WO2019029179A1 - 用于玻璃板钢化工艺的控制执行机构的方法 - Google Patents

用于玻璃板钢化工艺的控制执行机构的方法 Download PDF

Info

Publication number
WO2019029179A1
WO2019029179A1 PCT/CN2018/082666 CN2018082666W WO2019029179A1 WO 2019029179 A1 WO2019029179 A1 WO 2019029179A1 CN 2018082666 W CN2018082666 W CN 2018082666W WO 2019029179 A1 WO2019029179 A1 WO 2019029179A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
heating furnace
heating element
heating
actuator
Prior art date
Application number
PCT/CN2018/082666
Other languages
English (en)
French (fr)
Inventor
赵雁
窦高峰
江春伟
Original Assignee
洛阳兰迪玻璃机器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洛阳兰迪玻璃机器股份有限公司 filed Critical 洛阳兰迪玻璃机器股份有限公司
Priority to ES18844419T priority Critical patent/ES2954378T3/es
Priority to KR1020207005235A priority patent/KR102354154B1/ko
Priority to EP18844419.4A priority patent/EP3650412B1/en
Priority to US16/636,644 priority patent/US11479495B2/en
Priority to JP2020506160A priority patent/JP6905143B2/ja
Priority to RU2020109688A priority patent/RU2734194C1/ru
Priority to CA3071470A priority patent/CA3071470C/en
Priority to AU2018312662A priority patent/AU2018312662B2/en
Publication of WO2019029179A1 publication Critical patent/WO2019029179A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0417Controlling or regulating for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/04Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way
    • C03B29/06Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way with horizontal displacement of the products
    • C03B29/08Glass sheets
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/045Programme control other than numerical control, i.e. in sequence controllers or logic controllers using logic state machines, consisting only of a memory or a programmable logic device containing the logic for the controlled machine and in which the state of its outputs is dependent on the state of its inputs or part of its own output states, e.g. binary decision controllers, finite state controllers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a process for producing glass, and more particularly to a method for controlling an actuator for a glass sheet tempering process.
  • the glass sheet In the tempering process of the glass sheet, the glass sheet is first heated to a softening temperature (for example, 600 ° C to 700 ° C), and then the tempering treatment is completed by rapid cooling.
  • a softening temperature for example, 600 ° C to 700 ° C
  • the heating of the glass plate is an important process control process.
  • the heating process of the glass plate is usually controlled by the heating time, that is, the glass plate is estimated by multiplying the thickness of the glass plate by the time coefficient. Heating time, when the set heating time is reached, the glass plate is released. This method of relying on experience to control the heating process of the glass plate has the following technical defects: 1.
  • the heating temperature of the glass plate is not easily controlled accurately, and the glass plate often has a phenomenon of insufficient heating temperature or over-burning, which directly disadvantages the tempering quality of the glass plate.
  • the influence, for example, the tempering stress is not up to standard and the flatness of the glass plate is unqualified; 2. If the heating time is too long, it will cause a certain energy waste and increase the production cost; 3. The transition depends on the experience and quality of the operator, which not only increases the labor cost. And it is not conducive to the improvement of product qualification rate and the long-term stability of quality.
  • the glass plate tempering treatment process when the glass plate is heated to a softening temperature (for example, 600 ° C to 700 ° C) in a heating furnace, it needs to be quickly discharged into the tempering section, and the glass plate is rapidly cooled to complete the tempering treatment by blowing the fan. .
  • a softening temperature for example, 600 ° C to 700 ° C
  • the fan in order to achieve rapid cooling of the glass plate, before the glass plate is discharged, the fan must reach a certain speed in advance and generate sufficient wind pressure.
  • the usual practice is: according to the heating time remaining in the heating process of the glass plate, the fan is turned on a certain time in advance or the fan is controlled to change from the idle state to the working state.
  • the heating time of the board is estimated by multiplying the thickness of the glass sheet by the time coefficient.
  • the heating time calculated by experience is very inaccurate, which may cause the fan to open too early or open too late; when it is turned on too early, it will It causes a lot of waste of energy and increases production cost.
  • the temperature is turned on too late, the wind pressure will not reach the required value during tempering, which will result in insufficient tempering stress of the finished glass product and the product will be directly scrapped.
  • the transition of the control process depends on the experience and quality of the operator, which not only increases the labor cost, but also is not conducive to the improvement of the product qualification rate and the long-term stability of the product quality.
  • the object of the present invention is to solve the problem that the heating furnace in the prior art determines the time-based estimation method in the operation of each tempering process and directly detects the internal temperature of the heating furnace, thereby providing an error for the glass sheet tempering process.
