WO2019029720A1 - 一种测量间隔参数配置、测量参考信号的方法及设备 - Google Patents

一种测量间隔参数配置、测量参考信号的方法及设备 Download PDF

Info

Publication number
WO2019029720A1
WO2019029720A1 PCT/CN2018/100042 CN2018100042W WO2019029720A1 WO 2019029720 A1 WO2019029720 A1 WO 2019029720A1 CN 2018100042 W CN2018100042 W CN 2018100042W WO 2019029720 A1 WO2019029720 A1 WO 2019029720A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement interval
terminal device
reference signal
time information
period
Prior art date
Application number
PCT/CN2018/100042
Other languages
English (en)
French (fr)
Inventor
李秉肇
坦尼纳坦•爱德华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18844677.7A priority Critical patent/EP3657838B1/en
Priority to EP21194449.1A priority patent/EP3972328A1/en
Publication of WO2019029720A1 publication Critical patent/WO2019029720A1/zh
Priority to US16/784,769 priority patent/US11800470B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and a device for measuring interval parameter configuration and measuring a reference signal.
  • the reference device can be configured to measure the frequency of the reference signal outside the operating band of the serving cell of the terminal device by configuring a measurement interval (GAP) for the terminal device.
  • GAP measurement interval
  • current GAPs are fixedly configured, even for terminal devices that do not need to measure reference signals outside the operating band of the serving cell of the terminal device, the base station will configure GAP for it, and for such terminal devices In this case, there is no need to use GAP, which leads to waste of resources, and if such terminal equipment uses GAP, it will affect the normal work.
  • the embodiments of the present invention provide a method and a device for measuring interval parameter configuration and measuring reference signals, which are used to reduce resource waste and ensure normal operation of the terminal device.
  • the start time of the measurement interval may be a specific start time point, or may be a frame or a subframe in which the start time point of the measurement interval is located.
  • the end time of the measurement interval may be a specific start time point, or may be a frame or a subframe in which the end time point of the measurement interval is located.
  • the stop time of the measurement interval may be a specific start time point, or may be a frame or a subframe in which the stop time point of the measurement interval is located.
  • the start time of the measurement interval may be a specific start time point, or may be a frame or a subframe in which the start time point of the measurement interval is located.
  • a method for configuring a measurement interval parameter is provided, which can be performed by a network device, such as a base station.
  • the method includes: the network device determines that the first condition is met; the network device configures a measurement interval parameter for the terminal device, where the measurement interval parameter is used by the terminal device to measure a reference signal to be measured; wherein the first condition includes At least one of the following: the frequency band of the reference signal to be measured is not within the operating frequency band of the serving cell of the terminal device, and the center frequency of the reference signal to be measured is related to the serving cell of the terminal device The center frequency of the reference signal to be measured is different from the center frequency of all the synchronization signals of the serving cell of the terminal device, and the bandwidth of the reference signal to be measured and the service of the terminal device are different.
  • the bandwidth of all the synchronization signals of the cell is different, the center frequency of the reference signal to be measured is different from the center frequency of the activated bandwidth component of the terminal device, and the bandwidth of the reference signal to be measured is related to the terminal device.
  • the bandwidth of the activated bandwidth component is different, and the center frequency of the reference signal to be measured is matched with the terminal device Different components of the different bandwidth center frequency, said reference signal to be measured and a bandwidth to the bandwidth components of the terminal device configuration of the bandwidth, the terminal device does not support simultaneous reception of both types of beams.
  • the network device configures the measurement interval parameter for the terminal device in the case that the condition for configuring the measurement interval parameter is configured for the terminal device, so that the configured measurement interval parameter is more in line with the actual requirement of the terminal device, and avoids waste.
  • the interval resource is measured, and the terminal device can complete the measurement of the reference signal during the measurement interval, and can work in the working frequency band outside the measurement interval, thereby ensuring the normal operation of the terminal device as much as possible.
  • the measurement interval parameter includes a first measurement interval parameter and a second measurement interval parameter, the first measurement interval parameter is used by the terminal device to measure a synchronization signal, and the second measurement interval parameter is used by Measuring, by the terminal device, a channel state information reference signal; or, the measurement interval parameter includes a third measurement interval parameter, where the third measurement interval parameter is used by the terminal device to measure a synchronization signal and/or a channel state information reference signal .
  • the terminal device can measure different reference signals in different measurement intervals.
  • the method provided by the embodiment of the present application provides The solution can perform measurements on different reference signals.
  • the time when the network device sends the synchronization signal SS and the channel state information reference signal CSI-RS may be different. If only one measurement interval parameter is configured, the length of the measurement interval corresponding to the measurement interval parameter may be too long. Therefore, two measurement interval parameters can be configured in the embodiment of the present application, and the length of the measurement interval corresponding to each measurement interval parameter is not too long, and does not affect the terminal device in the working frequency band of the serving cell of the terminal device excessively. The normal work.
  • the terminal device may be configured with a measurement interval parameter, so that the terminal device can complete the measurement of the reference signal in one measurement interval, and can be at a measurement interval for the terminal device that cannot simultaneously receive two different types of beams.
  • One of the reference signals is measured, and the network device may not send another reference signal to the terminal device during the measurement interval, so that the terminal device needs to receive the two types of beams at the same time, and meets the capability requirements of the terminal device.
  • a method of measuring a reference signal is provided, the method being executable by a terminal device.
  • the method includes: determining, by the terminal device, time information of the first measurement interval according to the first measurement interval parameter; and acquiring, by the terminal device, time information of the cell in the first measurement interval, where the terminal device is according to the second
  • the measurement interval parameter determines time information of the second measurement interval; the terminal device measures the channel state information according to the time information of the second measurement interval, according to the time information of the cell and the configuration information of the channel state information reference signal.
  • a signal; the configuration information of the channel state information reference signal is used to indicate time information of the channel state information reference signal.
  • the network device configures two measurement interval parameters for the terminal device, so that the terminal device can measure different reference signals in different measurement intervals, and the terminal device can obtain the time information of the cell in the first measurement interval, so that The channel state information reference signal is measured in the second measurement interval, and the situation that the channel state information reference signal cannot be measured due to the inability to obtain the time information of the cell in which it is located is avoided, and the reliability of the signal measurement is improved.
  • the first measurement interval parameter includes a period of the first measurement interval, and an offset of the first measurement interval; a period of the first measurement interval and the first measurement interval Offset is used to determine time information of the first measurement interval; the second measurement interval parameter includes a period of the second measurement interval, and an offset of the second measurement interval; the second measurement interval The period and the offset of the second measurement interval are used to determine time information of the second measurement interval.
  • the parameter information that may be included in the measurement interval parameter is introduced.
  • the time information of the measurement interval can be determined by measuring the parameter information included in the interval parameter, so that the terminal device can measure the reference signal at the measurement interval indicated by the measurement interval parameter.
  • the period of the first measurement interval is different from the period of the second measurement interval, and the offset of the first measurement interval is the same as or different from the offset of the second measurement interval; or
  • the period of the first measurement interval is the same as the period of the second measurement interval, and the offset of the first measurement interval is different from the offset of the second measurement interval.
  • the first measurement interval and the second measurement interval are different measurement intervals.
  • the third measurement interval parameter includes a period of the third measurement interval and a cycle number of time information of the third measurement interval; a period of the third measurement interval and the third The number of cycles of the time information of the measurement interval is used to determine time information of the third measurement interval.
  • the position of the third measurement interval in different cycles may be different. If a plurality of cycles are taken as a whole, the third measurement interval may be considered to be in a loop. Because as a terminal device, it may be necessary to measure reference signals transmitted by multiple cells, and the locations of reference signals transmitted by different cells may be different. If the position of the measurement interval in each cycle is fixed, the terminal device measures the reference signal at a fixed position in each cycle, and the position of the reference signal transmitted by some cells is always outside the fixed measurement interval. Then the terminal device may never be able to measure these reference signals.
  • the third measurement interval can be moved in different periods, so that the terminal device can measure the reference signals of different locations in different periods, and the terminal device can measure the transmission of each cell as much as possible.
  • the reference signal helps to expand the measurement range of the terminal equipment.
  • the network device may further send the measurement interval parameter to the terminal device.
  • the network device transmits the measurement interval parameter to the terminal device, so that the terminal device can measure the reference signal at the measurement interval indicated by the measurement interval parameter.
  • the first measurement interval parameter further includes stop time information of the first measurement interval; and the terminal device may further determine the first according to stop time information of the first measurement interval. The stop time of the measurement interval.
  • the measurement interval is a period, so-called stop, that is, the measurement interval is no longer started after the stop time.
  • the first measurement interval is used to measure the synchronization signal, and the terminal device may not need to measure the synchronization signal multiple times. As long as the measurement is performed once or several times, the time information of the cell where the terminal device is located may be obtained, and thus is used as the first for measuring the synchronization signal.
  • the measurement interval does not have to be always present.
  • the first measurement interval parameter may include stop time information of the first measurement interval, and the first measurement interval may not need to be restarted after the stop time indicated by the stop time information, and the time originally occupied by the first measurement interval may be used for Doing other work, which increases the utilization of time resources.
  • the stop time information of the first measurement interval includes the number of occurrences of the first measurement interval or the stop time of the first measurement interval.
  • the network device may pre-estimate that the terminal device can measure the synchronization signal through several first measurement intervals, for example, the network device pre-estimates that the terminal device can pass 2
  • the first measurement interval is measured to the synchronization signal, and the number of occurrences of the first measurement interval included in the stop time information of the first measurement interval may be 2, or may be 3 or more for more insurance.
  • the network device can also estimate in advance how long the terminal device can measure the synchronization signal through the first measurement interval. For example, the network device estimates in advance that the terminal device can measure the synchronization through the first measurement interval within 10s.
  • the signal, then the stop time information of the first measurement interval includes a stop time of the first measurement interval of 10 s, or for more insurance, may also be 11 s or other larger value.
  • the stop time information of the first measurement interval including the stop time of the first measurement interval as 10s the first measurement interval is not started after the first start for 10s. Regardless of how the stop time information of the first measurement interval is implemented, the manner of indicating the stop time of the first measurement interval is relatively simple and easy to implement.
  • the terminal device initiates the second measurement interval after the first measurement interval is stopped.
  • the first measurement interval is used to measure the synchronization signal.
  • the terminal device may be considered to have detected the synchronization signal, that is, the time information of the cell has been acquired, and subsequent reference information such as the channel state information reference signal may be performed. Signal measurement. Therefore, after the first measurement interval is stopped, the terminal device can start the second measurement interval, so that the channel state information reference signal can be measured in time. Wherein the terminal device starts the second measurement interval at a starting position of the first second measurement interval after the first measurement interval is stopped.
  • the second measurement interval parameter further includes start time information of the second measurement interval; the terminal device may further determine the second measurement according to start time information of the second measurement interval. The start time of the interval.
  • the network device can estimate in advance how long the terminal device needs to measure the SS, thereby determining the start time of the second measurement interval according to the estimation result. That is, the network device can directly configure the startup time information of the second measurement interval, and the terminal device only needs to start the second measurement interval according to the startup time information of the second measurement interval, and the terminal device does not need to judge according to other information, for the terminal device.
  • the implementation is simpler.
  • the terminal device may further receive the second measurement interval parameter sent by the network device; and the terminal device starts the second measurement interval.
  • the network device sends the second measurement interval parameter to the terminal device, and the terminal device can start the second measurement interval after receiving the second measurement interval parameter.
  • the terminal device may start the second measurement interval at a starting position of the first second measurement interval after receiving the second measurement interval parameter. In this manner, after the terminal device receives the second measurement interval parameter, the second measurement interval can be started, and there is no need to do other excessive determination of the startup timing, and the method is relatively simple and direct.
  • the network device configures the measurement interval parameter for the terminal device, so that the terminal device can measure the reference signal at the measurement interval indicated by the measurement interval parameter.
  • the network device may select to configure multiple measurement interval parameters for the terminal device.
  • the reference signal to be measured includes the SS and the CSI-RS. The time for the network device to send the SS and the CSI-RS may be different. If only one measurement interval parameter is configured, the length of the measurement interval corresponding to the measurement interval parameter may be Too long.
  • the first measurement interval parameter and the second measurement interval parameter may be configured in the embodiment of the present application, and the length of the measurement interval corresponding to each measurement interval parameter is not too long, and does not affect the terminal device at the terminal excessively.
  • the first measurement interval indicated by the first measurement interval parameter is used to measure the SS
  • the second measurement interval indicated by the second measurement interval parameter is used to measure the CSI-RS, so that different reference intervals can be measured through different measurement intervals. Signals, try to ensure that the reference signals can be measured without interfering with each other.
  • the network device sends the configured first measurement interval parameter and the second measurement interval parameter to the terminal device, and the terminal device may perform measurement according to the first measurement interval parameter and the second measurement interval parameter.
  • the first measurement interval parameter includes a period of the first measurement interval and an offset of the first measurement interval
  • the second measurement interval parameter includes a period of the second measurement interval and an offset of the second measurement interval
  • the terminal device is configured according to the first measurement
  • the period of the interval and the offset of the first measurement interval may determine the position of the first measurement interval, that is, the time information of the first measurement interval, and similarly, the period according to the second measurement interval and the offset of the second measurement interval may also be determined. Time information of the second measurement interval.
  • the terminal device Because the first measurement interval parameter is used to measure the SS, and the terminal device needs to measure the SS to acquire the time information of the cell, even if other reference signals such as CSI-RS are to be measured, the terminal device first measures the SS in the first measurement interval. After the measurement of the SS is completed, the terminal device can obtain the time information of the cell in which the cell is located, so that the terminal device can measure the CSI-RS in the second measurement interval, thereby completing the measurement of the reference signal to be measured.
  • the terminal device can obtain the time information of the cell in which the cell is located, so that the terminal device can measure the CSI-RS in the second measurement interval, thereby completing the measurement of the reference signal to be measured.
  • the first measurement interval may be started after the terminal device receives the first measurement interval parameter, so that the terminal device can measure the SS in time.
  • the terminal device can determine according to different manners: for example, the terminal device can determine the start time of the second measurement interval according to the stop time information of the first measurement interval, that is, after the first measurement interval is stopped. If the terminal device has measured the SS, the terminal device may start the second measurement interval after the first measurement interval is stopped. Alternatively, the terminal device may determine the start time of the second measurement interval according to the start time information of the second measurement interval. In this manner, the network device may estimate in advance how long the terminal device needs to measure the SS, thereby determining according to the estimation result.
  • the start time of the second measurement interval is such that the second measurement interval is initiated at an appropriate time.
  • the terminal device may determine the start time of the second measurement interval according to the time when the second measurement interval parameter is received, that is, the network device sends the second measurement interval parameter to the terminal device, and the terminal device may receive the second measurement interval parameter after receiving the second measurement interval parameter.
  • the second measurement interval is started, which is relatively simple.
  • the network device may also configure a measurement interval parameter, that is, a third measurement interval parameter, for the terminal device, where the third measurement interval can be moved in different cycles, that is, the third measurement interval parameter is in different cycles.
  • the location is different, so that the terminal device can measure the reference signals of different locations in different periods, so that the terminal device can measure the reference signals sent by the respective cells as much as possible, which helps to expand the measurement range of the terminal device.
  • the third measurement interval parameter may include a period of the third measurement interval and a cycle number of time information of the third measurement interval.
  • the period of the third measurement interval and the number of cycles of the time information of the third measurement interval are used to determine time information of the third measurement interval.
  • the network device may send the configured third measurement interval parameter to the terminal device, so that the terminal device can perform measurement by using the third measurement interval parameter. If the plurality of periods of the third measurement interval are taken as a whole, it can be considered that the third measurement interval is in a loop. For example, in the first period of the third measurement interval, the third measurement interval is in the first position, and in the second period of the third measurement interval, the third measurement interval is in the second position, wherein the first position and the first The two positions are different, and so on.
  • the third measurement interval may again be in the first position in the nth cycle of the third measurement interval, and the cycle is restarted.
  • the position here mainly refers to the time domain position and the position is different. It can be understood that the two positions do not coincide, and the two positions may or may not have an intersection. In this way, the third measurement interval is covered as much as possible over the entire period of the third measurement interval, so that the terminal device can measure the reference signals at different positions in different periods, and try to avoid missing the reference signal.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a processor.
  • the network device can also include a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • an apparatus in a fourth aspect, is provided.
  • the device may be a terminal device in the above method design, or a chip disposed in the terminal device in the above method design.
  • the device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the device may include a processor.
  • the processor and the corresponding functions of the method provided by any of the possible designs of the second aspect or the second aspect described above.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a processing module.
  • the network device may further include a transceiver module, and the processing module and the transceiver module may perform the corresponding functions in the method provided by the foregoing first aspect or any one of the possible aspects of the first aspect.
  • an apparatus has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the device may include a processing module.
  • the processing module may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the first aspect or the first aspect of the first aspect of the design Said method.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the possible aspects of the second aspect or the second aspect described above Said method.
  • a ninth aspect provides a computer program product comprising instructions, wherein the computer program product stores instructions that, when run on a computer, cause the computer to perform any one of the first aspect or the first aspect of the first aspect The method described in the above.
  • a computer program product comprising instructions, wherein the computer program product stores instructions for causing the computer to perform any one of the possible aspects of the second aspect or the second aspect described above when it is run on a computer The method described in the above.
  • the network device configures the measurement interval parameter for the terminal device in the case that the condition for configuring the measurement interval parameter is configured for the terminal device, so that the configured measurement interval parameter is more in line with the actual requirement of the terminal device, and avoids waste. Measuring interval resources.
  • FIG. 1 is a schematic diagram of a network device transmitting a synchronization signal
  • FIG. 2 is a schematic diagram of a relationship between a terminal device measurement SS and a measurement CSI-RS;
  • FIG. 3 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a method for measuring interval parameter configuration and measuring a reference signal according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a manner of determining time information of a first measurement interval according to a period of a first measurement interval and an offset of a first measurement interval according to an embodiment of the present application;
  • FIG. 6 is a schematic diagram of a position of a third measurement interval in different cycles in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a stop time of a first measurement interval or a start time of a second measurement interval in the embodiment of the present application;
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • 9A is a schematic structural diagram of a device according to an embodiment of the present application.
  • 9B is a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 11 is another schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 12 is still another schematic block diagram of a communication device according to an embodiment of the present application.
  • a terminal device including a device that provides voice and/or data connectivity to a user, for example, may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN) to exchange voice and/or data with the RAN.
  • the terminal device may include a user equipment (UE), a wireless terminal device, a mobile terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, and a remote station.
  • Remote station access point (AP), remote terminal, access terminal, user terminal, user agent, or user Equipment (User Device) and so on.
  • AP access point
  • User Equipment User Equipment
  • a mobile phone or "cellular" phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer built-in or in-vehicle mobile device, smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • smart watches smart helmets, smart glasses, smart bracelets, and other equipment.
  • restricted devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing capabilities. Examples include information sensing devices such as bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • a network device for example comprising a base station (e.g., an access point), may refer to a device in the access network that communicates over the air interface with the wireless terminal device over one or more cells.
  • the base station can be used to convert the received air frame to an Internet Protocol (IP) packet as a router between the terminal device and the rest of the access network, wherein the remainder of the access network can include an IP network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a Long Term Evolution (LTE) system or an evolved LTE system (LTE-A), or
  • the next generation node B (gNB) in the new radio (NR) system of the fifth generation mobile communication system (5G) may be included in the embodiment of the present application.
  • the measurement interval is used for the configuration of the current frequency interruption of the operation when the terminal device measures the inter-frequency. For a terminal device that does not support simultaneous operation at two frequency points, if the terminal device needs to perform measurement at a non-operating frequency point, it is necessary to interrupt the working frequency point, and then measure the non-working frequency point within the measurement interval time. .
  • the length of the measurement interval of the LTE system is fixed to 6 ms, and the period of the measurement interval can be configured to be 40 ms or 80 ms, which means that the terminal device can interrupt the working frequency of the current cell every 40 ms or every 80 ms, and go to the target frequency point by 6 ms. measuring.
  • the measurement interval parameter in the embodiment of the present application is used for the terminal equipment to interrupt the working frequency of the serving cell at the measurement interval indicated by the measurement interval parameter, so as to be other than the working frequency of the serving cell.
