WO2019028685A1 - 一种下行控制信息监测方法、终端及基站 - Google Patents

一种下行控制信息监测方法、终端及基站 Download PDF

Info

Publication number
WO2019028685A1
WO2019028685A1 PCT/CN2017/096508 CN2017096508W WO2019028685A1 WO 2019028685 A1 WO2019028685 A1 WO 2019028685A1 CN 2017096508 W CN2017096508 W CN 2017096508W WO 2019028685 A1 WO2019028685 A1 WO 2019028685A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource unit
time resource
time
terminal
unit interval
Prior art date
Application number
PCT/CN2017/096508
Other languages
English (en)
French (fr)
Inventor
薛祎凡
王达
刘云
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/096508 priority Critical patent/WO2019028685A1/zh
Priority to US16/637,583 priority patent/US11197286B2/en
Priority to EP17921023.2A priority patent/EP3654710B1/en
Priority to CN201780065229.5A priority patent/CN109891973B/zh
Publication of WO2019028685A1 publication Critical patent/WO2019028685A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a downlink control information monitoring method, a terminal, and a base station.
  • DRX discontinuous reception
  • RRC radio resource control
  • the UE will continue to be in the active period after being scheduled, that is, the PDCCH will be continuously monitored during the configured activation period.
  • the implementation mechanism is: whenever the UE is scheduled to transmit data, it will be started ( Or restart) A DRX deactivation timer, the UE will remain active until the timer expires.
  • the DRX deactivation timer specifies a plurality of consecutive PDCCH-containing subframes that continue to be in an active state after the UE successfully decodes a PDCCH indicating the initial uplink or downlink user data, that is, when the UE has an initial transmission The timer is started or restarted once the data is scheduled.
  • the UE monitors the PDCCH in each downlink subframe containing the PDCCH before the DRX deactivation timer expires. If the monitoring time set by the DRX deactivation timer is too short, the UE can only monitor fewer PDCCHs. Once the DRX deactivation timer expires, the UE enters the sleep period and can only wait for the activation period of the next discontinuous reception period to receive. Or send data. If the monitoring time set by the DRX deactivation timer is too long, the UE will monitor a large number of PDCCHs and consume a lot of energy.
  • the configuration of the discontinuous reception cycle in the prior art is inflexible, and there is a technical problem that the activation period is configured too short, the service efficiency is low, and the activation period is configured too short, causing excessive service power consumption.
  • the embodiment of the present application provides a downlink control information monitoring method, a terminal, and a base station, which are used to solve the problem that the configuration of the discontinuous reception period in the prior art is inflexible, and the existing activation period is configured too short to cause low service efficiency, and the activation period is The short configuration is too short to cause technical problems of excessive power consumption.
  • the present application provides a downlink control information monitoring method, where the method includes: the terminal monitoring downlink control information according to a first rule in a first time resource unit interval; the terminal is in a second time resource unit interval And monitoring the downlink control information according to the second rule; the first time resource unit interval is different from the second time resource unit interval, and the first rule is different from the second rule.
  • the first rule is different from the second rule, including:
  • the terminal is different in monitoring the downlink control information in the first time resource unit interval and in the second time resource unit interval;
  • the terminal is different from the manner of monitoring the downlink control information in the second time resource unit interval in the first time resource unit interval;
  • the terminal is different in the first time resource unit interval and the monitoring frequency and the offset mode in which the downlink control information is monitored in the second time resource unit interval.
  • the monitoring frequency is a reciprocal of a time resource unit interval used when determining a time resource unit to be monitored from a plurality of time resource units corresponding to a time resource unit interval; the offset manner is from a corresponding time resource unit.
  • the manner in which the first of the time resource units required to be monitored is determined among the plurality of time resource units of the interval.
  • the first time resource unit interval is different from the second time resource unit interval, and includes:
  • the first time resource unit interval is different from the start time of the second time resource unit interval.
  • the first time resource unit interval is different from the second time resource unit interval
  • the start time and the length of time of the first time resource unit interval and the second time resource unit interval are different.
  • the first time resource unit interval includes a plurality of consecutive time resource units;
  • the second time resource unit interval includes a plurality of consecutive time resource units; and
  • the time resource unit is a time slot and a mini time A combination of one or more of a slot, a symbol, and a subframe.
  • the method further includes:
  • the terminal determines any one of the first time resource unit interval and the second time resource unit interval. The starting time and length of time.
  • the terminal determines a start time and a time length of any one of the first time resource unit interval and the second time resource unit interval, including:
  • the terminal determines the first configuration information, where the first configuration information is configured by the base station, or the first configuration information is pre-configured by the terminal, and the first configuration information configures the first time resource. a relative starting time and a length of time of the time resource unit interval of any one of the unit interval and the second time resource unit interval;
  • the terminal monitors downlink control information according to the first rule in the first time resource unit interval, including:
  • the terminal monitors downlink control information sent by the base station to the terminal in the time resource unit that is required to be monitored, and the symbol occupied by the downlink control area is used to carry downlink control information;
  • the terminal monitors the downlink control information according to the second rule in the second time resource unit interval, including:
  • the terminal monitors downlink control information sent by the base station to the terminal in the time resource unit that is required to be monitored in the downlink control area; the symbol occupied by the downlink control area is used to carry downlink control information.
  • the terminal determines the offset manner in the time resource unit interval of any one of the first time resource unit interval and the second time resource unit interval, including:
  • the terminal receives the first indication information sent by the base station, where the first indication information indicates an offset manner in any one of the time resource unit intervals; and the terminal determines any one of the foregoing according to the first indication information.
  • the offset mode within the time resource unit interval; or
  • the terminal determines the monitoring frequency in any one of the first time resource unit interval and the second time resource unit interval, including:
  • the terminal receives the second indication information sent by the base station, where the second indication information indicates the monitoring frequency in any one of the time resource unit intervals; the terminal determines any one according to the second indication information. Said monitoring frequency within a time resource unit interval; or
  • the terminal determines the monitoring frequency in any one of the time resource unit intervals according to a pre-configuration.
  • the monitoring in the time resource unit interval after the start time is The frequency is less than or equal to the monitoring frequency within the time resource unit interval in which the starting time is prior.
  • the first time resource unit interval is the same as the start time of the second time resource unit interval
  • the first time resource unit interval and the second time resource unit interval are intersected.
  • the monitoring frequency in the interval time resource unit interval is greater than or equal to the monitoring frequency in the non-overlap time resource unit interval.
  • the terminal again detects that the terminal receives or sends the initial time in any one of the first time resource unit interval and the second time resource unit interval.
  • the terminal returns to the terminal in the first time resource unit interval, and monitors the downlink control information according to the first rule, where the terminal is in the second time resource unit interval, according to the second rule. The step of monitoring the downlink control information.
  • the terminal receives the third indication information sent by the base station in any one of the first time resource unit interval and the second time resource unit interval.
  • the third indication information indicates that the terminal stops monitoring downlink control information;
  • the terminal disconnects the radio frequency link between the terminal and the base station according to the third indication information, so that the terminal jumps from the activated state to the dormant state;
  • the terminal disconnects the radio frequency link between the terminal and the base station after the time resource unit interval of the third indication information is received, according to the third indication information, so that the terminal Jump from active state to sleep State; or,
  • the terminal receives, according to any one of the first time resource unit interval and the second time resource unit interval, fourth indication information sent by the base station, where the fourth The indication information indicates that the terminal switches from the time resource unit to the third time resource unit interval; the start time of the third time resource unit interval is the time resource unit, and the third time resource unit interval
  • the length of time, the monitoring frequency, and the offset manner are configured by the base station or pre-configured by the terminal;
  • the downlink resource information sent by the base station to the terminal is monitored in the time resource unit of the required monitoring.
  • the terminal does not need to be monitored for a short time in the time resource unit interval in any one of the first time resource unit interval and the second time resource unit interval.
  • the non-monitoring time resource unit includes a time resource unit in the time resource unit interval except the time resource unit that is required to be monitored, and includes not included in the time resource unit to be monitored Time resource unit of the downlink control area.
  • the first time resource unit interval is determined by a first timer; and the second time resource unit interval is determined by a second timer.
  • the first time resource unit interval is determined by a first counter; and the second time resource unit interval is determined by a second counter.
  • the application provides a downlink control information monitoring method, where the method includes:
  • the base station sends the first configuration information to the terminal, where the first configuration information configures a relative start time and a time length of the time resource unit interval of any one of the first time resource unit interval and the second time resource unit interval, so that the base station Determining, by the terminal, the start time and the time of any one of the time resource unit intervals from consecutive time resource units subsequent to the current time resource unit according to the current time resource unit and the first configuration information.
  • the terminal detects, in the current time resource unit, downlink control information indicating that the terminal receives or sends the initial data.
  • the method further includes:
  • Transmitting, by the base station, first indication information to the terminal, where the first indication information indicates an offset in any one of the first time resource unit interval and the second time resource unit interval The method, so that the terminal determines, according to the first indication information, an offset manner in any one of the time resource unit intervals; or, the base station sends, to the terminal, a wireless network temporary identifier that is satisfied by the terminal.
  • the terminal determines an offset manner in any one of the time resource unit intervals according to the first functional relationship; or the base station sends the wireless network temporary identifier and the location to the terminal Determining a second functional relationship that the cell identifier of the terminal satisfies, so that the terminal determines an offset manner in any one of the time resource unit intervals according to the second functional relationship.
  • the method further includes:
  • the base station sends the second indication information to the terminal, where the second indication information is used to indicate to the terminal, any one of the first time resource unit interval and the second time resource unit interval.
  • the monitoring frequency within the unit interval.
  • the method further includes:
  • the third indication information indicates that the terminal stops monitoring downlink control information.
  • the method further includes:
  • the fourth indication information indicates that the terminal switches from the time resource unit to the third time resource unit interval; the start time of the third time resource unit interval is the time resource unit, and the third time resource.
  • the length of time of the unit interval, the monitoring frequency, and the offset manner are configured by the base station.
  • an embodiment of the present application provides a terminal, where the terminal includes a memory, a transceiver, and a processor, where: the memory is used to store an instruction; the processor is configured to control the transceiver to perform signal reception and signal according to an instruction for executing the memory storage. Sending, when the processor executes the instruction stored in the memory, the terminal is configured to perform the method of any one of the above first aspect or the first aspect.
  • an embodiment of the present application provides a base station, where the base station includes a memory, a transceiver, and a processor, where: the memory is used to store an instruction; the processor is configured to control the transceiver to perform signal reception and signal according to an instruction to execute the memory storage.
  • the base station is configured to perform the method of any of the above second aspect or the second aspect when the processor executes the instruction stored in the memory.
  • the embodiment of the present application provides a terminal, which is used to implement the method of any one of the foregoing first aspect or the first aspect, and includes a corresponding functional module, which is used to implement the steps in the foregoing method.
  • the embodiment of the present application provides a base station, which is used to implement any one of the foregoing second aspect or the second aspect, including a corresponding functional module, which is used to implement the steps in the foregoing method.
  • an embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform any of the first aspect or the first aspect The method in the implementation.
  • an embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform any of the second aspect or the second aspect The method in the implementation.
  • an embodiment of the present application provides a computer program product comprising instructions, which when executed on a computer, cause the computer to perform the method of the first aspect or any possible implementation of the first aspect.
  • the embodiment of the present application provides a computer program product comprising instructions, when executed on a computer, causing a computer to perform the method in any of the possible implementations of the second aspect or the second aspect.
  • the present application provides a chip connected to a memory for reading and executing a software program stored in the memory to implement the first aspect and various possible designs in the first aspect.
  • the method in .
  • the present application provides a chip connected to a memory for reading and executing a software program stored in the memory to implement various possible designs in the second aspect and the second aspect described above.
  • the time resource unit interval for monitoring the downlink control information configured for the terminal is at least two, and the time resource unit to be monitored in each time resource unit interval can be flexibly configured, and each time resource unit interval is
  • the time resource unit to be monitored may be part of the time resource unit in the time resource unit interval, or may be all time resource units in the time resource unit interval.
  • the at least two time resource unit intervals are configured differently Rules to determine the time resource units to be monitored in each time resource unit interval. Based on the above configuration, time units of different lengths can be configured for the terminal according to the service requirements of the terminal to ensure scheduling flexibility.
  • the time resource units to be monitored in any time resource interval are determined by rules, and all time resource units of each time resource unit interval are prevented from being monitored, and the power consumption of the terminal can be reduced.
  • the above downlink control information monitoring method of the present application can balance scheduling flexibility and reduce terminal power consumption.
  • FIG. 1 is a schematic structural diagram of a system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a DRX cycle according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of data transmission based on time slots and mini time slots according to an embodiment of the present application
  • FIG. 6 are schematic diagrams of a method for monitoring downlink control information according to an example 1 of the present application.
  • FIG. 7 is a schematic diagram of a downlink control information monitoring method according to Example 2 of the present application.
  • Example 8 is a schematic diagram of a downlink control information monitoring method according to Example 3 of the present application.
  • FIG. 9 is a schematic diagram of a downlink control information monitoring method according to Example 4 of the present application.
  • Example 10 is a schematic diagram of a method for monitoring downlink control information provided in Example 5 of the present application.
  • Example 11 is a schematic diagram of a downlink control information monitoring method according to Example 6 of the present application.
  • Example 12 is a schematic diagram of a method for monitoring downlink control information provided in Example 7 of the present application.
  • Example 13 is a schematic diagram of a downlink control information monitoring method according to Example 8 of the present application.
  • Example 14 is a schematic diagram of a method for monitoring downlink control information provided in Example 9 of the present application.
  • Example 15 is a schematic diagram of a downlink control information monitoring method according to Example 10 of the present application.
  • 16 is a schematic diagram of a downlink control information monitoring method according to Example 11 of the present application.
  • Example 17 is a schematic diagram of a downlink control information monitoring method according to Example 12 of the present application.
  • FIG. 18 is a schematic diagram of a downlink control information monitoring method according to Example 13 of the present application.
  • Example 19 is a schematic diagram of a downlink control information monitoring method according to Example 14 of the present application.
  • 21 is a schematic structural diagram of a base station provided by the present application.
  • FIG. 22 is a schematic structural diagram of a terminal or a base station according to the present application.
  • FIG. 23 is a schematic structural diagram of a data transmission apparatus provided by the present application.
  • This application is mainly applied to the Long Term Evolution (LTE)/5G New Radio Access Technology (NR) system. As shown in FIG. 1, it is an infrastructure of the communication system of the present application.
  • the base station and the terminal can perform data or signaling transmission through the wireless interface, including uplink transmission and downlink transmission.
  • the base station can be a device that can communicate with the terminal.
  • the base station can be any device having a wireless transceiving function. Including but not limited to: a base station (eg, a base station NodeB, an evolved base station eNodeB, a base station in a fifth generation (5G) communication system, a base station or network device in a future communication system, an access node in a WiFi system , wireless relay node, wireless backhaul node, etc.
  • the base station can also be a cloud radio access network (cloud radio access network, CRAN) Wireless controller in the scenario.
  • the base station may also be a network device in a 5G network or a network device in a future evolved network; or may be a wearable device or an in-vehicle device.
  • the base station may also be a small station, a transmission reference point (TRP), or the like. Of course, this application is not limited to this.
  • the terminal is a wireless transceiver function that can be deployed on land, indoors or outdoors, handheld, wearable or on-board; it can also be deployed on the water (such as ships); it can also be deployed in the air (such as airplanes, balloons, and Satellite, etc.).
  • the terminal may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and an industrial control (industrial) Wireless terminal in control), wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless in transport safety A terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the embodiment of the present application does not limit the application scenario.
  • a terminal may also be referred to as a user equipment (UE), an access terminal device, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a UE terminal device, a terminal device, and a wireless device.
  • UE user equipment
  • An access terminal device a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a UE terminal device, a terminal device, and a wireless device.
  • system and “network” in the embodiments of the present invention may be used interchangeably.
  • Multiple means two or more, and in view of this, "a plurality” may also be understood as “at least two” in the embodiment of the present invention.
  • the character “/” unless otherwise specified, generally indicates that the contextual object is an "or” relationship.
  • the terms “first”, “second” and the like are used only to distinguish the purpose of description, and are not to be understood as indicating or implying relative importance, nor as an indication. Or suggest the order.
  • the time domain resource unit described in the embodiment of the present application is a time domain resource scheduling and allocation unit in a wireless communication system, such as an LTE system, an LTE evolution system, or a 5G system, such as NR, including but not limited to a subframe, a sub- A frame set, a slot, a mini-slot, a Transmit Time Interval (TTI), a TTI set, a time domain symbol, and a time domain symbol set.
  • the new radio access technology (New RAT, NR for short) or the newly defined terminology similar to the above concept in the 5G can also be used as the time domain resource unit described in this patent, which is not limited in this application.
  • the sub-frames in this application can be understood as: a time-frequency resource that occupies the entire system bandwidth in the frequency domain, and a fixed time length in the time domain, for example, 1 millisecond (ms).
  • one subframe can also occupy consecutive K symbols, and K is a natural number greater than zero.
  • the value of K can be determined according to actual conditions, and is not limited herein.
  • 1 subframe occupies consecutive 14 OFDM symbols in the time domain.
  • a time slot refers to a basic time-frequency resource unit, which occupies consecutive L OFDM symbols in the time domain, and L is a natural number greater than zero.
  • the value of L can be determined according to actual conditions, for example, 7 OFDM symbols.
  • the symbols in the present application include, but are not limited to, Orthogonal Frequency Division Multiplexing (OFDM) symbols, Sparse Code Multiplexing Access (SCMA) symbols, and filtered orthogonal frequency division.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SCMA Sparse Code Multiplexing Access
  • filtered orthogonal frequency division The (Filtered Orthogonal Frequency Division Multiplexing, F-OFDM) symbol and the non-orthogonal multiple access (NOMA) symbol can be determined according to actual conditions, and details are not described herein again.
  • the UE can achieve power saving by short-time sleep technology.
  • the UE After accessing the network, the UE needs to receive downlink data sent by the base station to itself, or send uplink data to the base station by itself. Whether the UE receives downlink data or transmits uplink data, its behavior is controlled by the base station. Specifically, the base station sends downlink control information through the PDCCH, and the downlink control information can schedule the UE to receive or send data.
  • the UE may blindly detect the PDCCH according to certain rules on a specific time-frequency resource, and if it detects the PDCCH sent to itself, it sends or receives according to the downlink control information contained therein; if the PDCCH sent to itself is not detected, the UE does not There will be further action.
  • the UE may close its own RF link and enter a short sleep period before the next downlink subframe arrives, thereby saving battery power. This method of conserving power is called short-term sleep.
  • the mini-slot based transmission in this application refers to both slot-based and mini-slot based transmissions in the NR.
  • one slot is generally defined as n symbols
  • a mini-slot is defined as 2 to n-1 symbols, where n is generally taken as 7 or 14.
  • Slot-based transmission means that the minimum scheduling unit for this transmission is a slot
  • mini-slot based transmission can set the minimum scheduling unit to be shorter than one slot (ie, a mini-slot).
  • mini-slot based transmissions can be used when there is less latency or when less data is required to be transmitted.
  • the UE is configured with a PDCCH monitoring occasion monitoring occasion in the time domain, and the UE monitors the PDCCH only on the configured PDCCH monitoring occasion, and the PDCCH monitoring occasion includes a plurality of consecutive or discontinuous time domain resource units. Such as multiple time slots.
  • the number of mini-slots that need to be monitored in a time slot is also configured by the base station to the UE through the PDCCH monitoring occasion.
  • a slot labeled 0-6.
  • the UE may only be configured to monitor the 0th, 3rd, and 6th of them. In this case, for this UE, there will be 3 mini-slot based transmissions in a slot.
  • a downlink control information monitoring method provided by the present application, as shown in FIG. 4, includes:
  • Step 101 The terminal monitors downlink control information according to the first rule in the first time resource unit interval.
  • Step 102 The terminal monitors downlink control information according to a second rule in a second time resource unit interval.
  • the first time resource unit interval is different from the second time resource unit interval, and the first rule is different from the second rule.
  • step 101 and step 102 are performed simultaneously, or steps 101 and 102 are not performed at the same time.
  • the first time resource unit interval includes a plurality of consecutive time resource units; the second time resource unit interval includes a plurality of consecutive time resource units; the time resource unit is a time slot, a mini time slot, a symbol, and a sub a combination of one or more of the frames, wherein the plurality of subframes, the plurality of time slots, or the plurality of mini-slots, the plurality of symbols may be continuous or discontinuous; the subframe, the time slot, and the mini The combination of time slots or symbols can be continuous or discontinuous.
  • the time resource unit interval used for downlink control information monitoring includes but is not limited to the first time resource unit interval and the second time resource unit interval, and the time resource unit interval used for downlink control information monitoring is configured to be multiple.
  • Each time resource unit interval is configured with a rule for monitoring downlink control information, and the first time resource unit interval and the second time resource unit interval are two of the plurality.
  • the first rule is used to specify a time required for monitoring in the first time resource unit interval.
  • a resource unit where the time resource unit to be monitored in the first time resource unit interval is part or all of the time resource unit in the first time resource unit interval; and the second rule specifies the second time resource unit interval The time resource unit to be monitored, wherein the time resource unit to be monitored in the second time resource unit interval is part or all of the time resource unit in the second time resource unit interval.
  • the time resource unit to be monitored in the first time resource unit interval is determined according to the monitoring frequency and the offset manner in the first time resource unit interval, and the time resource to be monitored in the second time resource unit interval.
  • the unit is determined according to the monitoring frequency and the offset manner in the second time resource unit interval.
  • the monitoring frequency is a reciprocal of a time resource unit interval used when determining a time resource unit to be monitored from a plurality of time resource units corresponding to a time resource unit interval, for example, one time resource unit interval includes 10 consecutive time The time slot, if monitored every 3 time slots, the monitoring frequency in the time resource unit interval is 1/3.
  • the offset mode is a manner of determining a first time resource unit to be monitored from a plurality of time resource units corresponding to a time resource unit interval, for example, a time resource unit interval includes 10 consecutive time slots, and each time When the three time slots are monitored once, the first monitored time slot may have multiple types, which may be the first time slot or the second time slot, which determines which time slot is the first monitored time slot.
  • the way of time slots is called the offset mode.
  • the first rule is different from the second rule, and the terminal monitors a monitoring frequency of the downlink control information and the second time resource in the first time resource unit interval.
  • the monitoring frequency of monitoring the downlink control information in the unit interval is different, in this case, the offset manner of the terminal in the first time resource unit interval and the offset manner in the second time resource unit interval Can be the same or different.
  • the first rule is different from the second rule, including: the terminal monitoring downlink control information in the first time resource unit interval and in the second time resource unit interval
  • the offset mode is different.
  • the monitoring frequency of the terminal in the first time resource unit interval and the monitoring frequency in the second time resource unit interval may be the same or different.
  • the first rule is different from the second rule, including: the terminal monitoring downlink control information in the first time resource unit interval and in the second time resource unit interval
  • the monitoring frequency and the offset manner are different.
  • the start time of the time resource unit interval is the first time resource unit corresponding to the time resource unit interval
  • the time length of the time resource unit interval is the number of time resource units included in the corresponding time resource unit interval
  • special case If a time resource unit interval includes two or more time resource units, the time length of the time resource unit interval is determined by the number of longer time resource units, for example, one time resource unit interval includes multiple consecutive The time slot, wherein one or more time slots include at least one mini time slot, and the time length of the time resource unit interval is determined by the number of time slots.
  • step 101 and step 102 start executing at the same time, the start time of the first time resource unit interval is the same as the start time of the second time resource unit interval, that is, the first time of the first time resource unit interval.
  • the time resource units are the same as the first time resource units of the second time resource unit interval. If step 101 is started after the end of step 101, or step 101 is started after the end of step 102, or after step 101 ends, step 102 is started after a period of time, then the start time of the first time resource unit interval and the second time resource The starting time of the unit interval is not the same.
  • the first time resource unit interval is different from the second time resource unit interval, and the first time resource unit interval is different from the second time resource unit interval.
  • the length of time of the first time resource unit interval and the time length of the second time resource unit interval may be The same, can also be different.
  • the first time resource unit interval is different from the second time resource unit interval, and the first time resource unit interval is different from the second time resource unit interval.
  • the start time of the first time resource unit section may be the same as or different from the start time of the second time resource unit section.
  • the first time resource unit interval is different from the second time resource unit interval, and includes: a start time of the first time resource unit interval and the second time resource unit interval, and The length of time is different.
  • the method further includes: when the current time resource unit detects downlink control information indicating that the terminal receives or sends initial data, the terminal determines the first time resource unit interval and the The start time and length of time of any one of the time resource unit intervals in the second time resource unit interval.
  • the current time resource unit may be a time resource unit that needs to be monitored by any one of the first time resource unit interval and the second time resource unit interval. For example, the current time resource unit monitors, for any one of the first time resource units, a time resource unit that indicates that the terminal receives or sends downlink control information of the initial transmission data, or the current time resource unit is in the second time resource unit.
  • the current time resource unit interval may also be any time resource unit configured to the terminal to monitor downlink control information except for the first time resource unit interval and the second time resource unit interval.
  • the terminal determines a start time and a time length of any one of the first time resource unit interval and the second time resource unit interval, including: the terminal determining a configuration information, where the first configuration information is configured by the base station, or the first configuration information is pre-configured by the terminal, the first configuration information configuring the first time resource unit interval and the a relative start time and a time length of the time resource unit interval of any one of the second time resource unit intervals; the terminal, according to the current time resource unit and the first configuration information, after the current time resource unit The starting time and the length of time of any one of the first time resource unit interval and the second time resource unit interval are determined in consecutive consecutive time resource units.
  • the start time of any time resource unit interval configured in the first configuration information is a relative value, that is, a relative start time, so that each time a downlink control indicating that the terminal receives or transmits the initial data is monitored is monitored is monitored.
  • the start time and the length of time of any time resource unit interval that causes the terminal to continue to be in the active state may be determined according to the time at which the downlink control information is received and the first configuration information.
  • the terminal monitors the terminal receiving or indicating the terminal at the current time resource unit.
  • the terminal determines, according to the current time resource unit and the first configuration information, the N time resource unit intervals from consecutive time resource units subsequent to the current time resource unit.
  • the step 101 includes: determining, by the terminal, the offset manner and the monitoring frequency in the first time resource unit interval; the terminal according to the first time resource unit interval The offset mode and the monitoring frequency determine a time resource unit to be monitored from a plurality of time resource units of the first time resource unit interval; the terminal is in the required monitoring including a downlink control region Monitoring the downlink control information sent by the base station to the terminal in the time resource unit, where the symbol occupied by the downlink control region is used to carry the downlink control signal interest.
  • time resource unit to be monitored is obtained according to the configuration or pre-configuration of the base station, and whether a time resource unit has a downlink control area depends on the structure of the time resource unit, the structure of the time resource unit is likely to be effective for a short time. That is, when the terminal determines the "time resource unit to be monitored", it may not be known whether the "time resource unit to be monitored” contains the downlink control area.
  • the step 102 includes: the terminal determining the offset manner and the monitoring frequency in the second time resource unit interval; and the terminal according to the second time resource unit interval
  • the offset mode and the monitoring frequency determine a time resource unit to be monitored from a plurality of time resource units of the second time resource unit interval; the terminal is in the required monitoring including a downlink control region
  • the downlink resource information sent by the base station to the terminal is monitored in the time resource unit; the symbol occupied by the downlink control region is used to carry downlink control information.
  • the terminal determines the offset manner in any one of the time resource unit intervals, including: the terminal receiving first indication information sent by the base station, where the first indication information indicates And an offset manner in any one of the time resource unit intervals, wherein the terminal determines an offset manner in any one of the time resource unit intervals according to the first indication information.
  • the terminal determines the offset mode in the time resource unit interval for monitoring downlink control information, including: determining, by the terminal, any one of the time resource units according to pre-configuration The offset method within the interval.
  • Pre-configuration refers to pre-configuration that is factory-set in the terminal according to the standard protocol. These pre-configurations include any offset mode within the time resource unit interval for monitoring downlink control information.
  • the terminal determines the offset mode in the time resource unit interval for monitoring downlink control information, including: the terminal is satisfied according to the wireless network temporary identifier of the terminal. And a first functional relationship, determining an offset manner in any one of the time resource unit intervals, where the first functional relationship is pre-configured by the terminal or the first functional relationship is configured by the base station.
  • the first functional relationship that the radio network temporary identifier (RNTI) of the terminal satisfies is RNTI mod mi.
  • RNTI mod mi the first functional relationship that the radio network temporary identifier (RNTI) of the terminal satisfies.
  • RNTI mod mi the first functional relationship that the radio network temporary identifier (RNTI) of the terminal satisfies.
  • RNTI mod mi the first functional relationship that the radio network temporary identifier (RNTI) of the terminal satisfies.
  • RNTI mod mi For a terminal, if the RNTI of the terminal is 35542, a time resource unit interval allocated to the terminal for downlink control information monitoring includes a plurality of consecutive time slots, and is monitored every 2 time slots, and then substituted into the first function.
  • the terminal determines the offset manner in the time resource unit interval for monitoring downlink control information, including: the terminal according to the wireless network temporary identifier and the terminal The second functional relationship that the cell identifier satisfies determines the offset manner in any one of the time resource unit intervals.
  • the second functional relationship between the radio network temporary identifier RNTI of the terminal and the cell identifier Cell ID is (RNTI+). Cell ID) mod mi.
  • the second functional relationship is pre-configured by the terminal, or the second functional relationship is configured by the base station.
  • the terminal determines the monitoring frequency in any one of the time resource unit intervals, including: the terminal receiving the second indication information sent by the base station, where the second indication information indicates any One The monitoring frequency in the time resource unit interval; the terminal determining, according to the second indication information, the monitoring frequency in any one of the time resource unit intervals.
  • the determining, by the terminal, the monitoring frequency in any one of the time resource unit intervals includes: determining, by the terminal, the monitoring frequency in any one of the time resource unit intervals according to a pre-configuration.
  • the monitoring in the time resource unit interval after the start time is The frequency is less than or equal to the monitoring frequency within the time resource unit interval in which the starting time is prior.
  • the time resource unit interval for monitoring the downlink control information configured for the terminal includes three, and the second time resource unit interval is started after the first time resource unit interval monitoring ends, and the second time resource unit interval monitoring is completed.
  • the third time resource unit interval is started.
  • the monitoring frequency of the three time resource unit intervals is gradually decreased.
  • the monitoring frequency of the three time resource unit intervals is the same, but the offset manners of the three time resource unit intervals are different.
  • the first time resource unit interval is the same as the start time of the second time resource unit interval
  • the first time resource unit interval and the second time resource unit interval are intersected.
  • the monitoring frequency in the interval time resource unit interval is greater than or equal to the monitoring frequency in the non-overlap time resource unit interval.
  • the time resource unit interval configured for the terminal to monitor the downlink control information includes two, and the start times of the two time resource unit intervals are the same, but the time lengths are different.
  • the time length of the first time resource unit interval is smaller than the time length of the second time resource unit interval.
  • the overlapping time of the first time resource unit interval and the second time resource unit interval is every other time.
  • the resource unit monitors once, and the non-overlapping portion of the second time resource unit interval and the first time resource unit interval is monitored every three time resource units.
  • the intersection of the first time resource unit interval and the second time resource unit interval may be satisfied.
  • the monitored frequency of the stacked portion is equal to the monitored frequency of the non-overlapping portion.
  • the terminal again detects that the terminal receives or sends the initial time in any one of the first time resource unit interval and the second time resource unit interval.
  • the terminal returns to step 101 and step 102 in the foregoing embodiment.
  • the terminal receives the third indication information sent by the base station in any one of the first time resource unit interval and the second time resource unit interval.
  • the third indication information indicates that the terminal stops monitoring downlink control information; the terminal disconnects a radio frequency link between the terminal and the base station according to the third indication information, so that the terminal is activated.
  • the state jumps to the dormant state; or, the terminal disconnects between the terminal and the base station after the end of the time resource unit interval in which the third indication information is received according to the third indication information
  • the radio frequency link causes the terminal to jump from the active state to the dormant state; or the terminal disconnects the terminal and after the end of the time resource unit interval indicated by the base station according to the third indication information
  • the radio frequency link between the base stations causes the terminal to jump from an active state to a sleep state.
  • the terminal receives, according to any one of the first time resource unit interval and the second time resource unit interval, fourth indication information sent by the base station, where the fourth The indication information indicates that the terminal switches from the time resource unit to the third time resource unit interval; the start time of the third time resource unit interval is the time resource unit, and the third time resource unit interval
  • the time length, the monitoring frequency, and the offset manner are configured by the base station or pre-configured by the terminal; the terminal determines the third according to the fourth indication information and the time resource unit The time resource unit to be monitored in the time resource interval, And monitoring the downlink control information sent by the base station to the terminal in the time resource unit of the required monitoring that is included in the downlink time control area in the third time resource interval.
  • the third time resource unit interval is a time resource unit interval temporarily generated when the fourth indication information is received according to the pre-configuration or the configuration of the base station, and the monitoring frequency of the third time resource unit interval and the offset manner.
  • the monitoring frequency and the offset manner of any one of the time resource unit intervals configured for the terminal may be the same.
  • the monitoring frequency of the third time resource unit interval is smaller than the monitoring frequency of the time resource unit interval where the current time resource unit of the fourth indication information is received.
  • the terminal does not need to be monitored for a short time in the time resource unit interval in any one of the first time resource unit interval and the second time resource unit interval.
  • the non-monitoring time resource unit includes a time resource unit in the time resource unit interval except the time resource unit that is required to be monitored, and includes not included in the time resource unit to be monitored Time resource unit of the downlink control area.
  • the high layer signaling may be radio resource control (RRC) signaling, and the main information block (MIB) signaling.
  • RRC radio resource control
  • MIB main information block
  • SIB System Information Block
  • MAC media access control
  • DCI downlink control information
  • the first time resource unit interval is determined by a first timer; and the second time resource unit interval is determined by a second timer.
  • the time resource unit interval configured for the terminal is N
  • the N time resource unit intervals are implemented by N timers, and when the start times of the N time resource unit intervals are the same, the N timers are simultaneously started.
  • the start times of the N time resource unit intervals are different, the N timers are sequentially started.
  • the next time resource unit interval starts to be started, and is determined by the length of time of each resource unit interval during the effective period of each timer.
  • the first time resource unit interval may also be determined by the first counter; the second time resource unit interval may also be determined by the second counter.
  • the present application further provides a downlink control information monitoring method on the base station side. mainly includes:
  • the base station sends the first configuration information to the terminal, where the first configuration information configures a relative start time and a time length of the time resource unit interval of any one of the first time resource unit interval and the second time resource unit interval, so that the base station
  • the current time resource unit of the terminal detects the downlink control information indicating that the terminal receives or transmits the initial transmission data, according to the current time resource unit and the first configuration information, the continuous time after the current time resource unit
  • the starting time and the length of time of any one of the time resource unit intervals are determined in the time resource units.
  • the method further includes: the base station sending, to the terminal, first indication information, where the first indication information indicates any one of the first time resource unit interval and the second time resource unit interval An offset manner in the time resource unit interval, so that the terminal determines an offset manner in any one of the time resource unit intervals according to the first indication information; or, the base station sends an instruction to the terminal Determining, by the terminal, the first functional relationship that the wireless network temporary identifier of the terminal meets, so that the terminal determines an offset manner in any one of the time resource unit intervals according to the first functional relationship; or Sending, by the terminal, an instruction to indicate the wireless And a second functional relationship that is satisfied by the network temporary identifier and the cell identifier of the terminal, so that the terminal determines an offset manner in any one of the time resource unit intervals according to the second function relationship.
