WO2019029587A1 - 信号发送方法、信号接收方法、终端设备及网络设备 - Google Patents

信号发送方法、信号接收方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2019029587A1
WO2019029587A1 PCT/CN2018/099493 CN2018099493W WO2019029587A1 WO 2019029587 A1 WO2019029587 A1 WO 2019029587A1 CN 2018099493 W CN2018099493 W CN 2018099493W WO 2019029587 A1 WO2019029587 A1 WO 2019029587A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
time unit
subcarrier
terminal device
network device
Prior art date
Application number
PCT/CN2018/099493
Other languages
English (en)
French (fr)
Inventor
郭志恒
谢信乾
程型清
宋兴华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810450862.2A external-priority patent/CN109391578B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18845142.1A priority Critical patent/EP3661144B1/en
Publication of WO2019029587A1 publication Critical patent/WO2019029587A1/zh
Priority to US16/786,314 priority patent/US10938526B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • H04L27/2659Coarse or integer frequency offset determination and synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to communications technologies, and in particular, to a signal transmitting method, a signal receiving method, a terminal device, and a network device.
  • the uplink coverage on the working frequency cannot match the downlink coverage. Therefore, the uplink of the 5G communication system can be deployed on the uplink frequency band of the Long Term Evolution (LTE) communication system at 1.8 GHz.
  • LTE Long Term Evolution
  • the uplink transmission of the LTE communication system uses the subcarrier mapping mode of the carrier center offset, that is, the subcarrier mapping is offset from the carrier center frequency by 7.5 KHz. Therefore, when the uplink of the 5G communication system is deployed in the uplink frequency band of the LTE system at 1.8 GHz.
  • the subcarrier mapping mode also adopts a carrier center offset manner to ensure that the 5G communication system is aligned with the subcarriers of the LTE communication system.
  • the terminal device when subcarrier mapping is performed in a carrier center offset manner, the terminal device implements a carrier center offset by adjusting a phase offset of each sampling time point in the baseband signal, where the phase offset is Each Orthogonal Frequency Division Multiplexing (OFDM) symbol is equal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the present application provides a signal sending method, a signal receiving method, a terminal device, and a network device, and the technical solution is as follows.
  • the first aspect of the present application provides a signaling method, including:
  • the terminal device generates an OFDM symbol.
  • the terminal device transmits at least two OFDM symbols to the network device in a first time unit, and transmits at least two OFDM symbols to the network device in a second time unit.
  • the phase offset of the OFDM symbol in the first time unit is equal to the phase offset of the OFDM symbol in the second time unit, and the phase offset of the first OFDM symbol in the first time unit is The phase offsets of the at least one OFDM symbol except the first OFDM symbol in the first time unit are not equal, wherein the duration of the first time unit and the duration of the second time unit are the same.
  • the first time unit and the second time unit that the terminal device sends the uplink signal to the network device include at least two OFDM symbols, the phase offset between the first time unit and the second time is the same, and the first time unit
  • the phase offset of the internal OFDM symbol is different from the phase offset of the remaining at least one OFDM symbol. Therefore, the period of the phase offset is expanded compared to the existing method, and therefore, the terminal device performs the periodic change of the phase offset.
  • the processing frequency is reduced, so the processing complexity of the terminal device can be reduced.
  • the duration of the first time unit is a duration of a time slot corresponding to a subcarrier spacing of 15 KHz.
  • the duration of the first time unit is the duration of one subframe.
  • the duration of the first time unit is one symbol length corresponding to the subcarrier spacing of 15 KHz.
  • the number of OFDM symbols in the first time unit is 2.
  • the number of OFDM symbols in the first time unit is 4.
  • the phase offset is the phase of the first time domain sample value at the first sampling time point and the second subcarrier mapping mode when the same OFDM symbol adopts the first subcarrier mapping mode. The difference in phase of the second time domain sampled value at the first sampling time point.
  • the center of the subcarrier is mapped to the carrier frequency
  • the center of the subcarrier is mapped to a frequency having a preset offset value from the carrier frequency
  • the above preset offset value is 7.5 KHz.
  • a second aspect of the present application provides a signal receiving method, the method comprising:
  • the network device receives at least two OFDM symbols from the terminal device in a first time unit, and receives at least two OFDM symbols in a second time unit, a phase offset of the OFDM symbol in the first time unit, and the second a phase offset of the OFDM symbols in the time unit is equal, and a phase offset of the first OFDM symbol in the first time unit and at least one OFDM symbol in the first time unit except the first OFDM symbol
  • the phase offsets are not equal, wherein the duration of the first time unit is the same as the duration of the second time unit;
  • the network device demodulates at least two OFDM symbols received in the first time unit and at least two OFDM symbols received in the second time unit.
  • the network device receives the OFDM symbol from the terminal device in a third time unit, and receives the OFDM symbol from the terminal device in the fourth time unit, wherein the phase offset of the OFDM symbol in the third time unit
  • the phase offsets of the OFDM symbols in the fourth time unit are equal, and the duration of the third time unit is the same as the duration of the fourth time unit.
  • the third time unit and the fourth time unit that the terminal device sends the uplink signal to the network device include at least two OFDM symbols, the phase offset between the third time unit and the fourth time is the same, and the third time
  • the phase offset of the intra-unit OFDM symbol is different from the phase offset of the remaining at least one OFDM symbol, and when the terminal device using different sub-carrier spacing simultaneously transmits the uplink signal to the network device, as long as the duration of the third time unit of each terminal device If the phase offsets of the third time unit are the same, the network device can uniformly compensate the uplink signals sent by the terminal devices, thereby avoiding the complexity of the phase compensation being too high.
  • the network device receives the OFDM symbol from the first terminal device and the OFDM symbol from the second terminal device in the fifth time unit, wherein the phase offset of the OFDM symbol in the fifth time unit of the first terminal device And shifting the phase offset of the OFDM symbols in the fifth time unit of the second terminal device to be equal.
  • the duration of the first time unit is a duration of a time slot corresponding to a subcarrier spacing of 15 KHz.
  • the duration of the first time unit is the duration of one subframe.
  • the duration of the first time unit is one symbol length corresponding to the subcarrier spacing of 15 KHz.
  • the number of OFDM symbols in the first time unit is 2.
  • the number of OFDM symbols in the first time unit is 4.
  • the phase offset is the phase of the first time domain sample value at the first sampling time point and the second subcarrier mapping mode when the same OFDM symbol adopts the first subcarrier mapping mode. The difference in phase of the second time domain sampled value at the first sampling time point.
  • the center of the subcarrier is mapped to the carrier frequency
  • the center of the subcarrier is mapped to a frequency having a preset offset value from the carrier frequency
  • the above preset offset value is 7.5 KHz.
  • the third aspect of the present application provides a terminal device, which has the function of implementing the terminal device in the first aspect. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal device may include a processing module and a sending module, and the modules may perform corresponding functions in the foregoing methods, for example, a processing module, configured to generate orthogonal frequency division multiplexing OFDM symbols, and a sending module, And transmitting at least two OFDM symbols to the network device in the first time unit, and transmitting the at least two OFDM symbols to the network device in the second time unit.
  • a processing module configured to generate orthogonal frequency division multiplexing OFDM symbols
  • a sending module And transmitting at least two OFDM symbols to the network device in the first time unit, and transmitting the at least two OFDM symbols to the network device in the second time unit.
  • the fourth aspect of the present application provides a network device, which has the function of implementing the network device in the second aspect. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal device may comprise a receiving module and a processing module, the modules may perform corresponding functions in the above method, for example: a receiving module, configured to receive at least two positives from the terminal device in the first time unit Interleaving OFDM symbols, and receiving at least two OFDM symbols in a second time unit; processing module for at least two OFDM symbols received at the first time unit and at the second time unit The received at least two OFDM symbols are demodulated.
  • a receiving module configured to receive at least two positives from the terminal device in the first time unit Interleaving OFDM symbols, and receiving at least two OFDM symbols in a second time unit
  • processing module for at least two OFDM symbols received at the first time unit and at the second time unit The received at least two OFDM symbols are demodulated.
  • a fifth aspect of the present application provides a chip that can be used in a terminal device, the chip comprising: at least one communication interface, at least one processor, at least one memory, wherein the communication interface, the processor, and the memory pass the circuit (some In the case of a bus connection, the processor calls the instructions stored in the memory to perform the following methods:
  • the phase offsets are equal, and the phase offset of the first OFDM symbol in the first time unit is not equal to the phase offset of the at least one OFDM symbol except the first OFDM symbol in the first time unit, where
  • the duration of the time unit is the same as the duration of the second time unit.
  • the duration of the first time unit is a duration of a time slot corresponding to a subcarrier spacing of 15 KHz.
  • the duration of the first time unit is the duration of one subframe.
  • the duration of the first time unit is one symbol length corresponding to the subcarrier spacing of 15 KHz.
  • the number of OFDM symbols in the first time unit is 2.
  • the number of OFDM symbols in the first time unit is 4.
  • the phase offset is the phase of the first time domain sample value at the first sampling time point and the second subcarrier mapping mode when the same OFDM symbol adopts the first subcarrier mapping mode. The difference in phase of the second time domain sampled value at the first sampling time point.
  • the center of the subcarrier is mapped to the carrier frequency
  • the center of the subcarrier is mapped to a frequency having a preset offset value from the carrier frequency
  • the above preset offset value is 7.5 KHz.
  • a sixth aspect of the present application provides a chip that can be used in a network device, the chip comprising: at least one communication interface, at least one processor, at least one memory, wherein the communication interface, the processor, and the memory pass the circuit (some In the case of a bus connection, the processor calls the instructions stored in the memory to perform the following methods:
  • Demodulation is performed on at least two OFDM symbols received at the first time unit and at least two OFDM symbols received at the second time unit.
  • the duration of the first time unit is a duration of a time slot corresponding to a subcarrier spacing of 15 KHz.
  • the duration of the first time unit is the duration of one subframe.
  • the duration of the first time unit is one symbol length corresponding to the subcarrier spacing of 15 KHz.
  • the number of OFDM symbols in the first time unit is 2.
  • the number of OFDM symbols in the first time unit is 4.
  • the phase offset is the phase of the first time domain sample value at the first sampling time point and the second subcarrier mapping mode when the same OFDM symbol adopts the first subcarrier mapping mode. The difference in phase of the second time domain sampled value at the first sampling time point.
  • the center of the subcarrier is mapped to the carrier frequency
  • the center of the subcarrier is mapped to a frequency having a preset offset value from the carrier frequency
  • the above preset offset value is 7.5 KHz.
  • a seventh aspect of the present application provides a terminal device, where the terminal device includes: a memory and a processor.
  • the memory is used to store program instructions
  • the processor is used to call program instructions in the memory to implement the functions of the terminal device in the above first aspect.
  • An eighth aspect of the present application provides a network device, where the network device includes: a memory and a processor.
  • the memory is used to store program instructions
  • the processor is used to call program instructions in the memory to implement the functions of the network device in the second aspect.
  • a ninth aspect of the present application provides a nonvolatile storage medium having one or more program codes stored therein, and when the terminal device executes the program code, the terminal device executes the terminal in the first aspect Related method steps performed by the device.
  • a tenth aspect of the present application provides a non-volatile storage medium, where the one or more program codes are stored, and when the network device executes the program code, the network device performs the network in the second aspect. Related method steps performed by the device.
  • the eleventh aspect of the present application provides a signaling method, where the method includes:
  • the network device determines a downlink signal, wherein the downlink signal is determined according to the first frequency position
  • the network device sends the downlink signal to the terminal device.
  • the downlink signal is determined according to the first frequency position, and includes:
  • the downlink signal is a downlink baseband signal, and a phase of the downlink baseband signal is determined according to the first frequency position.
  • the first frequency location is a predefined frequency location.
  • the first frequency location is a frequency location determined according to the indication information of the network device, and the indication information is used to indicate the first frequency location.
  • a twelfth aspect of the present application provides a signal receiving method, the method comprising:
  • the terminal device receives the downlink signal from the network device, where the downlink signal is determined according to the first frequency location, the first frequency location is a predefined frequency location, or the first frequency location is according to the network The frequency location determined by the indication information of the device;
  • the terminal device demodulates the downlink signal.
  • the downlink signal is determined according to the first frequency position, and includes:
  • the downlink signal is a downlink baseband signal, and a phase of the downlink baseband signal is determined according to the first frequency position.
  • the first frequency location is a predefined frequency location, including:
  • the first frequency position is a center frequency position of a preset subcarrier in a preset frequency domain resource block.
  • the first frequency position is a frequency position determined according to the indication information of the network device
  • the terminal device receives the indication information from the network device, where the indication information is used to indicate the first frequency location.
  • the thirteenth aspect of the application provides a network device having the function of implementing the network device in the eleventh aspect. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device can include a processing module and a transmitting module that can perform the corresponding functions in the above methods.
  • the fourteenth aspect of the application provides a terminal device having the function of implementing the terminal device in the twelfth aspect. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal device may include a receiving module and a processing module, which may perform corresponding functions in the above methods.
  • a fifteenth aspect of the present application provides a chip that can be used in a network device, the chip comprising: at least one communication interface, at least one processor, at least one memory, wherein the communication interface, the processor, and the memory pass the circuit In some cases, it may also be a bus interconnect, and the processor calls instructions stored in the memory to perform the method described in the eleventh aspect above.
  • a sixteenth aspect of the present application provides a chip, the chip can be used in a terminal device, the chip includes: at least one communication interface, at least one processor, at least one memory, wherein the communication interface, the processor, and the memory pass the circuit In some cases, it may also be a bus interconnect, and the processor calls instructions stored in the memory to perform the method described in the twelfth aspect above.
  • a seventeenth aspect of the present application provides a network device, the network device comprising: a memory and a processor.
  • the memory is used to store program instructions
  • the processor is used to call program instructions in the memory to implement the functions of the network device in the eleventh aspect.
  • the eighteenth aspect of the present application provides a terminal device, where the network device includes: a memory and a processor.
  • the memory is used to store program instructions
  • the processor is used to call program instructions in the memory to implement the functions of the network device in the twelfth aspect.
  • a nineteenth aspect of the present application provides a non-volatile storage medium having one or more program codes stored therein, and when the network device executes the program code, the network device performs the eleventh aspect Related method steps performed by the network device.
  • a twentieth aspect of the present application provides a nonvolatile storage medium having one or more program codes stored therein, and when the terminal device executes the program code, the terminal device performs the twelfth aspect Related method steps performed by the terminal device.
  • FIG. 1 is a system architecture diagram of a signal receiving and transmitting method provided by the present application.
  • FIG. 2 is a schematic diagram of mapping a center of a subcarrier at a carrier frequency
  • 3 is a schematic diagram of a subcarrier center map with respect to a carrier frequency offset of 7.5 KHz;
  • 4 is a schematic diagram of phase offset of a communication system with multiple subcarrier spacings
  • FIG. 5 is an interaction flowchart of Embodiment 1 of a signal receiving and transmitting method provided by the present application
  • FIG. 6 is a schematic diagram of a terminal transmitting an OFDM symbol according to an embodiment
  • FIG. 7 is a schematic diagram of Embodiment 2 of a signal receiving and transmitting method provided by the present application.
  • FIG. 8 is a diagram showing an example of a symbol length corresponding to a subcarrier spacing of a duration of 15 kHz in a first time unit;
  • FIG. 9 is a schematic diagram of a duration of a time slot corresponding to a subcarrier spacing of a time period of 15 kHz in a first time unit;
  • 10 is a schematic diagram showing a duration of a first time unit as a duration of one subframe
  • FIG. 11 is a block diagram of a first embodiment of a terminal device according to the present application.
  • FIG. 12 is a block diagram of a first embodiment of a network device according to the present application.
  • FIG. 13 is a physical block diagram of a chip provided by the present application.
  • FIG. 15 is a physical block diagram of Embodiment 1 of a terminal device provided by the present application.
  • FIG. 16 is a physical block diagram of Embodiment 1 of a network device according to the present application.
  • FIG. 17 is a schematic flowchart diagram of another signal sending and receiving method provided by the present application.
  • FIG. 18 is a schematic flowchart diagram of still another method for transmitting and receiving signals according to the present application.
  • 19 is a schematic diagram of a network device and a terminal device using different reference frequencies in downlink signal transmission;
  • 20 is a block diagram of another network device provided by the present application.
  • 21 is a block diagram of another terminal device provided by the present application.
  • FIG. 24 is a physical block diagram of Embodiment 1 of another network device provided by the present application.
  • FIG. 25 is a physical block diagram of Embodiment 1 of another terminal device provided by the present application.
  • the system includes a network device and at least one terminal device, where the network device and the terminal device work in an LTE communication system.
  • the 5G communication system is on the uplink shared frequency band.
  • the terminal device can communicate with the network device through the carrier of the 5G communication system, and the terminal device can also communicate with the network device through the uplink carrier of the LTE communication system.
  • Terminal device It may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides voice and/or data connectivity to the terminal, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Equipment, or User Agent.
  • a base station may be specifically referred to, and a base station may refer to a device in an access network that communicates with a wireless terminal through one or more sectors on an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the uplink of the 5G communication system can be deployed on the uplink frequency band of the LTE communication system at 1.8 GHz.
  • the uplink transmission uses the carrier center offset subcarrier mapping manner, that is, the subcarrier center map is offset from the carrier center frequency by 7.5 KHz.
  • the downlink transmission uses the subcarrier mapping method in which the subcarriers are mapped to the carrier frequency, that is, the center of the subcarrier is mapped to the carrier frequency.
  • FIG. 3 is a schematic diagram of a subcarrier center mapping with respect to a carrier frequency offset of 7.5 KHz.
  • a subcarrier The center map is offset from the carrier frequency by 7.5 kHz.
  • the subcarrier mapping manner of the 5G communication system may also use the subcarrier mapping manner shown in FIG. .
  • phase offset of the time domain sample values at the sampling time point in the signal generated by the baseband, where the phase offset for each OFDM symbol ( The specific meaning of the phase shift will be specifically explained in the following embodiments).
  • CP Cyclic Prefix
  • the time domain sampling value of the xth sampling time point of the first OFDM symbol adopts a mapping as shown in FIG.
  • the mode offset is S1 in the mapping mode shown in FIG. 3, and the time domain sampling value in the xth sampling time point of the second OFDM symbol is in the mapping manner as shown in FIG.
  • the phase offset in the mapping mode shown is S2, then S1 and S2 are equal, where x is a positive integer.
  • the 5G communication system supports multiple subcarrier spacings, for example, the subcarrier spacing may be 15 kHz, 30 kHz, 60 kHz, and the like.
  • the phase shift of the sampling time point can be performed by referring to the LTE method.
  • 4 is a schematic diagram of phase offset of a communication system in which multiple subcarrier spacings exist. It is assumed that the communication system uses the subcarrier mapping method of uplink data of LTE. As shown in FIG. 4, for an uplink signal (including 1 slot of 7 symbols) using a 15KHz subcarrier spacing, the phase offset of each OFDM symbol is equal, for example, the 0th OFDM symbol and the 1st OFDM.
  • phase offset of the symbol is the same.
  • phase offset of each OFDM symbol is also equal, for example, the phase of the 0th OFDM symbol and the 1st OFDM symbol.
  • the offset is the same.
  • the phase offset of the uplink signal of the 15KHz subcarrier interval and the uplink signal of the 30KHz subcarrier spacing are not the same.
  • the processing of the terminal device needs to be adjusted accordingly, so the processing complexity of the terminal device is high.
  • the network device that receives the uplink data when the network device receives the uplink signals sent by the terminal devices that respectively support different sub-carrier intervals, the network device needs to separately perform the phase offsets of the uplink signals of each seed carrier interval. Compensation, resulting in high complexity of phase compensation for network devices. Therefore, the present application further provides a solution.