  • One of the frequency points is measured.
  • the serving cell refers to a serving cell of the terminal device, including the “current cell”.
  • the measurement interval is named GAP, and in the next generation communication system or other communication system, the measurement interval may have other names.
  • the embodiment of the present application does not limit the specific name as long as the use of the measurement interval is the same as that of the embodiment of the present application.
  • the reference signal to be measured may include a synchronous signal (SS) and/or a channel state information-reference signal (CSI-RS), and of course May include other reference signals.
  • SS synchronous signal
  • CSI-RS channel state information-reference signal
  • the terminal device can complete synchronization with the cell by measuring the SS.
  • the synchronization signal may be sent in a SS set periodicity, and a synchronization signal set period includes a plurality of synchronization bursts (SS bursts), each of which includes a plurality of synchronization bursts Synchronization signal block (SS block).
  • SS bursts synchronization bursts
  • An SS block can be sent in each beam in a cell, and all SS blocks are sent in an SS set periodicity.
  • the CSI-RS is a cell-based reference signal and can be used for measurement of information such as channel quality indicator (CQI), precoding matrix indicator (PMI), and rank indication (RI).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • RI rank indication
  • the terminal device in the idle state and the terminal device in the connected state can all be measured based on the SS.
  • the terminal device in the connected state can perform measurement based on the CSI-RS in addition to the measurement based on the SS. .
  • the terminal device needs to acquire the synchronization of the cell by measuring the SS, that is, obtain the time information of the cell. Otherwise, the terminal device cannot know the appearance position of the CSI-RS, and cannot perform measurement. Referring to FIG. 2, the terminal device obtains time information of the cell by measuring the SS, thereby completing measurement of the CSI-RS that appears later.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more.
  • a plurality can also be understood as “at least two” in the embodiment of the present application.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • NR system 5G NR system
  • LTE system Long Term Evolution
  • next-generation mobile communication system or other similar mobile communication system.
  • FIG. 3 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 3 includes a network device and a terminal device, where the network device can configure a measurement interval parameter for the terminal device, and the terminal device can perform the inter-frequency measurement in the configured measurement interval.
  • the network device in FIG. 3 is, for example, an access network (AN) device, communicates with the terminal device, receives data sent by the terminal device, and can send the received data to the core network device.
  • the core network device is not shown in FIG. 3 because the solution of the embodiment of the present application mainly relates to an access network device and a terminal device.
  • the access network device corresponds to different devices in different systems, for example, the second generation mobile communication technology (2G) system can correspond to the base station + base station controller, and can correspond to the third generation mobile communication technology (3G) system.
  • the base station + radio network controller (RNC) can correspond to the eNB in the fourth generation mobile communication technology (4G) system, and the access network device in the 5G in the fifth generation mobile communication technology (5G) system.
  • the access network device in the 5G does not currently have a formal name, such as a gNB, a centric unit (CU), or a distributed unit (DU).
  • an embodiment of the present application provides a method for measuring interval parameter configuration and measuring a reference signal.
  • the method provided by the embodiment of the present invention is applied to the application scenario shown in FIG. example.
  • the network device determines that the first condition is met.
  • the first condition may be a condition for configuring a measurement interval parameter for the terminal device. It may be understood that when the first condition is met, it is determined that the measurement interval parameter can be configured for the terminal device.
  • the network device determines whether a measurement interval needs to be configured for the terminal according to a frequency band of the reference signal to be measured included in the object to be measured or a beam type supported by the terminal device.
  • the object to be measured includes a frequency to be measured or a cell to be measured.
  • the reference signal included in the object to be measured may be SS or CSI-RS.
  • the reference signal to be measured is any set of reference signals included in the object to be measured.
  • the reference signal to be measured may include a reference signal sent by the network device, and may also include a reference signal sent by other network devices than the network device. If the reference signal to be measured includes the reference signal sent by the network device, the network device may determine information of the part of the reference signal, and if the reference signal to be measured includes other networks than the network device The reference signal sent by the device, the other network device may perform information interaction with the network device to notify the network device of the information of the reference signal sent by the other network device, so that the network device may be based on the reference to be measured. The information of the signal determines whether the first condition is met, and the measurement interval parameter can also be configured for the terminal device according to the information of the reference signal to be measured.
  • the information of the reference signal to be measured includes, for example, at least one of time information of the reference signal to be measured, frequency domain information, and a type.
  • the type of the reference signal can also be understood as the content of the reference signal, for example, SS and CSI-RS are different types of reference signals.
  • the first condition may include at least one of the following, that is, when at least one of the following conditions is met, determining that the measurement interval parameter can be configured for the terminal device:
  • the frequency band of the reference signal to be measured is not within the range of the operating frequency band of the serving cell of the terminal device
  • the frequency band of the reference signal to be measured may refer to a bandwidth range centered on a center frequency point of the reference signal to be measured. For example, if the working frequency band of the serving cell of the terminal device is [10M, 100M] (including the endpoints, the same below), if the frequency band of the reference signal to be measured is completely included in the working frequency band of the serving cell of the terminal device, The frequency band of the measured reference signal is a subset of the working frequency band of the serving cell of the terminal device, for example, the frequency band of the reference signal to be measured is [50M, 80M], and the frequency band of the reference signal to be measured is considered to be located in the serving cell of the terminal device.
  • the frequency band of the reference signal to be measured is [120M, 140M], or [2M, 8M], It is considered that the frequency band of the reference signal to be measured is not within the range of the operating frequency band of the serving cell of the terminal device.
  • the frequency band of the reference signal to be measured intersects with the operating frequency band of the serving cell of the terminal device, but the frequency band of the reference signal to be measured is not a subset of the working frequency band of the serving cell of the terminal device, for example, the reference signal to be measured
  • the frequency band is [80, 120 M], or [100, 120 M], and it is also considered that the frequency band of the reference signal to be measured is not within the range of the operating frequency band of the serving cell of the terminal device;
  • the measurement interval parameter can be configured for the terminal device, so that the terminal device can perform the inter-frequency measurement from the working frequency band of the serving cell of the terminal device within the configured measurement interval, where the inter-frequency index Is a frequency different from the working frequency band of the serving cell of the terminal device, for example, the terminal device can measure the reference signal to be measured on the frequency band of the reference signal to be measured;
  • the center frequency of the reference signal to be measured is different from the center frequency of the serving cell of the terminal device
  • the center frequency point is the center frequency point in the frequency band.
  • the center frequency of the reference signal to be measured refers to the center frequency point in the bandwidth of the reference signal to be measured
  • the center frequency point of the serving cell of the terminal device refers to the center frequency of the working bandwidth of the serving cell of the terminal device. It can be understood that the difference of the center frequency points can also be understood as the bandwidth corresponding to the center frequency point is different.
  • the terminal device may not be able to measure The reference signal to be measured.
  • the frequency band of the reference signal to be measured may be within the range of the operating band of the serving cell of the terminal device, or may not be within the range of the operating band of the serving cell of the terminal device, that is, even if it is to be measured
  • the frequency band of the reference signal is located within the working frequency band of the serving cell of the terminal device, but if the center frequency of the reference signal to be measured is different from the center frequency of the serving cell of the terminal device, the terminal device may not be able to measure The measured reference signal. Therefore, in this case, the measurement interval parameter can also be configured for the terminal device, so that the terminal device can measure the reference signal to be measured in the configured measurement interval;
  • the center frequency of the reference signal to be measured is different from the center frequency of all the synchronization signals transmitted by the serving cell of the terminal device, and/or the bandwidth of the reference signal to be measured is transmitted by the serving cell of the terminal device.
  • the bandwidth of all sync signals is different;
  • a cell may send multiple SSs.
  • the center frequency of different SSs may be the same or different, but the center frequency of the SS sent by the same cell is within the working frequency band of the cell.
  • the terminal device Since the terminal device measures the SS, if the center frequency of the reference signal to be measured is the same as the center frequency of any one of the synchronization signals transmitted by the serving cell of the terminal device, the terminal device can measure the measurement without the measurement interval.
  • the measured reference signal or if the bandwidth of the reference signal to be measured is the same as the bandwidth of any one of the synchronization signals transmitted by the serving cell of the terminal device, the terminal device may also measure the reference signal to be measured without measuring the interval. .
  • the measurement interval needs to be configured for the terminal device.
  • the center frequency of the reference signal to be measured is different from the center frequency of the activated bandwidth component of the terminal device, and/or the bandwidth of the reference signal to be measured is different from the bandwidth of the activated bandwidth component of the terminal device;
  • the terminal device When the terminal device works in the cell, it may be configured to use only part of the bandwidth in the cell, and the part of the bandwidth allocated to the terminal is called the bandwidth component. For example, if the bandwidth of the cell is 100M, but the terminal device may only support 20M, the terminal device will be configured to a 20M bandwidth component (BWP, Bandwidth Part). Of course, one terminal device can configure multiple bandwidth components. If one terminal device is configured with multiple bandwidth components, the terminal device does not necessarily need to work on all bandwidth components at the same time.
  • the bandwidth component currently working by the terminal device may be referred to as an activated bandwidth component;
  • the center frequency of the reference signal to be measured by the terminal device is different from the center frequency of the activated bandwidth component of the terminal device, and/or the bandwidth of the reference signal to be measured by the terminal device is different from the bandwidth of the activated bandwidth component of the terminal device
  • the terminal device cannot directly measure the reference signal to be measured, and needs to perform measurement by configuring the measurement interval
  • the activated bandwidth component of the foregoing terminal device includes one or more bandwidth components
  • the center frequency of the reference signal to be measured by the terminal device is different from the center frequency of the activated bandwidth component of the terminal device, including any one of the center frequency of the reference signal to be measured by the terminal device and the activated bandwidth component of the terminal device.
  • the center frequency of the bandwidth component is different;
  • the bandwidth of the reference signal to be measured by the terminal device is different from the bandwidth of the activated bandwidth component of the terminal device, including that the bandwidth of the reference signal to be measured by the terminal device is different from the bandwidth of any one of the activated bandwidth components of the terminal device;
  • the center frequency of the reference signal to be measured is different from the center frequency of the bandwidth component configured for the terminal device, and/or the bandwidth of the reference signal to be measured is different from the bandwidth of the bandwidth component configured for the terminal device;
  • the terminal device cannot directly measure the reference signal to be measured, and needs to perform measurement by configuring the measurement interval;
  • the bandwidth component of the configuration of the foregoing terminal device includes one or more bandwidth components
  • the center frequency of the reference signal to be measured by the terminal device is different from the center frequency of the configured bandwidth component of the terminal device, including the center frequency of the reference signal to be measured by the terminal device and the configured bandwidth component of the terminal device.
  • the center frequency of any one of the bandwidth components is different;
  • the bandwidth of the reference signal to be measured by the terminal device is different from the bandwidth of the configured bandwidth component of the terminal device, including the bandwidth of the reference signal to be measured by the terminal device and the bandwidth of any one of the bandwidth components configured for the terminal device. different;
  • the terminal device does not support receiving two types of beams simultaneously;
  • the terminal device can report the capability of the terminal device to the network device, and the network device can receive the capability of the terminal device reported by the terminal device. If the capability of the terminal device indicates that the terminal device cannot receive the two types of beams at the same time, the network device can determine that the measurement interval needs to be configured for the terminal device, so that the terminal device can measure the reference signal to be measured in the measurement interval.
  • the type of the beam may refer to the direction of the beam and/or the width of the beam.
  • the beams that are transmitted in different directions or the beams that are different in width and width may be regarded as different types of beams, or may be the content carried by the beam. If the content of the bearer is different, it can be considered that the type of the beam is different.
  • the beam carrying the SS and the beam carrying the CSI-RS can be regarded as two different types of beams, or the beam carrying the SS and the dedicated beam carrying the data can also be considered. There are two different types of beams. It can be seen that, in the embodiment of the present application, whether the measurement interval parameter is configured for the terminal device is determined according to the capability of the terminal device, so that the configured measurement interval parameter is more in line with the actual requirement of the terminal device.
  • the network device can consider that the first condition is satisfied.
  • the network device configures a measurement interval parameter for the terminal device, and the measurement interval parameter is used by the terminal device to measure the reference signal.
  • the network device determines that the first condition is met, and in S42, the network device configures the measurement interval parameter for the terminal device.
  • the network device can configure the measurement interval parameter for the terminal device according to the information of the reference signal to be measured. For example, the network device can determine the time information of the reference signal to be measured, so that the reference signal to be measured and the like can be measured in the measurement interval indicated by the configured measurement interval parameter.
  • the network device configures the measurement interval parameter for the terminal device, and there are several different configuration modes, which are respectively introduced below.
  • the network device configures at least two measurement interval parameters for the terminal device.
  • Each of the measurement interval parameters indicates a measurement interval, that is, in mode A, the network device configures the terminal device with at least two measurement intervals.
  • the reference signal to be measured includes the SS and the CSI-RS
  • the network device may configure two measurement interval parameters for the terminal device, which are respectively referred to as a first measurement interval parameter and a second measurement interval parameter, and the first measurement interval parameter corresponds to The first measurement interval parameter corresponds to the second measurement interval at the first measurement interval.
  • the first measurement interval parameter may be configured to measure the SS by the terminal device, that is, the terminal device may measure the SS by using the first measurement interval
  • the second measurement interval parameter may be configured to measure the CSI-RS by the terminal device, that is, the terminal device may pass the second measurement. Interval measurement CSI-RS.
  • the first measurement interval and the second measurement interval may not be adjacent or may be adjacent.
  • the first measurement interval parameter may include a period of the first measurement interval and an offset of the first measurement interval, wherein the period of the first measurement interval and the offset of the first measurement interval are used to determine time information of the first measurement interval.
  • the network device and the terminal device both need to determine time information of the first measurement interval. After determining the time information of the first measurement interval, the network device can know when the terminal device starts the first measurement interval, and the terminal device can also determine The position initiates the first measurement interval.
  • the terminal device in the embodiment of the present application initiates the measurement interval, which may be that the terminal device interrupts sending and receiving data in the working frequency of the serving cell of the terminal device, that is, the terminal device is interrupted in the working frequency of the serving cell of the terminal device. Work, and start measuring the reference signal to other frequency points.
  • the terminal device can select it by itself.
  • the network device indicates, in advance, a plurality of frequency points except the working frequency band (or the central frequency point) of the serving cell of the terminal device, and after the terminal device starts a measurement interval, the network device may select the network in the measurement interval.
  • the reference signal to be measured is measured in at least one frequency point indicated by the device.
  • the first measurement interval parameter may further include other parameters of the first measurement interval, for example, the length of the first measurement interval, and the like, which is not limited in the embodiment of the present application.
  • the offset of the first measurement interval is an offset of the first measurement interval relative to the period of the first measurement interval. Then, if the period of the first measurement interval and the offset of the first measurement interval are known, the time information of the first measurement interval is also known. For example, referring to FIG. 5, if the offset of the first measurement interval is 0, the start position of the first measurement interval is the same position as the start position of the period of the first measurement interval. The first measurement interval of the next cycle is only one cycle apart from the first measurement interval of the current cycle. If the offset of the first measurement interval is ⁇ , the first measurement interval of the next cycle is separated from the first measurement interval of the current cycle by one cycle (cycle + ⁇ ).
  • the time information of the first measurement interval may also be directly calculated according to the following formula:
  • the position where the formula 1 is satisfied can be determined as the frame in which the measurement interval occurs, and if the time information of the first measurement interval is calculated, the position satisfying the formula 1 can be determined as the frame appearing at the first measurement interval.
  • the boundary of the period of the measurement interval is not explicitly defined, but the position where the measurement interval occurs is determined directly by the period of the measurement interval and the offset of the measurement interval.
  • SFN indicates the frame number at which the measurement interval starts, wherein since it is time information for calculating the first measurement interval, SFN indicates the frame number at which the first measurement interval starts.
  • T represents the period of the measurement interval
  • gapOffset represents the offset of the measurement interval
  • FLOOR() represents the round-down operation
  • mod represents the modulo operation, that is, the remainder operation. Equation 1 calculates the frame number at the beginning of the first measurement interval. In order to make the calculation result more accurate in order to get the position of the starting subframe, the following formula can be used:
  • the subframe indicates the subframe number at which the measurement interval starts, that is, the frame number at which the first measurement interval starts and the subframe number are calculated, so that the time information of the first measurement interval can be determined more accurately.
  • the second measurement interval parameter may include a period of the second measurement interval, and an offset of the second measurement interval, wherein the period of the second measurement interval and the offset of the second measurement interval are used to determine the second measurement interval.
  • Time information The network device and the terminal device also need to determine the time information of the second measurement interval. After determining the time information of the second measurement interval, the network device can know when the terminal device starts the second measurement interval, and the terminal device can also The determined position initiates a second measurement interval.
  • the second measurement interval parameter may further include other parameters of the second measurement interval, for example, the length of the second measurement interval, and the like, which is not limited in the embodiment of the present application.
  • the manner of determining the time information of the second measurement interval according to the period of the second measurement interval and the offset of the second measurement interval may refer to the offset according to the period of the first measurement interval and the first measurement interval as previously described. A way to measure the time information of the interval is not repeated.
  • the first measurement interval and the second measurement interval are two different measurement intervals. Specifically, if the period of the first measurement interval is different from the period of the second measurement interval, the offset of the first measurement interval and the offset of the second measurement interval may be the same or different. If the offset of the first measurement interval is the same as the offset of the second measurement interval, it is ensured that the first measurement interval and the second measurement interval are different measurement intervals, and the first measurement interval and the second measurement interval are The distribution is relatively neat, and if the offset of the first measurement interval is different from the offset of the second measurement interval, the period and the offset of the first measurement interval and the second measurement interval are different, and the first measurement interval and the first measurement interval can be made The distinction between the two measurement intervals is more obvious.
  • the offset of the first measurement interval is different from the offset of the second measurement interval.
  • the period here is different, and it can be understood that the length of the period is different. That is, in order to ensure that the first measurement interval and the second measurement interval are different measurement intervals, if the period of the first measurement interval and the period of the second measurement interval are the same, the offset of the first measurement interval and the second The offset of the measurement interval needs to be different, so that the two measurement intervals are different.
  • the period of the first measurement interval is 10 ms
  • the period of the second measurement interval is 20 ms
  • the offset of the first measurement interval and the offset of the second measurement interval may be the same, for example, 2 ms, or the first measurement interval.
  • the offset of the offset and the second measurement interval may also be different, for example, the offset of the first measurement interval is 2 ms, and the offset of the second measurement interval is 5 ms.
  • the period of the first measurement interval is 20 ms
  • the period of the second measurement interval is also 20 ms
  • the offset of the first measurement interval is different from the offset of the second measurement interval
  • the offset of the first measurement interval is 2 ms.
  • the offset of the second measurement interval is 5 ms.
  • the network device may not send a reference signal such as a CSI-RS to the terminal device in the first measurement interval, and may No data is sent to the terminal device. Similarly, the network device may not send data to the terminal device in the second measurement interval, and the SS is generally sent in a broadcast manner.
  • the terminal device can measure different reference signals in different measurement intervals.
  • the method provided by the embodiment of the present application provides The solution can perform measurements on different reference signals.
  • the time when the network device sends the SS and sends the CSI-RS may be different. If only one measurement interval parameter is configured, the length of the measurement interval corresponding to the measurement interval parameter may be too long. Therefore, two measurement interval parameters can be configured in the embodiment of the present application, and the length of the measurement interval corresponding to each measurement interval parameter is not too long, and does not affect the terminal device in the working frequency band of the serving cell of the terminal device excessively. The normal work.
  • the network device configures a measurement interval parameter for the terminal device, which is hereinafter referred to as a third measurement interval parameter.
  • the network device further configures a measurement interval parameter for the terminal device, and the terminal device can measure the reference signal by using a measurement interval corresponding to the measurement interval parameter, for example, the third measurement interval parameter can be used to measure SS and/or CSI. -RS.
  • the third measurement interval parameter may include a cycle of the third measurement interval and a cycle number of time information of the third measurement interval.
  • the period of the third measurement interval and the number of cycles of the time information of the third measurement interval are used to determine time information of the third measurement interval.
  • the third measurement interval parameter may further include other parameters of the third measurement interval, for example, the length of the third measurement interval, and the like, which is not limited in the embodiment of the present application.
  • the third measurement interval may be considered to be in a loop.
  • the period of the third measurement interval is 40 ms
  • the length of the third measurement interval is 6 ms, except for the radio frequency conversion time
  • the time available in one third measurement interval is 5 ms.
  • the third measurement interval occurs at the last 5 ms of 40 ms, and then can be cycled back from the ninth cycle, that is, in the ninth cycle, the third measurement interval appears again in the first 5 ms in 40 ms.
  • the number of cycles of the third measurement interval is eight.
  • FIG. 6 is a schematic diagram of the position of the third measurement interval in different periods.
  • the solid lined box in Figure 6 represents the third measurement interval. It can be seen that in the first cycle in FIG. 6, the start position of the third measurement interval is the same as the start position of the cycle of the third measurement interval (ie, the first cycle), in the second cycle.