  • the terminal when the value of the instruction sent by the base station to the terminal is 0, the terminal is instructed to determine the offset mode in any time resource unit according to the first function relationship RNTI mod mi; when the base station sends an instruction indication to the terminal At 1 o'clock, the instructing terminal determines the offset mode in any one of the time resource units according to the second functional relationship (RNTI+Cell ID) mod mi.
  • the method further includes: the base station sending, to the terminal, second indication information, where the second indication information is used to indicate, to the terminal, the first time resource unit interval and the second time The monitoring frequency within any of the time resource unit intervals in the resource unit interval.
  • the method further includes: the base station sending third indication information to the terminal, where the third indication information is in the first time resource unit interval and the second time resource unit interval And sending, by the any one of the time resource unit intervals, the third indication information, the terminal, to stop monitoring the downlink control information.
  • the method further includes: the base station sending fourth indication information to the terminal, where the fourth indication information is in the first time resource unit interval and the second time resource unit interval And sending, by the any one of the time resource units, the fourth indication information, the terminal, to switch from the time resource unit to the third time resource unit interval, where the start time of the third time resource unit interval is the time resource And the unit, the time length of the third time resource unit interval, the monitoring frequency, and the offset manner are configured by the base station.
  • the high layer signaling may be radio resource control (RRC) signaling, and the main information block (MIB) signaling.
  • RRC radio resource control
  • MIB main information block
  • SIB System Information Block
  • MAC media access control
  • DCI downlink control information
  • the time resource unit interval for monitoring the downlink control information configured for the terminal is at least two, and the time resource unit to be monitored in each time resource unit interval can be flexibly configured, and required in each time resource unit interval.
  • the monitored time resource unit may be part of the time resource unit in the time resource unit interval, or may be all time resource units in the time resource unit interval.
  • the at least two time resource unit intervals are configured with different rules to determine the time resource units to be monitored in each time resource unit interval. Based on the above configuration, time units of different lengths can be configured for the terminal according to the service requirements of the terminal to ensure scheduling flexibility.
  • the time resource units to be monitored in any time resource interval are determined by rules, and all time resource units of each time resource unit interval are prevented from being monitored, and the power consumption of the terminal can be reduced.
  • the above downlink control information monitoring method of the present application can balance scheduling flexibility and reduce terminal power consumption.
  • the time resource unit interval used for monitoring the downlink control information during the activation period of one DRX cycle configured by the terminal includes three, and the first time resource unit interval is set by the timer Timer1.
  • the second time resource unit interval is implemented by the timer Timer2
  • the third time resource unit interval is implemented by the timer Timer3, and the UE is configured to transmit based on the time slot.
  • the terminal is in an active state during the activation of any one of the timers, and the start time of the timer Timer1 is equal to the start time of the first time resource unit interval, and the effective period of the timer Timer1 and the first time resource unit interval The length of time is equal.
  • the start time of the timer Timer2 is equal to the start time of the second time resource unit section, and the effective period of the timer Timer2 is equal to the time length of the second time resource unit section.
  • the start time of the timer Timer3 and the start time of the third time resource unit interval Equally, the effective period of the timer Timer3 is equal to the length of time of the third time resource unit interval.
  • the three time resource unit intervals include four consecutive time slots, each of which includes a downlink control area, and the symbols occupied by the downlink control area are used to carry downlink control information sent by the base station to the terminal.
  • Each time slot in the first time resource unit interval is monitored once, every 2 time slots in the second time resource unit interval are monitored once, and every 4 time slots in the second time resource unit interval are monitored.
  • Once, and each time slot has a downlink control area.
  • the timer Timer1, the timer Timer2 and the timer Timer3 are alternately started, the timer Timer1 is started first, the timer Timer2 is started when the timer Timer1 times out, and the timer Timer3 is started when the timer Timer2 times out. After the timer Timer1, the timer Timer2, and the timer Timer3 both time out, the terminal transitions from the active state to the sleep state.
  • each time resource unit interval includes four time slots including a downlink control region
  • the duration of each time resource unit interval is a relative value. Therefore, in this example, a counter counter may be used instead of a timer. Timer. That is, each time resource unit interval corresponds to one counter.
  • the method for the terminal to perform downlink control information monitoring includes:
  • the timer Timer1 is started, and the timer is started.
  • the terminal monitors the PDCCH once in each time slot.
  • the timer Timer2 starts.
  • the terminal monitors the PDCCH every 2 time slots. Since the terminal does not monitor the PDCCH in each time slot in which the timer Timer2 takes effect, the terminal monitors which time slot PDCCH has different offset modes. As shown in FIG.
  • the terminal can monitor four times when the timer Timer2 takes effect.
  • the 5th and 7th time slots in the slot, or the 6th and 8th time slots, can also be monitored.
  • the timer Timer3 is started.
  • the terminal monitors the PDCCH every four time slots.
  • the terminal monitors which time slot PDCCH has a different offset mode, and the terminal can monitor the fourth of the four time slots in which the timer Timer3 takes effect. 9 time slots, or the 12th time slot can also be monitored.
  • the terminal When the terminal monitors the 5th and 7th time slots in which the timer Timer2 is in effect, in the 6th and 8th time slots, the terminal can turn off the RF link and enter a short-time sleep state to save power.
  • the terminal monitors the ninth time slot in which the timer Timer3 is in effect, in the 10th time slot, the 11th time slot, and the 12th time slot the terminal can close the RF link and enter a short-time sleep state to save power. .
  • the terminal monitors the 6th and 8th time slots in which the timer Timer2 is in effect, in the 5th and 7th time slots, the terminal can turn off the RF link and enter a short-time sleep state to save power.
  • the terminal When the terminal monitors the 12th time slot in which the timer Timer3 is in effect, in the 9th time slot, the 10th time slot, and the 11th time slot, the terminal can close the RF link and enter a short-time sleep state to save power. .
  • the manner in which the terminal monitors the PDCCH may be configured by the base station to the terminal through RRC signaling, or configured by the base station to the terminal through the MAC CE, or configured by the base station to the terminal through the DCI, or calculated according to the radio network temporary identifier RNTI of the terminal, or The calculation is based on the RNTI of the terminal and the Cell ID of the cell. For details, refer to the foregoing content, and details are not described herein.
  • the base station may send a signaling to the terminal to stop monitoring the downlink control information, so that the terminal enters the sleep period in advance.
  • the terminal receives the signaling of stopping monitoring the downlink control information sent by the base station in the third time slot in which the timer Timer1 is valid, and the signaling may be sent to the terminal through RRC signaling, or may be sent by the base station through the MAC.
  • the CE sends the signal to the terminal or is sent by the base station to the terminal through the DCI.
  • the terminal enters the dormancy period according to the signaling of stopping monitoring the downlink control information, and has the following modes:
  • the terminal can enter the sleep period immediately after successfully demodulating the signaling message, as shown in the timer in FIG.
  • the PDCCH is no longer monitored after the 4th slot position in which Timer1 takes effect successfully demodulates the signaling message.
  • the terminal may enter a sleep period after the timer 1 that is currently in effect expires, such as the timer period of the timer Timer2 shown in FIG. 6 or the timer Timer3 after the timer Timer2. Entering the dormant period, the PDCCH is no longer monitored.
  • the terminal may enter the sleep period after the timer Timer2 expires according to the indication of the signaling content sent by the base station, such as the idle period of the timer Timer3 shown in FIG. 6 or the sleep period after the timer Timer3. , PDCCH is no longer monitored.
  • the terminal needs to monitor one by one in each downlink subframe.
  • the foregoing example 1 is compared with the existing DRX technology of the LTE. If the duration of the DRX activation period is the same, the application can reduce the frequency of monitoring the downlink control information when the terminal is in the active state. It is not necessary to monitor the downlink control information in the current time slot, and the terminal can enter a short-term sleep state in the current time slot to save power and reduce terminal energy consumption.
  • the present application can extend the duration of the DRX activation period without increasing the number of times of downlink control information monitoring, so that the scheduling is more flexible. Therefore, the above example 1 configures three timers for the terminal configured with the DRX, and the manners for monitoring the downlink control information during different timers are different, and the performance requirements of reducing power consumption and ensuring scheduling flexibility can be simultaneously considered.
  • the example 2 provided in the present application is as shown in FIG. 7.
  • the time resource unit interval for monitoring the downlink control information during the activation period of one DRX cycle configured for the terminal includes three, and the first time resource unit interval is set by the timer Timer1.
  • the second time resource unit interval is implemented by the timer Timer2
  • the third time resource unit interval is implemented by the timer Timer3.
  • the terminal is configured for slot-based transmission, and the three time resource unit intervals all include four consecutive time slots. Each time slot in the first time resource unit interval is monitored once, every 2 time slots in the second time resource unit interval are monitored once, and every 4 time slots in the second time resource unit interval are monitored once.
  • the timer Timer1, the timer Timer2 and the timer Timer3 are alternately started, the timer Timer1 is started first, the timer Timer2 is started when the timer Timer1 times out, and the timer Timer3 is started when the timer Timer2 times out.
  • the difference from the example 1 is that not every time slot includes a downlink control region, for example, the fourth time slot in which the timer Timer1 is valid does not include the downlink control region, and the seventh time slot and the eighth time that the timer Timer2 takes effect.
  • the time slot does not include the downlink control area, and the 10th time slot and the 11th time slot in which the timer Timer3 takes effect do not include the downlink control area.
  • the terminal may close the RF link with the base station in a time slot not including the downlink control area, and enter a short-time sleep state to save power.
  • the method for the terminal to perform downlink control information monitoring includes:
  • the timer Timer1 is started, and the timer is started.
  • the terminal monitors the PDCCH in the first three time slots. Since the fourth time slot does not include the downlink control area, the terminal enters the short-term sleep state in the fourth time slot to save power. , reduce terminal energy consumption.
  • the timer Timer2 starts.
  • the terminal monitors the PDCCH every 2 time slots, for example, the terminal can monitor the 5th and 7th time slots of the 4 time slots effective by the timer Timer2, or can also monitor the 6th and 8th time slots. .
  • the timer Timer3 is started. In the four time slots in which the timer Timer3 takes effect, the terminal monitors the PDCCH every four time slots. Similarly, the terminal can monitor the ninth time slot in which Timer Timer3 is in effect, or can also monitor the 12th time slot.
  • the terminal monitors the ninth time slot in which Timer3 is valid when the terminal monitors the ninth time slot in which Timer3 is valid, the terminal is in the sixth time slot, the seventh time slot, the eighth time slot, the tenth time slot, First The 11 time slots and the 12th time slot turn off the RF link and enter a short-term sleep state to save power.
  • the terminal monitors the sixth time slot in which the timer Timer2 is in effect, and the terminal monitors the 12th time slot in which the timer Timer3 is in effect, the terminal is in the 5th time slot, the 7th time slot, the 8th time slot, and the The 9 time slots, the 10th time slot, and the 11th time slot turn off the RF link and enter a short-term sleep state to save power.
  • the specific content of the offset mode of the PDCCH monitored by the terminal is the same as that of the example 1, and is not described here.
  • the specific content that the base station can send to the terminal to stop monitoring the downlink control information to make the terminal enter the sleep period in advance is the same as that of the example 1 and is not described here.
  • the specific content of the manner in which the terminal enters the sleep period according to the signaling of stopping the monitoring of the downlink control information is the same as that of the example 1 and is not described here.
  • the foregoing example 2 is compared with the existing LTE DRX technology. If the duration of the DRX activation period is the same, the application can reduce the frequency of monitoring the downlink control information when the terminal is in the active state. It is not necessary to monitor the downlink control information in the current time slot, and the terminal can enter a short-term sleep state in the current time slot to save power and reduce terminal energy consumption. Compared with the prior art, if the number of times of monitoring the downlink control information is the same, the present application can extend the duration of the DRX activation period without increasing the number of times of downlink control information monitoring, so that the scheduling is more flexible. Therefore, the above example 2 configures three timers for the terminal configured with the DRX. The manners for monitoring the downlink control information during different timers are different, and the performance requirements of reducing power consumption and ensuring scheduling flexibility can be simultaneously considered.
  • the time resource unit interval used for monitoring the downlink control information during the activation period of one DRX cycle configured by the terminal includes three, and the first time resource unit interval is set by the timer Timer1.
  • the second time resource unit interval is implemented by the timer Timer2
  • the third time resource unit interval is implemented by the timer Timer3.
  • the terminal is configured to transmit based on the time slot, each time slot in the first time resource unit interval is monitored once, and every 2 time slots in the second time resource unit interval are monitored once, and the second time resource unit interval is monitored. It is monitored every 4 time slots.
  • the timer Timer1, the timer Timer2 and the timer Timer3 are alternately started, the timer Timer1 is started first, the timer Timer2 is started when the timer Timer1 times out, and the timer Timer3 is started when the timer Timer2 times out.
  • each time resource unit interval includes a number of time slots including a downlink control region. It is 4. Specifically, as shown in FIG. 8, the first time resource unit interval includes five time slots, wherein the fourth time slot does not include a downlink control region; and the second time resource unit interval includes six time slots, and the seventh time slot And the 10th time slot does not include a downlink control region, and the remaining 4 time slots include a downlink control region; the third time resource unit interval includes 4 time slots including a downlink control region.
  • the terminal may close the RF link with the base station in a time slot not including the downlink control area, and enter a short-time sleep state to save power. Because each time resource unit interval is configured differently, the duration of each timer also changes.
  • the duration in which the timer Timer1 takes effect includes five time slots.
  • the duration in which the timer Timer2 takes effect includes six time slots.
  • the duration in which the timer Timer3 takes effect includes four time slots.
  • each time resource unit interval includes four time slots including a downlink control region
  • the duration of each time resource unit interval is a relative value. Therefore, in this example, a counter counter may be used instead of a timer. Timer, that is, each time resource unit interval corresponds to a counter.
  • the method for the terminal to perform downlink control information monitoring includes:
  • the timer Timer1 is started after the terminal performs the initial transmission of the successful uplink data or the downlink data, or monitors the downlink control information indicating that the terminal receives or transmits the initial transmission data in any time resource unit interval.
  • the terminal monitors the PDCCH in the first three time slots and the fifth time slot. Since the fourth time slot does not include the downlink control region, the terminal is in effect at the timer Timer1.
  • Four time slots will enter a short-term sleep state to save power and reduce terminal energy consumption. After the timer Timer1 times out, the timer Timer2 starts.
  • the PDCCH is monitored every two time slots of the terminal, for example, the sixth and ninth time slots of the six time slots effective by the timer Timer2 can be monitored, or The 8th and 11th time slots are monitored.
  • the timer Timer3 is started.
  • the terminal monitors the PDCCH every four time slots.
  • the terminal can monitor the 12th time slot in which Timer Timer3 is in effect, or can also monitor the 15th time slot.
  • the terminal monitors the 6th and 9th time slots in which the timer Timer2 is in effect, and the 12th time when the monitoring timer Timer3 takes effect,
  • the terminal can close the RF chain in the 7th time slot, the 8th time slot, the 10th time slot, the 11th time slot, the 13th time slot, the 14th time slot and the 15th time slot. Road, enter a short-term sleep state to save power.
  • the terminal monitors the 8th and 11th time slots in which the timer Timer2 is in effect, and monitors the 15th time slot in which the timer Timer3 is in effect, the terminal is in the 6th time slot, the 7th time slot, and the ninth time slot.
  • the 10th time slot, the 12th time slot, the 13th time slot, and the 14th time slot may turn off the RF link and enter a short-term sleep state to save power.
  • the specific content of the offset mode of the PDCCH monitored by the terminal is the same as that of the example 1, and is not described here.
  • the specific content that the base station can send to the terminal to stop monitoring the downlink control information to make the terminal enter the sleep period in advance is the same as that of the example 1 and is not described here.
  • the specific content of the manner in which the terminal enters the sleep period according to the signaling of stopping the monitoring of the downlink control information is the same as that of the example 1 and is not described here.
  • the present application can reduce the frequency at which the terminal monitors the downlink control information when the terminal is in an active state. It is not necessary to monitor the downlink control information in the current time slot, and the terminal can enter a short-term sleep state in the current time slot to save power and reduce terminal energy consumption.
  • the present application can extend the duration of the DRX activation period without increasing the number of times of downlink control information monitoring, so that the scheduling is more flexible. Therefore, the above example 3 configures three timers for the terminal configured with the DRX. The manners for monitoring the downlink control information during different timers are different, and the performance requirements of reducing power consumption and ensuring scheduling flexibility can be simultaneously considered.
  • the example 4 provided in the present application is as shown in FIG. 9.
  • the time resource unit interval for monitoring the downlink control information during the activation period of one DRX cycle configured for the terminal includes three, and the first time resource unit interval is set by the timer Timer1.
  • the second time resource unit interval is implemented by the timer Timer2
  • the third time resource unit interval is implemented by the timer Timer3.
  • the terminal is configured to transmit based on the time slot and the mini-slot, and each time resource unit in the first time resource unit interval is monitored once, and every two time resource units in the second time resource unit interval are monitored once, and the third Each time resource unit in the time resource unit interval is monitored once, where the number of time resource units refers to the sum of the time slot and the mini time slot.
  • the timer Timer1, the timer Timer2 and the timer Timer3 are alternately started, the timer Timer1 is started first, the timer Timer2 is started when the timer Timer1 times out, and the timer Timer3 is started when the timer Timer2 times out.
  • the difference from the example 1 is that the time slots of each time resource unit interval are not equal, and the sum of the number of time slots and the number of mini-slots included in each time resource unit interval is four, not every time slot.
  • the first time resource unit section includes three slots, wherein two mini-slot-based transmissions are configured in the second slot of the first time resource unit section;
  • Time resource unit interval includes 3 time slots, There are two mini-slot-based transmissions configured in the sixth time slot, and the fifth time slot does not include the downlink control region;
  • the third time resource unit interval includes four time slots, but the eighth and the The 10 time slots do not contain the downlink control area.
  • each time resource unit interval is configured differently, the duration of each timer also changes.
  • the duration of the timer Timer1 is valid, including three time slots.
  • the duration of the timer Timer2 is valid, including three time slots.
  • the duration of the timer Timer3 is valid, including four time slots.
  • the terminal may close the RF link with the base station in a time slot not including the downlink control area, and enter a short-time sleep state to save power.
  • each time resource unit interval includes 4 time slots or includes 4 time slots and mini time slots, the duration of each time resource unit interval is a relative value, therefore, a counter can also be used in this example. Counter instead of timer timer. That is, each time resource unit interval corresponds to one counter.
  • the method for the terminal to perform downlink control information monitoring includes:
  • the timer Timer1 is started, and the timer is started.
  • the terminal monitors the PDCCH once in the first time slot, in the two mini time slots and in the third time slot configured in the second time slot.
  • the timer Timer2 starts.
  • the terminal monitors the PDCCH every two time slots.
  • the terminal can monitor the fourth time slot and the sixth time that the timer Timer2 is effective.
  • the timer Timer3 is started.
  • the terminal monitors the PDCCH every 4 time slots, because the 8th and 10th of the 3rd time resource unit interval
  • the time slots do not include the downlink control area, and the terminal can monitor the 7th time slot in which the timer Timer3 takes effect.
  • the terminal monitors the first of the fourth time slot and the sixth time slot configuration in the three time slots in which the timer Timer2 takes effect.
  • the mini-slot, and the 7th time slot in which the terminal monitoring timer Timer3 takes effect, the second mini-slot, the 8th slot, and the ninth of the terminal configured in the 5th slot and the 6th slot The time slot and the 10th time slot close the RF link and enter a short-term sleep state to save power.
  • the terminal monitors the second minislot of the sixth time slot configuration in the three time slots in which the timer Timer2 is in effect, the terminal is configured in the fourth time slot, the fifth time slot, and the sixth time slot.
  • the first minislot, the seventh slot, the eighth slot, the ninth slot, and the tenth slot close the RF link and enter a short sleep state to save power.
  • the specific content of the offset mode of the PDCCH monitored by the terminal is the same as that of the example 1, and is not described here.
  • the specific content that the base station can send to the terminal to stop monitoring the downlink control information to make the terminal enter the sleep period in advance is the same as that of the example 1 and is not described here.
  • the specific content of the manner in which the terminal enters the sleep period according to the signaling of stopping the monitoring of the downlink control information is the same as that of the example 1 and is not described here.
  • the foregoing example 4 is compared with the existing LTE DRX technology. If the duration of the DRX activation period is the same, the application can reduce the frequency of monitoring the downlink control information when the terminal is in the active state. It is not necessary to monitor downlink control information in the current time slot or mini-slot, and the terminal can enter a short-time sleep state in the current time slot or mini-slot to save power and reduce terminal energy consumption. Compared with the prior art, if the number of times of monitoring the downlink control information is the same, the present application can extend the duration of the DRX activation period without increasing the number of times of downlink control information monitoring, so that the scheduling is more flexible. Therefore, the above example 4 configures three timers for the terminal configured with the DRX. The manner in which the downlink control information is monitored during the different timers is different, and the performance requirements of reducing power consumption and ensuring scheduling flexibility can be simultaneously considered.
  • the time resource unit interval used for monitoring the downlink control information during the activation period of one DRX cycle configured by the terminal includes three, and the first time resource unit interval is set by the timer Timer1.
  • the second time resource unit interval is implemented by the timer Timer2
  • the third time resource unit interval is implemented by the timer Timer3.
  • the terminal is configured to transmit based on the time slot and the mini-slot, and each time resource unit in the first time resource unit interval is monitored once, and every two time resource units in the second time resource unit interval are monitored once, and the third Each time resource unit in the time resource unit interval is monitored once, where the number of time resource units refers to the sum of the time slot and the mini time slot.
  • the timer Timer1, the timer Timer2 and the timer Timer3 are alternately started, the timer Timer1 is started first, the timer Timer2 is started when the timer Timer1 times out, and the timer Timer3 is started when the timer Timer2 times out.
  • the first time resource unit interval includes four time slots, wherein two mini-slot-based transmissions are configured in the second time slot of the first time resource unit interval;
  • the time resource unit interval includes 4 time slots, wherein the mini-slot-based transmission is configured in the 6th and 8th time slots;
  • the 3rd time resource unit interval includes 4 time slots, in the third Two mini-slot-based transmissions are configured in the tenth time slot of the time resource unit interval, and three mini-slot-based transmissions are configured in the eleventh time slot.
  • the method for the terminal to perform downlink control information monitoring includes:
  • the timer Timer1 is started, and the timer is started.
  • the terminal monitors the PDCCH once in the first time slot in which the timer Timer1 is in effect, and in the two mini-slots and the third time slot configured in the second time slot. After the timer Timer1 times out, the timer Timer2 starts.
  • the terminal monitors the PDCCH every 2 time slots or mini-slots, for example, the terminal can monitor the 5th time slot and the 6th of the 4 time slots effective by the timer Timer2.
  • the second minislot of the time slot and the first minislot of the 8th time slot or may also monitor the first mini time of the sixth time slot of the 4 time slots effective by the timer Timer2
  • the second slot in the slot, the seventh slot, and the eighth slot After the timer Timer2 expires, the timer Timer3 is started.
  • the terminal monitors the PDCCH every four time slots or mini-slots, and the terminal can monitor the four times when the timer Timer3 takes effect.
  • the 9th time slot in the slot and the second mini slot in the 11th time slot or may also monitor the first mini time slot of the 11th time slot of the 4 time slots effective by the timer Timer3 .
  • the terminal closes the RF link and enters the short-time sleep state to save power in the time slot or mini-slot that is not monitored in the four time slots in which the timer Timer2 is valid and the timer Timer3 is in effect.
  • the fifth minislot of the four slots in which the terminal monitoring timer Timer2 is active the second minislot of the sixth slot, and the first minislot of the eighth slot
  • the first mini time slot configured by the terminal in the 6th time slot
  • the 7th The second minislot the 10th slot configured in the 8th slot
  • the first minislot configured in the 11th slot and the third configured in the 11th slot
  • the mini-slot and the 12th time slot turn off the RF link and enter a short-term sleep state to save power.
  • the specific content of the offset mode of the PDCCH monitored by the terminal is the same as that of the example 1, and is not described here.
  • the specific content that the base station can send to the terminal to stop monitoring the downlink control information to make the terminal enter the sleep period in advance is the same as that of the example 1 and is not described here.
  • the present application can reduce the frequency at which the terminal monitors the downlink control information when the terminal is in an active state. It is not necessary to monitor the downlink control information in the current time slot or the mini time slot, and the terminal can enter the short-time sleep state in the current time slot or the mini time slot to save power and reduce the terminal energy consumption.
  • the present application can extend the duration of the DRX activation period without increasing the number of times of downlink control information monitoring, so that the scheduling is more flexible. Therefore, the above example 4 configures three timers for the terminal configured with the DRX. The manner in which the downlink control information is monitored during the different timers is different, and the performance requirements of reducing power consumption and ensuring scheduling flexibility can be simultaneously considered.
  • the example 6 provided in this application is as shown in FIG. 11.
  • the time resource unit interval for monitoring the downlink control information during the activation period of one DRX cycle configured by the terminal includes three, and the first time resource unit interval is set by the timer Timer1.
  • the second time resource unit interval is implemented by the timer Timer2
  • the third time resource unit interval is implemented by the timer Timer3.
  • the terminal is configured to transmit based on the time slot and the mini-slot, and each time resource unit in the first time resource unit interval includes the downlink resource control unit, and the second time resource unit interval includes the downlink control area.
  • the time resource unit monitors once, and every four time resource units including the downlink control region in the third time resource unit interval are monitored once, and the number of time resource units including the downlink control region is a time slot and a mini including the downlink control region.
  • the timer Timer1, the timer Timer2 and the timer Timer3 are alternately started, the timer Timer1 is started first, the timer Timer2 is started when the timer Timer1 times out, and the timer Timer3 is started when the timer Timer2 times out.
  • the difference from the example 1 is that the time slots of each time resource unit interval are not equal, and the sum of the number of time slots including the downlink control region and the number of mini slots including the downlink control region included in each time resource unit interval is Four, not every time slot contains a downlink control area. Specifically, as shown in FIG.
  • the first time resource unit interval includes three time slots, wherein two mini-slot-based transmissions are configured in the second time slot; and the second time resource unit interval includes four a time slot in which two mini-slot-based transmissions are configured in the sixth time slot, and the fifth time slot does not include a downlink control region; the third time resource unit interval includes three time slots, but Eight time slots do not contain a downlink control region, and three mini-slot based transmissions are configured in the tenth time slot. Because each time resource unit interval is configured differently, the duration of each timer also changes.
  • the duration in which the timer Timer1 takes effect includes three time slots.
  • the duration in which the timer Timer2 takes effect includes four time slots.
  • the duration in which the timer Timer3 takes effect includes three time slots.
  • the terminal may close the RF link with the base station in a time slot not including the downlink control area, and enter a short-time sleep state to save power.
  • each time resource unit interval includes four time slots including a downlink control region, or a total number of time slots including a downlink control region and a mini slot including a downlink control region, each of which has four
  • the length of time that the time resource unit interval lasts is a relative value, so the counter counter can also be used instead of the timer timer in this example. That is, each time resource unit interval corresponds to one counter.
  • the method for the terminal to perform downlink control information monitoring includes:
  • the timer Timer1 is started, and the timer is started.
  • the terminal monitors the PDCCH once in the first time slot, in the two mini time slots and in the third time slot configured in the second time slot. After the timer Timer1 times out, the timer Timer2 starts.
  • the terminal can close the RF link in the second time slot and enter the short-term sleep state to save power.
  • the terminal monitors the PDCCH every 2 time slots or mini-slots including the downlink control region, and can monitor the 4th time slot of the 4 time slots effective in the timer Timer2 and the second mini-time of the 6th time slot configuration.
  • the slot, or the first minislot configured in the sixth slot of the 4 slots in effect of Timer Timer2 may also be monitored. After the timer Timer2 times out, the timer Timer3 is started.
  • the terminal monitors the PDCCH every four time slots or mini-slots including the downlink control area, because the third time resource
  • the eighth time slot of the unit interval does not include the downlink control region, and the terminal can monitor the ninth time slot of the three time slots effective by the timer Timer3, or can also monitor the third of the three time slots effective by the timer Timer3.
  • the third minislot of the 10 time slot configuration The terminal closes the RF link and enters the short-time sleep state to save power in the time slot or mini-slot that is not monitored in the four time slots in which the timer Timer2 is valid and the timer Timer3 is in effect.
  • the specific content of the offset mode of the PDCCH monitored by the terminal is the same as that of the example 1, and is not described here.
  • the specific content that the base station can send to the terminal to stop monitoring the downlink control information to make the terminal enter the sleep period in advance is the same as that of the example 1 and is not described here.
  • the specific content of the manner in which the terminal enters the sleep period according to the signaling of stopping the monitoring of the downlink control information is the same as that of the example 1 and is not described here.
  • the foregoing example 6 is compared with the existing LTE DRX technology. If the duration of the DRX activation period is the same, the application can reduce the frequency of monitoring the downlink control information when the terminal is in the active state. It is not necessary to monitor the downlink control information in the current time slot or the mini time slot, and the terminal can enter the short-time sleep state in the current time slot or the mini time slot to save power and reduce the terminal energy consumption. Compared with the prior art, if the number of times of monitoring the downlink control information is the same, the present application can extend the duration of the DRX activation period without increasing the number of times of downlink control information monitoring, so that the scheduling is more flexible. Therefore, the above example 4 configures three timers for the terminal configured with the DRX. The manner in which the downlink control information is monitored during the different timers is different, and the performance requirements of reducing power consumption and ensuring scheduling flexibility can be simultaneously considered.
  • the example 7 provided in the present application is as shown in FIG. 12, and the time resource unit interval for monitoring the downlink control information during the activation period of one DRX cycle configured for the terminal includes three, and the first time resource unit interval is set by the timer Timer1.
  • the second time resource unit interval is implemented by the timer Timer2
  • the third time resource unit interval is implemented by the timer Timer3.
  • the terminal is configured to transmit based on the time slot and the mini-slot, and each time resource unit in the first time resource unit interval includes the downlink resource control unit, and the second time resource unit interval includes the downlink control area.
  • the time resource unit monitors once, and every four time resource units including the downlink control region in the third time resource unit interval are monitored once, and the number of time resource units including the downlink control region is a time slot and a mini including the downlink control region.
  • the timer Timer1, the timer Timer2 and the timer Timer3 are alternately started, the timer Timer1 is started first, the timer Timer2 is started when the timer Timer1 times out, and the timer Timer3 is started when the timer Timer2 times out.
  • the time slots of each time resource unit interval are not equal, and the number of time slots including the downlink control area included in each time resource unit interval is four, and not every time slot includes the downlink. Control area.
  • the first time resource unit interval includes five time slots, wherein the second time slot and the fifth time slot in the first time resource unit interval are configured twice based on the mini.
  • the fourth time slot does not include the downlink control region; the second time resource unit interval includes six time slots, wherein the eighth and ninth time slots are configured.
  • the 3rd time resource unit interval includes 4 slots, in the 13th and 15th slots
  • Two minislot-based transmissions based on mini-slots are configured separately. Because each time resource unit interval is configured differently, the duration of each timer also changes.
  • the duration in which the timer Timer1 takes effect includes five time slots.
  • the duration in which the timer Timer2 takes effect includes six time slots.
  • the duration in which the timer Timer3 takes effect includes four time slots.
  • the terminal may close the RF link with the base station in a time slot not including the downlink control area, and enter a short-time sleep state to save power.
  • each time resource unit interval includes four time slots including a downlink control region
  • the duration of each time resource unit interval is a relative value. Therefore, in this example, a counter counter may be used instead of a timer. Timer. That is, each time resource unit interval corresponds to one counter.
  • the method for the terminal to perform downlink control information monitoring includes:
  • the timer Timer1 is started, and the timer is started.
  • the terminal is in the first time slot, two mini-slots in the second time slot, the third time slot, and the second time slot configured in the fifth time slot.
  • the slot monitors the PDCCH once. Since the fourth time slot in which the timer Timer1 is valid does not include the downlink control region, the terminal can close the RF link in the fourth time slot and enter a short-time sleep state to save power.
  • the timer Timer2 After the timer Timer1 times out, the timer Timer2 starts. In the six time slots in which the timer Timer2 is in effect, since the seventh time slot and the tenth time slot in which the timer Timer2 is valid do not include the downlink control region, the terminal can be in the seventh time slot and the tenth time slot. Turn off the RF link and enter a short-term sleep state to save power.
  • the terminal monitors the PDCCH every 2 time slots or mini-slots including the downlink control area, and can monitor the sixth time slot of the 6 time slots effective in the timer Timer2 and the second mini-time of the 8th time slot configuration. The second minislot of the slot and the 9th time slot configuration.
  • the terminal monitors the PDCCH every four time slots or mini-slots including the downlink control area, and the terminal can monitor the timer Timer3.
  • the 12th time slot of the 4 time slots in effect and the first mini time slot of the 15th time slot configuration may also monitor the 14th time slot of the 4 time slots effective by the timer Timer3.
  • the terminal turns off the RF link into the short-time sleep state to save power in the six time slots in which the timer Timer2 is in effect and the time slots or mini-slots that are not monitored in the four time slots in which the timer Timer3 is in effect.
  • the specific content of the offset mode of the PDCCH monitored by the terminal is the same as that of the example 1, and is not described here.
  • the specific content that the base station can send to the terminal to stop monitoring the downlink control information to make the terminal enter the sleep period in advance is the same as that of the example 1 and is not described here.
  • the specific content of the manner in which the terminal enters the sleep period according to the signaling of stopping the monitoring of the downlink control information is the same as that of the example 1 and is not described here.
  • the foregoing example 7 is compared with the existing LTE DRX technology. If the duration of the DRX activation period is the same, the present application can reduce the frequency at which the terminal monitors the downlink control information when the terminal is in an active state. It is not necessary to monitor the downlink control information in the current time slot or the mini time slot, and the terminal can enter the short-time sleep state in the current time slot or the mini time slot to save power and reduce the terminal energy consumption. Compared with the prior art, if the number of times of monitoring the downlink control information is the same, the present application can extend the duration of the DRX activation period without increasing the number of times of downlink control information monitoring, so that the scheduling is more flexible. Therefore, the above example 4 configures three timers for the terminal configured with the DRX. The manner in which the downlink control information is monitored during the different timers is different, and the performance requirements of reducing power consumption and ensuring scheduling flexibility can be simultaneously considered.
  • the example 8 provided in the present application is as shown in FIG. 13 , and the time resource unit interval for monitoring the downlink control information during the activation period of one DRX cycle configured by the terminal includes three, and the first time resource unit interval is set by the timer Timer1.
  • the second time resource unit interval is implemented by the timer Timer2
  • the third time resource unit interval is implemented by the timer Timer3.
  • the first time resource unit interval includes 4 consecutive time slots
  • the second time resource unit interval includes 8 consecutive time slots
  • the third time resource unit interval includes 12 consecutive time slots
  • the start time of the unit interval is the same, and each time slot includes a downlink control area, and the symbols occupied by the downlink control area are used to carry downlink control information sent by the base station to the terminal.
  • each time slot in the first time resource unit interval is monitored once, and each time slot of the overlapping portion of the second time resource unit interval and the first time resource unit interval is monitored once,
  • the two non-overlapping parts of the time resource unit interval and the first time resource unit interval are monitored every two time slots, and the monitoring frequency of the overlapping part of the third time resource unit interval and the second time resource unit interval is
  • the monitoring frequency in the second time resource unit interval is the same, and the non-overlapping portion of the third time resource unit interval and the second time resource unit interval is monitored every four time slots, and the UE is configured to perform time slot based transmission.
  • the timer Timer1, the timer Timer2, and the timer Timer3 are simultaneously started.
  • each time resource unit interval includes four time slots including a downlink control region
  • the duration of each time resource unit interval is a relative value. Therefore, in this example, a counter counter may be used instead of a timer. Timer. That is, each time resource unit interval corresponds to one counter.
  • the method for the terminal to perform downlink control information monitoring includes:
  • the timer Timer1 and the timer Timer2 are monitored. Start with timer Timer3 at the same time. In the four time slots in which the timer Timer1 is in effect, the terminal monitors the PDCCH once in each time slot. Among the 8 time slots in which the timer Timer2 is in effect, the time slots to be monitored in the first 4 time slots are the same as the required monitoring time slots in the 4 time slots in which the timer Timer1 is in effect, and the terminals in the last 4 time slots are The PDCCH is monitored once in both time slots.
  • the terminal can monitor the 5th and 7th time slots of the 8 time slots in effect of Timer Timer2, or can also monitor the 6th time slot and the 8th time slot.
  • the time slot to be monitored in the first 8 time slots is the same as the required monitoring time slot in the 8 time slots in which the timer Timer2 is in effect, and the last 4 times of the timer Timer3 is effective.
  • the terminal monitors the PDCCH every 4 time slots.
  • the specific content that the base station can send to the terminal to stop monitoring the downlink control information to make the terminal enter the sleep period in advance is the same as that of the example 1 and is not described here.
  • the specific content of the manner in which the terminal enters the sleep period according to the signaling of stopping the monitoring of the downlink control information is the same as that of the example 1 and is not described here.
  • the specific content that the base station can send to the terminal to stop monitoring the downlink control information to make the terminal enter the sleep period in advance is the same as that of the example 1 and is not described here.
  • the specific content of the manner in which the terminal enters the sleep period according to the signaling of stopping the monitoring of the downlink control information is the same as that of the example 1 and is not described here.
  • the foregoing example 8 is compared with the existing LTE DRX technology. If the duration of the DRX activation period is the same, the application can reduce the frequency of monitoring the downlink control information when the terminal is in the active state. It is not necessary to monitor the downlink control information in the current time slot, and the terminal can enter a short-term sleep state in the current time slot to save power and reduce terminal energy consumption. Compared with the prior art, if the number of times of monitoring the downlink control information is the same, the present application can extend the duration of the DRX activation period without increasing the number of times of downlink control information monitoring, so that the scheduling is more flexible. Therefore, in the above example 4, three timers are configured for the terminal configured with the DRX, and the downlink control is performed during the different timers. The way information is monitored is different, and both performance requirements for reducing power consumption and ensuring scheduling flexibility can be considered.
  • the example 9 provided in the present application is as shown in FIG. 14 , and the time resource unit interval for monitoring the downlink control information during the activation period of one DRX cycle configured by the terminal includes three, and the first time resource unit interval is set by the timer Timer1.
