WO2019026436A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2019026436A1
WO2019026436A1 PCT/JP2018/022761 JP2018022761W WO2019026436A1 WO 2019026436 A1 WO2019026436 A1 WO 2019026436A1 JP 2018022761 W JP2018022761 W JP 2018022761W WO 2019026436 A1 WO2019026436 A1 WO 2019026436A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
refrigerant
front row
row
flat tubes
Prior art date
Application number
PCT/JP2018/022761
Other languages
French (fr)
Japanese (ja)
Inventor
秀哲 立野井
芳裕 波良
青木 泰高
将之 左海
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to ES18842154T priority Critical patent/ES2955923T3/en
Priority to CN201880050493.6A priority patent/CN110998215B/en
Priority to EP18842154.9A priority patent/EP3647711B1/en
Publication of WO2019026436A1 publication Critical patent/WO2019026436A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/006Preventing deposits of ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0263Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry or cross-section of header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns

Definitions

  • the present invention relates to a heat exchanger used, for example, in an air conditioner, a refrigerator, a transport refrigerator, a water heater, and the like.
  • a heat exchanger in which a refrigerant flows through a plurality of stacked flat tubes is used in devices such as an air conditioner and a refrigerator, and constitutes a refrigerant circuit of the devices.
  • a heat exchanger is configured by assembling a plurality of flat tubes with plate-shaped or corrugated fins and a pair of headers. Each flat tube is connected to a pair of headers at both ends, and the refrigerant introduced into the header from the piping of the refrigerant circuit is distributed to each flat tube. The refrigerant flowing through the flat tubes and the air flowing into the gap between the fins and the flat tubes from the direction orthogonal to the flow of the refrigerant are heat exchanged.
  • the heat exchanger When the heat exchanger functions as an evaporator, a gas-liquid two-phase flow refrigerant flows into the header. Inside the header, the distribution of the gas phase refrigerant and the liquid phase refrigerant having a higher density than the gas phase refrigerant tends to be uneven in the stacking direction of the flat tubes. Therefore, the distribution state of the refrigerant to each flat tube tends to be uneven. In the header and the flat tube, the refrigerant in the header or the flat tube is obtained so that the heat transfer amount is made uniform throughout the laminate including the flat tube and the fins including the uniformity of the distribution state of the coolant. Various contrivances have been made on the setting of paths that can flow efficiently, the structure of the header, the shape of the fins, and the like.
  • a plurality of rows of heat exchange elements may be arranged in a direction connecting windward and windward (for example, , Patent Document 1).
  • Patent Document 1 there are no separate headers on the windward side (front row) and the windward side (rear row), and the flat tubes in the front row and the flat tubes in the rear row are connected to a single header.
  • a number of horizontal dividers are installed.
  • the flat tubes in the front row and the flat tubes in the rear row in the same step in the flat tube stacking direction communicate with each other.
  • the refrigerant flowing from the refrigerant piping into each section in the header flows through the flat tubes in the front row and the rear row for each stage.
  • the heat transfer loss can be suppressed and the evaporation performance can be ensured in the presence of the uneven distribution of frost advancing from the front row and the uneven distribution of the refrigerant from the header to the flat tubes.
  • the purpose is to provide a switch.
  • a first heat exchanger comprises: a plurality of flat tubes to be stacked; a fin provided to the flat tube; and a header to be erected in the stacking direction to be stacked and to be connected to the flat tubes.
  • a heat exchanger comprising: a heat exchange element that functions as an evaporator that exchanges heat between the refrigerant flowing into the flat tube through the header and the air and evaporates the refrigerant, and the heat exchange element including the flat tube, fins, and the header
  • the rear row is the header of the front row, and the flow velocity of the refrigerant flowing through the front row header, which is the header of the front row, is arranged including the front row located upstream of the air flow and the rear row located downstream of the air flow
  • the flow passage cross-sectional area in the front row header is smaller than the flow passage cross-sectional area in the rear row header so as to be greater than the flow velocity of the refrigerant flowing through the header.
  • a partition part is provided which extends in the stacking direction and partitions at least one of the front row header and the rear row header, and the channel cross-sectional area is set by the partition.
  • the width in the air flow direction of the flat tubes in the rear row is preferably wider than the width in the air flow direction of the flat tubes in the front row.
  • the first heat exchanger of the present invention preferably comprises two or more heat exchange elements connected in series, and the most downstream heat exchange element is located in the front row.
  • the first heat exchanger of the present invention preferably comprises three or more heat exchange elements connected in series, and the most upstream heat exchange element is located in the front row.
  • a second heat exchanger includes a plurality of flat tubes to be stacked, fins provided to the flat tubes, and a header that is erected in the stacking direction to be stacked and connected to the flat tubes.
  • a heat exchanger comprising: a heat exchange element that functions as an evaporator that exchanges heat between the refrigerant flowing into the flat tube through the header and the air and evaporates the refrigerant, and the heat exchange element including the flat tube, fins, and the header
  • the rear row is the header of the front row, and the flow velocity of the refrigerant flowing through the front row header, which is the header of the front row, is arranged including the front row located upstream of the air flow and the rear row located downstream of the air flow
  • the apparatus is characterized by comprising a flow rate adjustment unit that adjusts the flow rate of the refrigerant introduced into at least one of the front row header and the rear row header so as to be higher than the flow rate of the refrigerant flowing through the header.
  • a third heat exchanger comprises a plurality of flat tubes to be stacked, fins provided on the flat tubes, and a header that is erected in the stacking direction to be stacked and connected to the flat tubes.
  • a heat exchanger comprising: a heat exchange element that functions as an evaporator that exchanges heat between the refrigerant flowing into the flat tube through the header and the air and evaporates the refrigerant, and the heat exchange element including the flat tube, fins, and the header
  • the position of the introduction section which is arranged including the front row located upstream of the air flow and the rear row located downstream of the air flow, and which introduces the refrigerant into the section inherent to the header of the front row, and the rear row
  • the heat exchange elements in the front row and the heat exchange elements in the rear row are arranged shifted in the stacking direction so that the position of the introduction portion for introducing the refrigerant into the section inherent to the header is different in the stacking direction It features.
  • the third heat exchanger of the present invention preferably comprises two heat exchange elements stacked in the stacking direction in the front row and two heat exchange elements stacked in the stacking direction in the rear row.
  • the present invention it is possible to balance the amount of heat transfer in the stacking direction (vertical direction) of the flat tubes as a whole in the front row and the rear row. It is possible to avoid the decrease in heat exchange performance due to the uneven distribution of refrigerant even without the refrigerant distribution, and switch to the defrost operation while leaving the heat exchange capacity at least on the lower side of the rear row even in the operating condition where frost formation occurs. You can delay the time until
  • FIG. 1 It is a perspective view which shows the heat exchanger concerning a 1st embodiment typically. It is a schematic diagram for demonstrating the difference in the flow velocity of the refrigerant
  • (A) to (c) are graphs showing distribution states of the liquid phase refrigerant to the respective flat tubes in the front and rear rows for each degree of the refrigerant flow rate. It is a schematic diagram for demonstrating the effect
  • FIG. 1 It is a schematic diagram which shows the heat exchange element of the front row which concerns on the other modification of 1st Embodiment, and the heat exchange element of a rear row.
  • A is a schematic diagram which shows the heat exchanger which concerns on 2nd Embodiment.
  • B is a schematic diagram which shows the heat exchanger which concerns on the modification of 2nd Embodiment.
  • C And
  • d is a figure which shows liquid phase refrigerant distribution in, when dryness is high.
  • A) is a schematic diagram which shows the heat exchanger which concerns on 3rd Embodiment.
  • (B) is a schematic diagram which shows the modification of 3rd Embodiment.
  • Each of (a) and (b) is a schematic view showing a heat exchanger according to a fourth embodiment. The illustration of the fins is omitted.
  • the heat exchanger 1 shown in FIG. 1 includes a front row heat exchange element 10 and a rear row heat exchange element 20.
  • the heat exchanger 1 constitutes a refrigerant circuit such as an air conditioner, a refrigerator, or a water heater.
  • the refrigerant circuit includes a compressor, a condenser, a pressure reducing unit, and the heat exchanger 1 which is an evaporator.
  • the deterioration of the heat exchange performance is suppressed while accepting the uneven distribution of the refrigerant from the headers 13 and 23 to the flat tubes 11 and the uneven distribution of frost. Do.
  • the front row heat exchange element 10 includes a plurality of flat tubes 11 (tubes) to be stacked, a plurality of fins 12, and a pair of front row headers 13 (13 A and 13 B) connected to the flat tubes 11.
  • the front row heat exchange element 10 is provided between the refrigerant flowing into the flat tubes 11 through the front row header 13 (13A) and the air flowing into the gap between the fins 12 and the flat tubes 11 from the direction orthogonal to the flat tubes 11. , Heat exchange.
  • the rear row heat exchange element 20 includes a plurality of flat tubes 11 to be stacked, a plurality of fins 12, and a pair of rear row headers 23 (23A, 23B) connected to the flat tubes 11. And heat exchange between the refrigerant flowing into each flat tube 11 through the rear row header 23 (23A) and the air.
  • the flat tubes 11 and the fins 12 are components common to the front row heat exchange element 10 and the rear row heat exchange element 20.
  • the direction in which the flat tubes 11 are stacked is referred to as the vertical direction D1.
  • the upstream side is referred to as "front”
  • the downstream side is referred to as "rear”.
  • air taken in by a fan or the like (not shown) be supplied to the entire area of the heat exchanger 1.
  • the front row heat exchange element 10 and the rear row heat exchange element 20 are arranged in the air flow direction (indicated by an open arrow). In each figure, the front row is indicated by "F” and the rear row by "R”.
  • the front row heat exchange element 10 and the rear row heat exchange element 20 are connected in parallel to the piping of the refrigerant circuit.
  • the refrigerant having the same flow rate flows through the front row heat exchange element 10 and the rear row heat exchange element 20.
  • the heat exchanger 1 is provided with heat exchange elements 10 and 20 at least in part.
  • the heat exchanger 1 may further include other heat exchange elements (not shown) in addition to the heat exchange elements 10 and 20.
  • the flat tube 11 is a flat tube in which the refrigerant flows inside, and linearly extends at a predetermined length. Both ends of the flat tube 11 are respectively connected to the header 13 (or the header 23).