  • the method of controlling the actuator is to solve the problem that the heating furnace in the prior art determines the time-based estimation method in the operation of each tempering process and directly detects the internal temperature of the heating furnace, thereby providing an error for the glass sheet tempering process.
  • the present invention is to solve the above technical problems, and the technical solution adopted is:
  • the method for controlling the actuator of the glass plate tempering process after the glass plate is fed into the heating furnace, the monitoring unit monitors the energy consumed by the heating element of the heating furnace in real time, and transmits it to the control unit for comparison with the set threshold value.
  • the control unit issues an instruction to the actuator to control the action of the actuator to complete the corresponding tempering process.
  • the control unit is a PLC or a PC.
  • the actuator is a driving mechanism for controlling the operation of the glass plate; after the glass plate is fed into the heating furnace, the monitoring unit monitors the energy consumed by the heating element of the heating furnace in real time and transmits it to the control unit and the set threshold Q. than 1, when the heating element of the furnace is greater than or equal to the energy consumed when the threshold value Q 1, the control unit issues a command to the drive mechanism, directly to a glass sheet conveying a glass sheet heating furnace after the furnace or delayed delivery.
  • the temperature difference between the plate discharge temperatures, K 1 is a correction factor, and its value ranges from 1 ⁇ K 1 ⁇ 1.3.
  • the actuator is a control mechanism for controlling the operation of the cooling fan; after the glass plate is fed into the heating furnace, the monitoring unit monitors the energy consumed by the heating element of the heating furnace in real time and transmits it to the control unit and the set threshold Q 2 In comparison, when the energy consumed by the heating element of the heating furnace is greater than or equal to the threshold value Q 2 , the control unit issues a command to the control mechanism of the cooling fan, and the control mechanism of the cooling fan controls the cooling fan to be turned on or changed from the idle state to the working state.
  • K 1 is the correction coefficient, and its value range is 1 ⁇ K ⁇ 1.3.
  • K 2 is the correction coefficient of the cooling fan in advance, and its value range It is 0.5 ⁇ K 2 ⁇ 1.
  • the energy is the electrical energy consumed by the heating element of the heating furnace, and the monitoring unit is an electric energy meter, a power module, or a power sensor.
  • the energy is the electric energy consumed by the heating element of the heating furnace
  • the monitoring unit is a power meter, a power module or a power sensor
  • the instantaneous power of the heating element is monitored in real time by the monitoring unit, and the instantaneous power is integrated with respect to time to obtain the electric energy consumed by the heating element.
  • the energy is the electric energy consumed by the heating element of the heating furnace
  • the monitoring unit is a combination of a voltmeter and an ammeter, or a combination of a voltage module and a current module, or a combination of a voltage sensor and a current sensor; real-time monitoring by the monitoring unit
  • the instantaneous voltage and instantaneous current of the heating element, the product of the instantaneous voltage and the instantaneous current are integrated over time to obtain the electrical energy consumed by the heating element.
  • the energy is consumed by the heating furnace, and the monitoring unit is a PLC.
  • the instantaneous opening quantity of the heating element is monitored by the PLC in real time, and the instantaneous power of the heating element of the whole heating furnace is obtained according to the rated power of the single heating element, and the instantaneous power is obtained with respect to time.
  • the integral is obtained by the electrical energy consumed by the heating element.
  • the energy is the gas chemical energy consumed by the heating element of the heating furnace, and the monitoring unit is a gas meter.
  • the threshold is automatically calculated by manually inputting to the control unit or the control unit through the human-machine interface.
  • the glass plate tempering process control process no longer depends on the experience and quality of the operator, not only reduces the labor cost, but also makes the equipment more intelligent, the operation is simpler and more convenient, and is conducive to the stability of the production process and product quality.
  • Fig. 1 is a graph showing changes in energy consumed by a heating element when a glass sheet is controlled to be discharged in the first embodiment of the present invention.
  • FIG. 2 is a graph showing changes in energy consumed by a heating element when the cooling fan is controlled in the second embodiment of the present invention.
  • the actuator is a driving mechanism for controlling the operation of the glass plate
  • the control process of the heating control method of the present invention is as follows:
  • the tapping temperature refers to: in the glass plate tempering treatment process, the glass plate is heated to soften in the heating furnace to meet the temperature set when the furnace condition is obtained.
  • the tapping temperature ranges from 650 ° C to 700 ° C
