WO2019029489A1 - 一种油气田现场随钻岩屑扫描系统及方法 - Google Patents

一种油气田现场随钻岩屑扫描系统及方法 Download PDF

Info

Publication number
WO2019029489A1
WO2019029489A1 PCT/CN2018/099014 CN2018099014W WO2019029489A1 WO 2019029489 A1 WO2019029489 A1 WO 2019029489A1 CN 2018099014 W CN2018099014 W CN 2018099014W WO 2019029489 A1 WO2019029489 A1 WO 2019029489A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
sample
cuttings
drilling
oil
Prior art date
Application number
PCT/CN2018/099014
Other languages
English (en)
French (fr)
Inventor
郝进
杨继进
吴建国
李国梁
杜忠明
原园
Original Assignee
中国科学院地质与地球物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所 filed Critical 中国科学院地质与地球物理研究所
Priority to CN201880004300.3A priority Critical patent/CN109964004B/zh
Publication of WO2019029489A1 publication Critical patent/WO2019029489A1/zh
Priority to US16/741,699 priority patent/US11041383B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • G01V5/08Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/005Testing the nature of borehole walls or the formation by using drilling mud or cutting data
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/06Arrangements for treating drilling fluids outside the borehole
    • E21B21/063Arrangements for treating drilling fluids outside the borehole by separating components
    • E21B21/065Separating solids from drilling fluids
    • E21B21/066Separating solids from drilling fluids with further treatment of the solids, e.g. for disposal
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/046Directional drilling horizontal drilling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/241Earth materials for hydrocarbon content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • G01V5/08Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
    • G01V5/085Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using another radioactive source

