
    A parts allocation apparatus according to claim 2, wherein
    The plurality of irradiation patterns include a plurality of irradiation angles in which the angles of light irradiated to the component are different,
    Parts allocation device.
  4.  請求項2または3に記載の部品割付装置であって、
     前記複数の照射パターンとして、前記部品に対して照射する光の色が異なる複数の照射色を含む、
     部品割付装置。
    A parts allocation apparatus according to claim 2 or 3, wherein
    The plurality of irradiation patterns include a plurality of irradiation colors in which colors of light to be irradiated to the component are different,
    Parts allocation device.
  5.  請求項1ないし4いずれか1項に記載の部品割付装置であって、
     複数の前記部品実装機がそれぞれ有する撮像装置のうちいずれかの撮像装置の少なくとも一部の機能に異常が生じた場合、前記異常が生じた機能の使用が必要な部品の実装を前記異常が生じた撮像装置を有する部品実装機に割り付けない制約の下で、生産効率が最も高くなるよう前記複数の部品実装機にそれぞれ実装すべき部品を割り付ける、
     部品割付装置。
    A parts allocation apparatus according to any one of claims 1 to 4, wherein
    When an abnormality occurs in at least a part of the function of any one of the imaging devices included in each of the plurality of component mounters, the abnormality causes the mounting of a component that requires the use of the function in which the abnormality occurs. Parts to be mounted on the plurality of mounters so as to maximize production efficiency under the constraint that the mounters having an imaging device are not allocated,
    Parts allocation device.
PCT/JP2017/029009 2017-08-09 2017-08-09 Component allocation device WO2019030876A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/029009 WO2019030876A1 (en) 2017-08-09 2017-08-09 Component allocation device
JP2019535523A JP6804653B2 (en) 2017-08-09 2017-08-09 Parts allocation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029009 WO2019030876A1 (en) 2017-08-09 2017-08-09 Component allocation device

Publications (1)

Publication Number Publication Date
WO2019030876A1 true WO2019030876A1 (en) 2019-02-14

Family

ID=65271957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029009 WO2019030876A1 (en) 2017-08-09 2017-08-09 Component allocation device

Country Status (2)

Country Link
JP (1) JP6804653B2 (en)
WO (1) WO2019030876A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114073176A (en) * 2019-06-27 2022-02-18 株式会社富士 Component mounting apparatus and substrate work system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155599A (en) * 1985-12-27 1987-07-10 松下電器産業株式会社 Electronic parts mounting
JPH0760579A (en) * 1993-08-31 1995-03-07 Toshiba Corp Method and device for allocating part mounting work
JP2005072025A (en) * 2003-08-21 2005-03-17 Juki Corp Device for packaging electronic component
JP2006157063A (en) * 2006-03-13 2006-06-15 Matsushita Electric Ind Co Ltd Arranging method of parts supply cassette
JP2013143470A (en) * 2012-01-11 2013-07-22 Fuji Mach Mfg Co Ltd Component mounting method
WO2015193975A1 (en) * 2014-06-17 2015-12-23 富士機械製造株式会社 Electronic-component attachment method, and electronic-component attachment system
WO2017037879A1 (en) * 2015-09-01 2017-03-09 富士機械製造株式会社 Work allocation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155599A (en) * 1985-12-27 1987-07-10 松下電器産業株式会社 Electronic parts mounting
JPH0760579A (en) * 1993-08-31 1995-03-07 Toshiba Corp Method and device for allocating part mounting work
JP2005072025A (en) * 2003-08-21 2005-03-17 Juki Corp Device for packaging electronic component
JP2006157063A (en) * 2006-03-13 2006-06-15 Matsushita Electric Ind Co Ltd Arranging method of parts supply cassette
JP2013143470A (en) * 2012-01-11 2013-07-22 Fuji Mach Mfg Co Ltd Component mounting method
WO2015193975A1 (en) * 2014-06-17 2015-12-23 富士機械製造株式会社 Electronic-component attachment method, and electronic-component attachment system
WO2017037879A1 (en) * 2015-09-01 2017-03-09 富士機械製造株式会社 Work allocation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114073176A (en) * 2019-06-27 2022-02-18 株式会社富士 Component mounting apparatus and substrate work system
CN114073176B (en) * 2019-06-27 2023-07-18 株式会社富士 Component mounting machine and substrate alignment system

Also Published As

Publication number Publication date
JP6804653B2 (en) 2020-12-23
JPWO2019030876A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6435099B2 (en) Electronic component mounting apparatus and electronic component mounting method
US20080014772A1 (en) Component mounting position correcting method and component mouting apparatus
JP6804653B2 (en) Parts allocation device
JP6728501B2 (en) Image processing system and component mounter
JP7116524B2 (en) Image recognition device
JP7301973B2 (en) inspection equipment
WO2018220733A1 (en) Work machine, and calculation method
JP6742498B2 (en) Component mounting system and component mounting method
WO2019239573A1 (en) Work machine
CN107926151B (en) Required precision setting device
JP6641207B2 (en) Electronic component mounting machine and production line
JP2008258382A (en) Assembling method of printed circuit board, and program for making mounting program
JP7094366B2 (en) Inspection setting device and inspection setting method
CN114073176B (en) Component mounting machine and substrate alignment system
JP7473735B2 (en) Foreign object detection device and foreign object detection method
JP7249426B2 (en) Mounting machine
JP7271738B2 (en) Imaging unit
CN113966650B (en) Lighting unit
JP2012060191A (en) Printed-circuit board assembly method
WO2024062635A1 (en) Testing device and testing method
WO2022190200A1 (en) Quality determination device and quality determination method
WO2019012576A1 (en) Image pickup device, surface mounting machine, and inspection device
JP2009206378A (en) Electronic component mounting apparatus
CN111819836B (en) Imaging unit and component mounting machine
WO2021002005A1 (en) Component mounting machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535523

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920776

Country of ref document: EP

Kind code of ref document: A1