  • the distance between the start position of the third measurement interval and the start position of the period of the third measurement interval (ie, the second period) is d1, and in the third period, the start position of the third measurement interval
  • the distance between the start position of the period of the third measurement interval (ie, the third period) is d2, and d2>d1, and in the fourth period, the start position of the third measurement interval and the third measurement interval
  • the distance between the starting positions of the period (ie, the fourth period) is d3, and d3>d2>d1, and so on.
  • the cycle range of the third measurement interval may be specified.
  • the dotted line frame in FIG. 6 indicates a sliding window, and the third measurement interval is specified to circulate within the range of the sliding window.
  • the third measurement interval has been cycled to the end position of the sliding window, that is, in the fourth cycle, the end position of the third measurement interval and the end position of the sliding window are the same position, then in the next cycle, that is, in the In the five cycles, the distance between the start position of the third measurement interval and the start position of the period of the third measurement interval (ie, the fifth cycle) will again become the same position.
  • the number of cycles of the third measurement interval is 5 times.
  • the cycle range of the third measurement interval may not be additionally specified.
  • the cycle length of the third measurement interval is directly used as the cycle range of the third measurement interval, and the cycle mode is similar to that of FIG. 6, except that the range of the dotted frame becomes the entire cycle length. That is, this can make the third measurement interval cover the entire period.
  • the terminal device Because as a terminal device, it may be necessary to measure reference signals transmitted by multiple cells, and the locations of reference signals transmitted by different cells may be different. If the position of the measurement interval in each cycle is fixed, the terminal device measures the reference signal at a fixed position in each cycle, and the position of the reference signal transmitted by some cells is always outside the fixed measurement interval. Then the terminal device may never be able to measure these reference signals. Then, after adopting the technical solution provided by the embodiment of the present application, the third measurement interval can be moved in different periods, so that the terminal device can measure the reference signals of different locations in different periods, and the terminal device can measure the transmission of each cell as much as possible.
  • the reference signal helps to expand the measurement range of the terminal equipment.
  • the time information of the third measurement interval is determined according to the number of cycles of the time of the third measurement interval and the time information of the third measurement interval.
  • the embodiment of the present application provides the following manners:
  • the time information of the third measurement interval can be calculated using the following formula:
  • Time information of the measurement interval (time information of the period in which the measurement interval is located mod N) * Length of the measurement interval + offset reference position of the measurement interval (Equation 3)
  • the time information of the period in which the measurement interval is located may be any time in the period of the measurement interval, for example, the start time of the period of the measurement interval, or the end time of the period of the measurement interval, and the like.
  • Mod represents the remainder operation
  • N represents the number of cycles of the measurement interval
  • the offset reference position of the measurement interval may refer to the offset of the start position of the sliding window as shown in FIG. 6 with respect to the start position of the period of the measurement interval. the amount. That is, by Equation 3, the time information of the third measurement interval can be directly calculated.
  • the frame number starting from the third measurement interval and the subframe number may be calculated according to Equation 1 and Equation 2 as described above, and then the offset of the third measurement interval is calculated based on the basis, and then the combination may be combined.
  • the frame number at the start of the third measurement interval, the subframe number, and the offset of the third measurement interval obtain time information of the third measurement interval.
  • the offset of the third measurement interval can be calculated by the following formula:
  • the offset step size in Equation 4 may be the length of the measurement interval, or may be other predefined values or values configured by the network device.
  • the terminal device may calculate the time information of the third measurement interval by using any of the above methods.
  • the network device may not transmit a reference signal such as a CSI-RS to the terminal device in the third measurement interval, and may not send data to the terminal device. If the network device configures the third measurement interval for measuring the CSI-RS, the network device may not transmit data to the terminal device in the third measurement interval, and the SS is generally broadcasted.
  • a reference signal such as a CSI-RS
  • the terminal device can complete the measurement of the reference signal in one measurement interval, and for the terminal device that cannot simultaneously receive two different types of beams, the measurement can be measured in one measurement interval.
  • a reference signal, and the network device may not send another reference signal to the terminal device during the measurement interval, so that the terminal device needs to receive two types of beams at the same time, which meets the capability requirements of the terminal device.
  • the two methods for configuring the measurement interval parameter for the terminal device by the network device are as described above. In practical applications, one of the above methods may be selected.
  • the network device sends the configured measurement interval parameter to the terminal device, where the terminal device receives the measurement interval parameter sent by the network device.
  • the configuration information can be sent to the terminal device, and the terminal device can receive the configuration information sent by the network device, and the configuration information can include the measurement interval parameter configured by the network device for the terminal device.
  • the configuration information may include the first measurement interval parameter and the second measurement interval parameter
  • the configuration information may include the third measurement interval parameter.
  • the network device may send the first measurement interval parameter and the second measurement interval parameter to the terminal device by using a message, thereby saving transmission resources, or The device may also send the first measurement interval parameter and the second measurement interval parameter to the terminal device by using different messages. If the network device sends the first measurement interval parameter and the second measurement interval parameter to the terminal device by using different messages, the network device may simultaneously send the first measurement interval parameter and the second measurement interval parameter, or the network device line sends the first After the interval parameter is measured, the second measurement interval parameter is sent, or the network device sends the first measurement interval parameter after sending the second measurement interval parameter.
  • the terminal device After receiving the configuration information, the terminal device can start the corresponding measurement interval according to the configuration information, which is described below.
  • the first measurement interval parameter and the second measurement interval parameter are configured by using the network device as the terminal device as an example.
  • the terminal device determines time information of the first measurement interval according to the first measurement interval parameter.
  • the terminal device first determines according to the first measurement interval parameter. Time information of the first measurement interval. Specifically, the manner of determining the time information of the first measurement interval according to the period of the first measurement interval and the offset of the first measurement interval is described in S42, and the terminal device may determine the first measurement interval according to the manner as described above. Time information.
  • the time information of the cell in which the terminal device obtains the first measurement interval acquires time information of the cell in which the cell is located.
  • the terminal device measures the synchronization signal at the time information of the first measurement interval, so that time information of the cell where the synchronization signal is located may be acquired.
  • the first measurement interval may be started at a starting position of the first measurement interval, so that the terminal device may measure the SS in the first measurement interval to obtain the SS according to the SS. Time information of the cell.
  • the network device may configure stop time information for the first measurement interval, that is, the first measurement interval parameter may further include stop time information of the first measurement interval, where the stop time information of the first measurement interval may indicate the first measurement The stop time of the interval.
  • the stop time of the first measurement interval described herein does not refer to the end time opposite to the start time of the first measurement interval, but refers to the time when the first measurement interval does not need to be restarted.
  • the dashed box S represents the first measurement interval
  • the t1 position represents the start time of the first measurement interval
  • the t2 position represents the end time of the first measurement interval
  • the t1 position corresponds to the t2 position
  • the t3 position represents The stop time of the first measurement interval, after the t3 position, the first measurement interval is no longer activated, and it can be seen that the first measurement interval is not activated in the next cycle in FIG.
  • the t2 position is not the same position as the t3 position, and in some embodiments, the t2 position and the t3 position may be the same position.
  • the t3 position that is, the stop time of the first measurement interval
  • the terminal device may After the end of the first measurement interval, the first measurement interval is no longer activated when the period of the next first measurement interval comes, and if the start time of the first measurement interval is before t1 and at the end of the last first measurement interval Thereafter, the terminal device may not directly activate the first measurement interval.
  • the stop time information of the first measurement interval may include the number of occurrences of the first measurement interval or the stop time of the first measurement interval. If the stop time information of the first measurement interval includes the number of occurrences of the first measurement interval, the network device may estimate that the terminal device can measure the SS to the SS through several first measurement intervals, for example, the network device pre-estimates that the terminal device can pass the two The first measurement interval is measured to the SS, and the number of occurrences of the first measurement interval included in the stop time information of the first measurement interval may be 2, or may be a value of 3 or more for more insurance.
  • the network device can also estimate in advance how long the terminal device can measure the SS through the first measurement interval. For example, the network device estimates in advance that the terminal device can measure the SS through the first measurement interval within 10s. Then, the stop time information of the first measurement interval may include a stop time of the first measurement interval of 10 s, or may be 11 s or other larger value for more insurance. For example, the stop time information of the first measurement interval includes the stop time of the first measurement interval being 10 s, and the first measurement interval is not started after the first start for 10 s. Alternatively, the stop time information of the first measurement interval may also include other types of information as long as it can indicate when the first measurement interval is stopped.
  • the first measurement interval can be ended in time, so that the terminal device can complete other work using the time that is originally the first measurement interval.
  • the terminal device determines time information of the second measurement interval according to the second measurement interval parameter.
  • the network device configures the first measurement interval parameter and the second measurement interval parameter for the terminal device, so the terminal device determines the time information of the second measurement interval in addition to the time information of the first measurement interval. Specifically, the manner of determining the time information of the second measurement interval according to the period of the second measurement interval and the offset of the second measurement interval is described in S42, and the terminal device may determine the second measurement interval according to the manner as described above. Time information.
  • the terminal device measures time information of the second measurement interval, and measures the channel state information reference signal according to the time information of the cell and the configuration information of the channel state information reference signal.
  • the configuration information of the channel state information reference signal is used to indicate the location of the channel state information reference signal.
  • the configuration information of the CSI-RS may be sent by the network device to the terminal device.
  • the configuration information of the CSI-RS may indicate which frame or subframes the CSI-RS specifically appears, and then the terminal device measures the SS according to the obtained cell.
  • the time information can determine the boundary of the frame or subframe, so that the specific location of the CSI-RS can be determined.
  • the terminal device needs to perform measurement in the second measurement interval, in addition to the start time of the second measurement interval to be known, and the start time of the second measurement interval needs to be known, that is, the first measurement interval needs to be determined. Start Time.
  • the embodiments of the present application provide various manners, which are respectively introduced below.
  • the first measurement interval is used to measure the SS.
  • the terminal device can be considered to have measured the SS, that is, the time information of the cell has been acquired, and subsequent measurement of other reference signals such as CSI-RS can be performed. Therefore, in mode 1, after the first measurement interval is stopped, the terminal device can start the second measurement interval, wherein the terminal device starts at the start position of the first second measurement interval after the first measurement interval stops. Two measurement intervals. It can be considered that in mode 1, the first measurement interval and the second measurement interval do not exist simultaneously.
  • the terminal device determines whether to start the second measurement interval according to whether the first measurement interval is stopped, and the monitoring mode is simple, and the network device does not need to additionally notify the terminal device of the start timing of the second measurement interval.
  • the measurement interval is a period, so-called stop, after which the measurement interval is no longer activated.
  • the start time of the second measurement interval is determined according to the start time information of the second measurement interval, that is, the second measurement interval parameter further includes start time information of the second measurement interval.
  • the start time information of the second measurement interval may be used to indicate the first start time of the second measurement interval.
  • the network device can estimate in advance how long the terminal device needs to measure the SS, so as to determine the start time of the second measurement interval according to the estimation result. For example, the network device pre-estimates that the terminal device can measure the SS through the first measurement interval within 10s, and the start time information of the second measurement interval includes the start time of the second measurement interval, which may be 10s, or for more insurance, It can be the 11th and so on.
  • the start time of the second measurement interval is different from the start time of the second measurement interval.
  • the t1 position indicates the second.
  • the start time of the measurement interval, the position t2 represents the end time of the second measurement interval, the position of t1 corresponds to the position of t2, and the start time of the second measurement interval may be located at any position within the range of [t1, t2], or It may not be in the range [t1, t2].
  • the terminal device may After the end of the second measurement interval, the second measurement interval is started for the first time when the start time of the next second measurement interval comes, and if the start time of the second measurement interval is before t1 and at the end of the last second measurement interval After the time, the terminal device can start the second measurement interval for the first time at the beginning of the second measurement interval.
  • the first measurement interval and the second measurement interval may not exist at the same time, or may exist at the same time.
  • the network device can directly configure the start time information of the second measurement interval, and the terminal device only needs to start the second measurement interval according to the start time information of the second measurement interval, and the terminal device does not need to judge according to other information.
  • the implementation is relatively simple.
  • the network device sends the second measurement interval parameter to the terminal device, and the terminal device can start the second measurement interval after receiving the second measurement interval parameter.
  • the terminal device may start the second measurement interval at a starting position of the first second measurement interval after receiving the second measurement interval parameter.
  • the terminal device can start the second measurement interval, and does not need to do other excessive determination of the startup timing, and the method is relatively simple and direct.
  • the first measurement interval and the second measurement interval may not exist at the same time, or may exist at the same time.
  • the technical solution provided by the embodiment of the present application enables the terminal device to complete the measurement of the reference signal to be measured.
  • the terminal device can send the obtained measurement report to the network device, so that the network device can perform, for example, a process of determining whether to perform cell handover.
  • the terminal device in a case where the third measurement interval can be slid, the terminal device can measure more reference signals sent by the cell, and can obtain a more detailed measurement report, which helps the network device to process the result. More accurate.
  • FIG. 8 shows a schematic structural diagram of a network device 800.
  • the network device 800 can implement the functionality of the network devices referred to above.
  • the network device 800 can include a processor 801.
  • the network device 800 may further include a transceiver 802.
  • the processor 801 can be used to perform S41 and S42 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • Transceiver 802 can be used to perform S43 in the embodiment shown in Figure 4, and/or other processes for supporting the techniques described herein.
  • the processor 801 is configured to determine that the first condition is met, the measurement interval parameter is configured for the terminal device, where the measurement interval parameter is used by the terminal device to measure a reference signal to be measured; wherein the first condition includes the following At least one of: a frequency band of the reference signal to be measured is not located in a range of a working frequency band of the serving cell of the terminal device, and a center frequency of the reference signal to be measured and a center frequency of the serving cell of the terminal device Differently, the center frequency of the reference signal to be measured is different from the center frequency of all the synchronization signals sent by the serving cell of the terminal device, and the bandwidth of the reference signal to be measured and the service of the terminal device The bandwidth of all the synchronization signals sent by the cell is different.
  • the center frequency of the reference signal to be measured is different from the center frequency of the activated bandwidth component of the terminal device, and the bandwidth of the reference signal to be measured is The bandwidth of the activated bandwidth component of the terminal device is different, and the center frequency of the reference signal to be measured is the terminal device Different components of different bandwidths opposite the center frequency of the reference signal to be measured and a bandwidth to the bandwidth components of the terminal device configuration bandwidth, the terminal device does not support simultaneous reception of both types of beams.
  • FIG. 9A shows a schematic structural diagram of an apparatus 900.
  • the device 900 can implement the functions of the terminal device referred to above.
  • the device 900 can include a processor 901.
  • the processor 901 can be used to execute S43-S47 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the processor 901 is configured to: determine time information of the first measurement interval according to the first measurement interval parameter; acquire time information of the cell in which the time information of the first measurement interval is acquired; and determine second according to the second measurement interval parameter. Measuring time information of the interval; measuring, according to the time information of the second measurement interval, the channel state information reference signal according to the time information of the cell and the configuration information of the channel state information reference signal; the channel state information reference signal
  • the configuration information is used to indicate the location of the channel state information reference signal.
  • the device 900 can be a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), and a central processor. Unit, CPU), network processor (NP), digital signal processor (DSP), microcontroller (micro controller unit (MCU), or programmable logic device (programmable logic device, PLD) or other integrated chips.
  • the device 900 can be configured in the network device or the terminal device of the embodiment of the present application, so that the network device or the terminal device implements the measurement interval parameter configuration and the method for measuring the reference signal provided by the embodiment of the present application.
  • the device 900 can also include a memory 902, which can be referenced in FIG. 9B, where the memory 902 is used to store computer programs or instructions, and the processor 901 is used to decode and execute the computer programs or instructions. It should be understood that these computer programs or instructions may include the functional programs of the terminal devices described above. When the function program of the terminal device is decoded and executed by the processor 901, the terminal device can be configured to implement the function of the terminal device in the method for measuring the reference signal in the embodiment of the present application.
  • the functional programs of these terminal devices are stored in a memory external to device 900.
  • the function program of the terminal device is decoded and executed by the processor 901, part or all of the contents of the function program of the terminal device are temporarily stored in the memory 902.
  • the functional programs of these terminal devices are located in a memory 902 stored internal to the device 900.
  • the device 900 may be disposed in the terminal device of the embodiment of the present application.
  • portions of the functional programs of the terminal devices are stored in a memory external to the device 900, and other portions of the functional programs of the terminal devices are stored in the memory 902 internal to the device 900.
  • the network device 800 and the device 900 are presented in the form of dividing each functional module into functions, or may be presented in an integrated manner to divide the functional modules.
  • a “module” herein may refer to an ASIC, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other devices that provide the functionality described above.
  • the network device provided by the embodiment shown in FIG. 8 can also be implemented in other forms.
  • the network device includes a processing module.
  • the processing module can be used to perform S41 and S42 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the network device may further comprise a transceiver module, coupled to the processing module, for performing S43 in the embodiment shown in FIG. 4, and/or for supporting other processes of the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • the terminal device provided by the embodiment shown in FIG. 9A or 9B can also be implemented in other forms.
  • the terminal device includes a processing module.
  • the processing module can be used to execute S43-S47 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the network device 800 and the device 900 provided in the embodiments of the present application can be used to perform the method provided in the embodiment shown in FIG. 4, and the technical effects that can be obtained by reference to the foregoing method embodiments are not described herein.
  • the embodiment of the present application further provides a communication device, which may be a terminal device or a circuit.
  • the communication device can be used to perform the actions performed by the terminal device in the above method embodiments.
  • FIG. 10 shows a schematic structural diagram of a simplified terminal device.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling terminal devices, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When the data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit having the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor having the processing function is regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1010 and a processing unit 1020.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 1010 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 1010 is regarded as a sending unit, that is, the transceiver unit 1010 includes a receiving unit and a sending unit.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit or the like.
  • the transmitting unit may also be referred to as a transmitter, a transmitter, or a transmitting circuit, and the like.
  • transceiver unit 1010 is configured to perform the sending operation and the receiving operation on the terminal device side in the foregoing method embodiment
  • processing unit 1020 is configured to perform other operations on the terminal device except the transmitting and receiving operations in the foregoing method embodiments.
  • the transceiver unit 1010 is configured to perform the receiving operation on the terminal device side in S43 in FIG. 4, and/or the transceiver unit 1010 is further configured to perform other transmitting and receiving steps on the terminal device side in the embodiment of the present application.
  • the processing unit 1020 is configured to perform S44-S47 in FIG. 4, and/or the processing unit 1020 is further configured to perform other processing steps on the terminal device side in the embodiment of the present application.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit and a communication interface;
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the device shown in FIG. 11 can be referred to.
  • the device can perform functions similar to processor 901 in FIG.
  • the device includes a processor 1110, a transmit data processor 1120, and a receive data processor 1130.
  • the processor 901 in the above embodiment may be the processor 1110 in FIG. 11 and perform the corresponding functions.
  • the transmit data processor 1120 and/or the receive data processor 1130 of FIG. 11 can implement the function of data transceiving.
  • a channel coder and a channel decoder are shown in FIG. 11, it is to be understood that these modules are not intended to be limiting, and are merely illustrative.
  • Fig. 12 shows another form of this embodiment.
  • the processing device 1200 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as a modulation subsystem therein.
  • the modulation subsystem may include a processor 1203, an interface 1204.
  • the processor 1203 performs the functions of the processor 901 described above.
  • the modulation subsystem includes a memory 1206, a processor 1203, and a program stored on the memory 1206 and executable on the processor, and the processor 1203 executes the program to implement the terminal device side in the foregoing method embodiment. Methods.
  • the memory 1206 may be non-volatile or volatile, and its location may be located inside the modulation subsystem or in the processing device 1200 as long as the memory 1206 can be connected to the The processor 1203 is sufficient.
  • a computer readable storage medium having stored thereon an instruction for executing a method on a terminal device side in the above method embodiment when the instruction is executed.
  • a computer program product comprising instructions which, when executed, perform the method on the terminal device side in the above method embodiment.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another readable storage medium, for example, the computer instructions can be passed from a website site, computer, server or data center Wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium eg, a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种测量间隔参数配置、测量参考信号的方法及设备,用于减少资源浪费,保证终端设备的正常工作。其中的一种测量间隔配置方法包括:网络设备确定满足第一条件;所述网络设备为所述终端设备配置测量间隔参数,所述测量间隔参数用于所述终端设备测量待测量的参考信号。