Definitions

  • the invention belongs to the field of oil and gas exploration and development, and particularly relates to a rock cutting scanning system and method for oil and gas field on-site drilling.
  • the micro-nano scale research on unconventional reservoirs is mainly concentrated in urban laboratories.
  • the measured samples are drilling cores, and the testing methods include SEM, FIB-SEM, micro-CT, adsorption, etc. These methods have high test resolution.
  • the advantage of fast test speed is: 1) the cost of collecting the core is high, the batch test is expensive; 2) the existing test method is complicated in sample preparation, the instrument is heavy and difficult to handle, The instrument cannot be adapted to the field test environment.
  • the mineral, element, lithology and pore structure of the reservoir are mainly analyzed by portable testing instruments such as logging technology, logging technology, XRD and XRF. These methods have simple sample preparation and easy handling of instruments. It has the advantages of strong adaptability in the field, fast test speed and real-time guidance on the spot.
  • the present invention provides a rock and chip cutting-edge scanning system and method for oil and gas field.
  • the scanning system comprises a sample preparation die and a cuttings scanning device, and the sample preparation die can quickly prepare a large-area scan sample generated by the drilling process in the oil and gas field drilling site, and can be batch scanned by the cuttings scanning device.
  • Analysis, and the cuttings scanning device has the characteristics of portability, shock absorption, temperature control and dustproof, and the wellsite has a strong adaptability to harsh environments.
  • Another object of the present invention is to provide a method for analyzing the cuttings while drilling in an oil and gas field, which can quickly and automatically quantitatively analyze the rock surface structure, elements and minerals, and quickly identify the lithology, and obtain a large-scale image and elastic mechanical parameters of a centimeter level.
  • the best development target layer of vertical wells, the auxiliary horizontal well drilling geosteering and the horizontal well mining stage fracturing scheme can be selected, and the advantages of on-site real-time guidance of drilling and oil and gas field exploration and development can be obtained.
  • An oil and gas field on-site cutting rock cutting system including a sample mold and a cuttings scanning device;
  • the sample preparation mold is used for quickly preparing batches of small-sized rock samples generated during the drilling process of the oil and gas field drilling site into a large-scale scanning sample of a centimeter scale, and preparing the scanning sample by using the rock chip sample can greatly reduce the acquisition cost of the scanned sample. ;
  • the cuttings scanning device is configured to perform batch scanning analysis on a scanned sample at an oil and gas field site, and the cuttings scanning device comprises:
  • a structural unit for fixing hardware of the cuttings scanning device comprising a temperature control component and a damping component, which enables the cuttings scanning device to operate normally under the harsh environment of high temperature and vibration;
  • a scanning unit for performing scan analysis on the scanned sample
  • control unit configured to control a scanning process of the scanning unit
  • the outer casing unit is used to protect the internal hardware of the cuttings scanning device, enabling quick disassembly and dust removal.
  • the sample preparation mold adopts a stainless steel material which is durable and easy to be cooled by a resin, and can quickly prepare a small sample of rock fragments into a scanned sample.
  • the sample preparation mold includes a first mold body and a second mold body, and the side surfaces of the first mold body and the second mold body are provided with a buckle device, and the opening and closing of the buckle device can Achieving splicing and disassembling of the first phantom and the second phantom;
  • the first mold body and the second mold body each include a plurality of half holes, and when the first mold body and the second mold body are spliced, the half holes of the first mold body and the second mold body
  • the plurality of sample holes are formed in one-to-one correspondence; the depth of the sample holes is smaller than the height of the sample mold;
  • the bottom surface of the first mold body and the second mold body includes a positioning hole cap for realizing the splicing and positioning of the first mold body and the second mold body.
  • the process of preparing the cuttings generated during the drilling process of the oil and gas field drilling site by using the sample preparation die is specifically as follows:
  • Drilling debris collection collecting rock debris from the target layer that returns to the surface with the rig mud;
  • Filtration screening first use large sieves to remove large particle debris from non-target layers that may fall from the well wall, and then use small sieves to remove small particles that are too small for analysis. , screening 40 to 200 mesh rock debris as a sample to be tested;
  • the cleaning method is determined according to the composition of the drilling mud.
  • the oil is washed several times with the washing agent, then washed with water and then dried.
  • the cuttings of the mud are directly washed with water and dried;
  • Injection resin molding put the sample to be tested into the sample hole of the sample mold, quickly pour the resin ab glue into the sample hole, stir the cuttings and resin ab glue quickly, and let stand, wait for the cuttings and resin.
  • the ab glue is solidified to obtain a scanned sample, and the powdered small rock chip sample can be reprocessed into a centimeter-scale large-area scanning sample by the curing action of the resin ab glue, and the cuttings sample becomes waste, which is equivalent to the core sample.
  • Polishing The prepared sample is polished by a polishing machine until the surface of the cuttings can see the mirror surface;
  • Plating conductive layer The polished sample surface is coated with a conductive layer.
  • the structural unit includes:
  • a structural skeleton for fixing and protecting hardware devices in the cuttings scanning device, using a stainless steel material, comprising three horizontally arranged plate-like structures, and a plurality of vertically arranged columnar structures connected to the plate-like structures , is a rectangular skeleton structure, including an upper structure and a lower structure;
  • a locking caster disposed at a bottom of the structural skeleton for moving the cuttings scanning device
  • a slide rail drawer disposed on the lower structure of the structural skeleton
  • shock absorbing member disposed at a bottom of the slide rail drawer for reducing the influence of drilling vibration on the drilling site on the quality of the scanned image
  • a temperature control component disposed on the upper structure and the lower structure of the structural skeleton, is composed of a plurality of fans for dissipating heat generated by the cuttings scanning device to the outside to enhance the cuttings scanning device to the field
  • the adaptability of the high temperature environment in the desert ensures the normal operation of hardware equipment.
  • the scanning unit includes:
  • the backscattering electron probe, the secondary electron probe, the EDS spectrum probe, and the sample stage are disposed inside the scanning and detecting system cavity
  • the backscattered electron probe is used to collect backscattered electron signals
  • the secondary electron probe is used to collect secondary electronic signals
  • the EDS spectrum probe is used to collect elemental signals
  • the sample stage is fully automatic Motor sample stage capable of loading multiple samples
  • An electron gun and a lens barrel wherein the electron gun is used to provide a high-energy focused electron beam, which is disposed on the top of the structural structure upper layer structure; one end of the lens barrel is accommodated in the scanning and detecting system cavity for the electron beam Focusing and aligning the focused electron beam to the sample stage;
  • a vacuum pump is used to effect evacuation of the scanning and detection system chamber.
  • control unit includes:
  • a scan control subunit for controlling an electron gun, a lens barrel, a backscattered electron probe, a secondary electron probe, an EDS spectrum probe, and a sample stage, disposed on three sides of an upper structure of the structural skeleton, the scan controller
  • the unit is a plate-like structure, and a 90-degree connector is arranged at the bottom of the scanning control sub-unit plate structure for pulling the plate-shaped scanning control sub-unit from a vertical state to facilitate the inspection and maintenance of the scanning control sub-unit;
  • a software control subunit configured to implement control of all software and hardware, storage and transmission of data, and disposed in the slide rail drawer;
  • Input subunits through which an operator can set scan parameters
  • the housing unit includes:
  • the outer panel and the frame are the main wrapping parts of the outer casing unit, and have a double-layer structure, which is made of an aluminum alloy material, and the outer casing panel and the frame are used together to realize quick disassembly and assembly;
  • a buckle and a card slot are disposed on the outer casing panel and the frame, and the buckle and the card slot are used together to connect the broom unit to each other and to the structural frame;
  • a dustproof member for dustproofing including a dustproof filter, disposed at a position corresponding to the temperature control component, and the dustproof component can be used as a heat dissipation passage of the temperature control component;
  • a cover member disposed on the outer casing panel including a sample chamber cover for loading and unloading a sample, a power switch cover for protecting the switch button, an electron gun cover for replacing the electron gun filament, and a cover for the software control subunit Software control subunit cover; with snaps and can be rotated open and closed.
  • An oil and gas field on-site cutting rock cutting analysis method using the oil and gas field on-site drilling rock cutting system, the scanning analysis method comprising a scanning step and an analysis step;
  • the scanning step is performed by using the oil and gas field on-site cutting rock cutting system to perform batch scanning test of cuttings samples, and obtaining rock cutting sample scanning test results;
  • the analyzing step includes an elastic mechanical parameter calculation sub-step and an oil and gas field field application sub-step;
  • the elastic mechanical parameter calculation substep uses a cuttings sample to calculate an elastic mechanical parameter
  • the scanning step completes a large field of view scanning of the sample centimeter by scanning the sub-regions separately, and the scanning step includes:
  • the EDS spectrum probe is used to acquire the X-ray information of the sub-area and the sub-area elements are automatically identified and quantitatively analyzed.
  • the mineral database is used to automatically identify and quantitatively analyze the minerals in the sub-area and obtain the mineral image of the sub-area, and select the next sub-area.
  • the lithology database is used to automatically identify the lithology, turn to the next sample for scanning, complete all sample scans, and reload the sample for a new batch of samples.
  • the sub-step of calculating the elastic mechanics parameter is specifically:
  • Backscattered electron images, secondary electron images and mineral images of a series of sub-regions are respectively spliced together by image splicing software to obtain backscattered electron images, secondary electron images and mineral images of a centimeter-scale large field of view;
  • the surface structure quantitative analysis is performed on the scanned sample by using a backscattered electron image of a centimeter-scale large field of view or a secondary electron image of a centimeter-scale large field of view to obtain quantitative analysis data of the surface structure;
  • the mineral content of the scanned sample is quantitatively analyzed by using a mineral image of a centimeter-scale large field of view to obtain quantitative analysis data of the mineral;
  • the equivalent medium model refers to the elastic mechanical parameters of the mineral and the structure itself combined with the proportion of minerals and structures. To determine the elastic mechanical parameters of the cuttings sample.
  • the selecting the optimal development target layer by using the vertical well is specifically:
  • rock fragments of a vertical drilling of a certain block are sampled at equal intervals, and the sample preparation and scanning of the cuttings are completed to obtain the lithology, mineral, element and elastic mechanical parameter data with the depth of the well;
  • the obtained lithology, mineral, elemental, and elastic mechanical parameter data are drawn into numerical well pillars that vary with well depth;
  • the well column is divided into different intervals;
  • auxiliary horizontal well drilling geosteering and horizontal well mining stage fracturing scheme are formulated as follows:
  • the lithology, mineral, elemental, and elastic mechanical parameter data obtained from the vertical well are drawn into vertical well pillars, and the development target layer is marked;
  • Real-time data of lithology, minerals, elements and elastic mechanics obtained by horizontal well drilling are drawn into horizontal well pillars, horizontal well pillars are compared with vertical well pillars, real-time detection of accurate intervals of horizontal well drilling, timely adjustment
  • the direction of drilling ensures the accurate drilling of the drill bit at the target layer, thus achieving the goal of assisting horizontal well drilling geosteering;
  • horizontal well columns can be used as an important basis for the development of staged fracturing schemes for horizontal wells; horizontal well columns can be used for the development of shale gas horizontal wells in order to improve the accuracy and efficiency of oil and gas exploration. And the horizontal well column can be used to calibrate the logging well and the logging well column to improve the accuracy of logging and logging.
  • the method provided by the invention can rapidly prepare a large-area scanning sample by using a sample preparation mold to rapidly and batch-produce small debris samples generated during the drilling process of the oil and gas field drilling site; the sample preparation process is simple and fast, and fully utilizes the drilling method.
  • the cuttings produced by the process are used as scanning samples, and the cuttings samples become waste.
  • the traditional method can overcome the limitation that the cuttings can only be used for the logging of the magma cuttings, and on the other hand, the core collection process is avoided. No additional test samples are required, which greatly reduces the acquisition cost of scanned samples;
  • the oil and gas field on-site cutting debris scanning device provided by the method of the invention can be batch scanned and analyzed, and has the characteristics of portable, shock absorption, temperature control and dustproof, and can be normal in a harsh environment such as high temperature, dust, vibration and the like. Operation, realizing the field well site operation of the scanning system;
  • the scanning step in the analysis method provided by the invention is very simple, and the degree of automation is high, and the surface structure, elements and minerals of the rock surface can be quickly and fully automated quantitatively analyzed, and the lithology can be quickly identified, and the existing technology cannot be used in the field. Limitations of automatic mineral quantitative analysis and automatic lithology identification at the drilling site;
  • the analytical method provided by the present invention uses the cuttings sample to calculate the elastic mechanical parameters, and the calculated elastic mechanical parameters are important for the development of fracturing of oil and gas wells;
  • the scan data obtained by the present invention can be applied to the field of oil and gas fields, using the vertical well to select the best development target layer, the auxiliary horizontal well drilling geosteering and the horizontal well mining stage fracturing scheme to improve the accuracy and benefit of oil and gas exploration. .
  • FIG. 1a is a top view of a sample preparation mold according to an embodiment of the present invention.
  • Figure 1b is a bottom view of a sample preparation mold according to an embodiment of the present invention.
  • Figure 1c is a side view of a sample preparation mold in an embodiment of the present invention.
  • 1d is a three-dimensional schematic view of a sample preparation mold according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing a molded sample in an embodiment of the present invention.
  • FIG. 4 is a three-dimensional schematic diagram of a structural unit, a scanning unit, and a control unit in a cutting chip scanning device according to an embodiment of the present invention
  • 5a is a three-dimensional schematic view of a cuttings scanning device (including a casing unit) according to an embodiment of the present invention
  • FIG. 5b is a three-dimensional schematic diagram of a central portion of a housing unit that can be split into two parts according to an embodiment of the present invention
  • FIG. 6 is a flow chart of a scanning step in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of selecting an optimal development target layer by using a vertical well according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a plan for assisting horizontal well drilling geosteering and horizontal well mining stage fracturing according to an embodiment of the present invention.
  • an embodiment of the present invention provides an oil and gas field on-site cutting rock cutting system, including a sampling mold and a cuttings scanning device, which are used for crushing small rocks generated during the drilling process of an oil and gas field drilling site.
  • the chip samples are quickly batch-produced into large-area scanned samples, and the cuttings samples become waste, which greatly reduces the acquisition cost of the scanned samples;
  • the cuttings scanning device is used for batch scanning analysis of the scanned samples at the oil and gas field site,
  • the cuttings scanning device comprises four parts: a structural unit for fixing the hardware of the cuttings scanning device, the structural unit comprising a temperature control component and a damping component, which enables the cuttings scanning device to be in a harsh environment of high temperature and vibration Under normal operation; scanning unit for scanning analysis of scanned samples; control unit for controlling scanning process; housing unit for protecting internal hardware of cuttings scanning device for quick disassembly and dust removal.
  • the sample preparation mold can make the sample preparation process simple and fast, and can fully utilize the cuttings generated by the drilling process as a scanning sample, avoiding the core collection process, realizing zero cost of sample collection, and avoiding expensive Sample collection cost.
  • the sample mold is made of stainless steel or other materials, and the selected material needs to have the characteristics of being durable and easy to be cooled by the resin ab glue.