  • the second time resource unit interval is implemented by the timer Timer2
  • the third time resource unit interval is implemented by the timer Timer3.
  • the terminal is configured to transmit based on time slots.
  • the first time resource unit interval includes 4 consecutive time slots
  • the second time resource unit interval includes 8 consecutive time slots
  • the third time resource unit interval includes 12 consecutive time slots
  • the start time of the unit interval is the same, each time slot in the first time resource unit interval is monitored once, and each time of the overlap between the second time resource unit interval and the first time resource unit interval
  • the gaps are monitored once, and the non-overlapping part of the second time resource unit interval and the first time resource unit interval is monitored every two time slots, and the third time resource unit interval and the second time resource unit interval are
  • the monitoring frequency of the overlapping portion is the same as the monitoring frequency in the second time resource unit interval
  • the non-overlapping portion of the third time resource unit interval and the second time resource unit interval is monitored every 4 time slots
  • the UE is Configure slot-based transmission.
  • the timer Timer1, the timer Timer2, and the timer Timer3 are simultaneously started.
  • the difference from the example 8 is that not every time slot includes a downlink control region, for example, the fourth time slot in which the timer Timer1 takes effect does not include the downlink control region, and the fourth time slot and the seventh time that the timer Timer2 takes effect.
  • the time slot and the eighth time slot do not include a downlink control region, and the fourth time slot, the seventh time slot, the eighth time slot, the tenth time slot, and the eleventh time slot in which the timer Timer3 takes effect do not include Downstream control area.
  • each time resource unit interval includes four time slots including a downlink control region
  • the duration of each time resource unit interval is a relative value. Therefore, in this example, a counter counter may be used instead of a timer. Timer, that is, each time resource unit interval corresponds to a counter.
  • the method for the terminal to perform downlink control information monitoring includes:
  • the terminal monitors the downlink control information indicating that the terminal receives or transmits the initial transmission data in any one of the time resource unit intervals, the timer Timer1, the timer Timer2, and the timer Timer3 are simultaneously started, and the timer Timer1 is activated at four times.
  • the terminal monitors the PDCCH once in the first three time slots. Since the fourth time slot does not include the downlink control region, the terminal enters a short-term sleep state in the fourth time slot to save power and reduce terminal energy consumption.
  • the time slots to be monitored in the first 4 time slots are the same as the required monitoring time slots in the 4 time slots in which the timer Timer1 is in effect, and the terminals in the last 4 time slots are The PDCCH is monitored once in the two time slots.
  • the terminal can monitor the last 4 times of the timer Timer2.
  • the fifth time slot of the time slots, or the sixth time slot can also be monitored.
  • the terminal does not need to be monitored for the time slot to turn off the RF link in the last 4 slots in which the timer Timer2 takes effect, and enters a short-time sleep state to save power.
  • the time slot to be monitored in the first 8 time slots is the same as the required monitoring time slot in the 8 time slots in which the timer Timer2 is in effect, and the last 4 times of the timer Timer3 is effective.
  • the terminal monitors the PDCCH every 4 time slots. Since the 10th time slot and the 11th time slot do not include the downlink control area, the terminal can monitor the ninth of the last 4 time slots effective by the timer Timer3.
  • the time slot, or the 12th time slot can also be monitored, and the terminal does not need to be monitored for the time slot to turn off the RF link in the last 4 time slots in which the timer Timer3 takes effect, and enters the short-time sleep state to save power.
  • the specific content of the offset mode of the PDCCH monitored by the terminal is the same as that of the example 1, and is not described here.
  • the base station may send to the terminal to stop monitoring the downlink control signal.
  • the specific content of the signaling of the information to make the terminal enter the sleep period in advance is the same as that of the example 1 and will not be described here.
  • the specific content of the manner in which the terminal enters the sleep period according to the signaling of stopping the monitoring of the downlink control information is the same as that of the example 1 and is not described here.
  • the foregoing example 9 is compared with the existing LTE DRX technology. If the duration of the DRX activation period is the same, the application can reduce the frequency of monitoring the downlink control information when the terminal is in the active state. It is not necessary to monitor the downlink control information in the current time slot, and the terminal can enter a short-term sleep state in the current time slot to save power and reduce terminal energy consumption. Compared with the prior art, if the number of times of monitoring the downlink control information is the same, the present application can extend the duration of the DRX activation period without increasing the number of times of downlink control information monitoring, so that the scheduling is more flexible. Therefore, the foregoing example 9 configures three timers for the terminal configured with the DRX. The manners for monitoring the downlink control information during different timers are different, and the performance requirements of reducing power consumption and ensuring scheduling flexibility can be simultaneously considered.
  • the example 10 provided in this application is as shown in FIG. 15.
  • the time resource unit interval for monitoring the downlink control information during the activation period of one DRX cycle configured by the terminal includes three, and the first time resource unit interval is set by the timer Timer1.
  • the second time resource unit interval is implemented by the timer Timer2
  • the third time resource unit interval is implemented by the timer Timer3.
  • the terminal is configured to transmit based on time slots.
  • the first time resource unit interval includes 4 consecutive time slots
  • the second time resource unit interval includes 8 consecutive time slots
  • the third time resource unit interval includes 12 consecutive time slots
  • the start time of the unit interval is the same, each time slot in the first time resource unit interval is monitored once, and each time of the overlap between the second time resource unit interval and the first time resource unit interval
  • the gaps are monitored once, and the non-overlapping part of the second time resource unit interval and the first time resource unit interval is monitored every two time slots, and the third time resource unit interval and the second time resource unit interval are
  • the monitoring frequency of the overlapping portion is the same as the monitoring frequency in the second time resource unit interval
  • the non-overlapping portion of the third time resource unit interval and the second time resource unit interval is monitored every 4 time slots
  • the UE is Configure slot-based transmission.
  • the timer Timer1, the timer Timer2, and the timer Timer3 are simultaneously started.
  • the first time resource unit interval includes five time slots, wherein the fourth time slot does not include a downlink control region, and the number of time slots including the downlink control region is four;
  • the second time resource unit The interval includes 11 time slots, and the 4th time slot, the 7th time slot, and the 10th time slot do not include a downlink control area, and the number of time slots including the downlink control area is 8;
  • the third time resource unit interval includes The 15 time slots, the 4th time slot, the 7th time slot, and the 10th time slot do not include a downlink control area, and the number of time slots including the downlink control area is 12.
  • each time resource unit interval includes 4 time slots or includes 4 time slots and mini time slots, the duration of each time resource unit interval is a relative value, therefore, a counter can also be used in this example. Counter instead of timer timer. That is, each time resource unit interval corresponds to one counter.
  • the method for the terminal to perform downlink control information monitoring includes:
  • the terminal monitors the downlink control information indicating that the terminal receives or transmits the initial transmission data in any one of the time resource unit intervals.
  • the timer Timer1, the timer Timer2, and the timer Timer3 are simultaneously started.
  • the terminal monitors the PDCCH in the first three time slots and the fifth time slot. Since the fourth time slot does not include the downlink control region, the terminal is in effect at the timer Timer1.
  • Four time slots will enter a short-term sleep state to save power and reduce terminal energy consumption.
  • the terminal can be in the 7th time slot and the 10th time slot. turn off Close the RF link and enter a short-term sleep state to save power.
  • the time slots to be monitored in the first 5 time slots are the same as the required monitoring time slots in the 5 time slots in which the timer Timer1 is in effect, and the terminals in the last 6 time slots are each The PDCCH is monitored once in the two time slots.
  • the terminal can monitor the last 6 timers effective in Timer2.
  • the sixth time slot and the ninth time slot in the time slot, or the terminal may also monitor the eighth time slot and the eleventh time slot of the last six time slots in effect of the timer Timer2.
  • the terminal does not need to be monitored for the time slot to turn off the RF link in the last 6 slots in which the timer Timer2 takes effect, and enters a short-time sleep state to save power.
  • the terminal does not need to be monitored for the time slot to turn off the RF link in the last 6 slots in which the timer Timer2 takes effect, and enters a short-time sleep state to save power.
  • the time slots to be monitored in the first 11 time slots and the 11 time slots in which the timer Timer2 is effective are required to be monitored.
  • the time slots are the same.
  • the terminal monitors the PDCCH every 4 time slots.
  • the terminal can monitor the 12th time slot in which Timer Timer3 is in effect, or can also monitor the 15th time slot.
  • the terminal does not need to be monitored for the time slot to turn off the RF link in the last 4 slots in which the timer Timer3 takes effect, and enters a short-time sleep state to save power.
  • the specific content of the offset mode of the PDCCH monitored by the terminal is the same as that of the example 1, and is not described here.
  • the specific content that the base station can send to the terminal to stop monitoring the downlink control information to make the terminal enter the sleep period in advance is the same as that of the example 1 and is not described here.
  • the specific content of the manner in which the terminal enters the sleep period according to the signaling of stopping the monitoring of the downlink control information is the same as that of the example 1 and is not described here.
  • the foregoing example 10 is compared with the existing DRX technology of the LTE. If the duration of the DRX activation period is the same, the application can reduce the frequency of monitoring the downlink control information when the terminal is in the active state. It is not necessary to monitor the downlink control information in the current time slot, and the terminal can enter a short-term sleep state in the current time slot to save power and reduce terminal energy consumption. Compared with the prior art, if the number of times of monitoring the downlink control information is the same, the present application can extend the duration of the DRX activation period without increasing the number of times of downlink control information monitoring, so that the scheduling is more flexible. Therefore, the above example 10 configures three timers for the terminal configured with the DRX, and the manners for monitoring the downlink control information during different timers are different, and the performance requirements of reducing power consumption and ensuring scheduling flexibility can be simultaneously considered.
  • the example 11 provided in the present application is as shown in FIG. 16.
  • the time resource unit interval for monitoring the downlink control information during the activation period of one DRX cycle configured by the terminal includes three, and the first time resource unit interval is set by the timer Timer1.
  • the second time resource unit interval is implemented by the timer Timer2
  • the third time resource unit interval is implemented by the timer Timer3.
  • the terminal is configured to be based on the transmission of time slots and mini-slots.
  • the first time resource unit interval includes three consecutive time slots
  • the second time resource unit interval includes six consecutive time slots
  • the third time resource unit interval includes ten consecutive time slots
  • the three time resources The start time of the unit interval is the same, each time resource unit in the first time resource unit interval is monitored once, and each of the overlapping portions of the second time resource unit interval and the first time resource unit interval
  • the time resource unit is monitored once, and the non-overlapping part of the second time resource unit interval and the first time resource unit interval is monitored once every two time resource units, and the third time resource unit interval and the second time resource are monitored.
  • the monitoring frequency of the overlapping part of the unit interval is the same as the monitoring frequency of the second time resource unit interval, and the monitoring of the 4th time resource unit interval and the non-overlapping part of the 2nd time resource unit interval every 4 time resource units
  • the number of time resource units here refers to the sum of time slots and mini time slots.
  • the UE is configured to transmit based on time slots and mini-slots.
  • the timer Timer1, the timer Timer2, and the timer Timer3 are simultaneously started.
  • the difference from the example 8 is that the time slots of each time resource unit interval are not equal, and the sum of the number of time slots and the number of mini-slots included in each time resource unit interval is four, not every time slot.
  • the first time resource unit section includes three slots, wherein two mini-slot-based transmissions are configured in the second slot of the first time resource unit section;
  • the time resource unit interval includes 6 time slots, and the second time slot and the sixth time slot are respectively configured with two mini-slot-based transmissions, and the fifth time slot does not include the downlink control region;
  • the third The time resource unit interval includes 10 time slots, but the 8th and 10th time slots do not include a downlink control region.
  • the method for the terminal to perform downlink control information monitoring includes:
  • the terminal monitors the downlink control information indicating that the terminal receives or transmits the initial transmission data in any one of the time resource unit intervals.
  • the timer Timer1, the timer Timer2, and the timer Timer3 are simultaneously started.
  • the terminal monitors the PDCCH once in the first time slot, in the two mini time slots and in the third time slot in the second time slot.
  • the time slots to be monitored in the first three time slots are the same as the required monitoring time slots in the three time slots in which the timer Timer1 is in effect, and the terminals in the last three time slots are The PDCCH is monitored once in the two time slots.
  • the fifth time slot in which the timer Timer2 takes effect does not include the downlink control area.
  • the last three times when the timer Timer2 takes effect can be monitored.
  • the time slot to be monitored in the first 6 time slots is the same as the required monitoring time slot in the 6 time slots in which the timer Timer3 is in effect, and the terminal is in the last 4 time slots.
  • the PDCCH is monitored once every 4 time slots.
  • the terminal can monitor the second of the last 4 time slots in which the timer Timer3 takes effect. 7 time slots.
  • the terminal may also turn off the RF link into the short-time sleep state to save power in the 6 time slots in which the timer Timer2 takes effect and the mini-slots that are not monitored in the 10 time slots effective in the timer Timer3.
  • the specific content of the offset mode of the PDCCH monitored by the terminal is the same as that of the example 1, and is not described here.
  • the specific content that the base station can send to the terminal to stop monitoring the downlink control information to make the terminal enter the sleep period in advance is the same as that of the example 1 and is not described here.
  • the specific content of the manner in which the terminal enters the sleep period according to the signaling of stopping the monitoring of the downlink control information is the same as that of the example 1 and is not described here.
  • the foregoing example 11 is compared with the existing LTE DRX technology. If the duration of the DRX activation period is the same, the application can reduce the frequency of monitoring the downlink control information when the terminal is in the active state. It is not necessary to monitor downlink control information in the current time slot or mini. The terminal can enter a short-time sleep state in the current time slot or mini-slot to save power and reduce terminal energy consumption. Compared with the prior art, if the number of times of monitoring the downlink control information is the same, the present application can extend the duration of the DRX activation period without increasing the number of times of downlink control information monitoring, so that the scheduling is more flexible. Therefore, the foregoing example 11 configures three timers for the terminal configured with the DRX, and the manners for monitoring the downlink control information during different timers are different, and the performance requirements of reducing power consumption and ensuring scheduling flexibility can be simultaneously considered.
  • the example 12 provided in this application is as shown in FIG. 17.
  • the time resource unit interval for monitoring the downlink control information during the activation period of one DRX cycle configured for the terminal includes three, and the first time resource unit interval is set by the timer Timer1.
  • the second time resource unit interval is implemented by the timer Timer2
  • the third time resource unit interval is implemented by the timer Timer3.
  • the terminal is configured to be based on the transmission of time slots and mini-slots.
  • the first time resource unit interval includes 4 consecutive time slots
  • the second time resource unit interval includes 8 consecutive time slots
  • the third time resource unit interval includes 12 consecutive time slots
  • the three time resources The start time of the unit interval is the same, each time resource unit in the first time resource unit interval is monitored once, and each of the overlapping portions of the second time resource unit interval and the first time resource unit interval
  • the time resource unit is monitored once, and the non-overlapping part of the second time resource unit interval and the first time resource unit interval is monitored once every two time resource units, and the third time resource unit interval and the second time resource are monitored.
  • the time resource unit to be monitored in the overlapping part of the unit interval is the same, and the non-overlapping part of the third time resource unit interval and the second time resource unit interval is monitored once every four time resource units, where the time resource unit is The number refers to the sum of the time slot and the mini time slot.
  • the UE is configured to transmit based on time slots and mini-slots.
  • the timer Timer1, the timer Timer2, and the timer Timer3 are simultaneously started.
  • the first time resource unit interval includes four time slots, wherein two mini-slot-based transmissions are configured in the second time slot of the first time resource unit interval;
  • the second The time resource unit interval includes 8 time slots, wherein two mini-slot-based transmissions are configured in the second time slot, the sixth time, and the eighth time slot;
  • the third time resource unit interval includes 12 Time slot, two mini-slot-based transmissions are configured in the second time slot, the sixth time slot, the eighth time slot, and the tenth time slot, and three times based on the eleventh time slot are configured.
  • the transmission of mini time slots is configured.
  • the method for the terminal to perform downlink control information monitoring includes:
  • the timer Timer1, the timer Timer2, and the timer Timer3 are simultaneously started.
  • the terminal In the four time slots in which the timer Timer1 is in effect, the terminal is in the first time slot in which the timer Timer1 is in effect, the two mini-slots in the second time slot, the third time slot, and the fourth time slot.
  • the PDCCH is monitored once.
  • the time slot to be monitored in the first 4 time slots in which the timer Timer2 takes effect is the same as the required monitoring time slot in the 4 time slots in which the timer Timer1 takes effect.
  • the terminal The PDCCH is monitored once every 2 slots or mini-slots, and the 5th slot in the last 4 slots, the second mini-slot and the 8th slot in the 6th slot can be monitored.
  • the time slot to be monitored in the first 8 time slots in which the timer Timer2 takes effect is the same as the required monitoring time slot in the 8 time slots in which the timer Timer2 takes effect.
  • the terminal In the last 4 time slots in which the timer Timer3 takes effect, the terminal The PDCCH is monitored every 4 time slots or mini time slots, and the terminal can monitor the 9th time slot of the last 4 time slots effective in the Timer3 and the second mini time slot of the 11th time slot, or It is also possible to monitor the first minislot of the eleventh of the last four slots in which the timer Timer3 is in effect.
  • the terminal closes the RF link and enters the short-time sleep state to save power in the eight time slots in which the timer Timer2 is valid and the time slots or mini-slots that are not monitored in the 12 time slots in which the timer Timer3 is in effect.
  • the specific content of the offset mode of the PDCCH monitored by the terminal is the same as that of the example 1, and is not described here.
  • the specific content that the base station can send to the terminal to stop monitoring the downlink control information to make the terminal enter the sleep period in advance is the same as that of the example 1 and is not described here.
  • the specific content of the manner in which the terminal enters the sleep period according to the signaling of stopping the monitoring of the downlink control information is the same as that of the example 1 and is not described here.
  • the foregoing example 12 is compared with the existing LTE DRX technology. If the duration of the DRX activation period is the same, the application can reduce the frequency of monitoring the downlink control information when the terminal is in the active state. If the terminal does not need to monitor the downlink control information in the current time slot or mini-slot, the terminal may enter a short-time sleep state in the current time slot or mini-slot to save power and reduce terminal energy consumption. Compared with the prior art, if the number of times of monitoring the downlink control information is the same, the present application can extend the duration of the DRX activation period without increasing the number of times of downlink control information monitoring, so that the scheduling is more flexible. Therefore, the foregoing example 11 configures three timers for the terminal configured with the DRX, and the manners for monitoring the downlink control information during different timers are different, and the performance requirements of reducing power consumption and ensuring scheduling flexibility can be simultaneously considered.
  • the example 13 provided in the present application is as shown in FIG. 18, and the time resource unit interval for monitoring the downlink control information during the activation period of one DRX cycle configured for the terminal includes three, and the first time resource unit interval is set by the timer Timer1.
  • the second time resource unit interval is implemented by the timer Timer2
  • the third time resource unit interval is implemented by the timer Timer3.
  • the terminal is configured to be based on the transmission of time slots and mini-slots.
  • the first time resource unit interval includes three consecutive time slots
  • the second time resource unit interval includes seven consecutive time slots
  • the third time resource unit interval includes ten consecutive time slots
  • the three time resources The start time of the unit interval is the same, each time resource unit in the first time resource unit interval is monitored once, and each of the overlapping portions of the second time resource unit interval and the first time resource unit interval
  • the time resource unit is monitored once, and the non-overlapping portion of the second time resource unit interval and the first time resource unit interval is monitored once every two time resource units including the downlink control region
  • the third time resource unit interval is
  • the time resource unit of the overlapped part of the second time resource unit interval is the same, and the time of the third time resource unit interval and the non-overlapping part of the second time resource unit interval includes the downlink control area.
  • the resource unit monitors once, where the number of time resource units refers to the sum of time slots and mini-slots including the downlink control region.
  • the UE is configured to transmit based on time slots and mini-slots.
  • the timer Timer1, the timer Timer2, and the timer Timer3 are simultaneously started.
  • the first time resource unit interval includes three time slots, wherein two mini-slot-based transmissions are configured in the second time slot, and each time resource unit interval includes a downlink.
  • the sum of the number of slots in the control region and the number of mini slots including the downlink control region is four; the second time resource unit interval includes seven slots, and the first three slots and the first time resource unit interval are three.
  • the configuration of the time slots is the same. In the last 4 time slots of the second time resource unit interval, two mini-slot-based transmissions are configured in the sixth time slot, and the fifth time slot does not include the downlink.
  • the third time resource unit interval includes 10
  • the first seven time slots are the same as the seven time slots of the second time resource unit interval
  • the eighth time slot of the third time resource unit interval does not include the downlink control.
  • Zone and configured three times based on the 10th time slot You slots for transmission, the three time slots included in the downlink control region and the number of slots of the downlink control region contains the number of mini-slots and four.
  • the method for the terminal to perform downlink control information monitoring includes:
  • each time resource unit interval includes four time slots including a downlink control region, or a total number of time slots including a downlink control region and a mini slot including a downlink control region, each of which has four
  • the length of time that the time resource unit interval lasts is a relative value, so the counter counter can also be used instead of the timer timer in this example. That is, each time resource unit interval corresponds to one counter.
  • the terminal monitors the downlink control information indicating that the terminal receives or transmits the initial transmission data in any one of the time resource unit intervals, the timer Timer1, the timer Timer2, and the timer Timer3 are simultaneously started.
  • the terminal In the three time slots in which the timer Timer1 is in effect, the terminal is in the first time slot, in the two mini time slots in the second time slot, and in the third time slot.
  • the PDCCH will be monitored once.
  • the time slot to be monitored in the first three time slots in which the timer Timer2 takes effect is the same as the required monitoring time slot in the three time slots in which the timer Timer1 takes effect, in the last three time slots in which the timer Timer2 takes effect,
  • the fifth time slot in which the timer Timer2 is valid does not include the downlink control region, and the terminal can turn off the RF link in the fifth time slot to enter a short-time sleep state to save power.
  • the terminal monitors the PDCCH every 2 time slots or mini-slots including the downlink control area, and can monitor the 4th time slot of the last 4 time slots effective in the timer Timer2 and the second mini of the 6th time slot configuration.
  • the time slot, or the first mini time slot and the seventh time slot of the sixth time slot configuration in the last 4 time slots in which the timer Timer2 is effective may also be monitored.
  • the time slot to be monitored in the first 7 time slots in which the timer Timer3 takes effect is the same as the required monitoring time slot in the 7 time slots in which the timer Timer2 takes effect.
  • the terminal Each of the four time slots or mini-slots including the downlink control region monitors the PDCCH once. Since the eighth time slot does not include the downlink control region, the terminal can monitor the ninth of the last three time slots in effect of the timer Timer3.
  • the slot, or the third minislot of the 10th slot configuration in the last 3 slots of the timer Timer3, can also be monitored.
  • the terminal closes the RF link in the 7 time slots in which the timer Timer2 is valid and the 10 time slots in the 10 time slots in which the timer Timer3 is in effect, and enters the short-time sleep state to save power.
  • the specific content of the offset mode of the PDCCH monitored by the terminal is the same as that of the example 1, and is not described here.
  • the specific content that the base station can send to the terminal to stop monitoring the downlink control information to make the terminal enter the sleep period in advance is the same as that of the example 1 and is not described here.
  • the specific content of the manner in which the terminal enters the sleep period according to the signaling of stopping the monitoring of the downlink control information is the same as that of the example 1 and is not described here.
  • the foregoing example 13 is compared with the existing LTE DRX technology. If the duration of the DRX activation period is the same, the present application can reduce the frequency at which the terminal monitors the downlink control information when the terminal is in an active state. It is not necessary to monitor the downlink control information in the current time slot or the mini time slot, and the terminal can enter the short-time sleep state in the current time slot or the mini time slot to save power and reduce the terminal energy consumption. Compared with the prior art, if the number of times of monitoring the downlink control information is the same, the present application can extend the duration of the DRX activation period without increasing the number of times of downlink control information monitoring, so that the scheduling is more flexible. Therefore, the foregoing example 11 configures three timers for the terminal configured with the DRX, and the manners for monitoring the downlink control information during different timers are different, and the performance requirements of reducing power consumption and ensuring scheduling flexibility can be simultaneously considered.
  • the example 14 provided in the present application is as shown in FIG. 19, and the time resource unit interval for monitoring the downlink control information during the activation period of one DRX cycle configured by the terminal includes three, and the first time resource unit interval is set by the timer Timer1.
  • the second time resource unit interval is implemented by the timer Timer2
  • the third time resource unit interval is implemented by the timer Timer3.
  • the terminal is configured to be based on the transmission of time slots and mini-slots.
  • the first time resource unit interval includes 5 consecutive time slots
  • the second time resource unit interval includes 11 consecutive time slots
  • the third time resource unit interval includes 15 consecutive time slots
  • the three time resources The start time of the unit interval is the same, each time resource unit in the first time resource unit interval is monitored once, and each of the overlapping portions of the second time resource unit interval and the first time resource unit interval
  • the time resource unit is monitored once, and the non-overlapping portion of the second time resource unit interval and the first time resource unit interval is monitored once every two time resource units including the downlink control region
  • the third time resource unit interval is
  • the time resource unit of the overlapped part of the second time resource unit interval is the same, and the time of the third time resource unit interval and the non-overlapping part of the second time resource unit interval includes the downlink control area.
  • the resource unit monitors once, where the number of time resource units refers to the sum of time slots and mini-slots including the downlink control region.
  • UE is configured based on time slot and mini time The transmission of the gap.
  • the timer Timer1, the timer Timer2, and the timer Timer3 are simultaneously started.
  • the number of time slots including the downlink control region included in each time resource unit interval is four, and not every time slot includes a downlink control region.
  • the first time resource unit interval includes five time slots, wherein two mini-slot-based transmissions are configured in the second time slot and the fifth time slot, and the fourth time slot does not include In the downlink control region, the number of slots including the downlink control region included in the first time resource unit interval is four;
  • the second time resource unit interval includes 11 slots, and the first five time slots of the second time resource unit interval
  • the slot is the same as the first time resource unit interval, and in the last six time slots of the second time resource unit interval, two mini-slot-based transmissions are configured in the eighth and ninth time slots, and
  • the seventh and tenth time slots do not include a downlink control region, and the number of time slots including the downlink control region included in the last six time slots of the second time resource unit interval is four;
  • the third time resource unit The interval includes 15 time slots, and the first 11 time slots
  • each time resource unit interval includes four time slots including a downlink control region
  • the duration of each time resource unit interval is a relative value. Therefore, in this example, a counter counter may be used instead of a timer. Timer. That is, each time resource unit interval corresponds to one counter.
  • the method for the terminal to perform downlink control information monitoring includes:
  • the terminal monitors the downlink control information indicating that the terminal receives or transmits the initial transmission data in any one of the time resource unit intervals, the timer Timer1, the timer Timer2, and the timer Timer3 are simultaneously started.
  • the terminal In the five time slots in which the timer Timer1 is in effect, the terminal is configured in the first time slot, the two mini time slots in the second time slot, the third time slot, and the fifth time slot.
  • the mini-slot monitors the PDCCH once. Since the fourth time slot does not include the downlink control region, the terminal can close the RF link in the fourth time slot and enter a short-time sleep state to save power.
  • the time slot to be monitored in the first 5 time slots in which the timer Timer2 takes effect is the same as the required monitoring time slot in the 5 time slots in which the timer Timer1 takes effect.
  • the terminal The PDCCH is monitored every 2 time slots or mini-slots including the downlink control region, and the 6th time slot of the last 6 time slots effective in the timer Timer2 and the second mini-time of the 8th time slot configuration can be monitored.
  • the second minislot configured with the slot and the ninth time slot, or the first minislot, the ninth time of the eighth slot configuration of the last six slots that are valid for the timer Timer2 can also be monitored.
  • the first minislot and the eleventh slot of the slot configuration is the same as the required monitoring time slot in the 5 time slots in which the timer Timer1 takes effect.
  • the time slot to be monitored in the first 11 time slots in which the timer Timer2 takes effect is the same as the required monitoring time slot in the 11 time slots in which the timer Timer2 takes effect.
  • the terminal In the last 4 time slots in which the timer Timer3 takes effect, the terminal The PDCCH is monitored every 4 time slots or mini-slots including the downlink control area, and the terminal can monitor the 12th time slot and the 15th time slot configuration of the last 4 time slots effective in Timer3.
  • the mini-slot, or the 14th slot in the last 4 slots in which Timer3 is valid, can also be monitored.
  • the terminal turns off the RF link into the short-time sleep state to save power in the 11 time slots in which the timer Timer2 is valid and the unscheduled time slots or mini-slots in the 15 time slots in which the timer Timer3 is in effect.
  • the specific content of the offset mode of the PDCCH monitored by the terminal is the same as that of the example 1, and is not described here.
  • the specific content that the base station can send to the terminal to stop monitoring the downlink control information to make the terminal enter the sleep period in advance is the same as that of the example 1 and is not described here.
  • the specific content of the manner in which the terminal enters the sleep period according to the signaling of stopping the monitoring of the downlink control information is the same as that of the example 1 and is not described here.
  • the above example 14 is compared with the existing LTE DRX technology, if the duration of the DRX activation period is the same, the application can To reduce the frequency at which the terminal monitors the downlink control information when the terminal is in an active state, if the terminal does not need to monitor the downlink control information in the current time slot or the mini time slot during the period in which any timer is in effect, the terminal may be in the current time slot or mini. Enter a short-term sleep state in the time slot to save power and reduce terminal energy consumption.
  • the present application can extend the duration of the DRX activation period without increasing the number of times of downlink control information monitoring, so that the scheduling is more flexible. Therefore, the foregoing example 11 configures three timers for the terminal configured with the DRX, and the manners for monitoring the downlink control information during different timers are different, and the performance requirements of reducing power consumption and ensuring scheduling flexibility can be simultaneously considered.
  • the embodiment of the present application provides a downlink control information monitoring device, which is used to solve the problem that the configuration of the discontinuous reception period existing in the prior art is inflexible, and the active period is configured to be too short to cause low service efficiency, and the activation period is configured. Too short a technical problem that causes excessive power consumption in the business.
  • the method and the device for monitoring the downlink control information are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method may be referred to each other, and the repeated description is not repeated.
  • the present application provides a terminal as described above, which is used to perform the method steps related to the terminal in various embodiments related to the present application.
  • the terminal includes a plurality of functional modules for performing the method steps associated with the terminal in the various embodiments involved in the present application.
  • the terminal 2000 includes a processing unit 2010 and a transceiver unit 2020. It should be noted that the operations performed by the processing unit 2010 or the transceiver unit 2020 can be regarded as the operation of the terminal 2000.
  • the structure of the terminal includes a processor and a transceiver, and the processor is configured to support the terminal to perform a corresponding function in the downlink control information monitoring method.
  • the transceiver is configured to support communication between the terminal and the base station, and send information or instructions involved in the method for resource allocation in the communication system to the base station.
  • the terminal may also include a memory for coupling with the processor, which stores program instructions and data necessary for the terminal.
  • the processing unit 2010 in the terminal 2000 can be implemented by a processor in the terminal 2000
  • the transceiver unit 2020 can be implemented by a transceiver in the terminal 2000.
  • the present application provides a base station as described above, which is used by a base station as described above to perform the method steps associated with a base station in various embodiments involved in the present application.
  • the base station includes a plurality of functional modules for performing the method steps associated with the base station in various embodiments involved in the present application.
  • the base station 2100 shown in FIG. 21 includes a processing unit 2110 and a transceiver unit 2120.
  • the operations performed by the processing unit 2110 or the transceiver unit 2120 can be considered as operations of the base station 2100.
  • the structure of the terminal includes a processor and a transceiver, and the processor is configured to support the terminal to perform a corresponding function in the downlink control information monitoring method.
  • the transceiver is configured to support communication between the terminal and the base station, and send information or instructions involved in the method for resource allocation in the communication system to the base station.
  • the terminal may also include a memory for coupling with the processor, which stores program instructions and data necessary for the terminal.
  • the processing unit 2110 in the base station 2100 can be implemented by a processor of the base station 2100, which can be implemented by a transceiver in the base station 2100.
  • the transceiver 2205 in FIG. 22 may be a wired transceiver, a wireless transceiver, or a combination thereof.
  • the wired transceiver can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless transceiver can be, for example, a wireless local area network communication interface, a cellular network communication interface, or a combination thereof.
  • the processor 2202 in the embodiment of the present application may be a central processing unit (English: central processing unit, abbreviated as CPU), a network processor (English: network processor, abbreviated as NP) or a combination of a CPU and an NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (abbreviated as PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field-programmable gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array Logic, abbreviation: GAL) or any combination thereof.
  • the memory 2203 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); the memory 2203 may also include a non-volatile memory (English: non-volatile memory) ), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state Drive, abbreviation: SSD); the memory 2203 may also include a combination of the above types of memories.
  • ROM read-only memory
  • flash memory English: flash memory
  • HDD hard disk drive
  • SSD solid state drive
  • the embodiment of the present application may further include a bus system 2204, which may include any number of interconnected buses and bridges, and specifically, various circuit links of the memory represented by one or more processors 2202 and memory 2203 represented by the processor. Together.
  • the bus can also link various other circuits such as peripherals, voltage regulators, and power management circuits, and will not be further described in this application.
  • Transceiver 2205 provides a unit for communicating with various other devices on a transmission medium.
  • the processor 2202 is responsible for managing the bus architecture and general processing, and the memory 2203 can store data used by the processor 2202 when performing operations.
  • the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to execute the various embodiments and terminals involved in the present application Related method steps.
  • the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform various embodiments in accordance with the present application with a base station Related method steps.
  • the present application provides a computer program product comprising instructions that, when executed on a computer, cause the computer to perform the method steps associated with the terminal in various embodiments of the present application.
  • the present application provides a computer program product comprising instructions that, when executed on a computer, cause the computer to perform the method steps associated with the base station in various embodiments of the present application.
  • FIG. 23 is a schematic structural diagram of a data transmission device provided by an embodiment of the present invention (for example, an access point or a communication device such as a base station, a station, or a terminal, Or a chip or the like in the aforementioned communication device).
  • a data transmission device provided by an embodiment of the present invention (for example, an access point or a communication device such as a base station, a station, or a terminal, Or a chip or the like in the aforementioned communication device).
  • data transmission device 1200 can be implemented by bus 1201 as a general bus architecture. Depending on the particular application of data transmission device 1200 and overall design constraints, bus 1201 may include any number of interconnecting buses and bridges. Bus 1201 connects various circuits together, including processor 1202, storage medium 1203, and bus interface 1204. Alternatively, the data transmission device 1200 connects the network adapter 1205 or the like via the bus interface 1204 via the bus interface 1204. The network adapter 1205 can be used to implement signal processing functions of the physical layer in the wireless communication network, and to implement transmission and reception of radio frequency signals through the antenna 1207.
  • the user interface 1206 can be connected to a user terminal such as a keyboard, a display, a mouse, or a joystick.
  • the bus 1201 can also be connected to various other circuits, such as timing. Sources, peripherals, voltage regulators or power management circuits, etc., are well known in the art and will not be described in detail.
  • the data transfer device 1200 can also be configured as a general purpose processing system, such as generally referred to as a chip, the general purpose processing system including: one or more microprocessors providing processor functionality; and an external portion providing at least a portion of the storage medium 1203 Memory, all of which are connected to other supporting circuits through an external bus architecture.
  • a general purpose processing system such as generally referred to as a chip, the general purpose processing system including: one or more microprocessors providing processor functionality; and an external portion providing at least a portion of the storage medium 1203 Memory, all of which are connected to other supporting circuits through an external bus architecture.
  • the data transfer device 1200 can be implemented using an ASIC (application specific integrated circuit) having a processor 1202, a bus interface 1204, a user interface 1206, and at least a portion of the storage medium 1203 integrated in a single chip, or
  • the data transmission device 1200 can be implemented using one or more FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), controllers, state machines, gate logic, discrete hardware components, any other suitable A circuit, or any combination of circuits capable of performing the various functions described throughout the present invention.
  • FPGAs Field Programmable Gate Arrays
  • PLDs Programmable Logic Devices
  • controllers state machines, gate logic, discrete hardware components, any other suitable A circuit, or any combination of circuits capable of performing the various functions described throughout the present invention.
  • the processor 1202 is responsible for managing the bus and general processing (including executing software stored on the storage medium 1203).
  • Processor 1202 can be implemented using one or more general purpose processors and/or special purpose processors. Examples of processors include microprocessors, microcontrollers, DSP processors, and other circuits capable of executing software.
  • Software should be interpreted broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Storage medium 1203 is shown separated from processor 1202 in the following figures, however, it will be readily apparent to those skilled in the art that storage medium 1203, or any portion thereof, can be located outside of data transmission device 1200.
  • storage medium 1203 can include transmission lines, carrier waveforms modulated with data, and/or computer products separate from wireless nodes, all of which can be accessed by processor 1202 through bus interface 1204.
  • storage medium 1203, or any portion thereof, can be integrated into processor 1202, for example, can be a cache and/or a general purpose register.
  • the processor 1202 can perform the method of encoding the code of the polarization code in any of the foregoing embodiments of the present application, and details are not described herein again.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the present application is a flowchart of a method, device (system), and computer program product according to an embodiment of the present application. And / or block diagram to describe. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种下行控制信息监测方法、终端及基站,应用于通信技术领域,用以解决现有技术中非连续接收周期的配置固定所存在的激活期被配置的过短造成业务效率低,激活期被配置的过短造成业务功耗过大的技术问题。所述方法包括:终端在第一时间资源单元区间内,按照第一规则监测下行控制信息;所述终端在第二时间资源单元区间内,按照第二规则监测下行控制信息;所述第一时间资源单元区间与所述第二时间资源单元区间不同,所述第一规则与所述第二规则不同。本申请与LTE现有DRX技术相比,若DRX激活期相同,本申请可以减少终端监测下行控制信息的频率,减少终端能耗。若监测次数相同,本申请可以延长DRX激活期的持续时间,使调度更灵活。