Description

一种测量间隔参数配置、测量参考信号的方法及设备
本申请要求在2017年8月10日提交中国专利局、申请号为201710680864.6、申请名称为“一种测量间隔参数配置、测量参考信号的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种测量间隔参数配置、测量参考信号的方法及设备。
背景技术
目前,可以通过为终端设备配置测量间隔(GAP)来使得终端设备测量频率位于终端设备的服务小区的工作频带范围外的参考信号。然而,目前的GAP都是固定配置的,即使对于那些不需要测量频率位于终端设备的服务小区的工作频带范围外的参考信号的终端设备,基站也会为其配置GAP,而对于此类终端设备来说并不需要使用GAP,这样就导致了资源的浪费,而且此类终端设备如果使用GAP,反而会影响正常工作。
发明内容
本申请实施例提供一种测量间隔参数配置、测量参考信号的方法及设备,用于减少资源浪费,保证终端设备的正常工作。
在本申请实施例中,测量间隔的起始时刻,可以是指一个具体的起始时间点,或者也可以是测量间隔的起始时间点所在的帧或子帧。测量间隔的结束时刻,可以是指一个具体的起始时间点,或者也可以是测量间隔的结束时间点所在的帧或子帧。测量间隔的停止时刻,可以是指一个具体的起始时间点,或者也可以是测量间隔的停止时间点所在的帧或子帧。测量间隔的启动时刻,可以是指一个具体的起始时间点,或者也可以是测量间隔的启动时间点所在的帧或子帧。
第一方面,提供一种测量间隔参数配置方法,该方法可由网络设备执行,网络设备例如为基站。该方法包括:网络设备确定满足第一条件;所述网络设备为所述终端设备配置测量间隔参数,所述测量间隔参数用于所述终端设备测量待测量的参考信号;其中,第一条件包括以下至少一种:所述待测量的参考信号的频带没有位于所述终端设备的服务小区的工作频带的范围内,所述待测量的参考信号的中心频点与所述终端设备的服务小区的中心频点不同,所述待测量的参考信号的中心频点与所述终端设备的服务小区所有同步信号的中心频点不相同,所述待测量的参考信号的带宽与所述终端设备的服务小区所有同步信号的带宽不相同,所述待测量的参考信号的中心频点与所述终端设备的激活的带宽分量的中心频点不同,所述待测量的参考信号的带宽与所述终端设备的激活的带宽分量的带宽不同,所述待测量的参考信号的中心频点与为所述终端设备配置的带宽分量的中心频点不同,所述待测量的参考信号的带宽与为所述终端设备配置的带宽分量的带宽不同,所述终端设备不支持同时接收两种类型的波束。
本申请实施例中,网络设备会在确定满足为终端设备配置测量间隔参数的条件的情况下再为终端设备配置测量间隔参数,从而使得配置的测量间隔参数较为符合终端设备的实际需求,避免浪费测量间隔资源,而且终端设备在测量间隔期间可以完成对参考信号的测量,在测量间隔之外可以在工作频带中进行工作,尽量保证了终端设备的正常工作。
在一个可能的设计中,所述测量间隔参数包括第一测量间隔参数和第二测量间隔参数,所述第一测量间隔参数用于所述终端设备测量同步信号,所述第二测量间隔参数用于所述终端设备测量信道状态信息参考信号;或,所述测量间隔参数包括第三测量间隔参数,所述第三测量间隔参数用于所述终端设备测量同步信号和/或信道状态信息参考信号。
通过为终端设备配置两个测量间隔参数,使得终端设备可以在不同的测量间隔中测量不同的参考信号,对于不能同时接收两种不同类型的波束的终端设备来说,通过本申请实施例提供的方案可以完成对于不同的参考信号的测量。另外,网络设备发送同步信号SS和发送信道状态信息参考信号CSI-RS的时间可能不同,如果只配置一个测量间隔参数,则该测量间隔参数对应的测量间隔的长度可能会过长。因此本申请实施例中可以配置两个测量间隔参数,则每个测量间隔参数对应的测量间隔的长度都不会太长,不会过多地影响终端设备在终端设备的服务小区的工作频带上的正常工作。或者,也可以为终端设备配置一个测量间隔参数,使得终端设备可以在一个测量间隔中完成对参考信号的测量,对于不能同时接收两种不同类型的波束的终端设备来说,可以在一个测量间隔中测量其中一个参考信号,且网络设备在该测量间隔内可以不向终端设备发送另一个参考信号,从而可以避免终端设备需要同时接收两种类型的波束的情况,符合终端设备的能力需求。
第二方面,提供一种测量参考信号的方法,该方法可由终端设备执行。该方法包括:终端设备根据第一测量间隔参数确定第一测量间隔的时间信息;所述终端设备在所述第一测量间隔的时间信息获取所在的小区的时间信息;所述终端设备根据第二测量间隔参数确定第二测量间隔的时间信息;所述终端设备在所述第二测量间隔的时间信息,根据所述小区的时间信息以及信道状态信息参考信号的配置信息测量所述信道状态信息参考信号;所述信道状态信息参考信号的配置信息用于指示所述信道状态信息参考信号的时间信息。
网络设备为终端设备配置了两个测量间隔参数,使得终端设备可以在不同的测量间隔中测量不同的参考信号,且终端设备可以在第一测量间隔中获取所在的小区的时间信息,从而可以在第二测量间隔中测量信道状态信息参考信号,尽量避免因无法获取所在的小区的时间信息而导致无法测量信道状态信息参考信号的情况出现,提高了信号测量的可靠性。
在一个可能的设计中,所述第一测量间隔参数包括所述第一测量间隔的周期,以及所述第一测量间隔的偏置;所述第一测量间隔的周期及所述第一测量间隔的偏置用于确定所述第一测量间隔的时间信息;所述第二测量间隔参数包括所述第二测量间隔的周期,以及所述第二测量间隔的偏置;所述第二测量间隔的周期及所述第二测量间隔的偏置用于确定所述第二测量间隔的时间信息。
介绍了测量间隔参数可能包括的参数信息,通过测量间隔参数所包括的参数信息就能够确定测量间隔的时间信息,从而终端设备可以在测量间隔参数所指示的测量间隔测量参考信号。
在一个可能的设计中,所述第一测量间隔的周期与第二测量间隔的周期不同,所述第一测量间隔的偏置与所述第二测量间隔的偏置相同或者不同;或者,所述第一测量间隔的 周期和所述第二测量间隔的周期相同,所述第一测量间隔的偏置与所述第二测量间隔的偏置不同。
即,第一测量间隔与第二测量间隔是不同的测量间隔。
在一个可能的设计中,所述第三测量间隔参数包括所述第三测量间隔的周期以及所述第三测量间隔的时间信息的循环次数;所述第三测量间隔的周期及所述第三测量间隔的时间信息的循环次数用于确定所述第三测量间隔的时间信息。
之所以有循环次数,是说第三测量间隔在不同的周期中的位置可能是不同的,如果将多个周期作为整体来看,可以认为第三测量间隔是在进行循环。因为作为终端设备来说,可能需要测量多个小区发送的参考信号,而不同的小区发送的参考信号的位置可能不同。如果测量间隔在每个周期中的位置是固定的,终端设备在每个周期中都是在固定的位置测量参考信号,而有些小区发送的参考信号的位置又始终位于固定的测量间隔之外,那么终端设备可能就始终无法测量这些参考信号。那么采用本申请实施例提供的技术方案后,使得第三测量间隔能够在不同的周期中移动,从而终端设备在不同的周期可以测量不同位置的参考信号,能够使得终端设备尽量测量到各个小区发送的参考信号,有助于扩大终端设备的测量范围。
在一个可能的设计中,在所述网络设备为所述终端设备配置测量间隔参数之后,所述网络设备还可以向所述终端设备发送所述测量间隔参数。
即,网络设备将测量间隔参数发送给终端设备,从而终端设备可以在测量间隔参数所指示的测量间隔测量参考信号。
在一个可能的设计中,所述第一测量间隔参数还包括所述第一测量间隔的停止时间信息;则所述终端设备还可以根据所述第一测量间隔的停止时间信息确定所述第一测量间隔的停止时刻。
其中,测量间隔是周期出现,所谓停止,就是在停止时刻之后该测量间隔不再启动。第一测量间隔用于测量同步信号,终端设备可能无需多次测量同步信号,只要测量一次或几次,获得了终端设备所在的小区的时间信息即可,因此作为用于测量同步信号的第一测量间隔也就无需始终存在。则第一测量间隔参数可以包括第一测量间隔的停止时间信息,在停止时间信息所指示的停止时刻之后第一测量间隔可以无需再启动,而本来由第一测量间隔所占用的时间可以用于完成其他工作,从而提高了时间资源的利用率。
在一个可能的设计中,所述第一测量间隔的停止时间信息包括所述第一测量间隔的出现次数或所述第一测量间隔的停止时刻。
如果第一测量间隔的停止时间信息包括第一测量间隔的出现次数,则网络设备可以预先估计终端设备大概能够通过几个第一测量间隔测量到同步信号,例如网络设备预先估计终端设备能够通过2个第一测量间隔测量到同步信号,则第一测量间隔的停止时间信息包括的第一测量间隔的出现次数可以是2,或者为了更为保险,也可以是3或更大的值。以第一测量间隔的停止时间信息包括的第一测量间隔的出现次数是2为例,则第一测量间隔在出现2次之后就不再启动;而如果第一测量间隔的停止时间信息包括第一测量间隔的停止时刻,则网络设备同样可以预先估计终端设备大概多长时间能够通过第一测量间隔测量到同步信号,例如网络设备预先估计终端设备能够在10s内通过第一测量间隔测量到同步信号,则第一测量间隔的停止时间信息包括的第一测量间隔的停止时刻可以是10s,或者为了更为保险,也可以是11s或其他更大的值。以第一测量间隔的停止时间信息包括的第 一测量间隔的停止时刻是10s为例,则第一测量间隔在首次启动10s之后就不再启动。无论第一测量间隔的停止时间信息通过何种方式实现,其指示第一测量间隔的停止时刻的方式都较为简单,易于实现。
在一个可能的设计中,在所述第一测量间隔停止后,所述终端设备启动所述第二测量间隔。
第一测量间隔用于测量同步信号,那么在第一测量间隔停止后,可以认为终端设备已经测量到了同步信号,即已经获取了小区的时间信息,后续已经可以进行信道状态信息参考信号等其他参考信号的测量。因此在第一测量间隔停止后,终端设备就可以启动第二测量间隔,从而能够及时测量信道状态信息参考信号。其中,终端设备是在第一测量间隔停止之后的第一个第二测量间隔的起始位置处启动第二测量间隔。
在一个可能的设计中,所述第二测量间隔参数还包括所述第二测量间隔的启动时间信息;所述终端设备还可以根据所述第二测量间隔的启动时间信息确定所述第二测量间隔的启动时刻。
网络设备可以预先估计终端设备大概需要多长时间来测量SS,从而根据估计结果确定第二测量间隔的启动时间。即,网络设备可以直接配置第二测量间隔的启动时间信息,终端设备只需根据第二测量间隔的启动时间信息启动第二测量间隔即可,无需终端设备再根据其他信息进行判断,对于终端设备来说实现方式较为简单。
在一个可能的设计中,所述终端设备还可以接收所述网络设备发送的所述第二测量间隔参数;则所述终端设备启动所述第二测量间隔。
网络设备会向终端设备发送第二测量间隔参数,则终端设备可以在接收第二测量间隔参数后即启动第二测量间隔。其中,终端设备可以在接收第二测量间隔参数之后的第一个第二测量间隔的起始位置处启动第二测量间隔。在这种方式下,终端设备接收第二测量间隔参数后即可启动第二测量间隔,无需做其他过多的确定启动时机的工作,方式较为简单直接。
在本申请实施例的可能的设计中,如果满足第一条件,则网络设备为终端设备配置测量间隔参数,从而终端设备可以在测量间隔参数所指示的测量间隔测量参考信号。其中,如果待测量的参考信号有多个,则网络设备可以选择为终端设备配置多个测量间隔参数。以待测量的参考信号包括SS和CSI-RS为例,网络设备发送SS和发送CSI-RS的时间可能不同,如果只配置一个测量间隔参数,则该测量间隔参数对应的测量间隔的长度可能会过长。因此本申请实施例中可以配置第一测量间隔参数和第二测量间隔参数,则其中的每个测量间隔参数对应的测量间隔的长度都不会太长,不会过多地影响终端设备在终端设备的服务小区的工作频带上的正常工作。
其中,第一测量间隔参数所指示的第一测量间隔用于测量SS,第二测量间隔参数所指示的第二测量间隔用于测量CSI-RS,从而可以通过不同的测量间隔来测量不同的参考信号,尽量保证参考信号都能得到测量,且不会互相干扰。
网络设备将配置的第一测量间隔参数和第二测量间隔参数发送给终端设备,则终端设备可以根据第一测量间隔参数和第二测量间隔参数进行测量。
其中第一测量间隔参数包括第一测量间隔的周期和第一测量间隔的偏置,第二测量间隔参数包括第二测量间隔的周期和第二测量间隔的偏置,则终端设备根据第一测量间隔的周期和第一测量间隔的偏置可以确定第一测量间隔的位置,即第一测量间隔的时间信息, 同样的,根据第二测量间隔的周期和第二测量间隔的偏置也可以确定第二测量间隔的时间信息。
因为第一测量间隔参数用于测量SS,而终端设备即使要测量CSI-RS等其他参考信号,也需要首先测量SS以获取小区的时间信息,所以终端设备首先在第一测量间隔中测量SS,在完成对SS的测量后,终端设备可以获得所在的小区的时间信息,从而终端设备可以在第二测量间隔中测量CSI-RS,从而完成对待测量的参考信号的测量。
其中,第一测量间隔可以在终端设备接收第一测量间隔参数之后即启动,从而终端设备可以及时测量SS。关于第二测量间隔的启动时间,终端设备可以根据不同的方式来确定:例如终端设备可以根据第一测量间隔的停止时间信息来确定第二测量间隔的启动时间,即在第一测量间隔停止后,即认为终端设备已经测量到了SS,则在第一测量间隔停止后终端设备可以启动第二测量间隔。或者,终端设备可以根据第二测量间隔的启动时间信息确定第二测量间隔的启动时间,在这种方式下,网络设备可以预先估计终端设备大概需要多长时间来测量SS,从而根据估计结果确定第二测量间隔的启动时间,尽量使得第二测量间隔在合适的时间启动。或者,终端设备可以根据接收第二测量间隔参数的时间来确定第二测量间隔的启动时间,即网络设备会向终端设备发送第二测量间隔参数,终端设备可以在接收第二测量间隔参数后即启动第二测量间隔,方式较为简单。
另一方面,作为终端设备来说,可能需要测量多个小区发送的参考信号,而不同的小区发送的参考信号的位置可能不同。如果测量间隔在每个周期中的位置是固定的,终端设备在每个周期中都是在固定的位置测量参考信号,而有些小区发送的参考信号的位置又始终位于固定的测量间隔之外,那么终端设备可能就始终无法测量这些参考信号。因此本申请实施例中,网络设备也可以为终端设备配置一个测量间隔参数,即第三测量间隔参数,第三测量间隔能够在不同的周期中移动,即第三测量间隔参数在不同的周期中的位置不同,从而终端设备在不同的周期可以测量不同位置的参考信号,能够使得终端设备尽量测量到各个小区发送的参考信号,有助于扩大终端设备的测量范围。
具体的,第三测量间隔参数可以包括第三测量间隔的周期以及第三测量间隔的时间信息的循环次数。其中,第三测量间隔的周期及第三测量间隔的时间信息的循环次数用于确定第三测量间隔的时间信息。网络设备可以将配置的第三测量间隔参数发送给终端设备,从而终端设备可以通过第三测量间隔参数进行测量。如果将第三测量间隔的多个周期作为整体来看,可以认为第三测量间隔是在进行循环。例如,在第三测量间隔的第一个周期中,第三测量间隔位于第一位置,在第三测量间隔的第二个周期中,第三测量间隔位于第二位置,其中第一位置与第二位置不同,以此类推。当然,因为第三测量间隔的周期的长度有限,因此在循环一定周期之后,第三测量间隔可能在第三测量间隔的第n个周期中又会再次位于第一位置,重新开始循环。这里的位置,主要是指时域位置,位置不同,可以理解为两个位置不重合,而两个位置可以有交集,也可以没有交集。通过这种方式,尽量使得第三测量间隔覆盖第三测量间隔的整个周期,从而终端设备可以在不同的周期测量不同位置的参考信号,尽量避免遗漏参考信号。
第三方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,网络设备的具体结构可包括处理器。可选的,该网络设备还可 以包括收发器。处理器和收发器可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第四方面,提供一种设备。该设备可以为上述方法设计中的终端设备,或者为设置在上述方法设计中的终端设备中的芯片。该设备具有实现上述方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该设备的具体结构可包括处理器。处理器和可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第五方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,网络设备的具体结构可包括处理模块。可选的,该网络设备还可以包括收发模块,处理模块和收发模块可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第六方面,提供一种设备。该设备具有实现上述方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该设备的具体结构可包括处理模块。处理模块可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第七方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第八方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第九方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
本申请实施例中,网络设备会在确定满足为终端设备配置测量间隔参数的条件的情况下再为终端设备配置测量间隔参数,从而使得配置的测量间隔参数较为符合终端设备的实际需求,避免浪费测量间隔资源。
附图说明
图1为网络设备发送同步信号的示意图;
图2为终端设备测量SS和测量CSI-RS之间的关系示意图;
图3为本申请实施例的一种应用场景示意图;
图4为本申请实施例提供的测量间隔参数配置、测量参考信号的方法的一种流程图;
图5为本申请实施例中根据第一测量间隔的周期和第一测量间隔的偏置确定第一测量间隔的时间信息的一种方式的示意图;
图6为本申请实施例中第三测量间隔在不同周期中的位置的示意图;
图7为本申请实施例中第一测量间隔的停止时刻或第二测量间隔的启动时刻的示意图;
图8为本申请实施例提供的网络设备的一种结构示意图;
图9A为本申请实施例提供的设备的一种结构示意图;
图9B为本申请实施例提供的设备的一种结构示意图;
图10为本申请实施例提供的通信装置的示意性框图;
图11为本申请实施例提供的通信装置的另一示意性框图;
图12为本申请实施例提供的通信装置的再一示意性框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(User Device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、智能手表、智能头盔、智能眼镜、智能手环、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个小区与无线终端设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括长期演进(Long Term Evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动 通信系统(5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB),本申请实施例并不限定。
3)测量间隔,在LTE系统中,测量间隔用于终端设备对异频进行测量时,对当前的频点的工作中断的配置。对于不支持同时工作在两个频点的终端设备,如果该终端设备需要在非工作频点进行测量,则需要对工作频点进行中断,然后在测量间隔的时间内对非工作频点进行测量。LTE系统的测量间隔的长度固定为6ms,测量间隔的周期可配置为40ms或80ms等,意味着终端设备每40ms或每80ms可以中断当前小区的工作频点,通过6ms的时间去目标频点进行测量。
相应的,本申请实施例中的测量间隔参数就用于终端设备在该测量间隔参数所指示的测量间隔中断在服务小区的工作频点的工作,以对除服务小区的工作频点外的其他频点之一进行测量。该服务小区是指该终端设备的服务小区,包括所述的“当前小区”。
在LTE系统中,测量间隔的名称为GAP,在下一代通信系统或其他通信系统中,测量间隔也可能有其他名称。只要测量间隔的用途与本申请实施例相同即可,本申请实施例并不限制具体名称。
4)参考信号,在本申请实施例中,待测量的参考信号可以包括同步信号(synchronous signal,SS)和/或信道状态信息参考信号(channel state information-reference signal,CSI-RS),当然还可能包括其他的参考信号。
终端设备通过测量SS可以完成与小区的同步等工作。可参考图1的示例,同步信号可在同步信号集合周期(SS set periodicity)中发送,一个同步信号集合周期内包含若干个同步信号突发(SS burst),每个同步信号突发包含若干个同步信号块(SS block)。一个小区内可以在每个波束(beam)中发送一个SS block,在一个SS set periodicity内将所有的SS block发送完毕。
