WO2019028961A1 - Led 显示屏、显示装置及显示系统 - Google Patents
Led 显示屏、显示装置及显示系统 Download PDFInfo
- Publication number
- WO2019028961A1 WO2019028961A1 PCT/CN2017/100995 CN2017100995W WO2019028961A1 WO 2019028961 A1 WO2019028961 A1 WO 2019028961A1 CN 2017100995 W CN2017100995 W CN 2017100995W WO 2019028961 A1 WO2019028961 A1 WO 2019028961A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- led
- led lamp
- lamp bead
- bead array
- light
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/34—Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/33—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/001—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
- G09G3/003—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
Definitions
- the picture, and then the polarized lenses of different polarization directions are used on the left and right sides of the 3D glasses, so that the left and right eyes of the person can receive two sets of pictures, and then the stereoscopic images are synthesized through the brain. Since the polarized light 3D technology adopts the principle of spectroscopic imaging, the picture will be The brightness is reduced, making it difficult to achieve true full HD 3D images. Shutter-type 3D technology is used in conjunction with active shutter 3D glasses. The 3D display uses a screen refresh rate of up to 120Hz to 240Hz to continuously display the left and right eye images. At the same time, the shutter 3D glasses quickly switch and shield the left and right eyes.
- a first aspect of the present invention provides an LED display screen, the LED display screen comprising an LED lamp bead array composed of a plurality of LED lamp bead, the LED lamp bead array comprising a left image LED lamp bead array and The right image LED lamp bead array, the left image LED lamp bead array and the right image LED lamp bead array are arranged according to a preset arrangement rule, the left image LED lamp bead array corresponding to each wavelength of the RGB three primary colors and the right The image LED lamp bead arrays are different for each wavelength of the RGB three primary colors.
- the light emitting surfaces of the red, green, and blue light emitting chips corresponding to the LED light beads in the left image LED lamp bead array are all provided with a left image narrow band filter, and each of the right image LED lamp bead arrays
- the light-emitting surfaces of the red, green and blue light-emitting chips corresponding to the lamp beads are each provided with a right-image narrow-band filter, the wavelength of the light through which the left-image narrow-band filter can pass, and the light through which the right-image narrow-band filter can pass.
- the wavelengths are all different.
- the LED display screen provided by the invention comprises an LED lamp bead array composed of a plurality of LED lamp beads, the LED lamp bead array comprising a left image LED lamp bead array and a right image LED lamp arranged at intervals according to a preset arrangement rule.
- the bead array, the respective wavelengths of the RGB three primary colors corresponding to the RGB three primary colors of the left image LED lamp bead array are different from the respective wavelengths of the RGB three primary colors corresponding to the right image LED lamp bead array.
- the present invention outputs two sets of pictures of a 3D image through differently spaced left image LED lamp bead arrays and right image LED lamp bead arrays at different wavelengths when the user wears different filtering bandwidths.
- the screens passing through the left and right lenses will be different, and the 3D effect will be realized. Since the present invention uses the wavelength of the light to distinguish the two sets of pictures of the 3D image, it does not cause color cast on the edges of the screen, and does not affect the picture.
- the brightness of the 3D glasses can be achieved by using the passive 3D glasses at a lower cost, that is, the technical problem of the poor display performance of the existing 3D display technology is solved without increasing the cost of the matching 3D glasses.
- FIG. 2 is a schematic view showing the arrangement of the rows of LED lamp bead and the row of LED lamp bead in the right image LED lamp bead array in the left image LED lamp bead array according to the present invention
- FIG. 3 is a schematic view showing the arrangement of the LED lamp beads in each column of the left image LED lamp bead array and the LED lamp beads in the right image LED lamp bead array according to the present invention
- FIG. 4 is a schematic diagram showing distributions of respective dominant wavelengths of the RGB three primary colors corresponding to the respective primary wavelengths of the RGB three primary colors and the right image LED lamp bead arrays in the left image LED lamp bead array according to the present invention
- FIG. 1 is a schematic structural diagram of an LED display screen according to a first embodiment of the present invention.
- the LED display screen includes a plurality of LED lamp beads.
- the LED lamp bead array is composed of the LED lamp bead array including the left image LED lamp bead array 1 and the right image LED lamp bead array 2, the above left image LED lamp bead array 1 and the right image LED lamp bead array 2 according to the preset row
- the cloths are regularly arranged at intervals, and the respective wavelengths of the left image LED lamp bead array 1 corresponding to the RGB three primary colors are different from the respective wavelengths of the RGB three primary colors corresponding to the right image LED lamp bead array 2.
- FIG. 2 is an arrangement of rows of LED lamp beads in each row of the left image LED lamp bead array and each row of LED lamp bead arrays in the right image LED lamp bead array.
- FIG. 3 is a schematic diagram showing the arrangement of LED lamps in each column of the left image LED lamp bead array and the LED lamps in each column of the right image LED lamp bead array.
- the main wavelength of the light emitted by the LED chip is generally: red light is 610nm ⁇ 635nm, green light is 515nm ⁇ 540nm, blue light is 430nm ⁇ 470nm.
- the red light (R) emitted by each LED lamp bead in the left image LED bead array 1 has a wavelength range of 609 nm. ⁇ 621nm, the wavelength range of green light (G) is 512nm ⁇ 524nm, and the wavelength range of blue light (B) is 426 Nm ⁇ 438nm; the right image LED lamp bead array 2 emits red light (R) in the range of 623nm ⁇ 635nm, and the green (G) wavelength range is 526nm ⁇ 538nm, blue (B) wavelength The range is from 440 nm to 452 nm.
- each of the main wavelengths of the RGB three primary colors corresponding to the left image LED bead array 1 and the right image LED bead array 2 can also accurately adopt a specific dominant wavelength value, for example, the above left image LED lamp bead.