  • the sample preparation mold comprises three cylindrical sample preparation holes, and three samples can be prepared at the same time, specifically, the hole is opened from the top section of the mold to obtain a sample preparation hole, and the depth of the sample preparation hole is smaller than the sample preparation.
  • the cylindrical sample hole of the sample preparation mold has a diameter of 10-30 mm and a height of 5-10 mm.
  • the cylindrical sample hole is not limited to three, and may be any natural number, and the shape of the sample hole is not limited to a cylindrical shape, and may be any shape such as a square or the like.
  • the sample preparation mold is composed of two parts which can be spliced left and right to facilitate demolding of the sample after it is made. As shown in FIGS. 1a-1d, the sample preparation mold includes a first mold body 11 and a second mold body 12, which can realize left and right stitching, and the side surfaces of the first mold body 11 and the second mold body are disposed.
  • the opening and closing of the buckle device can achieve the splicing and disassembling of the first mold body and the second mold body;
  • the first mold body and the second mold body both include a half hole, the first mold body and the second mold body are spliced, the half hole of the first mold body and the half hole of the second mold body are correspondingly formed in a plurality of holes;
  • the first mold body and the The bottom surface of the second mold body includes a positioning hole cap 101, which realizes the splicing and positioning of the first mold body and the second mold body.
  • the sample preparation process using the sample preparation die includes: collecting drilling debris of a certain depth, screening of cuttings, cutting and drying of cuttings, injection molding, polishing, and Coating; specifically:
  • Drilling cuttings collection collecting rock debris from the target layer that returns to the surface with the drilling rig mud; numbering the collected drilling cuttings, in the embodiment of the invention, the drilling cuttings specifically refer to the logging of the oil and gas field drilling site The mud collected by the personnel to the mud of the target layer returned to the ground.
  • Filtration screening refers to the selection of sieves of two different sizes of sieves to screen samples, such as 40 mesh sieves and 200 mesh sieves.
  • the large particle cuttings are then sieved with small sieves to remove small particle debris that is too small for analysis, and finally retain a certain size of the target layer cuttings.
  • 40 to 200 mesh rock fragments are screened. Sample to be tested;
  • Cleaning cleaning and drying the sample to be tested; the cleaning method is determined according to the composition of the drilling mud, and the oil cuttings are first washed with oil washing agent, then washed with water and then dried; The cuttings for the water-based mud are directly washed with water and then dried.
  • Injection resin molding put the sample to be tested into the sample preparation hole of the sample preparation mold, quickly pour the appropriate amount of resin ab glue into the sample preparation hole, stir the cuttings and resin ab glue quickly, and let stand. The cuttings and the resin ab glue are solidified to obtain a scanned sample;
  • Polishing refers to polishing the prepared sample with a polishing machine, first grinding with coarse sandpaper, and then grinding with fine sandpaper until the surface of the cuttings can see the mirror surface;
  • Plating conductive layer refers to the surface of the polished sample is carbon or gold, in order to increase the conductivity of the sample, improve the scanning imaging quality and mineral analysis accuracy; as shown in Figure 3, is a schematic diagram of the prepared sample.
  • the injection resin is formed in the following steps:
  • the buckle device 103 is opened, and the molded sample after curing is taken out, and the sample has a diameter of 10-30 mm and a height of 5-10 mm.
  • FIG. 4 is a three-dimensional schematic diagram of a structural unit, a scanning unit, and a control unit in a cutting chip scanning device according to an embodiment of the present invention
  • FIG. 5a is a three-dimensional schematic view of a cuttings scanning device (including a housing unit) according to an embodiment of the present invention
  • the middle portion of the middle casing unit can be split into a three-dimensional schematic view of the two parts.
  • the cuttings scanning device provided by the embodiment of the invention comprises a structural unit, a scanning unit, a control unit and a casing unit.
  • the structural unit includes:
  • the structural skeleton 401 is used for fixing and protecting the hardware equipment in the on-site cutting debris cutting system of the oil and gas field, and is made of stainless steel, and is divided into an upper structure and a lower structure, and is composed of three plate-like structures and a plurality of columnar structures. Skeleton structure; 2) Locking caster 402 for moving the oil and gas field on-site drilling cuttings scanning system, disposed at the bottom of the structural skeleton; the number can be four, the bearing capacity of the locking caster is large, mute It can easily lock and roll the casters and play the role of flexible mobile devices;
  • a shock absorbing member 403 configured to reduce the influence of the drilling vibration of the drilling site on the quality of the scanned image, and is disposed at the bottom of the slide drawer;
  • the temperature control component 414 is configured to dissipate heat generated by the device to the outside, and is composed of a plurality of fans, and is disposed in a plurality of upper structures and lower structures of the structural skeleton, thereby enhancing adaptation of a high temperature environment such as a wild desert. Ability to ensure the normal operation of hardware equipment.
  • the scanning unit includes:
  • the sample stage is a fully automatic motor sample stage capable of loading a plurality of samples, and the sample stage can be conveniently moved, unloaded and loaded with samples;
  • an electron gun 405 and a lens barrel 406 for providing a high-energy focused electron beam which is disposed on the top of the upper structure of the structural skeleton, and may be a tungsten filament electron gun, CeB 6 or LaB 6 or the like; one end of the lens barrel
  • the device is disposed in the scanning and detecting system cavity for focusing the electron beam and aligning the focused electron beam with the sample stage; wherein the electron gun filament replacement port 407 is disposed on the uppermost plate-like structure of the structural skeleton 401;
  • the control unit includes:
  • a scan control subunit 413 for controlling an electron gun, a lens barrel, a backscattered electron probe, a secondary electron probe, an EDS spectrum probe, and a sample stage, disposed on three sides of an upper structure of the structural skeleton,
  • the scanning control sub-unit is a plate-like structure, and a 90-degree connector is arranged at the bottom of the scanning control sub-unit plate structure for pulling the plate-shaped scanning control sub-unit from a vertical state to facilitate the inspection of the scanning control sub-unit And maintenance;
  • the software control sub-unit 415 is configured to implement all software and hardware control, data storage and transmission, and is disposed in the slide rail drawer.
  • a computer host can be selected; the bottom of the slide rail drawer is provided The slide rail can be easily removed from the computer host in the drawer to facilitate inspection and maintenance of the host computer;
  • input subunit 417 the operator can set the scan parameters through the input unit; in a specific implementation, the input subunit 417 includes a mouse and a keyboard;
  • the display unit and the input unit may be disposed at the top of the structural skeleton.
  • the housing unit includes:
  • the outer casing panel 501 and the frame 502. The outer casing panel is the main wrapping component of the outer casing unit.
  • the double-layer structure is made of aluminum alloy material, which is very hard and light in weight, and can effectively block the strong collision during the transportation process of the instrument. It acts to protect the cuttings scanning device.
  • the outer casing panel 501 serves as a main panel of the entire instrument casing, and the casing frame 502 is used for connecting the outer casing panel, and the outer casing panel and the frame are used together to realize quick disassembly and assembly;
  • a buckle 508 and a card slot 507 are disposed on the outer casing panel and the frame, and the buckle and the card slot are used together to connect the broom unit to each other and to the structural skeleton;
  • the middle portion of the outer casing unit can be disassembled into two parts, and the detachable outer casing unit greatly facilitates inspection and maintenance of the hardware of the cuttings scanning device;
  • a dustproof member 509 for dustproofing including a dustproof filter, disposed at a position corresponding to the temperature control component, and the dustproof component can be used as a heat dissipation passage of the temperature control component;
  • the 509 is set to effectively remove external dust into the instrument and enhance the adaptability of the instrument in harsh environments such as deserts in the wild;
  • a cover member disposed on the outer casing panel including a sample chamber cover 504 for loading and unloading a sample, a power switch cover 505 for protecting the switch button, an electron gun cover 506 for replacing the electron gun filament, for shielding the
  • the outer casing unit is further provided with a handle 503 to facilitate the handling of the instrument.
  • the sample preparation mold can quickly prepare large-area scanned samples of small debris samples generated during the drilling of oil and gas fields on the drilling site; the sample preparation process is simple and fast, and the cuttings generated while drilling are fully utilized as scanning samples.
  • the cuttings sample turns waste into treasure.
  • it overcomes the limitation that the cuttings can only be used for the logging of the magma cuttings in the traditional method.
  • the core collecting process is avoided, and no additional test samples are needed, which greatly reduces The cost of acquiring the scanned sample;
  • the components of the cuttings scanning device have reasonable layout and small total volume, which can enhance the portability of the cuttings scanning device to the field operation, and the structural unit and the outer casing unit are easy to disassemble, and the instrument is inspected and maintained.
  • the cutting chip scanning device has a whole weight of less than 200KG and a volume of less than 1 m 3 , and has backscattering and secondary electron image resolution better than 500 nm, X-ray spatial resolution is about 1 um, and single sample scanning time is less than 30 min, which can satisfy Fast and high resolution test requirements on site.
  • the embodiment further provides an oil and gas field on-site rock cutting analysis method, the scanning analysis method includes a scanning step and an analysis step; the scanning analysis method includes a scanning step and an analysis step;
  • the scanning step uses the oil and gas field on-site drilling cuttings scanning system to perform detailed scanning, and is used for realizing batch scanning test of cuttings samples, and obtaining rock cutting sample scanning test results;
  • the analyzing step includes an elastic mechanical parameter calculation sub-step and an oil and gas field field application sub-step;
  • the elastic mechanical parameter calculation sub-step calculates the elastic mechanical parameter by using the cuttings sample scanning test result
  • the field application sub-step of the oil and gas field specifies the specific process of the application of the scan data in the field of the oil and gas field, including two applications: selecting the optimal development target layer using the vertical well and assisting the horizontal well drilling geosteering and the horizontal well mining sectional fracturing scheme Formulated.
  • the scanning step is specifically as follows:
  • the sample block 412 is loaded with 9 cuttings samples 3 at a time, the sample chamber cover 504 of the outer casing unit is opened, the sample stage is loaded into the scanning and detecting system chamber 408, the sample chamber cover is closed, and the scanning and detecting system chamber is performed by the vacuum pump 419. Vacuuming; the number of cuttings samples loaded at one time in the sample stage can be adjusted as needed;
  • the lithology is automatically identified for this sample using the lithology database 609;
  • the scanning process only needs one computer to complete all operations, the operation is very simple; the scanning process is highly automated, and no one needs to be involved after setting the parameters at one time; the scanning process overcomes the semi-quantitative semi-quantitative analysis of elements in the traditional method.
  • the defect realizes the automatic identification and quantitative analysis of the elements; the scanning process overcomes the defects of the traditional method that can not automatically identify and quantitatively analyze minerals at the drilling site, realizes the automatic identification and quantitative analysis of minerals; the scanning process overcomes the traditional methods. Identifying the defects of lithology and realizing the automatic identification of lithology; the scanning process overcomes the defects with small scanning range in the traditional method, and the large-area scanning of the sample centimeter is completed by scanning the sub-region separately.
  • the sub-steps of calculating the elastic mechanical parameters are specifically:
  • Backscattered electron images, secondary electron images and mineral images of a series of sub-regions are respectively spliced together by image splicing software to obtain backscattered electron images, secondary electron images and mineral images of a centimeter-scale large field of view;
  • the surface structure quantitative analysis is performed on the scanned sample by using a backscattered electron image of a centimeter-scale large field of view or a secondary electron image of a centimeter-scale large field of view to obtain quantitative analysis data of the surface structure;
  • the mineral content of the scanned sample is quantitatively analyzed by using a mineral image of a centimeter-scale large field of view to obtain quantitative analysis data of the mineral;
  • the equivalent medium model refers to the elastic mechanical parameters of the mineral and the structure itself combined with the proportion of minerals and structures. To determine the elastic mechanical parameters of the cuttings sample.
  • the surface structure analysis refers to the evaluation of the porosity and pore size distribution of the cuttings, which can provide a basis for reservoir spatial characterization, oil and gas occurrence status research and oil and gas resource assessment.
  • the elements in the automatic identification and quantitative analysis of elements and minerals include elements such as K, S, V, Ni, Cu, U, Th, etc., which can reflect the sedimentary environment and radioactivity of the formation.
  • the minerals are automatically identified and quantified, including siliceous minerals such as quartz and feldspar, including carbonate minerals such as calcite and dolomite, including clay minerals such as illite and chlorite, which can be used to analyze sedimentary environments and diagenesis. Evolution and diagenetic facies.
  • the lithology automatically identified includes sedimentary rocks such as sandstone, carbonate rock and mudstone, metamorphic rocks such as quartzite and slate, magmatic rocks such as granite and basalt.
  • Accurate lithology identification is important for stratigraphic division and oil and gas exploration of complex reservoirs. significance.
  • Computational elastic mechanics parameters including elastic modulus, Poisson's ratio, brittleness index, wave velocity, etc., can provide a strong basis for drilling and completion optimization and reservoir fracturing.
  • the optimal development target layer is selected by using the vertical well in conjunction with FIG. 7.
  • the specific steps are:
  • rock fragments of a vertical drilling of a certain block are sampled at equal intervals, and the sample preparation and scanning of the cuttings are completed to obtain the lithology, mineral, element and elastic mechanical parameter data with the depth of the well;
  • the obtained lithology, mineral, elemental, and elastic mechanical parameter data are drawn into numerical well pillars that vary with well depth;
  • the well column is divided into different intervals;
  • a siliceous shale layer is preferably the best development target layer in the shale layer of the third layer.
  • an auxiliary horizontal well drilling geosteering and a horizontal well mining sectional fracturing scheme are formulated, specifically:
  • a drilling system consisting of a drilling rig 801, a drill pipe 802 and a drill bit 803, performing horizontal well drilling on a preferred target layer of the vertical well, and collecting horizontal well drilling debris in an equally spaced well;
  • the target layer of the horizontal well drilling shown in Figure 8 is the siliceous shale layer of the third layer.
  • the siliceous shale layer is found through the horizontal well column and the vertical well column.
  • the lower shale layer is then adjusted to drill upwards to ensure that horizontal wells are drilled into the siliceous shale layer for geosteering.
  • horizontal well columns can be used as an important basis for the development of staged fracturing schemes for horizontal wells, such as the development of shale gas horizontal wells, and improve the accuracy and efficiency of oil and gas exploration.
  • water The Pingjing column can calibrate the logging well and the logging well column, improving the accuracy of logging and logging.
  • the traditional technology needs to use a special sampling drill pipe for sampling. Sampling can be completed at least 50 times, and the cost per sampling is at least 100,000. Therefore, the core sampling work of 1000m length is completed, and the cost is at least 5 million.
  • the 1000m length core needs to be analyzed after sampling. According to the prior art, the collected sample needs to be transported to a laboratory in the city for analysis. According to the analysis of one sample per meter, each sample preparation and test analysis requires an analysis cost of 5,000 yuan, then the 1000m length core needs at least 5 million for analysis.
  • Comprehensive sampling and analysis using the existing technology to complete the analysis of 1000m length core, at least 10 million, and considering the thickness of the formation is generally greater than 3000m, the core collection needs to spend more money.
  • the cuttings samples can be directly collected, and the sampling cost of the traditional method is omitted.
  • the analysis cost for all analysis work of 1000m length, the total analysis cost will not exceed 1 million, and at least 90% of research funding can be saved.
  • sampling period in the prior art is also very long, and it takes at least 2 months to complete the sampling work of the sample of 1000 m length, and the technical solution provided by the invention is used to collect the sample from the beginning to the completion of the analysis, and the total period is 2 weeks. Left and right; able to complete analysis work faster, greatly improving work efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Remote Sensing (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