  • phase offset is explained in detail below.
  • the subcarrier mapping manner includes the first subcarrier mapping manner shown in FIG. 2 and the second in carrier mapping manner shown in FIG. 3, wherein in the first subcarrier mapping manner, the subcarriers The center of the subcarrier is mapped to the carrier frequency.
  • the center of the subcarrier is mapped to a frequency having a preset offset value from the carrier frequency.
  • the above carrier frequency may refer to a carrier center frequency.
  • the preset offset value may be 7.5 KHz, or the preset offset value may also be a sum of 7.5 KHz and an integer number of subcarrier spacings.
  • the preset offset value may be 7.5 KHz.
  • the sum of the intervals with a 30KHz subcarrier, that is, the above preset offset value is 37.5KHz.
  • multiple sampling time points can be included.
  • the first time domain sample value on T corresponds to one phase X1
  • the second time domain sample value on T corresponds to another phase X2
  • the phase offsets of the two time domain sample values on T are X2-X1. That is, the phase offset involved in the present application refers to the phase of the first time domain sample value at the first sampling time point when the first subcarrier mapping mode is adopted for the same OFDM symbol and when the second subcarrier mapping mode is adopted. a difference in phase of the second time domain sample value at the first sampling time point, wherein the first sampling time point is any one of sampling time points within one OFDM symbol.
  • FIG. 5 is an interaction flowchart of Embodiment 1 of a method for receiving and transmitting a signal according to the present application. As shown in FIG. 5, the method includes:
  • the terminal device generates an OFDM symbol.
  • the terminal device sends at least two OFDM symbols to the network device in the first time unit, and sends at least two OFDM symbols to the network device in the second time unit.
  • the duration of the first time unit is the same as the duration of the second time unit.
  • the phase offset of the OFDM symbol in the first time unit is equal to the phase offset of the OFDM symbol in the second time unit.
  • the phase offset of the first OFDM symbol in the first time period is not equal to the phase offset of the at least one OFDM symbol except the first OFDM symbol in the first time.
  • the network device receives at least two OFDM symbols on a first time unit, and after receiving at least two OFDM symbols on a second time unit, at least two OFDM symbols received in the first time unit and in the second At least two OFDM symbols received by the time unit are demodulated.
  • FIG. 6 is a schematic diagram of a terminal transmitting an OFDM symbol according to an embodiment of the present invention.
  • the terminal device transmits an uplink signal to a network device at a subcarrier spacing of 30 kHz, where the first time unit is used.
  • the time interval of the second time unit for the two OFDM symbols that is, the duration of the first time unit and the second time unit are the same.
  • phase offset of the OFDM symbol in the first time unit and the phase offset of the OFDM symbol in the second time unit are explained below in conjunction with FIG. 6.
  • the phase offset at the mth sampling time point in the first time unit is equal to the phase offset at the mth sampling time point in the second time unit, where m can be any one of less than or equal to k Integer.
  • the overall phase offset of the first time unit is equal to the overall phase offset of the second time unit.
  • phase offset of the first OFDM symbol in the first time period described above and the phase offset of at least one OFDM symbol except the first OFDM symbol in the first time unit are not explained below with reference to FIG. 6 .
  • phase offset is different from the phase shift of the nth sampling time point in the first time unit, where m and n are positive integers less than or equal to k And m and n are not equal.
  • the phase offset of the mth sampling time point is also not equal to the phase offset of the nth sampling time point. That is, one period of the phase offset is the duration corresponding to the first time unit, and there is only one phase offset period in the first time unit.
  • the present application can be applied to the case where the CP lengths of all OFDM symbols in the first time unit are equal, and the first time is assumed that the CP lengths of the OFDM symbols in the first time unit are not equal.
  • the CP of the OFDM symbol L in the unit is a short CP, that is, the CP length is short
  • the CP of the OFDM symbol M in the first time unit is a long CP, that is, the CP length is long
  • the OFDM symbol L can be divided into two parts.
  • the number of sampling time points in the first part is equal to the number of sampling time points of the OFDM symbol M.
  • the solution described in the present application can be used for processing, and unified phase compensation can be performed on the network device side, and OFDM is performed.
  • the remainder of the symbol L can be phase compensated separately according to the prior art.
  • this embodiment also satisfies the case where the CP lengths of the OFDM symbols in the first time unit are not equal.
  • the first time unit and the second time unit that the terminal device sends the uplink signal to the network device include at least two OFDM symbols, and the phase offset between the first time unit and the second time is the same, and the first time The phase offset of the intra-cell OFDM symbol is different from the phase offset of the remaining at least one OFDM symbol. Therefore, the period of the phase offset is expanded compared to the existing method, and therefore, the terminal device performs the periodic variation of the phase offset.
  • the processing frequency is reduced, so the processing complexity of the terminal device can be reduced.
  • the network device receives the OFDM symbol from the terminal device at the third time unit, and receives the OFDM symbol from the terminal device at the fourth time unit, wherein the phase offset of the OFDM symbol within the third time unit
  • the phase offsets of the OFDM symbols in the fourth time unit are equal, and the duration of the third time unit is the same as the duration of the fourth time unit.
  • the network device may receive an OFDM symbol from one terminal device in a third time unit, and receive an OFDM symbol from another terminal device in a fourth time unit, where the OFDM symbols transmitted by the two terminal devices respectively use different subcarrier spacings . And since the durations of the third time unit and the fourth time unit are the same, and the phase offsets of the OFDM symbols of the third time unit and the fourth time unit are equal, when the network device is in the third time unit and the fourth time unit After receiving the OFDM symbol, phase compensation of the OFDM symbol can be performed uniformly.
  • FIG. 7 is a schematic diagram of a second embodiment of a method for receiving and transmitting a signal according to the present application.
  • the network device simultaneously receives an uplink signal from a first terminal device and a second terminal device, where the first terminal device
  • the subcarrier spacing is 15 kHz
  • the subcarrier spacing of the second terminal device is 30 kHz.
  • the third time unit is the time of 1 OFDM symbol sent by the first terminal device
  • the fourth time unit is the time of 2 OFDM symbols sent by the second terminal device.
  • the phase offset of the first terminal device in the third time unit is the same as the phase offset of the second terminal device in the fourth time unit.
  • the uplink signal may be uniformly compensated according to the first time unit.
  • the third time unit and the fourth time unit that the terminal device sends the uplink signal to the network device include at least two OFDM symbols, the phase offset between the third time unit and the fourth time is the same, and the third time The phase offset of the intra-unit OFDM symbol is different from the phase offset of the remaining at least one OFDM symbol, and when the terminal device using different sub-carrier spacing simultaneously transmits the uplink signal to the network device, as long as the duration of the third time unit of each terminal device If the phase offsets of the third time unit are the same, the network device can uniformly compensate the uplink signals sent by the terminal devices, thereby avoiding the complexity of the phase compensation being too high.
  • the network device receives the OFDM symbol from the first terminal device and the OFDM symbol from the second terminal device in the fifth time unit, where the fifth time unit of the first terminal device
  • the phase offset of the OFDM symbol is equal to the phase offset of the OFDM symbol within the fifth time unit of the second terminal device.
  • the network device receives OFDM symbols from the two terminal devices in the same time unit, that is, the fifth time unit, and the OFDM symbols transmitted by the two terminal devices respectively use different subcarrier spacings. And because the phase offsets of the OFDM symbols in the fifth time unit are equal, the network device can unify the OFDM symbols after receiving the OFDM symbols sent by the two terminal devices in the fifth time unit. Perform phase compensation.
  • the number of OFDM symbols in the first time unit is 2. The same applies to the second time unit.
  • the number of OFDM symbols in the first time unit is 4. The same applies to the second time unit.
  • the duration of the first time unit may be a symbol length corresponding to a subcarrier spacing of 15 kHz, or the duration of the first time unit may also be a time slot corresponding to a subcarrier spacing of 15 kHz.
  • the duration of the first time unit may also be the duration of one subframe. The following description will be respectively made.
  • the first time unit corresponds to two symbols of a subcarrier spacing of 30 kHz, and corresponds to 4 symbols of the subcarrier spacing of 60 KHz. Then, if the network device simultaneously receives the uplink data of the subcarrier spacing of 15 kHz and the uplink data of the subcarrier spacing of 30 kHz, the phase compensation may be uniformly performed according to the first time unit.
  • the phase compensation may be uniformly performed according to the first time unit.
  • the network device can uniformly perform phase compensation on the uplink data of the subcarrier spacing of 30KHz and 60KHz.
  • FIG. 9 is a schematic diagram of the duration of a time slot corresponding to a subcarrier spacing of a time period of 15 kHz in the first time unit.
  • one time slot corresponding to a 15 kHz subcarrier spacing of the first time unit that is, 7 OFDM symbols
  • 2 time slots corresponding to 7 symbols of 30 KHz If the network device simultaneously receives the uplink data of the subcarrier spacing of 15 kHz and the uplink data of the subcarrier spacing of 30 kHz, the phase compensation may be uniformly performed according to the first time unit.
  • the duration of the first time unit is the duration of one subframe.
  • FIG. 10 is a schematic diagram showing the duration of the first time unit as the duration of one subframe.
  • one subframe of the first time unit that is, two slots of 15 kHz, and 4 symbols of 7 symbols corresponding to 30 kHz. Time slots. If the network device simultaneously receives the uplink data of the subcarrier spacing of 15 kHz and the uplink data of the subcarrier spacing of 30 kHz, the phase compensation may be uniformly performed according to the first time unit.
  • the phase offset specifically refers to a phase of the first time domain sample value at the first sampling time point when the same OFDM symbol adopts the first subcarrier mapping manner, and adopts the second The difference of the phase of the second time domain sample value at the first sampling time point in the subcarrier mapping mode, wherein the center mapping of the subcarriers exists at 7.5 with the carrier frequency in the second seed carrier mapping mode On the frequency of KHz.
  • an OFDM signal is generated using the following formula (1).
  • the OFDM symbol can be generated using Equation (2) below.
  • ⁇ f shift is the subcarrier offset of the second seed carrier mapping manner with respect to the first seed carrier mapping manner
  • is the phase offset of the sampling time point due to the subcarrier offset
  • is related to the ⁇ f shift and the sampling time point. Therefore, for different subcarrier spacings, as long as the ⁇ f shift and the sampling time point are the same, the phase offset can be ensured to be the same. Therefore, in the present application, optionally, the sampling time points of different subcarrier spacings may be set to be the same in advance, and the same ⁇ f shift is used for different subcarrier spacings, that is, the phase offsets may be ensured to be the same. Specifically, ⁇ f shift is 7.5 KHz.
  • ⁇ f in the above formula (2) can be obtained by the following table (1), where u is a parameter indicating the subcarrier spacing of the signal.
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] 0 15 1 30 2 60 3 120 4 240 5 480
  • the generation formula of the OFDM symbol can be expressed as the following formula (3).
  • the generation formula of the OFDM symbol can be expressed as the following formula (4).
  • the generation formula of the OFDM symbol can be expressed as the following formula (5).
  • the number of OFDM symbols included in one slot is 7 or 14.
  • the generation formula of the OFDM symbol can be expressed as the following formula (7).
  • the generation formula of the OFDM symbol can be expressed as the following formula (8).
  • FIG. 11 is a block diagram of a first embodiment of a terminal device according to the present application. As shown in FIG. 11, the terminal device includes:
  • the processing module 1101 is configured to generate an OFDM symbol.
  • the sending module 1102 is configured to send, by the first time unit, at least two OFDM symbols to the network device, and send, in the second time unit, at least two OFDM symbols to the network device, a phase offset of the OFDM symbol in the first time unit, and a first time unit
  • the phase offset of the OFDM symbol in the two-time unit is equal, and the phase offset of the first OFDM symbol in the first time unit is not offset from the phase offset of the at least one OFDM symbol except the first OFDM symbol in the first time unit Equal, wherein the duration of the first time unit is the same as the duration of the second time unit.
  • the terminal device is used to implement the foregoing method embodiments, and the implementation principles and technical effects are similar, and details are not described herein again.
  • the duration of the first time unit is a duration of a time slot corresponding to a subcarrier spacing of 15 kHz.
  • the duration of the first time unit is the duration of one subframe.
  • the duration of the first time unit is one symbol length corresponding to the subcarrier spacing of 15 KHz.
  • the number of OFDM symbols in the first time unit is 2.
  • the number of OFDM symbols in the first time unit is 4.
  • the phase offset is a phase of the first time domain sample value at the first sampling time point when the same OFDM symbol is in the first subcarrier mapping manner, and the second subcarrier is used. The difference in phase of the second time domain sampled value at the first sampling time point in the mapping mode.
  • the center of the subcarrier is mapped to the carrier frequency
  • the center of the subcarrier is mapped to a frequency having a preset offset value from the carrier frequency
  • the preset offset value is 7.5 KHz.
  • FIG. 12 is a block diagram of a first embodiment of a network device according to the present application. As shown in FIG. 12, the network device includes:
  • the receiving module 1201 is configured to receive at least two OFDM symbols from the terminal device in the first time unit, and receive at least two OFDM symbols in the second time unit, a phase offset of the OFDM symbol in the first time unit, and a second time unit
  • the phase offsets of the intra OFDM symbols are equal, and the phase offset of the first OFDM symbol in the first time unit is not equal to the phase offset of the at least one OFDM symbol except the first OFDM symbol in the first time unit, where
  • the duration of the first time unit is the same as the duration of the second time unit.
  • the processing module 1202 is configured to demodulate at least two OFDM symbols received in the first time unit and at least two OFDM symbols received in the second time unit.
  • the network device is used to implement the foregoing method embodiments, and the implementation principles and technical effects are similar, and details are not described herein again.
  • the duration of the first time unit is a duration of a time slot corresponding to a subcarrier spacing of 15 kHz.
  • the duration of the first time unit is the duration of one subframe.
  • the duration of the first time unit is one symbol length corresponding to the subcarrier spacing of 15 KHz.
  • the number of OFDM symbols in the first time unit is 2.
  • the number of OFDM symbols in the first time unit is 4.
  • the phase offset is a phase of the first time domain sample value at the first sampling time point when the same OFDM symbol is in the first subcarrier mapping manner, and the second subcarrier is used. The difference in phase of the second time domain sampled value at the first sampling time point in the mapping mode.
  • the center of the subcarrier is mapped to the carrier frequency
  • the center of the subcarrier is mapped to a frequency having a preset offset value from the carrier frequency
  • the preset offset value is 7.5 KHz.
  • FIG. 13 is a physical block diagram of a chip provided by the present application.
  • the chip 1300 can be used in a terminal device. As shown in FIG. 13, the chip includes: at least one communication interface 1301, at least one processor 1302, and at least one memory 1303.
  • the communication interface 1301, the processor 1302, and the memory 1303 are interconnected by a circuit (which may also be a bus) 1304.
  • the processor 1302 calls an instruction stored in the memory 1303 to perform the following method:
  • the phase offsets are equal, and the phase offset of the first OFDM symbol in the first time unit is not equal to the phase offset of the at least one OFDM symbol except the first OFDM symbol in the first time unit, where
  • the duration of the time unit is the same as the duration of the second time unit.
  • the duration of the first time unit is a duration of a time slot corresponding to a subcarrier spacing of 15 kHz.
  • the duration of the first time unit is the duration of one subframe.
  • the duration of the first time unit is one symbol length corresponding to the subcarrier spacing of 15 KHz.
  • the number of OFDM symbols in the first time unit is 2.
  • the number of OFDM symbols in the first time unit is 4.
  • the phase offset is a phase of the first time domain sample value at the first sampling time point when the same OFDM symbol is in the first subcarrier mapping manner, and the second subcarrier is used. The difference in phase of the second time domain sampled value at the first sampling time point in the mapping mode.
  • the center of the subcarrier is mapped to the carrier frequency
  • the center of the subcarrier is mapped to a frequency having a preset offset value from the carrier frequency
  • the preset offset value is 7.5 KHz.
  • the chip 1400 can be used in a network device. As shown in FIG. 14, the chip includes: at least one communication interface 1401, at least one processor 1402, and at least one memory 1403.
  • the communication interface 1401, the processor 1402, and the memory 1403 are interconnected by a circuit (which may also be a bus) 1404.
  • the processor 1402 calls an instruction stored in the memory 1403 to perform the following method:
  • Demodulation is performed on at least two OFDM symbols received at the first time unit and at least two OFDM symbols received at the second time unit.
  • the duration of the first time unit is a duration of a time slot corresponding to a subcarrier spacing of 15 kHz.
  • the duration of the first time unit is the duration of one subframe.
  • the duration of the first time unit is a symbol length corresponding to a subcarrier spacing of 15 kHz.
  • the number of OFDM symbols in the first time unit is 2.
  • the number of OFDM symbols in the first time unit is 4.
  • the phase offset is a phase of the first time domain sample value at the first sampling time point when the same OFDM symbol is in the first subcarrier mapping manner, and the second subcarrier is used. The difference in phase of the second time domain sampled value at the first sampling time point in the mapping mode.
  • the center of the subcarrier is mapped to the carrier frequency
  • the center of the subcarrier is mapped to a frequency having a preset offset value from the carrier frequency
  • the preset offset value is 7.5 KHz.
  • FIG. 15 is a physical block diagram of a first embodiment of a terminal device according to the present application. As shown in FIG. 15, the terminal device includes:
  • the memory 1501 is configured to store program instructions, and the processor 1502 is configured to invoke program instructions in the memory 1501 to implement the functions of the terminal device in the foregoing method embodiments.
  • FIG. 16 is a physical block diagram of Embodiment 1 of a network device according to the present application. As shown in FIG. 16, the network device includes:
  • the memory 1601 is used to store program instructions, and the processor 1602 is configured to call program instructions in the memory 1601 to implement the functions of the network device in the foregoing method embodiment.
  • the reference frequency used by the network device to transmit the downlink signal may be different from the reference frequency used by the terminal device to receive the downlink signal, so that the terminal device may incorrectly receive the downlink signal.
  • FIG. 17 is a schematic flowchart of another method for sending and receiving signals according to the present application.
  • the method is used for uplink signal transmission. As shown in FIG. 17, the method includes:
  • the terminal device determines a first frequency location, where the first frequency location is used by the terminal device to determine a reference frequency of an uplink signal.
  • S1702 The terminal device sends the uplink signal to the network device according to the reference frequency.
  • the terminal device determines the first frequency location according to a predefined rule.
  • the first frequency position is predefined.
  • the first frequency position is the center frequency of the sub-carrier numbered Y in the frequency domain resource block numbered X, and X, Y may be a positive integer or 0, and the X is not limited herein. , the value of Y.
  • the number of the frequency domain resource block herein may be the number of the frequency domain resource block in the bandwidth part, or may be the number in the carrier bandwidth.
  • the carrier bandwidth may be the bandwidth of the working carrier of the terminal device, or may be the carrier bandwidth notified by the network device to the terminal device.
  • the bandwidth of the working carrier of the network device determined by the terminal device may of course be other types of bandwidth, which is not limited herein.
  • the number of the frequency domain resource block here can also be the number in the common resource block.
  • a common resource block can be one or more resource blocks defined in advance.
  • the terminal determines the first frequency location according to the indication information received from the network device.
  • the indication information indicates the first frequency location.
  • the indication information indicates a common reference point on the frequency domain, such that the first frequency location is the frequency at which the common reference point is located.
  • the common reference point may be a reference point of a resource block grid.
  • the common reference point is the origin of the resource block grid.
  • the location of the resource block can be determined based on the common reference point.
  • the common reference point may be a reference point common to multiple terminal devices in one cell.
  • the resource block corresponding to the common reference point may be considered as a common resource block.