Description

一种下行控制信息监测方法、终端及基站 技术领域
本申请涉及通信技术领域,尤其涉及一种下行控制信息监测方法、终端及基站。
背景技术
在长期演进(long term evolution,LTE)或新通信(new radio,NR)协议中,基于包的数据流通常是突发性的,在一段时间内有数据传输,但在接下来的一段较长时间内没有数据传输。在没有数据传输的时候,可以通过停止接收物理下行控制信道(physical downlink control channel,PDCCH)来降低功耗,从而提升电池使用时间。在LTE中,使用非连续接收(discontinuous reception,DRX)来实现。在LTE中,DRX的基本原理是,处于无线资源控制(radio resource control,RRC)连接态的UE被配置一个非连续接收周期。如图2所示,一个非连续接收DRX周期由激活期“On Duration”和休眠期“Opportunity for DRX”组成。在激活期内,用户设备(user equipment,UE)监测并接收PDCCH,在休眠期内,UE不接收PDCCH以减少功耗。
在大多数情况下,当一个UE在某个子帧被调度并接收或发送数据后,很可能在接下来的几个子帧内继续被调度,如果要等到下一个非连续接收周期再来接收或发送这些数据将会带来额外的延迟。为了降低这类延迟,UE在被调度后,会持续处于激活期,即会在配置的激活期内持续监测PDCCH,其实现机制是:每当UE被调度以初传数据时,就会启动(或重启)一个DRX去激活定时器,UE将一直处于激活态直到该定时器超时。DRX去激活定时器指定了当UE成功解码一个指示初传的上行链路或下行链路的用户数据的PDCCH后,持续处于激活态的连续多个含有PDCCH的子帧,即当UE有初传数据被调度时,该定时器就启动或重启一次。
在LTE的DRX中,一旦UE处于激活状态,在DRX去激活定时器超时之前,UE会在每个含有PDCCH的下行子帧监测PDCCH。如果DRX去激活定时器设定的监测时间太短,UE只能监测较少的PDCCH,一旦DRX去激活定时器超时,UE进入休眠期,只能等待下个非连续接收周期的激活期才能接收或发送数据。如果DRX去激活定时器设定的监测时间太长,UE会监测大量的PDCCH,会消耗大量的能量。综上,现有技术中非连续接收周期的配置不灵活,存在着激活期被配置的过短造成业务效率低,激活期被配置的过短造成业务功耗过大的技术问题。
发明内容
本申请实施例提供了一种下行控制信息监测方法、终端及基站,用以解决现有技术中非连续接收周期的配置不灵活,存在的激活期被配置的过短造成业务效率低,激活期被配置的过短造成业务功耗过大的技术问题。
第一方面,本申请提供一种下行控制信息监测方法,所述方法包括:终端在第一时间资源单元区间内,按照第一规则监测下行控制信息;所述终端在第二时间资源单元区间内,按照第二规则监测下行控制信息;所述第一时间资源单元区间与所述第二时间资源单元区间不同,所述第一规则与所述第二规则不同。
在一个可能的设计中,所述第一规则与所述第二规则不同,包括:
所述终端在所述第一时间资源单元区间内与在所述第二时间资源单元区间内监测下行控制信息的监测频率不同;或
所述终端在所述第一时间资源单元区间内与在所述第二时间资源单元区间内监测下行控制信息的偏移方式不同;或
所述终端在所述第一时间资源单元区间内与在所述第二时间资源单元区间内监测下行控制信息的所述监测频率和所述偏移方式均不同。
其中,所述监测频率是从对应时间资源单元区间的多个时间资源单元中确定所需监测的时间资源单元时所采用的时间资源单元间隔的倒数;所述偏移方式是从对应时间资源单元区间的多个时间资源单元中确定首个所述所需监测的时间资源单元的方式。
在一个可能的设计中,所述第一时间资源单元区间与所述第二时间资源单元区间不同,包括:
所述第一时间资源单元区间与所述第二时间资源单元区间的起始时刻不同;或
所述第一时间资源单元区间与所述第二时间资源单元区间的时间长度不同;或
所述第一时间资源单元区间与所述第二时间资源单元区间的起始时刻以及时间长度都不同。
在一个可能的设计中,所述第一时间资源单元区间包括连续多个时间资源单元;所述第二时间资源单元区间包括连续多个时间资源单元;所述时间资源单元为时隙、迷你时隙、符号、子帧中的一种或多种的组合。
在一个可能的设计中,所述方法还包括:
所述终端在当前时间资源单元监测到指示所述终端接收或发送初传数据的下行控制信息时,确定所述第一时间资源单元区间和所述第二时间资源单元区间任意一个时间资源单元区间的起始时刻和时间长度。
在一个可能的设计中,所述终端确定所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个时间资源单元区间的起始时刻和时间长度,包括:
所述终端确定第一配置信息,所述第一配置信息为所述基站配置的,或者所述第一配置信息是所述终端预配置的,所述第一配置信息配置所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个所述时间资源单元区间的相对起始时刻和时间长度;
所述终端根据所述当前时间资源单元和所述第一配置信息,从所述当前时间资源单元之后的连续多个时间资源单元中确定任意一个所述时间资源单元区间的所述起始时刻和所述时间长度。
在一个可能的设计中,所述终端在第一时间资源单元区间内,按照第一规则监测下行控制信息,包括:
所述终端确定所述第一时间资源单元区间内的所述偏移方式和所述监测频率;
所述终端根据所述第一时间资源单元区间内的所述偏移方式和所述监测频率从所述第一时间资源单元区间的多个时间资源单元中确定所需监测的时间资源单元;
所述终端在包含下行控制区域的所述所需监测的时间资源单元内监测基站向所述终端发送的下行控制信息,所述下行控制区域所占的符号用于承载下行控制信息;
所述终端在第二时间资源单元区间内,按照第二规则监测下行控制信息,包括:
所述终端确定所述第二时间资源单元区间内的所述偏移方式和所述监测频率;
所述终端根据所述第二时间资源单元区间内的所述偏移方式和所述监测频率从所述第二时间资源单元区间的多个时间资源单元中确定所需监测的时间资源单元;
所述终端在包含下行控制区域的所述所需监测的时间资源单元内监测基站向所述终端发送的下行控制信息;所述下行控制区域所占的符号用于承载下行控制信息。
在一个可能的设计中,所述终端确定所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个所述时间资源单元区间内的所述偏移方式,包括:
所述终端接收所述基站发送的第一指示信息,所述第一指示信息指示任意一个所述时间资源单元区间内的偏移方式;所述终端根据所述第一指示信息确定任意一个所述时间资源单元区间内的偏移方式;或者
所述终端根据预配置确定任意一个所述时间资源单元区间内的偏移方式;或者,
所述终端根据所述终端的无线网络临时标识满足的第一函数关系,确定任意一个所述时间资源单元区间内的偏移方式,所述第一函数关系是所述终端预配置的或者所述第一函数关系是所述基站配置的;或者,
所述终端根据所述无线网络临时标识和所述终端的小区标识满足的第二函数关系,确定任意一个所述时间资源单元区间内的偏移方式,所述第二函数关系是所述终端预配置的,或者所述第二函数关系是由所述基站配置的。
在一个可能的设计中,所述终端确定所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个所述时间资源单元区间内的所述监测频率,包括:
所述终端接收所述基站发送的第二指示信息,所述第二指示信息指示任意一个所述时间资源单元区间内的所述监测频率;所述终端根据所述第二指示信息确定任意一个所述时间资源单元区间内的所述监测频率;或者
所述终端根据预配置确定任意一个所述时间资源单元区间内的所述监测频率。
在一个可能的设计中,所述第一时间资源单元区间与所述第二时间资源单元区间的所述起始时刻不同时,起始时刻在后的所述时间资源单元区间内的所述监测频率小于或等于起始时刻在前的所述时间资源单元区间内的所述监测频率。
在一个可能的设计中,所述第一时间资源单元区间与所述第二时间资源单元区间的起始时刻相同时,所述第一时间资源单元区间与所述第二时间资源单元区间的交叠时间资源单元区间内的所述监测频率大于或等于非交叠时间资源单元区间内的所述监测频率。
在一个可能的设计中,所述终端在所述第一时间资源单元区间与所述第二时间资源单元区间中的任意一个所述时间资源单元区间内再次监测到指示所述终端接收或发送初传数据的下行控制信息时,所述终端重新返回所述终端在第一时间资源单元区间内,按照第一规则监测下行控制信息,所述终端在第二时间资源单元区间内,按照第二规则监测下行控制信息的步骤。
在一个可能的设计中,所述终端在所述第一时间资源单元区间与所述第二时间资源单元区间中的任意一个所述时间资源单元区间内接收到所述基站发送的第三指示信息,所述第三指示信息指示所述终端停止监测下行控制信息;
所述终端根据所述第三指示信息,断开所述终端与所述基站之间的射频链路,使所述终端由激活状态跳转到休眠状态;或者,
所述终端根据所述第三指示信息,在接收到所述第三指示信息的所述时间资源单元区间结束后,断开所述终端与所述基站之间的射频链路,使所述终端由激活状态跳转到休眠 状态;或者,
所述终端根据所述第三指示信息,在所述基站指示的时间资源单元区间结束后,断开所述终端与所述基站之间的射频链路,使所述终端由激活状态跳转到休眠状态。
在一个可能的设计中,所述终端在所述第一时间资源单元区间和所述第二时间资源单元区间中的任意一个时间资源单元接收所述基站发送的第四指示信息,所述第四指示信息指示所述终端从所述时间资源单元切换到第三时间资源单元区间;所述第三时间资源单元区间的起始时刻为所述时间资源单元,所述第三时间资源单元区间的所述时间长度、所述监测频率和所述偏移方式由所述基站配置,或者由所述终端预配置;
所述终端根据所述第四指示信息和所述时间资源单元,确定所述第三时间资源区间中所需监测的时间资源单元,并在所述第三时间资源区间中包含下行控制区域的所述所需监测的时间资源单元内监测基站向所述终端发送的下行控制信息。
在一个可能的设计中,所述终端在所述第一时间资源单元区间与所述第二时间资源单元区间中的任意一个所述时间资源单元区间中不需要被监测的时间资源单元切换到短暂休眠状态;所述不需要监测时间资源单元包括所述时间资源单元区间中除所述所需监测的时间资源单元之外的时间资源单元,还包括所述所需监测的时间资源单元中不包含下行控制区域的时间资源单元。
在一个可能的设计中,所述第一时间资源单元区间由第一定时器决定;所述第二时间资源单元区间由第二定时器决定。
在一个可能的设计中,所述第一时间资源单元区间由第一计数器决定;所述第二时间资源单元区间由第二计数器决定。
第二方面,本申请提供一种下行控制信息监测方法,所述方法包括:
基站向终端发送第一配置信息,所述第一配置信息配置第一时间资源单元区间和第二时间资源单元区间中任意一个所述时间资源单元区间的相对起始时刻和时间长度,以使所述终端根据当前时间资源单元和所述第一配置信息,从所述当前时间资源单元之后的连续多个时间资源单元中确定任意一个所述时间资源单元区间的所述起始时刻和所述时间长度,所述终端在所述当前时间资源单元监测到指示所述终端接收或发送初传数据的下行控制信息。
在一个可能的设计中,所述方法还包括:
所述基站向所述终端发送第一指示信息,所述第一指示信息指示所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个所述时间资源单元区间内的偏移方式,以使所述终端根据所述第一指示信息确定任意一个所述时间资源单元区间内的偏移方式;或者,所述基站向所述终端发送所述终端的无线网络临时标识满足的第一函数关系,以使所述终端根据所述第一函数关系,确定任意一个所述时间资源单元区间内的偏移方式;或者,所述基站向所述终端发送所述无线网络临时标识和所述终端的小区标识满足的第二函数关系,以使所述终端根据所述第二函数关系确定任意一个所述时间资源单元区间内的偏移方式。
在一个可能的设计中,所述方法还包括:
所述基站向所述终端发送第二指示信息,所述第二指示信息用于向所述终端指示所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个所述时间资源单元区间内的所述监测频率。
在一个可能的设计中,所述方法还包括:
所述基站向所述终端发送第三指示信息,所述第三指示信息是在所述第一时间资源单元区间和所述第二时间资源单元区间中的任意一个所述时间资源单元区间内发送的,所述第三指示信息指示所述终端停止监测下行控制信息。
在一个可能的设计中,所述方法还包括:
所述基站向所述终端发送第四指示信息,所述第四指示信息是在所述第一时间资源单元区间和所述第二时间资源单元区间中的任意一个时间资源单元发送的,
所述第四指示信息指示所述终端从所述时间资源单元切换到第三时间资源单元区间;所述第三时间资源单元区间的起始时刻为所述时间资源单元,所述第三时间资源单元区间的所述时间长度、所述监测频率和所述偏移方式由所述基站配置。
第三方面,本申请实施例提供一种终端,终端包括存储器、收发器和处理器,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,并控制收发器进行信号接收和信号发送,当处理器执行存储器存储的指令时,终端用于执行上述第一方面或第一方面中任一种方法。
第四方面,本申请实施例提供一种基站,基站包括存储器、收发器和处理器,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,并控制收发器进行信号接收和信号发送,当处理器执行存储器存储的指令时,基站用于执行上述第二方面或第二方面中任一种方法。
第五方面,本申请实施例提供一种终端,用于实现上述第一方面或第一方面中的任意一种的方法,包括相应的功能模块,分别用于实现以上方法中的步骤。
第六方面,本申请实施例提供一种基站,用于实现上述第二方面或第二方面中的任意一种方法,包括相应的功能模块,分别用于实现以上方法中的步骤。
第七方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第二方面或第二方面的任意可能的实现方式中的方法。
第十一方面,本申请提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面及第一方面中各种可能的设计中的方法。
第十二方面,本申请提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述第二方面及第二方面中各种可能的设计中的方法。
本申请实施例中,为终端配置的监测下行控制信息的时间资源单元区间为至少两个,并且每个时间资源单元区间中所需监测的时间资源单元可以灵活配置,每个时间资源单元区间中所需监测的时间资源单元可以是时间资源单元区间中的部分时间资源单元,也可以是时间资源单元区间中的全部时间资源单元。这至少两个时间资源单元区间配置了不同的 规则来确定每个时间资源单元区间中所需监测的时间资源单元。基于上述配置,可以根据终端的业务需求,为终端配置不同长度的时间资源单元区间,保证调度灵活性。另一方面,任一时间资源区间中所需监测的时间资源单元都通过规则来确定,避免每个时间资源单元区间的全部时间资源单元都必须监测,可以减小终端的功耗。本申请的上述下行控制信息监测方法可以兼顾调度灵活性和减小终端功耗。
附图说明
图1为本申请实施例提供的一种系统架构示意图;
图2为本申请实施例提供的一种DRX周期的示意图;
图3为本申请实施例提供的基于时隙和迷你时隙的数据传输的示意图;
图4为本申请提供的一种下行控制信息监测方法的方法流程图;
图5至图6为本申请示例一提供的一种下行控制信息监测方法示意图;
图7为本申请示例二提供的一种下行控制信息监测方法示意图;
图8为本申请示例三提供的一种下行控制信息监测方法示意图;
图9为本申请示例四提供的一种下行控制信息监测方法示意图;
图10为本申请示例五提供的一种下行控制信息监测方法示意图;
图11为本申请示例六提供的一种下行控制信息监测方法示意图;
图12为本申请示例七提供的一种下行控制信息监测方法示意图;
图13为本申请示例八提供的一种下行控制信息监测方法示意图;
图14为本申请示例九提供的一种下行控制信息监测方法示意图;
图15为本申请示例十提供的一种下行控制信息监测方法示意图;
图16为本申请示例十一提供的一种下行控制信息监测方法示意图;
图17为本申请示例十二提供的一种下行控制信息监测方法示意图;
图18为本申请示例十三提供的一种下行控制信息监测方法示意图;
图19为本申请示例十四提供的一种下行控制信息监测方法示意图;
图20为本申请提供的一种终端的结构示意图;
图21为本申请提供的一种基站的结构示意图;
图22为本申请提供的一种终端或基站的结构示意图;
图23为本申请提供的一种数据传输装置的结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请主要应用于长期演进(Long Term Evolution,简称LTE)/5G新无线接入技术(New RAT,简称NR)系统中。如图1所示,为本申请通信系统的一种基础架构。基站和终端通过无线接口可以进行数据或者信令的传输,包括上行传输和下行传输。
基站可以是能和终端通信的设备。基站可以是可以是任意一种具有无线收发功能的设备。包括但不限于:基站(例如,基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点)等。基站还可以是云无线接入网络(cloud radio access network, CRAN)场景下的无线控制器。基站还可以是5G网络中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。基站还可以是小站,传输节点(transmission reference point,TRP)等。当然本申请不限于此。
终端是一种具有无线收发功能的设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端有时也可以称为用户设备(user equipment,UE)、接入终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。
需要说明的是,本发明实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
以下,对本申请中的部分用语进行解释说明,以便与本领域技术人员理解。
本申请实施例中描述的时域资源单元是无线通信系统,如LTE系统,LTE演进系统或5G系统,如NR,中的一种时域资源调度和分配单元,包括但不限于子帧、子帧集合、时隙(slot)、迷你时隙(mini-slot)、传输时间间隔(Transmit Time Interval,简称TTI)、TTI集合、时域符号,以及时域符号集合中的任意一种。新无线接入技术(New RAT,简称NR)或5G中新定义的类似于上述概念的术语也可以作为本专利中所描述的时域资源单元,本申请对此不做限定。
本申请中所说的子帧,可以理解为:一个子帧在频域上占用整个系统带宽的时频资源、在时域上上占用固定的时间长度,例如1毫秒(ms)。同时一个子帧也可占用连续的K个符号,K为大于零的自然数。K的取值可以根据实际情况确定,在此并不限定。例如,LTE中,1个子帧在时域上占用连续的14个OFDM符号。
本申请中所说的时隙,可以理解为:时隙是指一个基本的时频资源单元,在时域上占用连续的L个OFDM符号,L为大于零的自然数。L的取值可以根据实际情况确定,例如,7个OFDM符号。
本申请中所说的符号,包含但不限于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、稀疏码分多址技术(Sparse Code Multiplexing Access,SCMA)符号、过滤正交频分复用(Filtered Orthogonal Frequency Division Multiplexing,F-OFDM)符号、非正交多址接入(Non-Orthogonal Multiple Access,NOMA)符号,具体可以根据实际情况确定,在此不再赘述。
本申请中所说的短时休眠,在LTE中,UE可以通过短时休眠技术来达到省电的目的。UE在接入网络之后,需要接收基站发给自己的下行数据,或者自己向基站发送上行数据。无论UE是接收下行数据还是发送上行数据,其行为都是由基站控制的。具体而言,基站会通过PDCCH下发下行控制信息,下行控制信息可以调度UE接收或者发送数据。UE会在特定的时频资源上根据某些规则盲检测PDCCH,如果检测到发送给自己的PDCCH,则根据其中包含的下行控制信息发送或接收;如果没有检测到发送给自己的PDCCH,则不会有进一步动作。在UE盲检测下行控制区域的PDCCH之后,如果没有检测到发送给自己的PDCCH,在下一个下行子帧到来之前,UE可以关闭自己的RF链路,进入短暂的休眠期,从而节省电池电量。这种节省电量的方法被称为短时休眠。
本申请中基于mini-slot的传输,是指在NR中,同时支持基于时隙(slot)和基于迷你时隙(mini-slot)的传输。如图3所示,在NR中,一个slot一般被定义为n个符号(symbol),一个mini-slot被定义为2~n-1个符号,其中n为一般取为7或者14。基于slot的传输意味着该次传输的最小调度单元为一个slot,而基于迷你时隙mini-slot的传输则可以将最小调度单元设置为短于一个slot(即为一个mini-slot)。通常,对延迟要求较小,或者所需传输的数据较少的时候,可以采用基于mini-slot的传输。
在NR中会有基于slot的传输和基于mini-slot的传输。因为mini-slot的长度可以很短,在一个slot内部可能有多个mini-slot,如果UE要监测所有可能的mini-slot,UE的功耗就太大了。因此,在NR中,UE会在时域上被配置PDCCH监测时机monitoring occasion,只有在被配置的PDCCH monitoring occasion上UE会监测PDCCH,PDCCH monitoring occasion包括多个连续或不连续的时域资源单元,如多个时隙。一个时隙中有多少个需要监测的mini-slot,也是基站通过PDCCH monitoring occasion配置给UE的。例如,一个slot里面可能有7个mini-slot,分别标记为0~6。但是UE可能只被配置了监测其中的第0个,第3个和第6个。这样的话,对这个UE来说,一个slot中会有3次基于mini-slot的传输的可能。
本申请提供的一种下行控制信息监测方法,如图4所示,包括:
步骤101,终端在第一时间资源单元区间内,按照第一规则监测下行控制信息;
步骤102,所述终端在第二时间资源单元区间内,按照第二规则监测下行控制信息;
其中,所述第一时间资源单元区间与所述第二时间资源单元区间不同,所述第一规则与所述第二规则不同。
需要说明的是,步骤101和步骤102同时进行,或者步骤101和步骤102不同时进行。
其中,所述第一时间资源单元区间包括连续多个时间资源单元;所述第二时间资源单元区间包括连续多个时间资源单元;所述时间资源单元为时隙、迷你时隙、符号、子帧中的一种或多种的组合,其中,多个子帧、多个时隙或者多个迷你时隙、多个符号可以是连续的,也可以是不连续的;子帧、时隙、迷你时隙或符号的组合可以是连续的,也可以是不连续的。
在一个可能的设计中,用于下行控制信息监测的时间资源单元区间包括但不限于第一时间资源单元区间和第二时间资源单元区间,用于下行控制信息监测的时间资源单元区间配置为多个,每一个时间资源单元区间都被配置一个监测下行控制信息的规则,第一时间资源单元区间和第二时间资源单元区间为这多个中的其中两个。
需要说明的是,所述第一规则用于规定所述第一时间资源单元区间中所需监测的时间 资源单元,所述第一时间资源单元区间中所需监测的时间资源单元为第一时间资源单元区间中的部分或全部时间资源单元;所述第二规则规定所述第二时间资源单元区间中所需监测的时间资源单元,所述第二时间资源单元区间中所需监测的时间资源单元为第二时间资源单元区间中的部分或全部时间资源单元。
需要说明的是,第一时间资源单元区间中所需监测的时间资源单元根据第一时间资源单元区间内的监测频率和偏移方式来确定,第二时间资源单元区间中所需监测的时间资源单元根据第二时间资源单元区间内的监测频率和偏移方式来确定。其中,所述监测频率是从对应时间资源单元区间的多个时间资源单元中确定所需监测的时间资源单元时所采用的时间资源单元间隔的倒数,例如,一个时间资源单元区间包括连续10个时隙,如果每隔3个时隙监测一次,则该时间资源单元区间内的监测频率为1/3。所述偏移方式是从对应时间资源单元区间的多个时间资源单元中确定首个所述所需监测的时间资源单元的方式,例如,一个时间资源单元区间包括连续10个时隙,每隔3个时隙监测一次时,首个被监测的时隙可以有多种,可以是第一个时隙,也可以是第二个时隙,这种确定哪一个时隙是首个被监测的时隙的方式称为偏移方式。
在一个可能的设计中,所述第一规则与所述第二规则不同,包括:所述终端在所述第一时间资源单元区间内监测下行控制信息的监测频率与在所述第二时间资源单元区间内监测下行控制信息的监测频率不同,在此种情况下,所述终端在所述第一时间资源单元区间内的偏移方式与在所述第二时间资源单元区间内的偏移方式可以相同,也可以不同。
在一个可能的设计中,所述第一规则与所述第二规则不同,包括:所述终端在所述第一时间资源单元区间内与在所述第二时间资源单元区间内监测下行控制信息的偏移方式不同,此种情况下,所述终端在所述第一时间资源单元区间内的监测频率与在所述第二时间资源单元区间内的监测频率可以相同,也可以不同。
在一个可能的设计中,所述第一规则与所述第二规则不同,包括:所述终端在所述第一时间资源单元区间内与在所述第二时间资源单元区间内监测下行控制信息的所述监测频率和所述偏移方式均不同。
需要说明的是,时间资源单元区间的起始时刻为对应时间资源单元区间的首个时间资源单元,时间资源单元区间的时间长度为对应时间资源单元区间包括的时间资源单元的个数,特殊情况下,如果一个时间资源单元区间包括两种以上的时间资源单元,则该时间资源单元区间的时间长度由长度较长的时间资源单元的个数来确定,比如一个时间资源单元区间包括连续多个时隙,其中一个或多个时隙中包括至少一个迷你时隙,该时间资源单元区间的时间长度由时隙的个数确定。
需要说明的是,如果步骤101和步骤102同时开始执行,则第一时间资源单元区间的起始时刻与所述第二时间资源单元区间的起始时刻相同,即第一时间资源单元区间的首个时间资源单元与所述第二时间资源单元区间的首个时间资源单元相同。如果步骤101结束以后开始步骤102,或者步骤102结束以后开始步骤101,或者,步骤101结束以后,过一段时间开始步骤102,则第一时间资源单元区间的起始时刻与所述第二时间资源单元区间的起始时刻不相同。
在一个可能的设计中,所述第一时间资源单元区间与所述第二时间资源单元区间不同,包括:所述第一时间资源单元区间与所述第二时间资源单元区间的起始时刻不同。在此种情况下,第一时间资源单元区间的时间长度与在所述第二时间资源单元区间的时间长度可 以相同,也可以不同。
在一个可能的设计中,所述第一时间资源单元区间与所述第二时间资源单元区间不同,包括:所述第一时间资源单元区间与所述第二时间资源单元区间的时间长度不同。在此种情况下,第一时间资源单元区间的起始时刻与在所述第二时间资源单元区间的起始时刻可以相同,也可以不同。
在一个可能的设计中,所述第一时间资源单元区间与所述第二时间资源单元区间不同,包括:所述第一时间资源单元区间与所述第二时间资源单元区间的起始时刻以及时间长度都不同。
在一个可能的设计中,上述方法还包括:所述终端在当前时间资源单元监测到指示所述终端接收或发送初传数据的下行控制信息时,确定所述第一时间资源单元区间和所述第二时间资源单元区间任意一个时间资源单元区间的起始时刻和时间长度。其中,当前时间资源单元可以是第一时间资源单元区间和所述第二时间资源单元区间中的任意一个所需监测的时间资源单元。例如当前时间资源单元为第一时间资源单元中的任一个监测到指示所述终端接收或发送初传数据的下行控制信息的时间资源单元,或者,当前时间资源单元为第二时间资源单元中的任一个监测到指示所述终端接收或发送初传数据的下行控制信息的时间资源单元。当前时间资源单元区间也可以是第一时间资源单元区间和所述第二时间资源单元区间以外的任何一个配置给终端监测下行控制信息的时间资源单元。
在一个可能的设计中,所述终端确定所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个时间资源单元区间的起始时刻和时间长度,包括:所述终端确定第一配置信息,所述第一配置信息为所述基站配置的,或者所述第一配置信息是所述终端预配置的,所述第一配置信息配置所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个所述时间资源单元区间的相对起始时刻和时间长度;所述终端根据所述当前时间资源单元和所述第一配置信息,从所述当前时间资源单元之后的连续多个时间资源单元中确定所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个所述时间资源单元区间的所述起始时刻和所述时间长度。需要说明的是第一配置信息中配置的任一个时间资源单元区间的起始时刻是一个相对值,即相对起始时刻,这样每次监测到指示所述终端接收或发送初传数据的下行控制信息时,就可以根据接收到下行控制信息的时刻和第一配置信息来确定使终端继续处于激活态的任意一个时间资源单元区间的起始时刻和时间长度。
需要说明的是,如果为终端配置的用于监控下行控制信息的时间资源单元区间为N个,N为大于2的正整数,则所述终端在当前时间资源单元监测到指示所述终端接收或发送初传数据的下行控制信息时,终端根据所述当前时间资源单元和所述第一配置信息,从所述当前时间资源单元之后的连续多个时间资源单元中确定这N个时间资源单元区间中任意一个所述时间资源单元区间的所述起始时刻和所述时间长度,此时所述第一配置信息配置所述N个时间资源单元区间中任意一个所述时间资源单元区间的相对起始时刻和时间长度。
在一个可能的设计中,步骤101具体包括:所述终端确定所述第一时间资源单元区间内的所述偏移方式和所述监测频率;所述终端根据所述第一时间资源单元区间内的所述偏移方式和所述监测频率从所述第一时间资源单元区间的多个时间资源单元中确定所需监测的时间资源单元;所述终端在包含下行控制区域的所述所需监测的时间资源单元内监测基站向所述终端发送的下行控制信息,所述下行控制区域所占的符号用于承载下行控制信 息。
需要说明的是,即使当前时间资源单元没有下行控制区域,也可能仍然属于“所需监测的时间资源单元”。因为“所需监测的时间资源单元”是根据基站配置或预配置得到,而一个时间资源单元是否有下行控制区域取决于时间资源单元的结构,时间资源单元的结构很可能是短时生效的,即在终端确定“所需监测的时间资源单元”的时候,可能并不知道“所需监测的时间资源单元”是否含有下行控制区域。
在一个可能的设计中,步骤102具体包括:所述终端确定所述第二时间资源单元区间内的所述偏移方式和所述监测频率;所述终端根据所述第二时间资源单元区间内的所述偏移方式和所述监测频率从所述第二时间资源单元区间的多个时间资源单元中确定所需监测的时间资源单元;所述终端在包含下行控制区域的所述所需监测的时间资源单元内监测基站向所述终端发送的下行控制信息;所述下行控制区域所占的符号用于承载下行控制信息。
在一个可能的设计中,所述终端确定任意一个所述时间资源单元区间内的所述偏移方式,包括:所述终端接收所述基站发送的第一指示信息,所述第一指示信息指示任意一个所述时间资源单元区间内的偏移方式,所述终端根据所述第一指示信息确定任意一个所述时间资源单元区间内的偏移方式。
在一个可能的设计中,所述终端确定任意一个用于监控下行控制信息的所述时间资源单元区间内的所述偏移方式,包括:所述终端根据预配置确定任意一个所述时间资源单元区间内的偏移方式。预配置是指根据标准协议规定在终端中出厂设置的预配置,这些预配置中包括任意一个用于监控下行控制信息的所述时间资源单元区间内的偏移方式。
在一个可能的设计中,所述终端确定任意一个用于监控下行控制信息的所述时间资源单元区间内的所述偏移方式,包括:所述终端根据所述终端的无线网络临时标识满足的第一函数关系,确定任意一个所述时间资源单元区间内的偏移方式,所述第一函数关系是所述终端预配置的或者所述第一函数关系是所述基站配置的。
假如,分配给终端用于下行控制信息监测的一个时间资源单元区间中每隔mi个时间资源单元监测一次,终端的无线网络临时标识(radio network tempory identity,RNTI)满足的第一函数关系为RNTI mod mi。对于一个终端来说,如果该终端的RNTI是35542,分配给终端用于下行控制信息监测的一个时间资源单元区间包括连续多个时隙,每隔2个时隙监测一次,则代入第一函数关系可以得出(35542mod 2)=0(mod是取模函数),即终端在该时间资源单元区间所需监测的时隙为偶数时隙。如果该终端的ID是24861,则(24861mod 2)=1,即终端在该时间资源单元区间所需监测的时隙为奇数时隙。
在一个可能的设计中,所述终端确定任意一个用于监控下行控制信息的所述时间资源单元区间内的所述偏移方式,包括:所述终端根据所述无线网络临时标识和所述终端的小区标识满足的第二函数关系,确定任意一个所述时间资源单元区间内的偏移方式。
假如分配给终端用于下行控制信息监测的一个时间资源单元区间中每隔mi个时间资源单元监测一次,终端的无线网络临时标识RNTI和小区标识Cell ID满足的第二函数关系为(RNTI+Cell ID)mod mi。其中,所述第二函数关系是所述终端预配置的,或者所述第二函数关系是由所述基站配置的。
在一个可能的设计中,所述终端确定任意一个所述时间资源单元区间内的所述监测频率,包括:所述终端接收所述基站发送的第二指示信息,所述第二指示信息指示任意一个 所述时间资源单元区间内的所述监测频率;所述终端根据所述第二指示信息确定任意一个所述时间资源单元区间内的所述监测频率。
在一个可能的设计中,所述终端确定任意一个所述时间资源单元区间内的所述监测频率,包括:所述终端根据预配置确定任意一个所述时间资源单元区间内的所述监测频率。
在一个可能的设计中,所述第一时间资源单元区间与所述第二时间资源单元区间的所述起始时刻不同时,起始时刻在后的所述时间资源单元区间内的所述监测频率小于或等于起始时刻在前的所述时间资源单元区间内的所述监测频率。
例如,为终端配置的用于监控下行控制信息的时间资源单元区间包括3个,第1个时间资源单元区间监测结束之后开始第2个时间资源单元区间,第2个时间资源单元区间监测结束之后开始第3个时间资源单元区间,可选的,这3个时间资源单元区间的监测频率逐渐降低。可选的,这3个时间资源单元区间的监测频率都相同,但这3个时间资源单元区间的偏移方式不同。
在一个可能的设计中,所述第一时间资源单元区间与所述第二时间资源单元区间的起始时刻相同时,所述第一时间资源单元区间与所述第二时间资源单元区间的交叠时间资源单元区间内的所述监测频率大于或等于非交叠时间资源单元区间内的所述监测频率。
例如,为终端配置的用于监控下行控制信息的时间资源单元区间包括2个,这2个时间资源单元区间的起始时刻相同,但是时间长度不同。第1个时间资源单元区间的时间长度小于第2个时间资源单元区间的时间长度,可选的,第1个时间资源单元区间与第2个时间资源单元区间的交叠部分每隔1个时间资源单元监测一次,第2个时间资源单元区间与第1个时间资源单元区间的非交叠部分每隔3个时间资源单元监测一次。可选的,如果这两个时间资源单元区间的监测频率相等,但这两个时间资源单元区间的偏移方式不同,可满足第1个时间资源单元区间与第2个时间资源单元区间的交叠部分的所述监测频率等于非交叠部分的所述监测频率。
在一个可能的设计中,所述终端在所述第一时间资源单元区间与所述第二时间资源单元区间中的任意一个所述时间资源单元区间内再次监测到指示所述终端接收或发送初传数据的下行控制信息时,所述终端重新返回前述实施例中的步骤101和步骤102。
在一个可能的设计中,所述终端在所述第一时间资源单元区间与所述第二时间资源单元区间中的任意一个所述时间资源单元区间内接收到所述基站发送的第三指示信息,所述第三指示信息指示所述终端停止监测下行控制信息;所述终端根据所述第三指示信息,断开所述终端与所述基站之间的射频链路,使所述终端由激活状态跳转到休眠状态;或者,所述终端根据所述第三指示信息,在接收到所述第三指示信息的所述时间资源单元区间结束后,断开所述终端与所述基站之间的射频链路,使所述终端由激活状态跳转到休眠状态;或者,所述终端根据所述第三指示信息,在所述基站指示的时间资源单元区间结束后,断开所述终端与所述基站之间的射频链路,使所述终端由激活状态跳转到休眠状态。
在一个可能的设计中,所述终端在所述第一时间资源单元区间和所述第二时间资源单元区间中的任意一个时间资源单元接收所述基站发送的第四指示信息,所述第四指示信息指示所述终端从所述时间资源单元切换到第三时间资源单元区间;所述第三时间资源单元区间的起始时刻为所述时间资源单元,所述第三时间资源单元区间的所述时间长度、所述监测频率和所述偏移方式由所述基站配置,或者由所述终端预配置;所述终端根据所述第四指示信息和所述时间资源单元,确定所述第三时间资源区间中所需监测的时间资源单元, 并在所述第三时间资源区间中包含下行控制区域的所述所需监测的时间资源单元内监测基站向所述终端发送的下行控制信息。
需要说明的是,第三时间资源单元区间是根据预配置或者基站的配置在收到第四指示信息时临时生成的时间资源单元区间,第三时间资源单元区间的监测频率和所述偏移方式可以与为终端配置的任何一个时间资源单元区间的监测频率和所述偏移方式相同。可选的,第三时间资源单元区间的监测频率小于接收到第四指示信息的当前时间资源单元所在的时间资源单元区间的监测频率。
在一个可能的设计中,所述终端在所述第一时间资源单元区间与所述第二时间资源单元区间中的任意一个所述时间资源单元区间中不需要被监测的时间资源单元切换到短暂休眠状态;所述不需要监测时间资源单元包括所述时间资源单元区间中除所述所需监测的时间资源单元之外的时间资源单元,还包括所述所需监测的时间资源单元中不包含下行控制区域的时间资源单元。