  • the header 13, 23 is formed with an insertion hole (not shown) for receiving the end of the flat tube 11 into the inside of the header 13, 23.
  • the plurality of flat tubes 11 are stacked in parallel with each other at a predetermined interval in the vertical direction D1. The end of each flat tube 11 opens into the inside of the header 13 (or the header 23).
  • the fins 12 of this embodiment have a substantially rectangular plate-like (plate-like) outer shape, and are provided on the flat tube 11 in order to expand the surface area in contact with air.
  • the fins 12 are formed with a plurality of notches 121 into which the flat tubes 11 are respectively inserted.
  • the shapes of the fins 12 in the front row F and the fins 12 in the rear row R may be different.
  • both the front row F and the rear row R show only some of the fins 12.
  • a large number of fins 12 are provided in the laminate of the flat tubes 11 at intervals in the longitudinal direction of the flat tubes 11.
  • a corrugated corrugated fin can be provided between the flat tubes 11 adjacent in the vertical direction D1.
  • the members such as the flat tube 11, the fins 12, the front row header 13, and the rear row header 23 constituting the heat exchanger 1 are formed of a metal material such as an aluminum alloy or a copper alloy.
  • the heat exchanger 1 is configured by integrating these components using a bonding material such as a brazing material.
  • Each of the pair of front row headers 13 is erected in the stacking direction (D1) of the flat tubes 11 of the front row F.
  • the flat tubes 11 of the front row F are connected to these front row headers 13.
  • the pair of front row headers 13 are each formed in a tubular shape, and the upper end and the lower end are closed.
  • the refrigerant flows into each flat tube 11 through one (13A) of the pair of front row headers 13, and the refrigerant flows out from each flat tube 11 to the other (13B) of the pair of front row headers 13.
  • the front row header 13A is provided with an introduction portion 131 for introducing the refrigerant into the inside of the front row header 13 from refrigerant piping or the like (not shown).
  • the inside of the front row header 13A is a flow path through which the refrigerant introduced through the introduction portion 131 flows upward.
  • the introduction portion 131 is located below the flat tube 11 disposed at the lowermost position in the front row header 13A, any flat tubes 11 in the front row F including the lowermost flat tube 11 It is preferable because the gas-phase refrigerant floating from the introduction portion 131 and the liquid refrigerant lifted with the gas-phase refrigerant can be made to flow.
  • the refrigerant introduced into the inside of the front row header 13A is distributed and flows into the flat tubes 11 of the front row F. Then, while the refrigerant flows through the respective flat tubes 11 (the arrow of the broken line in FIG. 1), the air passing through the gap (air path) between the fins 12 and the flat tubes 11 and the refrigerant inside the flat tube 11 Heat exchange takes place. At this time, the refrigerant flowing through the flat tube 11 absorbs heat from the air and evaporates.
  • the refrigerant flowing through the flat tubes 11 merges inside the front row header 13B, and flows out from the front row header 13B to a refrigerant pipe or the like outside the heat exchanger 1.
  • the heat exchanger 1 includes another heat exchange element connected to the front row header 13B, the refrigerant flows out from the front row header 13B to the other heat exchange element.
  • the rear row header 23 is configured in the same manner as the front row header 13 except that the front row header 13 and the flow passage cross-sectional area are different, and therefore will be briefly described.
  • the refrigerant flows into the flat tubes 11 of the rear row R through one (23A) of the pair of rear row headers 23, and the refrigerant flows out of the flat tubes 11 of the rear row R to the other (23B) of the pair of rear row headers 23. Do.
  • the rear row header 23A is provided with an introduction portion 231 for introducing the refrigerant from the refrigerant pipe or the like into the inside of the rear row header 23.
  • the refrigerant introduced into the inside of the rear row header 23A through the introduction portion 231 is distributed to the flat tubes 11 of the rear row R and flows in.
  • the refrigerant having flowed through the flat tubes 11 in the rear row R is heat-exchanged with the air passing through the front row F, and then joins inside the rear row header 23B, and the refrigerant piping outside the heat exchanger 1 from the rear row header 23B or , To other heat exchange elements.
  • the heat exchanger 1 is basically used by arranging the front row header 13 and the rear row header 23 along the vertical direction D1 (vertical direction). At this time, the flat tube 11 extends in the horizontal direction and is stacked in the vertical direction D1. However, the front row header 13 and the rear row header 23 may be slightly inclined with respect to the vertical direction D1.
  • the flow passage cross-sectional area Af (FIG. 2) in the front row header 13 is in the rear row header 23 so that the flow velocity of the refrigerant flowing in the front row header 13 becomes higher than the flow velocity of the refrigerant flowing in the rear row header 23. It is mainly characterized in that it is smaller than the channel cross-sectional area Ar (FIG. 2).
  • the front row header 13 and the rear row header 23 of the present embodiment each have a flow passage having a circular cross section, and the inner diameter of the front row header 13 is smaller than the inner diameter of the rear row header 23.
  • the cross-sectional shape of the front row header 13 and the rear row header 23 may be any suitable shape such as a rectangular shape or an elliptical shape.
  • the vertical partition plate 14 stands up along the vertical direction D1 orthogonal to the sheet of FIG. 5 and divides the inside of the front row header 13 into a section 141 on the introduction portion 131 side and a section 142 on the flat tube 11 side. ing.
  • the refrigerant introduced into the section 141 from the introduction section 131 flows into the section 142 through the opening 14A penetrating the lower end portion of the vertical partition plate 14 in the thickness direction, and flows in the section 142 upward while each flat tube 11 To be distributed.
  • the vertical partition plate 24 is also configured in the same manner as the above-described vertical partition plate 14, and partitions the inside of the rear row header 23 into a section 241 on the introduction portion 231 side and a section 242 on the flat tube 11 side.
  • An opening 24A is formed at the lower end portion of the vertical partition plate 24.
  • the refrigerant having flowed from the piping of the refrigerant circuit into the inside of the front row header 13A through the introduction portion 131 at a predetermined flow rate has a flow velocity Vf corresponding to the flow passage sectional area Af of the front row header 13A. It distributes to each flat tube 11 of front row, flowing toward the inside of the above.
  • the refrigerant flowing from the refrigerant circuit piping into the rear row header 23A through the introduction portion 231 at the same flow rate as the refrigerant flowing into the introduction portion 131 of the front row header 13A corresponds to the flow passage cross-sectional area Ar of the rear row header 23A. It distributes to each flat tube 11 of a back row, flowing toward the inside of back row header 23A upwards at the flow velocity Vr which carries out.
  • the flow rates of the refrigerant flowing into the front row header 13 through the introduction portion 131 and the refrigerant flowing into the rear row header 23 through the introduction portion 231 are the same, and the flow passage cross-sectional area is Af ⁇ Ar.
  • the flow velocity is Vf> Vr. That is, the flow velocity Vf of the refrigerant flowing through the front row header 13A is larger than the flow velocity Vr of the refrigerant flowing through the rear row header 23A.
  • the length of the arrow shown in gray in FIG. 2 schematically represents the relative magnitude of the flow velocity Vf, Vr.
  • the refrigerant of the gas-liquid two-phase flow expanded by passing through the pressure reducing portion of the refrigerant circuit flows into the front row header 13A and the rear row header 23A.
  • the gas phase of the refrigerant is referred to as gas phase refrigerant
  • the liquid phase is referred to as liquid phase refrigerant.
  • the liquid phase refrigerant is entrained in the floating gas phase refrigerant and carried upward. Since the density of the liquid phase refrigerant is larger than the density of the gas phase refrigerant, the distribution of the gas phase refrigerant and the liquid phase refrigerant in the vertical direction D1 tends to be uneven in each of the front row header 13A and the rear row header 23A.
  • the distribution of the gas phase refrigerant and the liquid phase refrigerant is different between the front row header 13A and the rear row header 23A based on the difference between the flow rates Vf and Vr.
  • the liquid phase refrigerant is carried further upward compared to the rear row header 23A having a relatively small flow velocity Vr. Therefore, in the upper part of the flow path from the lower end to the upper end of the front row header 13A, the ratio of liquid phase refrigerant to the gas phase refrigerant is relatively high, and in the lower part of the flow path, the ratio of liquid phase refrigerant to the gas phase refrigerant is low .
  • the liquid-phase refrigerant that undergoes a phase transition to the gas phase while flowing through the flat tube 11 absorbs heat from air due to the latent heat.
  • the width of the gray arrow shown in FIG. 2 represents the ratio of liquid phase refrigerant to gas phase refrigerant on a flow rate basis.
  • the flow rate ratio of the liquid phase refrigerant gradually increases from the lower side to the upper side.
  • the liquid phase refrigerant is less likely to be carried upward as compared to the front row header 13A, so the range where the liquid phase refrigerant is sufficiently carried from the introduction portion 231 is the flow path of the rear row header 23A.
  • the ratio of liquid phase refrigerant to gas phase refrigerant is high at the lower portion of the flow path of rear row header 23A, and the ratio of liquid phase refrigerant to gas phase refrigerant at the upper portion of the flow path Is low.
  • the distribution condition of the liquid phase refrigerant distributed from the front row header 13A to each flat tube 11 of the front row F and the distribution condition of the liquid phase refrigerant distributed from the rear row header 23A to each flat tube 11 of the rear row R In either case, the bias in the vertical direction D1 is recognized in a different manner.
  • FIG. 3 shows the front row F and the rear row R based on the experimental results in the cases where the flow rate of the refrigerant introduced into the heat exchanger 1 is small (a), medium (b) and large (c).
  • the flow rate ratio (flow rate ratio to the gas phase refrigerant) of the liquid phase refrigerant in the refrigerant which has flowed into each of the flat tubes 11 of each is shown.
  • the numbers 1, 2, 3,... Are sequentially given downward from the flat tube 11 located at the top of each of the front row header 13A and the rear row header 23A.
  • a front row heat exchange element and a rear row heat exchange element provided with seven flat tubes 11 were used.
  • the air flowing along the arrow 1 shown in FIG. 4 passes through the lower side where the heat transfer amount of the front row F is small and the lower side where the heat transfer amount of the rear row R is large.
  • the flat tubes 11 on the lower side of the rear row R flowing following the front row F There is a flow of liquid-phase refrigerant in an amount sufficient to dissipate the air sufficiently.
  • the air flowing along the arrow 2 shown in FIG. 4 passes through the upper side where the heat transfer amount of the front row F is large and the upper side where the heat transfer amount of the rear row R is small.