- the main wavelength of red light (R) emitted by each LED lamp bead in array 1 is 615 nm
- the dominant wavelength of green light (G) is 518 nm
- the dominant wavelength of blue light (B) is 432.
- the above-mentioned right image LED lamp bead array 2 the red light (R) emitted by each LED lamp bead has a dominant wavelength of 629 nm, the green (G) dominant wavelength is 532 nm, and the blue (B) dominant wavelength is 446 nm. Nm.
- FIG. 4 is a distribution of the main wavelengths of the RGB three primary colors corresponding to the RGB three primary colors and the right image LED lamp bead arrays in the left image LED lamp bead array according to the present invention.
- the shaded portions respectively indicate the wavelength ranges of the RGB three primary colors emitted by the respective LED beads in the left image LED bead array 1; the unshaded portions respectively represent the RGB emitted by the respective LED bead in the right image LED bead array 2.
- the wavelength range of the three primary colors, wherein the wavelength bandwidth of the three primary colors emitted by each of the LED lamp beads described above can be set to 12 nm.
- the above-mentioned left image LED bead array 1 corresponds to the values of the respective wavelengths of the RGB three primary colors
- the values of the respective wavelengths of the right image LED bead array 2 corresponding to the RGB three primary colors are merely used to explain the present invention, and are not
- the technical solution of the present invention is limited, that is, changing the value of any one or more of the above wavelengths only causes a slight change in the visual direction, and does not substantially change the technical solution of the present invention.
- the left image of the 3D video is played through the left image LED bead array 1
- the right image of the 3D video is played synchronously through the right image LED bead array 2
- the viewer passes through the left lens only Only the left image of the 3D video can be seen, and only the right image of the 3D video can be seen through the right lens, thereby realizing the 3D viewing effect.
- the wavelength values of the respective light through which the left image narrowband filter can pass and the wavelength values of the respective light through which the right image narrowband filter can pass, are merely used to explain the present invention, and are not in the technical solution of the present invention.
- the limitation of the composition that is, the change of any one or more of the above-mentioned wavelength values, only causes a slight change in the visual direction, and does not substantially change the technical solution of the present invention.
- the left image narrowband filter and the right image narrowband filter can simultaneously filter red, green, and blue light emitted from the light emitting surface of the LED lamp bead.
- each of the LED lamp bead and the right image LED lamp bead array 2 in the left image LED lamp bead array 1 are ordinary LED lamp beads, and each LED lamp bead in the left image LED lamp bead array 1 corresponds to
- the respective wavelengths of the RGB three primary colors may be different from or different from the respective wavelengths of the RGB three primary colors corresponding to the respective LED beads in the right image LED lamp bead array 2.
- the left image narrowband filter includes a left image red narrowband filter, a left image green narrowband filter, and a left image blue narrowband filter, which are respectively disposed in the left image LED lamp bead array 1 in each LED lamp bead.
- the right image narrowband filter includes a right image red narrow band filter, a right image green narrow band filter, and a right image blue narrow band filter, respectively disposed on the right The light-emitting surface of the red, green and blue light-emitting chips corresponding to the respective LED lamp beads in the image LED lamp bead array 2.
- the wavelength values of the respective light through which the left image narrowband filter can pass and the wavelength values of the respective light through which the right image narrowband filter can pass, are merely used to explain the present invention, and are not in the technical solution of the present invention.
- the limitation of the composition that is, the change of any one or more of the above-mentioned wavelength values, only causes a slight change in the visual direction, and does not substantially change the technical solution of the present invention.
- the left image of the 3D video is transmitted to the left image LED lamp bead array through the left image output port for playing, and the right image of the 3D video is passed through the right image output port.
- the image is transmitted to the right image LED lamp bead array for simultaneous playback, and the viewer can view the 3D image through the 3D glasses.
- the LED display system provided by the embodiment includes an LED display device and a 3D glasses, and the 3D glasses include a left filter lens and a right filter lens, and a wavelength of light that the left filter lens can pass and a left image LED of the LED display device.
- the bead array corresponds to the same wavelength of the RGB three primary colors, and the wavelength of the light that the right filter lens can pass is the same as the wavelength of the RGB three primary colors corresponding to the right image LED lamp bead array of the LED display device, and after the user wears the above 3D glasses, There is a difference in the picture through which the lens passes, and the 3D effect is realized.
- the present invention uses the wavelength of light to distinguish two sets of pictures of the 3D image, it does not cause color cast at the edge of the picture, and does not affect the brightness of the picture.