本申请中的上述任一指示信息或配置信息可通过高层信令传输,例如高层信令可以是无线资源控制(radio resource control,RRC)信令,主信息块(Master Information Block,MIB)信令,系统信息块(System Information Block,SIB)信令;也可以是媒体介入控制(media access control,MAC)层信令,例如利用MAC控制单元(MAC control element,MAC CE)承载的信令;还可以是物理层信令,例如下行控制信息(downlink control information,DCI)。也可以是上述不同信令的组合。
在一个可能的设计中,所述第一时间资源单元区间由第一定时器决定;所述第二时间资源单元区间由第二定时器决定。如果为终端配置的时间资源单元区间为N个,则这N个时间资源单元区间由N个定时器来实现,N个时间资源单元区间的起始时刻相同时,这N个定时器同时启动,N个时间资源单元区间的起始时刻不同时,这N个定时器顺次启动,可选的,在起始时刻在前的时间资源单元区间对应的定时器结束后,下一个时间资源单元区间对应的定时器开始启动,在每个定时器的生效期间由每个资源单元区间的时间长度决定。
在一个可能的设计中,所述第一时间资源单元区间也可由第一计数器决定;所述第二时间资源单元区间也可由第二计数器决定。
基于终端侧的下行控制信息监测方法,本申请还提供了基站侧的下行控制信息监测方法。主要包括:
基站向终端发送第一配置信息,所述第一配置信息配置第一时间资源单元区间和第二时间资源单元区间中任意一个所述时间资源单元区间的相对起始时刻和时间长度,以使所述终端所述当前时间资源单元监测到指示所述终端接收或发送初传数据的下行控制信息时,根据当前时间资源单元和所述第一配置信息,从所述当前时间资源单元之后的连续多个时间资源单元中确定任意一个所述时间资源单元区间的所述起始时刻和所述时间长度。
在一个可能的设计中,还包括:所述基站向所述终端发送第一指示信息,所述第一指示信息指示所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个所述时间资源单元区间内的偏移方式,以使所述终端根据所述第一指示信息确定任意一个所述时间资源单元区间内的偏移方式;或者,所述基站向所述终端发送指令指示所述终端的无线网络临时标识满足的第一函数关系,以使所述终端根据所述第一函数关系,确定任意一个所述时间资源单元区间内的偏移方式;或者,所述基站向所述终端发送指令指示所述无线 网络临时标识和所述终端的小区标识满足的第二函数关系,以使所述终端根据所述第二函数关系确定任意一个所述时间资源单元区间内的偏移方式。比如基站向所述终端发送指令指示的值为0时,指示终端按照第一函数关系RNTI mod mi来确定任一个时间资源单元内的偏移方式;当基站向所述终端发送指令指示的值为1时,指示终端按照第二函数关系(RNTI+Cell ID)mod mi来确定任一个时间资源单元内的偏移方式。
在一个可能的设计中,还包括:所述基站向所述终端发送第二指示信息,所述第二指示信息用于向所述终端指示所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个所述时间资源单元区间内的所述监测频率。
在一个可能的设计中,还包括:所述基站向所述终端发送第三指示信息,所述第三指示信息是在所述第一时间资源单元区间和所述第二时间资源单元区间中的任意一个所述时间资源单元区间内发送的,所述第三指示信息指示所述终端停止监测下行控制信息。
在一个可能的设计中,还包括:所述基站向所述终端发送第四指示信息,所述第四指示信息是在所述第一时间资源单元区间和所述第二时间资源单元区间中的任意一个时间资源单元发送的,所述第四指示信息指示所述终端从所述时间资源单元切换到第三时间资源单元区间;所述第三时间资源单元区间的起始时刻为所述时间资源单元,所述第三时间资源单元区间的所述时间长度、所述监测频率和所述偏移方式由所述基站配置。
本申请中的上述任一指示信息或配置信息可通过高层信令传输,例如高层信令可以是无线资源控制(radio resource control,RRC)信令,主信息块(Master Information Block,MIB)信令,系统信息块(System Information Block,SIB)信令;也可以是媒体介入控制(media access control,MAC)层信令,例如利用MAC控制单元(MAC control element,MAC CE)承载的信令;还可以是物理层信令,例如下行控制信息(downlink control information,DCI)。也可以是上述不同信令的组合。
本申请中,为终端配置的监测下行控制信息的时间资源单元区间为至少两个,并且每个时间资源单元区间中所需监测的时间资源单元可以灵活配置,每个时间资源单元区间中所需监测的时间资源单元可以是时间资源单元区间中的部分时间资源单元,也可以是时间资源单元区间中的全部时间资源单元。这至少两个时间资源单元区间配置了不同的规则来确定每个时间资源单元区间中所需监测的时间资源单元。基于上述配置,可以根据终端的业务需求,为终端配置不同长度的时间资源单元区间,保证调度灵活性。另一方面,任一时间资源区间中所需监测的时间资源单元都通过规则来确定,避免每个时间资源单元区间的全部时间资源单元都必须监测,可以减小终端的功耗。本申请的上述下行控制信息监测方法可以兼顾调度灵活性和减小终端功耗。
下面结合具体实施例对上述下行控制信息监测方法进行详细说明。
本申请提供的示例1如图5所示,为终端配置的在一个DRX周期的激活期内用于监测下行控制信息的时间资源单元区间包括3个,第1个时间资源单元区间由定时器Timer1实现,第2个时间资源单元区间由定时器Timer2实现,第3个时间资源单元区间由定时器Timer3实现,UE被配置基于时隙的传输。其中,终端在任意一个定时器的生效期间处于激活状态,定时器Timer1的启动时刻与第1个时间资源单元区间的起始时刻相等,定时器Timer1的生效期与第1个时间资源单元区间的时间长度相等。定时器Timer2的启动时刻与第2个时间资源单元区间的起始时刻相等,定时器Timer2的生效期与第2个时间资源单元区间的时间长度相等。定时器Timer3的启动时刻与第3个时间资源单元区间的起始时刻 相等,定时器Timer3的生效期与第3个时间资源单元区间的时间长度相等。
这3个时间资源单元区间都包括4个连续的时隙,每个时隙都包括下行控制区域,下行控制区域所占用的符号用来承载基站向终端发送的下行控制信息。其中,第1个时间资源单元区间中的每个时隙都被监测一次,第2个时间资源单元区间中每2个时隙监测一次,第2个时间资源单元区间中每4个时隙监测一次,并且每个时隙都有下行控制区域。定时器Timer1、定时器Timer2和定时器Timer3交替启动,定时器Timer1先启动,定时器Timer2在定时器Timer1超时时启动,定时器Timer3在定时器Timer2超时时启动。当定时器Timer1、定时器Timer2和定时器Timer3都超时以后,终端由激活态跳转为休眠状态。
需要说明的是,由于每个时间资源单元区间包括4个包含下行控制区域的时隙,每个时间资源单元区间持续的时间长度是相对值,因此,本示例中也可用计数器Counter来代替定时器Timer。即每个时间资源单元区间对应一个计数器。
根据上述配置,终端执行下行控制信息监测的方法,具体包括:
终端在进行一次成功的上行数据或下行数据的初传后,或者在任意一个时间资源单元区间内监测到指示所述终端接收或发送初传数据的下行控制信息时,定时器Timer1启动,在定时器Timer1生效的4个时隙中,终端在每个时隙都会监测一次PDCCH。定时器Timer1超时后,定时器Timer2启动。在定时器Timer2生效的4个时隙中,终端每2个时隙都会监测一次PDCCH。由于终端并不是在定时器Timer2生效的每个时隙都会监测PDCCH,终端监测哪个时隙的PDCCH会有不同的偏移方式,如图5所示,终端可以监测定时器Timer2生效的4个时隙中的第5个时隙和第7个时隙,或者也可以监测第6个和第8个时隙。在定时器Timer2超时后,定时器Timer3启动,在定时器Timer3生效的4个时隙中,终端每4个时隙都会监测一次PDCCH。同样,由于终端并不是在定时器Timer3生效的每个时隙都会监测PDCCH,终端监测哪个时隙的PDCCH会有不同的偏移方式,终端可以监测定时器Timer3生效的4个时隙中的第9时隙,或者也可以监测第12个时隙。当终端监测定时器Timer2生效的第5和第7个时隙时,在第6个和第8个时隙内,终端可以关闭RF链路,进入短时休眠状态以便省电。当终端监测定时器Timer3生效的第9个时隙时,在第10个时隙、第11个时隙和第12个时隙内,终端可以关闭RF链路,进入短时休眠状态以便省电。同样的,当终端监测定时器Timer2生效的第6和第8个时隙时,在第5个和第7个时隙内,终端可以关闭RF链路,进入短时休眠状态以便省电。当终端监测定时器Timer3生效的第12个时隙时,在第9个时隙、第10个时隙和第11个时隙内,终端可以关闭RF链路,进入短时休眠状态以便省电。
终端监测PDCCH的偏移方式可以由基站通过RRC信令配置给终端,或者由基站通过MAC CE配置给终端,或者由基站通过DCI配置给终端,或者根据终端的无线网络临时标识RNTI计算得到,或者根据终端的RNTI和小区的Cell ID计算得到,具体内容参见前述内容,此处不再累述。
在上述方法流程的任一Timer的生效期中,基站可以发送给终端停止监测下行控制信息的信令使终端提前进入休眠期。如图6所示,终端在定时器Timer1生效的第3个时隙内接收到基站发送的停止监测下行控制信息的信令,该信令可以通过RRC信令发送给终端,或者由基站通过MAC CE发送给终端,或者由基站通过DCI发送给终端。
终端根据停止监测下行控制信息的信令,进入休眠期的方式有以下几种:
可选的,终端可以在成功解调信令消息后立即进入休眠期,如在图6所示的定时器 Timer1生效的第4个时隙位置成功解调信令消息后就不再监测PDCCH。可选的,终端成功解调信令消息后,可以在当前生效的定时器Timer1超时后进入休眠期,如在图6所示的定时器Timer2的生效期或者在定时器Timer2之后的定时器Timer3进入休眠期,不再监测PDCCH。可选的,终端也可以根据基站发送的信令内容的指示在定时器Timer2超时后进入休眠期,如在图6所示的定时器Timer3的生效期或定时器Timer3之后的休眠期处于休眠状态,不再监测PDCCH。
现有LTE中,只要激活态,终端在每个下行子帧都需要一一监测。上述示例1与LTE现有DRX技术相比,若DRX激活期的持续时间相同,本申请可以在终端处于激活态时,减少终端监测下行控制信息的频率,在任意一个定时器生效期间,如果终端不需要在当前时隙监测下行控制信息,终端可以在当前时隙内进入短时休眠状态来省电,减少终端能耗。与现有技术相比,若监测下行控制信息的次数相同,本申请可以在不增加下行控制信息监测次数的情况下,延长DRX激活期的持续时间,使调度更灵活。因此,上述示例1为配置了DRX的终端配置3个定时器,不同定时器生效期间内下行控制信息监测的方式不同,可以同时兼顾降低功耗和保证调度灵活性两方面的性能要求。
本申请提供的示例2如图7所示,为终端配置的在一个DRX周期的激活期内用于监测下行控制信息的时间资源单元区间包括3个,第1个时间资源单元区间由定时器Timer1实现,第2个时间资源单元区间由定时器Timer2实现,第3个时间资源单元区间由定时器Timer3实现。终端被配置基于时隙的传输,这3个时间资源单元区间都包括4个连续的时隙。第1个时间资源单元区间中的每个时隙都被监测一次,第2个时间资源单元区间中每2个时隙监测一次,第2个时间资源单元区间中每4个时隙监一次。定时器Timer1、定时器Timer2和定时器Timer3交替启动,定时器Timer1先启动,定时器Timer2在定时器Timer1超时时启动,定时器Timer3在定时器Timer2超时时启动。
与示例1的区别是:并不是每个时隙都包括下行控制区域,如定时器Timer1生效的第4个时隙不包含下行控制区域,定时器Timer2生效的第7个时隙和第8个时隙不包含下行控制区域,定时器Timer3生效的第10个时隙和第11个时隙不包含下行控制区域。终端可以在不包括下行控制区域的时隙关闭与基站之间的RF链路,进入短时休眠状态以便省电。
根据上述配置,终端执行下行控制信息监测的方法,具体包括:
终端在进行一次成功的上行数据或下行数据的初传后,或者在任意一个时间资源单元区间内监测到指示所述终端接收或发送初传数据的下行控制信息时,定时器Timer1启动,在定时器Timer1生效的4个时隙中,终端在前3个时隙都会监测一次PDCCH,由于第4个时隙不包含下行控制区域,终端在第4个时隙会进入短时休眠状态来省电,减少终端能耗。定时器Timer1超时后,定时器Timer2启动。又因终端每2个时隙都会监测一次PDCCH,如终端可以监测定时器Timer2生效的4个时隙中的第5和第7个时隙,或者也可以监测第6个和第8个时隙。在定时器Timer2超时后,定时器Timer3启动,在定时器Timer3生效的4个时隙中,终端每4个时隙都会监测一次PDCCH。同样,终端可以监测定时器Timer3生效的第9时隙,或者也可以监测第12个时隙。由于定时器Timer2生效的第7个时隙和第8个时隙不包含下行控制区域,由于定时器Timer3生效的第10个时隙和第11个时隙不包含下行控制区域,当终端监测定时器Timer2生效的第5个时隙,终端监测定时器Timer3生效的第9个时隙时,终端在第6个时隙、第7个时隙、第8个时隙、第10个时隙、第 11个时隙和第12个时隙关闭RF链路,进入短时休眠状态以便省电。或者当终端监测定时器Timer2生效的第6个时隙,终端监测定时器Timer3生效的第12个时隙时,终端在第5个时隙、第7个时隙、第8个时隙、第9个时隙、第10个时隙和第11个时隙关闭RF链路,进入短时休眠状态以便省电。
终端监测PDCCH的偏移方式的具体内容与示例1相同,此处不再累述。
在上述方法流程的任一定时器的生效期中,基站可以发送给终端停止监测下行控制信息的信令使终端提前进入休眠期的具体内容与示例1相同,此处不再累述。
终端根据停止监测下行控制信息的信令进入休眠期的几种方式的具体内容与示例1相同,此处不再累述。
上述示例2与LTE现有DRX技术相比,若DRX激活期的持续时间相同,本申请可以在终端处于激活态时,减少终端监测下行控制信息的频率,在任意一个定时器生效期间,如果终端不需要在当前时隙监测下行控制信息,终端可以在当前时隙内进入短时休眠状态来省电,减少终端能耗。与现有技术相比,若监测下行控制信息的次数相同,本申请可以在不增加下行控制信息监测次数的情况下,延长DRX激活期的持续时间,使调度更灵活。因此,上述示例2为配置了DRX的终端配置3个定时器,不同定时器生效期间内下行控制信息监测的方式不同,可以同时兼顾降低功耗和保证调度灵活性两方面的性能要求。
本申请提供的示例3如图8所示,为终端配置的在一个DRX周期的激活期内用于监测下行控制信息的时间资源单元区间包括3个,第1个时间资源单元区间由定时器Timer1实现,第2个时间资源单元区间由定时器Timer2实现,第3个时间资源单元区间由定时器Timer3实现。终端被配置基于时隙的传输,第1个时间资源单元区间中的每个时隙都被监测一次,第2个时间资源单元区间中每2个时隙监测一次,第2个时间资源单元区间中每4个时隙监一次。定时器Timer1、定时器Timer2和定时器Timer3交替启动,定时器Timer1先启动,定时器Timer2在定时器Timer1超时时启动,定时器Timer3在定时器Timer2超时时启动。
与示例1的区别是:并不是每个时隙都包括下行控制区域,并且每个时间资源单元区间的时隙并不相等,每个时间资源单元区间包括的包含下行控制区域的时隙数均为4个。具体的,如图8,第1个时间资源单元区间包括5个时隙,其中第4个时隙不包含下行控制区域;第2个时间资源单元区间包括6个时隙,第7个时隙和第10个时隙不包含下行控制区域,其余4个时隙包含下行控制区域;第3个时间资源单元区间包括4个包含下行控制区域的时隙。终端可以在不包括下行控制区域的时隙关闭与基站之间的RF链路,进入短时休眠状态以便省电。因为每个时间资源单元区间的配置方式不同,各个timer的持续时间也有变化。其中,定时器Timer1生效的持续时间包括5个时隙,定时器Timer2生效的持续时间包括6个时隙,定时器Timer3生效的持续时间包括4个时隙。
需要说明的是,由于每个时间资源单元区间包括4个包含下行控制区域的时隙,每个时间资源单元区间持续的时间长度是相对值,因此,本示例中也可用计数器Counter来代替定时器timer,即每个时间资源单元区间对应一个计数器。
根据上述配置,终端执行下行控制信息监测的方法,具体包括:
终端在进行一次成功的上行数据或下行数据的初传后,或者在任意一个时间资源单元区间内监测到指示所述终端接收或发送初传数据的下行控制信息时,定时器Timer1启动, 在定时器Timer1生效的5个时隙中,终端在前3个时隙和第5个时隙都会监测一次PDCCH,由于第4个时隙不包含下行控制区域,终端在定时器Timer1生效的第4个时隙会进入短时休眠状态来省电,减少终端能耗。定时器Timer1超时后,定时器Timer2启动。在定时器Timer2生效的6个时隙中,因终端每2个时隙都会监测一次PDCCH,如可以监测定时器Timer2生效的6个时隙中的第6和第9个时隙,或者也可以监测第8个和第11个时隙。在定时器Timer2超时后,定时器Timer3启动,在定时器Timer3生效的4个时隙中,终端每4个时隙都会监测一次PDCCH。同样,终端可以监测定时器Timer3生效的第12时隙,或者也可以监测第15个时隙。由于定时器Timer2生效的第7个时隙和第10个时隙不包含下行控制区域,当终端监测定时器Timer2生效的第6和第9个时隙,以及监测定时器Timer3生效的第12时隙时,终端在第7个时隙、第8个时隙、第10个时隙、第11个时隙、第13个时隙、第14个时隙和第15个时隙可以关闭RF链路,进入短时休眠状态以便省电。或者当终端监测定时器Timer2生效的第8和第11个时隙,以及监测定时器Timer3生效的第15时隙时,终端在第6个时隙、第7个时隙、第9个时隙、第10个时隙、第12个时隙、第13个时隙和第14个时隙可以关闭RF链路,进入短时休眠状态以便省电。
终端监测PDCCH的偏移方式的具体内容与示例1相同,此处不再累述。
在上述方法流程的任一Timer的生效期中,基站可以发送给终端停止监测下行控制信息的信令使终端提前进入休眠期的具体内容与示例1相同,此处不再累述。
终端根据停止监测下行控制信息的信令进入休眠期的几种方式的具体内容与示例1相同,此处不再累述。
上述示例3与LTE现有DRX技术相比,若DRX激活期的持续时间相同,本申请可以在终端处于激活态时,减少终端监测下行控制信息的频率,在任意一个定时器生效期间,如果终端不需要在当前时隙监测下行控制信息,终端可以在当前时隙内进入短时休眠状态来省电,减少终端能耗。与现有技术相比,若监测下行控制信息的次数相同,本申请可以在不增加下行控制信息监测次数的情况下,延长DRX激活期的持续时间,使调度更灵活。因此,上述示例3为配置了DRX的终端配置3个定时器,不同定时器生效期间内下行控制信息监测的方式不同,可以同时兼顾降低功耗和保证调度灵活性两方面的性能要求。
本申请提供的示例4如图9所示,为终端配置的在一个DRX周期的激活期内用于监测下行控制信息的时间资源单元区间包括3个,第1个时间资源单元区间由定时器Timer1实现,第2个时间资源单元区间由定时器Timer2实现,第3个时间资源单元区间由定时器Timer3实现。终端被配置基于时隙以及迷你时隙的传输,第1个时间资源单元区间中的每个时间资源单元监测一次,第2个时间资源单元区间中每2个时间资源单元监测一次,第3个时间资源单元区间中每4个时间资源单元监测一次,这里的时间资源单元的个数是指时隙和迷你时隙之和。定时器Timer1、定时器Timer2和定时器Timer3交替启动,定时器Timer1先启动,定时器Timer2在定时器Timer1超时时启动,定时器Timer3在定时器Timer2超时时启动。
与示例1的区别是:每个时间资源单元区间的时隙并不相等,每个时间资源单元区间包括的时隙数和迷你时隙数之和均为4个,并不是每个时隙都包含下行控制区域。具体的,如图9,第1个时间资源单元区间包括3个时隙,其中在第1个时间资源单元区间的第2个时隙中配置了有两次基于迷你时隙的传输;第2个时间资源单元区间包括3个时隙,其 中第6个时隙中配置了有两次基于迷你时隙的传输,并且第5个时隙不包含下行控制区域;第3个时间资源单元区间包括4个时隙,但是第8个和第10个时隙不包含下行控制区域。因为每个时间资源单元区间的配置方式不同,各个timer的持续时间也有变化。其中,定时器Timer1生效的持续时间包括3个时隙,定时器Timer2生效的持续时间包括3个时隙,定时器Timer3生效的持续时间包括4个时隙。终端可以在不包括下行控制区域的时隙关闭与基站之间的RF链路,进入短时休眠状态以便省电。
需要说明的是,由于每个时间资源单元区间包括4个时隙或者包括4个时隙和迷你时隙,每个时间资源单元区间持续的时间长度是相对值,因此,本示例中也可用计数器Counter来代替定时器timer。即每个时间资源单元区间对应一个计数器。
根据上述配置,终端执行下行控制信息监测的方法,具体包括:
终端在进行一次成功的上行数据或下行数据的初传后,或者在任意一个时间资源单元区间内监测到指示所述终端接收或发送初传数据的下行控制信息时,定时器Timer1启动,在定时器Timer1生效的3个时隙中,终端在第1个时隙、在第2个时隙中配置的两个迷你时隙和第3个时隙都会监测一次PDCCH。定时器Timer1超时后,定时器Timer2启动。在定时器Timer2生效的3个时隙中,终端每2个时隙监测一次PDCCH,在定时器Timer2生效的3个时隙中,终端可以监测定时器Timer2生效的第4个时隙和第6个时隙配置的第一个迷你时隙,或者也可以监测定时器Timer2生效的第6个时隙配置的第二个迷你时隙。在定时器Timer2超时后,定时器Timer3启动,在定时器Timer3生效的4个时隙中,终端每4个时隙都会监测一次PDCCH,由于第3个时间资源单元区间的第8个和第10个时隙不包含下行控制区域,终端可以监测定时器Timer3生效的第7时隙。可选的,由于定时器Timer2生效的第5个时隙不包含下行控制区域,当终端在定时器Timer2生效的3个时隙中监测第4个时隙和第6个时隙配置的第一个迷你时隙,以及终端监测定时器Timer3生效的第7时隙时,终端在第5个时隙、第6个时隙配置的第二个迷你时隙、第8个时隙、第9个时隙和第10个时隙关闭RF链路,进入短时休眠状态以便省电。或者当终端在定时器Timer2生效的3个时隙中监测第6个时隙配置的第二个迷你时隙时,终端在第4个时隙、第5个时隙、第6个时隙配置的第一个迷你时隙、第7个时隙、第8个时隙、第9个时隙和第10个时隙关闭RF链路,进入短时休眠状态以便省电。
终端监测PDCCH的偏移方式的具体内容与示例1相同,此处不再累述。
在上述方法流程的任一Timer的生效期中,基站可以发送给终端停止监测下行控制信息的信令使终端提前进入休眠期的具体内容与示例1相同,此处不再累述。
终端根据停止监测下行控制信息的信令进入休眠期的几种方式的具体内容与示例1相同,此处不再累述。
上述示例4与LTE现有DRX技术相比,若DRX激活期的持续时间相同,本申请可以在终端处于激活态时,减少终端监测下行控制信息的频率,在任意一个定时器生效期间,如果终端不需要在当前时隙或迷你时隙监测下行控制信息,终端可以在当前时隙或迷你时隙进入短时休眠状态来省电,减少终端能耗。与现有技术相比,若监测下行控制信息的次数相同,本申请可以在不增加下行控制信息监测次数的情况下,延长DRX激活期的持续时间,使调度更灵活。因此,上述示例4为配置了DRX的终端配置3个定时器,不同定时器生效期间内下行控制信息监测的方式不同,可以同时兼顾降低功耗和保证调度灵活性两方面的性能要求。
本申请提供的示例5如图10所示,为终端配置的在一个DRX周期的激活期内用于监测下行控制信息的时间资源单元区间包括3个,第1个时间资源单元区间由定时器Timer1实现,第2个时间资源单元区间由定时器Timer2实现,第3个时间资源单元区间由定时器Timer3实现。终端被配置基于时隙以及迷你时隙的传输,第1个时间资源单元区间中的每个时间资源单元监测一次,第2个时间资源单元区间中每2个时间资源单元监测一次,第3个时间资源单元区间中每4个时间资源单元监测一次,这里的时间资源单元的个数是指时隙和迷你时隙之和。定时器Timer1、定时器Timer2和定时器Timer3交替启动,定时器Timer1先启动,定时器Timer2在定时器Timer1超时时启动,定时器Timer3在定时器Timer2超时时启动。
与示例1的区别是:每个时间资源单元区间内不仅配置了基于时隙的传输,还配置有基于迷你时隙的传输。具体的,如图10,第1个时间资源单元区间包括4个时隙,其中在第1个时间资源单元区间的第2个时隙中配置了有两次基于迷你时隙的传输;第2个时间资源单元区间包括4个时隙,其中第6个和第8个时隙中都配置了两次基于迷你时隙的传输;第3个时间资源单元区间包括4个时隙,在第3个时间资源单元区间的第10个时隙中配置了两次基于迷你时隙的传输,在第11个时隙中配置了三次基于迷你时隙的传输。
根据上述配置,终端执行下行控制信息监测的方法,具体包括:
终端在进行一次成功的上行数据或下行数据的初传后,或者在任意一个时间资源单元区间内监测到指示所述终端接收或发送初传数据的下行控制信息时,定时器Timer1启动,在定时器Timer1生效的4个时隙中,终端在定时器Timer1生效的第1个时隙、在第2个时隙中配置的两个迷你时隙和第3个时隙都会监测一次PDCCH。定时器Timer1超时后,定时器Timer2启动。在定时器Timer2生效的4个时隙中,终端每2个时隙或迷你时隙监测一次PDCCH,如终端可以监测定时器Timer2生效的4个时隙中的第5个时隙、第6个时隙的第二个迷你时隙和第8个时隙中的第一个迷你时隙,或者也可以监测定时器Timer2生效的4个时隙中的第6个时隙的第一个迷你时隙、第7个时隙和第8个时隙中的第二个迷你时隙。在定时器Timer2超时后,定时器Timer3启动,在定时器Timer3生效的4个时隙中,终端每4个时隙或迷你时隙都会监测一次PDCCH,终端可以监测定时器Timer3生效的4个时隙中的第9时隙和第11个时隙中的第二个迷你时隙,或者也可以监测定时器Timer3生效的4个时隙中的第11个时隙中的第一个迷你时隙。终端在定时器Timer2生效和定时器Timer3生效的4个时隙中未被监测的时隙或迷你时隙,关闭RF链路,进入短时休眠状态以便省电。例如,在终端监测定时器Timer2生效的4个时隙中的第5个时隙、第6个时隙的第二个迷你时隙和第8个时隙中的第一个迷你时隙,以及监测定时器Timer3生效的4个时隙中的第9时隙和第11个时隙中的第二个迷你时隙时,终端在第6个时隙配置的第一个迷你时隙、第7个时隙、第8个时隙配置的第二个迷你时隙、第10个时隙,第11个时隙中配置的第一个迷你时隙、第11个时隙中配置的第三个迷你时隙和第12个时隙关闭RF链路,进入短时休眠状态以便省电。
终端监测PDCCH的偏移方式的具体内容与示例1相同,此处不再累述。
在上述方法流程的任一Timer的生效期中,基站可以发送给终端停止监测下行控制信息的信令使终端提前进入休眠期的具体内容与示例1相同,此处不再累述。
终端根据停止监测下行控制信息的信令进入休眠期的几种方式的具体内容与示例1相 同,此处不再累述。
上述示例5与LTE现有DRX技术相比,若DRX激活期的持续时间相同,本申请可以在终端处于激活态时,减少终端监测下行控制信息的频率,在任意一个定时器生效期间,如果终端不需要在当前时隙或迷你时隙监测下行控制信息,终端可以在当前时隙或迷你时隙内进入短时休眠状态来省电,减少终端能耗。与现有技术相比,若监测下行控制信息的次数相同,本申请可以在不增加下行控制信息监测次数的情况下,延长DRX激活期的持续时间,使调度更灵活。因此,上述示例4为配置了DRX的终端配置3个定时器,不同定时器生效期间内下行控制信息监测的方式不同,可以同时兼顾降低功耗和保证调度灵活性两方面的性能要求。
本申请提供的示例6如图11所示,为终端配置的在一个DRX周期的激活期内用于监测下行控制信息的时间资源单元区间包括3个,第1个时间资源单元区间由定时器Timer1实现,第2个时间资源单元区间由定时器Timer2实现,第3个时间资源单元区间由定时器Timer3实现。终端被配置基于时隙以及迷你时隙的传输,第1个时间资源单元区间中的每个包含下行控制区域的时间资源单元监测一次,第2个时间资源单元区间中每2个包含下行控制区域的时间资源单元监测一次,第3个时间资源单元区间中每4个包含下行控制区域的时间资源单元监测一次,包含下行控制区域的时间资源单元的个数为包含下行控制区域的时隙和迷你时隙之和。定时器Timer1、定时器Timer2和定时器Timer3交替启动,定时器Timer1先启动,定时器Timer2在定时器Timer1超时时启动,定时器Timer3在定时器Timer2超时时启动。
与示例1的区别是:每个时间资源单元区间的时隙并不相等,每个时间资源单元区间包括的包含下行控制区域的时隙数和包含下行控制区域的迷你时隙数之和均为4个,并不是每个时隙都包含下行控制区域。具体的,如图11,第1个时间资源单元区间包括3个时隙,其中在第2个时隙中配置了有两次基于迷你时隙的传输;第2个时间资源单元区间包括4个时隙,其中在第6个时隙中配置了有两次基于迷你时隙的传输,并且第5个时隙不包含下行控制区域;第3个时间资源单元区间包括3个时隙,但是第8个时隙不包含下行控制区域,并且在第10个时隙中配置了三次基于迷你时隙的传输。因为每个时间资源单元区间的配置方式不同,各个timer的持续时间也有变化。其中,定时器Timer1生效的持续时间包括3个时隙,定时器Timer2生效的持续时间包括4个时隙,定时器Timer3生效的持续时间包括3个时隙。终端可以在不包括下行控制区域的时隙关闭与基站之间的RF链路,进入短时休眠状态以便省电。
需要说明的是,由于每个时间资源单元区间包括4个包含下行控制区域的时隙,或者包含下行控制区域的时隙和包含下行控制区域的迷你时隙的总个数为4个,每个时间资源单元区间持续的时间长度是相对值,因此,本示例中也可用计数器Counter来代替定时器timer。即每个时间资源单元区间对应一个计数器。
根据上述配置,终端执行下行控制信息监测的方法,具体包括:
终端在进行一次成功的上行数据或下行数据的初传后,或者在任意一个时间资源单元区间内监测到指示所述终端接收或发送初传数据的下行控制信息时,定时器Timer1启动,在定时器Timer1生效的3个时隙中,终端在第1个时隙、在第2个时隙中配置的两个迷你时隙和第3个时隙都会监测一次PDCCH。定时器Timer1超时后,定时器Timer2启动。在 定时器Timer2生效的3个时隙中,由于定时器Timer2生效的第5个时隙不包含下行控制区域,终端在第二个时隙内可以关闭RF链路,进入短时休眠状态以便省电。终端每2个包含下行控制区域的时隙或迷你时隙监测一次PDCCH,可以监测定时器Timer2生效的4个时隙中的第4个时隙和第6个时隙配置的第二个迷你时隙,或者也可以监测定时器Timer2生效的4个时隙中的第6个时隙配置的第一个迷你时隙。在定时器Timer2超时后,定时器Timer3启动,在定时器Timer3生效的3个时隙中,终端每4个包含下行控制区域的时隙或迷你时隙都会监测一次PDCCH,由于第3个时间资源单元区间的第8个时隙不包含下行控制区域,终端可以监测定时器Timer3生效的3个时隙中的第9个时隙,或者也可以监测定时器Timer3生效的3个时隙中的第10个时隙配置的第三个迷你时隙。终端在定时器Timer2生效和定时器Timer3生效的4个时隙中未被监测的时隙或迷你时隙,关闭RF链路,进入短时休眠状态以便省电。
终端监测PDCCH的偏移方式的具体内容与示例1相同,此处不再累述。
在上述方法流程的任一Timer的生效期中,基站可以发送给终端停止监测下行控制信息的信令使终端提前进入休眠期的具体内容与示例1相同,此处不再累述。
终端根据停止监测下行控制信息的信令进入休眠期的几种方式的具体内容与示例1相同,此处不再累述。
上述示例6与LTE现有DRX技术相比,若DRX激活期的持续时间相同,本申请可以在终端处于激活态时,减少终端监测下行控制信息的频率,在任意一个定时器生效期间,如果终端不需要在当前时隙或迷你时隙监测下行控制信息,终端可以在当前时隙或迷你时隙内进入短时休眠状态来省电,减少终端能耗。与现有技术相比,若监测下行控制信息的次数相同,本申请可以在不增加下行控制信息监测次数的情况下,延长DRX激活期的持续时间,使调度更灵活。因此,上述示例4为配置了DRX的终端配置3个定时器,不同定时器生效期间内下行控制信息监测的方式不同,可以同时兼顾降低功耗和保证调度灵活性两方面的性能要求。
本申请提供的示例7如图12所示,为终端配置的在一个DRX周期的激活期内用于监测下行控制信息的时间资源单元区间包括3个,第1个时间资源单元区间由定时器Timer1实现,第2个时间资源单元区间由定时器Timer2实现,第3个时间资源单元区间由定时器Timer3实现。终端被配置基于时隙以及迷你时隙的传输,第1个时间资源单元区间中的每个包含下行控制区域的时间资源单元监测一次,第2个时间资源单元区间中每2个包含下行控制区域的时间资源单元监测一次,第3个时间资源单元区间中每4个包含下行控制区域的时间资源单元监测一次,包含下行控制区域的时间资源单元的个数为包含下行控制区域的时隙和迷你时隙之和。定时器Timer1、定时器Timer2和定时器Timer3交替启动,定时器Timer1先启动,定时器Timer2在定时器Timer1超时时启动,定时器Timer3在定时器Timer2超时时启动。
与示例1的区别是:每个时间资源单元区间的时隙并不相等,每个时间资源单元区间包括的包含下行控制区域的时隙数均为4个,并不是每个时隙都包含下行控制区域。具体的,如图12,第1个时间资源单元区间包括5个时隙,其中在第1个时间资源单元区间的第2个时隙和第5个时隙中都配置了有两次基于迷你时隙的传输,第4个时隙不包含下行控制区域;第2个时间资源单元区间包括6个时隙,其中在第8个和第9个时隙中都配置 了两次基于迷你时隙的传输,并且第7个和第10个时隙不包含下行控制区域;第3个时间资源单元区间包括4个时隙,在第13个和第15个时隙中分别配置了两次和三次的基于迷你时隙的传输。因为每个时间资源单元区间的配置方式不同,各个timer的持续时间也有变化。其中,定时器Timer1生效的持续时间包括5个时隙,定时器Timer2生效的持续时间包括6个时隙,定时器Timer3生效的持续时间包括4个时隙。终端可以在不包括下行控制区域的时隙关闭与基站之间的RF链路,进入短时休眠状态以便省电。
需要说明的是,由于每个时间资源单元区间包括4个包含下行控制区域的时隙,每个时间资源单元区间持续的时间长度是相对值,因此,本示例中也可用计数器Counter来代替定时器timer。即每个时间资源单元区间对应一个计数器。
根据上述配置,终端执行下行控制信息监测的方法,具体包括:
终端在进行一次成功的上行数据或下行数据的初传后,或者在任意一个时间资源单元区间内监测到指示所述终端接收或发送初传数据的下行控制信息时,定时器Timer1启动,在定时器Timer1生效的5个时隙中,终端在第1个时隙、在第2个时隙中的两个迷你时隙、第3个时隙和第5个时隙中配置的两个迷你时隙都会监测一次PDCCH,由于定时器Timer1生效的第4个时隙不包含下行控制区域,终端在第4个时隙内可以关闭RF链路,进入短时休眠状态以便省电。定时器Timer1超时后,定时器Timer2启动。在定时器Timer2生效的6个时隙中,由于定时器Timer2生效的第7个时隙和第10个时隙不包含下行控制区域,终端在第7个时隙和第10个时隙内可以关闭RF链路,进入短时休眠状态以便省电。终端每2个包含下行控制区域的时隙或迷你时隙监测一次PDCCH,可以监测定时器Timer2生效的6个时隙中的第6个时隙、第8个时隙配置的第二个迷你时隙和第9个时隙配置的第二个迷你时隙。或者也可以监测定时器Timer2生效的6个时隙中的第8个时隙配置的第一个迷你时隙、第9个时隙配置的第一个迷你时隙和第11个时隙。在定时器Timer2超时后,定时器Timer3启动,在定时器Timer3生效的4个时隙中,终端每4个包含下行控制区域的时隙或迷你时隙都会监测一次PDCCH,终端可以监测定时器Timer3生效的4个时隙中的第12个时隙和第15个时隙配置的第一个迷你时隙,或者也可以监测定时器Timer3生效的4个时隙中的第14个时隙。终端在定时器Timer2生效的6个时隙中和定时器Timer3生效的4个时隙中未被监测的时隙或迷你时隙,关闭RF链路进入短时休眠状态以便省电。
终端监测PDCCH的偏移方式的具体内容与示例1相同,此处不再累述。
在上述方法流程的任一Timer的生效期中,基站可以发送给终端停止监测下行控制信息的信令使终端提前进入休眠期的具体内容与示例1相同,此处不再累述。
终端根据停止监测下行控制信息的信令进入休眠期的几种方式的具体内容与示例1相同,此处不再累述。
上述示例7与LTE现有DRX技术相比,若DRX激活期的持续时间相同,本申请可以在终端处于激活态时,减少终端监测下行控制信息的频率,在任意一个定时器生效期间,如果终端不需要在当前时隙或迷你时隙监测下行控制信息,终端可以在当前时隙或迷你时隙内进入短时休眠状态来省电,减少终端能耗。与现有技术相比,若监测下行控制信息的次数相同,本申请可以在不增加下行控制信息监测次数的情况下,延长DRX激活期的持续时间,使调度更灵活。因此,上述示例4为配置了DRX的终端配置3个定时器,不同定时器生效期间内下行控制信息监测的方式不同,可以同时兼顾降低功耗和保证调度灵活性两方面的性能要求。
本申请提供的示例8如图13所示,为终端配置的在一个DRX周期的激活期内用于监测下行控制信息的时间资源单元区间包括3个,第1个时间资源单元区间由定时器Timer1实现,第2个时间资源单元区间由定时器Timer2实现,第3个时间资源单元区间由定时器Timer3实现。第1个时间资源单元区间包括4个连续的时隙,第2个时间资源单元区间包括8个连续的时隙,第3个时间资源单元区间包括12个连续的时隙,这3个时间资源单元区间的起始时刻都相同,每个时隙都包括下行控制区域,下行控制区域所占用的符号用来承载基站向终端发送的下行控制信息。其中,第1个时间资源单元区间中的每个时隙都被监测一次,第2个时间资源单元区间与第1个时间资源单元区间的交叠部分的每个时隙都被监测一次,第2个时间资源单元区间与第1个时间资源单元区间的非交叠部分每2个时隙监测一次,第3个时间资源单元区间与第2个时间资源单元区间的交叠部分的监测频率与第2个时间资源单元区间内的监测频率相同,第3个时间资源单元区间与第2个时间资源单元区间的非交叠部分每4个时隙监测一次,UE被配置基于时隙的传输。定时器Timer1、定时器Timer2和定时器Timer3同时启动。