  • the indication information is carried in a system message or a radio resource control (RRC) layer signaling, and is sent by the network device to the terminal device.
  • the indication information may indicate an absolute radio frequency channel number (ARFCN) corresponding to the common reference point.
  • ARFCN may include 0 and a positive integer, and different ARFCN values correspond to different frequencies.
  • the ARFCN in the new air interface system ranges from 0 to 3279165. Where 0 corresponds to 0 Hz, 1 corresponds to 5 kHz, and 2 corresponds to 10 kHz.
  • the terminal device may determine the frequency corresponding to the common reference point according to the value of the ARFCN indicated in the indication information.
  • the common reference point may be a reference point A (Point A) defined in the new air interface system.
  • the frequency at which the common reference point is located is a modulation frequency of an uplink baseband signal corresponding to the uplink signal.
  • the modulation frequency herein may be the frequency used to upconvert or otherwise process the uplink baseband signal (e.g., modulate or frequency shift the signal).
  • the indication information may indicate a sub-carrier numbered Y in a frequency domain resource block numbered X, or a center frequency of a sub-carrier numbered Y in a frequency domain resource block numbered X.
  • X, Y can be a positive integer or 0, and the value of X and Y is not limited here.
  • the indication information can only indicate a subcarrier with the number 0 in the frequency domain resource block numbered X, or a subcarrier numbered as 6, or a subcarrier numbered 0 or 6. This can reduce the number of bits required for the indication information and reduce the indication overhead.
  • the indication information may only indicate a frequency domain resource block numbered X, and the terminal device determines the subcarrier numbered Y according to a predefined rule, for example, the value of Y is fixed to 0, or is fixed to 6. , or for other values. In this way, signaling overhead can be reduced.
  • the indication information indirectly indicates a first frequency location.
  • the indication information indicates an offset value
  • the offset value is an offset of the first frequency position relative to a second frequency position
  • the second frequency position is a predefined position, for example, the The second frequency position is the center frequency of the subcarrier numbered Y in the frequency domain resource block numbered X.
  • X, Y can be a positive integer or 0, and the value of X and Y is not limited here.
  • the offset value may be in units of subcarriers, may be in units of resource blocks, or may be in units of frequencies.
  • the frequency corresponding to the second frequency position is f1
  • the offset indicated by the indication information is N1 subcarriers
  • the subcarrier spacing corresponding to the subcarrier is u
  • the first frequency location corresponds to The frequency
  • f0 f1+N1 ⁇ u
  • the frequency corresponding to the second frequency position is f1
  • the offset indicated by the indication information is N2 resource blocks
  • the subcarrier spacing corresponding to the subcarrier is u
  • the above “12” is a specific example of the number of subcarriers in one resource block, and the value may be replaced with other values according to different network types, for example, 24.
  • the frequency corresponding to the second frequency position is f1
  • the first reference frequency is a radio frequency reference frequency.
  • the radio frequency reference frequency may be a center frequency of the radio frequency bandwidth.
  • the second reference frequency is the frequency at which the common reference point is located, such as reference point A above.
  • the uplink signal includes at least one of an uplink data signal, an uplink control signal, an uplink access signal, or an uplink reference signal.
  • the uplink data signal may be a physical uplink shared channel or a signal with the same function name.
  • the uplink control signal may be a physical uplink control channel or a signal with the same function name.
  • the uplink access signal may be a physical random access signal or the same function name.
  • the uplink reference signal may be a demodulation reference signal, a sounding reference signal, or the like.
  • the terminal device may determine that the frequency corresponding to the first frequency location is the reference frequency, and may determine the reference frequency according to the first frequency location and the number of first resource blocks.
  • the number of the first resource blocks may be determined by the terminal device, or may be notified by the network device, and is not limited herein.
  • the first frequency position is f1
  • the number of the first resource blocks is N
  • the number of the first resource blocks corresponds to the subcarrier spacing is u
  • the reference frequency may be a center frequency of a radio frequency bandwidth of the terminal device, or may be a center frequency of the DC subcarrier.
  • the DC subcarrier can be understood as a subcarrier with a frequency of 0 in the baseband signal, and the reference frequency can also be a center frequency of the OFDM signal generated by the terminal device, and of course other frequencies.
  • the reference frequency may also be a radio frequency reference frequency.
  • the radio frequency reference frequency is the same as the frequency sub-carrier of the terminal device, and the central sub-carrier may be a central sub-carrier of the carrier bandwidth.
  • the understanding of the central subcarrier may be: there are Z frequency domain resource blocks in the carrier bandwidth, numbered from 0 to Z-1, and there are n subcarriers in each frequency domain resource block, and the subcarriers are in each frequency domain resource block.
  • the subcarrier is either a subcarrier numbered (Z ⁇ n-1)/2.
  • the center subcarrier of the carrier bandwidth is numbered 5.
  • the subcarrier numbered 6 in the frequency domain resource block may be the subcarrier numbered 66 in the 11 frequency domain resource blocks.
  • the subcarrier numbered 0 in the frequency domain resource block may be the subcarrier numbered 72 in the 12 frequency domain resource blocks.
  • the number of frequency domain resource blocks in the carrier bandwidth may be a predetermined value, for example, the maximum number of resource blocks corresponding to the bandwidth of the carrier specified in the protocol, or may be a value determined by the network device, or may be The value that the network device notifies to the terminal device is not limited herein.
  • the first subcarrier spacing when only the first subcarrier spacing is configured in the carrier bandwidth, the first subcarrier spacing may be 15 kHz or 30 kHz or other values, and the radio frequency reference frequency is a frequency domain resource block corresponding to the first subcarrier spacing. The frequency at which the center subcarrier is located.
  • the radio frequency reference frequency is a frequency at which a central subcarrier of a frequency domain resource block corresponding to a smallest subcarrier spacing of the more than one subcarrier interval is located.
  • the radio frequency reference frequency is the frequency at which the central subcarrier of the frequency domain resource block corresponding to 15 kHz is located.
  • the radio frequency reference frequency is a frequency at which a central subcarrier of a frequency domain resource block corresponding to the target subcarrier spacing in the more than one subcarrier interval is located.
  • the target subcarrier interval is a subcarrier interval notified by the network device to the terminal device.
  • the target subcarrier spacing is a subcarrier spacing configured by the network device for the terminal to determine the radio frequency reference frequency.
  • the target subcarrier interval that the network device can notify the terminal device may be 15 kHz or 30 kHz, and the terminal device determines the content according to the notified target subcarrier interval.
  • RF reference frequency when the two subcarrier intervals of 15 kHz and 30 kHz are configured in the carrier bandwidth, the target subcarrier interval that the network device can notify the terminal device may be 15 kHz or 30 kHz, and the terminal device determines the content according to the notified target subcarrier interval.
  • the terminal device may determine an uplink baseband signal according to the reference frequency. For example, the terminal device may determine a phase or phase deviation of the uplink baseband signal according to the reference frequency. Then, the terminal device determines the uplink signal according to the uplink baseband signal.
  • a phase of the uplink baseband signal is determined according to a center of a part of a bandwidth of the terminal device according to the first frequency.
  • an uplink baseband signal Can be Where f 0 is the first frequency, f 1 is the center frequency of the partial bandwidth, and g(f 0 , f 1 ) should be understood as a function of f 0 and f 1 .
  • the reference frequency is f0
  • the formula is passed.
  • 2 ⁇ f 0 t can calculate the phase of the uplink baseband signal.
  • the uplink baseband signal is Then the up signal to the upconversion can be Among them, Re ⁇ is the real part of the plural.
  • the terminal device does not determine an uplink baseband signal according to the reference frequency, and then upconverts the uplink baseband signal according to the reference frequency, thereby determining the uplink signal.
  • the terminal device determines the uplink baseband signal according to one of the following formulas:
  • X can be Related values.
  • X can also be a value that the network device notifies to the terminal device.
  • the network device may directly notify the terminal device of the value of X or may notify the value of X ⁇ f.
  • the network device may indirectly notify the terminal device of the value of X, such as notifying the X-related parameter X1, and the terminal device determines X according to X1.
  • the terminal device according to the following formula Perform upconversion.
  • f 0 is the reference frequency
  • the terminal device determines the random access signal according to the following formula:
  • the phase offset corresponding to the uplink signal determined by the terminal device using different reference frequencies may be different, which may cause interference between signals (eg, reference signals) of multiple terminal devices that are spatially multiplexed, thereby causing interference. Loss of performance.
  • the method in this embodiment can enable different terminal devices to transmit uplink signals by using the same reference frequency, so as to ensure that the reference signals can be orthogonal between the terminal devices when performing space division multiplexing, thereby avoiding performance loss.
  • FIG. 18 is a schematic flowchart of still another method for transmitting and receiving signals according to the present application.
  • the method is used for downlink signal transmission. As shown in FIG. 18, the method includes:
  • the network device determines a downlink signal, where the downlink signal is determined according to the first frequency.
  • S1802 The network device sends the downlink signal to the terminal device.
  • the network device sends indication information to the terminal device, where the indication information indicates the first frequency.
  • the first frequency is a carrier frequency.
  • the downlink signal is a signal obtained by the network device up-converting a downlink baseband signal to the carrier frequency.
  • the downlink baseband signal is Then the signal that is upconverted can be Wherein the first frequency is f 0 , and Re ⁇ is a real part of the complex number.
  • the network device determines the downlink baseband signal according to one of the following equations:
  • X can be The associated integer value.
  • X can also be a value that the network device notifies to the terminal device.
  • the network device may directly notify the terminal device of the value of X or may notify the value of X ⁇ f.
  • the network device may indirectly notify the terminal device of the value of X, such as notifying the X-related parameter X1, and the terminal device determines X according to X1.
  • f0 is the reference frequency
  • the downlink baseband signal is determined according to the first frequency.
  • a phase of the downlink baseband signal is determined according to the first frequency.
  • Factors affecting the downlink baseband signal include other factors besides the first frequency, such as subcarrier spacing, bandwidth, etc., which are not described herein.
  • the downlink baseband signal is determined according to a center frequency position of a part of the bandwidth of the terminal device.
  • a phase of the downlink baseband signal is determined according to a center frequency position of a part of the bandwidth of the terminal device.
  • a phase of the downlink baseband signal is determined according to a center of a part of a bandwidth of the terminal device according to the first frequency.
  • Downlink baseband signal Can be Where f 0 is the first frequency, f 1 is the center frequency of the partial bandwidth, and g(f 0 , f 1 ) should be understood as a function of f 0 and f 1 .
  • the phase of the downlink baseband signal is determined according to a difference between the first frequency and a center frequency of a partial bandwidth of the terminal device.
  • the downlink baseband signal Can be Where f 0 is the first frequency, f 1 is the center frequency of the partial bandwidth, and g(f 0 -f 1 ) should be understood as a function of f 0 -f 1 .
  • the terminal device determines a first frequency location, where the first frequency location is used by the terminal device to determine a reference frequency of the downlink signal.
  • the terminal device receives the downlink signal from the network device according to the reference frequency.
  • the embodiment further includes S1805, and the terminal device demodulates the downlink signal.
  • the terminal device determines the first frequency location according to a predefined rule.
  • the first frequency position is the center frequency of the sub-carrier numbered Y in the frequency domain resource block numbered X, and X, Y may be a positive integer or 0, and the X is not limited herein. , the value of Y.
  • the number of the frequency domain resource block herein may be a number in a bandwidth part of the frequency domain resource block, or may be a number in a carrier bandwidth, where the carrier bandwidth may be a working carrier of the terminal device.
  • the bandwidth of the network device can also be used to notify the terminal device of the carrier bandwidth, for example, the bandwidth of the working carrier of the network device determined by the terminal device, and of course other types of bandwidth, which are not limited herein.
  • the number of the frequency domain resource block here may also be the number in the common resource block.
  • a common resource block can be one or more resource blocks defined in advance.
  • the terminal determines, according to the indication information received from the network device, the first frequency location, where the indication information indicates the first frequency location.
  • the indication information indicates a common reference point on the frequency domain, such that the first frequency location is the frequency at which the common reference point is located.
  • the common reference point may be a reference point of a resource block grid.
  • the common reference point is the origin of the resource block grid.
  • the location of the resource block can be determined based on the common reference point.
  • the common reference point may be a reference point common to multiple terminal devices in one cell.
  • the resource block corresponding to the common reference point may be considered as a common resource block.
  • the indication information is carried in a system message or a radio resource control (RRC) layer signaling, and is sent by the network device to the terminal device.
  • the indication information may indicate an ARFCN corresponding to a common reference point.
  • the value of ARFCN may include 0 and a positive integer, and different ARFCN values correspond to different frequencies.
  • the ARFCN in the new air interface system ranges from 0 to 3279165. Where 0 corresponds to 0 Hz, 1 corresponds to 5 kHz, and 2 corresponds to 10 kHz.
  • the terminal device may determine the frequency corresponding to the common reference point according to the value of the ARFCN indicated in the indication information.
  • the common reference point may be a reference point A (Point A) defined in the new air interface system. Reference Point A can be thought of as a common reference point for the resource block grid.
  • the indication information may indicate a sub-carrier numbered Y in a frequency domain resource block numbered X, or a center frequency of a sub-carrier numbered Y in a frequency domain resource block numbered X.
  • X, Y can be a positive integer or 0, and the value of X and Y is not limited here.
  • the indication information can only indicate a subcarrier with a number of 0 in the frequency domain resource block numbered X, or a subcarrier numbered as 6, or a subcarrier numbered 0 or 6, which can reduce the Indicates the number of bits required for the information, reducing the overhead.
  • the indication information may only indicate a frequency domain resource block numbered X, and the terminal device determines the subcarrier numbered Y according to a predefined rule, for example, the value of Y is fixed to 0, or is fixed to 6. , or for other values. In this way, signaling overhead can be reduced.
  • the indication information indirectly indicates a first frequency position
  • the indication information indicates an offset value
  • the offset value is an offset of the first frequency position relative to a second frequency position.
  • the second frequency position is a predefined position.
  • the second frequency position is a center frequency of a sub-carrier numbered Y in a frequency domain resource block numbered X
  • X, Y may be a positive integer. It can be 0, and the value of X and Y is not limited here.
  • the offset value may be in units of subcarriers, may be in units of resource blocks, or may be in units of frequencies.
  • the frequency corresponding to the second frequency position is f1
  • the subcarrier spacing corresponding to the subcarrier is u
  • the frequency corresponding to the second frequency position is f1
  • the offset indicated by the indication information is N2 resource blocks
  • the subcarrier spacing corresponding to the subcarrier is u
  • 12 is a specific example of the number of subcarriers in one resource block, and the value may be replaced with other values according to different network types.
  • the frequency corresponding to the second frequency position is f1
  • the first reference frequency is a radio frequency reference frequency.
  • the radio frequency reference frequency may be a center frequency of the radio frequency bandwidth.
  • the second reference frequency is the frequency at which the common reference point is located, such as reference point A above.
  • the uplink signal includes at least one of an uplink data signal, an uplink control signal, an uplink access signal, or an uplink reference signal.
  • the uplink data signal may be a physical uplink shared channel or a signal with the same function name.
  • the uplink control signal may be a physical uplink control channel or a signal with the same function name.
  • the uplink access signal may be a physical random access signal or the same function name.
  • the uplink reference signal may be a demodulation reference signal, a sounding reference signal, or the like.
  • the terminal device may directly determine that the frequency corresponding to the first frequency location is the reference frequency, and may determine the reference frequency according to the first frequency location and the number of first resource blocks, where The number of the first resource blocks may be predetermined by the terminal device, or may be notified by the network device, which is not limited herein.
  • the first frequency position is f1
  • the number of the first resource blocks is N
  • the number of the first resource blocks corresponds to the subcarrier spacing is u
  • the downlink signal includes at least one of a downlink data signal, a downlink control signal, a downlink reference signal, a synchronization signal, or a broadcast signal.
  • the downlink data signal may be a physical downlink shared channel or a signal with the same function name.
  • the downlink control signal may be a physical downlink control channel or a signal with the same function name.
  • the uplink access signal may be a physical random access signal or the same function name is different.
  • the downlink reference signal may be a demodulation reference signal, a channel state information reference signal, or the like.
  • the reference frequency may be a center frequency of a radio frequency bandwidth of the terminal device, or may be a center frequency of the DC subcarrier, where the DC subcarrier may be understood as a subcarrier with a frequency of 0 in the baseband signal, and the reference frequency It may also be that the terminal device receives the center frequency of the OFDM signal from the network device, and may of course be other frequencies.
  • the reference frequency may also be a radio frequency reference frequency.
  • the radio frequency reference frequency is the same as the frequency sub-carrier of the terminal device, and the central sub-carrier may be a central sub-carrier of the carrier bandwidth.
  • the understanding of the central subcarrier may be: there are Z frequency domain resource blocks in the carrier bandwidth, numbered from 0 to Z-1, and there are n subcarriers in each frequency domain resource block, and the subcarriers are in each frequency domain resource block.
  • the subcarrier is either a subcarrier numbered (Z ⁇ n-1)/2.
  • the center subcarrier of the carrier bandwidth is numbered 5.
  • the subcarrier numbered 6 in the frequency domain resource block may be the subcarrier numbered 66 in the 11 frequency domain resource blocks.
  • the subcarrier numbered 0 in the frequency domain resource block may be the subcarrier numbered 72 in the 12 frequency domain resource blocks.
  • the number of frequency domain resource blocks in the carrier bandwidth may be a predetermined value, for example, the maximum number of resource blocks corresponding to the bandwidth of the carrier specified in the protocol, or may be a value determined by the network device, or may be The value that the network device notifies to the terminal device is not limited herein.
  • the first subcarrier spacing when only the first subcarrier spacing is configured in the carrier bandwidth, the first subcarrier spacing may be 15 kHz or 30 kHz or other values, and the radio frequency reference frequency is a frequency domain resource block corresponding to the first subcarrier spacing. The frequency at which the center subcarrier is located.
  • the radio frequency reference frequency is a frequency at which a central subcarrier of a frequency resource block corresponding to a smallest subcarrier spacing of the more than one subcarrier interval is located.
  • the radio frequency reference frequency is the frequency at which the central subcarrier of the frequency domain resource block corresponding to 15 kHz is located.
  • the radio frequency reference frequency is a frequency at which a central subcarrier of a frequency domain resource block corresponding to the target subcarrier spacing in the more than one subcarrier interval is located.
  • the target subcarrier spacing is a subcarrier spacing notified by the network device to the terminal device.
  • the target subcarrier spacing is a subcarrier spacing configured by the network device for the terminal to determine the radio frequency reference frequency.
  • the target subcarrier interval that the network device can notify the terminal device may be 15 kHz or 30 kHz, and the terminal device determines the content according to the notified target subcarrier interval.
  • RF reference frequency when the two subcarrier intervals of 15 kHz and 30 kHz are configured in the carrier bandwidth, the target subcarrier interval that the network device can notify the terminal device may be 15 kHz or 30 kHz, and the terminal device determines the content according to the notified target subcarrier interval.
  • the terminal device may determine a downlink baseband signal according to the reference frequency, for example, the terminal device may determine a phase or phase deviation of the downlink baseband signal according to the reference frequency. Prior to this, the terminal device may down-convert the downlink baseband signal according to the phase or phase deviation of the downlink signal.
  • the terminal device may not down-convert the downlink signal according to the reference frequency to determine a downlink baseband signal, and then the terminal device detects the downlink baseband signal according to the reference frequency.
  • the reference frequency used by the network device to send the downlink signal may be the same as or different from the reference frequency used by the terminal device to receive the downlink signal, and FIG. 19 is used by the network device and the terminal device in the downlink signal transmission.