公开了一种油气田现场随钻岩屑扫描系统及方法。该油气田现场随钻岩屑扫描系统包括制样模具和岩屑扫描装置。制样模具用于将油气田钻井现场随钻过程中产生的碎小岩屑样品快速批量制备成大面积扫描样品,岩屑扫描装置用于批量扫描分析,具有便携、减震、控温和防尘特点,井场恶劣环境适应能力。岩屑扫描方法包括扫描步骤和分析步骤,扫描步骤可以快速定量分析岩石表面结构、元素和矿物种类,快速识别岩性,分析步骤可以获得厘米级大视域图像和弹性力学参数、选取竖直井最佳开发目标层、辅助水平井钻井地质导向和水平井开采分段压裂方案制定,提高油气勘探的精度和效益。

Description

一种油气田现场随钻岩屑扫描系统及方法 技术领域
本发明属于石油天然气勘探开发领域,具体涉及一种油气田现场随钻岩屑扫描系统及方法。
背景技术
近年来,随着油气勘探程度的深入,页岩油气和致密油气等非常规油气越来越受到国内外的重视,成为改变全球石油能源格局的关键。非常规油气发展迅速,致密油气和页岩油气的商业开采也越趋成熟,占石油资源的比重也越来越大,加快非常规油气的勘探开发有着举足轻重的意义。非常规油气储层均非常致密,需要勘探者们由常规尺度向微纳米尺度深入,准确快速的厘清非常规储层微纳米尺度的孔隙和裂隙结构、矿物含量、复杂储层的岩性和弹性力学性质对于前期的资源评价、中期的钻井导向和后期的压裂改造投产有着重要的意义。
目前对于非常规储层的微纳米尺度的研究主要集中于城市实验室,测量的样品为钻井岩芯,测试手段包括SEM、FIB-SEM、微米CT、吸附法等,这些方法具有测试分辨率高、测试速度快的优势。但是,现有技术中样品采集和测试过程中存在的问题是:1)采集岩芯需要的成本较高,批量测试价格昂贵;2)现有测试方法中样品制备复杂、仪器笨重不便于搬运、仪器不能适应野外测试环境。
目前,在野外钻井现场,主要通过录井技术、测井技术、XRD和XRF等便携式测试仪器对储层的矿物、元素、岩性和孔隙结构进行分析,这些手段具有制样简单、仪器便于搬运、野外适应性强、测试速度快、实时指导现场工作等优势。
但是,现有技术中在野外钻井现场对储层的矿物、元素、岩性和孔隙结构进行分析,所存在的问题是:
1)受限于便携式仪器的测试精度以及仪器测试原理的局限性,野外测试准确性较差,无法准确反映地层真实信息;
2)随着钻头等钻井技术的升级,PDC钻头或空气钻导致钻井岩屑非常细小,肉眼无法准确判断,严重影响现场技术人员对地层岩性的准确判断;
3)现有野外钻井现场分析技术无法实现矿物全自动识别和定量分析,无法实现岩性的全自动识别;
4)受限于多年来依靠人为主观判断进行岩屑录井的局限,急需要全自动定性和定量识别岩性的技术出现;
5)现有技术还不存在利用岩屑样品计算弹性力学参数的方法;
6)现有技术还不存在利用岩屑样品实时指导钻井和油气田探勘开发的技术方法。
因此,亟需一种同时满足制样简单、测试仪器易于搬运、适用于井场恶劣环境、测试精度较高、可以现场快速定量分析岩石表面结构、元素和矿物,快速识别岩性、计算弹性力学参数,具有现场实时指导钻井和油气田探勘开发的扫描系统和技术方法。
发明内容
针对上述问题,本发明提供了一种油气田现场随钻岩屑扫描系统及方法。所述扫描系统包括制样模具和岩屑扫描装置,采用制样模具可以将油气田钻井现场随钻过程中产生的碎小岩屑样品快速批量制备成大面积扫描样品,采用岩屑扫描装置可以批量扫描分析,且岩屑扫描装置具有便携、减震、控温和防尘特点,井场恶劣环境适应能力强。
本发明另一目的是提供一种油气田现场随钻岩屑分析方法,能够快速全自动定量分析岩石表面结构、元素和矿物,快速识别岩性,可以获得厘米级大视域图像和弹性力学参数,可以选取竖直井最佳开发目标层、辅助水平井钻井地质导向和水平井开采分段压裂方案制定,具有现场实时指导钻井和油气田探勘开发的优势。
本发明是通过以下技术方案实现的:
一种油气田现场随钻岩屑扫描系统,包括制样模具和岩屑扫描装置;
所述制样模具用于将油气田钻井现场随钻过程中产生的碎小岩屑样品快速批量制备成厘米级大面积扫描样品,通过采用岩屑样品制备扫描样品,能够大幅度降低扫描样品的获取成本;
所述岩屑扫描装置用于在油气田现场对扫描样品进行批量扫描分析,所述岩屑扫描装置包括:
结构单元,用于固定岩屑扫描装置的硬件,所述结构单元包括温控部件和减震部件,能够使所述岩屑扫描装置在高温和震动的恶劣环境下正常运转;
扫描单元,用于对扫描样品进行扫描分析;
控制单元,用于控制所述扫描单元的扫描过程;
外壳单元,用于保护岩屑扫描装置的内部硬件,能够实现快速拆装和防尘。
进一步地,所述制样模具采用耐用且易于树脂冷却散热的不锈钢材质,能够将碎小的岩屑样品快速批量制备成扫描样品。
进一步地,所述制样模具包括第一模体和第二模体,所述第一模体和所述第二模体的侧面设置有搭扣装置,通过所述搭扣装置的开合能够实现所述第一模体和所述第二模体的拼接和拆卸;
所述第一模体和所述第二模体均包括多个半孔,将所述第一模体和所述第二模体拼接时,第一模体的半孔和第二模体的半孔一一对应形成多个制样孔;所述制样孔的深度小于所述制样模具的高度;
所述第一模体和所述第二模体的底面包括定位孔帽,所述定位孔帽用于实现所述第一模体和所述第二模体的拼接定位。
进一步地,采用所述制样模具将油气田钻井现场随钻过程中产生的岩屑制备成扫描样品的过程具体为:
钻井岩屑收集:收集与随钻机泥浆一起返到地面的目的层的岩石碎屑;
岩屑过筛分选:先用大筛孔的筛子去除可能来自井壁掉落的非目的层的大颗粒岩屑,再用小筛孔的筛子去除颗粒太小不便于分析的小颗粒岩屑,筛选出40目~200目的岩石碎屑作为待测样品;
清洗:将待测样品清洗烘干;清洗的方法根据钻井泥浆的成分来确定,对于油基泥浆的岩屑先用洗油剂进行多次洗油,然后用清水淘洗后烘干,对于水基泥浆的岩屑直接用清水淘洗后烘干;
注入树脂成型:将待测样品放入制样模具的制样孔中,将树脂ab胶快速倒入制样孔中,将岩屑和树脂ab胶快速搅拌均匀,静置,待岩屑和树脂ab胶固化成一体得到扫描样品,通过树脂ab胶的固化作用可以将粉末状的碎小岩屑样品重新加工成厘米级的大面积扫描样品,岩屑样品变废为宝,实现等效于岩心样品的利用价值;
抛光:利用抛光机对制好的样品进行打磨,直到岩屑表面能够看到镜面为止;
镀导电层:对抛光好的样品表面镀导电性层。
进一步地,所述结构单元包括:
结构骨架,用于固定和保护所述岩屑扫描装置中的硬件设备,采用不锈钢材质,包括三个水平平行设置的板状结构、与所述板状结构连接的多个竖直设置的柱状结构,为矩形骨架结构,包括上层结构和下层结构;
带锁脚轮,设置于所述的结构骨架的底部,用于移动所述岩屑扫描装置;
滑轨抽屉,设置于所述的结构骨架的下层结构;
减震部件,设置于所述滑轨抽屉的底部,用于减少钻井现场的钻井震动对扫描图像质量的影响;
温控部件,设置于所述结构骨架的上层结构和下层结构,由多个风扇组成,用于将所述岩屑扫描装置产生的热量逸散到外部,以增强所述岩屑扫描装置对野外沙漠高温环境的适应能力,保障硬件设备的正常运转。
进一步地,所述扫描单元包括:
扫描和检测系统腔,设置于所述结构骨架的上层结构,用于保持真空环境,且所述扫描和检测系统腔内部设置有背散射电子探头、二次电子探头、EDS能谱探头和样品台;其中,所述背散射电子探头用于采集背散射电子信号,所述二次电子探头用于采集二次电子信号,所述EDS能谱探头用于采集元素信号,所述样品台为全自动马达样品台,能够装载多个样品;
电子枪和镜筒,所述电子枪用于提供高能聚焦电子束,设置于所述结构骨架上层结构的顶部;所述镜筒的一端容设于所述扫描和检测系统腔内,用于对电子束进行聚焦并将聚焦后电子束对准所述样品台;
真空泵,用于实现对所述扫描和检测系统腔的抽真空。
进一步地,所述控制单元包括:
扫描控制子单元,用于控制电子枪、镜筒、背散射电子探头、二次电子探头、EDS能谱探头和样品台,设置于所述结构骨架的上层结构的三个侧面,所述扫描控制子单元为板状结构,在扫描控制子单元板状结构的底部配有90度连接器,用于将板状扫描控制子单元从竖直拉成水平状态,方便扫描控制子单元的检查和维修;
软件控制子单元,用于实现所有软件和硬件的控制、数据的存储及传输,设置于所述滑轨抽屉内;
输入子单元,操作人员能够通过所述输入单元来设置扫描参数;
显示子单元,用于显示扫描结果。
进一步地,所述外壳单元包括:
外壳面板及边框,所述外壳面板为外壳单元的主要包裹部件,为双层结构,采用铝合金材质,所述外壳面板和所述边框配合使用,能够实现快速拆装;
卡扣和卡槽,设置于所述外壳面板及所述边框上,卡扣和卡槽配合使用,以使所述扫外壳单元相互连接并且固定在所述的结构骨架上;
防尘部件,用于防尘,包括防尘滤网,设置于所述温控部件对应的位置,同时所述防尘部件能够用作所述温控部件的散热通道;
盖子部件,设置于所述外壳面板上,包括用于装卸样品的样品腔盖、用于保护开关按钮的电源开关盖、用于更换电子枪灯丝的电子枪盖、用于遮挡所述软件控制子单元的软件控制子单元盖;带有卡扣且能够旋转打开和闭合。
一种油气田现场随钻岩屑扫描分析方法,采用所述油气田现场随钻岩屑扫描系统,所述扫描分析方法包括扫描步骤和分析步骤;
所述扫描步骤采用所述油气田现场随钻岩屑扫描系统进行扫描,用于实现岩屑扫描样品的批量扫描测试,获得岩屑样品扫描测试结果;
所述分析步骤包括弹性力学参数计算子步骤和油气田现场应用子步骤;
所述弹性力学参数计算子步骤采用岩屑样品来计算弹性力学参数;
所述油气田现场应用子步骤包括:
利用竖直井选取最佳开发目标层;和
辅助水平井钻井地质导向和水平井开采分段压裂方案制定。
进一步地,所述扫描步骤通过子区域分别扫描的方式完成样品厘米级的大视域扫描,所述扫描步骤依次包括:
加载样品、设定扫描区域、选取扫描子区域、利用背散射探头获取子区域的背散射电子图像、利用二次电子探头获取子区域的二次电子图像、抠除子区域中非岩屑视域、利用EDS能谱探头获取子区域X射线信息并对子区域元素进行自动识别和定量分析、利用矿物数据库对子区域矿物进行自动识别和定量分析并获取子区域的矿物图像、选取下一子区域进行扫描、完成所有子区域扫描后利用岩性数据库对此样品自动识别岩性、转向下一个样品进行扫描、完成所有样品扫描后重新加载样品进行新一批样品的扫描。
进一步地,所述弹性力学参数计算子步骤具体为:
利用图像拼接软件分别将一系列的子区域的背散射电子图像、二次电子图像和矿物图像拼接在一起,得到厘米级大视野的背散射电子图像、二次电子图像和矿物图像;
利用厘米级大视野的背散射电子图像或厘米级大视野的二次电子图像对扫描样品进行表面结构定量分析,获得表面结构定量分析数据;
利用厘米级大视野的矿物图像对扫描样品的矿物含量进行定量分析,获得矿物定量分析数据;
结合所述表面结构定量分析数据和所述矿物定量分析数据,再根据等效介质模型计算弹性力学参数,等效介质模型是指矿物和结构自身的弹性力学参数结合矿物和结构所占的比例关系来确定岩屑扫描样品的弹性力学参数。
进一步地,所述利用竖直井选取最佳开发目标层,具体为:
对某一区块的某口竖直钻井的岩屑进行等间隔井深采样,完成岩屑扫描样品制备和扫描,获取随井深变化的岩性、矿物、元素、弹性力学参数数据;
将获取的岩性、矿物、元素、弹性力学参数数据绘制成随井深变化的数值井柱子;