CSI-RS是基于小区的参考信号,可以用于信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indication,RI)等信息的测量。
其中,空闲(idle)态的终端设备和连接(connected)态的终端设备都可以基于SS进行测量,另外,连接态的终端设备除了可以基于SS进行测量之外,还可以基于CSI-RS进行测量。但终端设备在测量CSI-RS之前需要先通过测量SS来获取小区的同步,即获取小区的时间信息,否则终端设备无法知道CSI-RS的出现位置,无法进行测量。可参考图2,终端设备通过对SS的测量获取小区的时间信息,从而完成对后面出现的CSI-RS的测量。
5)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本文所提供的技术方案可以应用于5G NR系统(下文简称NR系统)或LTE系统,还可以应用于下一代移动通信系统或其他类似的移动通信系统。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的一种应用场景。
请参考图3,为本发明实施例的一种应用场景示意图。图3中包括网络设备和终端设备,网络设备可以为终端设备配置测量间隔参数,终端设备可以在配置的测量间隔中进行异频测量。图3中的网络设备例如为接入网(access network,AN)设备,与终端设备通信,接收终端设备发送的数据,并可以将接收的数据发送给核心网设备。其中,因为本申请实施例的方案主要涉及的是接入网设备和终端设备,因此图3中未画出核心网设备。
其中,接入网设备在不同的系统对应不同的设备,例如在第二代移动通信技术(2G)系统中可以对应基站+基站控制器,在第三代移动通信技术(3G)系统中可以对应基站+无线网络控制器(radio network controller,RNC),在第四代移动通信技术(4G)系统中可以对应eNB,在第五代移动通信技术(5G)系统中对应5G中的接入网设备,其中,5G中的接入网设备当前还没有正式的名称,例如为gNB、集中单元(centric unit,CU)、或分布式单元(distributed unit,DU)等。
下面结合附图介绍本申请实施例提供的技术方案。
请参见图4,本申请一实施例提供一种测量间隔参数配置、测量参考信号的方法,在下文的介绍过程中,均以本发明实施例提供的方法应用于图3所示的应用场景为例。
S41、网络设备确定满足第一条件。其中,第一条件可以是为终端设备配置测量间隔参数的条件,可以理解为,当满足第一条件时,确定能够为终端设备配置测量间隔参数。
在本申请实施例中,网络设备根据待测量对象所包含的待测量的参考信号的频带或者终端设备支持的波束类型确定是否需要为所述终端配置测量间隔。其中,所述待测量对象包括待测量频率或者待测量小区。其中待测量对象所包含的参考信号可以为SS或者CSI-RS。当所述待测量对象包括多组参考信号(SS或者CSI-RS)时,待测量的参考信号为所述待测量对象包括的任一组参考信号。
另外,待测量的参考信号可以包括所述网络设备发送的参考信号,还可以包括除所述网络设备之外的其他网络设备发送的参考信号。如果待测量的参考信号中包括所述网络设备发送的参考信号,则所述网络设备可以确定这部分参考信号的信息,而如果待测量的参考信号中包括除所述网络设备之外的其他网络设备发送的参考信号,则其他网络设备可以与所述网络设备进行信息交互,以将所述其他网络设备发送的参考信号的信息告知所述网络设备,从而所述网络设备可以根据待测量的参考信号的信息来确定是否满足第一条件,以及后续还可以根据待测量的参考信号的信息为终端设备配置测量间隔参数。其中,待测量的参考信号的信息例如包括待测量的参考信号的时间信息、频域信息、以及类型中的至少一种。其中,参考信号的类型,也可理解为参考信号的内容,例如SS和CSI-RS就是不同类型的参考信号。
其中,第一条件可以包括以下的至少一种,即,当满足以下的至少一种条件时,确定能够为终端设备配置测量间隔参数:
(1)待测量的参考信号的频带没有位于终端设备的服务小区的工作频带的范围内;
其中,待测量的参考信号的频带可以是指以待测量的参考信号的中心频点为中心的带宽范围。例如,终端设备的服务小区的工作频带为[10M,100M](包括端点,以下相同),则,如果待测量的参考信号的频带完全包括在终端设备的服务小区的工作频带范围内,即待测量的参考信号的频带是终端设备的服务小区的工作频带的子集,例如待测量的参考信号的频带为[50M,80M],则认为待测量的参考信号的频带位于终端设备的服务小区的工作频带的范围内,而如果待测量的参考信号的频带与终端设备的服务小区的工作频带没有交 集,例如待测量的参考信号的频带为[120M,140M],或者为[2M,8M],都认为待测量的参考信号的频带没有位于终端设备的服务小区的工作频带的范围内。另外,如果待测量的参考信号的频带与终端设备的服务小区的工作频带有交集,但待测量的参考信号的频带不是终端设备的服务小区的工作频带的子集,例如待测量的参考信号的频带为[80,120M],或者为[100,120M],也同样认为待测量的参考信号的频带没有位于终端设备的服务小区的工作频带的范围内;
如果待测量的参考信号的频带没有位于终端设备的服务小区的工作频带的范围内,则终端设备如果在终端设备的服务小区的工作频带内测量待测量的参考信号,就可能出现测量不成功的情况,因此如果满足第(1)条,则可以为终端设备配置测量间隔参数,使得终端设备在配置的测量间隔内能脱离终端设备的服务小区的工作频带进行异频测量,这里的异频指的是与终端设备的服务小区的工作频带不同的频率,例如终端设备可以去待测量的参考信号的频带上测量待测量的参考信号;
(2)待测量的参考信号的中心频点与终端设备的服务小区的中心频点不同;
中心频点,是指频带中的中心频点。例如待测量的参考信号的中心频点是指待测量的参考信号的带宽中的中心频点,终端设备的服务小区的中心频点是指终端设备的服务小区的工作带宽的中心频点。可以理解的是,中心频点不同还可以被理解为该中心频点对应的带宽是不同的。
因为终端设备一般是工作在终端设备的服务小区的中心频点,因此,如果待测量的参考信号的中心频点与终端设备的服务小区的中心频点不同,则终端设备很可能也无法测量到待测量的参考信号。在这种情况下,待测量的参考信号的频带可能位于终端设备的服务小区的工作频带的范围内,也可能没有位于终端设备的服务小区的工作频带的范围内,也就是说,即使待测量的参考信号的频带位于终端设备的服务小区的工作频带的范围内,但如果待测量的参考信号的中心频点与终端设备的服务小区的中心频点不同,终端设备很可能也无法测量到待测量的参考信号。因此在这种情况下,也可以为终端设备配置测量间隔参数,使得终端设备可以在配置的测量间隔中测量待测量的参考信号;
(3)待测量的参考信号的中心频点与终端设备的服务小区发送的所有同步信号的中心频点均不相同,和/或,待测量的参考信号的带宽与终端设备的服务小区发送的所有同步信号的带宽均不相同;
其中,一个小区可能会发送多个SS,不同的SS的中心频点可能相同,也可能不同,但同一个小区发送的SS的中心频点均位于该小区的工作频带的范围内;
因为终端设备会测量SS,如果待测量的参考信号的中心频点与终端设备的服务小区发送的任意一个同步信号的中心频点相同,则终端设备在无需测量间隔的情况下就能够测量到待测量的参考信号,或者,如果待测量的参考信号的带宽与终端设备的服务小区发送的任意一个同步信号的带宽相同,则终端设备也可能在无需测量间隔的情况下测量到待测量的参考信号。但如果参考信号的中心频点与终端设备的服务小区发送的所有同步信号的中心频点均不相同,和/或,待测量的参考信号的带宽与终端设备的服务小区发送的所有同步信号的带宽均不相同,则终端设备在没有测量间隔的情况下可能就无法测量到参考信号,因此在这种情况下,需要为终端设备配置测量间隔;
(4)待测量的参考信号的中心频点与终端设备的激活的带宽分量的中心频点不同,和/或,待测量的参考信号的带宽与终端设备的激活的带宽分量的带宽不同;
其中,终端设备在小区内工作时,可能只被配置使用小区内的部分带宽,那么配置给终端使用的部分带宽就称为带宽分量。例如小区的带宽为100M,但终端设备可能仅支持其中的20M,则终端设备会被配置到一个20M的带宽分量(BWP,Bandwidth Part)上面。当然一个终端设备可以配置多个带宽分量,如果一个终端设备被配置了多个带宽分量,则终端设备并不一定要求同时在所有带宽分量上进行工作。其中,终端设备当前工作的带宽分量可以称为激活的带宽分量;
如果终端设备待测量的参考信号的中心频点与终端设备的激活的带宽分量的中心频点不同,和/或,终端设备待测量的参考信号的带宽与终端设备的激活的带宽分量的带宽不同,则终端设备不能直接测量待测量的参考信号,需要采用配置测量间隔的方式进行测量;
上述终端设备的激活的带宽分量包括一个或者多个带宽分量;
终端设备待测量的参考信号的中心频点与终端设备的激活的带宽分量的中心频点不同,包括,终端设备待测量的参考信号的中心频点与终端设备的激活的带宽分量中的任何一个带宽分量的中心频点不同;
终端设备待测量的参考信号的带宽与终端设备的激活的带宽分量的带宽不同,包括,终端设备待测量的参考信号的带宽与终端设备的激活的带宽分量中的任何一个带宽分量的带宽不同;
(5)待测量的参考信号的中心频点与为终端设备配置的带宽分量的中心频点不同,和/或,待测量的参考信号的带宽与为终端设备配置的带宽分量的带宽不同;
在这种情况下,终端设备不能直接测量待测量的参考信号,需要采用配置测量间隔的方式进行测量;
上述终端设备的配置的带宽分量包括一个或者多个带宽分量;
终端设备待测量的参考信号的中心频点与为终端设备的配置的带宽分量的中心频点不同,包括,终端设备待测量的参考信号的中心频点与为终端设备的配置的带宽分量中的任何一个带宽分量的中心频点不同;
终端设备待测量的参考信号的带宽与为终端设备的配置的带宽分量的带宽不同,包括,终端设备待测量的参考信号的带宽与为终端设备的配置的带宽分量中的任何一个带宽分量的带宽不同;
(6)终端设备不支持同时接收两种类型的波束;
例如,终端设备向网络设备上报终端设备的能力,则网络设备可以接收终端设备上报的终端设备的能力。如果终端设备的能力指示该终端设备不能同时接收两种类型的波束,则网络设备就可以确定需要为终端设备配置测量间隔,从而终端设备可以在测量间隔中测量待测量的参考信号。其中,波束的类型可以指波束的方向和/或波束的宽度,向不同方向发射的波束或者不同宽窄的波束可以认为是不同类型的波束,或者,也可以是指波束承载的内容,则如果波束承载的内容不同就可以认为是波束的类型不同,例如承载SS的波束和承载CSI-RS的波束就可以认为是两种不同类型的波束,或者承载SS的波束和承载数据的专用波束也可以认为是两种不同类型的波束。可见,本申请实施例中还可以根据终端设备的能力来确定是否为终端设备配置测量间隔参数,使得配置的测量间隔参数更符合终端设备的实际需求。
如上的几种条件中,只要满足至少一种,网络设备就可以认为满足了第一条件。
S42、网络设备为终端设备配置测量间隔参数,测量间隔参数用于终端设备测量参考 信号。
在S41中,网络设备确定满足了第一条件,则在S42中,网络设备就为终端设备配置测量间隔参数。其中,网络设备可以根据待测量的参考信号的信息为终端设备配置测量间隔参数。例如,网络设备可以确定待测量的参考信号的时间信息,从而可以使得在配置的测量间隔参数指示的测量间隔中能够测量到待测量的参考信号等。
在本申请实施例中,网络设备为终端设备配置测量间隔参数,有几种不同的配置方式,下面分别介绍。
A、网络设备为终端设备配置至少两个测量间隔参数。
其中每个测量间隔参数指示一个测量间隔,也就是说在方式A中,网络设备为终端设备配置至少两个测量间隔。
以待测量的参考信号包括SS和CSI-RS为例,则网络设备可以为终端设备配置两个测量间隔参数,分别称为第一测量间隔参数和第二测量间隔参数,第一测量间隔参数对应于第一测量间隔,第二测量间隔参数对应于第二测量间隔。其中,第一测量间隔参数可以配置给终端设备测量SS,即终端设备可通过第一测量间隔测量SS,第二测量间隔参数可以配置给终端设备测量CSI-RS,即终端设备可通过第二测量间隔测量CSI-RS。第一测量间隔和第二测量间隔可以不相邻,或者也可以相邻。
第一测量间隔参数可以包括第一测量间隔的周期,以及第一测量间隔的偏置,其中,第一测量间隔的周期和第一测量间隔的偏置用于确定第一测量间隔的时间信息。其中,网络设备和终端设备都需要确定第一测量间隔的时间信息,在确定第一测量间隔的时间信息后,网络设备可以知道终端设备何时启动第一测量间隔,而终端设备也可以在确定的位置启动第一测量间隔。本申请实施例中所述的终端设备启动测量间隔,可以是指终端设备中断在终端设备的服务小区的工作频点内收发数据,即终端设备中断在终端设备的服务小区的工作频点中的工作,而开始到其他频点测量参考信号。至于在一个测量间隔中终端设备究竟在哪个频点测量待测量的参考信号,可以由终端设备自行选择。例如网络设备预先为终端设备指示了除终端设备的服务小区的工作频带(或中心频点)之外的多个频点,则终端设备启动一个测量间隔后,可以在该测量间隔中选择在网络设备指示的至少一个频点中测量待测量的参考信号。
当然,第一测量间隔参数还可以包括第一测量间隔的其他参数,例如第一测量间隔的长度等,本申请实施例不做限制。
下面介绍根据第一测量间隔的周期和第一测量间隔的偏置确定第一测量间隔的时间信息的方式。
作为一种示例,第一测量间隔的偏置为第一测量间隔相对于第一测量间隔的周期的偏移量。那么,如果知道了第一测量间隔的周期和第一测量间隔的偏置,也就知道了第一测量间隔的时间信息。例如参见图5,如果第一测量间隔的偏置为0,则第一测量间隔的起始位置与第一测量间隔的周期的起始位置是同一位置。下个周期的第一测量间隔与本周期的第一测量间隔仅相隔一个周期。若第一测量间隔的偏置为δ,则下个周期的第一测量间隔与本周期的第一测量间隔相隔一个(周期+δ)。
作为另一种示例,也可以直接根据如下公式来计算第一测量间隔的时间信息:
SFN mod T=FLOOR(gapOffset/10)         (公式1)
即,满足公式1的位置就可确定为测量间隔出现的帧,如果计算的是第一测量间隔的 时间信息,则满足公式1的位置就可以确定为第一测量间隔出现的帧。在这种计算方式中,并没有显式定义测量间隔的周期的边界,而是直接通过测量间隔的周期和测量间隔的偏置就确定了测量间隔出现的位置。
在公式1中,SFN表示测量间隔开始的帧号,其中因为是计算第一测量间隔的时间信息,所以SFN表示第一测量间隔开始的帧号。T表示测量间隔的周期,gapOffset表示测量间隔的偏置,FLOOR()表示向下取整运算,mod表示模运算,即求余运算。公式1计算的是第一测量间隔开始的帧号,为了使得计算结果更为精确以便得到起始子帧的位置,可以继续采用如下公式:
subframe=gapOffset mod 10            (公式2)
公式2中,subframe表示测量间隔开始的子帧号,即,计算得到了第一测量间隔开始的帧号以及子帧号,从而能够较为准确地确定第一测量间隔的时间信息。
可以看到,只要知道了第一测量间隔的周期以及第一测量间隔的偏置,就可以根据公式1和公式2直接计算第一测量间隔的时间信息。
同理,第二测量间隔参数可以包括第二测量间隔的周期,以及第二测量间隔的偏置,其中,第二测量间隔的周期和第二测量间隔的偏置用于确定第二测量间隔的时间信息。其中,网络设备和终端设备也都需要确定第二测量间隔的时间信息,在确定第二测量间隔的时间信息后,网络设备可以知道终端设备何时启动第二测量间隔,而终端设备也可以在确定的位置启动第二测量间隔。当然,第二测量间隔参数还可以包括第二测量间隔的其他参数,例如第二测量间隔的长度等,本申请实施例不做限制。另外,根据第二测量间隔的周期和第二测量间隔的偏置确定第二测量间隔的时间信息的方式可参考如前介绍的根据第一测量间隔的周期和第一测量间隔的偏置确定第一测量间隔的时间信息的方式,不多赘述。
在本申请实施例中,第一测量间隔和第二测量间隔是两个不同的测量间隔。具体的,如果第一测量间隔的周期与第二测量间隔的周期不同,则第一测量间隔的偏置与第二测量间隔的偏置可以相同也可以不同。如果第一测量间隔的偏置与第二测量间隔的偏置相同,则既保证了第一测量间隔和第二测量间隔是不同的测量间隔,又能使得第一测量间隔和第二测量间隔在分布上较为整齐,而如果第一测量间隔的偏置与第二测量间隔的偏置不同,则第一测量间隔和第二测量间隔的周期和偏置均不同,可以使得第一测量间隔与第二测量间隔之间的区分较为明显。而如果第一测量间隔的周期和第二测量间隔的周期相同,则第一测量间隔的偏置与第二测量间隔的偏置不同。这里的周期不同,可以理解为周期的长度不同。也就是说,为了保证第一测量间隔和第二测量间隔是不同的测量间隔,那么,如果第一测量间隔的周期和第二测量间隔的周期相同,则第一测量间隔的偏置和第二测量间隔的偏置就需要不相同,这样才能保证两个测量间隔不同。
例如,第一测量间隔的周期是10ms,第二测量间隔的周期是20ms,则第一测量间隔的偏置与第二测量间隔的偏置可以相同,例如同为2ms,或者第一测量间隔的偏置与第二测量间隔的偏置也可以不相同,例如第一测量间隔的偏置为2ms,第二测量间隔的偏置为5ms。
再例如,第一测量间隔的周期是20ms,第二测量间隔的周期也是20ms,则第一测量间隔的偏置与第二测量间隔的偏置不相同,例如第一测量间隔的偏置为2ms,第二测量间隔的偏置为5ms。
如果网络设备配置第一测量间隔用于测量SS,以及第二测量间隔用于测量CSI-RS,则网络设备在第一测量间隔中可以不向该终端设备发送CSI-RS等参考信号,以及可以不向终端设备发送数据。同理,网络设备在第二测量间隔中可以不向该终端设备发送数据,而SS一般是广播方式发送。
通过为终端设备配置两个测量间隔参数,使得终端设备可以在不同的测量间隔中测量不同的参考信号,对于不能同时接收两种不同类型的波束的终端设备来说,通过本申请实施例提供的方案可以完成对于不同的参考信号的测量。另外,网络设备发送SS和发送CSI-RS的时间可能不同,如果只配置一个测量间隔参数,则该测量间隔参数对应的测量间隔的长度可能会过长。因此本申请实施例中可以配置两个测量间隔参数,则每个测量间隔参数对应的测量间隔的长度都不会太长,不会过多地影响终端设备在终端设备的服务小区的工作频带上的正常工作。
B、网络设备为终端设备配置一个测量间隔参数,下文中称为第三测量间隔参数。
即,在方式B中,网络设备还是为终端设备配置一个测量间隔参数,终端设备可通过该测量间隔参数对应的测量间隔测量参考信号,例如,第三测量间隔参数可用于测量SS和/或CSI-RS。
第三测量间隔参数可以包括第三测量间隔的周期以及第三测量间隔的时间信息的循环次数。其中,第三测量间隔的周期及第三测量间隔的时间信息的循环次数用于确定第三测量间隔的时间信息。另外,第三测量间隔参数还可以包括第三测量间隔的其他参数,例如第三测量间隔的长度等,本申请实施例不做限制。
之所以有循环次数,是说第三测量间隔在不同的周期中的位置可能是不同的,如果将多个周期作为整体来看,可以认为第三测量间隔是在进行循环。例如,第三测量间隔的周期为40ms,第三测量间隔的长度为6ms,除去射频转换时间,一个第三测量间隔中可用的时间为5ms。则,在第一周期,第三测量间隔出现在40ms里的第一个5ms,在第二个周期,第三测量间隔出现在40ms中的第二个5ms,以此类推,在第八个周期,第三测量间隔出现在40ms的最后一个5ms,然后从第九个周期可以循环回来,即,在第九个周期,第三测量间隔又出现在40ms里的第一个5ms。在该示例中,第三测量间隔的循环次数为8次。
为了更直观地说明,下面请参见图6,为第三测量间隔在不同周期中的位置的示意图。图6中的实线方框表示第三测量间隔。可以看到,在图6中的第一个周期中,第三测量间隔的起始位置与第三测量间隔的周期(即第一个周期)的起始位置是同一位置,在第二个周期中,第三测量间隔的起始位置与第三测量间隔的周期(即第二个周期)的起始位置之间的距离为d1,在第三个周期中,第三测量间隔的起始位置与第三测量间隔的周期(即第三个周期)的起始位置之间的距离为d2,且d2>d1,在第四个周期中,第三测量间隔的起始位置与第三测量间隔的周期(即第四个周期)的起始位置之间的距离为d3,且d3>d2>d1,以此类推。其中,可以规定第三测量间隔的循环范围,例如图6中虚线框表示一个滑动窗,规定第三测量间隔在该滑动窗的范围内循环,那么从图6中可以看出,在第四个周期中,第三测量间隔已经循环到了滑动窗的结束位置,即在第四个周期中,第三测量间隔的结束位置和滑动窗的结束位置为同一位置,那么在下一个周期中,即在第五个周期中,第三测量间隔的起始位置与第三测量间隔的周期(即第五个周期)的起始位置之间的距离又会变为同一位置。在该示例中,第三测量间隔的循环次数为5次。或者也可以不用额外规定第 三测量间隔的循环范围,例如直接将第三测量间隔的周期长度作为第三测量间隔的循环范围,循环方式与图6类似,只是虚线框的范围变为整个周期长度即可,这样可以使得第三测量间隔覆盖整个周期。