  • the center frequency of the network device is f1
  • the frequency at which the terminal device receives the downlink signal is f0
  • f1 and f0 are different, that is, the reference frequency and terminal used by the network device to transmit the downlink signal.
  • the reference frequency used by the device to receive the downlink signal is different.
  • the downlink signal received by the terminal may have a phase deviation compared to the downlink signal sent by the network device, causing the terminal device to incorrectly receive the downlink signal.
  • the method in this embodiment can enable the terminal device to determine the reference frequency of the downlink signal sent by the network device, thereby determining the phase deviation, so that the terminal device can compensate the phase offset when receiving the downlink signal, so as to prevent the terminal device from receiving the error. Downstream signal.
  • FIG. 20 is a block diagram of another network device provided by the present application. As shown in FIG. 20, the network device includes:
  • the processing module 2001 is configured to determine a downlink signal, where the downlink signal is determined according to the first frequency position.
  • the sending module 200 is configured to send the downlink signal to the terminal device.
  • the downlink signal is determined according to the first frequency position, and includes:
  • the downlink signal is a downlink baseband signal, and a phase of the downlink baseband signal is determined according to the first frequency position.
  • the first frequency position is a predefined frequency position.
  • the first frequency position is a frequency position determined according to the indication information of the network device, and the indication information is used to indicate the first frequency position.
  • FIG. 21 is a block diagram of another terminal device provided by the present application. As shown in FIG. 21, the terminal device includes:
  • the receiving module 2101 is configured to receive, by the terminal device, a downlink signal from the network device, where the downlink signal is determined according to the first frequency location, the first frequency location is a predefined frequency location, or the first frequency The location is a frequency location determined according to the indication information of the network device.
  • the processing module 2102 is configured to demodulate the downlink signal.
  • the downlink signal is determined according to the first frequency position, and includes:
  • the downlink signal is a downlink baseband signal, and a phase of the downlink baseband signal is determined according to the first frequency position.
  • the first frequency position is a predefined frequency position, including:
  • the first frequency position is a center frequency position of a preset subcarrier in a preset frequency domain resource block.
  • the first frequency position is a frequency position determined according to the indication information of the network device.
  • the receiving module 2101 is further configured to:
  • the indication information is used to indicate a preset subcarrier in a preset frequency domain resource block, or the indication information is used to indicate a center frequency of a preset subcarrier in a preset frequency domain resource block, or The indication information is used to indicate a preset frequency domain resource block;
  • the processing module 2102 is further configured to:
  • FIG. 22 is a physical block diagram of still another chip provided by the present application.
  • the chip 2200 can be used in a network device.
  • the chip includes: at least one communication interface 2201, at least one processor 2202, and at least one memory 2203.
  • the communication interface 2201, the processor 2202, and the memory 2203 are interconnected by a circuit (which may also be a bus) 2204, and the processor 2202 calls an instruction stored in the memory 2203 to perform the above another signal transmission and reception method. Method steps corresponding to the network device in the embodiment.
  • FIG. 23 is a physical block diagram of still another chip provided by the present application.
  • the chip 2300 can be used in a terminal device.
  • the chip includes: at least one communication interface 2301, at least one processor 2302, and at least one memory 2303.
  • the communication interface 2301, the processor 2302, and the memory 2303 are interconnected by a circuit (which may also be a bus) 2304, and the processor 2302 calls an instruction stored in the memory 2303 to perform the above another signal transmission and reception method.
  • FIG. 24 is a physical block diagram of another embodiment of a network device according to the present application. As shown in FIG. 24, the network device includes:
  • the memory 2401 is used to store program instructions, and the processor 2402 is configured to call the program instructions in the memory 2401 to implement the functions corresponding to the network devices in the foregoing method for transmitting and receiving signals.
  • FIG. 25 is a physical block diagram of another embodiment of a terminal device according to the present disclosure. As shown in FIG. 25, the terminal device includes:
  • the memory 2501 is configured to store program instructions, and the processor 2502 is configured to call the program instructions in the memory 2501 to implement the functions corresponding to the terminal devices in the foregoing method for transmitting and receiving signals.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信号发送方法、信号接收方法、终端设备及网络设备,该方法包括:终端设备生成OFDM符号;所述终端设备在第一时间单元向网络设备发送至少两个OFDM符号,以及在第二时间单元向所述网络设备发送至少两个OFDM符号。其中,所述第一时间单元内OFDM符号的相位偏移和所述第二时间单元内OFDM符号的相位偏移相等,并且,所述第一时间单元内第一OFDM符号的相位偏移与所述第一时间单元内除所述第一OFDM符号之外的至少一个OFDM符号的相位偏移不相等,其中,所述第一时间单元的时长和所述第二时间单元的时长相同。该方法中,相位偏移的周期相较现有的方式进行了扩展,因此因此能够降低终端设备的处理复杂度。

Description

信号发送方法、信号接收方法、终端设备及网络设备 技术领域
本申请涉及通信技术,尤其涉及一种信号发送方法、信号接收方法、终端设备及网络设备。
背景技术
在5G通信系统中,在其工作频率上的上行覆盖无法匹配下行覆盖,因此,可以将5G通信系统的上行部署在长期演进(Long Term Evolution,LTE)通信系统在1.8GHz频率的上行频带上,以增强5G通信系统的上行覆盖。LTE通信系统的上行传输使用载波中心偏移的子载波映射方式,即子载波映射相对载波中心频率偏移7.5KHz,因此,当5G通信系统的上行部署在LTE系统在1.8GHz频率的上行频带时,其子载波映射方式也相应采用载波中心偏移的方式,以保证5G通信系统与LTE通信系统的子载波对齐。
现有技术中,在以载波中心偏移的方式进行子载波映射时,终端设备通过调整基带信号中每个采样时间点的相位偏移来实现载波中心的偏移,其中,该相位偏移对于每个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号都相等。
但是,在5G通信系统使用现有技术的方法,会导致终端设备处理上行传输数据的复杂度过高。
发明内容
本申请提供一种信号发送方法、信号接收方法、终端设备及网络设备,所述技术方案如下。
本申请第一方面提供一种信号发送方法,包括:
首先,终端设备生成OFDM符号。
进而,所述终端设备在第一时间单元向网络设备发送至少两个OFDM符号,以及在第二时间单元向所述网络设备发送至少两个OFDM符号。
其中,所述第一时间单元内OFDM符号的相位偏移和所述第二时间单元内OFDM符号的相位偏移相等,并且,所述第一时间单元内第一OFDM符号的相位偏移与所述第一时间单元内除所述第一OFDM符号之外的至少一个OFDM符号的相位偏移不相等,其中,所述第一时间单元的时长和所述第二时间单元的时长相同。
该方法中,终端设备向网络设备发送上行信号的第一时间单元和第二时间单元至少包括两个OFDM符号,第一时间单元和第二时间之间的相位偏移相同,并且第一时间单元内部OFDM符号的相位偏移与其余至少一个OFDM符号的相位偏移不同,因此,相位偏移的周期相较现有的方式进行了扩展,因此,终端设备因相位偏移的周期变化而进行的处理频率降低,因此能够降低终端设备的处理复杂度。
在一种可能的设计中,所述第一时间单元的时长为15KHz的子载波间隔所对应的一个时隙的时长。
在一种可能的设计中,第一时间单元的时长为一个子帧的时长。
在一种可能的设计中,第一时间单元的时长为15KHz的子载波间隔所对应的一个符号长度。
在一种可能的设计中,在第一时间单元内的OFDM符号的子载波间隔为30KHz时,第一时间单元内的OFDM符号的个数为2。
在一种可能的设计中,在第一时间单元内的OFDM符号的子载波间隔为60KHz时,第一时间单元内的OFDM符号的个数为4。
在一种可能的设计中,上述相位偏移为同一OFDM符号在采用第一子载波映射方式时在第一采样时间点上的第一时域采样值的相位与在采用第二子载波映射方式时在第一采样时间点上的第二时域采样值的相位的差值。
其中,在第一子载波映射方式中,子载波的中心映射在载波频率,在第二子载波映射方式中,子载波的中心映射在与载波频率存在预设偏移值的频率上。
在一种可能的设计中,上述预设偏移值为7.5KHz。
本申请第二方面提供一种信号接收方法,该方法包括:
首先,网络设备在第一时间单元从终端设备接收至少两个OFDM符号,以及在第二时间单元接收至少两个OFDM符号,所述第一时间单元内OFDM符号的相位偏移和所述第二时间单元内OFDM符号的相位偏移相等,并且,所述第一时间单元内第一OFDM符号的相位偏移与所述第一时间单元内除所述第一OFDM符号之外的至少一个OFDM符号的相位偏移不相等,其中,所述第一时间单元的时长和所述第二时间单元的时长相同;
进而,所述网络设备对在所述第一时间单元接收到的至少两个OFDM符号以及在所述第二时间单元接收到的至少两个OFDM符号进行解调。
在一种可能的设计中,网络设备在第三时间单元从终端设备接收OFDM符号,并且,在第四时间单元从终端设备接收OFDM符号,其中,第三时间单元内OFDM符号的相位偏移和第四时间单元内OFDM符号的相位偏移相等,第三时间单元的时长和第四时间单元的时长相同。
在该方法中,终端设备向网络设备发送上行信号的第三时间单元和第四时间单元至少包括两个OFDM符号,第三时间单元和第四时间之间的相位偏移相同,并且第三时间单元内部OFDM符号的相位偏移与其余至少一个OFDM符号的相位偏移不同,则当使用不同子载波间隔的终端设备同时向网络设备发送上行信号时,只要各终端设备的第三时间单元的时长相同,并且第三时间单元的相位偏移相同,则网络设备即可统一对各终端设备发送的上行信号进行相位补偿,从而避免相位补偿的复杂度过高。
在一种可能的设计中,网络设备在第五时间单元从第一终端设备接收OFDM符号以及从第二终端设备接收OFDM符号,其中,第一终端设备的第五时间单元内OFDM符号的相位偏移和第二终端设备的第五时间单元内OFDM符号的相位偏移相等。
在一种可能的设计中,所述第一时间单元的时长为15KHz的子载波间隔所对应的一个时隙的时长。
在一种可能的设计中,第一时间单元的时长为一个子帧的时长。
在一种可能的设计中,第一时间单元的时长为15KHz的子载波间隔所对应的一个符号长度。
在一种可能的设计中,在第一时间单元内的OFDM符号的子载波间隔为30KHz时,第一时间单元内的OFDM符号的个数为2。
在一种可能的设计中,在第一时间单元内的OFDM符号的子载波间隔为60KHz时,第一时间单元内的OFDM符号的个数为4。
在一种可能的设计中,上述相位偏移为同一OFDM符号在采用第一子载波映射方式时在第一采样时间点上的第一时域采样值的相位与在采用第二子载波映射方式时在第一采样时间点上的第二时域采样值的相位的差值。
其中,在第一子载波映射方式中,子载波的中心映射在载波频率,在第二子载波映射方式中,子载波的中心映射在与载波频率存在预设偏移值的频率上。
在一种可能的设计中,上述预设偏移值为7.5KHz。
本申请第三方面提供一种终端设备,该终端设备有实现第一方面中终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该终端设备可以包括处理模块以及发送模块,这些模块可以执行上述方法中的相应功能,例如:处理模块,用于生成正交频分复用OFDM符号;发送模块,用于在第一时间单元向网络设备发送至少两个OFDM符号,以及在第二时间单元向所述网络设备发送至少两个OFDM符号。
本申请第四方面提供一种网络设备,该网络设备有实现第二方面中网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该终端设备可以包括接收模块以及处理模块,这些模块可以执行上述方法中的相应功能,例如:接收模块,用于在第一时间单元从终端设备接收至少两个正交频分复用OFDM符号,以及在第二时间单元接收至少两个OFDM符号;处理模块,用于对在所述第一时间单元接收到的至少两个OFDM符号以及在所述第二时间单元接收到的至少两个OFDM符号进行解调。
本申请第五方面提供一种芯片,该芯片可以用于终端设备,该芯片包括:至少一个通信接口,至少一个处理器,至少一个存储器,其中,通信接口、处理器和存储器通过电路(某些情况下也可以是总线)互联,处理器调用存储器中存储的指令,以执行下述方法:
生成OFDM符号;
在第一时间单元向网络设备发送至少两个OFDM符号,以及在第二时间单元向网络设备发送至少两个OFDM符号,第一时间单元内OFDM符号的相位偏移和第二时间单元内OFDM符号的相位偏移相等,并且,第一时间单元内第一OFDM符号的相位偏移与第一时间单元内除第一OFDM符号之外的至少一个OFDM符号的相位偏移不相等,其中,第一时间单元的时长和第二时间单元的时长相同。
在一种可能的设计中,所述第一时间单元的时长为15KHz的子载波间隔所对应的一个时隙的时长。
在一种可能的设计中,第一时间单元的时长为一个子帧的时长。
在一种可能的设计中,第一时间单元的时长为15KHz的子载波间隔所对应的一个符号长度。
在一种可能的设计中,在第一时间单元内的OFDM符号的子载波间隔为30KHz时,第一时间单元内的OFDM符号的个数为2。
在一种可能的设计中,在第一时间单元内的OFDM符号的子载波间隔为60KHz时,第一时间单元内的OFDM符号的个数为4。
在一种可能的设计中,上述相位偏移为同一OFDM符号在采用第一子载波映射方式时在第一采样时间点上的第一时域采样值的相位与在采用第二子载波映射方式时在第一采样时间点上的第二时域采样值的相位的差值。
其中,在第一子载波映射方式中,子载波的中心映射在载波频率,在第二子载波映射方式中,子载波的中心映射在与载波频率存在预设偏移值的频率上。