依据岩性、矿物、元素、弹性力学参数数据随井深变化的趋势差异,将井柱子划分为不同层段;
对竖直井柱子的不同层段进行分析,确定最佳的开发目标层。
进一步地,辅助水平井钻井地质导向和水平井开采分段压裂方案制定,具体为:
利用钻井系统对竖直井选取出的目标层进行水平井钻探,采集等间隔井深的水平井钻井岩屑;
完成水平井岩屑扫描样品制备和扫描,获取随井深变化的岩性、矿物、元素、弹性力学参数数据;
将竖直井获取的岩性、矿物、元素、弹性力学参数数据绘制成竖直井柱子,标注出开发目的层;
实时地将水平井钻进获取的岩性、矿物、元素、弹性力学参数数据绘制成水平井柱子,水平井柱子与竖直井柱子进行对比,实时检测水平井钻进的准确层段,及时调整钻进的方向,确保钻头在目标层的准确钻进,从而实现辅助水平井钻井地质导向的目标;
完成水平井钻井后,水平井柱子能够作为水平井开采分段压裂方案制定的重要依据;水平井柱子能够用于页岩气水平井分段压裂方案制定,以提高油气勘探的精度和效益;并且水平井柱子能够用于校准录井井柱子和测井井柱子,以提高录井和测井的精度。
本发明的有益技术效果:
(1)本发明所述提供的方法,利用制样模具能够将油气田钻井现场随钻过程中产生的碎小岩屑样品快速批量制备成大面积扫描样品;制样过程简单、快捷,并且充分利用钻井过程随钻产生的岩屑作为扫描样品,岩屑样品变废为宝,一方面克服了传统方法中岩屑只能用于肉眼岩屑录井的局限,另一方面避免了岩芯采集过程,不需要额外获取测试样品,大幅度降低了扫描样品的获取成本;
(2)本发明所述方法所提供的油气田现场随钻岩屑扫描装置可以批量扫描分析,具有便携、减震、控温和防尘特点,在高温、尘土、震动等井场恶劣环境可以正常运转,实现了扫描系统的野外井场作业;
(3)本发明所提供的分析方法中的扫描步骤操作非常简单,自动化程度高,可以现场快速全自动定量分析岩石表面结构、元素和矿物,快速识别岩性,克服了现有技术无法在野外钻井现场自动矿物定量分析和自动岩性识别的局限;
(4)本发明提供的分析方法中利用岩屑样品计算弹性力学参数,计算出的弹性力学参数对于油气田井的开发压裂有着重要意义;
(5)本发明获取的扫描数据可以应用在油气田现场,利用竖直井选取最佳开发目标层、辅助水平井钻井地质导向和水平井开采分段压裂方案制定,提高油气勘探的精度和效益。
(6)现有技术还不存在利用岩屑样品实时指导钻井和油气田探勘开发的技术方法,本发明从随钻岩屑角度出发,大幅度降低了制样成本,本发明的岩屑扫描装置可以实现批量自动测试,大幅度降低了测试成本,本发明的整体思路可以大幅度提高油气勘探的精度。
附图说明
图1a为本发明实施例中制样模具俯视图;
图1b为本发明实施例中制样模具仰视图;
图1c为本发明实施例中制样模具侧视图;
图1d为本发明实施例中的制样模具三维示意图;
图2为本发明实施例中的样品制备流程图
图3为本发明实施例中成型样品示意图;
图4为本发明实施例岩屑扫描装置中结构单元、扫描单元和控制单元三维示意图;
图5a为本发明实施例岩屑扫描装置(包括外壳单元)的三维示意图;
图5b为本发明实施例中外壳单元的中部可以拆分为二部分的三维示意图;
图6为本发明实施例中扫描步骤流程图;
图7为本发明实施例利用竖直井选取最佳开发目标层示意图;
图8为本发明实施例辅助水平井钻井地质导向和水平井开采分段压裂方案制定示意图。
附图标记:101.定位孔帽,103.搭扣装置,11.第一模体,12.第二模体,104.树脂AB胶,105.岩屑,401.结构骨架,402.带锁脚轮,403.减震部件,404.滑轨抽屉,405.电子枪,406.镜筒,407.电子枪灯丝更换口,408.扫描和检测系统腔,409.二次电子探头,410.背散射电子探头,411.EDS能谱探头,412.样品台,413.扫描控制子单元,414.温控部件,415.软件控制子单元,416.显示子单元,417.输入子单元,418.电源及数据接口,419.真空泵,501.外壳面板,502.外壳边框,503.把手,504.样品腔盖,505.电源开关盖,506.电子枪盖,507.卡槽,508.卡扣,509.防尘部件,510.软件控制子单元盖,601.扫描范围,602.矩阵扫描区域,603.第12个扫描子区域,604第12个子区域背散射电子图像,605.第12个子区域二次电子图像,606.第12个子区域抠除非岩屑的扫描视域,607.矿物数据库,608.第12个子区域矿物分布图像,609.岩性数据库,801.钻机,802.钻杆,803.钻头,804.油气田现场随钻岩屑扫描系统,805.竖直井柱子,806.水平井柱子。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描述。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
相反,本发明涵盖任何由权利要求定义的在本发明的精髓和范围上做的替代、修改、等效方法以及方案。进一步,为了使公众对本发明有更好的了解,在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。
现有技术存在的问题是:一方面,采集岩芯需要的成本较高;另一方面,现有测试方法中样品制备复杂,仪器笨重不便于搬运,以及不能适应野外测试环境。
针对上述技术问题,本发明实施例提供一种油气田现场随钻岩屑扫描系统,包括制样模具和岩屑扫描装置,所述制样模具用于将油气田钻井现场随钻过程中产生的碎小岩屑样品快速批量制备成大面积扫描样品,岩屑样品变废为宝,大幅度降低了扫描样品的获取成本;所述岩屑扫描装置用于在油气田现场对扫描样品进行批量扫描分析,所述岩屑扫描装置包括四个部分:结构单元,用于固定岩屑扫描装置的硬件,所述结构单元包括温控部件和减震部件,能够使所述岩屑扫描装置在高温和震动的恶劣环境下正常运转;扫描单元,用于对扫描样品进行扫描分析;控制单元,用于控制扫描过程;外壳单元,用于保护岩屑扫描装置的内部硬件、实现快速拆装和防尘。
利用所述制样模具能够使制样过程简单、快捷,并且能够充分利用钻井过程随钻产生的岩屑作为扫描样品,避免了岩芯采集过程,实现了样品采集的零成本,避免了昂贵的样品采集成本。
在具体的实施方式中,所述制样模具选用不锈钢材质或者其他材质,所选用的材质需要具有耐用且易于树脂ab胶冷却散热的特点。在本实施例中,所述制样模具包括三个圆柱形制样孔,可以同时制备三个样品,具体是从模具顶截面开孔,得到制样孔,制样孔的深度小于所述制样模具的高度。制样模具的圆柱形制样孔为直径10-30mm,高度5-10mm。在其他具体的实施方式中,圆柱形制样孔不限于三个,可以是任何自然数,制样孔形状不限于圆柱形,可以是任何形状,如正方形等。
在本实施例中,制样模具由可以左右拼接的二部分组成,方便样品制成后脱模。如图1a-1d所示,所述样品制备模具包括第一模体11、第二模体12二部分,可以实现左右拼接,所述第一模体11和所述第二模体的侧面设置有搭扣装置103,所述搭扣装置的开合能够实现所述第一模体和所述第二模体的拼接和拆卸;所述第一模体和所述第二模体均包括多个半孔,所述第一模体和所述第二模体拼接时第一模体的半孔和第二模体的半孔一一对应形成多个孔;所述第一模体和所述第二模体的底面包括定位孔帽101,实现所述第一模体和所述第二模体的拼接定位。
如图2所示,利用所述制样模具进行样品制备的过程包括:对某一深度的钻井岩屑进行收集、岩屑过筛分选、岩屑清洗及烘干、注入树脂成型、抛光和镀膜;具体为:
钻井岩屑收集:收集与随钻机泥浆一起返到地面的目的层的岩石碎屑;对收集的钻井岩屑且进行编号,在本发明实施例中,钻井岩屑特指油气田钻井现场的录井人员收集到的随钻机泥浆一块返到地面的目的层的岩石碎屑。
岩屑过筛分选:是指选择二种不同尺寸筛孔的筛子对样品进行筛选,例如40目筛子和200目筛子,先用大筛孔的筛子去除可能来自井壁掉落的非目的层的大颗粒岩屑,再用小筛孔的筛子去除颗粒太小不便于分析的小颗粒岩屑,最终保留一定粒度的目的层岩屑,优选地,筛选出40目~200目的岩石碎屑作为待测样品;
清洗:将待测样品清洗烘干;所述清洗的方法根据钻井泥浆的成分来确定,对于油基泥浆的岩屑先用洗油剂进行多次洗油,然后用清水淘洗后烘干;对于水基泥浆的岩屑直接用清水淘洗后烘干。
注入树脂成型:将待测样品放入制样模具的制样孔中,将混合好的适量树脂ab胶快速倒入制样孔中,将岩屑和树脂ab胶快速搅拌均匀,静置,待岩屑和树脂ab胶固化成一体得到扫描样品;
抛光:抛光是指利用抛光机对制好的样品进行打磨,先用粗的砂纸打磨,再用细的砂纸打磨,直到岩屑表面可以看到镜面为止;
镀导电层:是指对抛光好的样品表面进行镀碳或金,目的是增加样品的导电性,提高扫描成像质量和矿物分析精度;如图3所示,为制备获得的成形样品示意图。
其中,注入树脂成型依次按照以下步骤:
1)锁紧搭扣装置103,使制样模具的左右部分紧密拼接,利用定位孔帽10准确定位;
2)将烘干后的少量岩屑样品载入制样模具中的圆柱形制样孔中,将混合好的适量树脂ab胶快速倒入制样孔中;
3)用玻璃棒将岩屑和树脂ab胶快速搅拌均匀,尽量使岩屑面积最大的截面朝下;
4)静置制样模具,待模具恢复常温时,岩屑和树脂ab胶固化成一体;
5)打开搭扣装置103,取出固化后的成型样品,样品直径10-30mm,高度5-10mm。
图4为本发明实施例岩屑扫描装置中结构单元、扫描单元和控制单元三维示意图;图5a为本发明实施例岩屑扫描装置(包括外壳单元)的三维示意图;图5b为本发明实施例中外壳单元的中部可以拆分为二部分的三维示意图。本发明实施例所提供的岩屑扫描装置,包括结构单元、扫描单元、控制单元和外壳单元。
所述结构单元,包括:
1)结构骨架401,用于固定和保护所述油气田现场随钻岩屑扫描系统中硬件设备,为不锈钢材质,分为上层结构和下层结构,由三个板状结构和多个柱状结构组成矩形骨架结构;2)带锁脚轮402,用于移动所述的油气田现场随钻岩屑扫描系统,设置于所述的结构骨架的底部;数量可以为4个,锁脚轮的承载力较大、静音、可以方便锁死和滚动脚轮,起到灵活移动设备的作用;
3)滑轨抽屉404,用于装载软件控制单元,设置于所述的结构骨架的下层结构;
4)减震部件403,用于减少钻井现场的钻井震动对扫描图像质量的影响,设置于所述滑轨抽屉的底部;
5)温控部件414,用于将设备产生的热量逸散到外部,由多个风扇组成,设置于所述结构骨架的上层结构和下层结构的多处,增强了野外沙漠等高温环境的适应能力,保障硬件设备的正常运转。
所述扫描单元包括:
1)扫描和检测系统腔408,设置于所述结构骨架的上层结构,用于保持真空环境,且所述扫描和检测系统腔内部设置有背散射电子探头410、二次电子探头409、EDS能谱探头411和样品台412;其中,所述背散射电子探头用于采集背散射电子信号,所述二次电子探头用于采集二次电子信号,所述EDS能谱探头用于采集元素信号,所述样品台为全自动马达样品台,能够装载多个样品,样品台可以很方便移动、卸载和装载样品;
2)电子枪405和镜筒406,所述电子枪用于提供高能聚焦电子束,设置于所述结构骨架上层结构的顶部,可以选用钨灯丝电子枪、CeB 6或LaB 6等;所述镜筒的一端容设于扫描和检测系统腔内,用于对电子束进行聚焦并将聚焦后电子束对准所述样品台;其中,在结构骨架401最上层的板状结构上设置电子枪灯丝更换口407;