- the passive 3D glasses with lower cost can realize the 3D effect, that is, the technical problem of the poor display effect of the existing 3D display technology is solved without increasing the cost of the matching 3D glasses.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Computer Hardware Design (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
一种LED显示屏、显示装置及显示系统,该LED显示屏包括由多个LED灯珠组成的LED灯珠阵列,LED灯珠阵列包括左图像LED灯珠阵列(1)与右图像LED灯珠阵列(2),左图像LED灯珠阵列(1)与右图像LED灯珠阵列(2)按照预设的排布规则间隔排布,左图像LED灯珠阵列(1)对应RGB三基色的各个波长与右图像LED灯珠阵列(2)对应RGB三基色的各个波长均不相同,在不增加配套3D眼镜成本的前提下,解决了现有的3D显示技术显示效果不佳的技术问题。
Description
本发明涉及3D(3-Dimension,三维))显示技术领域,尤其涉及一种LED(Light
Emitting Diode,发光二极管)显示屏、显示装置及显示系统。
近年来,随着LED显示技术的快速发展,LED显示屏越来越多的进入到室内高清显示领域,如何实现适合LED显示屏的3D显示也开始备受关注。
目前,为了使LED显示屏呈现出3D显示效果,主要是采用眼镜式3D显示技术,而最常见的眼镜式3D技术主要可以细分为三种类型:色差式、偏光式和主动快门式,也称为色分法、光分法和时分法。
其中,色差式3D技术配合使用的是被动式红-蓝(或者红-绿、红-青)滤色3D眼镜,先由旋转的滤光轮分出光谱信息,使用不同颜色的滤光片进行画面滤光,使得一个图片能产生出两幅图像,人的每只眼睛都看见不同的图像。但这种方法容易使画面边缘产生偏色,3D画面效果较差。偏光式3D技术配合使用的是被动式偏光眼镜,先通过把图像分为垂直向偏振光和水平向偏振光两组画面,或通过把图像分为顺时针圆偏振光和逆时针圆偏振光两组画面,然后3D眼镜左右分别采用不同偏振方向的偏光镜片,这样人的左右眼就能接收两组画面,再经过大脑合成立体影像,由于偏光3D技术采用的是分光法成像原理,会使画面的亮度降低,难以实现真正的全高清3D影像。快门式3D技术配合主动式快门3D眼镜使用,3D显示器以高达120Hz~240Hz的荧幕刷新频率,连续性的交叉显示左、右眼的画面;同时由快门3D眼镜快速切换、遮蔽左右眼,使左右眼各自看到正确的左右眼画面,在大脑内呈现出具深度感的立体影像,此技术不会牺牲3D画面解析度且立体效果良好,但很容易引起人体眼部神经疲劳,少数人观看时会有头晕不舒服的情况,同时主动式3D眼镜的价格也比较高,难以普及。
本发明的主要目的在于提供一种LED显示装置,旨在不增加配套3D眼镜成本的前提下,解决现有的3D显示技术显示效果不佳的技术问题。
为实现上述目的,本发明第一方面提供一种LED显示屏,所述LED显示屏包括由多个LED灯珠组成的LED灯珠阵列,所述LED灯珠阵列包括左图像LED灯珠阵列与右图像LED灯珠阵列,所述左图像LED灯珠阵列与右图像LED灯珠阵列按照预设的排布规则间隔排布,所述左图像LED灯珠阵列对应RGB三基色的各个波长与右图像LED灯珠阵列对应RGB三基色的各个波长均不相同。
可选的,所述LED灯珠设置有红、绿、蓝窄带发光芯片,所述红、绿、蓝窄带发光芯片分别用于发出所述LED灯珠对应的红光、绿光及蓝光。
可选的,所述LED灯珠封装内设置有的红、绿、蓝窄带发光芯片为共振腔LED芯片。
可选的,所述左图像LED灯珠阵列中各个LED灯珠的发光面均设置有左图像窄带滤光片,所述右图像LED灯珠阵列中各个LED灯珠的发光面均设置有右图像窄带滤光片,所述左图像窄带滤光片可通过的光的波长与右图像窄带滤光片可通过的光的波长均不相同。
可选的,所述左图像LED灯珠阵列中各个LED灯珠对应的红、绿、蓝发光芯片的发光面均设置有左图像窄带滤光片,所述右图像LED灯珠阵列中各个LED灯珠对应的红、绿、蓝发光芯片的发光面均设置有右图像窄带滤光片,所述左图像窄带滤光片可通过的光的波长与右图像窄带滤光片可通过的光的波长均不相同。
可选的,所述左图像LED灯珠阵列中的各个LED灯珠与右图像LED灯珠阵中的各个LED灯珠在横向方向及竖向方向上均间隔排布,或者,所述左图像LED灯珠阵列中的各行LED灯珠与右图像LED灯珠阵中的各行LED灯珠间隔排布,或者,所述左图像LED灯珠阵列中的各列LED灯珠与右图像LED灯珠阵中的各列LED灯珠间隔排布。
为实现上述目的,本发明第二方面提供一种LED显示装置,所述装置包括LED显示屏与视频播放装置,所述LED显示屏为本发明第一方面提供的显示屏,所述视频播放装置包括左图像输出端口与右图像输出端口,所述左图像输出端口与左图像LED灯珠阵列连接,所述右图像输出端口与右图像LED灯珠阵列连接。
为实现上述目的,本发明第三方面提供一种LED显示系统,所述系统包括LED显示装置与3D眼镜,所述LED显示装置为本发明第二方面提供的LED显示装置,所述3D眼镜包括左滤光镜片与右滤光镜片,所述左滤光镜片可通过的光的波长与左图像LED灯珠阵列对应RGB三基色的波长相同,所述右滤光镜片可通过的光的波长与右图像LED灯珠阵列对应RGB三基色的波长相同。
本发明提供的LED显示屏,包括由多个LED灯珠组成的LED灯珠阵列,该LED灯珠阵列包括按照预设的排布规则间隔排布的左图像LED灯珠阵列与右图像LED灯珠阵列,上述左图像LED灯珠阵列对应RGB三基色的各个波长与右图像LED灯珠阵列对应RGB三基色的各个波长均不相同。相较于现有技术而言,本发明将3D图像的两组画面通过间隔排布的左图像LED灯珠阵列与右图像LED灯珠阵列以不同的波长输出,当用户佩戴具有不同滤波带宽的3D眼镜之后,左右镜片通过的画面会存在差异,进而实现3D效果,由于本发明是利用光的波长来区分3D图像的两组画面,因此不会使画面边缘产生偏色,也不会影响画面的亮度,同时采用成本较低的被动式3D眼镜即可实现3D效果,即在不增加配套3D眼镜成本的前提下,解决了现有的3D显示技术显示效果不佳的技术问题。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明第一实施例中LED显示屏的结构示意图;