在一种可能的设计中,上述预设偏移值为7.5KHz。
本申请第六方面提供一种芯片,该芯片可以用于网络设备,该芯片包括:至少一个通信接口,至少一个处理器,至少一个存储器,其中,通信接口、处理器和存储器通过电路(某些情况下也可以是总线)互联,处理器调用存储器中存储的指令,以执行下述方法:
在第一时间单元从终端设备接收至少两个OFDM符号,以及在第二时间单元接收至少两个OFDM符号,第一时间单元内OFDM符号的相位偏移和第二时间单元内OFDM符号的相位偏移相等,并且,第一时间单元内第一OFDM符号的相位偏移与第一时间单元内除第一OFDM符号之外的至少一个OFDM符号的相位偏移不相等,其中,第一时间单元的时长和第二时间单元的时长相同;
对在第一时间单元接收到的至少两个OFDM符号以及在第二时间单元接收到的至少两个OFDM符号进行解调。
在一种可能的设计中,所述第一时间单元的时长为15KHz的子载波间隔所对应的一个时隙的时长。
在一种可能的设计中,第一时间单元的时长为一个子帧的时长。
在一种可能的设计中,第一时间单元的时长为15KHz的子载波间隔所对应的一个符号长度。
在一种可能的设计中,在第一时间单元内的OFDM符号的子载波间隔为30KHz时,第一时间单元内的OFDM符号的个数为2。
在一种可能的设计中,在第一时间单元内的OFDM符号的子载波间隔为60KHz时,第一时间单元内的OFDM符号的个数为4。
在一种可能的设计中,上述相位偏移为同一OFDM符号在采用第一子载波映射方式时在第一采样时间点上的第一时域采样值的相位与在采用第二子载波映射方式时在第一采样时间点上的第二时域采样值的相位的差值。
其中,在第一子载波映射方式中,子载波的中心映射在载波频率,在第二子载波映射方式中,子载波的中心映射在与载波频率存在预设偏移值的频率上。
在一种可能的设计中,上述预设偏移值为7.5KHz。
本申请第七方面提供一种终端设备,该终端设备包括:存储器和处理器。存储器用于存储程序指令,处理器用于调用存储器中的程序指令,实现上述第一方面中终端设备的功能。
本申请第八方面提供一种网络设备,该网络设备包括:存储器和处理器。存储器用于 存储程序指令,处理器用于调用存储器中的程序指令,实现上述第二方面中网络设备的功能。
本申请第九方面提供一种非易失性存储介质,该非易失性存储介质中存储有一个或多个程序代码,当终端设备执行该程序代码时,该终端设备执行第一方面中终端设备执行的相关方法步骤。
本申请第十方面提供一种非易失性存储介质,该非易失性存储介质中存储有一个或多个程序代码,当网络设备执行该程序代码时,该网络设备执行第二方面中网络设备执行的相关方法步骤。
本申请第十一方面提供一种信号发送方法,该方法包括:
网络设备确定下行信号,其中,所述下行信号为根据第一频率位置确定的;
所述网络设备向终端设备发送所述下行信号。
在一种可能的设计中,所述下行信号为根据第一频率位置确定的,包括:
所述下行信号为下行基带信号,所述下行基带信号的相位为根据所述第一频率位置确定的。
在一种可能的设计中,所述第一频率位置为预先定义的频率位置。
在一种可能的设计中,所述第一频率位置为根据所述网络设备的指示信息确定的频率位置,所述指示信息用于指示所述第一频率位置。
本申请第十二方面提供一种信号接收方法,该方法包括:
终端设备从网络设备接收下行信号,其中,所述下行信号为根据第一频率位置确定的,所述第一频率位置为预先定义的频率位置,或者,所述第一频率位置为根据所述网络设备的指示信息确定的频率位置;
所述终端设备对所述下行信号进行解调。
在一种可能的设计中,所述下行信号为根据第一频率位置确定的,包括:
所述下行信号为下行基带信号,所述下行基带信号的相位为根据所述第一频率位置确定的。
在一种可能的设计中,所述第一频率位置为预先定义的频率位置,包括:
所述第一频率位置为预设频域资源块中的预设子载波的中心频率位置。
在一种可能的设计中,所述第一频率位置为根据所述网络设备的指示信息确定的频率位置;
所述终端设备从所述网络设备接收所述指示信息,其中,所述指示信息用于指示所述第一频率位置。
申请第十三方面提供一种网络设备,该网络设备有实现第十一方面中网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该网络设备可以包括处理模块以及发送模块,这些模块可以执行上述方法中的相应功能。
申请第十四方面提供一种终端设备,该网络设备有实现第十二方面中终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该终端设备可以包括接收模块以及处理模块,这些模块可以执行上述方法中的相应功能。
本申请第十五方面提供一种芯片,该芯片可以用于网络设备,该芯片包括:至少一个通信接口,至少一个处理器,至少一个存储器,其中,通信接口、处理器和存储器通过电路(某些情况下也可以是总线)互联,处理器调用存储器中存储的指令,以执行上述第十一方面所述的方法。
本申请第十六方面提供一种芯片,该芯片可以用于终端设备,该芯片包括:至少一个通信接口,至少一个处理器,至少一个存储器,其中,通信接口、处理器和存储器通过电路(某些情况下也可以是总线)互联,处理器调用存储器中存储的指令,以执行上述第十二方面所述的方法。
本申请第十七方面提供一种网络设备,该网络设备包括:存储器和处理器。存储器用于存储程序指令,处理器用于调用存储器中的程序指令,实现上述第十一方面中网络设备的功能。
本申请第十八方面提供一种终端设备,该网络设备包括:存储器和处理器。存储器用于存储程序指令,处理器用于调用存储器中的程序指令,实现上述第十二方面中网络设备的功能。
本申请第十九方面提供一种非易失性存储介质,该非易失性存储介质中存储有一个或多个程序代码,当网络设备执行该程序代码时,该网络设备执行第十一方面中网络设备执行的相关方法步骤。
本申请第二十方面提供一种非易失性存储介质,该非易失性存储介质中存储有一个或多个程序代码,当终端设备执行该程序代码时,该终端设备执行第十二方面中终端设备执行的相关方法步骤。
附图说明
图1为本申请提供的信号接收及发送方法所应用的系统架构图;
图2为将子载波的中心映射在载波频率的示意图;
图3为子载波中心映射相对载波频率偏移7.5KHz的示意图;
图4为一种存在多种子载波间隔的通信系统的相位偏移示意图;
图5为本申请提供的信号接收及发送方法实施例一的交互流程图;
图6为本实施例中终端发送OFDM符号的示意图;
图7为本申请提供的信号接收和发送方法实施例二的示例图;
图8为第一时间单元的时长为15KHz的子载波间隔对应的一个符号长度的示例图;
图9为第一时间单元的时长为15KHz的子载波间隔对应的一个时隙的时长的示意图;
图10为第一时间单元的时长为一个子帧的时长的示意图;
图11为本申请提供的终端设备实施例一的模块结构图;
图12为本申请提供的网络设备实施例一的模块结构图;
图13为本申请提供的一种芯片的实体框图;
图14为本申请提供的另一种芯片的实体框图;
图15为本申请提供的一种终端设备实施例一的实体框图;
图16为本申请提供的一种网络设备实施例一的实体框图;
图17为本申请提供的另一种信号发送及接收方法的流程示意图;
图18为本申请提供的又一种信号发送及接收方法的流程示意图;
图19为在下行信号传输中网络设备和终端设备使用参考频率不同时的示意图;
图20为本申请提供的另一种网络设备的模块结构图;
图21为本申请提供的另一种终端设备的模块结构图;
图22为本申请提供的又一种芯片的实体框图;
图23为本申请提供的再一种芯片的实体框图;
图24为本申请提供的另一种网络设备实施例一的实体框图;
图25为本申请提供的另一种终端设备实施例一的实体框图。
具体实施方式
图1为本申请提供的信号接收及发送方法所应用的系统架构图,如图1所示,该系统中包括网络设备以及至少一个终端设备,该网络设备和该终端设备工作在LTE通信系统与5G通信系统上行共享频带上。其中,终端设备可以通过5G通信系统的载波与网络设备通信,终端设备也可以通过LTE通信系统的上行载波与网络设备通信。
为便于理解,以下对本申请涉及的网元进行解释。
终端设备:可以是无线终端也可以是有线终端,无线终端可以是指向终端提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户设备(User Equipment)或用户代理(User Agent)。
网络设备:本申请中具体可以指基站,基站可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。
由于5G通信系统中的工作频率上的上行覆盖无法匹配下行覆盖,因此,作为一种可选方案,可以将5G通信系统的上行部署在LTE通信系统在1.8GHz频率的上行频带上。而在LTE通信系统中,上行传输使用载波中心偏移的子载波映射方式,即子载波中心映射相对载波中心频率偏移7.5KHz。另外,LTE通信系统中下行传输使用子载波映射在载波频率的子载波映射方式,即将子载波的中心映射在载波频率。该载波频率具体可以是载波中心频率。图2为将子载波的中心映射在载波频率的示意图,图3为子载波中心映射相对载波频 率偏移7.5KHz的示意图,从图2和图3可以看出,在LTE上行传输中,子载波的中心映射相对载波频率偏移7.5KHz。当5G通信系统的上行通信使用LTE通信系统的上行频带时,为了保证5G通信系统与LTE通信系统的子载波对齐,5G通信系统的子载波映射方式也可以使用图3所示的子载波映射方式。
在一种可选方式中,采用不同的子载波映射方式时,基带所生成的信号中的采样时间点上的时域采样值存在相位偏移,其中,对于每个OFDM符号的相位偏移(相位偏移的具体含义将在下述实施例中进行具体解释)相等。例如,对于除去循环前缀(Cyclic Prefix,CP)都包括2048个采样时间点的两个OFDM符号,第一个OFDM符号的第x个采样时间点的时域采样值在采用如2所示的映射方式与采用如图3所示的映射方式下的相位偏移为S1,第二个OFDM符号的第x个采样时间点的时域采样值在采用如2所示的映射方式与采用如图3所示的映射方式下的相位偏移为S2,则S1和S2相等,其中,x为正整数。
但是,5G通信系统支持多种子载波间隔,例如子载波间隔可以为15KHz,30KHz,60KHz等。对存在多种子载波间隔的通信系统,可以参照LTE的方法进行采样时间点的相位偏移。图4为一种存在多种子载波间隔的通信系统的相位偏移示意图。设该通信系统使用LTE的上行数据的子载波映射方式。如图4所示,对于使用15KHz子载波间隔的上行信号(包括7个符号的1个时隙),其每个OFDM符号的相位偏移相等,例如,第0个OFDM符号和第1个OFDM符号的相位偏移相同。同样,对于使用30KHz子载波间隔的上行信号(包括7个符号的2个时隙),其每个OFDM符号的相位偏移也相等,例如,第0个OFDM符号和第1个OFDM符号的相位偏移相同。但是,从整体上看,15KHz子载波间隔的上行信号和30KHz子载波间隔的上行信号的相位偏移并不相同。
如果在上行传输中按照LTE通信系统的方法进行子载波映射,即每个OFDM符号的相位偏移都相等,则对于终端设备,每生成一个OFDM符号,即产生一个新的相位偏移的周期,终端设备的处理相应需要作出调整,因此终端设备的处理复杂度较高。而对于接收上行数据的网络设备,当网络设备同时接收到多个分别支持不同子载波间隔的终端设备发送的上行信号时,网络设备就需要对每种子载波间隔的上行信号的相位偏移分别进行补偿,从而导致网络设备进行相位补偿的复杂度高。因此,本申请进一步给出了解决方案。
以下首先对相位偏移的概念进行详细解释。
参照前述图2及图3,子载波映射方式包括图2所示的第一子载波映射方式以及图3所示的第二在载波映射方式,其中,在第一子载波映射方式中,子载波的中心映射在载波频率,在第二子载波映射方式中,子载波的中心映射在与所述载波频率存在预设偏移值的频率上。可选地,上述载波频率可以指载波中心频率。另外,可选地,上述预设偏移值可以为7.5KHz,或者,上述预设偏移值也可以为7.5KHz与整数个子载波间隔之和,例如,上述预设偏移值可以为7.5KHz与一个30KHz子载波间隔之和,即上述预设偏移值为37.5KHz。
对于一个特定的OFDM符号,其中可以包括多个采样时间点。对于其中的一个特定采样时间点T,当OFDM符号使用第一子载波映射方式进行子载波映射时,在T上的第一时域采样值对应一个相位X1,当OFDM符号使用第二子载波映射方式进行子载波映射时,在T上的第二时域采样值对应另一个相位X2,则T上的两个时域采样值的相位偏移为X2-X1。即本申请所涉及的相位偏移是指对于同一OFDM符号在采用第一子载波映射方式 时在第一采样时间点上的第一时域采样值的相位与在采用第二子载波映射方式时在所述第一采样时间点上的第二时域采样值的相位的差值,其中,第一采样时间点为一个OFDM符号内的任意一个采样时间点。
图5为本申请提供的信号接收及发送方法实施例一的交互流程图,如图5所示,该方法包括:
S501、终端设备生成OFDM符号。
S502、终端设备在第一时间单元向网络设备发送至少两个OFDM符号,以及在第二时间单元向网络设备发送至少两个OFDM符号。
其中,上述第一时间单元的时长和上述第二时间单元的时长相同。
其中,上述第一时间单元内OFDM符号的相位偏移和上述第二时间单元内OFDM符号的相位偏移相等。上述第一时间内第一OFDM符号的相位偏移与第一时间内除该第一OFDM符号之外的至少一个OFDM符号的相位偏移不相等。
S503、网络设备在第一时间单元上接收至少两个OFDM符号,以及在第二时间单元上接收至少两个OFDM符号之后,对在第一时间单元接收到的至少两个OFDM符号以及在第二时间单元接收到的至少两个OFDM符号进行解调。
图6为本实施例中终端发送OFDM符号的示意图,如图6所示,以30KHz的子载波间隔为例,终端设备以30KHz的子载波间隔向网络设备发送上行信号,其中,第一时间单元和第二时间单元分别对于两个OFDM符号的时间间隔,即第一时间单元和第二时间单元的时长相同。
以下结合图6对上述的第一时间单元内OFDM符号的相位偏移和第二时间单元内OFDM符号的相位偏移相等进行解释。
假设在第一时间单元以及第二时间单元内分别都有k个采样时间点,k为正整数。则第一时间单元内的第m个采样时间点上的相位偏移与第二时间单元内的第m个采样时间点上的相位偏移相等,其中,m可以是小于等于k的任意一个正整数。则从整体上看,第一时间单元的整体相位偏移与第二时间单元的整体相位偏移相等。
以下结合图6对上述的第一时间内第一OFDM符号的相位偏移与第一时间单元内除该第一OFDM符号之外的至少一个OFDM符号的相位偏移不相等进行解释。
假设在第一时间单元内有k个采样时间点,k为正整数。则对于第一时间单元内的第m个采样时间点,其相位偏移和第一时间单元内的第n个采样时间点的相位偏移不同,其中,m和n为小于等于k的正整数,并且m和n不相等。同样的,在第二时间单元内,第m个采样时间点的相位偏移也与第n个采样时间点的相位偏移不相等。即,相位偏移的一个周期为第一时间单元对应的时长,第一时间单元内只有一个相位偏移的周期。
需要说明的是,本申请可以应用于第一时间单元内的所有OFDM符号的CP长度都相等的情况,另外,对于第一时间单元内的OFDM符号的CP长度不相等的情况,假设第一时间单元内的OFDM符号L的CP为短CP,即CP长度较短,第一时间单元内的OFDM符号M的CP为长CP,即CP长度较长,则可以将OFDM符号L分为两部分,第一部分中的采样时间点数量与OFDM符号M的采样时间点数量相等,针对该第一部分与OFDM符号M可以采用本申请所述方案进行处理,在网络设备侧可以进行统一的相位补偿,而OFDM符号L的剩余部分可以按照现有技术单独进行相位补偿。
由于本实施例中第一时间单元内OFDM符号的相位偏移和第二时间单元内OFDM符号的相位偏移相等。因此,本实施例也满足第一时间单元内的OFDM符号的CP长度不相等的情况。
本实施例中,终端设备向网络设备发送上行信号的第一时间单元和第二时间单元至少包括两个OFDM符号,第一时间单元和第二时间之间的相位偏移相同,并且第一时间单元内部OFDM符号的相位偏移与其余至少一个OFDM符号的相位偏移不同,因此,相位偏移的周期相较现有的方式进行了扩展,因此,终端设备因相位偏移的周期变化而进行的处理频率降低,因此能够降低终端设备的处理复杂度。
在另一种实施例中,网络设备在第三时间单元从终端设备接收OFDM符号,并且,在第四时间单元从终端设备接收OFDM符号,其中,第三时间单元内OFDM符号的相位偏移和第四时间单元内OFDM符号的相位偏移相等,第三时间单元的时长和第四时间单元的时长相同。
具体地,网络设备可以在第三时间单元从一个终端设备接收OFDM符号,在第四时间单元从另一个终端设备接收OFDM符号,这两个终端设备所发送的OFDM符号分别使用不同的子载波间隔。而由于第三时间单元和第四时间单元的时长相同,并且,第三时间单元和第四时间单元的OFDM符号的相位偏移相等,因此,当网络设备在第三时间单元和第四时间单元接收到OFDM符号后,可以统一对OFDM符号进行相位补偿。
以下以一个具体实例来说明。
图7为本申请提供的信号接收和发送方法实施例二的示例图,如图7所示,假设网络设备同时从第一终端设备和第二终端设备接收上行信号,其中,第一终端设备的子载波间隔为15KHz,第二终端设备的子载波间隔为30KHz。第三时间单元为第一终端设备发送的1个OFDM符号的时间,第四时间单元为第二终端设备发送的2个OFDM符号的时间。其中,第一终端设备在第三时间单元的相位偏移与第二终端设备在第四时间单元的相位偏移相同。则当网络设备接收到第一终端设备和第二终端设备发送的上行信号之后,就可以统一按照第一时间单元对上行信号进行补偿。
本实施例中,终端设备向网络设备发送上行信号的第三时间单元和第四时间单元至少包括两个OFDM符号,第三时间单元和第四时间之间的相位偏移相同,并且第三时间单元内部OFDM符号的相位偏移与其余至少一个OFDM符号的相位偏移不同,则当使用不同子载波间隔的终端设备同时向网络设备发送上行信号时,只要各终端设备的第三时间单元的时长相同,并且第三时间单元的相位偏移相同,则网络设备即可统一对各终端设备发送的上行信号进行相位补偿,从而避免相位补偿的复杂度过高。
另外,在另一种可选的实施例中,网络设备在第五时间单元从第一终端设备接收OFDM符号以及从第二终端设备接收OFDM符号,其中,第一终端设备的第五时间单元内OFDM符号的相位偏移和第二终端设备的第五时间单元内OFDM符号的相位偏移相等。
具体地,网络设备在同一个时间单元,即第五时间单元分别从两个终端设备接收OFDM符号,这两个终端设备所发送的OFDM符号分别使用不同的子载波间隔。而由于这两个终端设备在第五时间单元内的OFDM符号的相位偏移相等,因此,当网络设备在第五时间单元接收到这两个终端设备发送的OFDM符号后,可以统一对OFDM符号进行相位补偿。
在一种可选的实施方式中,当上述第一时间单元内的OFDM符号的子载波间隔为 30KHz时,第一时间单元的OFDM符号的个数为2。对于第二时间单元也同样适用。
在另一种可选的实施方式中,当上述第一时间单元内的OFDM符号的子载波间隔为60KHz时,第一时间单元的OFDM符号的个数为4。对于第二时间单元也同样适用。
另外,可选地,上述第一时间单元的时长可以为15KHz的子载波间隔所对应的一个符号长度,或者,上述第一时间单元的时长也可以为15KHz的子载波间隔所对应的一个时隙的时长,或者,上述第一时间单元的时长也可以为一个子帧的时长。以下分别进行说明。
1、第一时间单元的时长为15KHz的子载波间隔对应的一个符号长度
图8为第一时间单元的时长为15KHz的子载波间隔对应的一个符号长度的示例图,参照图8以及上述图7,第一时间单元对应30KHz的子载波间隔的2个符号,以及,对应60KHz的子载波间隔的4个符号。则如果网络设备同时接收15KHz的子载波间隔的上行数据以及30KHz的子载波间隔的上行数据,则可以按照该第一时间单元统一进行相位补偿。如果网络设备同时接收15KHz的子载波间隔的上行数据以及60KHz的子载波间隔的上行数据,也可以按照该第一时间单元统一进行相位补偿。以此类推,网络设备也可以统一对30KHz以及60KHz的子载波间隔的上行数据统一进行相位补偿。
2、第一时间单元的时长为15KHz的子载波间隔对应的一个时隙的时长
图9为第一时间单元的时长为15KHz的子载波间隔对应的一个时隙的时长的示意图,参照图9,第一时间单元的对应15KHz的子载波间隔的一个时隙,即7个OFDM符号,以及,对应30KHz的7个符号的2个时隙。如果网络设备同时接收15KHz的子载波间隔的上行数据以及30KHz的子载波间隔的上行数据,则可以按照该第一时间单元统一进行相位补偿。
3、第一时间单元的时长为一个子帧的时长
图10为第一时间单元的时长为一个子帧的时长的示意图,参照图10,第一时间单元的对应一个子帧,即15KHz的2个时隙,以及,对应30KHz的7个符号的4个时隙。如果网络设备同时接收15KHz的子载波间隔的上行数据以及30KHz的子载波间隔的上行数据,则可以按照该第一时间单元统一进行相位补偿。
在另一种可选的实施方式中,上述相位偏移具体指同一OFDM符号在采用第一子载波映射方式时在第一采样时间点上的第一时域采样值的相位与在采用第二子载波映射方式时在所述第一采样时间点上的第二时域采样值的相位的差值,其中,第二种子载波映射方式中,子载波的中心映射在与所述载波频率存在7.5KHz的频率上。
以下结合终端设备设备生成OFDM符号时的公式来进行解释。
终端设备使用上述第一子载波映射方式时,使用如下公式(1)生成OFDM信号。
Figure PCTCN2018099493-appb-000001
其中,
Figure PCTCN2018099493-appb-000002
表示一个子帧中的第
Figure PCTCN2018099493-appb-000003
个OFDM符号,t的取值范围为
Figure PCTCN2018099493-appb-000004
N u为OFDM符号中除CP以外的采样时间点数,
Figure PCTCN2018099493-appb-000005
为第
Figure PCTCN2018099493-appb-000006
个OFDM符号的CP的采样时间点数,t的含义代表了第
Figure PCTCN2018099493-appb-000007
个OFDM符号中的一个采样时间点与该OFDM符号的起始时间点的差值,
Figure PCTCN2018099493-appb-000008
即代表了给定t所对应的采样时间点上的时域采样值,T s表示时间单元值,Δf表示 子载波间隔,