  • the furnace temperature can be set according to the type of the glass plate to be heated (for example, low-emission coated glass, white glass) and thickness.
  • the acquisition of the total mass of the glass sheet can be directly measured by an existing weight measuring instrument, and can also be calculated from the web size, thickness and density of the glass sheet to be heated.
  • K 1 K 1 ⁇ q 0
  • the threshold Q 1 when the glass sheet is discharged is calculated.
  • K 1 is a correction coefficient, and its value ranges from 1 ⁇ K 1 ⁇ 1.3.
  • the value of K 1 is related to the influencing factors such as the heat preservation performance of the heating furnace, the ambient temperature, the utilization rate of electric energy or gas.
  • the K 1 value database related to the above influencing factors can be established for a certain specification of the heating furnace, so as to be automatically retrieved from the database.
  • K 1 1.2
  • the operator inputs the threshold Q 1 into the control unit through the man-machine interface.
  • the control unit can automatically obtain the total mass of the glass plate, retrieve K 1 from the database, and automatically calculate the threshold Q 1 .
  • the monitoring unit monitors the energy consumed by the heating element of the heating furnace in real time, and the consumed energy and the set threshold Q 1 comparing, when the heating element of the furnace is greater than or equal to the energy consumed when the threshold value Q 1, the control unit issues a command to the drive mechanism, directly to a glass plate conveying a glass sheet heating furnace or a conveyor furnace after the delay.
  • the energy is the electric energy consumed by the heating element of the heating furnace
  • the monitoring unit is an electric energy meter, a power module, or a power sensor, and the electric energy consumed by the heating element can be directly read.
  • the monitoring unit in this implementation may be a power meter, a power module or a power sensor, and the instantaneous power of the heating element is monitored in real time by the monitoring unit, and the instantaneous power is integrated with respect to time to obtain the electric energy consumed by the heating element.
  • the monitoring unit in the present embodiment may also be a combination of a voltmeter and an ammeter, or a combination of a voltage module and a current module, or a combination of a voltage sensor and a current sensor; the instantaneous voltage and instantaneous of the heating element are monitored in real time by the monitoring unit. The product of the current, the instantaneous voltage and the instantaneous current is integrated over time to obtain the electrical energy consumed by the heating element.
  • the energy of the heating element of the heating furnace consumes gas chemical energy
  • the monitoring unit is a gas meter; the product of the heating value of the gas and the amount of gas consumed is the energy consumed by the heating element.
  • the actuator is a control mechanism of the cooling fan
  • the control process of the control method of the present invention is as follows:
  • the tapping temperature refers to: in the glass plate tempering treatment process, the glass plate is heated to soften in the heating furnace to meet the temperature set when the furnace condition is obtained.
  • the tapping temperature ranges from 650 ° C to 700 ° C
  • the furnace temperature can be set according to the type of the glass plate to be heated (for example, low-emission coated glass, white glass) and thickness.
  • the acquisition of the total mass of the glass sheet can be directly measured by an existing weight measuring instrument, and can also be calculated from the web size, thickness and density of the glass sheet to be heated.
  • K 1 is a correction coefficient, and its value ranges from 1 ⁇ K 1 ⁇ 1.3.
  • the value of K 1 is related to the influencing factors such as the heat preservation performance of the heating furnace, the ambient temperature, the utilization rate of electric energy or gas.
  • the K 1 value database related to the above influencing factors can be established for a certain specification of the heating furnace, so as to be automatically retrieved from the database.
  • K 2 is a correction coefficient for the early operation of the cooling fan, and its value ranges from 0.5 ⁇ K 2 ⁇ 1.
  • the operator inputs the threshold Q 2 into the control unit through the human-machine interface.
  • the control unit can automatically obtain the total mass of the glass plate, retrieve K 1 from the database, and automatically calculate the threshold Q 2 .
  • the monitoring unit monitors the energy consumed by the heating element of the heating furnace in real time, and the consumed energy and the set threshold Q 2 In comparison, when the energy consumed by the heating element of the heating furnace is greater than or equal to the threshold value Q 2 , the control unit issues a command to the control mechanism of the cooling fan, and the control mechanism of the cooling fan controls the cooling fan to be turned on or changed from the idle state to the working state.
  • the heating element of the heating furnace of the present embodiment may be an electric heating element or a gas heating element.
  • the calculation process of the energy consumed by the monitoring unit and the heating element is the same as that of the first embodiment, and will not be described herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Forging (AREA)