图2为本发明中左图像LED灯珠阵列中的各行LED灯珠与右图像LED灯珠阵列中的各行LED灯珠间隔排布的示意图;
图3为本发明中左图像LED灯珠阵列中的各列LED灯珠与右图像LED灯珠阵列中的各列LED灯珠间隔排布的示意图;
图4为本发明中左图像LED灯珠阵列对应RGB三基色的各个主波长与右图像LED灯珠阵列对应RGB三基色的各个主波长的分布示意图;
图5为本发明第二实施例中左图像LED灯珠阵列对应RGB三基色的各个波长与右图像LED灯珠阵列对应RGB三基色的各个波长的分布示意图。
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明第一实施例提供一种LED显示屏,参照图1,图1为本发明第一实施例中LED显示屏的结构示意图,本实施例中,上述LED显示屏包括由多个LED灯珠组成的LED灯珠阵列,该LED灯珠阵列包括左图像LED灯珠阵列1与右图像LED灯珠阵列2,上述左图像LED灯珠阵列1与右图像LED灯珠阵列2按照预设的排布规则间隔排布,上述左图像LED灯珠阵列1对应RGB三基色的各个波长与右图像LED灯珠阵列2对应RGB三基色的各个波长均不相同。
其中,上述左图像LED灯珠阵列1中的LED灯珠数量与右图像LED灯珠阵列2中的LED灯珠数量相同,或者,上述左图像LED灯珠阵列1中的LED灯珠数量与右图像LED灯珠阵列2中的LED灯珠数量之差在预设的误差范围之内,例如,该误差与上述LED显示屏中LED灯珠总数的比例小于0.1%。
具体的,上述LED灯珠阵列由多个LED灯珠按照“棋盘格”的排列方式排列组成,该LED灯珠阵列的每一行LED灯珠均位于同一直线上,及每一列LED灯珠也均位于同一直线上。其中,上述左图像LED灯珠阵列1中的各个LED灯珠与右图像LED灯珠阵列2中的各个LED灯珠在横向方向及竖向方向上均间隔排布,可参见图1。此外,上述左图像LED灯珠阵列1与右图像LED灯珠阵列2的排布方式还可以为:左图像LED灯珠阵列1中的各行LED灯珠与右图像LED灯珠阵列2中的各行LED灯珠间隔排布;或者,左图像LED灯珠阵列1中的各列LED灯珠与右图像LED灯珠阵列2中的各列LED灯珠间隔排布。
为了更好的理解本发明,参照图2与图3,图2为本发明中左图像LED灯珠阵列中的各行LED灯珠与右图像LED灯珠阵列中的各行LED灯珠间隔排布的示意图;图3为本发明中左图像LED灯珠阵列中的各列LED灯珠与右图像LED灯珠阵中的各列LED灯珠间隔排布的示意图。
其中,上述LED灯珠能够发射的基本色包括红色(R)、绿色(G)、蓝色(B),即RGB三基色,通过控制这三个颜色的变化以及它们相互之间的叠加来得到各式各样的颜色。上述LED灯珠利用三合一点阵全彩技术,即在一个发光单元里由RGB三色晶片组成全彩像素。
其中,LED芯片发出的光的主波长一般是:红光为610nm~635nm,绿光为
515nm~540nm,蓝光为430nm~470nm。
其中,为了将左图像LED灯珠阵列1显示的图像与右图像LED灯珠阵列2显示的图像很好的区分开来,上述左图像LED灯珠阵列1对应RGB三基色的各个波长的取值范围与右图像LED灯珠阵列2对应RGB三基色的各个波长的取值范围均不相同,或者二者重叠的部分所占光能量的比例不超过设定的比值,如重叠部分不能所占光能量的比例不能超过2%。
在本实施例中,上述LED灯珠设置有红、绿、蓝窄带发光芯片,该红、绿、蓝窄带发光芯片分别用于发出上述LED灯珠对应的红光、绿光及蓝光,并且左图像LED灯珠阵列1中各个LED灯珠对应的红、绿、蓝窄带发光芯片发出的红光、绿光及蓝光的各个波长,与右图像LED灯珠阵列2中各个LED灯珠对应的红、绿、蓝窄带发光芯片发出的红光、绿光及蓝光的各个波长均不相同。例如,左图像LED灯珠阵列1中各个LED灯珠发射的红光(R)的波长范围为609nm
~621nm,绿光(G)的波长范围为512nm~524nm,蓝光(B)的波长范围为426
nm~438nm;右图像LED灯珠阵列2中各个LED灯珠发射的红光(R)的波长范围为623nm~635nm,绿光(G)的波长范围为526nm~538nm,蓝光(B)的波长范围为440nm~452nm。
可以理解的是,上述左图像LED灯珠阵列1与右图像LED灯珠阵列2对应的RGB三基色的各个主波长还可以精确采用某个具体的主波长值,例如,上述左图像LED灯珠阵列1中各个LED灯珠发射的红光(R)的主波长采用615nm,绿光(G)的主波长采用518nm,蓝光(B)的主波长采用432
nm,上述右图像LED灯珠阵列2中各个LED灯珠发射的红光(R)的主波长采用629nm,绿光(G)的主波长采用532nm,蓝光(B)的主波长采用446
nm。
为了更好的理解本发明,可参见图4,图4为本发明中左图像LED灯珠阵列对应RGB三基色的各个主波长与右图像LED灯珠阵列对应RGB三基色的各个主波长的分布示意图。在图4中,阴影部分分别表示左图像LED灯珠阵列1中各个LED灯珠发射的RGB三基色的波长范围;无阴影部分分别表示右图像LED灯珠阵列2中各个LED灯珠发射的RGB三基色的波长范围,其中,上述各个LED灯珠发射的三基色的波长带宽可设置为12nm。
应当理解的是,上述左图像LED灯珠阵列1对应RGB三基色的各个波长的值,以及右图像LED灯珠阵列2对应RGB三基色的各个波长的值,仅仅用于解释本发明,并不对本发明技术方案构成限制,也就是说,改变上述任意一个或多个波长的数值,仅仅只会导致视觉上的略微改变,并不会对本发明技术方案造成实质性的改变。
另外,本实施例中,只需保证上述左图像LED灯珠阵列1对应RGB三基色的各个波长与右图像LED灯珠阵列2对应RGB三基色的各个波长均不相同,即上述左图像LED灯珠阵列1对应的RGB三基色的各个波长既可以大于右图像LED灯珠阵列2对应的RGB三基色的各个波长,也可以小于右图像LED灯珠阵列2对应的RGB三基色的各个波长。
具体的,上述LED灯珠封装内的红、绿、蓝窄带发光芯片为共振腔LED芯片,其中,共振腔LED又为RCLED(Resonant Cavity