因为作为终端设备来说,可能需要测量多个小区发送的参考信号,而不同的小区发送的参考信号的位置可能不同。如果测量间隔在每个周期中的位置是固定的,终端设备在每个周期中都是在固定的位置测量参考信号,而有些小区发送的参考信号的位置又始终位于固定的测量间隔之外,那么终端设备可能就始终无法测量这些参考信号。那么采用本申请实施例提供的技术方案后,使得第三测量间隔能够在不同的周期中移动,从而终端设备在不同的周期可以测量不同位置的参考信号,能够使得终端设备尽量测量到各个小区发送的参考信号,有助于扩大终端设备的测量范围。
关于根据第三测量间隔的周期及第三测量间隔的时间信息的循环次数确定第三测量间隔的时间信息,本申请实施例提供如下几种方式:
作为一种示例,可以采用如下公式来计算第三测量间隔的时间信息:
测量间隔的时间信息=(测量间隔所在的周期的时间信息mod N)*测量间隔的长度+测量间隔的偏移参考位置(公式3)
公式3中,测量间隔所在的周期的时间信息,可以是测量间隔的周期中的任意时间,例如为测量间隔的周期的起始时刻,或者为测量间隔的周期的结束时刻,等等。Mod表示求余运算,N表示测量间隔的循环次数,测量间隔的偏移参考位置可以是指如图6中所示的滑动窗的起始位置相对于测量间隔的周期的起始位置的偏移量。即,通过公式3,直接就可以计算出第三测量间隔的时间信息。
作为另一种示例,可以先根据如前介绍的公式1和公式2计算得到第三测量间隔开始的帧号以及子帧号,再在此基础上计算第三测量间隔的偏置,就可以结合第三测量间隔开始的帧号、子帧号、以及第三测量间隔的偏置得到第三测量间隔的时间信息。其中,第三测量间隔的偏置可通过如下公式计算:
(SFN/测量间隔的周期mod N)*偏移步长      (公式4)
其中,公式4中的偏移步长可以是测量间隔的长度,或者也可以是其他预定义的值或者网络设备所配置的值。
终端设备可以采用如上任意一种方式来计算第三测量间隔的时间信息。
如果网络设备配置第三测量间隔用于测量SS,则网络设备在第三测量间隔中可以不向该终端设备发送CSI-RS等参考信号,以及可以不向终端设备发送数据。如果网络设备配置第三测量间隔用于测量CSI-RS,网络设备在第三测量间隔中可以不向该终端设备发送数据,而SS一般是广播方式发送。
通过为终端设备配置一个测量间隔参数,使得终端设备可以在一个测量间隔中完成对参考信号的测量,对于不能同时接收两种不同类型的波束的终端设备来说,可以在一个测量间隔中测量其中一个参考信号,且网络设备在该测量间隔内可以不向终端设备发送另一个参考信号,从而可以避免终端设备需要同时接收两种类型的波束的情况,符合终端设备的能力需求。
如上介绍了网络设备为终端设备配置测量间隔参数的两种方式,在实际应用中,可以任选如上的一种方式。
S43、网络设备将配置的测量间隔参数发送给终端设备,则终端设备接收网络设备发 送的测量间隔参数。
网络设备为终端设备配置测量间隔参数后,可以向终端设备发送配置信息,则终端设备可以接收网络设备发送的配置信息,配置信息即可包括网络设备为终端设备配置的测量间隔参数。例如网络设备为终端设备配置了第一测量间隔参数和第二测量间隔参数,则配置信息就可以包括第一测量间隔参数和第二测量间隔参数,而如果网络设备为终端设备配置了第三测量间隔参数,则配置信息就可以包括第三测量间隔参数。其中,如果配置信息包括第一测量间隔参数和第二测量间隔参数,则网络设备可以通过一条消息将第一测量间隔参数和第二测量间隔参数发送给终端设备,这样可以节省传输资源,或者网络设备也可以通过不同的消息分别将第一测量间隔参数和第二测量间隔参数发送给终端设备。如果网络设备通过不同的消息分别将第一测量间隔参数和第二测量间隔参数发送给终端设备,则网络设备可以同时发送第一测量间隔参数和第二测量间隔参数,或者网络设备线发送第一测量间隔参数后发送第二测量间隔参数,或者网络设备先发送第二测量间隔参数后发送第一测量间隔参数。
终端设备接收配置信息后,即可根据配置信息启动相应的测量间隔,下面进行介绍。在下面的介绍过程中,以网络设备为终端设备配置了第一测量间隔参数和第二测量间隔参数为例。
S44、终端设备根据第一测量间隔参数确定第一测量间隔的时间信息。
因为第一测量间隔参数用于测量SS,而终端设备即使要测量CSI-RS等其他参考信号,也需要首先测量SS以获取小区的时间信息,所以终端设备首先是根据第一测量间隔参数来确定第一测量间隔的时间信息。具体的根据第一测量间隔的周期和第一测量间隔的偏置确定第一测量间隔的时间信息的方式在S42中已有介绍,终端设备可根据如前介绍的方式来确定第一测量间隔的时间信息。
S45、终端设备在第一测量间隔的时间信息获取所在的小区的时间信息。
具体的,终端设备在第一测量间隔的时间信息测量同步信号,从而可以获取该同步信号所在的小区的时间信息。
终端设备确定第一测量间隔的时间信息后,就可以在第一测量间隔的一个起始位置启动第一测量间隔,从而在第一测量间隔中终端设备可以测量SS,以根据SS获取该SS所在的小区的时间信息。
另外,一般来说终端设备测量到SS之后,第一测量间隔的作用就已经完成,后续可能无需再继续启动第一测量间隔。那么作为一种示例,网络设备可以为第一测量间隔配置停止时间信息,即第一测量间隔参数还可以包括第一测量间隔的停止时间信息,第一测量间隔的停止时间信息可以指示第一测量间隔的停止时刻。需注意的是,这里所述的第一测量间隔的停止时刻,不是指与第一测量间隔的起始时刻相对的结束时刻,而是指后续无需再启动第一测量间隔的时刻。可参考图7,其中的虚线框S表示第一测量间隔,t1位置表示第一测量间隔的起始时刻,t2位置表示第一测量间隔的结束时刻,t1位置与t2位置相对应,t3位置表示第一测量间隔的停止时刻,在t3位置后,第一测量间隔不再启动,可以看到图7中,下一个周期里未启动第一测量间隔。在图7中,t2位置与t3位置不是同一位置,而在一些实施例中,t2位置与t3位置也可以是同一位置。其中,t3位置,即第一测量间隔的停止时刻,可以位于[t1,t2]范围内的任意一个位置,或者也可以不位于[t1,t2]范围内。如果第一测量间隔的停止时刻位于[t1,t2]范围内的任意一个位置,或者第一测量间隔的停 止时刻位于t2之后且位于下一个第一测量间隔的起始时刻之前,那么终端设备可以在该第一测量间隔结束之后,在下一个第一测量间隔的周期到来时不再启动第一测量间隔,而如果第一测量间隔的启动时刻位于t1之前且位于上一个第一测量间隔的结束时刻之后,则终端设备可以直接不启动该第一测量间隔。
在本申请实施例中,第一测量间隔的停止时间信息可以包括第一测量间隔的出现次数或第一测量间隔的停止时刻。如果第一测量间隔的停止时间信息包括第一测量间隔的出现次数,则网络设备可以预先估计终端设备大概能够通过几个第一测量间隔测量到SS,例如网络设备预先估计终端设备能够通过2个第一测量间隔测量到SS,则第一测量间隔的停止时间信息包括的第一测量间隔的出现次数可以是2,或者为了更为保险,也可以是3或更大的值。以第一测量间隔的停止时间信息包括的第一测量间隔的出现次数是2为例,则第一测量间隔在出现2次之后就不再启动;而如果第一测量间隔的停止时间信息包括第一测量间隔的停止时刻,则网络设备同样可以预先估计终端设备大概多长时间能够通过第一测量间隔测量到SS,例如网络设备预先估计终端设备能够在10s内通过第一测量间隔测量到SS,则第一测量间隔的停止时间信息包括的第一测量间隔的停止时刻可以是10s,或者为了更为保险,也可以是11s或其他更大的值。以第一测量间隔的停止时间信息包括的第一测量间隔的停止时刻是10s为例,则第一测量间隔在首次启动10s之后就不再启动。或者,第一测量间隔的停止时间信息也可以包括其他类型的信息,只要能够指示第一测量间隔何时停止即可。
通过为第一测量间隔配置停止时间信息,可以及时结束第一测量间隔,使得终端设备可以利用原本是第一测量间隔的时间完成其他的工作。
S46、终端设备根据第二测量间隔参数确定第二测量间隔的时间信息。
网络设备为终端设备配置了第一测量间隔参数和第二测量间隔参数,因此终端设备除了要确定第一测量间隔的时间信息之外,还要确定第二测量间隔的时间信息。具体的根据第二测量间隔的周期和第二测量间隔的偏置确定第二测量间隔的时间信息的方式在S42中已有介绍,终端设备可根据如前介绍的方式来确定第二测量间隔的时间信息。
S47、终端设备在第二测量间隔的时间信息,根据小区的时间信息以及信道状态信息参考信号的配置信息测量信道状态信息参考信号。信道状态信息参考信号的配置信息用于指示信道状态信息参考信号的位置。
其中,CSI-RS的配置信息可以由网络设备发送给终端设备,例如CSI-RS的配置信息可以指示CSI-RS具体出现在哪个帧或哪个子帧,那么终端设备测量SS后,根据获得的小区的时间信息可以确定帧或子帧的边界,从而就可以确定CSI-RS的具体位置。
另外,终端设备要在第二测量间隔中进行测量,除了涉及到要获知第二测量间隔的起始时刻之外,还需要获知第二测量间隔的启动时间,即需要确定第二测量间隔的首次启动时间。关于终端设备确定第二测量间隔的启动时间,本申请实施例提供了多种方式,下面分别介绍。
1、根据第一测量间隔的停止时间信息确定第二测量间隔的启动时间。
第一测量间隔用于测量SS,那么在第一测量间隔停止后,可以认为终端设备已经测量到了SS,即已经获取了小区的时间信息,后续已经可以进行CSI-RS等其他参考信号的测量。因此方式1下,在第一测量间隔停止后,终端设备就可以启动第二测量间隔,其中,终端设备是在第一测量间隔停止之后的第一个第二测量间隔的起始位置处启动第二测量 间隔。可以认为,在方式1下,第一测量间隔和第二测量间隔不会同时存在。
在方式1下,终端设备根据第一测量间隔是否停止就可以确定是否启动第二测量间隔,监控方式简单,且无需网络设备再额外通知终端设备第二测量间隔的启动时机。
其中,测量间隔是周期出现,所谓停止,就是在此之后该测量间隔不再启动。
2、根据第二测量间隔的启动时间信息确定第二测量间隔的启动时间,即第二测量间隔参数还包括第二测量间隔的启动时间信息。第二测量间隔的启动时间信息可以用于指示第二测量间隔的首次启动时间。
在方式2下,网络设备可以预先估计终端设备大概需要多长时间来测量SS,从而根据估计结果确定第二测量间隔的启动时间。例如网络设备预先估计终端设备能够在10s内通过第一测量间隔测量到SS,则第二测量间隔的启动时间信息包括的第二测量间隔的启动时刻可以是第10s,或者为了更为保险,也可以是第11s等。
需注意的是,第二测量间隔的启动时刻与第二测量间隔的起始时刻是不同的概念,继续参考图7,如果图7中的虚线框表示第二测量间隔,则t1位置表示第二测量间隔的起始时刻,t2位置表示第二测量间隔的结束时刻,t1位置与t2位置相对应,而第二测量间隔的启动时刻,可以位于[t1,t2]范围内的任意一个位置,或者也可以不位于[t1,t2]范围内。如果第二测量间隔的启动时刻位于[t1,t2]范围内的任意一个位置,或者第二测量间隔的启动时刻位于t2之后且位于下一个第二测量间隔的起始时刻之前,那么终端设备可以在该第二测量间隔结束之后,在下一个第二测量间隔的起始时刻到来时首次启动第二测量间隔,而如果第二测量间隔的启动时刻位于t1之前且位于上一个第二测量间隔的结束时刻之后,则终端设备可以在该第二测量间隔的起始时刻处首次启动第二测量间隔。
在方式2下,第一测量间隔和第二测量间隔可能不会同时存在,也可能会同时存在。
在方式2下,网络设备可以直接配置第二测量间隔的启动时间信息,终端设备只需根据第二测量间隔的启动时间信息启动第二测量间隔即可,无需终端设备再根据其他信息进行判断,对于终端设备来说实现方式较为简单。
3、根据接收第二测量间隔参数的时间确定第二测量间隔的启动时间。
网络设备会向终端设备发送第二测量间隔参数,则终端设备可以在接收第二测量间隔参数后即启动第二测量间隔。其中,终端设备可以在接收第二测量间隔参数之后的第一个第二测量间隔的起始位置处启动第二测量间隔。在方式3下,终端设备接收第二测量间隔参数后即可启动第二测量间隔,无需做其他过多的确定启动时机的工作,方式较为简单直接。在方式3下,第一测量间隔和第二测量间隔可能不会同时存在,也可能会同时存在。
本申请实施例提供的技术方案使得终端设备能够完成对于待测量的参考信号的测量,例如终端设备可以将得到的测量报告发送给网络设备,从而网络设备可以进行例如判断是否进行小区切换等处理过程。且本申请实施例中,在第三测量间隔能够滑动的情况下,终端设备可以测量到更多的小区发送的参考信号,能够得到更为详实的测量报告,有助于使得网络设备的处理结果更为准确。
下面结合附图介绍本申请实施例提供的装置。
图8示出了一种网络设备800的结构示意图。该网络设备800可以实现上文中涉及的网络设备的功能。该网络设备800可以包括处理器801。可选的,该网络设备800还可以包括收发器802。其中,处理器801可以用于执行图4所示的实施例中的S41和S42,和/或用于支持本文所描述的技术的其它过程。收发器802可以用于执行图4所示的实施例中 的S43,和/或用于支持本文所描述的技术的其它过程。
例如,处理器801用于确定满足第一条件,则为所述终端设备配置测量间隔参数,所述测量间隔参数用于所述终端设备测量待测量的参考信号;其中,第一条件包括如下的至少一种:待测量的参考信号的频带没有位于所述终端设备的服务小区的工作频带的范围内,所述待测量的参考信号的中心频点与所述终端设备的服务小区的中心频点不同,所述待测量的参考信号的中心频点与所述终端设备的服务小区发送的所有同步信号的中心频点均不相同,所述待测量的参考信号的带宽与所述终端设备的服务小区发送的所有同步信号的带宽均不相同,所述待测量的参考信号的中心频点与所述终端设备的激活的带宽分量的中心频点不同,所述待测量的参考信号的带宽与所述终端设备的激活的带宽分量的带宽不同,所述待测量的参考信号的中心频点与为所述终端设备配置的带宽分量的中心频点不同,所述待测量的参考信号的带宽与为所述终端设备配置的带宽分量的带宽不同,所述终端设备不支持同时接收两种类型的波束。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图9A示出了一种设备900的结构示意图。该设备900可以实现上文中涉及的终端设备的功能。该设备900可以包括处理器901。其中,处理器901可以用于执行图4所示的实施例中的S43~S47,和/或用于支持本文所描述的技术的其它过程。
例如,处理器901用于:根据第一测量间隔参数确定第一测量间隔的时间信息;在所述第一测量间隔的时间信息获取所在的小区的时间信息;根据第二测量间隔参数确定第二测量间隔的时间信息;在所述第二测量间隔的时间信息,根据所述小区的时间信息以及信道状态信息参考信号的配置信息测量所述信道状态信息参考信号;所述信道状态信息参考信号的配置信息用于指示所述信道状态信息参考信号的位置。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
其中,该设备900可以是现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。该设备900可被设置于本申请实施例的网络设备或终端设备中,以使得该网络设备或终端设备实现本申请实施例提供的测量间隔参数配置、测量参考信号的方法。
在一种可选实现方式中,该设备900还可以包括存储器902,可参考图9B,其中,存储器902用于存储计算机程序或指令,处理器901用于译码和执行这些计算机程序或指令。应理解,这些计算机程序或指令可包括上述终端设备的功能程序。当终端设备的功能程序被处理器901译码并执行时,可使得终端设备实现本申请实施例的测量参考信号的方法中终端设备的功能。
在另一种可选实现方式中,这些终端设备的功能程序存储在设备900外部的存储器中。当终端设备的功能程序被处理器901译码并执行时,存储器902中临时存放上述终端设备的功能程序的部分或全部内容。
在另一种可选实现方式中,这些终端设备的功能程序被设置于存储在设备900内部的 存储器902中。当设备900内部的存储器902中存储有终端设备的功能程序时,设备900可被设置在本申请实施例的终端设备中。
在又一种可选实现方式中,这些终端设备的功能程序的部分内容存储在设备900外部的存储器中,这些终端设备的功能程序的其他部分内容存储在设备900内部的存储器902中。
在本申请实施例中,网络设备800和设备900对应各个功能划分各个功能模块的形式来呈现,或者,可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指ASIC,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
另外,图8所示的实施例提供的网络设备还可以通过其他形式实现。例如该网络设备包括处理模块。其中,处理模块可以用于执行图4所示的实施例中的S41和S42,和/或用于支持本文所描述的技术的其它过程。可选的,该网络设备还可以包括收发模块,与处理模块连接,可以用于执行图4所示的实施例中的S43,和/或用于支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
另外,图9A或图9B所示的实施例提供的终端设备还可以通过其他形式实现。例如该终端设备包括处理模块。其中,处理模块可以用于执行图4所示的实施例中的S43~S47,和/或用于支持本文所描述的技术的其它过程。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
由于本申请实施例提供的网络设备800及设备900可用于执行图4所示的实施例所提供的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图10示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图10中,终端设备以手机作为例子。如图10所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图10中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图10所示,终端设备包括收发单元1010和处理单元1020。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1010中用于实现接收功能的器件视为接收单元,将收发单元1010中用于实现发送功能的器件视为发送单元,即收发单元1010包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1010用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1020用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1010用于执行图4中的S43中终端设备侧的接收操作,和/或收发单元1010还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1020,用于执行图4中的S44~S47,和/或处理单元1020还用于执行本申请实施例中终端设备侧的其他处理步骤。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端设备时,可以参照图11所示的设备。作为一个例子,该设备可以完成类似于图9中处理器901的功能。在图11中,该设备包括处理器1110,发送数据处理器1120,接收数据处理器1130。上述实施例中的处理器901可以是图11中的该处理器1110,并完成相应的功能。图11中的发送数据处理器1120和/或接收数据处理器1130可实现数据收发的功能。虽然图11中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图12示出本实施例的另一种形式。处理装置1200中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1203,接口1204。其中处理器1203完成上述处理器901的功能。作为另一种变形,该调制子系统包括存储器1206、处理器1203及存储在存储器1206上并可在处理器上运行的程序,该处理器1203执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,所述存储器1206可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1200中,只要该存储器1206可以连接到所述处理器1203即可。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中终端设备侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中终端设备侧的方法。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的 功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (46)