Abstract

用于玻璃板钢化工艺的控制执行机构的方法,包括:将玻璃板送入加热炉后,监测单元实时监测加热炉的加热元件消耗的能量,并将其传递至控制单元内与设定的阈值进行比对;当加热炉的加热元件消耗的能量大于或等于设定的阈值时,控制单元给执行机构发出指令,控制执行机构动作,完成相应的钢化工艺过程。该方法不同于以时间作为依据的传统控制方法,通过监测单元实时监测加热炉的加热元件消耗的能量,可以更加科学、精确地控制玻璃板的加热过程,从而准确地判断玻璃板的出炉时刻,避免了玻璃板出现加热温度不足或过烧的现象,提高了钢化玻璃的成品质量。

Description

用于玻璃板钢化工艺的控制执行机构的方法 技术领域
本发明涉及一种玻璃的生产工艺,尤其是涉及用于玻璃板钢化工艺的控制执行机构的方法。
背景技术
在玻璃板的钢化处理工艺中,首先要将玻璃板加热至软化温度(例如,600℃至700℃),然后通过快速冷却完成钢化处理。其中,对玻璃板的加热是一项重要的工艺控制过程,现有技术中,通常是通过加热时间来控制玻璃板的加热过程,即根据玻璃板的厚度乘以时间系数,估算出玻璃板的加热时间,当达到设定的加热时间后玻璃板出炉。这种依靠经验来控制玻璃板加热过程的方式存在下列技术缺陷:1、玻璃板加热温度不容易精确控制,玻璃板经常出现加热温度不足或过烧的现象,直接对玻璃板的钢化质量造成不利影响,例如钢化应力不达标、玻璃板平整度不合格;2、如果加热时间过长,则会造成一定的能源浪费,提高生产成本;3、过渡依赖操作人员的经验和素质,不仅增加人工成本,而且不利于产品合格率的提高和品质的长期稳定。
在玻璃板钢化处理工艺中,当玻璃板在加热炉内加热至软化温度(例如,600℃至700℃)后,需要迅速出炉进入钢化段,通过风机吹风的方式使玻璃板快速冷却完成钢化处理。其中,为了实现玻璃板的快速冷却,玻璃板在出炉之前,风机必须提前达到一定的转速并产生足够的风压。现有技术中,通常的做法是:根据玻璃板加热过程中剩余的加热时间,提前一定的时间开启风机或者控制风机由怠速状态转变为工作状态,这种控制方式存在的以下弊端:首先、玻璃板的加热时间是根据玻璃板的厚度乘以时间系数估算出来的,这种依靠经验计算出的加热时间非常不精确,极易导致风机开启过早或开启过晚;当开启过早时,会造成能源的大量浪费,提高生产成本,当开启过晚时,钢化时风压达不到要求的数值,会造成玻璃成品钢化应力不足,产品直接报废。其次、控制过程过渡依赖操作人员的经验和素质,不仅增加人工成本,而且不利于产品合格率的提高和产品品质的长期稳定。
发明内容
本发明的目的是为解决现有技术中加热炉在各个钢化工艺过程动作执行以时间为依据估算方式确定以及直接检测加热炉内部温度容易造成误差的问题,提供一种用于玻璃板钢化工艺的控制执行机构的方法。
本发明为解决上述技术问题的不足,所采用的技术方案是:
用于玻璃板钢化工艺的控制执行机构的方法,玻璃板送入加热炉后,监测单元实时监测加热炉的加热元件消耗的能量,并将其传递至控制单元内与设定的阈值进行比对;当加热炉的加热元件消耗的能量大于或等于设定的阈值时,控制单元给执行机构发出指令,控制执行机构动作,完成相应的钢化工艺过程。
所述的控制单元为PLC或PC机。
所述的执行机构为控制玻璃板出炉动作的驱动机构;玻璃板送入加热炉后,监测单元实时监测加热炉的加热元件消耗的能量,并将其传递至控制单元内与设定的阈值Q 1比对,当加热炉的加热元件消耗的能量大于或等于阈值Q 1时,控制单元发出指令给驱动机构,直接将玻璃板输送出加热炉或延时后将玻璃板输送出加热炉。
所述的阈值Q 1=K 1·q 0,q 0=cm△t,其中,c为玻璃板的比热容,m为待加热的玻璃板的总质量,△t为玻璃板入炉温度与玻璃板出炉温度之间的温度差,K 1为修正系数,其取值范围为1<K 1≤1.3。
所述的执行机构为控制冷却风机运行的控制机构;玻璃板送入加热炉后,监测单元实时监测加热炉的加热元件消耗的能量,并将其传递至控制单元内与设定的阈值Q 2比对,当加热炉的加热元件消耗的能量大于或等于阈值Q 2时,控制单元发出指令给冷却风机的控制机构,冷却风机的控制机构控制冷却风机开启或者由怠速状态转变为工作状态。
所述的阈值Q 2=Q 1·K 2,Q 1=K 1·q 0,q 0=cm△t,其中,c为玻璃板的比热容,m为待加热的玻璃板的总质量,△t为玻璃板入炉温度与玻璃板出炉温度之间的温度差,K 1为修正系数,其取值范围为1<K≤1.3,K 2为冷却风机提前运行的修正系数,其取值范围为0.5≤K 2≤1。
所述能量为加热炉加热元件消耗的电能,所述的监测单元为电能表、电能模块、或电能传感器。
所述能量为加热炉加热元件消耗的电能,所述的监测单元为功率表、功率模块或功率传感器;通过监测单元实时监测加热元件的瞬时功率,瞬时功率关于时间求积分得到加热元件消耗的电能。
所述能量为加热炉加热元件消耗的电能,所述的监测单元为电压表和电流表的组合,或者为电压模块和电流模块的组合,或者为电压传感器和电流传感器的组合;通过监测单元实时监测加热元件的瞬时电压和瞬时电流,瞬时电压与瞬时电流的乘积关于时间求积分得到加热元件消耗的电能。
所述能量为加热炉消耗电能,所述监测单元为PLC,通过PLC实时监测加热元件瞬 时的开通数量,根据单个加热元件的额定功率得到整个加热炉的加热元件的瞬时功率,瞬时功率关于时间求积分得到加热元件消耗的电能。
所述的能量为加热炉的加热元件消耗燃气化学能,所述的监测单元为燃气计量表。
所述的阈值由人工通过人机界面输入到所述控制单元或控制单元自动计算获得。
本发明的有益效果是:
一、打破了本技术领域以时间作为依据的传统控制方法,玻璃板送入加热炉后,通过监测单元实时监测加热炉的加热元件消耗的能量,具有以下优点:1、可以更加科学、精确地控制玻璃板的加热过程,从而准确地判断玻璃板的出炉时刻,避免了玻璃板出现加热温度不足或过烧的现象,提高了钢化玻璃的成品质量。2、可以更加科学、精确地控制冷却风机开启或者由怠速状态转变为工作状态的时刻,避免玻璃板进入钢化段之后风压不足导致应力不合格,同时避免了风机过早开启或者由怠速状态转变为工作状态而造成的能源浪费。
二、玻璃板钢化工艺控制过程不再依赖操作人员的经验、素质,不仅降低了人工成本,而且使设备更加智能化,操作起来更加简单、便捷,有利于生产工艺和产品品质的稳定。
附图说明
图1为本发明实施例1中控制玻璃板出炉动作时,加热元件消耗的能量的变化曲线图。
图2为本发明实施例2中控制冷却风机运行时,加热元件消耗的能量的变化曲线图。
具体实施方式
以下结合附图详细描述本发明的实施例,具体实施方式如下:
实施例1
如图1所示,所述的执行机构为控制玻璃板出炉动作的驱动机构,本发明加热控制方法的控制过程如下:
首先,获取待加热的玻璃板的总质量,根据公式q 0=cm△t计算出玻璃板由入炉时的温度加热至出炉温度所需要的能量q 0,其中,c为玻璃板的比热容,m为待加热的玻璃板的总质量,△t为玻璃板入炉温度与玻璃板出炉温度之间的温度差。出炉温度是指:玻璃板钢化处理工艺中,玻璃板在加热炉内加热至软化,满足出炉条件时所设定的温度。通常,出炉温度的取值范围为:650℃至700℃,可以根据待加热玻璃板的种类(例如低辐射镀膜玻璃、白玻)、厚度设定出炉温度。关于玻璃板总质量的获取,可以通过现有的重量测量仪直接测 量,还可以通过待加热的玻璃板的幅面尺寸、厚度和密度,计算得到。
其次,由Q 1=K 1·q 0,计算满足玻璃板出炉条件时的阈值Q 1。其中,K 1为修正系数,其取值范围为1<K 1≤1.3。需要说明的是:K 1的取值与加热炉的保温性能、环境温度、电能或燃气的利用率等影响因素相关。实际生产过程中,可以针对某一规格的加热炉建立与上述影响因素相关的K 1取值数据库,以便从数据库自动调取。本实施例的中K 1=1.2,计算出阈值Q 1后,操作工人通过人机界面将该阈值Q 1输入到控制单元中。当然,控制单元可以自动获取玻璃板的总质量,从数据库调取K 1,自动计算出阈值Q 1
玻璃板低温状态送入加热炉后,开始吸收热量,加热元件消耗的能量迅速增加,此时,监测单元实时监测加热炉的加热元件消耗的能量,并将消耗的能量与设定的阈值Q 1比对,当加热炉的加热元件消耗的能量大于或等于阈值Q 1时,控制单元发出指令给驱动机构,直接将玻璃板输送出加热炉或延时后将玻璃板输送出加热炉。
本实施例采用电加热炉时,所述能量为加热炉加热元件消耗的电能,所述的监测单元为电能表、电能模块、或电能传感器,可以直接读取加热元件消耗的电能。当然,本实施中的监测单元可以为功率表、功率模块或功率传感器,通过监测单元实时监测加热元件的瞬时功率,瞬时功率关于时间求积分得到加热元件消耗的电能。另外,本实施中的监测单元还可以为电压表和电流表的组合,或者为电压模块和电流模块的组合,或者为电压传感器和电流传感器的组合;通过监测单元实时监测加热元件的瞬时电压和瞬时电流,瞬时电压与瞬时电流的乘积关于时间求积分得到加热元件消耗的电能。
本实施例采用燃气加热炉时,所述的能量为加热炉的加热元件消耗燃气化学能,则监测单元为燃气计量表;燃气的热值与消耗的燃气量的乘积即为加热元件消耗的能量。
实施例2
如图2所示,所述的执行机构为冷却风机的控制机构,本发明控制方法的控制过程如下:
首先,获取待加热的玻璃板的总质量,根据公式q 0=cm△t计算出玻璃板由入炉时的温度加热至出炉温度所需要的能量q 0,其中,c为玻璃板的比热容,m为待加热的玻璃板的总质量,△t为玻璃板入炉温度与玻璃板出炉温度之间的温度差。出炉温度是指:玻璃板钢化处理工艺中,玻璃板在加热炉内加热至软化,满足出炉条件时所设定的温度。通常,出炉温度的取值范围为:650℃至700℃,可以根据待加热玻璃板的种类(例如低辐射镀膜玻璃、白玻)、厚度设定出炉温度。关于玻璃板总质量的获取,可以通过现有的重量测量仪直接测量,还可以通过待加热的玻璃板的幅面尺寸、厚度和密度,计算得到。
其次,由Q 2=Q 1·K 2,Q 1=K 1·q 0,计算满足冷却风机运行条件时的阈值Q 2。其中, K 1为修正系数,其取值范围为1<K 1≤1.3。需要说明的是:K 1的取值与加热炉的保温性能、环境温度、电能或燃气的利用率等影响因素相关。实际生产过程中,可以针对某一规格的加热炉建立与上述影响因素相关的K 1取值数据库,以便从数据库自动调取。K 2为冷却风机提前运行的修正系数,其取值范围为0.5≤K 2≤1。本实施例的中K 1=1.2,K 1=0.8,计算出阈值Q 2后,操作工人通过人机界面将该阈值Q 2输入到控制单元中。当然,控制单元可以自动获取玻璃板的总质量,从数据库调取K 1,自动计算出阈值Q 2
玻璃板低温状态送入加热炉后,开始吸收热量,加热元件消耗的能量迅速增加,此时,监测单元实时监测加热炉的加热元件消耗的能量,并将消耗的能量与设定的阈值Q 2比对,当加热炉的加热元件消耗的能量大于或等于阈值Q 2时,控制单元发出指令给冷却风机的控制机构,冷却风机的控制机构控制冷却风机开启或者由怠速状态转变为工作状态。
本实施例的加热炉的加热元件可以为电加热元件或燃气加热元件,监测单元以及加热元件消耗的能量的计算过程与实施例1相同,在此不做赘述。
本发明所列举的技术方案和实施方式并非是限制,与本发明所列举的技术方案和实施方式等同或者效果相同方案都在本发明所保护的范围内。