Light Emitting Diode,共振腔发光二极管),是一种新型发光二极管结构,同时具备了传统LED和垂直腔面激光器两者的优点。
其主要原理为:由于微腔效应改变了真空磁场的模式结构,能使共振波长的光模式密度增大,抑制其他波长的模式密度,使与共振波长相当的有源区自发辐射率增加。同时,再利用F-P(Fabry-Perot
Cavity)腔干涉效应,改变内部出射角的功率分布,使出射光在腔中形成共振,这不仅增加了共振波长出射光的外量子效率,还提高了纯度和方向性,使大部分光集中在提取角范围内,只有少数光被有源层等吸收。
与传统的LED灯珠相比较,上述使用共振腔LED芯片具有以下优点:1)光谱线宽较窄,共振腔LED芯片有源区的自发发射限制在微腔光场模式中,因此相比传统平面LED光谱线宽可以更窄,单色性更好,光谱半峰全宽一般情况下仅有十几个纳米;2)光输出方向性好,共振腔的干涉效应使得器件光输出的方向性好,发散角小;3)具有高亮度、高效率的特点。
可以理解的是,在具体的3D观影过程中,还需要使用与上述LED显示屏配套的3D眼镜,该3D眼镜的左、右镜片经过处理之后,左镜片所能通过的光的波长范围与上述左图像LED灯珠阵列1对应RGB三基色的各个波长相同;右镜片所能通过的光的波长范围与上述右图像LED灯珠阵列2对应RGB三基色的各个波长相同。在3D视频播放时,将3D视频的左图像通过上述左图像LED灯珠阵列1进行播放,将3D视频的右图像通过上述右图像LED灯珠阵列2同步进行播放,观影者通过左镜片仅仅只能看到3D视频的左图像,通过右镜片仅仅只能看到3D视频的右图像,从而实现3D观影效果。
本发明上述实施例提供的LED显示屏,包括由多个LED灯珠组成的LED灯珠阵列,该LED灯珠阵列包括按照预设的排布规则间隔排布的左图像LED灯珠阵列1与右图像LED灯珠阵列2,上述左图像LED灯珠阵列1对应RGB三基色的各个波长与右图像LED灯珠阵列2对应RGB三基色的各个波长均不相同。相较于现有技术而言,本发明将3D图像的两组画面通过间隔排布的左图像LED灯珠阵列1与右图像LED灯珠阵列2以不同的波长输出,当用户佩戴具有不同滤波带宽的3D眼镜之后,左、右镜片通过的画面会存在差异,进而实现3D效果,由于本发明是利用光的波长来区分3D图像的两组画面,因此不会使画面边缘产生偏色,也不会影响画面的亮度,同时采用成本较低的被动式3D眼镜即可实现3D效果,即在不增加配套3D眼镜成本的前提下,解决了现有的3D显示技术显示效果不佳的技术问题。
进一步地,基于本发明第一实施例,提出本发明第二实施例,本实施例中,上述左图像LED灯珠阵列1中各个LED灯珠的发光面均设置有左图像窄带滤光片,右图像LED灯珠阵列2中各个LED灯珠的发光面均设置有右图像窄带滤光片,上述左图像窄带滤光片可通过的光的波长与右图像窄带滤光片可通过的光的波长均不相同。
其中,上述左图像LED灯珠阵列1中的各个LED灯珠与右图像LED灯珠阵列2中的各个LED灯珠均为普通的LED灯珠,并且左图像LED灯珠阵列1中各个LED灯珠对应RGB三基色的各个波长,与右图像LED灯珠阵列2中各个LED灯珠对应RGB三基色的各个波长可以有差异也可以相同。不同点在于,在左图像LED灯珠阵列1中各个LED灯珠的发光面均设置有左图像窄带滤光片,在右图像LED灯珠阵列2中各个LED灯珠的发光面均设置有右图像窄带滤光片,上述左图像窄带滤光片可通过的光的波长与右图像窄带滤光片可通过的光的波长均不相同。例如,上述左图像窄带滤光片可通过的红光(R)的波长范围为609nm
~621nm,绿光(G)的波长范围为512nm~524nm,蓝光(B)的波长范围为426
nm~438nm;而上述右图像窄带滤光片可通过的红光(R)的波长范围为623nm~635nm,绿光(G)的波长范围为526nm~538nm,蓝光(B)的波长范围为440nm~452nm。
为了更好的理解本发明,参照图5,图5为本发明第二实施例中左图像LED灯珠阵列对应RGB三基色的各个波长与右图像LED灯珠阵列对应RGB三基色的各个波长的分布示意图。图5中,阴影部分表示上述左图像窄带滤光片可通过的光的波长,非阴影部分表示上述右图像窄带滤光片可通过的光的波长。
应当理解的是,上述左图像窄带滤光片可通过的各个光的波长值,以及右图像窄带滤光片可通过的各个光的波长值,仅仅用于解释本发明,并不对本发明技术方案构成限制,也就是说,改变上述任意一个或多个波长值,仅仅只会导致视觉上的略微改变,并不会对本发明技术方案造成实质性的改变。
其中,上述左图像窄带滤光片与右图像窄带滤光片可同时对LED灯珠的发光面发出的红光、绿光、蓝光进行过滤。
本发明上述实施例通过在左图像LED灯珠阵列中各个LED灯珠的发光面设置左图像窄带滤光片,在右图像LED灯珠阵列中各个LED灯珠的发光面设置右图像窄带滤光片,由于左图像窄带滤光片可通过的光的波长与右图像窄带滤光片可通过的光的波长均不相同,因此能够将3D图像的两组画面通过间隔排布的左图像LED灯珠阵列1与右图像LED灯珠阵列2以不同的波长输出,当用户佩戴具有不同滤波带宽的3D眼镜之后,左、右镜片通过的画面会存在差异,进而实现3D效果,由于本发明是利用光的波长来区分3D图像的两组画面,因此不会使画面边缘产生偏色,也不会影响画面的亮度,同时采用成本较低的被动式3D眼镜即可实现3D效果,即在不增加配套3D眼镜成本的前提下,解决了现有的3D显示技术显示效果不佳的技术问题。
进一步的,基于本发明第一实施例,提出本发明第三实施例,本实施例中,上述左图像LED灯珠阵列1中各个LED灯珠对应的红、绿、蓝发光芯片的发光面均设置有左图像窄带滤光片,上述右图像LED灯珠阵列2中各个LED灯珠对应的红、绿、蓝发光芯片的发光面均设置有右图像窄带滤光片,上述左图像窄带滤光片可通过的光的波长与右图像窄带滤光片可通过的光的波长均不相同。
其中,上述左图像LED灯珠阵列1中各个LED灯珠与右图像LED灯珠阵列2中各个LED灯珠均为普通的LED灯珠,并且左图像LED灯珠阵列1中各个LED灯珠对应RGB三基色的各个波长与右图像LED灯珠阵列2中各个LED灯珠对应RGB三基色的各个波长可以有差异也可以相同。不同点在于,在左图像LED灯珠阵列1中各个LED灯珠对应的红、绿、蓝发光芯片的发光面均设置有左图像窄带滤光片,在右图像LED灯珠阵列2中各个LED灯珠对应的红、绿、蓝发光芯片的发光面均设置有右图像窄带滤光片,上述左图像窄带滤光片可通过的光的波长与右图像窄带滤光片可通过的光的波长均不相同。