  1. 一种测量间隔参数配置方法,其特征在于,包括:
    网络设备确定满足第一条件;
    所述网络设备为终端设备配置测量间隔参数,所述测量间隔参数用于所述终端设备测量待测量的参考信号;
    其中,所述第一条件包括以下至少一种:
    所述待测量的参考信号的频带没有位于所述终端设备的服务小区的工作频带的范围内,
    所述待测量的参考信号的中心频点与所述终端设备的服务小区的中心频点不同,
    所述待测量的参考信号的中心频点与所述终端设备的服务小区所有同步信号的中心频点不相同,
    所述待测量的参考信号的带宽与所述终端设备的服务小区所有同步信号的带宽不相同,
    所述待测量的参考信号的中心频点与所述终端设备的激活的带宽分量的中心频点不同,所述待测量的参考信号的带宽与所述终端设备的激活的带宽分量的带宽不同,
    所述待测量的参考信号的中心频点与为所述终端设备配置的带宽分量的中心频点不同,
    所述待测量的参考信号的带宽与为所述终端设备配置的带宽分量的带宽不同,
    所述终端设备不支持同时接收两种类型的波束。
  2. 如权利要求1所述的方法,其特征在于,
    所述测量间隔参数包括第一测量间隔参数和第二测量间隔参数,所述第一测量间隔参数用于所述终端设备测量同步信号,所述第二测量间隔参数用于所述终端设备测量信道状态信息参考信号;或
    所述测量间隔参数包括第三测量间隔参数,所述第三测量间隔参数用于所述终端设备测量同步信号和/或信道状态信息参考信号。
  3. 如权利要求2所述的方法,其特征在于,
    所述第一测量间隔参数包括所述第一测量间隔的周期,以及所述第一测量间隔的偏置;所述第一测量间隔的周期及所述第一测量间隔的偏置用于确定所述第一测量间隔的时间信息;
    所述第二测量间隔参数包括所述第二测量间隔的周期,以及所述第二测量间隔的偏置;所述第二测量间隔的周期及所述第二测量间隔的偏置用于确定所述第二测量间隔的时间信息。
  4. 如权利要求3所述的方法,其特征在于,
    所述第一测量间隔的周期与第二测量间隔的周期不同,所述第一测量间隔的偏置与所述第二测量间隔的偏置相同或者不同;或者
    所述第一测量间隔的周期和所述第二测量间隔的周期相同,所述第一测量间隔的偏置与所述第二测量间隔的偏置不同。
  5. 如权利要求1或2所述的方法,其特征在于,
    所述第三测量间隔参数包括所述第三测量间隔的周期以及所述第三测量间隔的时间信息的循环次数;所述第三测量间隔的周期及所述第三测量间隔的时间信息的循环次数用 于确定所述第三测量间隔的时间信息。
  6. 如权利要求1-5任一所述的方法,其特征在于,在所述网络设备为所述终端设备配置测量间隔参数之后,还包括:
    所述网络设备向所述终端设备发送所述测量间隔参数。
  7. 一种测量参考信号的方法,其特征在于,包括:
    终端设备根据第一测量间隔参数确定第一测量间隔的时间信息;
    所述终端设备在所述第一测量间隔的时间信息获取所在的小区的时间信息;
    所述终端设备根据第二测量间隔参数确定第二测量间隔的时间信息;
    所述终端设备在所述第二测量间隔的时间信息,根据所述小区的时间信息以及信道状态信息参考信号的配置信息测量所述信道状态信息参考信号;所述信道状态信息参考信号的配置信息用于指示所述信道状态信息参考信号的时间信息。
  8. 如权利要求7所述的方法,其特征在于,
    所述第一测量间隔参数包括所述第一测量间隔的周期,以及所述第一测量间隔的偏置;所述第一测量间隔的周期及所述第一测量间隔的偏置用于确定所述第一测量间隔的时间信息;
    所述第二测量间隔参数包括所述第二测量间隔的周期,以及所述第二测量间隔的偏置;所述第二测量间隔的周期及所述第二测量间隔的偏置用于确定所述第二测量间隔的时间信息。
  9. 如权利要求8所述的方法,其特征在于,
    所述第一测量间隔的周期与第二测量间隔的周期不同,所述第一测量间隔的偏置与所述第二测量间隔的偏置相同或者不同;或者
    所述第一测量间隔的周期和所述第二测量间隔的周期相同,所述第一测量间隔的偏置与所述第二测量间隔的偏置不同。
  10. 如权利要求7-9任一所述的方法,其特征在于,所述第一测量间隔参数还包括所述第一测量间隔的停止时间信息;所述方法还包括:
    所述终端设备根据所述第一测量间隔的停止时间信息确定所述第一测量间隔的停止时刻。
  11. 如权利要求10所述的方法,其特征在于,所述第一测量间隔的停止时间信息包括所述第一测量间隔的出现次数或所述第一测量间隔的停止时刻。
  12. 如权利要求10或11所述的方法,其特征在于,所述方法还包括:
    在所述第一测量间隔停止后,所述终端设备启动所述第二测量间隔。
  13. 如权利要求7-9任一所述的方法,其特征在于,所述第二测量间隔参数还包括所述第二测量间隔的启动时间信息;所述方法还包括:
    所述终端设备根据所述第二测量间隔的启动时间信息确定所述第二测量间隔的启动时刻。
  14. 如权利要求7-9任一所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的所述第二测量间隔参数;
    所述终端设备启动所述第二测量间隔。
  15. 一种网络设备,其特征在于,包括:
    处理器,用于确定满足第一条件;为终端设备配置测量间隔参数,所述测量间隔参数 用于所述终端设备测量待测量的参考信号;
    其中,所述第一条件包括以下至少一种:
    所述待测量的参考信号的频带没有位于所述终端设备的服务小区的工作频带的范围内,
    所述待测量的参考信号的中心频点与所述终端设备的服务小区的中心频点不同,
    所述待测量的参考信号的中心频点与所述终端设备的服务小区发送的所有同步信号的中心频点均不相同,
    所述待测量的参考信号的带宽与所述终端设备的服务小区发送的所有同步信号的带宽均不相同,
    所述待测量的参考信号的中心频点与所述终端设备的激活的带宽分量的中心频点不同,
    所述待测量的参考信号的带宽与所述终端设备的激活的带宽分量的带宽不同,
    所述待测量的参考信号的中心频点与为所述终端设备配置的带宽分量的中心频点不同,
    所述待测量的参考信号的带宽与为所述终端设备配置的带宽分量的带宽不同,
    所述终端设备不支持同时接收两种类型的波束。
  16. 如权利要求15所述的网络设备,其特征在于,
    所述测量间隔参数包括第一测量间隔参数和第二测量间隔参数,所述第一测量间隔参数用于所述终端设备测量同步信号,所述第二测量间隔参数用于所述终端设备测量信道状态信息参考信号;或
    所述测量间隔参数包括第三测量间隔参数,所述第三测量间隔参数用于所述终端设备测量同步信号和/或信道状态信息参考信号。
  17. 如权利要求15或16所述的网络设备,其特征在于,
    所述第一测量间隔参数包括所述第一测量间隔的周期,以及所述第一测量间隔的偏置;所述第一测量间隔的周期及所述第一测量间隔的偏置用于确定所述第一测量间隔的时间信息;
    所述第二测量间隔参数包括所述第二测量间隔的周期,以及所述第二测量间隔的偏置;所述第二测量间隔的周期及所述第二测量间隔的偏置用于确定所述第二测量间隔的时间信息。
  18. 如权利要求17所述的网络设备,其特征在于,
    所述第一测量间隔的周期与第二测量间隔的周期不同,所述第一测量间隔的偏置与所述第二测量间隔的偏置相同或者不同;或者
    所述第一测量间隔的周期和所述第二测量间隔的周期相同,所述第一测量间隔的偏置与所述第二测量间隔的偏置不同。
  19. 如权利要求15或16所述的网络设备,其特征在于,
    所述第三测量间隔参数包括所述第三测量间隔的周期以及所述第三测量间隔的时间信息的循环次数;所述第三测量间隔的周期及所述第三测量间隔的时间信息的循环次数用于确定所述第三测量间隔的时间信息。
  20. 如权利要求15-19任一所述的网络设备,其特征在于,所述网络设备还包括收发器,用于:
    在所述处理器为所述终端设备配置测量间隔参数之后,向所述终端设备发送所述测量间隔参数。
  21. 一种设备,其特征在于,包括处理器,用于:
    根据第一测量间隔参数确定第一测量间隔的时间信息;
    在所述第一测量间隔的时间信息获取所在的小区的时间信息;
    根据第二测量间隔参数确定第二测量间隔的时间信息;
    在所述第二测量间隔的时间信息,根据所述小区的时间信息以及信道状态信息参考信号的配置信息测量所述信道状态信息参考信号;所述信道状态信息参考信号的配置信息用于指示所述信道状态信息参考信号的位置。
  22. 如权利要求21所述的设备,其特征在于,
    所述第一测量间隔参数包括所述第一测量间隔的周期,以及所述第一测量间隔的偏置;所述第一测量间隔的周期及所述第一测量间隔的偏置用于确定所述第一测量间隔的时间信息;
    所述第二测量间隔参数包括所述第二测量间隔的周期,以及所述第二测量间隔的偏置;所述第二测量间隔的周期及所述第二测量间隔的偏置用于确定所述第二测量间隔的时间信息。
  23. 如权利要求22所述的设备,其特征在于,
    所述第一测量间隔的周期与第二测量间隔的周期不同,所述第一测量间隔的偏置与所述第二测量间隔的偏置相同或者不同;或者
    所述第一测量间隔的周期和所述第二测量间隔的周期相同,所述第一测量间隔的偏置与所述第二测量间隔的偏置不同。
  24. 如权利要求21-23任一所述的设备,其特征在于,所述第一测量间隔参数还包括所述第一测量间隔的停止时间信息;所述处理器还用于:
    根据所述第一测量间隔的停止时间信息确定所述第一测量间隔的停止时刻。
  25. 如权利要求24所述的设备,其特征在于,所述第一测量间隔的停止时间信息包括所述第一测量间隔的出现次数或所述第一测量间隔的停止时刻。
  26. 如权利要求24或25所述的设备,其特征在于,所述处理器还用于:
    在所述第一测量间隔停止后,启动所述第二测量间隔。
  27. 如权利要求21-23任一所述的设备,其特征在于,所述第二测量间隔参数还包括所述第二测量间隔的启动时间信息;所述处理器还用于:
    根据所述第二测量间隔的启动时间信息确定所述第二测量间隔的启动时刻。
  28. 如权利要求21-23任一所述的设备,其特征在于,所述设备还包括收发器;
    所述收发器用于接收所述网络设备发送的所述第二测量间隔参数;
    所述处理器还用于启动所述第二测量间隔。
  29. 一种网络设备,其特征在于,包括:
    处理模块,用于确定满足第一条件;
    为所述终端设备配置测量间隔参数,所述测量间隔参数用于所述终端设备测量待测量的参考信号;
    其中,所述第一条件包括以下至少一种:
    所述待测量的参考信号的频带没有位于所述终端设备的服务小区的工作频带的范围 内,
    所述待测量的参考信号的中心频点与所述终端设备的服务小区的中心频点不同,
    所述待测量的参考信号的中心频点与所述终端设备的服务小区所有同步信号的中心频点不相同,
    所述待测量的参考信号的带宽与所述终端设备的服务小区所有同步信号的带宽不相同,
    所述待测量的参考信号的中心频点与所述终端设备的激活的带宽分量的中心频点不同,所述待测量的参考信号的带宽与所述终端设备的激活的带宽分量的带宽不同,
    所述待测量的参考信号的中心频点与为所述终端设备配置的带宽分量的中心频点不同,
    所述待测量的参考信号的带宽与为所述终端设备配置的带宽分量的带宽不同,
    所述终端设备不支持同时接收两种类型的波束。
  30. 如权利要求29所述的网络设备,其特征在于,
    所述测量间隔参数包括第一测量间隔参数和第二测量间隔参数,所述第一测量间隔参数用于所述终端设备测量同步信号,所述第二测量间隔参数用于所述终端设备测量信道状态信息参考信号;或
    所述测量间隔参数包括第三测量间隔参数,所述第三测量间隔参数用于所述终端设备测量同步信号和/或信道状态信息参考信号。
  31. 如权利要求30所述的网络设备,其特征在于,
    所述第一测量间隔参数包括所述第一测量间隔的周期,以及所述第一测量间隔的偏置;所述第一测量间隔的周期及所述第一测量间隔的偏置用于确定所述第一测量间隔的时间信息;
    所述第二测量间隔参数包括所述第二测量间隔的周期,以及所述第二测量间隔的偏置;所述第二测量间隔的周期及所述第二测量间隔的偏置用于确定所述第二测量间隔的时间信息。
  32. 如权利要求31所述的网络设备,其特征在于,
    所述第一测量间隔的周期与第二测量间隔的周期不同,所述第一测量间隔的偏置与所述第二测量间隔的偏置相同或者不同;或者
    所述第一测量间隔的周期和所述第二测量间隔的周期相同,所述第一测量间隔的偏置与所述第二测量间隔的偏置不同。
  33. 如权利要求29或30所述的网络设备,其特征在于,
    所述第三测量间隔参数包括所述第三测量间隔的周期以及所述第三测量间隔的时间信息的循环次数;所述第三测量间隔的周期及所述第三测量间隔的时间信息的循环次数用于确定所述第三测量间隔的时间信息。
  34. 如权利要求29-33任一所述的网络设备,其特征在于,所述网络设备还包括收发模块,用于:
    在所述处理模块为所述终端设备配置测量间隔参数之后,向所述终端设备发送所述测量间隔参数。
  35. 一种设备,其特征在于,包括处理模块,用于:
    根据第一测量间隔参数确定第一测量间隔的时间信息;
    在所述第一测量间隔的时间信息获取所在的小区的时间信息;
    根据第二测量间隔参数确定第二测量间隔的时间信息;
    在所述第二测量间隔的时间信息,根据所述小区的时间信息以及信道状态信息参考信号的配置信息测量所述信道状态信息参考信号;所述信道状态信息参考信号的配置信息用于指示所述信道状态信息参考信号的位置。
  36. 如权利要求35所述的设备,其特征在于,
    所述第一测量间隔参数包括所述第一测量间隔的周期,以及所述第一测量间隔的偏置;所述第一测量间隔的周期及所述第一测量间隔的偏置用于确定所述第一测量间隔的时间信息;
    所述第二测量间隔参数包括所述第二测量间隔的周期,以及所述第二测量间隔的偏置;所述第二测量间隔的周期及所述第二测量间隔的偏置用于确定所述第二测量间隔的时间信息。
  37. 如权利要求36所述的设备,其特征在于,
    所述第一测量间隔的周期与第二测量间隔的周期不同,所述第一测量间隔的偏置与所述第二测量间隔的偏置相同或者不同;或者
    所述第一测量间隔的周期和所述第二测量间隔的周期相同,所述第一测量间隔的偏置与所述第二测量间隔的偏置不同。
  38. 如权利要求35-37任一所述的设备,其特征在于,所述第一测量间隔参数还包括所述第一测量间隔的停止时间信息;所述处理模块还用于:
    根据所述第一测量间隔的停止时间信息确定所述第一测量间隔的停止时刻。
  39. 如权利要求38所述的设备,其特征在于,所述第一测量间隔的停止时间信息包括所述第一测量间隔的出现次数或所述第一测量间隔的停止时刻。
  40. 如权利要求38或39所述的设备,其特征在于,所述处理模块还用于:
    在所述第一测量间隔停止后,启动所述第二测量间隔。
  41. 如权利要求35-38任一所述的设备,其特征在于,所述第二测量间隔参数还包括所述第二测量间隔的启动时间信息;所述处理模块还用于:
    根据所述第二测量间隔的启动时间信息确定所述第二测量间隔的启动时刻。
  42. 如权利要求35-38任一所述的设备,其特征在于,所述设备还包括收发模块;
    所述收发模块用于接收所述网络设备发送的所述第二测量间隔参数;
    所述处理模块还用于启动所述第二测量间隔。
  43. 一种通信装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现权利要求1至6中任一项所述的方法。
  44. 一种通信装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现权利要求7至14中任一项所述的方法。
  45. 一种可读存储介质,其特征在于,所述可读存储介质中存储程序,所述程序在执行时,权利要求1至6中任一项所述的方法步骤被执行。
  46. 一种可读存储介质,其特征在于,所述可读存储介质中存储程序,所述程序在执行时,权利要求7至14中任一项所述的方法步骤被执行。
PCT/CN2018/100042 2017-08-10 2018-08-10 一种测量间隔参数配置、测量参考信号的方法及设备 WO2019029720A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18844677.7A EP3657838B1 (en) 2017-08-10 2018-08-10 Measurement gap parameter configuration and reference signal measurement methods and devices
EP21194449.1A EP3972328A1 (en) 2017-08-10 2018-08-10 Measurement gap parameter configuration method, reference signal measurement method, and device
US16/784,769 US11800470B2 (en) 2017-08-10 2020-02-07 Measurement gap parameter configuration method, reference signal measurement method, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710680864.6 2017-08-10
CN201710680864.6A CN109391983B (zh) 2017-08-10 2017-08-10 一种测量间隔参数配置、测量参考信号的方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/784,769 Continuation US11800470B2 (en) 2017-08-10 2020-02-07 Measurement gap parameter configuration method, reference signal measurement method, and device