Claims (11)

  1. 用于玻璃板钢化工艺的控制执行机构的方法,其特征在于:玻璃板送入加热炉后,监测单元实时监测加热炉的加热元件消耗的能量,并将其传递至控制单元内与设定的阈值进行比对;所述阈值为直接将玻璃板输送出加热炉或延时后将玻璃板输送出加热炉对应的能耗Q 1、冷却风机的控制机构控制冷却风机开启或者由怠速状态转变为工作状态对应的能耗Q 2中的至少一项,当加热炉的加热元件消耗的能量大于或等于设定的阈值时,控制单元给执行机构发出指令,控制执行机构动作,直接将玻璃板输送出加热炉或延时后将玻璃板输送出加热炉或者冷却风机的控制机构控制冷却风机开启或者由怠速状态转变为工作状态完成相应的钢化工艺过程。
  2. 根据权利要求1所述的用于玻璃板钢化工艺的控制执行机构的方法,其特征在于:所述的执行机构为控制玻璃板出炉动作的驱动机构;玻璃板送入加热炉后,监测单元实时监测加热炉的加热元件消耗的能量,并将其传递至控制单元内与设定的阈值Q 1比对,当加热炉的加热元件消耗的能量大于或等于阈值Q 1时,控制单元发出指令给驱动机构,直接将玻璃板输送出加热炉或延时后将玻璃板输送出加热炉。
  3. 根据权利要求2所述的用于玻璃板钢化工艺的控制执行机构的方法,其特征在于:所述的阈值Q 1=K 1·q 0,q 0=cm△t,其中,c为玻璃板的比热容,m为待加热的玻璃板的总质量,△t为玻璃板入炉温度与玻璃板出炉温度之间的温度差,K 1为修正系数,其取值范围为1<K 1≤1.3。
  4. 根据权利要求1所述的用于玻璃板钢化工艺的控制执行机构的方法,其特征在于:所述的执行机构为控制冷却风机运行的控制机构;玻璃板送入加热炉后,监测单元实时监测加热炉的加热元件消耗的能量,并将其传递至控制单元内与设定的阈值Q 2比对,当加热炉的加热元件消耗的能量大于或等于阈值Q 2时,控制单元发出指令给冷却风机的控制机构,冷却风机的控制机构控制冷却风机开启或者由怠速状态转变为工作状态。
  5. 根据权利要求4所述的用于玻璃板钢化工艺的控制执行机构的方法,其特征在于:所述的阈值Q 2=Q 1·K 2,Q 1=K 1·q 0,q 0=cm△t,其中,c为玻璃板的比热容,m为待加热的玻璃板的总质量,△t为玻璃板入炉温度与玻璃板出炉温度之间的温度差,K 1为修正系数,其取值范围为1<K 1≤1.3,K 2为冷却风机提前运行的修正系数,其取值范围为0.5≤K 2≤1。
  6. 根据权利要求1、2或4所述的用于玻璃板钢化工艺的控制执行机构的方法,其特征在于:所述能量为加热炉加热元件消耗的电能,所述的监测单元为电能表、电能模块、或电能传感器。
  7. 根据权利要求1、2或4所述的用于玻璃板钢化工艺的控制执行机构的方法,其特征在 于:所述能量为加热炉加热元件消耗的电能,所述的监测单元为功率表、功率模块或功率传感器;通过监测单元实时监测加热元件的瞬时功率,瞬时功率关于时间求积分得到加热元件消耗的电能。
  8. 根据权利要求1、2或4所述的用于玻璃板钢化工艺的控制执行机构的方法,其特征在于:所述能量为加热炉加热元件消耗的电能,所述的监测单元为电压表和电流表的组合,或者为电压模块和电流模块的组合,或者为电压传感器和电流传感器的组合;通过监测单元实时监测加热元件的瞬时电压和瞬时电流,瞬时电压与瞬时电流的乘积关于时间求积分得到加热元件消耗的电能。
  9. 根据权利要求1、2或4所述的用于玻璃板钢化工艺的控制执行机构的方法,其特征在于:所述能量为加热炉消耗电能,所述监测单元为PLC,通过PLC实时监测加热元件瞬时的开通数量,根据单个加热元件的额定功率得到整个加热炉的加热元件的瞬时功率,瞬时功率关于时间求积分得到加热元件消耗的电能。
  10. 根据权利要求1、2或4所述的用于玻璃板钢化工艺的控制执行机构的方法,其特征在于:所述的能量为加热炉的加热元件消耗燃气化学能,所述的监测单元为燃气计量表。
  11. 根据权利要求1、2、3、4或5所述的用于玻璃板钢化工艺的控制执行机构的方法,其特征在于:所述的阈值由人工通过人机界面输入到所述控制单元或控制单元自动计算获得。
PCT/CN2018/082666 2017-08-07 2018-04-11 用于玻璃板钢化工艺的控制执行机构的方法 WO2019029179A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES18844419T ES2954378T3 (es) 2017-08-07 2018-04-11 Método de control del mecanismo de accionamiento para el proceso de templado de placas de vidrio
KR1020207005235A KR102354154B1 (ko) 2017-08-07 2018-04-11 유리판 강화 공정을 위한 수행 수단 제어 방법
EP18844419.4A EP3650412B1 (en) 2017-08-07 2018-04-11 Actuating mechanism control method for glass plate tempering process
US16/636,644 US11479495B2 (en) 2017-08-07 2018-04-11 Actuating mechanism control method for glass plate tempering process
JP2020506160A JP6905143B2 (ja) 2017-08-07 2018-04-11 ガラス板強化プロセス用の実行機構の制御方法
RU2020109688A RU2734194C1 (ru) 2017-08-07 2018-04-11 Способ управления исполнительным механизмом, применяемый в технологическом процессе закалки листового стекла
CA3071470A CA3071470C (en) 2017-08-07 2018-04-11 Actuating mechanism control method for glass plate tempering process
AU2018312662A AU2018312662B2 (en) 2017-08-07 2018-04-11 Actuating mechanism control method for glass plate tempering process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710666798.7 2017-08-07
CN201710666798.7A CN107382045B (zh) 2017-08-07 2017-08-07 一种玻璃板钢化工艺过程控制方法