其中,上述左图像窄带滤光片包括左图像红色窄带滤光片、左图像绿色窄带滤光片和左图像蓝色窄带滤光片,分别设置于左图像LED灯珠阵列1中各个LED灯珠对应的红、绿、蓝发光芯片的发光面;上述右图像窄带滤光片包括右图像红色窄带滤光片、右图像绿色窄带滤光片和右图像蓝色窄带滤光片,分别设置于右图像LED灯珠阵列2中各个LED灯珠对应的红、绿、蓝发光芯片的发光面。
其中,上述左图像窄带滤光片可通过的光的波长与右图像窄带滤光片可通过的光的波长均不相同,例如,上述左图像红色窄带滤光片可通过的红光(R)的波长范围为615nm
~617nm,而上述右图像红色窄带滤光片可通过的红光(R)的波长范围为618nm~620nm;上述左图像绿色窄带滤光片可通过的绿光(R)的波长范围为530nm
~535nm,而上述右图像绿色窄带滤光片可通过的绿光(R)的波长范围为536nm~540nm;上述左图像蓝色窄带滤光片可通过的蓝光(R)的波长范围为460nm
~465nm,而上述右图像蓝色窄带滤光片可通过的蓝光(R)的波长范围为466nm~470nm。
应当理解的是,上述左图像窄带滤光片可通过的各个光的波长值,以及右图像窄带滤光片可通过的各个光的波长值,仅仅用于解释本发明,并不对本发明技术方案构成限制,也就是说,改变上述任意一个或多个波长值,仅仅只会导致视觉上的略微改变,并不会对本发明技术方案造成实质性的改变。
本发明上述实施例通过在左图像LED灯珠阵列中各个LED灯珠对应的红、绿、蓝发光芯片的发光面分别设置左图像窄带滤光片,在右图像LED灯珠阵列中各个LED灯珠对应的红、绿、蓝发光芯片的发光面分别设置右图像窄带滤光片,由于左图像窄带滤光片可通过的光的波长与右图像窄带滤光片可通过的光的波长均不相同,因此能够将3D图像的两组画面通过间隔排布的左图像LED灯珠阵列1与右图像LED灯珠阵列2以不同的波长输出,当用户佩戴具有不同滤波带宽的3D眼镜之后,左、右镜片通过的画面会存在差异,进而实现3D效果,由于本发明是利用光的波长来区分3D图像的两组画面,因此不会使画面边缘产生偏色,也不会影响画面的亮度,同时采用成本较低的被动式3D眼镜即可实现3D效果,即在不增加配套3D眼镜成本的前提下,解决了现有的3D显示技术显示效果不佳的技术问题。
进一步地,本发明第四实施例提供一种LED显示装置,该装置包括LED显示屏与视频播放装置,上述LED显示屏为本发明第一实施例、或第二实施例、或第三实施例中所提供的LED显示屏,上述视频播放装置包括左图像输出端口与右图像输出端口,所述左图像输出端口与左图像LED灯珠阵列连接,所述右图像输出端口与右图像LED灯珠阵列连接。
本实施例中,上述LED显示装置播放在3D视频时,将3D视频的左图像通过上述左图像输出端口传输到左图像LED灯珠阵列进行播放,将3D视频的右图像通过上述右图像输出端口传输到右图像LED灯珠阵列同步进行播放,观影者通过3D眼镜即可观看到3D图像。
其中,上述LED显示屏为本发明第一实施例、或第二实施例、或第三实施例中所提供的LED显示屏,在此不再赘述。
本实施例提供的LED显示装置,包括LED显示屏与视频播放装置,该视频播放装置包括左图像输出端口与右图像输出端口,左图像输出端口与上述LED显示屏的左图像LED灯珠阵列连接,右图像输出端口与上述LED显示屏的右图像LED灯珠阵列连接。当用户佩戴具有不同滤波带宽的3D眼镜之后,左右镜片通过的画面会存在差异,进而实现3D效果,由于本发明是利用光的波长来区分3D图像的两组画面,因此不会使画面边缘产生偏色,也不会影响画面的亮度,同时采用成本较低的被动式3D眼镜即可实现3D效果,即在不增加配套3D眼镜成本的前提下,解决了现有的3D显示技术显示效果不佳的技术问题。
进一步地,本发明第五实施例提供一种LED显示系统,该系统包括LED显示装置与3D眼镜,上述LED显示装置为本发明第四实施例提供的LED显示装置,上述3D眼镜包括左滤光镜片与右滤光镜片,该左滤光镜片可通过的光的波长与左图像LED灯珠阵列对应RGB三基色的波长相同,该右滤光镜片可通过的光的波长与右图像LED灯珠阵列对应RGB三基色的波长相同。
本实施例中,上述3D眼镜的左、右镜片经过处理之后,左镜片所能通过的光的波长范围与上述左图像LED灯珠阵列对应RGB三基色的各个波长相同;右镜片所能通过的光的波长范围与上述右图像LED灯珠阵列对应RGB三基色的各个波长相同。在3D视频播放时,将3D视频的左图像通过上述左图像LED灯珠阵列进行播放,将3D视频的右图像通过上述右图像LED灯珠阵列同步进行播放,观影者通过左镜片仅仅只能看到3D视频的左图像,通过右镜片仅仅只能看到3D视频的右图像,并且左、右镜片中的图像互不干扰,从而实现3D观影效果。
其中,上述LED显示装置为本发明第四实施例提供的LED显示装置,在此不再赘述。
本实施例提供的LED显示系统,包括LED显示装置与3D眼镜,该3D眼镜包括左滤光镜片与右滤光镜片,左滤光镜片可通过的光的波长与上述LED显示装置的左图像LED灯珠阵列对应RGB三基色的波长相同,右滤光镜片可通过的光的波长与上述LED显示装置的右图像LED灯珠阵列对应RGB三基色的波长相同,当用户佩戴上述3D眼镜之后,左右镜片通过的画面会存在差异,进而实现3D效果,由于本发明是利用光的波长来区分3D图像的两组画面,因此不会使画面边缘产生偏色,也不会影响画面的亮度,同时采用成本较低的被动式3D眼镜即可实现3D效果,即在不增加配套3D眼镜成本的前提下,解决了现有的3D显示技术显示效果不佳的技术问题。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
以上为对本发明所提供的一种LED显示屏、显示装置及显示系统的描述,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。
Claims (8)
- 一种LED显示屏,其特征在于,所述LED显示屏包括由多个LED灯珠组成的LED灯珠阵列,所述LED灯珠阵列包括左图像LED灯珠阵列与右图像LED灯珠阵列,所述左图像LED灯珠阵列与右图像LED灯珠阵列按照预设的排布规则间隔排布,所述左图像LED灯珠阵列对应RGB三基色的各个波长与右图像LED灯珠阵列对应RGB三基色的各个波长均不相同。