3)真空泵419,用于实现对所述扫描和检测系统腔的抽真空,可以选用涡轮分子泵等,设置于所述扫描装置壳体的外部。
所述控制单元包括:
1)扫描控制子单元413,用于控制电子枪、镜筒、背散射电子探头、二次电子探头、EDS能谱探头和样品台,设置于所述结构骨架的上层结构的三个侧面,所述扫描控制子单元为板状结构,在扫描控制子单元板状结构的底部配有90度连接器,用于将板状扫描控制子单元从竖直拉成水平状态,方便扫描控制子单元的检查和维修;
2)软件控制子单元415,用于实现所有软件和硬件的控制、数据的存储及传输,设置于所述滑轨抽屉内,在具体实施情况下可以选用电脑主机;滑轨抽屉的底部带有可以滑动的轨道,可以很方便将抽屉内的电脑主机移出,方便电脑主机的检查和维修;
3)输入子单元417,操作人员能够通过所述输入单元来设置扫描参数;在具体实施情况下,输入子单元417包括鼠标、键盘;
4)显示子单元416,用于显示扫描结果,在所述显示子单元上设置电源及数据接口418,电源及数据接口418设置显示子单元所需的电源和数据传输接口。
其中,显示单元和输入单元可以设置于结构骨架的顶部。
所述外壳单元包括:
1)外壳面板501及边框502,所述外壳面板为外壳单元的主要包裹部件,为双层结构,采用铝合金材质,非常坚硬且质量较轻,可以有效阻挡仪器运移过程中的强力碰撞,起到保护岩屑扫描装置的作用。外壳面板501作为整个仪器外壳的主要面板,外壳边框502用于连接外壳面板,所述外壳面板和所述边框配合使用,能够实现快速拆装;
2)卡扣508和卡槽507,设置于所述外壳面板及所述边框上,卡扣和卡槽配合使用,以使所述扫外壳单元相互连接并且固定在所述的结构骨架上;如图5b所示,通过打开卡扣508和卡槽507,能够将外壳单元的中部拆开为二个部分,可拆分的外壳单元极大地方便了检查和维护岩屑扫描装置的硬件;
3)防尘部件509,用于防尘,包括防尘滤网,设置于所述温控部件对应的位置,同时所述防尘部件能够用作所述温控部件的散热通道;防尘部件509的设置能够有效外部环境灰尘进入仪器内部,增强仪器在野外沙漠等恶劣环境中适应能力;
4)盖子部件,设置于所述外壳面板上,包括用于装卸样品的样品腔盖504、用于保护开关按钮的电源开关盖505、用于更换电子枪灯丝的电子枪盖506、用于遮挡所述软件控制子单元的软件控制子单元盖510;盖子部件中的所有的盖子均带有卡扣且能够旋转打开和闭合,盖子部件的设置极大方便了扫描仪硬件的检查和维护。
在本实施例中,外壳单元还设置把手503,方便仪器的搬运。
本发明实施例所提供的岩屑扫描装置,具有以下有益技术效果:
1)制样模具能够将油气田钻井现场随钻过程中产生的碎小岩屑样品快速批量制备成大面积扫描样品;制样过程简单、快捷,并且充分利用钻井过程随钻产生的岩屑作为扫描样品,岩屑样品变废为宝,一方面克服了传统方法中岩屑只能用于肉眼岩屑录井的局限,另一方面避免了岩芯采集过程,不需要额外获取测试样品,大幅度降低了扫描样品的获取成本;
2)便携性好易于搬运,布置合理易于检查和维护,具有便携、减震、控温和防尘特点,在高温、尘土、震动等井场恶劣环境可以正常运转,实现了扫描系统的野外井场作业;
3)所述岩屑扫描装置中各部件布局合理,总体积较小,能够增强岩屑扫描装置运移到野外作业的便携性,结构单元和外壳单元便于拆卸,方便仪器的检查和维护。所述岩屑扫描装置的整机重量小于200KG,体积小于1m 3,具有优于500nm的背散射和二次电子图像分辨率,X射线空间分辨率大约1um,单个样品扫描时间小于30min,能够满足现场快速和高分辨的测试需求。
本实施例还提供一种油气田现场随钻岩屑扫描分析方法,所述扫描分析方法包括扫描步骤和分析步骤;所述扫描分析方法包括扫描步骤和分析步骤;
所述扫描步骤采用所述油气田现场随钻岩屑扫描系统进行详细扫描,用于实现了岩屑扫描样品的批量扫描测试,获得岩屑样品扫描测试结果;
所述分析步骤包括弹性力学参数计算子步骤和油气田现场应用子步骤;
所述弹性力学参数计算子步骤采用岩屑样品扫描测试结果计算弹性力学参数;
所述油气田现场应用子步骤规定了扫描数据在油气田现场应用的具体流程,包括二个应用:利用竖直井选取最佳开发目标层和辅助水平井钻井地质导向和水平井开采分段压裂方案制定。
如图6所示,扫描步骤具体为:
用样品台412一次装载9个岩屑样品3,打开外壳单元的样品腔盖504,将样品台加载到扫描和检测系统腔内408,关闭样品腔盖,利用真空泵419对扫描和检测系统腔进行抽真空;其中样品台一次装载的岩屑样品数量可以根据需要进行调整;
①到达需要的真空度以后,打开电子枪并且设置好相应的扫描参数,设置所有样品的扫描范围601;
②选取某一扫描样品,将扫描范围进行矩阵化,获得扫描区域602;
③按照一定顺序选取某一扫描子区域(图6中以第12个扫描子区域603为例)的全部视域;
④利用背散射探头410获取扫描子区域的背散射图像(图6中以第12个扫描子区域背散射电子图像604为例);
⑤利用二次电子探头409获取扫描子区域的二次电子图像(图6中以第12个扫描子区域二次电子图像605为例);
⑥抠除扫描子区域中非岩屑视域(图6中以第12个扫描子区域抠除非岩屑的扫描视域606为例);
⑦利用EDS能谱探头411获取子区域X射线信息并对子区域元素进行自动识别和定量分析;
⑧利用矿物数据库607对子区域矿物进行自动识别和定量分析并获取子区域的矿物分布图像(图6中以第12个扫描子区域矿物分布图像608);
⑨选取下一个子区域按照上述步骤进行扫描;
⑩完成所有子区域扫描后利用岩性数据库609对此样品自动识别岩性;
Figure PCTCN2018099014-appb-000001
转向下一个扫描样品,按照上述步骤完成这一批所有样品的扫描;
Figure PCTCN2018099014-appb-000002
取出扫描完的这一批样品后重新加载新一批样品进行扫描。
需要说明的是,扫描过程只需要一台电脑就可以完成所有操作,操作非常简单;扫描过程自动化程度高,一次性设置好参数后无需人为参与;扫描过程克服传统方法中元素半定量半定性分析的缺陷,实现元素的全自动识别和定量分析;扫描过程克服传统方法中无法在钻井现场自动识别和定量分析矿物的缺陷,实现矿物的全自动识别和定量分析;扫描过程克服了传统方法中无法识别岩性的缺陷,实现岩性的自动识别;扫描过程克服传统方法中扫描范围较小的缺陷,通过子区域分别扫描的方式完成样品厘米级的大视域扫描。
所述弹性力学参数计算子步骤具体为:
利用图像拼接软件分别将一系列的子区域的背散射电子图像、二次电子图像和矿物图像拼接在一起,得到厘米级大视野的背散射电子图像、二次电子图像和矿物图像;
利用厘米级大视野的背散射电子图像或厘米级大视野的二次电子图像对扫描样品进行表面结构定量分析,获得表面结构定量分析数据;
利用厘米级大视野的矿物图像对扫描样品的矿物含量进行定量分析,获得矿物定量分析数据;
结合所述表面结构定量分析数据和所述矿物定量分析数据,再根据等效介质模型计算弹性力学参数,等效介质模型是指矿物和结构自身的弹性力学参数结合矿物和结构所占的比例 关系来确定岩屑扫描样品的弹性力学参数。
需要说明的是,表面结构分析是指对岩屑的孔隙度和孔径分布等指标进行评价,可以为油气田储层的储集空间表征、油气赋存状态研究和油气资源量评估等提供依据。元素和矿物进行自动识别和定量分析中的元素包括K、S、V、Ni、Cu、U、Th等元素,可以反映地层的沉积环境和放射性等信息。矿物进行自动识别和定量分析包括石英、长石等硅质类矿物,包括方解石、白云石等碳酸盐岩类矿物,包括伊利石、绿泥石等粘土矿物,可以用于分析沉积环境、成岩演化和成岩相。自动识别的岩性包括砂岩、碳酸盐岩、泥岩等沉积岩,石英岩、板岩等变质岩,花岗岩、玄武岩等岩浆岩,准确的岩性识别对于复杂储层的地层划分和油气勘探有着重要意义。计算弹性力学参数包括弹性模量、泊松比、脆性指数、波速等,可以为钻井完井优化和储层压裂改造提供有力依据。
具体地,结合图7来说明所述利用竖直井选取最佳开发目标层。具体步骤为:
对某一区块的某口竖直钻井的岩屑进行等间隔井深采样,完成岩屑扫描样品制备和扫描,获取随井深变化的岩性、矿物、元素、弹性力学参数数据;
将获取的岩性、矿物、元素、弹性力学参数数据绘制成随井深变化的数值井柱子;
依据岩性、矿物、元素、弹性力学参数数据随井深变化的趋势差异,将井柱子划分为不同层段;
对竖直井柱子的不同层段进行分析,确定最佳的开发目标层。
如图7所示,在层段三的页岩层中优选出硅质页岩层为最佳的开发目标层。
具体地,结合图8来说明,辅助水平井钻井地质导向和水平井开采分段压裂方案制定,具体为:
1)利用钻机801、钻杆802和钻头803组成的钻井系统,对竖直井优选出的目标层进行水平井钻探,采集等间隔井深的水平井钻井岩屑;
2)利用油气田现场随钻岩屑扫描系统804,按照上述流程完成水平井岩屑样品制备和岩屑扫描,获取大量随井深变化的岩性、矿物、元素、弹性力学参数数据;
3)将竖直井获取的岩性、矿物、元素、弹性力学参数数据绘制成竖直井柱子805,标注出开发目的层;
4)实时地将水平井钻进获取的岩性、矿物、元素、弹性力学参数数据绘制成水平井柱子806,水平井柱子与竖直井柱子进行对比,实时检测水平井钻进的准确层段,及时调整钻进的方向确保钻头在目标层的准确钻进,从而实现水平井钻井地质导向的目标。
如图8所示水平井钻探的目标层为层段三的硅质页岩层,在水平井钻进的2000米井深时,通过水平井柱子和竖直井柱子对比,发现钻探到了硅质页岩层的下部页岩层,于是调整钻头向上钻进,从而保证水平井钻进始终在硅质页岩层,实现地质导向。在完成水平井钻井后,水平井柱子可以作为水平井开采分段压裂方案制定的重要依据,例如页岩气水平井分段压裂方案制定等,提高油气勘探的精度和效益,另外,水平井柱子可以校准录井井柱子和测井井柱子,提高了录井和测井的精度。
关于传统技术中,采集岩芯需要的成本较高的问题,做以下介绍:以1000m长度地层分析为例,钻取1000m长度的岩芯时,传统技术需要采用专门的采样钻杆进行采样,需要至少采样50次才能够完成采样工作,每次采样的成本至少为10万,因此完成1000m长度的岩芯采样工作,成本至少为500万。并且,1000m长度岩芯采样后需要对其进行分析,按照现有技术,需要将采集的样品运送至城市中的实验室进行分析。按照每米分析一个样品,每个样品制样和测试分析需5000元的分析成本,那么1000m长度岩芯至少需要花费500万进行分析。综合采样及分析,利用现有技术完成1000m长度岩芯的分析,至少花费1000万,并且,考虑到地层厚度一般大于3000m,岩芯采集需要花费更多的经费。
利用本发明所提供的扫描系统及扫描分析方法进行工作因钻井过程会自动把岩屑带到地表,就可以直接采集这些岩屑样品,省去了传统方法采样成本。关于分析成本,1000m长度的所有分析工作,总分析成本不会超过100万,至少能够节省90%的科研经费。
另外,现有技术中采样周期也非常长,完成1000m长度样品的采样工作,至少要花费2个月,而采用本发明所提供的技术方案,从开始收集样品到分析完成,总共周期在2周左右;能够更快地完成分析工作,大大提高工作效率。