  • the flat tubes 11 on the upper row side of the rear row R which has flowed in to flow the heat exchange with the air after being dissipated in the front row F so as to have a suitable amount of liquid phase refrigerant.
  • the heat transfer surface is effectively utilized while avoiding the heat transfer loss over the entire heat exchanger 1 in which the upper and lower sides of the front row F and the upper and lower sides of the rear row R are combined. Even if the exchanger 1 is small, sufficient heat exchange performance can be ensured.
  • the flow velocity difference to the front row header 13 and the rear row header 23 as in the present embodiment it is possible to balance the amount of heat transfer in the vertical direction D1 as a whole of the front row F and the rear row R. By doing so, a decrease in heat exchange performance due to uneven distribution of the refrigerant can be avoided, and it is not necessary to install horizontal partition plates in the headers 13 and 23 in order to make the refrigerant distribution uniform. Therefore, since the increase in the number of parts is avoided, the manufacturing cost of the heat exchanger 1 can be suppressed.
  • frost formation proceeds from the front row F where the temperature difference with the contacting air is larger than the rear row R when the temperature of the outside air which is the heat source is low during heating operation.
  • frost may occur on the heat exchanger 1 used to cool the heat load, such as a refrigerator / freezer showcase or the like and an internal heat exchanger such as a refrigerator / freezer, etc.
  • the front row F Frost formation progresses from.
  • the relationship between the flow velocities Vf and Vr of the headers 13 and 23 is set so that the flow velocity Vf of the front row header 13 becomes larger than the flow velocity Vr of the rear row header 23 as in the present embodiment. It is good to identify. Then, in the present embodiment in which the same flow rate of refrigerant is introduced to the front row F and the rear row R, the channel cross-sectional area is specified as Af ⁇ Ar.
  • the air on the upper side with a large liquid phase flow rate is sufficiently cooled by the refrigerant having a large liquid phase flow rate, so it is easy to form frost.
  • the lower side is hard to frost. That is, the same bias of frost formation as the bias (for example, FIG.3 (c)) of the liquid phase flow rate ratio of front row F in the up-down direction D1 is seen.
  • the frost formation on the upper row side of the front row F having a large liquid phase flow rate proceeds, and the air passage is blocked by the frost, so the air volume on the upper row side of the rear row R decreases. I assume. However, at this time, since frost formation has not progressed so much on the lower side of the front row F, the air volume can be maintained at least on the lower side of the rear row R, which is downwind on the lower side of the front row F.
  • FIG. 6 shows an example in which a width Dr larger than the width Df of the flat tube 11 of the front row F is given to the flat tube 11 inserted into the rear row header 23 having a larger diameter than the front row header 13.
  • a width Dr of the flat tube 11 in the air flow direction it is preferable to secure a large width Dr of the flat tube 11 in the air flow direction to the same extent as the diameter of the rear row header 23.
  • the second embodiment shows an application example to a heat exchanger having a plurality of paths connected in series.
  • the heat exchanger 2 shown in FIG. 7A includes heat exchange elements 10 and 20 corresponding to paths connected in series. This point is different from the fact that the heat exchange elements 10 and 20 of the heat exchanger 1 of the first embodiment are connected in parallel with the piping of the refrigerant circuit.
  • FIG. 7A schematically shows the heat exchange elements 10 and 20, but the heat exchange elements 10 and 20 are configured in the same manner as the first embodiment (FIG. 1). That is, the front row heat exchange element 10 is provided with the flat tube 11, the fins 12, and the front row header 13 as shown in FIG. 1.
  • the rear row heat exchange element 20 also comprises a flat tube 11, fins 12 and a rear row header 23. Since the flow passage cross-sectional area Af of the front row header 13 is smaller than the flow passage cross-sectional area Ar of the rear row header 23, the refrigerant flow velocity Vf of the front row header 13 is larger than the refrigerant flow velocity Vr of the rear row header 23.
  • the heat transfer amount in the vertical direction D1 is achieved as a whole in the front row F and the rear row R based on the flow velocity difference, and the time until switching to the defrosting operation at the time of frost formation is delayed. it can.
  • the rear heat exchange element 20 corresponds to the most upstream first pass P1.
  • the front row heat exchange element 10 corresponds to a second pass P2 following the first pass P1.
  • the second path P2 is the most downstream path. While the refrigerant flows from the most upstream path P1 and flows to the most downstream path P2, the dryness of the refrigerant increases.
  • the refrigerant When the refrigerant is introduced from the refrigerant piping (not shown) to the rear row header 23A (FIG. 1) of the first path P1, the refrigerant is distributed from the rear row header 23A to the flat tubes 11 of the rear row R.
  • the refrigerant flowing through the flat tubes 11 merges inside the rear row header 23B (FIG. 1), and flows into the second path P2 of the front row F through the U-shaped tube 17.
  • the refrigerant is distributed from the inside of the front row header 13B (FIG. 1) of the second pass P2 to the flat tubes 11 of the front row F, and the refrigerant flowing through those flat tubes 11 is the front row header 13A (FIG. 1) Flow out to the refrigerant piping.
  • FIG. 7 (c) shows the case where the flow passage cross section of the header has a typical size (for example, Am in FIG. 8), and FIG. 7 (d) shows the flow passage cross section of the header is typical.
  • the most downstream path P2 with the highest dryness is arranged in the front row F.
  • the liquid-phase refrigerant can be lifted sufficiently upward to flow into the flat tube 11 positioned above. Therefore, the heat transfer surface of the most downstream path P2 can be sufficiently utilized to contribute to the performance.
  • the fourth path P4 on the most downstream side in the front row is the same as in FIG. 7 (a). It is preferable to arrange in the front row F as well as arrange in the front row F while arranging in the F.
  • the second pass P2 and the third pass P3 are arranged in the rear row R.
  • the heat exchanger 2A has four paths P1 to P4.
  • the first pass P1 and the second pass P2 on the upstream side are located in the lower part of the heat exchanger 2A, and the third pass P3 and the fourth path P4 on the downstream side are located in the upper part of the heat exchanger 2A.
  • the liquid phase is more than that on the downstream side where the dryness is increased, so the pressure loss at the same channel cross-sectional area is smaller than on the downstream side. Therefore, the flow path cross-sectional area of the upstream paths P1 and P2 is suppressed to the extent that the pressure loss does not become excessive compared to the downstream paths P3 and P4 (the number of stages (the number of flat tubes 11) is reduced).
  • the height of the exchanger 2A is reduced.
  • FIG. 7 (b) also schematically shows the heat exchange elements 10 and 20, the heat exchange elements 10 and 20 are configured in the same manner as the first embodiment (FIG. 1). Based on the flow velocity difference between the front row header 13 and the rear row header 23, as in the first embodiment, the heat transfer amount is balanced as a whole in the front row F and the rear row R, and the time until switching to the defrosting operation at the time of frost formation Can be delayed.
  • the refrigerant when the refrigerant is introduced into the header 13A (FIG. 1) of the first path P1, the refrigerant is distributed from the front row header 13A to the flat tubes 11 of the front row F.
  • the refrigerants flowing through the flat tubes 11 join together in the front row header 13B (FIG. 1), and flow into the second path P2 of the rear row R through the U-shaped tube 181.
  • the refrigerant is distributed to the flat tubes 11 from the rear row header 23B of the second pass P2, and the refrigerant flowing through the flat tubes 11 passes from the rear row header 23A through the U-shaped tube 182 to the upper row side. It flows into the back row header 23A of the third pass P3.
  • the most downstream path P4 where the dryness is the highest is arranged in the front row F.
  • the heat transfer surface of the downstream path P4 can also be sufficiently utilized to contribute to the performance.
  • the flow path cross-sectional area of the header 13 of the most upstream path P1 having a relatively small refrigerant pressure loss, especially the header 13A at the inlet of the path P1 is small.
  • By suppressing the rise of the evaporation temperature it is possible to avoid the deterioration of the evaporation performance.
  • the heat exchanger 3 of the third embodiment shown in FIG. 8A includes the front row heat exchange element 10 and the rear row heat exchange element 20. ing.
  • the flow passage cross-sectional area smaller than the flow passage cross-sectional area Ar of the rear row header 23 in the first embodiment (FIG. 2)
  • a distributor 15 (flow rate adjustment unit) capable of adjusting the flow rate of the refrigerant introduced to the front row header 13 and the rear row header 23 is used.
  • the distributor 15, which includes capillary tubes and the like, flows from a refrigerant pipe (not shown) so that the flow rate Rf of the refrigerant flowing into the front row header 13 is larger than the flow rate Rr of the refrigerant flowing into the rear row header 23.
  • the refrigerant is diverted at a predetermined flow ratio.
  • the front row header 13 is provided with the flow velocity Vf corresponding to the flow rate Rf and the flow passage cross sectional area Am
  • the rear row header 23 is provided with the flow velocity Rr and the flow velocity Vr corresponding to the flow passage cross sectional area Am.
  • Rf / Rr Vf / Vr.
  • the distributor 15 by providing the distributor 15, even if the flow passage cross sectional areas of the front row header 13 and the rear row header 23 are equal, the flow velocity difference of the refrigerant is given to the front row header 13 and the rear row header 23.
  • the effect similar to 1st Embodiment can be obtained based on the distribution in the up-down direction D1 of the liquid phase flow rate ratio by the difference in a flow velocity.
  • the same header having the same diameter it is possible to prevent the assembly error of the front row heat exchange element 10 and the rear row heat exchange element 20 at the time of manufacturing the heat exchanger 3.
  • a throttle 16 (flow rate adjusting unit) can be used.
  • the throttle 16 is provided on one side introduced into the rear row header 23. Since the pressure loss is given to the refrigerant directed to the rear row header 23 by the throttle 16, the flow rate Rr of the refrigerant introduced to the rear row header 23 is smaller than the flow rate Rf of the refrigerant introduced to the front row header 13.
  • FIGS. 9A and 9B show the heat exchanger 4 of the same configuration.
  • FIGS. 9 (a) and 9 (b) differ only in the image of the distribution of the liquid phase refrigerant.
  • the heat exchanger 4 according to the fourth embodiment includes two heat exchange elements 10 stacked in the vertical direction D1 in the front row F and two heat exchange elements 20 stacked in the vertical direction D1 in the rear row R. .
  • the front row heat exchange element 10 and the rear row heat exchange element 20 are disposed in such a manner that the front row heat exchange element 10 and the rear row heat exchange element 20 are shifted in the vertical direction D1.