- 如权利要求1所述的LED显示屏,其特征在于,所述LED灯珠设置有红、绿、蓝窄带发光芯片,所述红、绿、蓝窄带发光芯片分别用于发出所述LED灯珠对应的红光、绿光及蓝光。
- 如权利要求1所述的LED显示屏,其特征在于,所述LED灯珠封装内设置有的红、绿、蓝窄带发光芯片为共振腔LED芯片。
- 如权利要求1所述的LED显示屏,其特征在于,所述左图像LED灯珠阵列中各个LED灯珠的发光面均设置有左图像窄带滤光片,所述右图像LED灯珠阵列中各个LED灯珠的发光面均设置有右图像窄带滤光片,所述左图像窄带滤光片可通过的光的波长与右图像窄带滤光片可通过的光的波长均不相同。
- 如权利要求1所述的LED显示屏,其特征在于,所述左图像LED灯珠阵列中各个LED灯珠对应的红、绿、蓝发光芯片的发光面均设置有左图像窄带滤光片,所述右图像LED灯珠阵列中各个LED灯珠对应的红、绿、蓝发光芯片的发光面均设置有右图像窄带滤光片,所述左图像窄带滤光片可通过的光的波长与右图像窄带滤光片可通过的光的波长均不相同。
- 如权利要求1至5任意一项所述的LED显示屏,其特征在于,所述左图像LED灯珠阵列中的各个LED灯珠与右图像LED灯珠阵中的各个LED灯珠在横向方向及竖向方向上均间隔排布,或者,所述左图像LED灯珠阵列中的各行LED灯珠与右图像LED灯珠阵中的各行LED灯珠间隔排布,或者,所述左图像LED灯珠阵列中的各列LED灯珠与右图像LED灯珠阵中的各列LED灯珠间隔排布。
- 一种LED显示装置,其特征在于,所述装置包括LED显示屏与视频播放装置,所述LED显示屏为权利要求1至6任意一项所述的显示屏,所述视频播放装置包括左图像输出端口与右图像输出端口,所述左图像输出端口与左图像LED灯珠阵列连接,所述右图像输出端口与右图像LED灯珠阵列连接。
- 一种LED显示系统,其特征在于,所述系统包括LED显示装置与3D眼镜,所述LED显示装置为权利要求7所述的LED显示装置,所述3D眼镜包括左滤光镜片与右滤光镜片,所述左滤光镜片可通过的光的波长与左图像LED灯珠阵列对应RGB三基色的波长相同,所述右滤光镜片可通过的光的波长与右图像LED灯珠阵列对应RGB三基色的波长相同。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710680681.4 | 2017-08-10 | ||
CN201710680681.4A CN107329279A (zh) | 2017-08-10 | 2017-08-10 | Led显示屏、显示装置及显示系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019028961A1 true WO2019028961A1 (zh) | 2019-02-14 |
Family
ID=60200381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/100995 WO2019028961A1 (zh) | 2017-08-10 | 2017-09-08 | Led 显示屏、显示装置及显示系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107329279A (zh) |
WO (1) | WO2019028961A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220364710A1 (en) * | 2021-05-12 | 2022-11-17 | PSG Opto Development Co., Ltd | Rcled lamp bead packaging process and rcled lamp bead packaged by the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111028720A (zh) * | 2019-12-31 | 2020-04-17 | 李婵 | 一种新型光谱技术的被动式3d led显示屏 |
CN112289781B (zh) * | 2020-11-04 | 2023-02-03 | 深圳市大象视界科技有限公司 | Led显示屏3d图像实现方法及其量子点led显示屏 |
CN113745206B (zh) * | 2021-08-06 | 2024-06-18 | 武汉精测电子集团股份有限公司 | 一种led显示基板及其制作方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101859029A (zh) * | 2010-05-20 | 2010-10-13 | 友达光电股份有限公司 | 立体显示器 |
CN102445761A (zh) * | 2011-10-18 | 2012-05-09 | 黄凤仙 | 光谱分光的立体显示方法 |
US8201945B2 (en) * | 2008-01-29 | 2012-06-19 | Eastman Kodak Company | 2D/3D switchable color display apparatus with narrow band emitters |
JP2012145725A (ja) * | 2011-01-12 | 2012-08-02 | Panasonic Corp | Ledディスプレイ装置および立体視用眼鏡 |
CN106647062A (zh) * | 2017-02-22 | 2017-05-10 | 万维云视(上海)数码科技有限公司 | 像素结构、液晶面板及立体显示器 |
CN107134244A (zh) * | 2017-03-27 | 2017-09-05 | 利亚德光电股份有限公司 | 显示设备与显示系统 |
CN207232542U (zh) * | 2017-08-10 | 2018-04-13 | 深圳市时代华影科技股份有限公司 | Led显示屏、显示装置及显示系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104460019B (zh) * | 2014-12-11 | 2017-04-12 | 合肥鑫晟光电科技有限公司 | 三维显示设备以及三维显示方法 |