需要说明的是,由于每个时间资源单元区间包括4个包含下行控制区域的时隙,每个时间资源单元区间持续的时间长度是相对值,因此,本示例中也可用计数器Counter来代替定时器timer。即每个时间资源单元区间对应一个计数器。
根据上述配置,终端执行下行控制信息监测的方法,具体包括:
终端在进行一次成功的上行数据或下行数据的初传后,或者在任意一个时间资源单元区间内监测到指示所述终端接收或发送初传数据的下行控制信息时,定时器Timer1、定时器Timer2和定时器Timer3同时启动。在定时器Timer1生效的4个时隙中,终端在每个时隙都会监测一次PDCCH。在定时器Timer2生效的8个时隙中,前4个时隙中所需监测的时隙与定时器Timer1生效的4个时隙中所需监测时隙相同,后4个时隙中终端每2个时隙都会监测一次PDCCH。终端可以监测定时器Timer2生效的8个时隙中的第5和第7个时隙,或者也可以监测第6个时隙和第8个时隙。在定时器Timer3生效的12个时隙中,前8个时隙中所需监测的时隙与定时器Timer2生效的8个时隙中所需监测时隙相同,在定时器Timer3生效的最后4个时隙中终端每4个时隙都会监测一次PDCCH。
在上述方法流程的任一Timer的生效期中,基站可以发送给终端停止监测下行控制信息的信令使终端提前进入休眠期的具体内容与示例1相同,此处不再累述。
终端根据停止监测下行控制信息的信令进入休眠期的几种方式的具体内容与示例1相同,此处不再累述。
在上述方法流程的任一Timer的生效期中,基站可以发送给终端停止监测下行控制信息的信令使终端提前进入休眠期的具体内容与示例1相同,此处不再累述。
终端根据停止监测下行控制信息的信令进入休眠期的几种方式的具体内容与示例1相同,此处不再累述。
上述示例8与LTE现有DRX技术相比,若DRX激活期的持续时间相同,本申请可以在终端处于激活态时,减少终端监测下行控制信息的频率,在任意一个定时器生效期间,如果终端不需要在当前时隙监测下行控制信息,终端可以在当前时隙内进入短时休眠状态来省电,减少终端能耗。与现有技术相比,若监测下行控制信息的次数相同,本申请可以在不增加下行控制信息监测次数的情况下,延长DRX激活期的持续时间,使调度更灵活。因此,上述示例4为配置了DRX的终端配置3个定时器,不同定时器生效期间内下行控 制信息监测的方式不同,可以同时兼顾降低功耗和保证调度灵活性两方面的性能要求。
本申请提供的示例9如图14所示,为终端配置的在一个DRX周期的激活期内用于监测下行控制信息的时间资源单元区间包括3个,第1个时间资源单元区间由定时器Timer1实现,第2个时间资源单元区间由定时器Timer2实现,第3个时间资源单元区间由定时器Timer3实现。终端被配置基于时隙的传输。
第1个时间资源单元区间包括4个连续的时隙,第2个时间资源单元区间包括8个连续的时隙,第3个时间资源单元区间包括12个连续的时隙,这3个时间资源单元区间的起始时刻都相同,第1个时间资源单元区间中的每个时隙都被监测一次,第2个时间资源单元区间与第1个时间资源单元区间的交叠部分的每个时隙都被监测一次,第2个时间资源单元区间与第1个时间资源单元区间的非交叠部分每2个时隙监测一次,第3个时间资源单元区间与第2个时间资源单元区间的交叠部分的监测频率与第2个时间资源单元区间内的监测频率相同,第3个时间资源单元区间与第2个时间资源单元区间的非交叠部分每4个时隙监测一次,UE被配置基于时隙的传输。定时器Timer1、定时器Timer2和定时器Timer3同时启动。
与示例8的区别是:并不是每个时隙都包括下行控制区域,如定时器Timer1生效的第四个时隙不包含下行控制区域,定时器Timer2生效的第4个时隙、第7个时隙和第8个时隙不包含下行控制区域,定时器Timer3生效的第4个时隙、第7个时隙、第8个时隙、第10个时隙和第11个时隙不包含下行控制区域。
需要说明的是,由于每个时间资源单元区间包括4个包含下行控制区域的时隙,每个时间资源单元区间持续的时间长度是相对值,因此,本示例中也可用计数器Counter来代替定时器timer,即每个时间资源单元区间对应一个计数器。
根据上述配置,终端执行下行控制信息监测的方法,具体包括:
终端在任意一个时间资源单元区间内监测到指示所述终端接收或发送初传数据的下行控制信息时,定时器Timer1、定时器Timer2和定时器Timer3同时启动,在定时器Timer1生效的4个时隙中,终端在前3个时隙都会监测一次PDCCH,由于第四个时隙不包含下行控制区域,终端在第4个时隙会进入短时休眠状态来省电,减少终端能耗。在定时器Timer2生效的8个时隙中,前4个时隙中所需监测的时隙与定时器Timer1生效的4个时隙中所需监测时隙相同,后4个时隙中终端每2个时隙都会监测一次PDCCH,在定时器Timer2生效的后4个时隙中,由于第7个时隙和第8个时隙不包含下行控制区域,终端可以监测定时器Timer2生效的后4个时隙中的第5个时隙,或者也可以监测第6个时隙。终端在定时器Timer2生效的后4个时隙中不需要被监测的时隙关闭RF链路,进入短时休眠状态以便省电。在定时器Timer3生效的12个时隙中,前8个时隙中所需监测的时隙与定时器Timer2生效的8个时隙中所需监测时隙相同,在定时器Timer3生效的最后4个时隙中终端每4个时隙都会监测一次PDCCH,由于第10个时隙和第11个时隙不包含下行控制区域,终端可以监测定时器Timer3生效的最后4个时隙中的第9个时隙,或者也可以监测第12个时隙,终端在定时器Timer3生效的后4个时隙中不需要被监测的时隙关闭RF链路,进入短时休眠状态以便省电。
终端监测PDCCH的偏移方式的具体内容与示例1相同,此处不再累述。
在上述方法流程的任一Timer的生效期中,基站可以发送给终端停止监测下行控制信 息的信令使终端提前进入休眠期的具体内容与示例1相同,此处不再累述。
终端根据停止监测下行控制信息的信令进入休眠期的几种方式的具体内容与示例1相同,此处不再累述。
上述示例9与LTE现有DRX技术相比,若DRX激活期的持续时间相同,本申请可以在终端处于激活态时,减少终端监测下行控制信息的频率,在任意一个定时器生效期间,如果终端不需要在当前时隙监测下行控制信息,终端可以在当前时隙内进入短时休眠状态来省电,减少终端能耗。与现有技术相比,若监测下行控制信息的次数相同,本申请可以在不增加下行控制信息监测次数的情况下,延长DRX激活期的持续时间,使调度更灵活。因此,上述示例9为配置了DRX的终端配置3个定时器,不同定时器生效期间内下行控制信息监测的方式不同,可以同时兼顾降低功耗和保证调度灵活性两方面的性能要求。
本申请提供的示例10如图15所示,为终端配置的在一个DRX周期的激活期内用于监测下行控制信息的时间资源单元区间包括3个,第1个时间资源单元区间由定时器Timer1实现,第2个时间资源单元区间由定时器Timer2实现,第3个时间资源单元区间由定时器Timer3实现。终端被配置基于时隙的传输。
第1个时间资源单元区间包括4个连续的时隙,第2个时间资源单元区间包括8个连续的时隙,第3个时间资源单元区间包括12个连续的时隙,这3个时间资源单元区间的起始时刻都相同,第1个时间资源单元区间中的每个时隙都被监测一次,第2个时间资源单元区间与第1个时间资源单元区间的交叠部分的每个时隙都被监测一次,第2个时间资源单元区间与第1个时间资源单元区间的非交叠部分每2个时隙监测一次,第3个时间资源单元区间与第2个时间资源单元区间的交叠部分的监测频率与第2个时间资源单元区间内的监测频率相同,第3个时间资源单元区间与第2个时间资源单元区间的非交叠部分每4个时隙监测一次,UE被配置基于时隙的传输。定时器Timer1、定时器Timer2和定时器Timer3同时启动。
与示例8的区别是:并不是每个时隙都包括下行控制区域,并且每个时间资源单元区间的时隙并不相等。具体的,如图15,第1个时间资源单元区间包括5个时隙,其中第4个时隙不包含下行控制区域,包含下行控制区域的时隙数为4个;第2个时间资源单元区间包括11个时隙,第4个时隙、第7个时隙和第10个时隙不包含下行控制区域,包含下行控制区域的时隙数为8个;第3个时间资源单元区间包括15个时隙,第4个时隙、第7个时隙和第10个时隙不包含下行控制区域,包含下行控制区域的时隙数为12个。
需要说明的是,由于每个时间资源单元区间包括4个时隙或者包括4个时隙和迷你时隙,每个时间资源单元区间持续的时间长度是相对值,因此,本示例中也可用计数器Counter来代替定时器timer。即每个时间资源单元区间对应一个计数器。
根据上述配置,终端执行下行控制信息监测的方法,具体包括:
终端在任意一个时间资源单元区间内监测到指示所述终端接收或发送初传数据的下行控制信息时,定时器Timer1、定时器Timer2和定时器Timer3同时启动。在定时器Timer1生效的5个时隙中,终端在前3个时隙和第5个时隙都会监测一次PDCCH,由于第四个时隙不包含下行控制区域,终端在定时器Timer1生效的第四个时隙会进入短时休眠状态来省电,减少终端能耗。在定时器Timer2生效的11个时隙中,由于定时器Timer2生效的第7个时隙和第10个时隙不包含下行控制区域,终端在第7个时隙和第10个时隙内可以关 闭RF链路,进入短时休眠状态以便省电。在定时器Timer2生效的11个时隙中,前5个时隙中所需监测的时隙与定时器Timer1生效的5个时隙中所需监测时隙相同,后6个时隙中终端每2个时隙都会监测一次PDCCH,在定时器Timer2生效的后6时隙中,由于第7个时隙和第10个时隙不包含下行控制区域,终端可以监测定时器Timer2生效的后6个时隙中的第6个时隙和第9个时隙,或者终端也可以监测定时器Timer2生效的后6个时隙中的第8个时隙和第11个时隙。终端在定时器Timer2生效的后6个时隙中不需要被监测的时隙关闭RF链路,进入短时休眠状态以便省电。终端在定时器Timer2生效的后6个时隙中不需要被监测的时隙关闭RF链路,进入短时休眠状态以便省电。在定时器Timer3生效的15个时隙中,在定时器Timer2生效的15个时隙中,前11个时隙中所需监测的时隙与定时器Timer2生效的11个时隙中所需监测时隙相同,在后4个时隙中,终端每4个时隙都会监测一次PDCCH。同样,终端可以监测定时器Timer3生效的第12个时隙,或者也可以监测第15个时隙。终端在定时器Timer3生效的后4个时隙中不需要被监测的时隙关闭RF链路,进入短时休眠状态以便省电。
终端监测PDCCH的偏移方式的具体内容与示例1相同,此处不再累述。
在上述方法流程的任一Timer的生效期中,基站可以发送给终端停止监测下行控制信息的信令使终端提前进入休眠期的具体内容与示例1相同,此处不再累述。
终端根据停止监测下行控制信息的信令进入休眠期的几种方式的具体内容与示例1相同,此处不再累述。
上述示例10与LTE现有DRX技术相比,若DRX激活期的持续时间相同,本申请可以在终端处于激活态时,减少终端监测下行控制信息的频率,在任意一个定时器生效期间,如果终端不需要在当前时隙监测下行控制信息,终端可以在当前时隙内进入短时休眠状态来省电,减少终端能耗。与现有技术相比,若监测下行控制信息的次数相同,本申请可以在不增加下行控制信息监测次数的情况下,延长DRX激活期的持续时间,使调度更灵活。因此,上述示例10为配置了DRX的终端配置3个定时器,不同定时器生效期间内下行控制信息监测的方式不同,可以同时兼顾降低功耗和保证调度灵活性两方面的性能要求。
本申请提供的示例11如图16所示,为终端配置的在一个DRX周期的激活期内用于监测下行控制信息的时间资源单元区间包括3个,第1个时间资源单元区间由定时器Timer1实现,第2个时间资源单元区间由定时器Timer2实现,第3个时间资源单元区间由定时器Timer3实现。终端被配置基于时隙以及迷你时隙的传输。
第1个时间资源单元区间包括3个连续的时隙,第2个时间资源单元区间包括6个连续的时隙,第3个时间资源单元区间包括10个连续的时隙,这3个时间资源单元区间的起始时刻都相同,第1个时间资源单元区间中的每个时间资源单元都被监测一次,第2个时间资源单元区间与第1个时间资源单元区间的交叠部分的每个时间资源单元都被监测一次,第2个时间资源单元区间与第1个时间资源单元区间的非交叠部分每2个时间资源单元监测一次,第3个时间资源单元区间与第2个时间资源单元区间的交叠部分的监测频率与第2个时间资源单元区间内的监测频率相同,第3个时间资源单元区间与第2个时间资源单元区间的非交叠部分每4个时间资源单元监测一次,这里的时间资源单元的个数是指时隙和迷你时隙之和。UE被配置基于时隙和迷你时隙的传输。定时器Timer1、定时器Timer2和定时器Timer3同时启动。
与示例8的区别是:每个时间资源单元区间的时隙并不相等,每个时间资源单元区间包括的时隙数和迷你时隙数之和均为4个,并不是每个时隙都包含下行控制区域。具体的,如图16,第1个时间资源单元区间包括3个时隙,其中在第1个时间资源单元区间的第2个时隙中配置了有两次基于迷你时隙的传输;第2个时间资源单元区间包括6个时隙,第2个时隙和第6个时隙中分别配置了两次基于迷你时隙的传输,并且第5个时隙不包含下行控制区域;第3个时间资源单元区间包括10个时隙,但是第8个和第10个时隙不包含下行控制区域。
根据上述配置,终端执行下行控制信息监测的方法,具体包括:
终端在任意一个时间资源单元区间内监测到指示所述终端接收或发送初传数据的下行控制信息时,定时器Timer1、定时器Timer2和定时器Timer3同时启动。在定时器Timer1生效的3个时隙中,终端在第1个时隙、在第2个时隙中的两个迷你时隙和第3个时隙都会监测一次PDCCH。在定时器Timer2生效的6个时隙中,前3个时隙中所需监测的时隙与定时器Timer1生效的3个时隙中所需监测时隙相同,后3个时隙中终端每2个时隙都会监测一次PDCCH,由于定时器Timer2生效的第5个时隙不包含下行控制区域,在定时器Timer2生效的后3个时隙中,可以监测定时器Timer2生效的后3个时隙中的第4个时隙和第6个时隙配置的第一个迷你时隙。或者也可以监测定时器Timer2生效的后3个时隙中的第6个时隙配置的第二个迷你时隙。在定时器Timer3生效的10个时隙中,前6个时隙中所需监测的时隙与定时器Timer3生效的6个时隙中所需监测时隙相同,在后4个时隙中终端每4个时隙都会监测一次PDCCH,由于第3个时间资源单元区间的第8个和第10个时隙不包含下行控制区域,终端可以监测定时器Timer3生效的后4个时隙中的第7时隙。可选的,终端也可以在定时器Timer2生效的6个时隙中和定时器Timer3生效的10个时隙中未被监测的迷你时隙,关闭RF链路进入短时休眠状态以便省电。
终端监测PDCCH的偏移方式的具体内容与示例1相同,此处不再累述。
在上述方法流程的任一Timer的生效期中,基站可以发送给终端停止监测下行控制信息的信令使终端提前进入休眠期的具体内容与示例1相同,此处不再累述。
终端根据停止监测下行控制信息的信令进入休眠期的几种方式的具体内容与示例1相同,此处不再累述。
上述示例11与LTE现有DRX技术相比,若DRX激活期的持续时间相同,本申请可以在终端处于激活态时,减少终端监测下行控制信息的频率,在任意一个定时器生效期间,如果终端不需要在当前时隙或迷你监测下行控制信息,终端可以在当前时隙或迷你时隙进入短时休眠状态来省电,减少终端能耗。与现有技术相比,若监测下行控制信息的次数相同,本申请可以在不增加下行控制信息监测次数的情况下,延长DRX激活期的持续时间,使调度更灵活。因此,上述示例11为配置了DRX的终端配置3个定时器,不同定时器生效期间内下行控制信息监测的方式不同,可以同时兼顾降低功耗和保证调度灵活性两方面的性能要求。
本申请提供的示例12如图17所示,为终端配置的在一个DRX周期的激活期内用于监测下行控制信息的时间资源单元区间包括3个,第1个时间资源单元区间由定时器Timer1实现,第2个时间资源单元区间由定时器Timer2实现,第3个时间资源单元区间由定时器Timer3实现。终端被配置基于时隙以及迷你时隙的传输。
第1个时间资源单元区间包括4个连续的时隙,第2个时间资源单元区间包括8个连续的时隙,第3个时间资源单元区间包括12个连续的时隙,这3个时间资源单元区间的起始时刻都相同,第1个时间资源单元区间中的每个时间资源单元都被监测一次,第2个时间资源单元区间与第1个时间资源单元区间的交叠部分的每个时间资源单元都被监测一次,第2个时间资源单元区间与第1个时间资源单元区间的非交叠部分每2个时间资源单元监测一次,第3个时间资源单元区间与第2个时间资源单元区间的交叠部分所需监测的时间资源单元相同,第3个时间资源单元区间与第2个时间资源单元区间的非交叠部分每4个时间资源单元监测一次,这里的时间资源单元的个数是指时隙和迷你时隙之和。UE被配置基于时隙和迷你时隙的传输。定时器Timer1、定时器Timer2和定时器Timer3同时启动。
与示例8的区别是:每个时间资源单元区间内不仅配置了基于时隙的传输,还配置有基于迷你时隙的传输。具体的,如图17,第1个时间资源单元区间包括4个时隙,其中在第1个时间资源单元区间的第2个时隙中配置了两次基于迷你时隙的传输;第2个时间资源单元区间包括8个时隙,其中在第2个时隙、第6个和第8个时隙中都配置了两次基于迷你时隙的传输;第3个时间资源单元区间包括12个时隙,在第2个时隙、第6个时隙、第8个时隙和第10个时隙中配置了两次基于迷你时隙的传输,在第11个时隙中配置了三次基于迷你时隙的传输。
根据上述配置,终端执行下行控制信息监测的方法,具体包括:
终端在任意一个时间资源单元区间内监测到指示所述终端接收或发送初传数据的下行控制信息时,定时器Timer1、定时器Timer2和定时器Timer3同时启动。在定时器Timer1生效的4个时隙中,终端在定时器Timer1生效的第一个时隙、在第2个时隙中的两个迷你时隙、第3个时隙和第4个时隙都会监测一次PDCCH。在定时器Timer2生效的前4个时隙中所需监测的时隙与定时器Timer1生效的4个时隙中所需监测时隙相同,在定时器Timer2生效的后4个时隙中,终端每2个时隙或迷你时隙监测一次PDCCH,可以监测定时器Timer2生效的后4个时隙中的第5个时隙、第6个时隙的第二个迷你时隙和第8个时隙中的第一个迷你时隙,或者也可以监测定时器Timer2生效的后4个时隙中的第6个时隙的第一个迷你时隙、第7个时隙和第8个时隙中的第二个迷你时隙。在定时器Timer2生效的前8个时隙中所需监测的时隙与定时器Timer2生效的8个时隙中所需监测时隙相同,在定时器Timer3生效的后4个时隙中,终端每4个时隙或迷你时隙都会监测一次PDCCH,终端可以监测定时器Timer3生效的后4个时隙中的第9个时隙和第11个时隙中的第二个迷你时隙,或者也可以监测定时器Timer3生效的后4个时隙中的第11个时隙中的第一个迷你时隙。终端在定时器Timer2生效的8个时隙和定时器Timer3生效的12个时隙中未被监测的时隙或迷你时隙,关闭RF链路,进入短时休眠状态以便省电。
终端监测PDCCH的偏移方式的具体内容与示例1相同,此处不再累述。
在上述方法流程的任一Timer的生效期中,基站可以发送给终端停止监测下行控制信息的信令使终端提前进入休眠期的具体内容与示例1相同,此处不再累述。
终端根据停止监测下行控制信息的信令进入休眠期的几种方式的具体内容与示例1相同,此处不再累述。
上述示例12与LTE现有DRX技术相比,若DRX激活期的持续时间相同,本申请可以在终端处于激活态时,减少终端监测下行控制信息的频率,在任意一个定时器生效期间, 如果终端不需要在当前时隙或迷你时隙监测下行控制信息,终端可以在当前时隙或迷你时隙内进入短时休眠状态来省电,减少终端能耗。与现有技术相比,若监测下行控制信息的次数相同,本申请可以在不增加下行控制信息监测次数的情况下,延长DRX激活期的持续时间,使调度更灵活。因此,上述示例11为配置了DRX的终端配置3个定时器,不同定时器生效期间内下行控制信息监测的方式不同,可以同时兼顾降低功耗和保证调度灵活性两方面的性能要求。
本申请提供的示例13如图18所示,为终端配置的在一个DRX周期的激活期内用于监测下行控制信息的时间资源单元区间包括3个,第1个时间资源单元区间由定时器Timer1实现,第2个时间资源单元区间由定时器Timer2实现,第3个时间资源单元区间由定时器Timer3实现。终端被配置基于时隙以及迷你时隙的传输。
第1个时间资源单元区间包括3个连续的时隙,第2个时间资源单元区间包括7个连续的时隙,第3个时间资源单元区间包括10个连续的时隙,这3个时间资源单元区间的起始时刻都相同,第1个时间资源单元区间中的每个时间资源单元都被监测一次,第2个时间资源单元区间与第1个时间资源单元区间的交叠部分的每个时间资源单元都被监测一次,第2个时间资源单元区间与第1个时间资源单元区间的非交叠部分每2个包含下行控制区域的时间资源单元监测一次,第3个时间资源单元区间与第2个时间资源单元区间的交叠部分的所需监测的时间资源单元相同,第3个时间资源单元区间与第2个时间资源单元区间的非交叠部分每4个包含下行控制区域的时间资源单元监测一次,这里的时间资源单元的个数是指包含下行控制区域的时隙和迷你时隙之和。UE被配置基于时隙和迷你时隙的传输。定时器Timer1、定时器Timer2和定时器Timer3同时启动。
与示例8的区别是:并不是每个时隙都包含下行控制区域。具体的,如图18,第1个时间资源单元区间包括3个时隙,其中在第2个时隙中配置了有两次基于迷你时隙的传输,每个时间资源单元区间包括的包含下行控制区域的时隙数和包含下行控制区域的迷你时隙数之和为4个;第2个时间资源单元区间包括7个时隙,前3个时隙与第1个时间资源单元区间的3个时隙的配置相同,第2个时间资源单元区间的后4个时隙中,在第6个时隙中配置了有两次基于迷你时隙的传输,并且第5个时隙不包含下行控制区域,第2个时间资源单元区间的后4个时隙中包含下行控制区域的时隙数和包含下行控制区域的迷你时隙数之和为4个;第3个时间资源单元区间包括10个时隙,前7个时隙与第2个时间资源单元区间的7个时隙的配置相同,第3个时间资源单元区间的后3个时隙中,第8个时隙不包含下行控制区域,并且在第10个时隙中配置了三次基于迷你时隙的传输,后3个时隙中包含下行控制区域的时隙数和包含下行控制区域的迷你时隙数之和为4个。
根据上述配置,终端执行下行控制信息监测的方法,具体包括:
需要说明的是,由于每个时间资源单元区间包括4个包含下行控制区域的时隙,或者包含下行控制区域的时隙和包含下行控制区域的迷你时隙的总个数为4个,每个时间资源单元区间持续的时间长度是相对值,因此,本示例中也可用计数器Counter来代替定时器timer。即每个时间资源单元区间对应一个计数器。
终端在任意一个时间资源单元区间内监测到指示所述终端接收或发送初传数据的下行控制信息时,定时器Timer1、定时器Timer2和定时器Timer3同时启动。在定时器Timer1生效的3个时隙中,终端在第1个时隙、在第2个时隙中的两个迷你时隙和第3个时隙都 会监测一次PDCCH。在定时器Timer2生效的前3个时隙中所需监测的时隙与定时器Timer1生效的3个时隙中所需监测时隙相同,在定时器Timer2生效的后3个时隙中,由于定时器Timer2生效的第5个时隙不包含下行控制区域,终端在第5个时隙内可以关闭RF链路,进入短时休眠状态以便省电。终端每2个包含下行控制区域的时隙或迷你时隙监测一次PDCCH,可以监测定时器Timer2生效的后4个时隙中的第4个时隙和第6个时隙配置的第二个迷你时隙,或者也可以监测定时器Timer2生效的后4个时隙中的第6个时隙配置的第一个迷你时隙和第7个时隙。在定时器Timer3生效的前7个时隙中所需监测的时隙与定时器Timer2生效的7个时隙中所需监测时隙相同,在定时器Timer3生效的后3个时隙中,终端每4个包含下行控制区域的时隙或迷你时隙都会监测一次PDCCH,由于第8个时隙不包含下行控制区域,终端可以监测定时器Timer3生效的后3个时隙中的第9个时隙,或者也可以监测定时器Timer3生效的后3个时隙中的第10个时隙配置的第三个迷你时隙。终端在定时器Timer2生效的7个时隙和定时器Timer3生效的10个时隙中未被监测的时隙或迷你时隙,关闭RF链路,进入短时休眠状态以便省电。
终端监测PDCCH的偏移方式的具体内容与示例1相同,此处不再累述。
在上述方法流程的任一Timer的生效期中,基站可以发送给终端停止监测下行控制信息的信令使终端提前进入休眠期的具体内容与示例1相同,此处不再累述。
终端根据停止监测下行控制信息的信令进入休眠期的几种方式的具体内容与示例1相同,此处不再累述。
上述示例13与LTE现有DRX技术相比,若DRX激活期的持续时间相同,本申请可以在终端处于激活态时,减少终端监测下行控制信息的频率,在任意一个定时器生效期间,如果终端不需要在当前时隙或迷你时隙监测下行控制信息,终端可以在当前时隙或迷你时隙内进入短时休眠状态来省电,减少终端能耗。与现有技术相比,若监测下行控制信息的次数相同,本申请可以在不增加下行控制信息监测次数的情况下,延长DRX激活期的持续时间,使调度更灵活。因此,上述示例11为配置了DRX的终端配置3个定时器,不同定时器生效期间内下行控制信息监测的方式不同,可以同时兼顾降低功耗和保证调度灵活性两方面的性能要求。
本申请提供的示例14如图19所示,为终端配置的在一个DRX周期的激活期内用于监测下行控制信息的时间资源单元区间包括3个,第1个时间资源单元区间由定时器Timer1实现,第2个时间资源单元区间由定时器Timer2实现,第3个时间资源单元区间由定时器Timer3实现。终端被配置基于时隙以及迷你时隙的传输。
第1个时间资源单元区间包括5个连续的时隙,第2个时间资源单元区间包括11个连续的时隙,第3个时间资源单元区间包括15个连续的时隙,这3个时间资源单元区间的起始时刻都相同,第1个时间资源单元区间中的每个时间资源单元都被监测一次,第2个时间资源单元区间与第1个时间资源单元区间的交叠部分的每个时间资源单元都被监测一次,第2个时间资源单元区间与第1个时间资源单元区间的非交叠部分每2个包含下行控制区域的时间资源单元监测一次,第3个时间资源单元区间与第2个时间资源单元区间的交叠部分的所需监测的时间资源单元相同,第3个时间资源单元区间与第2个时间资源单元区间的非交叠部分每4个包含下行控制区域的时间资源单元监测一次,这里的时间资源单元的个数是指包含下行控制区域的时隙和迷你时隙之和。UE被配置基于时隙和迷你时 隙的传输。定时器Timer1、定时器Timer2和定时器Timer3同时启动。
与示例8的区别是:每个时间资源单元区间包括的包含下行控制区域的时隙数均为4个,并不是每个时隙都包含下行控制区域。如图19,第1个时间资源单元区间包括5个时隙,其中在第2个时隙和第5个时隙中都配置了两次基于迷你时隙的传输,第4个时隙不包含下行控制区域,第1个时间资源单元区间包括的包含下行控制区域的时隙数为4个;第2个时间资源单元区间包括11个时隙,第2个时间资源单元区间的前5个时隙与第1个时间资源单元区间相同,第2个时间资源单元区间的后6个时隙中,在第8个和第9个时隙中都配置了两次基于迷你时隙的传输,并且第第7个和第10个时隙不包含下行控制区域,第2个时间资源单元区间的后6个时隙中包括的包含下行控制区域的时隙数为4个;第3个时间资源单元区间包括15个时隙,第3个时间资源单元区间的前11个时隙与第2个时间资源单元区间相同,在第3个时间资源单元区间的后4个时隙中,第13个和第15个时隙中分别配置了两次和三次的基于迷你时隙的传输,在第3个时间资源单元区间的后4个时隙中包括的包含下行控制区域的时隙数为4个。
需要说明的是,由于每个时间资源单元区间包括4个包含下行控制区域的时隙,每个时间资源单元区间持续的时间长度是相对值,因此,本示例中也可用计数器Counter来代替定时器timer。即每个时间资源单元区间对应一个计数器。
根据上述配置,终端执行下行控制信息监测的方法,具体包括:
终端在任意一个时间资源单元区间内监测到指示所述终端接收或发送初传数据的下行控制信息时,定时器Timer1、定时器Timer2和定时器Timer3同时启动。在定时器Timer1生效的5个时隙中,终端在第1个时隙、在第2个时隙中的两个迷你时隙、第3个时隙和第5个时隙中配置的两个迷你时隙都会监测一次PDCCH,由于第4个时隙不包含下行控制区域,终端在第四个时隙内可以关闭RF链路,进入短时休眠状态以便省电。在定时器Timer2生效的前5个时隙中所需监测的时隙与定时器Timer1生效的5个时隙中所需监测时隙相同,在定时器Timer2生效的后6个时隙中,终端每2个包含下行控制区域的时隙或迷你时隙监测一次PDCCH,可以监测定时器Timer2生效的后6个时隙中的第6个时隙、第8个时隙配置的第二个迷你时隙和第9个时隙配置的第二个迷你时隙,或者也可以监测定时器Timer2生效的后6个时隙中的第8个时隙配置的第一个迷你时隙、第9个时隙配置的第一个迷你时隙和第11个时隙。在定时器Timer2生效的前11个时隙中所需监测的时隙与定时器Timer2生效的11个时隙中所需监测时隙相同,在定时器Timer3生效的后4个时隙中,终端每4个包含下行控制区域的时隙或迷你时隙都会监测一次PDCCH,终端可以监测定时器Timer3生效的后4个时隙中的第12个时隙和第15个时隙配置的第一个迷你时隙,或者也可以监测定时器Timer3生效的后4个时隙中的第14个时隙。终端在定时器Timer2生效的11个时隙中和定时器Timer3生效的15个时隙中未被监测的时隙或迷你时隙,关闭RF链路进入短时休眠状态以便省电。
终端监测PDCCH的偏移方式的具体内容与示例1相同,此处不再累述。
在上述方法流程的任一Timer的生效期中,基站可以发送给终端停止监测下行控制信息的信令使终端提前进入休眠期的具体内容与示例1相同,此处不再累述。
终端根据停止监测下行控制信息的信令进入休眠期的几种方式的具体内容与示例1相同,此处不再累述。
上述示例14与LTE现有DRX技术相比,若DRX激活期的持续时间相同,本申请可 以在终端处于激活态时,减少终端监测下行控制信息的频率,在任意一个定时器生效期间,如果终端不需要在当前时隙或迷你时隙监测下行控制信息,终端可以在当前时隙或迷你时隙内进入短时休眠状态来省电,减少终端能耗。与现有技术相比,若监测下行控制信息的次数相同,本申请可以在不增加下行控制信息监测次数的情况下,延长DRX激活期的持续时间,使调度更灵活。因此,上述示例11为配置了DRX的终端配置3个定时器,不同定时器生效期间内下行控制信息监测的方式不同,可以同时兼顾降低功耗和保证调度灵活性两方面的性能要求。
本申请实施例提供一种下行控制信息监测装置,用以解决现有技术中存在的非连续接收周期的配置不灵活,存在着激活期被配置的过短造成业务效率低,激活期被配置的过短造成业务功耗过大的技术问题。其中,本申请实施例提供一种下行控制信息监测方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
基于相同构思,本申请提供一种如上所述的终端,如上所述的终端用于执行本申请所涉及的各种实施例中与终端相关的方法步骤。在一种可能的设计中,该终端包括多个功能模块,用于执行本申请所涉及的各种实施例中与终端相关的方法步骤。
如图20所示,终端2000包括处理单元2010和收发单元2020。需要说明的是,处理单元2010或者收发单元2020所执行的操作都可以视为是终端2000的操作。
在一种可能的设计中,该终端的结构中包括处理器和收发机,所述处理器被配置为支持终端执行上述下行控制信息监测方法中相应的功能。所述收发机用于支持终端与基站之间的通信,向基站发送上述通信系统中资源分配的方法中所涉及的信息或者指令。终端中还可以包括存储器,所述存储器用于与处理器耦合,其保存终端必要的程序指令和数据。所述终端2000中的处理单元2010可以由终端2000中的处理器实现,所述收发单元2020可以由终端2000中的收发器实现。
基于相同构思,本申请提供一种如上所述的基站,如上所述的基站用于执行本申请所涉及的各种实施例中与基站相关的方法步骤。
在一种可能的设计中,该基站包括多个功能模块,用于执行本申请所涉及的各种实施例中与基站相关的方法步骤。如图21所示的基站2100包括处理单元2110和收发单元2120。所述处理单元2110或者所述收发单元2120所执行的操作都可以视为是基站2100的操作。
在一种可能的设计中,该终端的结构中包括处理器和收发机,所述处理器被配置为支持终端执行上述下行控制信息监测方法中相应的功能。所述收发机用于支持终端与基站之间的通信,向基站发送上述通信系统中资源分配的方法中所涉及的信息或者指令。终端中还可以包括存储器,所述存储器用于与处理器耦合,其保存终端必要的程序指令和数据。所述基站2100中的处理单元2110可以由基站2100的处理器实现,所述收发单元2120可以由基站2100中的收发器实现。
需要说明的是,本申请实施例中上述终端或基站包括的收发机、处理器、存储器以及总线系统的结构关系可参见图22。其中,图22中的收发机2205可以是有线收发机,无线收发机或其组合。有线收发机例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线收发机例如可以为无线局域网通信接口,蜂窝网络通信接口或其组合。
本申请实施例中的处理器2202可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。 处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。存储器2203可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器2203也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器2203还可以包括上述种类的存储器的组合。
本申请实施例中还可以包括总线系统2204,总线系统2204可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器2202和存储器2203代表的存储器的各种电路链接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,本申请不再对其进行进一步描述。收发机2205提供用于在传输介质上与各种其他设备通信的单元。处理器2202负责管理总线架构和通常的处理,存储器2203可以存储处理器2202在执行操作时所使用的数据。
基于相同构思,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与终端相关的方法步骤。
基于相同构思,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与基站相关的方法步骤。
基于相同构思,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与终端相关的方法步骤。
基于相同构思,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与基站相关的方法步骤。
本所属领域的技术人员可以清楚地了解到,本发明提供的各实施例的描述可以相互参照,为描述的方便和简洁,关于本发明实施例提供的各装置、设备的功能以及执行的步骤可以参照本发明方法实施例的相关描述,在此不做赘述。
基于同一发明构思,本申请实施例还提供了一种数据传输装置,图23为本发明实施方式中所提供的数据传输装置的结构示意图(例如接入点或基站、站点或者终端等通信装置,或者前述通信装置中的芯片等)。
如图23所示,数据传输装置1200可以由总线1201作一般性的总线体系结构来实现。根据数据传输装置1200的具体应用和整体设计约束条件,总线1201可以包括任意数量的互连总线和桥接。总线1201将各种电路连接在一起,这些电路包括处理器1202、存储介质1203和总线接口1204。可选的,数据传输装置1200使用总线接口1204将网络适配器1205等经由总线1201连接。网络适配器1205可用于实现无线通信网络中物理层的信号处理功能,并通过天线1207实现射频信号的发送和接收。用户接口1206可以连接用户终端,例如:键盘、显示器、鼠标或者操纵杆等。总线1201还可以连接各种其它电路,如定时 源、外围设备、电压调节器或者功率管理电路等,这些电路是本领域所熟知的,因此不再详述。
可以替换的,数据传输装置1200也可配置成通用处理系统,例如通称为芯片,该通用处理系统包括:提供处理器功能的一个或多个微处理器;以及提供存储介质1203的至少一部分的外部存储器,所有这些都通过外部总线体系结构与其它支持电路连接在一起。
可替换的,数据传输装置1200可以使用下述来实现:具有处理器1202、总线接口1204、用户接口1206的ASIC(专用集成电路);以及集成在单个芯片中的存储介质1203的至少一部分,或者,数据传输装置1200可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本发明通篇所描述的各种功能的电路的任意组合。
其中,处理器1202负责管理总线和一般处理(包括执行存储在存储介质1203上的软件)。处理器1202可以使用一个或多个通用处理器和/或专用处理器来实现。处理器的例子包括微处理器、微控制器、DSP处理器和能够执行软件的其它电路。应当将软件广义地解释为表示指令、数据或其任意组合,而不论是将其称作为软件、固件、中间件、微代码、硬件描述语言还是其它。
在下图中存储介质1203被示为与处理器1202分离,然而,本领域技术人员很容易明白,存储介质1203或其任意部分可位于数据传输装置1200之外。举例来说,存储介质1203可以包括传输线、用数据调制的载波波形、和/或与无线节点分离开的计算机制品,这些介质均可以由处理器1202通过总线接口1204来访问。可替换地,存储介质1203或其任意部分可以集成到处理器1202中,例如,可以是高速缓存和/或通用寄存器。
处理器1202可执行本申请上述任意实施例中的极化码编译码方法,具体内容在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图 和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