  • the height from the lower end to the upper end is equal.
  • front row heat exchange element 10 and the rear row heat exchange element 20 are connected in parallel or in series to the piping of the refrigerant circuit, and the refrigerant having the same flow rate flows through the front row heat exchange element 10 and the rear row heat exchange element 20.
  • the heat exchanger 4 includes a front row heat exchange element 10 and a rear row heat exchange element 20 configured in the same manner as the first embodiment. However, unlike the first embodiment, the flow passage cross-sectional areas of the front row header 13 and the rear row header 23 are equal.
  • the heat transfer amount in the vertical direction D1 can be balanced as a whole in the front row F and the rear row R, and the time until switching to the defrosting operation can be delayed at the time of frost formation. .
  • the same headers having the same diameter it is possible to prevent the assembly error of the front row heat exchange element 10 and the rear row heat exchange element 20 at the time of manufacturing the heat exchanger 4.
  • the inside of the front row header 13 and the rear row header 23 may be divided into a plurality of sections, and an introduction unit for introducing a refrigerant into each section may be prepared. Also in this case, the height positions of the introduction portion of the front row F and the introduction portion of the rear row R can be made different by shifting the front row heat exchange element 10 and the rear row heat exchange element 20 in the vertical direction D1, Similar effects can be obtained.
  • the heat exchanger of the present invention may include, in addition to the front row F and the rear row R, one or more middle rows located between the front row F and the rear row R.
  • the heat exchange elements 10 and 20 each include a row of flat tube elements composed of a plurality of flat tubes 11 stacked in the vertical direction D1.
  • the heat exchange element of the present invention comprises two rows, that is, two flat tube elements aligned in the air flow direction, and these flat tube elements are configured to be connected to the same header May be

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

The purpose is to ensure evaporation capacity by suppressing heat transfer loss when there is deviation in frost formation progressing from a front row and deviation in the distribution of refrigerant from a header to flat tubes. A heat exchanger 1 comprises a plurality of flat tubes 11, fins 12 provided on the flat tubes 11, and a header 13 (or 23) standing in the vertical direction D1 in which the flat tubes 11 are stacked and connected to the flat tubes 11, and the heat exchanger functions as an evaporator that causes heat to be exchanged between air and refrigerant flowing into the flat tubes 11 through the header and causes the refrigerant to evaporate. A front row heat exchanging element 10 comprising flat tubes 11, fins 12, and the header 13, and a rear row heat exchanging element 20 comprising flat tubes 11, fins 12, and the header 23 are arranged. The cross-sectional area of the flow channel of the front row header 13 positioned in the front row F is smaller than the cross-sectional area of the flow channel of the rear row header 23 positioned in the rear row R so that the flow rate of the refrigerant flowing in the front row header 13 is larger than the flow rate of the refrigerant flowing in the rear row header 23.

Description

熱交換器Heat exchanger
 本発明は、例えば、空気調和機、冷凍機、輸送用冷凍機、給湯器等に使用される熱交換器に関する。 The present invention relates to a heat exchanger used, for example, in an air conditioner, a refrigerator, a transport refrigerator, a water heater, and the like.
 積層された複数の扁平管にそれぞれ冷媒が流れる熱交換器が空気調和機や冷凍機等の機器に使用されており、それらの機器の冷媒回路を構成している。
 複数の扁平管が、プレート状あるいはコルゲート状のフィンと、一対のヘッダと組み付けられることで熱交換器が構成される。各扁平管は、両端部で一対のヘッダに接続されており、冷媒回路の配管からヘッダの内部に導入された冷媒が各扁平管へと分配される。各扁平管を流れる冷媒と、その冷媒の流れと直交する方向からフィンや扁平管の間の隙間へ流入する空気とが、熱交換される。
A heat exchanger in which a refrigerant flows through a plurality of stacked flat tubes is used in devices such as an air conditioner and a refrigerator, and constitutes a refrigerant circuit of the devices.
A heat exchanger is configured by assembling a plurality of flat tubes with plate-shaped or corrugated fins and a pair of headers. Each flat tube is connected to a pair of headers at both ends, and the refrigerant introduced into the header from the piping of the refrigerant circuit is distributed to each flat tube. The refrigerant flowing through the flat tubes and the air flowing into the gap between the fins and the flat tubes from the direction orthogonal to the flow of the refrigerant are heat exchanged.
 熱交換器を蒸発器として機能させる場合、気液二相流の冷媒がヘッダに流入する。ヘッダの内部では、気相冷媒と、気相冷媒よりも密度が大きい液相冷媒との分布が扁平管の積層方向において偏り易い。そのため、各扁平管への冷媒の分配状況が偏り易い。
 こうした冷媒の分配状況の均一化を含め、扁平管およびフィンからなる積層体の全体に亘り伝熱量の均一化を図り、それによって必要な性能が十分に得られるように、ヘッダや扁平管において冷媒を効率よく流すことのできるパスの設定、ヘッダの構造、フィンの形状等について、種々の工夫が重ねられてきた。
When the heat exchanger functions as an evaporator, a gas-liquid two-phase flow refrigerant flows into the header. Inside the header, the distribution of the gas phase refrigerant and the liquid phase refrigerant having a higher density than the gas phase refrigerant tends to be uneven in the stacking direction of the flat tubes. Therefore, the distribution state of the refrigerant to each flat tube tends to be uneven.
In the header and the flat tube, the refrigerant in the header or the flat tube is obtained so that the heat transfer amount is made uniform throughout the laminate including the flat tube and the fins including the uniformity of the distribution state of the coolant. Various contrivances have been made on the setting of paths that can flow efficiently, the structure of the header, the shape of the fins, and the like.
 ところで、所定の熱交換性能に必要な伝熱面積を確保するため、風上と風下を結ぶ方向に複数列の熱交換要素(扁平管およびフィンを含む組付体)を並べる場合がある(例えば、特許文献1)。
 特許文献1では、風上側(前列)および風下側(後列)に個別のヘッダはなく、前列の扁平管と後列の扁平管とが単一のヘッダに接続されており、ヘッダの内部には、多数の水平仕切板が設置されている。これらの水平仕切板により仕切られた同一区画に、扁平管積層方向における同じ段の前列の扁平管と後列の扁平管とが連通している。冷媒配管からヘッダ内の各区画へ流入した冷媒は、段毎に、前列および後列の扁平管を流れる。
By the way, in order to secure a heat transfer area necessary for a predetermined heat exchange performance, a plurality of rows of heat exchange elements (an assembly including a flat tube and a fin) may be arranged in a direction connecting windward and windward (for example, , Patent Document 1).
In Patent Document 1, there are no separate headers on the windward side (front row) and the windward side (rear row), and the flat tubes in the front row and the flat tubes in the rear row are connected to a single header. A number of horizontal dividers are installed. In the same section partitioned by these horizontal partition plates, the flat tubes in the front row and the flat tubes in the rear row in the same step in the flat tube stacking direction communicate with each other. The refrigerant flowing from the refrigerant piping into each section in the header flows through the flat tubes in the front row and the rear row for each stage.
特許第5840291号Patent No. 5840291
 ヘッダ内部に多数の仕切板を設置すると、冷媒分配の偏りによる伝熱損失を抑制することはできても、部品数の増加を招く。特許文献1のように、前列および後列のヘッダを一つにまとめた場合でも、やはり段数分の仕切板が必要となり、部品数が多いので、ヘッダの内部を仕切板で細かく仕切ることは避けたい。 If a large number of partition plates are installed inside the header, although it is possible to suppress the heat transfer loss due to the uneven distribution of the refrigerant, the number of parts increases. Even when the headers in the front row and the rear row are combined into one as in Patent Document 1, it is also necessary to have a partition plate for the number of stages, and the number of parts is large. .
 また、冬期に蒸発器として機能する熱交換器において、空気との温度差が大きい前列から着霜が進行するため、前列と後列との間で着霜状態の偏りが避けられない。そのため、前列への着霜により風路が閉塞されて後列の風量が低下すると、未だ着霜量が少ないため熱交換可能な後列までも、早期に機能しなくなる。 Moreover, in the heat exchanger which functions as an evaporator in winter, since frost formation proceeds from the front row where the temperature difference with air is large, it is not possible to avoid the deviation of the frosted state between the front row and the rear row. Therefore, if the air passage is blocked due to frost formation on the front row and the air volume in the rear row is reduced, the heat exchange amount is still small and even the heat exchangeable rear row does not function early.
 以上より、本発明は、前列から進行する着霜の偏りや、ヘッダから各扁平管への冷媒の分配の偏りが存在する中で、伝熱損失を抑えて蒸発性能を確保することのできる熱交換器を提供することを目的とする。 From the above, according to the present invention, the heat transfer loss can be suppressed and the evaporation performance can be ensured in the presence of the uneven distribution of frost advancing from the front row and the uneven distribution of the refrigerant from the header to the flat tubes. The purpose is to provide a switch.
 本発明の第1の熱交換器は、積層される複数の扁平管と、扁平管に設けられるフィンと、扁平管が積層される積層方向に起立し、扁平管に接続されるヘッダと、を備えた熱交換器であって、ヘッダを通じて扁平管に流入する冷媒と、空気とを熱交換させ、冷媒を蒸発させる蒸発器として機能し、扁平管、フィン、およびヘッダからなる熱交換要素が、空気の流れの上流側に位置する前列と、空気の流れの下流側に位置する後列と、を含んで配列され、前列のヘッダである前列ヘッダを流れる冷媒の流速が、後列のヘッダである後列ヘッダを流れる冷媒の流速よりも大きくなるように、前列ヘッダ内の流路断面積が後列ヘッダ内の流路断面積よりも小さいことを特徴とする。 A first heat exchanger according to the present invention comprises: a plurality of flat tubes to be stacked; a fin provided to the flat tube; and a header to be erected in the stacking direction to be stacked and to be connected to the flat tubes. A heat exchanger, comprising: a heat exchange element that functions as an evaporator that exchanges heat between the refrigerant flowing into the flat tube through the header and the air and evaporates the refrigerant, and the heat exchange element including the flat tube, fins, and the header The rear row is the header of the front row, and the flow velocity of the refrigerant flowing through the front row header, which is the header of the front row, is arranged including the front row located upstream of the air flow and the rear row located downstream of the air flow The flow passage cross-sectional area in the front row header is smaller than the flow passage cross-sectional area in the rear row header so as to be greater than the flow velocity of the refrigerant flowing through the header.