Figure PCTCN2018099493-appb-000009
表示资源块的个数,
Figure PCTCN2018099493-appb-000010
表示一个资源块中子载波的个数,k表示子载波的序号,
Figure PCTCN2018099493-appb-000011
为复数值。
另外,终端设备使用上述第二子载波映射方式时,可以使用如下公式(2)生成OFDM符号。
Figure PCTCN2018099493-appb-000012
其中,Δf shift为第二种子载波映射方式相对于第一种子载波映射方式的子载波偏移,Δφ即为由于该子载波偏移所带来的采样时间点的相位偏移。
由上述公式可知,Δφ与Δf shift以及采样时间点相关,因此,对于不同的子载波间隔,只要保证Δf shift以及采样时间点相同,即可保证相位偏移相同。因此,本申请中,可选地,可以预先将不同的子载波间隔的采样时间点设置为相同,并且,对于不同的子载波间隔使用相同的Δf shift,即可以保证相位偏移相同。具体地,Δf shift为7.5KHz。
另外,上述公式(2)中的Δf可以通过如下表(1)来获得,其中,u为表示信号的子载波间隔的参数。
μ Δf=2 μ·15[kHz]
0 15
1 30
2 60
3 120
4 240
5 480
表1
以下为第一时间单元为不同时长下的具体公式示例。
当第一时间单元为一个子帧,即相位偏移的周期为一个子帧时,OFDM符号的生成公式可以表示为下述公式(3)。
Figure PCTCN2018099493-appb-000013
当第一时间单元为一个15KHz子载波间隔的符号长度,即相位偏移的周期为一个15KHz子载波间隔的符号长度时,OFDM符号的生成公式可以表示为下述公式(4)。
Figure PCTCN2018099493-appb-000014
当第一时间单元为一个15KHz子载波间隔的时隙长度,即相位偏移的周期为1个15KHz子载波间隔的时隙长度时,OFDM符号的生成公式可以表示为下述公式(5)。
Figure PCTCN2018099493-appb-000015
其中,
Figure PCTCN2018099493-appb-000016
为1个时隙所包含的OFDM符号数,其取值为7或14。
需要说明的是,上述公式只是一种可能的表现形式,当然还可以采用其他形式的公式进行描述,本申请对此不做限定。
例如,可以使用如下公式(6)表示第
Figure PCTCN2018099493-appb-000017
个OFDM符号的起始位置。
Figure PCTCN2018099493-appb-000018
当第一时间单元为一个子帧,即相位偏移的周期为一个子帧时,OFDM符号的生成公式可以表示为下述公式(7)。
Figure PCTCN2018099493-appb-000019
当第一时间单元为一个15KHz子载波间隔的符号长度,即相位偏移的周期为一个15KHz子载波间隔的符号长度时,OFDM符号的生成公式可以表示为下述公式(8)。
Figure PCTCN2018099493-appb-000020
图11为本申请提供的终端设备实施例一的模块结构图,如图11所示,该终端设备包括:
处理模块1101,用于生成OFDM符号。
发送模块1102,用于在第一时间单元向网络设备发送至少两个OFDM符号,以及在第二时间单元向网络设备发送至少两个OFDM符号,第一时间单元内OFDM符号的相位偏移和第二时间单元内OFDM符号的相位偏移相等,并且,第一时间单元内第一OFDM符号的相位偏移与第一时间单元内除第一OFDM符号之外的至少一个OFDM符号的相位偏移不相等,其中,第一时间单元的时长和第二时间单元的时长相同。
该终端设备用于实现前述方法实施例,其实现原理和技术效果类似,此处不再赘述。
在一种可选的实施方式中,第一时间单元的时长为15KHz的子载波间隔所对应的一个时隙的时长。
在一种可选的实施方式中,第一时间单元的时长为一个子帧的时长。
在一种可选的实施方式中,第一时间单元的时长为15KHz的子载波间隔所对应的一个符号长度。
在一种可选的实施方式中,在第一时间单元内的OFDM符号的子载波间隔为30KHz时,第一时间单元内的OFDM符号的个数为2。
在一种可选的实施方式中,在第一时间单元内的OFDM符号的子载波间隔为60KHz时,第一时间单元内的OFDM符号的个数为4。
在一种可选的实施方式中,上述相位偏移为同一OFDM符号在采用第一子载波映射方式时在第一采样时间点上的第一时域采样值的相位与在采用第二子载波映射方式时在第一采样时间点上的第二时域采样值的相位的差值。
其中,在第一子载波映射方式中,子载波的中心映射在载波频率,在第二子载波映射方式中,子载波的中心映射在与载波频率存在预设偏移值的频率上。
在一种可选的实施方式中,上述预设偏移值为7.5KHz。
图12为本申请提供的网络设备实施例一的模块结构图,如图12所示,该网络设备包括:
接收模块1201,用于在第一时间单元从终端设备接收至少两个OFDM符号,以及在第二时间单元接收至少两个OFDM符号,第一时间单元内OFDM符号的相位偏移和第二时间单元内OFDM符号的相位偏移相等,并且,第一时间单元内第一OFDM符号的相位偏移与第一时间单元内除第一OFDM符号之外的至少一个OFDM符号的相位偏移不相等,其中,第一时间单元的时长和第二时间单元的时长相同。
处理模块1202,用于对在所述第一时间单元接收到的至少两个OFDM符号以及在所述第二时间单元接收到的至少两个OFDM符号进行解调。
该网络设备用于实现前述方法实施例,其实现原理和技术效果类似,此处不再赘述。
在一种可选的实施方式中,第一时间单元的时长为15KHz的子载波间隔所对应的一个时隙的时长。
在一种可选的实施方式中,第一时间单元的时长为一个子帧的时长。
在一种可选的实施方式中,第一时间单元的时长为15KHz的子载波间隔所对应的一个符号长度。
在一种可选的实施方式中,在第一时间单元内的OFDM符号的子载波间隔为30KHz时,第一时间单元内的OFDM符号的个数为2。
在一种可选的实施方式中,在第一时间单元内的OFDM符号的子载波间隔为60KHz时,第一时间单元内的OFDM符号的个数为4。
在一种可选的实施方式中,上述相位偏移为同一OFDM符号在采用第一子载波映射方式时在第一采样时间点上的第一时域采样值的相位与在采用第二子载波映射方式时在第一采样时间点上的第二时域采样值的相位的差值。
其中,在第一子载波映射方式中,子载波的中心映射在载波频率,在第二子载波映射方式中,子载波的中心映射在与载波频率存在预设偏移值的频率上。
在一种可选的实施方式中,上述预设偏移值为7.5KHz。
图13为本申请提供的一种芯片的实体框图,该芯片1300可以用于终端设备,如图13 所示,该芯片包括:至少一个通信接口1301,至少一个处理器1302,至少一个存储器1303,其中,通信接口1301、处理器1302和存储器1303通过电路(某些情况下也可以是总线)1304互联,处理器1302调用存储器1303中存储的指令,以执行下述方法:
生成OFDM符号;
在第一时间单元向网络设备发送至少两个OFDM符号,以及在第二时间单元向网络设备发送至少两个OFDM符号,第一时间单元内OFDM符号的相位偏移和第二时间单元内OFDM符号的相位偏移相等,并且,第一时间单元内第一OFDM符号的相位偏移与第一时间单元内除第一OFDM符号之外的至少一个OFDM符号的相位偏移不相等,其中,第一时间单元的时长和第二时间单元的时长相同。
在一种可选的实施方式中,第一时间单元的时长为15KHz的子载波间隔所对应的一个时隙的时长。
在一种可选的实施方式中,第一时间单元的时长为一个子帧的时长。
在一种可选的实施方式中,第一时间单元的时长为15KHz的子载波间隔所对应的一个符号长度。
在一种可选的实施方式中,在第一时间单元内的OFDM符号的子载波间隔为30KHz时,第一时间单元内的OFDM符号的个数为2。
在一种可选的实施方式中,在第一时间单元内的OFDM符号的子载波间隔为60KHz时,第一时间单元内的OFDM符号的个数为4。
在一种可选的实施方式中,上述相位偏移为同一OFDM符号在采用第一子载波映射方式时在第一采样时间点上的第一时域采样值的相位与在采用第二子载波映射方式时在第一采样时间点上的第二时域采样值的相位的差值。
其中,在第一子载波映射方式中,子载波的中心映射在载波频率,在第二子载波映射方式中,子载波的中心映射在与载波频率存在预设偏移值的频率上。
在一种可选的实施方式中,上述预设偏移值为7.5KHz。
图14为本申请提供的另一种芯片的实体框图,该芯片1400可以用于网络设备,如图14所示,该芯片包括:至少一个通信接口1401,至少一个处理器1402,至少一个存储器1403,其中,通信接口1401、处理器1402和存储器1403通过电路(某些情况下也可以是总线)1404互联,处理器1402调用存储器1403中存储的指令,以执行下述方法:
在第一时间单元从终端设备接收至少两个OFDM符号,以及在第二时间单元接收至少两个OFDM符号,第一时间单元内OFDM符号的相位偏移和第二时间单元内OFDM符号的相位偏移相等,并且,第一时间单元内第一OFDM符号的相位偏移与第一时间单元内除第一OFDM符号之外的至少一个OFDM符号的相位偏移不相等,其中,第一时间单元的时长和第二时间单元的时长相同;
对在第一时间单元接收到的至少两个OFDM符号以及在第二时间单元接收到的至少两个OFDM符号进行解调。
在一种可选的实施方式中,第一时间单元的时长为15KHz的子载波间隔所对应的一个时隙的时长。
在一种可选的实施方式中,第一时间单元的时长为一个子帧的时长。
在一种可选的实施方式中,第一时间单元的时长为15KHz的子载波间隔所对应的一个 符号长度。
在一种可选的实施方式中,在第一时间单元内的OFDM符号的子载波间隔为30KHz时,第一时间单元内的OFDM符号的个数为2。
在一种可选的实施方式中,在第一时间单元内的OFDM符号的子载波间隔为60KHz时,第一时间单元内的OFDM符号的个数为4。
在一种可选的实施方式中,上述相位偏移为同一OFDM符号在采用第一子载波映射方式时在第一采样时间点上的第一时域采样值的相位与在采用第二子载波映射方式时在第一采样时间点上的第二时域采样值的相位的差值。
其中,在第一子载波映射方式中,子载波的中心映射在载波频率,在第二子载波映射方式中,子载波的中心映射在与载波频率存在预设偏移值的频率上。
在一种可选的实施方式中,上述预设偏移值为7.5KHz。
图15为本申请提供的一种终端设备实施例一的实体框图,如图15所述,该终端设备包括:
存储器1501和处理器1502。
存储器1501用于存储程序指令,处理器1502用于调用存储器1501中的程序指令,实现上述方法实施例中终端设备的功能。
图16为本申请提供的一种网络设备实施例一的实体框图,如图16所述,该网络设备包括:
存储器1601和处理器1602。
存储器1601用于存储程序指令,处理器1602用于调用存储器1601中的程序指令,实现上述方法实施例中网络设备的功能。
除了上述实施例中所述的问题之外,在上行信号传输时,由于终端设备采用不同参考频率确定的上行信号对应的相位偏差不同,可能会出现信号干扰的问题。而在下行信号传输时,由于网络设备发送下行信号所使用的参考频率与终端设备接收所述下行信号所使用的参考频率可能不同,因此可能会出现终端设备错误接收下行信号的问题。本申请以下实施例所提供的方法可以进一步解决这些问题。
图17为本申请提供的另一种信号发送及接收方法的流程示意图,该方法用于上行信号传输中,如图17所示,该方法包括:
S1701、终端设备确定第一频率位置,其中,所述第一频率位置用于所述终端设备确定上行信号的参考频率。
S1702、终端设备根据所述参考频率向网络设备发送所述上行信号。
可选的,终端设备根据预先定义的规则确定第一频率位置。第一频率位置是预先定义的。作为一种示例,所述第一频率位置为编号为X的频域资源块中的编号为Y的子载波的中心频率,X,Y可以是正整数,也可以是0,此处并不限制X,Y的取值。可选的,X=0,Y=0,即所述第一频率位置为编号为0的频域资源块中的编号为0的子载波的中心频率。需要说明的是,此处的频域资源块的编号可以是频域资源块在部分带宽(bandwidth part)中的编号,也可以是在载波带宽中的编号。该载波带宽可以是终端设备工作载波的带宽,也可以是网络设备通知给终端设备的载波带宽。例如终端设备确定的网络设备的工作载波的带宽,当然还可以是其他类型的带宽,此处不做限制。此处的频域资源块的编号还可以是 公共资源块中的编号。公共资源块可以是预先定义的一个或多个资源块。
可选的,终端根据从网络设备接收的指示信息确定第一频率位置。其中,所述指示信息指示所述第一频率位置。作为一种示例,所述指示信息指示频域上的公共参考点,从而所述第一频率位置即为所述公共参考点所在的频率。所述公共参考点可以为资源块网格的参考点。例如,所述公共参考点为资源块网格的原点。根据所述公共参考点可以确定资源块的位置。另外,所述公共参考点可以为一个小区中多个终端设备共同的参考点。所述公共参考点所对应的资源块可以认为是公共资源块。可选的,所述指示信息携带在系统消息或者无线资源控制(Radio resource control,RRC)层信令中由网络设备发送给终端设备。具体的,所述指示信息可以指示公共参考点对应的绝对无线频道号(absolute radio frequency channel number,ARFCN)。其中,ARFCN的取值可以包括0和正整数,不同的ARFCN取值对应不同的频率。例如,新空口系统中的ARFCN的取值范围为0到3279165。其中,0对应0Hz,1对应5kHz,2对应10kHz等。终端设备可以根据所述指示信息中指示的ARFCN的值确定公共参考点对应的频率。具体的,所述公共参考点可以是新空口系统中定义的参考点A(Point A)。
可选地,所述公共参考点所在的频率为所述上行信号对应的上行基带信号的调制频率。这里的调制频率可以是对上行基带信号进行上变频或其他处理(例如调制或对信号进行频率搬移)所使用的频率。
作为一种示例,所述指示信息可以指示编号为X的频域资源块中的编号为Y的子载波,或者指示编号为X的频域资源块中的编号为Y的子载波的中心频率。X,Y可以是正整数,也可以是0,此处并不限制X,Y的取值。可选的,所述指示信息只能指示编号为X的频域资源块中的编号为0的子载波,或者编号为6的子载波,或者编号为0或6的子载波。这样可以减少该指示信息所需的比特数,降低指示开销。
作为另一种示例,所述指示信息可以仅指示编号为X的频域资源块,终端设备根据预先定义的规则确定编号为Y的子载波,例如,Y取值固定为0,或固定为6,或者为其他值。通过这种方式,可以减少信令开销。
作为另一种示例,所述指示信息间接的指示第一频率位置。例如,所述指示信息指示一个偏移值,该偏移值为所述第一频率位置相对于第二频率位置的偏移,所述第二频率位置为预先定义的位置,例如,所述第二频率位置为编号为X的频域资源块中的编号为Y的子载波的中心频率。X,Y可以是正整数,也可以是0,此处并不限制X,Y的取值。可选的,X=0,Y=0,即所述第一频率位置为编号为0的频域资源块中的编号为0的子载波的中心频率。所述偏移值可以是以子载波为单位,也可以是以资源块为单位,还可以是以频率为单位。例如,所述第二频率位置对应的频率为f1,在所述指示信息指示的偏移为N1个子载波的情况下,该子载波对应的子载波间隔为u,则所述第一频率位置对应的频率为f0=f1+N1×u,也可以为f0=f1-N1×u。又例如,所述第二频率位置对应的频率为f1,在所述指示信息指示的偏移为N2个资源块的情况下,该子载波对应的子载波间隔为u,则所述第一频率位置对应的频率为f0=f1+N2×12×u,也可以为f0=f1+N2×12×u-u。需要说明的是,上述“12”为一个资源块中的子载波个数的具体示例,根据不同的网络类型,该值也可以替换为其他值,例如:24。作为一种示例,所述第二频率位置对应的频率为f1,在所述指示信息指示的偏移为f2的情况下,则所述第一频率位置对应的频率为f0=f1+f2,也可以为 f0=f1-f2。上述只为举例,并不对方法进行限定。例如,所述第一参考频率为射频参考频率。其中,该射频参考频率可以为射频带宽的中心频率。所述第二参考频率为公共参考点所在的频率,如上述参考点A。
可选的,所述上行信号包括上行数据信号,上行控制信号,上行接入信号或者上行参考信号中的至少一种。上行数据信号可以是物理上行共享信道或者相同功能名称不同的信号,上行控制信号可以是物理上行控制信道或者功能相同名称不同的信号,上行接入信号可以是物理随机接入信号或者相同功能名称不同的信号,上行参考信号可以是解调参考信号,探测参考信号等。
可选的,所述终端设备可以确定所述第一频率位置对应的频率为所述参考频率,也可以根据所述第一频率位置和第一资源块个数确定所述参考频率。其中,所述第一资源块个数可以是所述终端设备预先确定的,也可以是所述网络设备通知的,此处不做限定。例如,所述第一频率位置为f1,所述第一资源块个数为N,所述第一资源块个数对应子载波间隔为u,则所述参考频率f0可以是f0=f1+N/2×12×u,也可以是f0=f1+N/2×12×u-u,当然也可以是其他值,此处不做限定。
可选的,所述参考频率可以是终端设备射频带宽的中心频率,也可以是直流子载波的中心频率。其中,直流子载波可以理解为基带信号中频率为0的子载波,所述参考频率还可以是终端设备生成OFDM信号的中心频率,当然也可以是其他频率。
具体的,所述参考频率还可以是射频参考频率。作为一种示例,所述射频参考频率与所述终端设备的中心子载波所在频率位置相同,所述中心子载波可以是载波带宽的中心子载波。关于中心子载波的理解可以为:载波带宽中有Z个频域资源块,编号从0到Z-1,每个频域资源块中有n个子载波,子载波在每个频域资源块中的编号从0到n-1,则载波带宽中总共有Z×n个子载波,编号可以从0到Z×n-1,则该载波带宽的中心子载波即为编号为Z×n/2的子载波或者为编号为(Z×n-1)/2的子载波。例如,载波带宽中有11个频域资源块时,编号从0到10,每个频域资源块中有12个子载波,编号从0到11,则该载波带宽的中心子载波为编号为5的频域资源块中编号为6的子载波,又可以为该11个频域资源块中编号为66的子载波。又例如,载波带宽中有12个频域资源块,编号从0到11,每个频域资源块中有12个子载波,编号从0到11,则该载波带宽的中心子载波为编号为6的频域资源块中编号为0的子载波,又可以为该12个频域资源块中编号为72的子载波。该载波带宽中的频域资源块个数Z可以是预先规定的值,例如是协议中规定的对应于该载波带宽的资源块个数最大值,也可以是网络设备确定的值,还可以是网络设备通知给终端设备的值,此处不做限定。需要说明的是,当该载波带宽中只配置了第一子载波间隔时,第一子载波间隔可以15kHz或30kHz或其他值,所述射频参考频率为第一子载波间隔对应的频域资源块的中心子载波所在的频率。当该载波带宽中配置了多于一个子载波间隔时,所述射频参考频率为所述多于一个子载波间隔中最小的子载波间隔对应的频域资源块的中心子载波所在的频率。例如,当载波带宽中配置了15kHz和30kHz两种子载波间隔时,射频参考频率为15kHz对应的频域资源块的中心子载波所在的频率。当该载波带宽中配置了多于一个子载波间隔时,所述射频参考频率为所述多于一个子载波间隔中的目标子载波间隔对应的频域资源块的中心子载波所在的频率。所述目标子载波间隔为网络设备向终端设备通知的子载波间隔。所述目标子载波间隔为所述网络设备为终端配置的用于确定所述射频参考频率 的子载波间隔。例如,当载波带宽中配置了15kHz和30kHz两种子载波间隔时,网络设备可以向终端设备通知的目标子载波间隔可以是15kHz也可以是30kHz,则终端设备根据通知的目标子载波间隔确定所述射频参考频率。
可选的,所述终端设备可以根据所述参考频率确定上行基带信号。例如,所述终端设备可以根据所述参考频率确定上行基带信号的相位或者相位偏差。然后,所述终端设备根据所述上行基带信号再确定所述上行信号。
可选地,所述上行基带信号的相位为根据所述第一频率与所述终端设备的部分带宽的中心确定。例如上行基带信号
Figure PCTCN2018099493-appb-000021
可以是
Figure PCTCN2018099493-appb-000022
其中f 0为第一频率,f 1为部分带宽的中心频率,g(f 0,f 1)应理解为f 0和f 1的函数。具体的,假设参考频率为f0,则通过公式
Figure PCTCN2018099493-appb-000023
或2πf 0t可以计算出上行基带信号的相位。将上行基带信号上变频到所述参考频率所得到的信号。例如,所述上行基带信号为
Figure PCTCN2018099493-appb-000024
则上变频到的上行信号可以是
Figure PCTCN2018099493-appb-000025
其中,Re{}为取复数的实部。
可选的,所述终端设备不根据所述参考频率确定上行基带信号,再根据所述参考频率将所述上行基带信号进行上变频,从而确定所述上行信号。作为一种示例,终端设备根据如下公式中的一个确定上行基带信号:
Figure PCTCN2018099493-appb-000026
Figure PCTCN2018099493-appb-000027
Figure PCTCN2018099493-appb-000028
其中,
Figure PCTCN2018099493-appb-000029
表示天线端口p和子载波间隔配置μ对应的信号,
Figure PCTCN2018099493-appb-000030
表示一个复数值,l表示一个子帧中的第l个OFDM符号,
Figure PCTCN2018099493-appb-000031
为第l个OFDM符号的CP的采样时间点数,t表示采样时间点,T c表示时间单元值,Δf表示子载波间隔且与μ的对应关系为Δf=2 μ·15kHz,
Figure PCTCN2018099493-appb-000032
表示资源块的个数,
Figure PCTCN2018099493-appb-000033
表示公共资源块中一个子载波间隔配置为μ的资源块的序号,可以由基站通知给终端设备,
Figure PCTCN2018099493-appb-000034
表示一个资源块中子载波的个数,k表示子载波的序号,
Figure PCTCN2018099493-appb-000035
表示第l个OFDM符号的起点。需要说明的是,上述公式还可以表达为如下形式中的一种:
Figure PCTCN2018099493-appb-000036
Figure PCTCN2018099493-appb-000037