Publications (1)

Publication Number Publication Date
WO2019029179A1 true WO2019029179A1 (zh) 2019-02-14

Family

ID=60343895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082666 WO2019029179A1 (zh) 2017-08-07 2018-04-11 用于玻璃板钢化工艺的控制执行机构的方法

Country Status (10)

Country Link
US (1) US11479495B2 (zh)
EP (1) EP3650412B1 (zh)
JP (1) JP6905143B2 (zh)
KR (1) KR102354154B1 (zh)
CN (1) CN107382045B (zh)
AU (1) AU2018312662B2 (zh)
CA (1) CA3071470C (zh)
ES (1) ES2954378T3 (zh)
RU (1) RU2734194C1 (zh)
WO (1) WO2019029179A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210114917A1 (en) * 2019-10-22 2021-04-22 Glaston Finland Oy Method and device for controlling a thermal treatment process for glass sheets

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107382045B (zh) 2017-08-07 2020-02-11 洛阳兰迪玻璃机器股份有限公司 一种玻璃板钢化工艺过程控制方法
CN113703378B (zh) * 2021-10-28 2022-02-08 格创东智(深圳)科技有限公司 机器运作监控方法、装置、终端设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1759071A (zh) * 2003-03-12 2006-04-12 坦格拉斯有限公司 用于监控安全玻璃生产或控制加工过程的方法与设备
US20090199594A1 (en) * 2008-02-10 2009-08-13 Litesentry Corporation Closed loop control system for the heat-treatment of glass
CN102344242A (zh) * 2011-07-21 2012-02-08 杭州精工机械有限公司 数控对流混合辐射加热方式的加热炉及加热方法
CN104773949A (zh) * 2015-04-28 2015-07-15 洛阳北方玻璃技术股份有限公司 一种控制玻璃钢化过程中玻璃加热的方法
CN107382045A (zh) * 2017-08-07 2017-11-24 洛阳兰迪玻璃机器股份有限公司 一种玻璃板钢化工艺过程控制方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1442320A (en) * 1973-07-20 1976-07-14 Pilkington Brothers Ltd Apparatus and method for toughening glass
SU808389A1 (ru) * 1978-05-26 1981-02-28 Всесоюзный Научно-Исследовательскийинститут Технического И Специальногостроительного Стекла Устройство дл получени закаленныхиздЕлий из СТЕКлА
EP0078135A1 (en) * 1981-10-23 1983-05-04 McMaster, Harold Ashley Method of controlling the heating of sheet material in a conveyor furnace
FI86055C (fi) * 1990-07-04 1992-07-10 Tamglass Oy Anordning foer vaermehaerdning av glasskivor.
FI86295C (fi) * 1990-09-21 1992-08-10 Tamglass Oy Foerfarande och anordning foer boejning av en glasskiva.
US5620492A (en) * 1993-08-05 1997-04-15 Land; Michael B. Apparatus for quenching glass
US20070169513A1 (en) * 2004-06-03 2007-07-26 Yan Zhao Glass Sheet Heating Surface
FI20045452A (fi) * 2004-11-22 2006-05-23 Tamglass Ltd Oy Menetelmä ja laite turvalasituotannon käsittelyprosessin ohjaamiseksi
CN202148251U (zh) * 2011-07-21 2012-02-22 杭州精工机械有限公司 数控对流混合辐射加热方式的加热炉
CN102730952B (zh) * 2012-06-29 2015-01-07 都匀开发区福田化工有限责任公司 一种玻璃钢化炉及玻璃钢化方法
CN203715692U (zh) * 2013-12-31 2014-07-16 中山凯旋真空技术工程有限公司 温度控制系统以及真空气冷热处理炉
CN105084731A (zh) * 2014-05-15 2015-11-25 洛阳兰迪玻璃机器股份有限公司 一种钢化玻璃的钢化冷却系统
CN105084732A (zh) * 2014-05-15 2015-11-25 洛阳兰迪玻璃机器股份有限公司 一种钢化玻璃的钢化冷却系统
WO2016019167A1 (en) * 2014-07-31 2016-02-04 Corning Incorporated Thermally tempered glass and methods and apparatuses for thermal tempering of glass