 本発明の第1の熱交換器において、積層方向に延びて前列ヘッダおよび後列ヘッダの少なくともいずれかの内部を仕切る仕切部を備え、仕切部により流路断面積が設定されていることが好ましい。 In the first heat exchanger of the present invention, it is preferable that a partition part is provided which extends in the stacking direction and partitions at least one of the front row header and the rear row header, and the channel cross-sectional area is set by the partition.
 本発明の第1の熱交換器において、後列の扁平管の空気の流れ方向における幅が、前列の扁平管の空気の流れ方向における幅よりも広いことが好ましい。 In the first heat exchanger of the present invention, the width in the air flow direction of the flat tubes in the rear row is preferably wider than the width in the air flow direction of the flat tubes in the front row.
 本発明の第1の熱交換器は、直列に接続された2以上の熱交換要素を備え、最下流の熱交換要素が前列に位置することが好ましい。 The first heat exchanger of the present invention preferably comprises two or more heat exchange elements connected in series, and the most downstream heat exchange element is located in the front row.
 本発明の第1の熱交換器は、直列に接続された3つ以上の熱交換要素を備え、最上流の熱交換要素が前列に位置することが好ましい。 The first heat exchanger of the present invention preferably comprises three or more heat exchange elements connected in series, and the most upstream heat exchange element is located in the front row.
 本発明の第2の熱交換器は、積層される複数の扁平管と、扁平管に設けられるフィンと、扁平管が積層される積層方向に起立し、扁平管に接続されるヘッダと、を備えた熱交換器であって、ヘッダを通じて扁平管に流入する冷媒と、空気とを熱交換させ、冷媒を蒸発させる蒸発器として機能し、扁平管、フィン、およびヘッダからなる熱交換要素が、空気の流れの上流側に位置する前列と、空気の流れの下流側に位置する後列と、を含んで配列され、前列のヘッダである前列ヘッダを流れる冷媒の流速が、後列のヘッダである後列ヘッダを流れる冷媒の流速よりも大きくなるように、前列ヘッダおよび後列ヘッダの少なくとも一方に導入される冷媒の流量を調整する流量調整部を備えることを特徴とする。 A second heat exchanger according to the present invention includes a plurality of flat tubes to be stacked, fins provided to the flat tubes, and a header that is erected in the stacking direction to be stacked and connected to the flat tubes. A heat exchanger, comprising: a heat exchange element that functions as an evaporator that exchanges heat between the refrigerant flowing into the flat tube through the header and the air and evaporates the refrigerant, and the heat exchange element including the flat tube, fins, and the header The rear row is the header of the front row, and the flow velocity of the refrigerant flowing through the front row header, which is the header of the front row, is arranged including the front row located upstream of the air flow and the rear row located downstream of the air flow The apparatus is characterized by comprising a flow rate adjustment unit that adjusts the flow rate of the refrigerant introduced into at least one of the front row header and the rear row header so as to be higher than the flow rate of the refrigerant flowing through the header.
 本発明の第3の熱交換器は、積層される複数の扁平管と、扁平管に設けられるフィンと、扁平管が積層される積層方向に起立し、扁平管に接続されるヘッダと、を備えた熱交換器であって、ヘッダを通じて扁平管に流入する冷媒と、空気とを熱交換させ、冷媒を蒸発させる蒸発器として機能し、扁平管、フィン、およびヘッダからなる熱交換要素が、空気の流れの上流側に位置する前列と、空気の流れの下流側に位置する後列と、を含んで配列され、前列のヘッダに内在する区画に冷媒を導入する導入部の位置と、後列のヘッダに内在する区画に冷媒を導入する導入部の位置とが、積層方向において異なるように、前列の熱交換要素と、後列の熱交換要素とが積層方向にシフトして配置されていることを特徴とする。 A third heat exchanger according to the present invention comprises a plurality of flat tubes to be stacked, fins provided on the flat tubes, and a header that is erected in the stacking direction to be stacked and connected to the flat tubes. A heat exchanger, comprising: a heat exchange element that functions as an evaporator that exchanges heat between the refrigerant flowing into the flat tube through the header and the air and evaporates the refrigerant, and the heat exchange element including the flat tube, fins, and the header The position of the introduction section which is arranged including the front row located upstream of the air flow and the rear row located downstream of the air flow, and which introduces the refrigerant into the section inherent to the header of the front row, and the rear row The heat exchange elements in the front row and the heat exchange elements in the rear row are arranged shifted in the stacking direction so that the position of the introduction portion for introducing the refrigerant into the section inherent to the header is different in the stacking direction It features.
 本発明の第3の熱交換器は、前列において積層方向に積層された2つの熱交換要素と、後列において積層方向に積層された2つの熱交換要素と、を備えることが好ましい。 The third heat exchanger of the present invention preferably comprises two heat exchange elements stacked in the stacking direction in the front row and two heat exchange elements stacked in the stacking direction in the rear row.
 本発明によれば、後述するように、前列および後列の全体として扁平管の積層方向(上下方向)における伝熱量のバランスを図ることができるので、冷媒分布を均一化するために仕切板を設置しなくても、冷媒分配の偏りによる熱交換性能の低下を回避でき、しかも、着霜が発生するような運転状況でも、少なくとも後列の下段側に熱交換能力を残しつつ、除霜運転に切り替わるまでの時間を遅らせることができる。 According to the present invention, as will be described later, it is possible to balance the amount of heat transfer in the stacking direction (vertical direction) of the flat tubes as a whole in the front row and the rear row. It is possible to avoid the decrease in heat exchange performance due to the uneven distribution of refrigerant even without the refrigerant distribution, and switch to the defrost operation while leaving the heat exchange capacity at least on the lower side of the rear row even in the operating condition where frost formation occurs. You can delay the time until
第1実施形態に係る熱交換器を模式的に示す斜視図である。It is a perspective view which shows the heat exchanger concerning a 1st embodiment typically. 図1に示す前列ヘッダと後列ヘッダとを流れる冷媒の流速の違いを説明するための模式図である。It is a schematic diagram for demonstrating the difference in the flow velocity of the refrigerant | coolant which flows through the front row | line header shown in FIG. 1, and a back row | line header. (a)~(c)は、冷媒流量の程度毎に、前列および後列のそれぞれの各扁平管への液相冷媒の分配状況を示すグラフである。(A) to (c) are graphs showing distribution states of the liquid phase refrigerant to the respective flat tubes in the front and rear rows for each degree of the refrigerant flow rate. 図1に示す熱交換器の作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action of the heat exchanger shown in FIG. 第1実施形態の変形例に係る前列ヘッダと後列ヘッダとを示す模式図である。It is a schematic diagram which shows the front row | line | column header which concerns on the modification of 1st Embodiment, and a back row | line header. 第1実施形態の他の変形例に係る前列の熱交換要素と後列の熱交換要素とを示す模式図である。It is a schematic diagram which shows the heat exchange element of the front row which concerns on the other modification of 1st Embodiment, and the heat exchange element of a rear row. (a)は、第2実施形態に係る熱交換器を示す模式図である。(b)は、第2実施形態の変形例に係る熱交換器を示す模式図である。(c)および(d)は、乾き度が高い場合における液相冷媒分布を示す図である。(A) is a schematic diagram which shows the heat exchanger which concerns on 2nd Embodiment. (B) is a schematic diagram which shows the heat exchanger which concerns on the modification of 2nd Embodiment. (C) And (d) is a figure which shows liquid phase refrigerant distribution in, when dryness is high. (a)は、第3実施形態に係る熱交換器を示す模式図である。(b)は、第3実施形態の変形例を示す模式図である。(A) is a schematic diagram which shows the heat exchanger which concerns on 3rd Embodiment. (B) is a schematic diagram which shows the modification of 3rd Embodiment. (a)および(b)はいずれも、第4実施形態に係る熱交換器を示す模式図である。フィンの図示は省略している。Each of (a) and (b) is a schematic view showing a heat exchanger according to a fourth embodiment. The illustration of the fins is omitted.
 以下、添付図面を参照しながら、本発明の実施形態について説明する。
〔第1実施形態〕
 図1に示す熱交換器1は、前列熱交換要素10と、後列熱交換要素20とを備えている。熱交換器1は、空気調和機や冷凍機、給湯器等の冷媒回路を構成している。その冷媒回路は、圧縮機と、凝縮器と、減圧部と、蒸発器である熱交換器1とを含んで構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
First Embodiment
The heat exchanger 1 shown in FIG. 1 includes a front row heat exchange element 10 and a rear row heat exchange element 20. The heat exchanger 1 constitutes a refrigerant circuit such as an air conditioner, a refrigerator, or a water heater. The refrigerant circuit includes a compressor, a condenser, a pressure reducing unit, and the heat exchanger 1 which is an evaporator.
 本実施形態の熱交換器1によれば、後述するように、ヘッダ13,23から各扁平管11への冷媒の分配の偏りや、着霜の偏りを受け入れつつ、熱交換性能の低下を抑制する。 According to the heat exchanger 1 of the present embodiment, as described later, the deterioration of the heat exchange performance is suppressed while accepting the uneven distribution of the refrigerant from the headers 13 and 23 to the flat tubes 11 and the uneven distribution of frost. Do.
(熱交換要素)
 前列熱交換要素10は、積層される複数の扁平管11(チューブ)と、複数のフィン12と、扁平管11に接続される一対の前列ヘッダ13(13A,13B)とを備えている。
 前列熱交換要素10は、前列ヘッダ13(13A)を通じて各扁平管11に流入する冷媒と、扁平管11と直交する方向からフィン12や扁平管11の間の隙間へ流入する空気との間で、熱交換させる。
(Heat exchange element)
The front row heat exchange element 10 includes a plurality of flat tubes 11 (tubes) to be stacked, a plurality of fins 12, and a pair of front row headers 13 (13 A and 13 B) connected to the flat tubes 11.
The front row heat exchange element 10 is provided between the refrigerant flowing into the flat tubes 11 through the front row header 13 (13A) and the air flowing into the gap between the fins 12 and the flat tubes 11 from the direction orthogonal to the flat tubes 11. , Heat exchange.