Figure PCTCN2018099493-appb-000038
其中,X可以是与 相关的值。X也可以是网络设备通知给终端设备的值。例如,网络设备可以向终端设备直接通知X的值,也可以通知X·Δf的值。又例如,网络设备可以向终端设备间接通知X的值,如通知与X相关的参数X1,终端设备根据X1确定X。
进一步可选的,终端设备根据如下公式将
Figure PCTCN2018099493-appb-000040
进行上变频。
Figure PCTCN2018099493-appb-000041
其中,f 0为参考频率。
可选的,当所述上行信号为随机接入信号时,终端设备根据如下公式确定所述随机接入信号:
Figure PCTCN2018099493-appb-000042
K=Δf/Δf RA
Figure PCTCN2018099493-appb-000043
其中,
Figure PCTCN2018099493-appb-000044
为初始激活上行带宽部分中编号最小的资源块在公共资源块中的编号,
Figure PCTCN2018099493-appb-000045
为频率偏移,n RA随机接入信号传输机会的频域编号,
Figure PCTCN2018099493-appb-000046
为占用的资源块个数,其他参数的定义与3GPP的38.211中参数定义相同。
需要说明的是,上述公式的形式可以进行变换,只要是与上述公式等价的公式都属于本发明保护的范围。
本实施例中,因为终端设备采用不同参考频率确定的上行信号对应的相位偏差会不同,这将导致空分复用的多个终端设备的信号(例如:参考信号)之间出现干扰,从而导致性能损失。本实施例方法能够使得不同终端设备采用相同的参考频率发送上行信号,从而保证这些终端设备在进行空分复用时,参考信号之间能够保持正交,避免性能损失。
图18为本申请提供的又一种信号发送及接收方法的流程示意图,该方法用于下行信号传输中,如图18所示,该方法包括:
S1801、网络设备确定下行信号,其中,所述下行信号为根据第一频率确定的。
S1802、网络设备向终端设备发送所述下行信号。
可选的,所述网络设备向所述终端设备发送指示信息,所述指示信息指示所述第一频率。
可选的,所述第一频率为载波频率。
可选的,所述下行信号为所述网络设备将下行基带信号上变频到所述载波频率所得到的信号。例如,所述下行基带信号为
Figure PCTCN2018099493-appb-000047
则上变频到的信号可以是
Figure PCTCN2018099493-appb-000048
其中所述第一频率为f 0,Re{}为取复数的实部。作为一种示例,网络设备根据如下公式中 的一个确定下行基带信号:
Figure PCTCN2018099493-appb-000049
Figure PCTCN2018099493-appb-000050
Figure PCTCN2018099493-appb-000051
其中,
Figure PCTCN2018099493-appb-000052
表示天线端口p和子载波间隔配置μ对应的信号,
Figure PCTCN2018099493-appb-000053
表示一个复数值,l表示一个子帧中的第l个OFDM符号,
Figure PCTCN2018099493-appb-000054
为第l个OFDM符号的CP的采样时间点数,t表示采样时间点,T c表示时间单元值,Δf表示子载波间隔且与μ的对应关系为Δf=2 μ·15kHz,
Figure PCTCN2018099493-appb-000055
表示资源块的个数,
Figure PCTCN2018099493-appb-000056
表示公共资源块中一个子载波间隔配置为μ的资源块的序号,可以由基站通知给终端设备,
Figure PCTCN2018099493-appb-000057
表示一个资源块中子载波的个数,k表示子载波的序号,
Figure PCTCN2018099493-appb-000058
表示第l个OFDM符号的起点。需要说明的是,上述公式还可以表达为如下形式中的一种:
Figure PCTCN2018099493-appb-000059
Figure PCTCN2018099493-appb-000060
Figure PCTCN2018099493-appb-000061
其中,X可以是与
Figure PCTCN2018099493-appb-000062
相关的整数值。X也可以是网络设备通知给终端设备的值。例如,网络设备可以向终端设备直接通知X的值,也可以通知X·Δf的值。又例如,网络设备可以向终端设备间接通知X的值,如通知与X相关的参数X1,终端设备根据X1确定X。
进一步可选的,终端设备根据如下公式将
Figure PCTCN2018099493-appb-000063
进行上变频
Figure PCTCN2018099493-appb-000064
其中,f0为参考频率。
需要说明的是,上述公式的形式可以进行变换,只要是与上述公式等价的公式都属于本发明保护的范围。
可选的,所述下行基带信号为根据所述第一频率确定的,具体的,所述下行基带信号的相位为根据所述第一频率确定的。影响所述下行基带信号的因素除了所述第一频率外还 有其他因素,例如子载波间隔,带宽等,本申请在此不一一举出。
可选的,所述下行基带信号为根据所述终端设备的部分带宽的中心频率位置确定的,具体的,所述下行基带信号的相位根据所述终端设备的部分带宽的中心频率位置确定的。
可选的,所述下行基带信号的相位为根据所述第一频率与所述终端设备的部分带宽的中心确定。例如下行基带信号
Figure PCTCN2018099493-appb-000065
可以是
Figure PCTCN2018099493-appb-000066
其中f 0为第一频率,f 1为部分带宽的中心频率,g(f 0,f 1)应理解为f 0和f 1的函数。
可选的,所述下行基带信号的相位为根据所述第一频率与所述终端设备的部分带宽的中心频率的差确定的。例如,下行基带信号
Figure PCTCN2018099493-appb-000067
可以是
Figure PCTCN2018099493-appb-000068
其中f 0为第一频率,f 1为部分带宽的中心频率,g(f 0-f 1)应理解为f 0-f 1的函数。
S1803、终端设备确定第一频率位置,其中,所述第一频率位置用于所述终端设备确定下行信号的参考频率。
S1804、终端设备根据所述参考频率从网络设备接收所述下行信号。
可选地,本实施例还包括S1805、终端设备对所述下行信号进行解调。
可选的,终端设备根据预先定义的规则确定第一频率位置。作为一种示例,所述第一频率位置为编号为X的频域资源块中的编号为Y的子载波的中心频率,X,Y可以是正整数,也可以是0,此处并不限制X,Y的取值。可选的,X=0,Y=0,即所述第一频率位置为编号为0的频域资源块中的编号为0的子载波的中心频率。需要说明的是,此处的频域资源块的编号可以是频域资源块在部分带宽(bandwidth part)中的编号,也可以是在载波带宽中的编号,该载波带宽可以是终端设备工作载波的带宽,也可以是网络设备通知给终端设备的载波带宽,例如终端设备确定的网络设备的工作载波的带宽,当然还可以是其他类型的带宽,此处不做限制。此处的频域资源块的编号还可以是公共资源块中的编号。公共资源块可以是预先定义的一个或多个资源块。
可选的,终端根据从网络设备接收的指示信息确定第一频率位置,其中,所述指示信息指示所述第一频率位置。作为一种示例,所述指示信息指示频域上的公共参考点,从而所述第一频率位置即为所述公共参考点所在的频率。所述公共参考点可以为资源块网格的参考点。例如,所述公共参考点为资源块网格的原点。根据所述公共参考点可以确定资源块的位置。另外,所述公共参考点可以为一个小区中多个终端设备共同的参考点。所述公共参考点所对应的资源块可以认为是公共资源块。可选的,所述指示信息携带在系统消息或者无线资源控制(Radio resource control,RRC)层信令中由网络设备发送给终端设备。具体的,所述指示信息可以指示公共参考点对应的ARFCN。其中,ARFCN的取值可以包括0和正整数,不同的ARFCN取值对应不同的频率。例如,新空口系统中的ARFCN的取值范围为0到3279165。其中,0对应0Hz,1对应5kHz,2对应10kHz等。终端设备可以根据所述指示信息中指示的ARFCN的值确定公共参考点对应的频率。具体的,所述公共参考点可以是新空口系统中定义的参考点A(Point A)。参考点A可以认为是资源块网格的公共参考点。
作为一种示例,所述指示信息可以指示编号为X的频域资源块中的编号为Y的子载波, 或者指示编号为X的频域资源块中的编号为Y的子载波的中心频率,X,Y可以是正整数,也可以是0,此处并不限制X,Y的取值。可选的,所述指示信息只能指示编号为X的频域资源块中的编号为0的子载波,或者编号为6的子载波,或者编号为0或6的子载波,这样可以减少该指示信息所需的比特数,降低指示开销。
作为另一种示例,所述指示信息可以仅指示编号为X的频域资源块,终端设备根据预先定义的规则确定编号为Y的子载波,例如,Y取值固定为0,或固定为6,或者为其他值。通过这种方式,可以减少信令开销。
作为另一种示例,所述指示信息间接的指示第一频率位置,例如,所述指示信息指示一个偏移值,该偏移值为所述第一频率位置相对于第二频率位置的偏移,所述第二频率位置为预先定义的位置,例如,所述第二频率位置为编号为X的频域资源块中的编号为Y的子载波的中心频率,X,Y可以是正整数,也可以是0,此处并不限制X,Y的取值。可选的,X=0,Y=0,即所述第一频率位置为编号为0的频域资源块中的编号为0的子载波的中心频率。所述偏移值可以是以子载波为单位,也可以是以资源块为单位,还可以是以频率为单位。例如,所述第二频率位置对应的频率为f1,在所述指示信息指示的偏移为N1个子载波的情况下,该子载波对应的子载波间隔为u,则所述第一频率位置对应的频率为f0=f1+N1×u,也可以为f0=f1-N1×u。又例如,所述第二频率位置对应的频率为f1,在所述指示信息指示的偏移为N2个资源块的情况下,该子载波对应的子载波间隔为u,则所述第一频率位置对应的频率为f0=f1+N2/2×12×u,也可以为f0=f1+N2/2×12×u-u。需要说明的是,上述“12”为一个资源块中的子载波个数的具体示例,根据不同的网络类型,该值也可以替换为其他值。作为一种示例,所述第二频率位置对应的频率为f1,在所述指示信息指示的偏移为f2赫兹的情况下,则所述第一频率位置对应的频率为f0=f1+f2,也可以为f0=f1-f2。上述只为举例,并不对方法进行限定。例如,所述第一参考频率为射频参考频率。其中,该射频参考频率可以为射频带宽的中心频率。所述第二参考频率为公共参考点所在的频率,如上述参考点A。
可选的,所述上行信号包括上行数据信号,上行控制信号,上行接入信号或者上行参考信号中的至少一种。上行数据信号可以是物理上行共享信道或者相同功能名称不同的信号,上行控制信号可以是物理上行控制信道或者功能相同名称不同的信号,上行接入信号可以是物理随机接入信号或者相同功能名称不同的信号,上行参考信号可以是解调参考信号,探测参考信号等。
可选的,所述终端设备可以直接确定所述第一频率位置对应的频率为所述参考频率,也可以根据所述第一频率位置和第一资源块个数确定所述参考频率,其中,所述第一资源块个数可以是所述终端设备预先确定的,也可以是所述网络设备通知的,此处不做限定。例如,所述第一频率位置为f1,所述第一资源块个数为N,所述第一资源块个数对应子载波间隔为u,则所述参考频率f0可以是f0=f1+N/2×12×u,也可以是f0=f1+N/2×12×u-u,当然也可以是其他值,此处不做限定。
可选的,所述下行信号包括下行数据信号,下行控制信号,下行参考信号,同步信号或者广播信号中的至少一种。下行数据信号可以是物理下行共享信道或者相同功能名称不同的信号,下行控制信号可以是物理下行控制信道或者功能相同名称不同的信号,上行接入信号可以是物理随机接入信号或者相同功能名称不同的信号,下行参考信号可以是解调 参考信号,信道状态信息参考信号等。
可选的,所述参考频率可以是终端设备射频带宽的中心频率,也可以是直流子载波的中心频率,其中,直流子载波可以理解为基带信号中频率为0的子载波,所述参考频率还可以是终端设备从网络设备接收OFDM信号的中心频率,当然也可以是其他频率。
具体的,所述参考频率还可以是射频参考频率。作为一种示例,所述射频参考频率与所述终端设备的中心子载波所在频率位置相同,所述中心子载波可以是载波带宽的中心子载波。关于中心子载波的理解可以为:载波带宽中有Z个频域资源块,编号从0到Z-1,每个频域资源块中有n个子载波,子载波在每个频域资源块中的编号从0到n-1,则载波带宽中总共有Z×n个子载波,编号可以从0到Z×n-1,则该载波带宽的中心子载波即为编号为Z×n/2的子载波或者为编号为(Z×n-1)/2的子载波。例如,载波带宽中有11个频域资源块时,编号从0到10,每个频域资源块中有12个子载波,编号从0到11,则该载波带宽的中心子载波为编号为5的频域资源块中编号为6的子载波,又可以为该11个频域资源块中编号为66的子载波。又例如,载波带宽中有12个频域资源块,编号从0到11,每个频域资源块中有12个子载波,编号从0到11,则该载波带宽的中心子载波为编号为6的频域资源块中编号为0的子载波,又可以为该12个频域资源块中编号为72的子载波。该载波带宽中的频域资源块个数Z可以是预先规定的值,例如是协议中规定的对应于该载波带宽的资源块个数最大值,也可以是网络设备确定的值,还可以是网络设备通知给终端设备的值,此处不做限定。需要说明的是,当该载波带宽中只配置了第一子载波间隔时,第一子载波间隔可以15kHz或30kHz或其他值,所述射频参考频率为第一子载波间隔对应的频域资源块的中心子载波所在的频率。当该载波带宽中配置了多于一个子载波间隔时,所述射频参考频率为所述多于一个子载波间隔中最小的子载波间隔对应的频率资源块的中心子载波所在的频率。例如,当载波带宽中配置了15kHz和30kHz两种子载波间隔时,射频参考频率为15kHz对应的频域资源块的中心子载波所在的频率。当该载波带宽中配置了多于一个子载波间隔时,所述射频参考频率为所述多于一个子载波间隔中的目标子载波间隔对应的频域资源块的中心子载波所在的频率,所述目标子载波间隔为网络设备向终端设备通知的子载波间隔。所述目标子载波间隔为所述网络设备为终端配置的用于确定所述射频参考频率的子载波间隔。例如,当载波带宽中配置了15kHz和30kHz两种子载波间隔时,网络设备可以向终端设备通知的目标子载波间隔可以是15kHz也可以是30kHz,则终端设备根据通知的目标子载波间隔确定所述射频参考频率。
可选的,所述终端设备可以根据所述参考频率确定下行基带信号,例如,所述终端设备可以根据所述参考频率确定下行基带信号的相位或者相位偏差。在此之前,所述终端设备可以根据所述下行信号的相位或者相位偏差进行下变频确定所述下行基带信号。
可选的,所述终端设备可以不根据所述参考频率将所述下行信号进行下变频,以确定下行基带信号,之后,所述终端设备再根据所述参考频率对所述下行基带信号进行检测。
在下行信号传输中,网络设备发送下行信号所使用的参考频率可以与终端设备接收所述下行信号所使用的参考频率相同,也可以不同,图19为在下行信号传输中网络设备和终端设备使用参考频率不同时的示意图,如图19所示,网络设备的中心频率为f1,终端设备接收下行信号的频率为f0,f1和f0不相同,即网络设备发送下行信号所使用的参考频率与终端设备接收所述下行信号所使用的参考频率不同,在这种情况下,终端接收到的下行信 号相比于网络设备发送的下行信号会出现相位偏差,导致终端设备错误接收所述下行信号。本实施例中的方法能够使得终端设备确定网络设备发送下行信号的参考频率,从而确定所述相位偏差,使得终端设备在接收下行信号时能够将相位偏差进行补偿,以避免终端设备错误接收所述下行信号。
图20为本申请提供的另一种网络设备的模块结构图,如图20所示,该网络设备包括:
处理模块2001,用于确定下行信号,其中,所述下行信号为根据第一频率位置确定的。
发送模块200,用于向终端设备发送所述下行信号。
进一步地,所述下行信号为根据第一频率位置确定的,包括:
所述下行信号为下行基带信号,所述下行基带信号的相位为根据所述第一频率位置确定的。
进一步地,所述第一频率位置为预先定义的频率位置。
进一步地,所述第一频率位置为根据所述网络设备的指示信息确定的频率位置,所述指示信息用于指示所述第一频率位置。
图21为本申请提供的另一种终端设备的模块结构图,如图21所示,该终端设备包括:
接收模块2101,用于终端设备从网络设备接收下行信号,其中,所述下行信号为根据第一频率位置确定的,所述第一频率位置为预先定义的频率位置,或者,所述第一频率位置为根据所述网络设备的指示信息确定的频率位置。
处理模块2102,用于对所述下行信号进行解调。
进一步地,所述下行信号为根据第一频率位置确定的,包括:
所述下行信号为下行基带信号,所述下行基带信号的相位为根据所述第一频率位置确定的。
进一步地,所述第一频率位置为预先定义的频率位置,包括:
所述第一频率位置为预设频域资源块中的预设子载波的中心频率位置。
进一步地,所述第一频率位置为根据所述网络设备的指示信息确定的频率位置。
接收模块2101还用于:
从所述网络设备接收所述指示信息,其中,所述指示信息用于指示所述第一频率位置。
进一步地,所述指示信息用于指示预设频域资源块中的预设子载波,或者,所述指示信息用于指示预设频域资源块中的预设子载波的中心频率,或者,所述指示信息用于指示预设频域资源块;
若所述指示信息用于指示预设频域资源块,则处理模块2102还用于:
根据所述预设频域资源块以及子载波与频域资源块的预设关系,确定所述预设频域资源块中的子载波。
图22为本申请提供的又一种芯片的实体框图,该芯片2200可以用于网络设备,如图22所示,该芯片包括:至少一个通信接口2201,至少一个处理器2202,至少一个存储器2203,其中,通信接口2201、处理器2202和存储器2203通过电路(某些情况下也可以是总线)2204互联,处理器2202调用存储器2203中存储的指令,以执行上述又一种信号发送及接收方法实施例中网络设备对应的方法步骤。
图23为本申请提供的再一种芯片的实体框图,该芯片2300可以用于终端设备,如图23所示,该芯片包括:至少一个通信接口2301,至少一个处理器2302,至少一个存储器 2303,其中,通信接口2301、处理器2302和存储器2303通过电路(某些情况下也可以是总线)2304互联,处理器2302调用存储器2303中存储的指令,以执行上述又一种信号发送及接收方法实施例中终端设备对应的方法步骤。
图24为本申请提供的另一种网络设备实施例一的实体框图,如图24所述,该网络设备包括:
存储器2401和处理器2402。
存储器2401用于存储程序指令,处理器2402用于调用存储器2401中的程序指令,实现上述又一种信号发送及接收方法实施例中网络设备对应的功能。
图25为本申请提供的另一种终端设备实施例一的实体框图,如图25所述,该终端设备包括:
存储器2501和处理器2502。
存储器2501用于存储程序指令,处理器2502用于调用存储器2501中的程序指令,实现上述又一种信号发送及接收方法实施例中终端设备对应的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、装置(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置 的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求书意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求书及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (62)

  1. 一种信号发送方法,其特征在于,包括:
    终端设备生成正交频分复用OFDM符号;
    所述终端设备在第一时间单元向网络设备发送至少两个OFDM符号,以及在第二时间单元向所述网络设备发送至少两个OFDM符号,所述第一时间单元内OFDM符号的相位偏移和所述第二时间单元内OFDM符号的相位偏移相等,并且,所述第一时间单元内第一OFDM符号的相位偏移与所述第一时间单元内除所述第一OFDM符号之外的至少一个OFDM符号的相位偏移不相等,其中,所述第一时间单元的时长和所述第二时间单元的时长相同。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时间单元的时长为15KHz的子载波间隔所对应的一个时隙的时长。
  3. 根据权利要求1所述的方法,其特征在于,所述第一时间单元的时长为一个子帧的时长。
  4. 根据权利要求1所述的方法,其特征在于,所述第一时间单元的时长为15KHz的子载波间隔所对应的一个符号长度。
  5. 根据权利要求1所述的方法,其特征在于,在所述第一时间单元内的OFDM符号的子载波间隔为30KHz时,所述第一时间单元内的OFDM符号的个数为2。
  6. 根据权利要求1所述的方法,其特征在于,在所述第一时间单元内的OFDM符号的子载波间隔为60KHz时,所述第一时间单元内的OFDM符号的个数为4。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述相位偏移为同一OFDM符号在采用第一子载波映射方式时在第一采样时间点上的第一时域采样值的相位与在采用第二子载波映射方式时在所述第一采样时间点上的第二时域采样值的相位的差值;
    其中,在所述第一子载波映射方式中,子载波的中心映射在载波频率,在所述第二子载波映射方式中,子载波的中心映射在与所述载波频率存在预设偏移值的频率上。
  8. 根据权利要求7所述的方法,其特征在于,所述预设偏移值为7.5KHz。
  9. 一种信号接收方法,其特征在于,包括:
    网络设备在第一时间单元从终端设备接收至少两个正交频分复用OFDM符号,以及在第二时间单元接收至少两个OFDM符号,所述第一时间单元内OFDM符号的相位偏移和所述第二时间单元内OFDM符号的相位偏移相等,并且,所述第一时间单元内第一OFDM符号的相位偏移与所述第一时间单元内除所述第一OFDM符号之外的至少一个OFDM符号的相位偏移不相等,其中,所述第一时间单元的时长和所述第二时间单元的时长相同;
    所述网络设备对在所述第一时间单元接收到的至少两个OFDM符号以及在所述第二时间单元接收到的至少两个OFDM符号进行解调。