  1. 一种下行控制信息监测方法,其特征在于,所述方法包括:
    终端在第一时间资源单元区间内,按照第一规则监测下行控制信息;
    所述终端在第二时间资源单元区间内,按照第二规则监测下行控制信息;
    所述第一时间资源单元区间与所述第二时间资源单元区间不同,所述第一规则与所述第二规则不同。
  2. 根据权利要求1所述的方法,其特征在于,所述第一规则与所述第二规则不同,包括:
    所述终端在所述第一时间资源单元区间内与在所述第二时间资源单元区间内监测下行控制信息的监测频率不同;或
    所述终端在所述第一时间资源单元区间内与在所述第二时间资源单元区间内监测下行控制信息的偏移方式不同;或
    所述终端在所述第一时间资源单元区间内与在所述第二时间资源单元区间内监测下行控制信息的所述监测频率和所述偏移方式均不同;
    其中,所述监测频率是从对应时间资源单元区间的多个时间资源单元中确定所需监测的时间资源单元时所采用的时间资源单元间隔的倒数;所述偏移方式是从对应时间资源单元区间的多个时间资源单元中确定首个所述所需监测的时间资源单元的方式。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一时间资源单元区间与所述第二时间资源单元区间不同,包括:
    所述第一时间资源单元区间与所述第二时间资源单元区间的起始时刻不同;或
    所述第一时间资源单元区间与所述第二时间资源单元区间的时间长度不同;或
    所述第一时间资源单元区间与所述第二时间资源单元区间的起始时刻以及时间长度都不同。
  4. 根据权利要求1至3中任意一项所述的方法,其特征在于,所述第一时间资源单元区间包括连续多个时间资源单元;所述第二时间资源单元区间包括连续多个时间资源单元;所述时间资源单元为时隙、迷你时隙、符号、子帧中的一种或多种的组合。
  5. 根据权利要求1至4中任意一项所述的方法,其特征在于,还包括:
    所述终端在当前时间资源单元监测到指示所述终端接收或发送初传数据的下行控制信息时,确定所述第一时间资源单元区间和所述第二时间资源单元区间任意一个时间资源单元区间的起始时刻和时间长度。
  6. 根据权利要求5所述的方法,其特征在于,所述终端确定所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个时间资源单元区间的起始时刻和时间长度,包括:
    所述终端确定第一配置信息,所述第一配置信息为所述基站配置的,或者所述第一配置信息是所述终端预配置的,所述第一配置信息配置所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个所述时间资源单元区间的相对起始时刻和时间长度;
    所述终端根据所述当前时间资源单元和所述第一配置信息,从所述当前时间资源单元之后的连续多个时间资源单元中确定任意一个所述时间资源单元区间的所述起始时刻和所述时间长度。
  7. 根据权利要求2至6中任意一项所述的方法,其特征在于,
    所述终端在第一时间资源单元区间内,按照第一规则监测下行控制信息,包括:
    所述终端确定所述第一时间资源单元区间内的所述偏移方式和所述监测频率;
    所述终端根据所述第一时间资源单元区间内的所述偏移方式和所述监测频率从所述第一时间资源单元区间的多个时间资源单元中确定所需监测的时间资源单元;
    所述终端在包含下行控制区域的所述所需监测的时间资源单元内监测基站向所述终端发送的下行控制信息,所述下行控制区域所占的符号用于承载下行控制信息;
    所述终端在第二时间资源单元区间内,按照第二规则监测下行控制信息,包括:
    所述终端确定所述第二时间资源单元区间内的所述偏移方式和所述监测频率;
    所述终端根据所述第二时间资源单元区间内的所述偏移方式和所述监测频率从所述第二时间资源单元区间的多个时间资源单元中确定所需监测的时间资源单元;
    所述终端在包含下行控制区域的所述所需监测的时间资源单元内监测基站向所述终端发送的下行控制信息;所述下行控制区域所占的符号用于承载下行控制信息。
  8. 根据权利要求7所述的方法,其特征在于,所述终端确定所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个所述时间资源单元区间内的所述偏移方式,包括:
    所述终端接收所述基站发送的第一指示信息,所述第一指示信息指示任意一个所述时间资源单元区间内的偏移方式;所述终端根据所述第一指示信息确定任意一个所述时间资源单元区间内的偏移方式;或者
    所述终端根据预配置确定任意一个所述时间资源单元区间内的偏移方式;或者,
    所述终端根据所述终端的无线网络临时标识满足的第一函数关系,确定任意一个所述时间资源单元区间内的偏移方式,所述第一函数关系是所述终端预配置的或者所述第一函数关系是所述基站配置的;或者,
    所述终端根据所述无线网络临时标识和所述终端的小区标识满足的第二函数关系,确定任意一个所述时间资源单元区间内的偏移方式,所述第二函数关系是所述终端预配置的,或者所述第二函数关系是由所述基站配置的。
  9. 根据权利要求7所述的方法,其特征在于,所述终端确定所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个所述时间资源单元区间内的所述监测频率,包括:
    所述终端接收所述基站发送的第二指示信息,所述第二指示信息指示任意一个所述时间资源单元区间内的所述监测频率;所述终端根据所述第二指示信息确定任意一个所述时间资源单元区间内的所述监测频率;或者
    所述终端根据预配置确定任意一个所述时间资源单元区间内的所述监测频率。
  10. 根据权利要求3至9中任意一项所述的方法,其特征在于,所述第一时间资源单元区间与所述第二时间资源单元区间的所述起始时刻不同时,起始时刻在后的所述时间资源单元区间内的所述监测频率小于或等于起始时刻在前的所述时间资源单元区间内的所述监测频率。
  11. 根据权利要求3至9中任意一项所述的方法,其特征在于,所述第一时间资源单元区间与所述第二时间资源单元区间的起始时刻相同时,所述第一时间资源单元区间与所述第二时间资源单元区间的交叠时间资源单元区间内的所述监测频率大于或等于非交叠 时间资源单元区间内的所述监测频率。
  12. 根据权利要求5至11中任意一项所述的方法,其特征在于,所述终端在所述第一时间资源单元区间与所述第二时间资源单元区间中的任意一个所述时间资源单元区间内再次监测到指示所述终端接收或发送初传数据的下行控制信息时,所述终端重新返回所述终端在第一时间资源单元区间内,按照第一规则监测下行控制信息,所述终端在第二时间资源单元区间内,按照第二规则监测下行控制信息的步骤。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,
    所述终端在所述第一时间资源单元区间与所述第二时间资源单元区间中的任意一个所述时间资源单元区间内接收到所述基站发送的第三指示信息,所述第三指示信息指示所述终端停止监测下行控制信息;
    所述终端根据所述第三指示信息,断开所述终端与所述基站之间的射频链路,使所述终端由激活状态跳转到休眠状态;或者,
    所述终端根据所述第三指示信息,在接收到所述第三指示信息的所述时间资源单元区间结束后,断开所述终端与所述基站之间的射频链路,使所述终端由激活状态跳转到休眠状态;或者,
    所述终端根据所述第三指示信息,在所述基站指示的时间资源单元区间结束后,断开所述终端与所述基站之间的射频链路,使所述终端由激活状态跳转到休眠状态。
  14. 根据权利要求1至12中任一项所述的方法,其特征在于,
    所述终端在所述第一时间资源单元区间和所述第二时间资源单元区间中的任意一个时间资源单元接收所述基站发送的第四指示信息,所述第四指示信息指示所述终端从所述时间资源单元切换到第三时间资源单元区间;所述第三时间资源单元区间的起始时刻为所述时间资源单元,所述第三时间资源单元区间的所述时间长度、所述监测频率和所述偏移方式由所述基站配置,或者由所述终端预配置;
    所述终端根据所述第四指示信息和所述时间资源单元,确定所述第三时间资源区间中所需监测的时间资源单元,并在所述第三时间资源区间中包含下行控制区域的所述所需监测的时间资源单元内监测基站向所述终端发送的下行控制信息。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述终端在所述第一时间资源单元区间与所述第二时间资源单元区间中的任意一个所述时间资源单元区间中不需要被监测的时间资源单元切换到短暂休眠状态;所述不需要监测时间资源单元包括所述时间资源单元区间中除所述所需监测的时间资源单元之外的时间资源单元,还包括所述所需监测的时间资源单元中不包含下行控制区域的时间资源单元。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述第一时间资源单元区间由第一定时器决定;所述第二时间资源单元区间由第二定时器决定。
  17. 根据权利要求1至15中任一项所述的方法,其特征在于,所述第一时间资源单元区间由第一计数器决定;所述第二时间资源单元区间由第二计数器决定。
  18. 一种下行控制信息监测方法,其特征在于,包括:
    基站向终端发送第一配置信息,所述第一配置信息配置第一时间资源单元区间和第二时间资源单元区间中任意一个所述时间资源单元区间的相对起始时刻和时间长度,以使所述终端根据当前时间资源单元和所述第一配置信息,从所述当前时间资源单元之后的连续多个时间资源单元中确定任意一个所述时间资源单元区间的所述起始时刻和所述时间长 度,所述终端在所述当前时间资源单元监测到指示所述终端接收或发送初传数据的下行控制信息。
  19. 根据权利要求18所述的方法,其特征在于,还包括:
    所述基站向所述终端发送第一指示信息,所述第一指示信息指示所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个所述时间资源单元区间内的偏移方式,以使所述终端根据所述第一指示信息确定任意一个所述时间资源单元区间内的偏移方式;或者,
    所述基站向所述终端发送所述终端的无线网络临时标识满足的第一函数关系,以使所述终端根据所述第一函数关系,确定任意一个所述时间资源单元区间内的偏移方式;或者,
    所述基站向所述终端发送所述无线网络临时标识和所述终端的小区标识满足的第二函数关系,以使所述终端根据所述第二函数关系确定任意一个所述时间资源单元区间内的偏移方式。
  20. 根据权利要求18所述的方法,其特征在于,还包括:
    所述基站向所述终端发送第二指示信息,所述第二指示信息用于向所述终端指示所述第一时间资源单元区间和所述第二时间资源单元区间中任意一个所述时间资源单元区间内的所述监测频率。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,还包括:
    所述基站向所述终端发送第三指示信息,所述第三指示信息是在所述第一时间资源单元区间和所述第二时间资源单元区间中的任意一个所述时间资源单元区间内发送的,所述第三指示信息指示所述终端停止监测下行控制信息。
  22. 根据权利要求18至20中任一项所述的方法,其特征在于,还包括:
    所述基站向所述终端发送第四指示信息,所述第四指示信息是在所述第一时间资源单元区间和所述第二时间资源单元区间中的任意一个时间资源单元发送的,
    所述第四指示信息指示所述终端从所述时间资源单元切换到第三时间资源单元区间;所述第三时间资源单元区间的起始时刻为所述时间资源单元,所述第三时间资源单元区间的所述时间长度、所述监测频率和所述偏移方式由所述基站配置。
  23. 一种终端,其特征在于,包括:存储器和处理器,其中:
    所述存储器用于存储指令;
    所述处理器用于根据执行所述存储器存储的指令,当所述处理器执行所述存储器存储的指令时,所述终端用于执行如权利要求1-17任一权利要求所述的方法。
  24. 一种基站,其特征在于,包括:存储器、收发器和处理器,其中:
    所述存储器用于存储指令;
    所述处理器用于根据执行所述存储器存储的指令,并控制所述收发器进行信号接收和信号发送,当所述处理器执行所述存储器存储的指令时,所述基站用于执行如权利要求18-22任一权利要求所述的方法。
  25. 一种芯片,其特征在于,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现如权利要求1至17中任一所述的方法。
  26. 一种芯片,其特征在于,包括:所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现如权利要求18至22中任一所述的方法。
PCT/CN2017/096508 2017-08-08 2017-08-08 一种下行控制信息监测方法、终端及基站 WO2019028685A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2017/096508 WO2019028685A1 (zh) 2017-08-08 2017-08-08 一种下行控制信息监测方法、终端及基站
US16/637,583 US11197286B2 (en) 2017-08-08 2017-08-08 Downlink control information monitoring method, terminal, and base station
EP17921023.2A EP3654710B1 (en) 2017-08-08 2017-08-08 Downlink control information monitoring method, terminal, and base station
CN201780065229.5A CN109891973B (zh) 2017-08-08 2017-08-08 一种下行控制信息监测方法、终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/096508 WO2019028685A1 (zh) 2017-08-08 2017-08-08 一种下行控制信息监测方法、终端及基站