 前列熱交換要素10と同様に、後列熱交換要素20は、積層される複数の扁平管11と、複数のフィン12と、扁平管11に接続される一対の後列ヘッダ23(23A,23B)とを備えており、後列ヘッダ23(23A)を通じて各扁平管11に流入する冷媒と、空気との間で熱交換させる。
 扁平管11およびフィン12は、前列熱交換要素10と後列熱交換要素20とに共通する構成要素である。
Similar to the front row heat exchange element 10, the rear row heat exchange element 20 includes a plurality of flat tubes 11 to be stacked, a plurality of fins 12, and a pair of rear row headers 23 (23A, 23B) connected to the flat tubes 11. And heat exchange between the refrigerant flowing into each flat tube 11 through the rear row header 23 (23A) and the air.
The flat tubes 11 and the fins 12 are components common to the front row heat exchange element 10 and the rear row heat exchange element 20.
 ここで、扁平管11が積層される方向(積層方向)のことを上下方向D1と称するものとする。
 また、扁平管11を流れる冷媒と熱交換される空気の流れにおいて上流側を「前」と称し、下流側を「後」と称するものとする。図示しないファン等により吸い込まれた空気が熱交換器1の領域全体に供給されることが好ましい。
 前列熱交換要素10と後列熱交換要素20とは、空気の流れる方向(白抜き矢印で示す)に配列されている。各図において、前列を「F」で、後列を「R」で示す。
Here, the direction in which the flat tubes 11 are stacked (stacking direction) is referred to as the vertical direction D1.
Further, in the flow of air heat-exchanged with the refrigerant flowing through the flat tube 11, the upstream side is referred to as "front", and the downstream side is referred to as "rear". It is preferable that air taken in by a fan or the like (not shown) be supplied to the entire area of the heat exchanger 1.
The front row heat exchange element 10 and the rear row heat exchange element 20 are arranged in the air flow direction (indicated by an open arrow). In each figure, the front row is indicated by "F" and the rear row by "R".
 前列熱交換要素10と後列熱交換要素20とは、冷媒回路の配管に並列に接続されている。前列熱交換要素10と後列熱交換要素20とには同じ流量の冷媒が流れる。 The front row heat exchange element 10 and the rear row heat exchange element 20 are connected in parallel to the piping of the refrigerant circuit. The refrigerant having the same flow rate flows through the front row heat exchange element 10 and the rear row heat exchange element 20.
 熱交換器1は、少なくとも一部に熱交換要素10,20を備えている。熱交換器1が、熱交換要素10,20に加えて、図示しない他の熱交換要素を備えていてもよい。 The heat exchanger 1 is provided with heat exchange elements 10 and 20 at least in part. The heat exchanger 1 may further include other heat exchange elements (not shown) in addition to the heat exchange elements 10 and 20.
(扁平管)
 扁平管11は、内側を冷媒が流れる扁平な管であり、所定の長さで直線状に延びている。扁平管11の両端部はそれぞれヘッダ13(またはヘッダ23)に接続されている。ヘッダ13,23には、扁平管11の端部をヘッダ13,23の内部へと受け入れる挿入孔(図示しない)が形成されている。
 複数の扁平管11は、上下方向D1に所定の間隔をおいて互いに平行に積層される。各扁平管11の端部は、ヘッダ13(またはヘッダ23)の内部に開口している。
(Flat tube)
The flat tube 11 is a flat tube in which the refrigerant flows inside, and linearly extends at a predetermined length. Both ends of the flat tube 11 are respectively connected to the header 13 (or the header 23). The header 13, 23 is formed with an insertion hole (not shown) for receiving the end of the flat tube 11 into the inside of the header 13, 23.
The plurality of flat tubes 11 are stacked in parallel with each other at a predetermined interval in the vertical direction D1. The end of each flat tube 11 opens into the inside of the header 13 (or the header 23).
(フィン)
 本実施形態のフィン12は、略矩形のプレート状(板状)の外形を有するもので、空気と接触する表面積を拡大するため扁平管11に設けられる。フィン12には、扁平管11がそれぞれ挿入される複数の切欠121が形成されている。前列Fのフィン12と後列Rのフィン12との形状は相違していてもよい。
(fin)
The fins 12 of this embodiment have a substantially rectangular plate-like (plate-like) outer shape, and are provided on the flat tube 11 in order to expand the surface area in contact with air. The fins 12 are formed with a plurality of notches 121 into which the flat tubes 11 are respectively inserted. The shapes of the fins 12 in the front row F and the fins 12 in the rear row R may be different.
 図1には、前列F、後列Rのいずれも、一部のフィン12のみを示している。実際には、前列F、後列Rのいずれにおいても、扁平管11の長さ方向に間隔をおいて多数のフィン12が扁平管11の積層体に設けられている。 In FIG. 1, both the front row F and the rear row R show only some of the fins 12. In fact, in any of the front row F and the rear row R, a large number of fins 12 are provided in the laminate of the flat tubes 11 at intervals in the longitudinal direction of the flat tubes 11.
 プレート状のフィン12に代えて、他の種類のフィンを扁平管11に設けることもできる。例えば、波状のコルゲートフィンを、上下方向D1に隣り合う扁平管11の間に設けることもできる。 Instead of the plate-like fins 12, other types of fins can be provided on the flat tube 11. For example, a corrugated corrugated fin can be provided between the flat tubes 11 adjacent in the vertical direction D1.
 熱交換器1を構成する扁平管11、フィン12、前列ヘッダ13、および後列ヘッダ23等の部材は、アルミニウム合金や銅合金等の金属材料から形成されている。これらがロウ材等の接合材を用いて一体化されることで、熱交換器1が構成される。 The members such as the flat tube 11, the fins 12, the front row header 13, and the rear row header 23 constituting the heat exchanger 1 are formed of a metal material such as an aluminum alloy or a copper alloy. The heat exchanger 1 is configured by integrating these components using a bonding material such as a brazing material.
(前列ヘッダ)
 一対の前列ヘッダ13は、いずれも前列Fの扁平管11の積層方向(D1)に起立している。これらの前列ヘッダ13に前列Fの各扁平管11が接続される。
 一対の前列ヘッダ13は、いずれも筒状に形成されており、上端および下端が塞がれている。
 一対の前列ヘッダ13の一方(13A)を通じて各扁平管11に冷媒が流入し、一対の前列ヘッダ13の他方(13B)へは、各扁平管11からそれぞれ冷媒が流出する。
(Previous column header)
Each of the pair of front row headers 13 is erected in the stacking direction (D1) of the flat tubes 11 of the front row F. The flat tubes 11 of the front row F are connected to these front row headers 13.
The pair of front row headers 13 are each formed in a tubular shape, and the upper end and the lower end are closed.
The refrigerant flows into each flat tube 11 through one (13A) of the pair of front row headers 13, and the refrigerant flows out from each flat tube 11 to the other (13B) of the pair of front row headers 13.
 前列ヘッダ13Aには、図示しない冷媒配管等から前列ヘッダ13の内部へと冷媒を導入する導入部131が備えられている。前列ヘッダ13Aの内部は、導入部131を通じて導入された冷媒が上方へ向けて流れる流路となっている。
 この導入部131が、前列ヘッダ13A内で最も下方に配置された扁平管11よりも下方に位置していれば、最も下方の扁平管11を含めて前列Fの扁平管11のいずれにも、導入部131から浮上する気相冷媒と、気相冷媒と共に持ち上がる液冷媒とを流入させることができるので好ましい。
The front row header 13A is provided with an introduction portion 131 for introducing the refrigerant into the inside of the front row header 13 from refrigerant piping or the like (not shown). The inside of the front row header 13A is a flow path through which the refrigerant introduced through the introduction portion 131 flows upward.
As long as the introduction portion 131 is located below the flat tube 11 disposed at the lowermost position in the front row header 13A, any flat tubes 11 in the front row F including the lowermost flat tube 11 It is preferable because the gas-phase refrigerant floating from the introduction portion 131 and the liquid refrigerant lifted with the gas-phase refrigerant can be made to flow.
 前列ヘッダ13Aの内部に導入された冷媒は、前列Fの各扁平管11へと分配されて流入する。そして、各扁平管11を冷媒がそれぞれ流れる間に(図1の破線の矢印)、フィン12や扁平管11の間の隙間(風路)を通過する空気と、扁平管11の内側の冷媒との熱交換が行われる。このとき、扁平管11を流れる冷媒が空気から吸熱して蒸発する。 The refrigerant introduced into the inside of the front row header 13A is distributed and flows into the flat tubes 11 of the front row F. Then, while the refrigerant flows through the respective flat tubes 11 (the arrow of the broken line in FIG. 1), the air passing through the gap (air path) between the fins 12 and the flat tubes 11 and the refrigerant inside the flat tube 11 Heat exchange takes place. At this time, the refrigerant flowing through the flat tube 11 absorbs heat from the air and evaporates.
 各扁平管11を流れた冷媒は、前列ヘッダ13Bの内部で合流し、前列ヘッダ13Bから、熱交換器1の外部の冷媒配管等へと流出する。あるいは、熱交換器1が、前列ヘッダ13Bと接続された他の熱交換要素を備えている場合は、冷媒が前列ヘッダ13Bから他の熱交換要素へと流出する。 The refrigerant flowing through the flat tubes 11 merges inside the front row header 13B, and flows out from the front row header 13B to a refrigerant pipe or the like outside the heat exchanger 1. Alternatively, when the heat exchanger 1 includes another heat exchange element connected to the front row header 13B, the refrigerant flows out from the front row header 13B to the other heat exchange element.
(後列ヘッダ)
 後列ヘッダ23は、前列ヘッダ13と流路断面積が相違する以外は、前列ヘッダ13と同様に構成されているため、簡単に説明する。
 一対の後列ヘッダ23の一方(23A)を通じて、後列Rの各扁平管11に冷媒が流入し、一対の後列ヘッダ23の他方(23B)へは、後列Rの各扁平管11からそれぞれ冷媒が流出する。
(Back column header)
The rear row header 23 is configured in the same manner as the front row header 13 except that the front row header 13 and the flow passage cross-sectional area are different, and therefore will be briefly described.
The refrigerant flows into the flat tubes 11 of the rear row R through one (23A) of the pair of rear row headers 23, and the refrigerant flows out of the flat tubes 11 of the rear row R to the other (23B) of the pair of rear row headers 23. Do.