Claims (13)

  1. 一种油气田现场随钻岩屑扫描系统,其特征在于,包括制样模具和岩屑扫描装置;
    所述制样模具用于将油气田钻井现场随钻过程中产生的碎小岩屑样品快速批量制备成大面积扫描样品,通过采用岩屑样品制备扫描样品,能够大幅度降低扫描样品的获取成本;
    所述岩屑扫描装置用于在油气田现场对扫描样品进行批量扫描分析,所述岩屑扫描装置包括:
    结构单元,用于固定岩屑扫描装置的硬件,所述结构单元包括温控部件和减震部件,能够使所述岩屑扫描装置在高温和震动的恶劣环境下正常运转;
    扫描单元,用于对扫描样品进行扫描分析;
    控制单元,用于控制所述扫描单元的扫描过程;
    外壳单元,用于保护岩屑扫描装置的内部硬件,能够实现快速拆装和防尘。
  2. 根据权利要求1所述一种油气田现场随钻岩屑扫描系统,其特征在于,所述制样模具采用耐用且易于树脂冷却散热的不锈钢材质,能够将碎小的岩屑样品快速批量制备成扫描样品。
  3. 根据权利要求1或2所述一种油气田现场随钻岩屑扫描系统,其特征在于,所述制样模具包括第一模体和第二模体,所述第一模体和所述第二模体的侧面设置有搭扣装置,通过所述搭扣装置的开合能够实现所述第一模体和所述第二模体的拼接和拆卸;
    所述第一模体和所述第二模体均包括多个半孔,将所述第一模体和所述第二模体拼接时,第一模体的半孔和第二模体的半孔一一对应形成多个制样孔;所述制样孔的深度小于所述制样模具的高度;
    所述第一模体和所述第二模体的底面包括定位孔帽,所述定位孔帽用于实现所述第一模体和所述第二模体的拼接定位。
  4. 根据权利要求1所述一种油气田现场随钻岩屑扫描系统,其特征在于,采用所述制样模具将油气田钻井现场随钻过程中产生的岩屑制备成扫描样品的过程具体为:
    钻井岩屑收集:收集与随钻机泥浆一起返到地面的目的层的岩石碎屑;
    岩屑过筛分选:先用大筛孔的筛子去除可能来自井壁掉落的非目的层的大颗粒岩屑,再用小筛孔的筛子去除颗粒太小不便于分析的小颗粒岩屑,筛选出40目~200目的岩石碎屑作为待测样品;
    清洗:将待测样品清洗烘干;清洗的方法根据钻井泥浆的成分来确定,对于油基泥浆的岩屑先用洗油剂进行多次洗油,然后用清水淘洗后烘干,对于水基泥浆的岩屑直接用清水淘洗后烘干;
    注入树脂成型:将待测样品放入制样模具的制样孔中,将树脂ab胶快速倒入制样孔中,将岩屑和树脂ab胶快速搅拌均匀,静置,待岩屑和树脂ab胶固化成一体得到扫描样品;
    抛光:利用抛光机对制好的样品进行打磨,直到岩屑表面能够看到镜面为止;
    镀导电层:对抛光好的样品表面镀导电性层。
  5. 根据权利要求1所述一种油气田现场随钻岩屑扫描系统,其特征在于,所述结构单元包括:
    结构骨架,用于固定和保护所述岩屑扫描装置中的硬件设备,采用不锈钢材质,包括三个水平平行设置的板状结构、与所述板状结构连接的多个竖直设置的柱状结构,为矩形骨架结构,包括上层结构和下层结构;
    带锁脚轮,设置于所述的结构骨架的底部,用于移动所述岩屑扫描装置;
    滑轨抽屉,设置于所述的结构骨架的下层结构;
    减震部件,设置于所述滑轨抽屉的底部,用于减少钻井现场的钻井震动对扫描图像质量的影响;
    温控部件,设置于所述结构骨架的上层结构和下层结构,由多个风扇组成,用于将所述岩屑扫描装置产生的热量逸散到外部,以增强所述岩屑扫描装置对野外沙漠高温环境的适应能力,保障硬件设备的正常运转。
  6. 根据权利要求5所述一种油气田现场随钻岩屑扫描系统,其特征在于,所述扫描单元包括:
    扫描和检测系统腔,设置于所述结构骨架的上层结构,用于保持真空环境,且所述扫描和检测系统腔内部设置有背散射电子探头、二次电子探头、EDS能谱探头和样品台;其中,所述背散射电子探头用于采集背散射电子信号,所述二次电子探头用于采集二次电子信号, 所述EDS能谱探头用于采集元素信号,所述样品台为全自动马达样品台,能够装载多个样品;
    电子枪和镜筒,所述电子枪用于提供高能聚焦电子束,设置于所述结构骨架上层结构的顶部;所述镜筒的一端容设于所述扫描和检测系统腔内,用于对电子束进行聚焦并将聚焦后电子束对准所述样品台;
    真空泵,用于实现对所述扫描和检测系统腔的抽真空。
  7. 根据权利要求5或6所述一种油气田现场随钻岩屑扫描系统,其特征在于,所述控制单元包括:
    扫描控制子单元,用于控制电子枪、镜筒、背散射电子探头、二次电子探头、EDS能谱探头和样品台,设置于所述结构骨架的上层结构的侧面,所述扫描控制子单元为板状结构,在扫描控制子单元板状结构的底部配有90度连接器,用于将板状扫描控制子单元从竖直拉成水平状态,方便扫描控制子单元的检查和维修;
    软件控制子单元,用于实现所有软件和硬件的控制、数据的存储及传输,设置于所述滑轨抽屉内;
    输入子单元,操作人员能够通过所述输入单元来设置扫描参数;
    显示子单元,用于显示扫描结果。
  8. 根据权利要求5所述一种油气田现场随钻岩屑扫描系统,其特征在于,所述外壳单元包括:
    外壳面板及边框,所述外壳面板为外壳单元的主要包裹部件,为双层结构,采用铝合金材质,所述外壳面板和所述边框配合使用,能够实现快速拆装;
    卡扣和卡槽,设置于所述外壳面板及所述边框上,卡扣和卡槽配合使用,以使所述扫外壳单元相互连接并且固定在所述的结构骨架上;
    防尘部件,用于防尘,包括防尘滤网,设置于所述温控部件对应的位置,同时所述防尘部件能够用作所述温控部件的散热通道;
    盖子部件,设置于所述外壳面板上,包括用于装卸样品的样品腔盖、用于保护开关按钮的电源开关盖、用于更换电子枪灯丝的电子枪盖、用于遮挡所述软件控制子单元的软件控制子单元盖;所有的盖子上带有卡扣且能够旋转打开和闭合。
  9. 一种油气田现场随钻岩屑扫描分析方法,采用权利要求1-8所述油气田现场随钻岩屑扫描系统,其特征在于,所述扫描分析方法包括扫描步骤和分析步骤;
    所述扫描步骤采用所述油气田现场随钻岩屑扫描系统进行扫描,用于实现岩屑扫描样品的批量扫描测试,获得岩屑样品扫描测试结果;
    所述分析步骤包括弹性力学参数计算子步骤和油气田现场应用子步骤;
    所述弹性力学参数计算子步骤采用岩屑样品扫描测试结果来计算弹性力学参数;
    所述油气田现场应用子步骤包括:
    利用竖直井选取最佳开发目标层;和
    辅助水平井钻井地质导向和水平井开采分段压裂方案制定。
  10. 根据权利要求9所述一种油气田现场随钻岩屑扫描分析方法,其特征在于,所述扫描步骤通过子区域分别扫描的方式完成样品厘米级的大视域扫描,所述扫描步骤依次包括:
    加载样品、设定扫描区域、选取扫描子区域、利用背散射探头获取子区域的背散射电子图像、利用二次电子探头获取子区域的二次电子图像、抠除子区域中非岩屑视域、利用EDS能谱探头获取子区域X射线信息并对子区域元素进行自动识别和定量分析、利用矿物数据库对子区域矿物进行自动识别和定量分析并获取子区域的矿物图像、选取下一子区域进行扫描、完成所有子区域扫描后利用岩性数据库对此样品自动识别岩性、转向下一个样品进行扫描、完成所有样品扫描后重新加载样品进行新一批样品的扫描。
  11. 根据权利要求9所述一种油气田现场随钻岩屑扫描分析方法,其特征在于,所述弹性力学参数计算子步骤具体为:
    利用图像拼接软件分别将一系列的子区域的背散射电子图像、二次电子图像和矿物图像拼接在一起,得到厘米级大视野的背散射电子图像、二次电子图像和矿物图像;
    利用厘米级大视野的背散射电子图像或厘米级大视野的二次电子图像对扫描样品进行表面结构定量分析,获得表面结构定量分析数据;
    利用厘米级大视野的矿物图像对扫描样品的矿物含量进行定量分析,获得矿物定量分析数据;
    结合所述表面结构定量分析数据和所述矿物定量分析数据,再根据等效介质模型计算弹性力学参数。
  12. 根据权利要求9所述一种油气田现场随钻岩屑扫描分析方法,其特征在于,所述利用竖直井选取最佳开发目标层,具体为:
    对某一区块的某口竖直钻井的岩屑进行等间隔井深采样,完成岩屑扫描样品制备和扫描,获取随井深变化的岩性、矿物、元素、弹性力学参数数据;
    将获取的岩性、矿物、元素、弹性力学参数数据绘制成随井深变化的数值井柱子;
    依据岩性、矿物、元素、弹性力学参数数据随井深变化的趋势差异,将井柱子划分为不同层段;
  13. 根据权利要求9-12任一项所述一种油气田现场随钻岩屑扫描分析方法,其特征在于,辅助水平井钻井地质导向和水平井开采分段压裂方案制定,具体为:
    利用钻井系统对竖直井选取出的目标层进行水平井钻探,采集等间隔井深的水平井钻井岩屑;
    完成水平井岩屑扫描样品制备和扫描,获取随井深变化的岩性、矿物、元素、弹性力学参数数据;
    将竖直井获取的岩性、矿物、元素、弹性力学参数数据绘制成竖直井柱子,标注出开发目的层;
    实时地将水平井钻进获取的岩性、矿物、元素、弹性力学参数数据绘制成水平井柱子,水平井柱子与竖直井柱子进行对比,实时检测水平井钻进的准确层段,及时调整钻进的方向,确保钻头在目标层的准确钻进,从而实现辅助水平井钻井地质导向的目标;
    完成水平井钻井后,水平井柱子能够作为水平井开采分段压裂方案制定的重要依据;水平井柱子能够用于页岩气水平井分段压裂方案制定,以提高油气勘探的精度和效益;并且水平井柱子能够用于校准录井井柱子和测井井柱子,以提高录井和测井的精度。
PCT/CN2018/099014 2017-08-08 2018-08-06 一种油气田现场随钻岩屑扫描系统及方法 WO2019029489A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880004300.3A CN109964004B (zh) 2017-08-08 2018-08-06 一种油气田现场随钻岩屑扫描系统及方法
US16/741,699 US11041383B2 (en) 2017-08-08 2020-01-13 System and method for scanning while-drilling rock fragments in an oil and gas field

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710672003.3 2017-08-08
CN201710672003.3A CN107620593A (zh) 2017-08-08 2017-08-08 一种油气田现场随钻岩屑扫描系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/741,699 Continuation US11041383B2 (en) 2017-08-08 2020-01-13 System and method for scanning while-drilling rock fragments in an oil and gas field

Publications (1)

Publication Number Publication Date
WO2019029489A1 true WO2019029489A1 (zh) 2019-02-14

Family

ID=61088805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099014 WO2019029489A1 (zh) 2017-08-08 2018-08-06 一种油气田现场随钻岩屑扫描系统及方法

Country Status (3)