CN104817261A (zh) * 2015-04-28 2015-08-05 洛阳北方玻璃技术股份有限公司 一种控制玻璃钢化过程中玻璃冷却进程的方法
CN104891796B (zh) * 2015-05-18 2017-06-23 洛阳兰迪玻璃机器股份有限公司 一种玻璃钢化方法
CN105910648A (zh) * 2016-05-30 2016-08-31 安瑞装甲材料(芜湖)科技有限公司 一种钢化玻璃冷却过程监测系统
CN106066627A (zh) * 2016-06-01 2016-11-02 安瑞装甲材料(芜湖)科技有限公司 一种钢化玻璃生产控制系统
CN107515637B (zh) * 2017-08-07 2020-08-28 洛阳兰迪玻璃机器股份有限公司 一种玻璃板钢化工艺过程控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1759071A (zh) * 2003-03-12 2006-04-12 坦格拉斯有限公司 用于监控安全玻璃生产或控制加工过程的方法与设备
US20090199594A1 (en) * 2008-02-10 2009-08-13 Litesentry Corporation Closed loop control system for the heat-treatment of glass
CN102344242A (zh) * 2011-07-21 2012-02-08 杭州精工机械有限公司 数控对流混合辐射加热方式的加热炉及加热方法
CN104773949A (zh) * 2015-04-28 2015-07-15 洛阳北方玻璃技术股份有限公司 一种控制玻璃钢化过程中玻璃加热的方法
CN107382045A (zh) * 2017-08-07 2017-11-24 洛阳兰迪玻璃机器股份有限公司 一种玻璃板钢化工艺过程控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3650412A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210114917A1 (en) * 2019-10-22 2021-04-22 Glaston Finland Oy Method and device for controlling a thermal treatment process for glass sheets
US11851360B2 (en) * 2019-10-22 2023-12-26 Glaston Finland Oy Method and device for controlling a thermal treatment process for glass sheets

Also Published As

Publication number Publication date
KR102354154B1 (ko) 2022-01-21
JP2020528870A (ja) 2020-10-01
JP6905143B2 (ja) 2021-07-21
US11479495B2 (en) 2022-10-25
KR20200035424A (ko) 2020-04-03
CN107382045A (zh) 2017-11-24
AU2018312662A1 (en) 2020-03-26
EP3650412C0 (en) 2023-06-07
EP3650412A1 (en) 2020-05-13
EP3650412A4 (en) 2020-08-19
CN107382045B (zh) 2020-02-11
EP3650412B1 (en) 2023-06-07
CA3071470A1 (en) 2019-02-14
ES2954378T3 (es) 2023-11-21
AU2018312662B2 (en) 2020-10-22
RU2734194C1 (ru) 2020-10-13
CA3071470C (en) 2021-08-17
US20210147278A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
WO2019029179A1 (zh) 用于玻璃板钢化工艺的控制执行机构的方法
CN105783427A (zh) 一种分阶段控制的微波真空干燥方法
WO2019029180A1 (zh) 一种玻璃板钢化工艺过程中控制玻璃板出炉的方法
CN107500519B (zh) 一种玻璃板钢化工艺过程控制方法
CN107562024B (zh) 一种玻璃板钢化工艺过程控制方法
CN109407717A (zh) 一种基于自适应模糊pid的温度控制器
CN202887026U (zh) 高频炉加温自动控制系统
CN103294084B (zh) 一种应用于恒温装置的节能温度控制器
CN107522391B (zh) 一种玻璃板钢化工艺过程控制方法
CN107562085B (zh) 一种根据能耗控制玻璃板钢化工艺过程的方法
CN115493366B (zh) 一种新型木材干燥控制系统
CN202576649U (zh) 降温装置
CN105630036A (zh) 一种液压机温度控制装置及方法
CN105573375A (zh) 一种烤箱温度控制系统
CN201414114Y (zh) 压电石英晶体频率片自动控温腐蚀机
Wang et al. Design on stepping type heating furnace control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3071470

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020506160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018844419

Country of ref document: EP

Effective date: 20200204

ENP Entry into the national phase

Ref document number: 20207005235

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018312662

Country of ref document: AU

Date of ref document: 20180411

Kind code of ref document: A