  10. 根据权利要求9所述的方法,其特征在于,所述第一时间单元的时长为15KHz的子载波间隔所对应的一个时隙的时长。
  11. 根据权利要求9所述的方法,其特征在于,所述第一时间单元的时长为一个子帧的时长。
  12. 根据权利要求9所述的方法,其特征在于,所述第一时间单元的时长为15KHz的 子载波间隔所对应的一个符号长度。
  13. 根据权利要求9所述的方法,其特征在于,在所述第一时间单元内的OFDM符号的子载波间隔为30KHz时,所述第一时间单元内的OFDM符号的个数为2。
  14. 根据权利要求9所述的方法,其特征在于,在所述第一时间单元内的OFDM符号的子载波间隔为60KHz时,所述第一时间单元内的OFDM符号的个数为4。
  15. 根据权利要求9-14任一项所述的方法,其特征在于,所述相位偏移为同一OFDM符号在采用第一子载波映射方式时在第一采样时间点上的第一时域采样值的相位与在采用第二子载波映射方式时在所述第一采样时间点上的第二时域采样值的相位的差值;
    其中,在所述第一子载波映射方式中,子载波的中心映射在载波频率,在所述第二子载波映射方式中,子载波的中心映射在与所述载波频率存在预设偏移值的频率上。
  16. 根据权利要求15所述的方法,其特征在于,所述预设偏移值为7.5KHz。
  17. 一种信号发送方法,其特征在于,包括:
    网络设备确定下行信号,其中,所述下行信号为根据第一频率位置确定的;
    所述网络设备向终端设备发送所述下行信号。
  18. 根据权利要求17所述的方法,其特征在于,所述下行信号为根据第一频率位置确定的,包括:
    所述下行信号为下行基带信号,所述下行基带信号的相位为根据所述第一频率位置确定的。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第一频率位置为预先定义的频率位置。
  20. 根据权利要求17或18所述的方法,其特征在于,所述第一频率位置为根据所述网络设备的指示信息确定的频率位置,所述指示信息用于指示所述第一频率位置。
  21. 一种信号接收方法,其特征在于,包括:
    终端设备从网络设备接收下行信号,其中,所述下行信号为根据第一频率位置确定的,所述第一频率位置为预先定义的频率位置,或者,所述第一频率位置为根据所述网络设备的指示信息确定的频率位置;
    所述终端设备对所述下行信号进行解调。
  22. 根据权利要求21所述的方法,其特征在于,所述下行信号为根据第一频率位置确定的,包括:
    所述下行信号为下行基带信号,所述下行基带信号的相位为根据所述第一频率位置确定的。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第一频率位置为预先定义的频率位置,包括:
    所述第一频率位置为预设频域资源块中的预设子载波的中心频率位置。
  24. 根据权利要求21或22所述的方法,其特征在于,所述第一频率位置为根据所述网络设备的指示信息确定的频率位置;
    所述终端设备从所述网络设备接收所述指示信息,其中,所述指示信息用于指示所述第一频率位置。
  25. 根据权利要求24所述的方法,其特征在于,所述指示信息用于指示预设频域资源 块中的预设子载波,或者,所述指示信息用于指示预设频域资源块中的预设子载波的中心频率,或者,所述指示信息用于指示预设频域资源块;
    若所述指示信息用于指示预设频域资源块,则所述方法还包括:
    所述终端设备根据所述预设频域资源块以及子载波与频域资源块的预设关系,确定所述预设频域资源块中的子载波。
  26. 一种终端设备,其特征在于,包括:
    处理模块,用于生成正交频分复用OFDM符号;
    发送模块,用于在第一时间单元向网络设备发送至少两个OFDM符号,以及在第二时间单元向所述网络设备发送至少两个OFDM符号,所述第一时间单元内OFDM符号的相位偏移和所述第二时间单元内OFDM符号的相位偏移相等,并且,所述第一时间单元内第一OFDM符号的相位偏移与所述第一时间单元内除所述第一OFDM符号之外的至少一个OFDM符号的相位偏移不相等,其中,所述第一时间单元的时长和所述第二时间单元的时长相同。
  27. 根据权利要求26所述的终端设备,其特征在于,所述第一时间单元的时长为15KHz的子载波间隔所对应的一个时隙的时长。
  28. 根据权利要求26所述的终端设备,其特征在于,所述第一时间单元的时长为一个子帧的时长。
  29. 根据权利要求26所述的终端设备,其特征在于,所述第一时间单元的时长为15KHz的子载波间隔所对应的一个符号长度。
  30. 根据权利要求26所述的终端设备,其特征在于,在所述第一时间单元内的OFDM符号的子载波间隔为30KHz时,所述第一时间单元内的OFDM符号的个数为2。
  31. 根据权利要求26所述的终端设备,其特征在于,在所述第一时间单元内的OFDM符号的子载波间隔为60KHz时,所述第一时间单元内的OFDM符号的个数为4。
  32. 根据权利要求26-31任一项所述的终端设备,其特征在于,所述相位偏移为同一OFDM符号在采用第一子载波映射方式时在第一采样时间点上的第一时域采样值的相位与在采用第二子载波映射方式时在所述第一采样时间点上的第二时域采样值的相位的差值;
    其中,在所述第一子载波映射方式中,子载波的中心映射在载波频率,在所述第二子载波映射方式中,子载波的中心映射在与所述载波频率存在预设偏移值的频率上。
  33. 一种网络设备,其特征在于,包括:
    接收模块,用于在第一时间单元从终端设备接收至少两个正交频分复用OFDM符号,以及在第二时间单元接收至少两个OFDM符号,所述第一时间单元内OFDM符号的相位偏移和所述第二时间单元内OFDM符号的相位偏移相等,并且,所述第一时间单元内第一OFDM符号的相位偏移与所述第一时间单元内除所述第一OFDM符号之外的至少一个OFDM符号的相位偏移不相等,其中,所述第一时间单元的时长和所述第二时间单元的时长相同;
    处理模块,用于对在所述第一时间单元接收到的至少两个OFDM符号以及在所述第二时间单元接收到的至少两个OFDM符号进行解调。
  34. 根据权利要求33所述的网络设备,其特征在于,所述第一时间单元的时长为15KHz的子载波间隔所对应的一个时隙的时长。
  35. 根据权利要求33所述的网络设备,其特征在于,所述第一时间单元的时长为一个子帧的时长。
  36. 根据权利要求33所述的网络设备,其特征在于,所述第一时间单元的时长为15KHz的子载波间隔所对应的一个符号长度。
  37. 根据权利要求33所述的网络设备,其特征在于,在所述第一时间单元内的OFDM符号的子载波间隔为30KHz时,所述第一时间单元内的OFDM符号的个数为2。
  38. 根据权利要求33所述的网络设备,其特征在于,在所述第一时间单元内的OFDM符号的子载波间隔为60KHz时,所述第一时间单元内的OFDM符号的个数为4。
  39. 根据权利要求33-38任一项所述的网络设备,其特征在于,所述相位偏移为同一OFDM符号在采用第一子载波映射方式时在第一采样时间点上的第一时域采样值的相位与在采用第二子载波映射方式时在所述第一采样时间点上的第二时域采样值的相位的差值;
    其中,在所述第一子载波映射方式中,子载波的中心映射在载波频率,在所述第二子载波映射方式中,子载波的中心映射在与所述载波频率存在预设偏移值的频率上。
  40. 一种网络设备,其特征在于,包括:
    处理模块,用于确定下行信号,其中,所述下行信号为根据第一频率位置确定的;
    发送模块,用于向终端设备发送所述下行信号。
  41. 根据权利要求40所述的网络设备,其特征在于,所述下行信号为根据第一频率位置确定的,包括:
    所述下行信号为下行基带信号,所述下行基带信号的相位为根据所述第一频率位置确定的。
  42. 根据权利要求40或41所述的网络设备,其特征在于,所述第一频率位置为预先定义的频率位置。
  43. 根据权利要求40或41所述的网络设备,其特征在于,所述第一频率位置为根据所述网络设备的指示信息确定的频率位置,所述指示信息用于指示所述第一频率位置。
  44. 一种终端设备,其特征在于,包括:
    接收模块,用于终端设备从网络设备接收下行信号,其中,所述下行信号为根据第一频率位置确定的,所述第一频率位置为预先定义的频率位置,或者,所述第一频率位置为根据所述网络设备的指示信息确定的频率位置;
    处理模块,用于对所述下行信号进行解调。
  45. 根据权利要求44所述的终端设备,其特征在于,所述下行信号为根据第一频率位置确定的,包括:
    所述下行信号为下行基带信号,所述下行基带信号的相位为根据所述第一频率位置确定的。
  46. 根据权利要求44或45所述的终端设备,其特征在于,所述第一频率位置为预先定义的频率位置,包括:
    所述第一频率位置为预设频域资源块中的预设子载波的中心频率位置。
  47. 根据权利要求44或45所述的终端设备,其特征在于,所述第一频率位置为根据所述网络设备的指示信息确定的频率位置;
    所述接收模块还用于:
    从所述网络设备接收所述指示信息,其中,所述指示信息用于指示所述第一频率位置。
  48. 根据权利要求47所述的终端设备,其特征在于,所述指示信息用于指示预设频域资源块中的预设子载波,或者,所述指示信息用于指示预设频域资源块中的预设子载波的中心频率,或者,所述指示信息用于指示预设频域资源块;
    若所述指示信息用于指示预设频域资源块,则所述处理模块还用于:
    根据所述预设频域资源块以及子载波与频域资源块的预设关系,确定所述预设频域资源块中的子载波。
  49. 一种信号发送方法,其特征在于,包括:
    终端设备确定第一频率位置,其中,所述第一频率位置用于所述终端设备确定上行信号的参考频率,所述所述第一频率位置即为公共参考点所在的频率;
    终端设备根据所述参考频率向网络设备发送所述上行信号。
  50. 根据权利要求49所述的方法,其特征在于,包括:
    所述公共参考点所在频率位置和所述上行信号对应的上行基带信号的直流子载波的频率位置相同,或者所述公共参考点所在的频率为所述上行信号对应的上行基带信号的调制频率。
  51. 根据权利要求49或50所述的方法,其特征在于,包括:
    所述参考频率还可以是射频参考频率。
  52. 根据权利要求51所述的方法,其特征在于,包括:
    所述射频参考频率为射频带宽的中心频率。
  53. 根据权利要求51或52所述的方法,其特征在于,包括:
    当所述终端与所述网络设备之间的信道被配置多于一个子载波间隔时,所述射频参考频率为所述多于一个子载波间隔中最小的子载波间隔对应的频率资源块的中心子载波所在的频率,或者所述射频参考频率为所述多于一个子载波间隔中的目标子载波间隔对应的频率资源块的中心子载波所在的频率,所述目标子载波间隔为所述网络设备通知给终端设备的子载波间隔。
  54. 一种信号发送装置,其特征在于,包括:
    处理模块,用于确定第一频率位置,其中,所述第一频率位置用于所述终端设备确定上行信号的参考频率,所述所述第一频率位置即为公共参考点所在的频率;
    发送模块,用于根据所述参考频率向网络设备发送所述上行信号。
  55. 根据权利要求54所述的装置,其特征在于,包括:
    所述公共参考点所在频率位置和所述上行信号对应的上行基带信号的直流子载波的频率位置相同,或者所述公共参考点所在的频率为所述上行信号对应的上行基带信号的调制频率。
  56. 根据权利要求54或55所述的装置,其特征在于,包括:
    所述参考频率还可以是射频参考频率。
  57. 根据权利要求56所述的装置,其特征在于,包括:
    所述射频参考频率为射频带宽的中心频率。
  58. 根据权利要求56或57所述的装置,其特征在于,包括:
    当所述终端与所述网络设备之间的信道被配置多于一个子载波间隔时,所述射频参考 频率为所述多于一个子载波间隔中最小的子载波间隔对应的频率资源块的中心子载波所在的频率,或者所述射频参考频率为所述多于一个子载波间隔中的目标子载波间隔对应的频率资源块的中心子载波所在的频率,所述目标子载波间隔为所述网络设备通知给终端设备的子载波间隔。
  59. 一种网络设备,其特征在于,所述网络设备包括存储器和处理器;所述存储器用于存储程序指令,所述处理器用于调用所述存储器中的程序指令,实现所述权利要求9-20任一项中的网络设备的功能。
  60. 一种终端设备,其特征在于,所述终端设备包括存储器和处理器;所述存储器用于存储程序指令,所述处理器用于调用所述存储器中的程序指令,实现所述权利要求1-8或21-25或49-53任一项中的终端设备的功能。
  61. 一种芯片,其特征在于,所述芯片包括:至少一个通信接口,至少一个处理器,至少一个存储器,其中,所述至少一个通信接口、所述至少一个处理器和所述至少一个存储器通过电路互联,所述至少一个处理器调用所述至少一个存储器中存储的指令,以执行权利要求1-25或49-53任一项所述的方法。
  62. 一种非易失性存储介质,其特征在于,所述非易失性存储介质中存储有一个或多个程序代码,当网络设备执行该程序代码时,所述网络设备执行所述权利要求9-20任一项的方法;当终端设备执行该程序代码时,所述终端设备执行所述权利要求1-8或21-25或49-53任一项的方法。
PCT/CN2018/099493 2017-08-11 2018-08-09 信号发送方法、信号接收方法、终端设备及网络设备 WO2019029587A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18845142.1A EP3661144B1 (en) 2017-08-11 2018-08-09 Signal sending method, signal receiving method, terminal device, and network device
US16/786,314 US10938526B2 (en) 2017-08-11 2020-02-10 Signal sending method, signal receiving method, terminal device, and network device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710687865.3 2017-08-11
CN201710687865 2017-08-11
CN201810032284.0 2018-01-12
CN201810032284 2018-01-12
CN201810450862.2A CN109391578B (zh) 2017-08-11 2018-05-11 信号发送方法、信号接收方法、终端设备及网络设备
CN201810450862.2 2018-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/786,314 Continuation US10938526B2 (en) 2017-08-11 2020-02-10 Signal sending method, signal receiving method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2019029587A1 true WO2019029587A1 (zh) 2019-02-14

Family

ID=65273227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099493 WO2019029587A1 (zh) 2017-08-11 2018-08-09 信号发送方法、信号接收方法、终端设备及网络设备

Country Status (2)

Country Link
EP (1) EP3661144B1 (zh)
WO (1) WO2019029587A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113438721A (zh) * 2021-06-30 2021-09-24 展讯通信(上海)有限公司 子载波间隔的检测方法及装置、可读存储介质、终端

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110138534B (zh) * 2017-09-08 2020-12-08 华为技术有限公司 一种信号的发送方法、装置以及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102835087A (zh) * 2010-07-26 2012-12-19 Lg电子株式会社 无线通信系统中发送探测参考信号和扩展上行链路控制信息的方法和设备
CN103152294A (zh) * 2013-02-27 2013-06-12 北京福星晓程电子科技股份有限公司 基于信号消除进行噪声估计的方法及系统
US20140016653A1 (en) * 2012-07-10 2014-01-16 Electronics And Telecommunications Research Institute Method of generating packet, method of transmitting packet, and method of ranging of physical layer transmitter of wireless personal area network system
WO2016072216A1 (ja) * 2014-11-06 2016-05-12 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102835087A (zh) * 2010-07-26 2012-12-19 Lg电子株式会社 无线通信系统中发送探测参考信号和扩展上行链路控制信息的方法和设备
US20140016653A1 (en) * 2012-07-10 2014-01-16 Electronics And Telecommunications Research Institute Method of generating packet, method of transmitting packet, and method of ranging of physical layer transmitter of wireless personal area network system
CN103152294A (zh) * 2013-02-27 2013-06-12 北京福星晓程电子科技股份有限公司 基于信号消除进行噪声估计的方法及系统
WO2016072216A1 (ja) * 2014-11-06 2016-05-12 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3661144A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113438721A (zh) * 2021-06-30 2021-09-24 展讯通信(上海)有限公司 子载波间隔的检测方法及装置、可读存储介质、终端
CN113438721B (zh) * 2021-06-30 2022-07-19 展讯通信(上海)有限公司 子载波间隔的检测方法及装置、可读存储介质、终端

Also Published As

Publication number Publication date
EP3661144A4 (en) 2020-07-15
EP3661144A1 (en) 2020-06-03
EP3661144B1 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
US11032784B2 (en) Information transmission method and information transmission apparatus
US10925017B2 (en) Data transmission method and system
WO2019120179A1 (zh) 一种信号发送、接收方法及设备
WO2019024664A1 (zh) 参考信号的传输方法及装置
WO2019052494A1 (zh) 传输方法和传输装置
WO2019029706A1 (zh) 一种信息发送、信息接收方法及装置
CN111565458B (zh) 一种下行传输方法及其装置
WO2018082469A1 (zh) 一种指示直流子载波的方法及装置、电子设备
KR20210100178A (ko) 데이터 전송 방법 및 장치
US10938526B2 (en) Signal sending method, signal receiving method, terminal device, and network device
JP6904512B2 (ja) キャリア情報を送信するための方法、基地局、および端末
WO2016138718A1 (zh) 跳频方法及装置
WO2019029587A1 (zh) 信号发送方法、信号接收方法、终端设备及网络设备
CN110474860B (zh) 一种ofdm基带信号生成方法及装置
US11528705B2 (en) Signal transmission method and device
CN109274619B (zh) 一种频率偏移确定方法及装置
CN113015248B (zh) 位置配置方法、终端设备和网络设备
CN110311763A (zh) 一种ofdm基带信号生成方法及装置
CN110149293B (zh) 一种ofdm基带信号生成方法及装置
CN109756921B (zh) 测量方法和装置
WO2018137574A1 (zh) 一种发送载波信息的方法、基站及终端
CN114257484B (zh) 一种符号应用方法及通信装置
CN106688262B (zh) 无线系统中消除邻带干扰的处理方法和装置
CN117652127A (zh) 信息传输方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018845142

Country of ref document: EP

Effective date: 20200224