 後列ヘッダ23Aには、冷媒配管等から後列ヘッダ23の内部へと冷媒を導入する導入部231が備えられている。
 導入部231を通じて後列ヘッダ23Aの内部に導入された冷媒は、後列Rの各扁平管11へと分配されて流入する。後列Rの各扁平管11を流れた冷媒は、前列Fを経た空気と熱交換された後、後列ヘッダ23Bの内部で合流し、後列ヘッダ23Bから、熱交換器1の外部の冷媒配管、あるいは、他の熱交換要素へと流出する。
The rear row header 23A is provided with an introduction portion 231 for introducing the refrigerant from the refrigerant pipe or the like into the inside of the rear row header 23.
The refrigerant introduced into the inside of the rear row header 23A through the introduction portion 231 is distributed to the flat tubes 11 of the rear row R and flows in. The refrigerant having flowed through the flat tubes 11 in the rear row R is heat-exchanged with the air passing through the front row F, and then joins inside the rear row header 23B, and the refrigerant piping outside the heat exchanger 1 from the rear row header 23B or , To other heat exchange elements.
 熱交換器1は、基本的に、前列ヘッダ13および後列ヘッダ23が上下方向D1(鉛直方向)に沿うように配置されて使用される。このとき扁平管11は水平方向に延びて、上下方向D1に積層されている。
 但し、前列ヘッダ13および後列ヘッダ23が上下方向D1に対して少し傾斜していてもよい。
The heat exchanger 1 is basically used by arranging the front row header 13 and the rear row header 23 along the vertical direction D1 (vertical direction). At this time, the flat tube 11 extends in the horizontal direction and is stacked in the vertical direction D1.
However, the front row header 13 and the rear row header 23 may be slightly inclined with respect to the vertical direction D1.
(本実施形態の主な特徴)
 本実施形態は、前列ヘッダ13を流れる冷媒の流速が、後列ヘッダ23を流れる冷媒の流速よりも大きくなるように、前列ヘッダ13内の流路断面積Af(図2)が後列ヘッダ23内の流路断面積Ar(図2)よりも小さいことを主な特徴とする。
(Main features of this embodiment)
In the present embodiment, the flow passage cross-sectional area Af (FIG. 2) in the front row header 13 is in the rear row header 23 so that the flow velocity of the refrigerant flowing in the front row header 13 becomes higher than the flow velocity of the refrigerant flowing in the rear row header 23. It is mainly characterized in that it is smaller than the channel cross-sectional area Ar (FIG. 2).
 本実施形態の前列ヘッダ13および後列ヘッダ23は、いずれも断面円形状の流路を有しており、前列ヘッダ13の内径は後列ヘッダ23の内径よりも小さい。
 なお、前列ヘッダ13および後列ヘッダ23の断面形状は、矩形状や楕円形等、適宜な形状であってよい。
The front row header 13 and the rear row header 23 of the present embodiment each have a flow passage having a circular cross section, and the inner diameter of the front row header 13 is smaller than the inner diameter of the rear row header 23.
The cross-sectional shape of the front row header 13 and the rear row header 23 may be any suitable shape such as a rectangular shape or an elliptical shape.
 図5に示すように、前列ヘッダ13および後列ヘッダ23の内部に垂直仕切板14,24を設置することにより、適切な流路断面積Af,Arを設定することもできる。垂直仕切板14,24のうちいずれか一方のみが設置されてもよい。 As shown in FIG. 5, by installing the vertical partitions 14 and 24 inside the front row header 13 and the rear row header 23, it is also possible to set appropriate channel cross-sectional areas Af and Ar. Only one of the vertical partition plates 14 and 24 may be installed.
 垂直仕切板14は、図5の紙面に直交する上下方向D1に沿って起立しており、前列ヘッダ13の内部を、導入部131側の区画141と、扁平管11側の区画142とに仕切っている。
 導入部131から区画141に導入された冷媒は、垂直仕切板14の下端部を厚み方向に貫通する開口14Aを通じて、区画142へと流入し、区画142内を上方へと流れながら各扁平管11へと分配される。
The vertical partition plate 14 stands up along the vertical direction D1 orthogonal to the sheet of FIG. 5 and divides the inside of the front row header 13 into a section 141 on the introduction portion 131 side and a section 142 on the flat tube 11 side. ing.
The refrigerant introduced into the section 141 from the introduction section 131 flows into the section 142 through the opening 14A penetrating the lower end portion of the vertical partition plate 14 in the thickness direction, and flows in the section 142 upward while each flat tube 11 To be distributed.
 垂直仕切板24も、上述の垂直仕切板14と同様に構成されており、後列ヘッダ23の内部を、導入部231側の区画241と、扁平管11側の区画242とに仕切っている。垂直仕切板24の下端部には開口24Aが形成されている。 The vertical partition plate 24 is also configured in the same manner as the above-described vertical partition plate 14, and partitions the inside of the rear row header 23 into a section 241 on the introduction portion 231 side and a section 242 on the flat tube 11 side. An opening 24A is formed at the lower end portion of the vertical partition plate 24.
 垂直仕切板14と扁平管11との間の間隙の寸法G1と比べて、垂直仕切板24と扁平管11の端部との間の間隙の寸法G2が大きくなるように、垂直仕切板14,24の位置を設定すると、前列ヘッダ13の区画142の流路断面積Afよりも大きい流路断面積Arを、後列ヘッダ23の区画242に与えることができる。 The vertical partition plate 14, so that the dimension G2 of the gap between the vertical partition plate 24 and the end of the flat tube 11 is larger than the dimension G1 of the gap between the vertical partition plate 14 and the flat tube 11, When the position 24 is set, a flow passage cross-sectional area Ar larger than the flow passage cross-sectional area Af of the section 142 of the front row header 13 can be given to the section 242 of the rear row header 23.
(本実施形態による作用)
 図2に示すように、冷媒回路の配管から導入部131を通じて前列ヘッダ13Aの内部へと所定の流量で流入した冷媒は、前列ヘッダ13Aの流路断面積Afに対応する流速Vfで前列ヘッダ13Aの内部を上方に向けて流れつつ、前列の各扁平管11へと分配される。
(Operation according to the present embodiment)
As shown in FIG. 2, the refrigerant having flowed from the piping of the refrigerant circuit into the inside of the front row header 13A through the introduction portion 131 at a predetermined flow rate has a flow velocity Vf corresponding to the flow passage sectional area Af of the front row header 13A. It distributes to each flat tube 11 of front row, flowing toward the inside of the above.
 一方、冷媒回路の配管から導入部231を通じて後列ヘッダ23Aの内部へと、前列ヘッダ13Aの導入部131へ流入する冷媒と同じ流量で流入した冷媒は、後列ヘッダ23Aの流路断面積Arに対応する流速Vrで後列ヘッダ23Aの内部を上方に向けて流れつつ、後列の各扁平管11へと分配される。 On the other hand, the refrigerant flowing from the refrigerant circuit piping into the rear row header 23A through the introduction portion 231 at the same flow rate as the refrigerant flowing into the introduction portion 131 of the front row header 13A corresponds to the flow passage cross-sectional area Ar of the rear row header 23A. It distributes to each flat tube 11 of a back row, flowing toward the inside of back row header 23A upwards at the flow velocity Vr which carries out.
 ここで、導入部131を通じて前列ヘッダ13内へ流入する冷媒と、導入部231を通じて後列ヘッダ23内へ流入する冷媒との流量が同じであり、流路断面積がAf<Arであることにより、流速はVf>Vrとなる。つまり、前列ヘッダ13Aを流れる冷媒の流速Vfは、後列ヘッダ23Aを流れる冷媒の流速Vrよりも大きい。
 図2にグレー色で示す矢印の長さが、流速Vf,Vrの相対的な大きさを模式的に表している。
Here, the flow rates of the refrigerant flowing into the front row header 13 through the introduction portion 131 and the refrigerant flowing into the rear row header 23 through the introduction portion 231 are the same, and the flow passage cross-sectional area is Af <Ar. The flow velocity is Vf> Vr. That is, the flow velocity Vf of the refrigerant flowing through the front row header 13A is larger than the flow velocity Vr of the refrigerant flowing through the rear row header 23A.
The length of the arrow shown in gray in FIG. 2 schematically represents the relative magnitude of the flow velocity Vf, Vr.
 前列ヘッダ13Aおよび後列ヘッダ23Aには、冷媒回路の減圧部を経ることで膨張した気液二相流の冷媒が流入する。その冷媒の気相分を気相冷媒、液相分を液相冷媒と称する。液相冷媒は、浮上する気相冷媒に巻き込まれて上方へと運ばれる。気相冷媒の密度よりも液相冷媒の密度が大きいため、前列ヘッダ13Aおよび後列ヘッダ23Aのそれぞれにおいて、気相冷媒と液相冷媒との上下方向D1における分布が偏り易い。
 こうした気相冷媒と液相冷媒との分布状況は、流速Vf,Vrの相違に基づいて、前列ヘッダ13Aと後列ヘッダ23Aとで相違する。
The refrigerant of the gas-liquid two-phase flow expanded by passing through the pressure reducing portion of the refrigerant circuit flows into the front row header 13A and the rear row header 23A. The gas phase of the refrigerant is referred to as gas phase refrigerant, and the liquid phase is referred to as liquid phase refrigerant. The liquid phase refrigerant is entrained in the floating gas phase refrigerant and carried upward. Since the density of the liquid phase refrigerant is larger than the density of the gas phase refrigerant, the distribution of the gas phase refrigerant and the liquid phase refrigerant in the vertical direction D1 tends to be uneven in each of the front row header 13A and the rear row header 23A.
The distribution of the gas phase refrigerant and the liquid phase refrigerant is different between the front row header 13A and the rear row header 23A based on the difference between the flow rates Vf and Vr.
 流速Vfの大きい前列ヘッダ13Aでは、相対的に流速Vrの小さい後列ヘッダ23Aと比べ、液相冷媒がより上方にまで運ばれる。そのため、前列ヘッダ13Aの下端から上端までの流路の上部において、気相冷媒に対する液相冷媒の割合が相対的に高く、当該流路の下部において、気相冷媒に対する液相冷媒の割合が低い。扁平管11を流れる間に気相へと相転移する液相冷媒は、潜熱に基づき、空気から吸熱する。この液相冷媒の流量割合が高いと、空気と冷媒との間の伝熱量が大きい。
 図2に示すグレーの矢印の幅は、流量基準の気相冷媒に対する液相冷媒の割合を表している。かかる液相冷媒の流量割合は、前列ヘッダ13Aでは、下方から上方に向かうにつれて次第に増大する。
In the front row header 13A having a large flow velocity Vf, the liquid phase refrigerant is carried further upward compared to the rear row header 23A having a relatively small flow velocity Vr. Therefore, in the upper part of the flow path from the lower end to the upper end of the front row header 13A, the ratio of liquid phase refrigerant to the gas phase refrigerant is relatively high, and in the lower part of the flow path, the ratio of liquid phase refrigerant to the gas phase refrigerant is low . The liquid-phase refrigerant that undergoes a phase transition to the gas phase while flowing through the flat tube 11 absorbs heat from air due to the latent heat. When the flow rate ratio of the liquid phase refrigerant is high, the amount of heat transfer between the air and the refrigerant is large.