Country Link
US (1) US11041383B2 (zh)
CN (2) CN107620593A (zh)
WO (1) WO2019029489A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111855357A (zh) * 2020-08-04 2020-10-30 东北石油大学 模拟局部脆性特征功能性压裂岩心制作与裂缝监测装置
CN113138107A (zh) * 2021-04-15 2021-07-20 东北石油大学 基于随钻岩屑录井资料的岩石脆性评价方法
CN114199652A (zh) * 2020-09-18 2022-03-18 中海油能源发展股份有限公司 一种钻井现场岩石薄片快速制片方法
CN114700284A (zh) * 2022-03-24 2022-07-05 安徽科技学院 一种图书馆图书分类用高效分拣装置
CN116128794A (zh) * 2022-10-14 2023-05-16 淄博威世能净油设备有限公司 一种基于机器视觉和图像处理的油品检验分析系统
CN116499827A (zh) * 2023-04-18 2023-07-28 中国石油大学(北京) 多岩性互层人造岩样制备装置及方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107620593A (zh) 2017-08-08 2018-01-23 中国科学院地质与地球物理研究所 一种油气田现场随钻岩屑扫描系统及方法
CN109765097B (zh) * 2018-12-21 2021-07-02 中铁三局集团有限公司 一种基于rpd钻机的隧道围岩快速分类方法
CN111810133B (zh) * 2019-04-10 2023-05-09 中国石油化工股份有限公司 一种地层脆性评价方法
JP6954949B2 (ja) * 2019-04-26 2021-10-27 日本電子株式会社 自動分析装置
CN110043252B (zh) * 2019-05-24 2022-01-11 成都理工大学 一种岩屑图像特征随钻监测装置
CN111751394B (zh) * 2020-04-17 2021-08-27 山东大学 基于图像与xrf矿物反演的岩性识别方法及系统
CN111693351A (zh) * 2020-07-21 2020-09-22 中煤科工集团重庆研究院有限公司 一种定量分析环境因素对煤系泥岩力学性质影响的方法
CN112198020A (zh) * 2020-08-31 2021-01-08 中国石油大学(北京) 用于矿物元素分析的岩样制备方法和系统
CN112282723B (zh) * 2020-08-31 2021-11-02 中国石油大学(北京) 井筒压裂分析方法、装置、电子设备及计算机存储介质
CN112282739B (zh) * 2020-11-18 2024-04-30 中国石油天然气集团有限公司 一种随钻井径测量中的岩屑散射体识别方法
CN112798592B (zh) * 2020-12-28 2022-03-22 山东大学 基于岩相学特征分析的岩石强度预测系统及方法
CN112934670B (zh) * 2021-01-27 2022-07-15 中国石油大学(华东) 一种设置多孔径卷轴式筛网的岩屑自动化清洗装置
US11828174B2 (en) 2021-01-27 2023-11-28 Baker Hughes Oilfield Operations Llc Utilizing cobots for lab procedures for the purpose of testing and gathering data
CN112903607A (zh) * 2021-02-23 2021-06-04 谢跃红 地下地质勘探方法、装置、设备及存储介质
US11930499B2 (en) * 2021-04-07 2024-03-12 Tencent America LLC Network monitoring in service enabler architecture layer (SEAL)
CN113090258B (zh) * 2021-05-25 2023-06-16 中国石油天然气股份有限公司 基于测井数据的深层页岩气水平井压裂差异化设计方法
CN113624603B (zh) * 2021-08-06 2022-03-04 中国科学院地质与地球物理研究所 一种含沉积韵律层的岩石弹性模量获取方法及系统
CN113960079A (zh) * 2021-10-19 2022-01-21 中国石油大学(北京) 用于确定井壁稳定性的方法、处理器及存储介质
CN113706603B (zh) * 2021-10-28 2022-02-22 中国科学院地质与地球物理研究所 页岩有机质孔隙连通性分类表征的方法
CN114135278B (zh) * 2021-11-11 2024-01-02 山东大学 一种随钻感知不良地质智能识别与预报系统及方法
CN114278298B (zh) * 2021-12-06 2024-02-13 常州大学 一种通过页岩油的页岩纳米孔孔径模拟装置
CN114264846B (zh) * 2021-12-20 2024-03-12 中国科学院地质与地球物理研究所 一种微细颗粒指定层位的离子探针样品靶制备方法
WO2023235343A1 (en) * 2022-05-31 2023-12-07 Schlumberger Technology Corporation Automated device for drill cuttings image acquisition
CN115356363B (zh) * 2022-08-01 2023-06-20 河南理工大学 一种基于宽离子束抛光-扫描电镜的孔隙结构表征方法
CN117491592A (zh) * 2023-10-23 2024-02-02 中国石油天然气股份有限公司吉林油田分公司 基于钻井岩石样品确定水平井压裂位置的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201037829Y (zh) * 2007-05-18 2008-03-19 邱儒义 折叠式数字光学扫描仪
CN102169061A (zh) * 2011-01-07 2011-08-31 河海大学 一种岩石试样的制作方法
WO2015006670A1 (en) * 2013-07-11 2015-01-15 Ingrain, Inc. Characterizing wellbore depth interval from rock fragments
CN106150490A (zh) * 2015-03-23 2016-11-23 韩文峰 钻井实时监测用自动捞砂和光谱测定仪
CN107620593A (zh) * 2017-08-08 2018-01-23 中国科学院地质与地球物理研究所 一种油气田现场随钻岩屑扫描系统及方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101082277A (zh) * 2007-07-05 2007-12-05 北京奥能瑞科石油技术有限公司重庆分公司 石油钻井地质x射线荧光岩屑录井方法
CN101344001B (zh) * 2008-08-05 2012-05-23 中国石化集团华北石油局 石油钻井中x射线荧光陆源碎屑岩孔隙度的分析方法
CN201522431U (zh) * 2009-09-16 2010-07-07 中国石油化工集团公司 岩屑实物图像分析仪
FR2965925B1 (fr) * 2010-10-12 2015-06-19 Total Sa Mesure des proprietes d'echantillons de compositions durcissantes a pression elevee
CN102221550B (zh) * 2011-05-30 2013-05-29 成都西图科技有限公司 一种岩心岩屑图像采集装置及图像采集、处理方法
CN202256709U (zh) * 2011-08-23 2012-05-30 中海油能源发展股份有限公司钻采工程研究院 岩芯岩屑三维一体化图像采集仪
EP2604996A1 (en) * 2011-12-14 2013-06-19 Geoservices Equipements Method for preparing a sample of rock cuttings extracted from a subsoil and associated analysis assembly
CN104119048B (zh) * 2013-07-16 2017-11-24 湖北汉科新技术股份有限公司 一种储层岩屑仿天然胶结岩心的制备方法
CN203720098U (zh) * 2014-02-13 2014-07-16 中海油能源发展股份有限公司 一种集装箱式地质样品综合处理装置
CN203732339U (zh) * 2014-03-12 2014-07-23 西安科技大学 一种自振式类岩石样制作装置
WO2016004137A1 (en) * 2014-06-30 2016-01-07 Advantek International Corporation Slurrification and disposal of waste by pressure pumping into a subsurface formation
CN106261145A (zh) * 2015-06-12 2017-01-04 哈尔滨升益生物科技开发有限公司 一种牛心果清热治痢海兔海鲜汤料及其制备方法
CN204903371U (zh) * 2015-07-14 2015-12-23 中国地质调查局南京地质调查中心 一种模块化岩心光谱扫描仪
CN105067406A (zh) * 2015-08-14 2015-11-18 中国石油化工股份有限公司 一种页岩样品的氩离子抛光/扫描电镜分析制样方法
CN105067649A (zh) * 2015-08-24 2015-11-18 首钢总公司 一种利用扫描电镜及能谱仪对材料组织定量分析的方法
CN106841260A (zh) * 2017-03-02 2017-06-13 中国石油天然气股份有限公司 岩心孔隙含油性的确定方法和装置
CN110809664B (zh) * 2017-06-26 2023-06-30 Hrl实验室有限责任公司 热调节及振动隔离系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201037829Y (zh) * 2007-05-18 2008-03-19 邱儒义 折叠式数字光学扫描仪
CN102169061A (zh) * 2011-01-07 2011-08-31 河海大学 一种岩石试样的制作方法
WO2015006670A1 (en) * 2013-07-11 2015-01-15 Ingrain, Inc. Characterizing wellbore depth interval from rock fragments
CN106150490A (zh) * 2015-03-23 2016-11-23 韩文峰 钻井实时监测用自动捞砂和光谱测定仪
CN107620593A (zh) * 2017-08-08 2018-01-23 中国科学院地质与地球物理研究所 一种油气田现场随钻岩屑扫描系统及方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111855357A (zh) * 2020-08-04 2020-10-30 东北石油大学 模拟局部脆性特征功能性压裂岩心制作与裂缝监测装置
CN114199652A (zh) * 2020-09-18 2022-03-18 中海油能源发展股份有限公司 一种钻井现场岩石薄片快速制片方法
CN113138107A (zh) * 2021-04-15 2021-07-20 东北石油大学 基于随钻岩屑录井资料的岩石脆性评价方法
CN114700284A (zh) * 2022-03-24 2022-07-05 安徽科技学院 一种图书馆图书分类用高效分拣装置
CN114700284B (zh) * 2022-03-24 2023-05-23 安徽科技学院 一种图书馆图书分类用高效分拣装置
CN116128794A (zh) * 2022-10-14 2023-05-16 淄博威世能净油设备有限公司 一种基于机器视觉和图像处理的油品检验分析系统
CN116128794B (zh) * 2022-10-14 2023-09-01 淄博威世能净油设备有限公司 一种基于机器视觉和图像处理的油品检验分析系统
CN116499827A (zh) * 2023-04-18 2023-07-28 中国石油大学(北京) 多岩性互层人造岩样制备装置及方法

Also Published As

Publication number Publication date
CN109964004A (zh) 2019-07-02
CN109964004B (zh) 2023-01-10
US11041383B2 (en) 2021-06-22
CN107620593A (zh) 2018-01-23
US20200149394A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
WO2019029489A1 (zh) 一种油气田现场随钻岩屑扫描系统及方法
CN102692399B (zh) 一种可用于激光诱导击穿光谱的小型多功能样品室
Chandra et al. A critical review on pore to continuum scale imaging techniques for enhanced shale gas recovery
Donelick et al. Apatite fission-track analysis
CN205844202U (zh) 一种岩屑岩性分析装置
Khaksar et al. Rock strength from core and logs, where we stand and ways to go
CN105649615B (zh) Ct定量、三维可视化测试储层致密油赋存状态的方法
CN109856029B (zh) 一种基于图像分析的孔隙度评价方法
SA109300222B1 (ar) جهاز للقياس المستمر لعدم تجانس مواد أرضيَّة
SA516370377B1 (ar) تحديد خصائص فاصل عمق حفرة بئر من شظايا صخرية
Al Ibrahim et al. An automated petrographic image analysis system: Capillary pressure curves using confocal microscopy
CN114577833B (zh) 快速定量分析砂砾岩岩屑基质中黏土矿物的方法及应用
US20190145253A1 (en) System and method for using geological analysis for the designing of stimulation operations
AU2020343837B2 (en) Tbm-mounted rock quartz content testing system and method
CN108333637B (zh) 一种提高元素测井技术确定元素含量准确度的方法
CN105136628A (zh) 三角洲沉积遥感探测方法及装置
CN106052534A (zh) 一种钻孔岩芯层面倾角测量仪
CN201522431U (zh) 岩屑实物图像分析仪
CN210604460U (zh) 一种适用于岩心测试的xrf自动测试装置
CN205786410U (zh) 一种x射线荧光岩屑元素分析装置
Přikryl Understanding the Earth scientist's role in the pre-restoration research of monuments: an overview
Ostry et al. Microfabric analyses of till
US7430931B2 (en) Microgranulometry and methods of applications
Guo et al. Rock physical modeling of tight sandstones based on digital rocks and reservoir porosity prediction from seismic data
Scrivano et al. Texture and mineralogy influence on durability: the Macigno sandstone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843774

Country of ref document: EP

Kind code of ref document: A1