Publications (1)

Publication Number Publication Date
WO2019028685A1 true WO2019028685A1 (zh) 2019-02-14

Family

ID=65272750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096508 WO2019028685A1 (zh) 2017-08-08 2017-08-08 一种下行控制信息监测方法、终端及基站

Country Status (4)

Country Link
US (1) US11197286B2 (zh)
EP (1) EP3654710B1 (zh)
CN (1) CN109891973B (zh)
WO (1) WO2019028685A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757479A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 通信的方法及装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3665998A1 (en) 2017-08-10 2020-06-17 Telefonaktiebolaget LM Ericsson (publ) Improved control channel monitoring
EP3711228A1 (en) 2017-11-15 2020-09-23 IDAC Holdings, Inc. Phase tracking reference signal transmission
US11171765B2 (en) * 2018-02-15 2021-11-09 Qualcomm Incorporated System and method for indicating preemption of transmissions
CN111699721B (zh) * 2018-02-16 2024-02-02 上海诺基亚贝尔股份有限公司 用于非许可无线电频带场景的临时浮动下行链路定时方法
US11445502B2 (en) * 2019-06-28 2022-09-13 Electronics And Telecommunications Research Institute Method and apparatus for receiving tone signal in synchronous wireless distributed communication system
EP4011128B1 (en) * 2019-09-30 2023-03-08 Ofinno, LLC Power saving and cell dormancy operation
US20210105747A1 (en) * 2019-10-03 2021-04-08 Qualcomm Incorporated Dynamic indication of physical downlink control channel monitoring location
CN113709912A (zh) * 2020-05-20 2021-11-26 华为技术有限公司 一种通信方法及装置
CN111642034B (zh) * 2020-05-22 2024-04-19 广东小天才科技有限公司 一种数据传输的方法、终端设备以及网络设备
WO2022141288A1 (zh) * 2020-12-30 2022-07-07 北京小米移动软件有限公司 一种通信方法、通信装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013110372A1 (en) * 2012-01-26 2013-08-01 Panasonic Corporation Improved discontinuous reception operation with additional wake up opportunities
CN104350788A (zh) * 2012-05-29 2015-02-11 富士通株式会社 无线通信系统、移动站、基站以及通信方法
WO2015137719A1 (ko) * 2014-03-12 2015-09-17 엘지전자 주식회사 반송파 집성 기법이 적용된 무선 통신 시스템에서 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
CN106533633A (zh) * 2015-09-10 2017-03-22 中国移动通信集团公司 信息处理方法、用户设备及基站
CN106656421A (zh) * 2016-12-29 2017-05-10 珠海市魅族科技有限公司 下行数据的解调方法、解调装置及终端
CN106793123A (zh) * 2016-12-30 2017-05-31 宇龙计算机通信科技(深圳)有限公司 一种迷你时隙配置及使用方法及智能终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100052064A (ko) * 2008-11-10 2010-05-19 삼성전자주식회사 이동 통신 시스템에서 불연속 수신 동작 제어 방법 및 장치
CN102595568A (zh) 2011-01-12 2012-07-18 华为技术有限公司 一种非连续接收的方法、装置及系统
US10638464B2 (en) 2011-04-01 2020-04-28 Futurewei Technologies, Inc. System and method for transmission and reception of control channels in a communications system
CN103582087B (zh) 2012-07-20 2017-05-31 华为终端有限公司 非连续接收参数配置方法、数据发送方法及设备
WO2017099526A1 (ko) 2015-12-11 2017-06-15 엘지전자 주식회사 하향링크 채널 수신 방법 및 사용자기기와, 하향링크 채널 전송 방법 및 기지국

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013110372A1 (en) * 2012-01-26 2013-08-01 Panasonic Corporation Improved discontinuous reception operation with additional wake up opportunities
CN104350788A (zh) * 2012-05-29 2015-02-11 富士通株式会社 无线通信系统、移动站、基站以及通信方法
WO2015137719A1 (ko) * 2014-03-12 2015-09-17 엘지전자 주식회사 반송파 집성 기법이 적용된 무선 통신 시스템에서 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
CN106533633A (zh) * 2015-09-10 2017-03-22 中国移动通信集团公司 信息处理方法、用户设备及基站
CN106656421A (zh) * 2016-12-29 2017-05-10 珠海市魅族科技有限公司 下行数据的解调方法、解调装置及终端
CN106793123A (zh) * 2016-12-30 2017-05-31 宇龙计算机通信科技(深圳)有限公司 一种迷你时隙配置及使用方法及智能终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HTC ET AL.: "Clarification on DRX", 3GPP TSG-RAN2 MEETING #96, R2-167507, 18 November 2016 (2016-11-18), pages 1 - 3, XP051177057 *
See also references of EP3654710A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757479A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 通信的方法及装置

Also Published As

Publication number Publication date
EP3654710B1 (en) 2021-12-29
US11197286B2 (en) 2021-12-07
CN109891973B (zh) 2021-12-10
CN109891973A (zh) 2019-06-14
EP3654710A4 (en) 2020-08-12
US20200260418A1 (en) 2020-08-13
EP3654710A1 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
CN109891973B (zh) 一种下行控制信息监测方法、终端
WO2021013144A1 (zh) 通信方法及装置
CN109429306B (zh) 一种通信方法及终端设备
CN114424482B (zh) 通信方法及装置
CN111083770A (zh) 一种终端的省电方法、省电装置、信息的发送方法及装置
WO2020224552A1 (zh) 唤醒终端设备的方法、装置、网络设备和终端设备
CN111867015B (zh) 检测或发送下行控制信道的方法和装置
WO2021023076A1 (zh) 一种通信方法及装置
WO2020221093A1 (zh) 搜索空间的监测、配置方法及装置
JP2024026381A (ja) 探索空間モニタリング方法及び装置
KR20210111847A (ko) 채널 모니터링 방법 및 디바이스
WO2019214264A1 (zh) 一种物理信道资源的调度方法、装置及基站
CN111436085A (zh) 通信方法及装置
US20230371118A1 (en) Communication method and device
CN114286429B (zh) 一种通信方法及设备
CN112312525B (zh) 一种节电信号配置和传输方法及装置
CN111436119A (zh) 一种drx传输方法及相关设备
WO2021017626A1 (zh) 一种节电信号配置和传输方法及装置
CN112312524B (zh) 一种节电信号配置和传输方法及装置
KR20200119867A (ko) 보조 캐리어 상태를 전환하는 방법, 단말 장치와 네트워크 장치
CN113543235A (zh) Drx模式的确定方法及通信装置
WO2021017623A1 (zh) 一种节电信号配置和传输方法及装置
US20220060990A1 (en) Method and device for determining parameter of power saving signal, terminal and storage medium
WO2021147544A1 (zh) 一种监测方法及装置
CN111867011B (zh) 一种节能信号的传输方法、网络侧设备及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017921023

Country of ref document: EP

Effective date: 20200213