Publications (1)

Publication Number Publication Date
WO2019029720A1 true WO2019029720A1 (zh) 2019-02-14

Family

ID=65273315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100042 WO2019029720A1 (zh) 2017-08-10 2018-08-10 一种测量间隔参数配置、测量参考信号的方法及设备

Country Status (4)

Country Link
US (1) US11800470B2 (zh)
EP (2) EP3657838B1 (zh)
CN (2) CN109391983B (zh)
WO (1) WO2019029720A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11184788B2 (en) * 2017-04-12 2021-11-23 Htc Corporation Device and method of handling a measurement gap in a wireless communication system
KR102358569B1 (ko) * 2017-09-15 2022-02-04 삼성전자 주식회사 광대역 시스템을 위한 이동 통신 방법 및 장치
EP3648500A1 (en) * 2018-10-30 2020-05-06 Panasonic Intellectual Property Corporation of America Measurements in the case of missing reference signals
WO2020211094A1 (zh) * 2019-04-19 2020-10-22 Oppo广东移动通信有限公司 一种测量处理方法、网络设备、终端设备
CN110062413B (zh) * 2019-04-25 2021-10-26 重庆邮电大学 一种解决5g nr终端异频测量的方法
WO2021026826A1 (zh) * 2019-08-14 2021-02-18 华为技术有限公司 一种通信方法及相关设备
EP4017113B1 (en) * 2019-08-29 2023-11-22 Huawei Technologies Co., Ltd. Communication method and device
WO2022021035A1 (zh) * 2020-07-27 2022-02-03 Oppo广东移动通信有限公司 测量方法、终端设备和网络设备
CN114698412B (zh) * 2020-10-30 2024-04-16 北京小米移动软件有限公司 测量间隔确定方法、测量方法、相关设备以及存储介质
CN115244962A (zh) * 2021-02-24 2022-10-25 北京小米移动软件有限公司 测量间隔的配置方法、装置、通信设备及存储介质
CN115336314A (zh) * 2021-03-10 2022-11-11 北京小米移动软件有限公司 测量参考信号的方法、装置、通信设备及存储介质
WO2022266966A1 (zh) * 2021-06-24 2022-12-29 Oppo广东移动通信有限公司 测量方法、测量配置方法、终端设备和网络设备
WO2023044628A1 (zh) * 2021-09-22 2023-03-30 北京小米移动软件有限公司 一种测量gap的调度方法及其装置
KR20230094988A (ko) * 2021-12-21 2023-06-28 한국전자통신연구원 통신 시스템에서 측정 동작을 위한 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101784075A (zh) * 2009-01-21 2010-07-21 大唐移动通信设备有限公司 一种配置测量间隙的方法、基站和终端
CN102714816A (zh) * 2011-01-10 2012-10-03 联发科技股份有限公司 具有载波聚合的无线通信系统中的测量间隙配置
CN105228198A (zh) * 2014-06-27 2016-01-06 中兴通讯股份有限公司 小区测量处理方法、装置、终端及基站
US20160337893A1 (en) * 2015-05-15 2016-11-17 Qualcomm Incorporated Measurement gaps in carrier aggregation

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595450B (zh) * 2011-01-10 2014-12-24 华为技术有限公司 测量间隙的配置方法和通信装置
US9253786B2 (en) * 2011-02-15 2016-02-02 Telefonaktiebolaget L M Ericsson (Publ) First network node and a second network node and methods therein
EP2512044B1 (en) * 2011-04-14 2015-08-26 Telefonaktiebolaget LM Ericsson (publ) Method and device for automatic gain control
JP6359815B2 (ja) * 2013-09-26 2018-07-18 株式会社Nttドコモ ユーザ端末、無線基地局及び異周波測定方法
US10284310B2 (en) * 2013-12-13 2019-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, network node, methods therein, for respectively sending and receiving a report on quality of transmitted beams
US9913191B2 (en) * 2013-12-20 2018-03-06 Intel IP Corporation Base station and method for early handover using uplink channel characteristics
WO2015109153A1 (en) * 2014-01-17 2015-07-23 Interdigital Patent Holdings, Inc. 3gpp mmw access link system architecture
WO2015109436A1 (zh) * 2014-01-21 2015-07-30 华为技术有限公司 参考信号测量方法、用户设备及网络设备
KR102369016B1 (ko) * 2014-01-29 2022-03-03 삼성전자주식회사 이동 통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
CN106165326A (zh) * 2014-03-04 2016-11-23 Lg 电子株式会社 接收用于接收发现参考信号的控制信息的方法及其装置
CN105338566B (zh) * 2014-08-07 2019-06-04 上海诺基亚贝尔股份有限公司 通信系统中用于测量增强的方法和装置
CN106664539A (zh) * 2014-08-08 2017-05-10 诺基亚通信公司 确定测量间隙模式
WO2016072221A1 (ja) * 2014-11-06 2016-05-12 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
KR102512849B1 (ko) * 2016-09-29 2023-03-24 삼성전자 주식회사 측정을 수행하기 위한 장치 및 방법
CN110463260B (zh) * 2017-03-23 2022-03-08 康维达无线有限责任公司 新无线电中的下行链路测量设计
WO2018212692A1 (en) * 2017-05-15 2018-11-22 Telefonaktiebolaget Lm Ericsson (Publ) System and method for controlling measurement gaps in a communication system
JP6816311B2 (ja) * 2017-06-16 2021-01-20 エルジー エレクトロニクス インコーポレイティド 同期信号ブロックを測定する方法及びそのための装置
TWI700958B (zh) * 2017-06-16 2020-08-01 聯發科技股份有限公司 用於新無線電網絡的無線資源管理量測

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101784075A (zh) * 2009-01-21 2010-07-21 大唐移动通信设备有限公司 一种配置测量间隙的方法、基站和终端
CN102714816A (zh) * 2011-01-10 2012-10-03 联发科技股份有限公司 具有载波聚合的无线通信系统中的测量间隙配置
CN105228198A (zh) * 2014-06-27 2016-01-06 中兴通讯股份有限公司 小区测量处理方法、装置、终端及基站
US20160337893A1 (en) * 2015-05-15 2016-11-17 Qualcomm Incorporated Measurement gaps in carrier aggregation

Also Published As

Publication number Publication date
EP3657838A1 (en) 2020-05-27
EP3657838A4 (en) 2020-06-24
EP3657838B1 (en) 2021-09-29
EP3972328A1 (en) 2022-03-23
CN109391983B (zh) 2021-10-19
US11800470B2 (en) 2023-10-24
US20200178194A1 (en) 2020-06-04
CN109391983A (zh) 2019-02-26
CN114095962A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2019029720A1 (zh) 一种测量间隔参数配置、测量参考信号的方法及设备
CN110475336B (zh) 一种实现网络同步的方法及装置
US20210368468A1 (en) Positioning and measurement reporting method and apparatus
JP2020516141A (ja) 異なる基準信号の混合に基づくrlm及びビーム障害検出
US10327275B2 (en) Network controlled and deployment based increased primary cell measurements
TWI804690B (zh) 非啟動頻率資源的通道測量方法、基地台、終端及電腦可讀存儲介質
EP4149181A1 (en) Method for determining time advance (ta), and network device and terminal
EP4017176A1 (en) Method for indicating antenna panel state, and device
TW202014019A (zh) 定位方法、裝置、電腦設備及電腦存儲介質
US20220053500A1 (en) Communication method and device
WO2019029426A1 (zh) 用于传输参考信号的方法及装置
WO2021051364A1 (zh) 一种通信方法、装置及设备
TWI787837B (zh) 下行定位參考信號收發方法、終端、基地台、設備及裝置
CN114600501A (zh) 一种应用同步信号块的测量方法、终端设备及基站
WO2018202020A1 (zh) 一种随机接入资源分配方法及装置
WO2013166657A1 (zh) 参考信号的测量方法、基站及用户设备
US20220225242A1 (en) Power adjustment method and apparatus
CN111436095B (zh) 一种通信方法及通信装置
WO2018126456A1 (zh) 一种测量方法、基站及终端
WO2020063460A1 (zh) 信息处理方法和终端设备
CN110248378B (zh) 一种定位方法及装置
WO2018126455A1 (zh) 一种测量方法、基站及终端
WO2019141231A1 (zh) 载波测量的方法和终端设备
CN114286288A (zh) 信息传输方法、资源选择方法、装置及电子设备
WO2022100547A1 (zh) 信息确定、配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018844677

Country of ref document: EP

Effective date: 20200219