CN104914617B (zh) * | 2015-06-30 | 2018-04-06 | 南京中电熊猫液晶显示科技有限公司 | 一种2d/3d可切换的液晶显示装置 |
-
2017
- 2017-08-10 CN CN201710680681.4A patent/CN107329279A/zh active Pending
- 2017-09-08 WO PCT/CN2017/100995 patent/WO2019028961A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8201945B2 (en) * | 2008-01-29 | 2012-06-19 | Eastman Kodak Company | 2D/3D switchable color display apparatus with narrow band emitters |
CN101859029A (zh) * | 2010-05-20 | 2010-10-13 | 友达光电股份有限公司 | 立体显示器 |
JP2012145725A (ja) * | 2011-01-12 | 2012-08-02 | Panasonic Corp | Ledディスプレイ装置および立体視用眼鏡 |
CN102445761A (zh) * | 2011-10-18 | 2012-05-09 | 黄凤仙 | 光谱分光的立体显示方法 |
CN106647062A (zh) * | 2017-02-22 | 2017-05-10 | 万维云视(上海)数码科技有限公司 | 像素结构、液晶面板及立体显示器 |
CN107134244A (zh) * | 2017-03-27 | 2017-09-05 | 利亚德光电股份有限公司 | 显示设备与显示系统 |
CN207232542U (zh) * | 2017-08-10 | 2018-04-13 | 深圳市时代华影科技股份有限公司 | Led显示屏、显示装置及显示系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220364710A1 (en) * | 2021-05-12 | 2022-11-17 | PSG Opto Development Co., Ltd | Rcled lamp bead packaging process and rcled lamp bead packaged by the same |
US11543104B2 (en) * | 2021-05-12 | 2023-01-03 | Psg Opto Development Co., Ltd. | RCLED lamp bead packaging process and RCLED lamp bead packaged by the same |
Also Published As
Publication number | Publication date |
---|---|
CN107329279A (zh) | 2017-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019028961A1 (zh) | Led 显示屏、显示装置及显示系统 | |
CN203258423U (zh) | Led单元模组、发光装置以及光源系统 | |
US9383586B2 (en) | Stereoscopic imaging systems utilizing solid-state illumination and passive glasses | |
US8029139B2 (en) | 2D/3D switchable color display apparatus with narrow band emitters | |
US20100225836A1 (en) | Three-dimensional (3d) color display system | |
CN103377595B (zh) | Led自由立体显示模组 | |
JP2011519194A (ja) | 多重線形電気機械変調器を用いた立体表示装置 | |
JPH025002A (ja) | 表示装置用マルチカラー・フィルタ | |
CN107357124B (zh) | 多基色双dmd激光投影显示装置 | |
WO2016037521A1 (zh) | 立体图像投影装置和立体显示的眼镜 | |
CN203909462U (zh) | 基于激光光源的双投影机3d投影装置及3d投影系统 | |
CN101778302A (zh) | 三维立体图像显示装置及其方法 | |
WO2014183583A1 (zh) | 一种发光装置及舞台灯系统 | |
CN208141722U (zh) | 基于3d偏振技术的led显示屏 | |
CN207232542U (zh) | Led显示屏、显示装置及显示系统 | |
CN207067645U (zh) | 多基色双dmd激光投影显示装置 | |
WO2021127800A1 (zh) | 一种改善边缘色偏的显示装置及电视机 | |
CN203909467U (zh) | 基于激光光源的3d投影系统、投影机 | |
WO2016066074A1 (zh) | 3d投影显示系统 | |
WO2016045470A1 (zh) | 立体投影系统 | |
CN206378648U (zh) | 一种广色域的3d显示眼镜及成像系统 | |
JP3568338B2 (ja) | 液晶立体表示装置 | |
WO2015180409A1 (zh) | 光谱转换装置和立体显示系统 | |
JPH10186272A (ja) | 液晶立体表示装置 | |
CN113474716A (zh) | 用于无源3d显示器的系统和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17920863 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17920863 Country of ref document: EP Kind code of ref document: A1 |