The width of the gray arrow shown in FIG. 2 represents the ratio of liquid phase refrigerant to gas phase refrigerant on a flow rate basis. In the front row header 13A, the flow rate ratio of the liquid phase refrigerant gradually increases from the lower side to the upper side.
 一方、流速Vrの小さい後列ヘッダ23Aでは、前列ヘッダ13Aと比べ、液相冷媒が上方まで運ばれ難いため、導入部231から液相冷媒が十分に運ばれる範囲が、後列ヘッダ23Aの流路の下部に留まる。
 そのため、上述の前列ヘッダ13Aとは逆に、後列ヘッダ23Aの流路の下部において、気相冷媒に対する液相冷媒の割合が高く、当該流路の上部において、気相冷媒に対する液相冷媒の割合が低い。
On the other hand, in the rear row header 23A having a small flow velocity Vr, the liquid phase refrigerant is less likely to be carried upward as compared to the front row header 13A, so the range where the liquid phase refrigerant is sufficiently carried from the introduction portion 231 is the flow path of the rear row header 23A. Stay at the bottom.
Therefore, contrary to the above-described front row header 13A, the ratio of liquid phase refrigerant to gas phase refrigerant is high at the lower portion of the flow path of rear row header 23A, and the ratio of liquid phase refrigerant to gas phase refrigerant at the upper portion of the flow path Is low.
 以上より、前列Fの各扁平管11へと前列ヘッダ13Aから分配される液相冷媒の分配状況、および後列Rの各扁平管11へと後列ヘッダ23Aから分配される液相冷媒の分配状況のいずれにも、上下方向D1における偏りが異なる態様で認められる。 From the above, the distribution condition of the liquid phase refrigerant distributed from the front row header 13A to each flat tube 11 of the front row F and the distribution condition of the liquid phase refrigerant distributed from the rear row header 23A to each flat tube 11 of the rear row R In either case, the bias in the vertical direction D1 is recognized in a different manner.
 図3は、熱交換器1に導入される冷媒の流量が少ない場合(a)と、中程度の場合(b)と、多い場合(c)とにおいて、実験結果に基づき、前列Fおよび後列Rのそれぞれの各扁平管11へ流入した冷媒中の液相冷媒の流量割合(気相冷媒に対する流量比)を示している。前列ヘッダ13Aおよび後列ヘッダ23Aのそれぞれ最も上方に位置する扁平管11から下方へと順に、1,2,3,・・・と番号を与えている。なお、図3(a)~(c)のデータを得る実験では、7本の扁平管11をそれぞれ備えた前列熱交換要素および後列熱交換要素を使用した。 FIG. 3 shows the front row F and the rear row R based on the experimental results in the cases where the flow rate of the refrigerant introduced into the heat exchanger 1 is small (a), medium (b) and large (c). The flow rate ratio (flow rate ratio to the gas phase refrigerant) of the liquid phase refrigerant in the refrigerant which has flowed into each of the flat tubes 11 of each is shown. The numbers 1, 2, 3,... Are sequentially given downward from the flat tube 11 located at the top of each of the front row header 13A and the rear row header 23A. In the experiments for obtaining the data in FIGS. 3 (a) to 3 (c), a front row heat exchange element and a rear row heat exchange element provided with seven flat tubes 11 were used.
 図3(a)~(c)のいずれも、前列Fでは、扁平管11が上方に位置する程、流入する液相冷媒の割合が高く、逆に、後列Rでは、扁平管11が下方に位置する程、流入する液相冷媒の割合が高いという、上述と同様の傾向を示している。
 図3(a)~(c)より、冷媒流量が多くなる程、前列Fの上下方向D1における液相冷媒の流量割合の偏りの度合が大きくなる。また、逆に、後列Rの上下方向D1における液相冷媒の流量割合の偏りの度合は、冷媒流量が多くなる程、小さくなる。この傾向は、前列ヘッダ13の流路断面積が後列ヘッダ23の流路断面積よりも小さいことから定性的に成り立つ。
In any of FIGS. 3A to 3C, in the front row F, the ratio of the liquid phase refrigerant flowing in is higher as the flat tube 11 is positioned higher, and conversely, in the rear row R, the flat tube 11 is downward. The same tendency as the above-mentioned shows that the ratio of the liquid phase refrigerant which flows in is so high that it is located.
As shown in FIGS. 3A to 3C, the degree of deviation of the flow rate ratio of the liquid-phase refrigerant in the vertical direction D1 of the front row F increases as the refrigerant flow rate increases. Also, conversely, the degree of deviation of the flow rate ratio of the liquid phase refrigerant in the vertical direction D1 of the rear row R decreases as the flow rate of the refrigerant increases. This tendency holds qualitatively because the flow passage cross-sectional area of the front row header 13 is smaller than the flow passage cross-sectional area of the rear row header 23.
 図3(c)に係る流量としては、着霜が発生し易い状況、例えば、冬期における空調機の暖房運転状況下における熱交換器1の流量が想定されている。このように流量が大きいと、図3(c)のように、前列Fにおいて液相冷媒の上方への偏在が顕著となる。このとき、前列Fの熱交換要素10では、上段を主体として熱交換が行われる。 As the flow rate according to FIG. 3C, a flow rate of the heat exchanger 1 under a condition where frost formation tends to occur, for example, a heating operation condition of an air conditioner in the winter season is assumed. When the flow rate is large as described above, as shown in FIG. 3C, the uneven distribution of the liquid-phase refrigerant in the front row F becomes remarkable. At this time, in the heat exchange element 10 of the front row F, heat exchange is performed mainly with the upper stage.
(本実施形態による効果)
 本実施形態では、上述したように、前列ヘッダ13と後列ヘッダ23との流路断面積Af,Arを異ならせることにより、前列Fと後列Rとの液相冷媒に、異なる分布を与えている。そうすることで、熱交換器1の全体として、伝熱損失を抑えて熱交換性能を確保する。
(Effect by this embodiment)
In the present embodiment, as described above, by making the channel cross-sectional areas Af and Ar of the front row header 13 and the rear row header 23 different, different distributions are given to the liquid phase refrigerants of the front row F and the rear row R. . By doing so, as a whole of the heat exchanger 1, the heat transfer loss is suppressed and the heat exchange performance is secured.
 図4および図2を参照し、本実施形態の作用を説明する。本実施形態によれば、前列Fおよび後列Rのそれぞれとしては、各扁平管11へ分配される冷媒の液相流量割合に偏りが存在するとしても、熱交換器1の全体として、伝熱量の均一化を図り、熱交換器の容量の制約等がある中でも必要な熱交換性能を確保する。 The operation of the present embodiment will be described with reference to FIGS. 4 and 2. According to the present embodiment, as each of the front row F and the rear row R, even if there is a bias in the liquid phase flow rate ratio of the refrigerant distributed to each flat tube 11, the heat transfer amount of the heat exchanger 1 as a whole Achieve uniformity, and secure necessary heat exchange performance even when there are restrictions on the heat exchanger capacity.
 流速が大きい前列ヘッダ13(図2)内では、液相冷媒が十分に上方まで運ばれるため、前列ヘッダ13から冷媒が分配された前列Fの扁平管11のうち、液相冷媒の流量割合が大きい上段側の扁平管11を流れる冷媒と空気との間の伝熱量が大きいのに対し、下部における伝熱量は小さい。
 一方、前列ヘッダ13と比べて流速が小さい後列ヘッダ23(図2)では、液相冷媒がさほど上方まで運ばれないため、後列ヘッダ23から冷媒が分配された後列Rの扁平管11のうち、液相冷媒の流量割合が大きい下段側の扁平管11を流れる冷媒と空気との間の伝熱量が大きいのに対し、上部における伝熱量は小さい。
In the front row header 13 (FIG. 2) where the flow velocity is high, the liquid phase refrigerant is carried sufficiently upward, so the flow ratio of the liquid phase refrigerant in the flat tubes 11 of the front row F to which the refrigerant is distributed from the front row header 13 is While the amount of heat transfer between the refrigerant flowing through the large upper-side flat tube 11 and the air is large, the amount of heat transfer at the lower portion is small.
On the other hand, in the rear row header 23 (FIG. 2) in which the flow velocity is smaller than that of the front row header 13, the liquid phase refrigerant is not transported to the upper side so much, the flat tube 11 of the rear row R to which the refrigerant is distributed from the rear row header 23 While the amount of heat transfer between the refrigerant flowing through the lower flat tube 11 having a large flow ratio of the liquid phase refrigerant and the air is large, the amount of heat transfer at the upper portion is small.
 図4に示す矢印1に沿って流れる空気は、前列Fの伝熱量が小さい下段側と、後列Rの伝熱量が大きい下段側とを通過する。ここで、液相冷媒の流量割合が低い前列Fの下段側を通過した空気が、冷媒へと十分に放熱されていないとしても、前列Fに続いて流入する後列Rの下段側の扁平管11には、その空気を十分に放熱させるのに足りる量の液相冷媒が流れている。 The air flowing along the arrow 1 shown in FIG. 4 passes through the lower side where the heat transfer amount of the front row F is small and the lower side where the heat transfer amount of the rear row R is large. Here, even if the air passing through the lower side of the front row F having a low flow rate ratio of the liquid phase refrigerant is not sufficiently dissipated to the refrigerant, the flat tubes 11 on the lower side of the rear row R flowing following the front row F There is a flow of liquid-phase refrigerant in an amount sufficient to dissipate the air sufficiently.
 また、図4に示す矢印2に沿って流れる空気は、前列Fの伝熱量が大きい上段側と、後列Rの伝熱量が小さい上段側とを通過する。ここで、前列Fの上段側において、液相冷媒の流量割合の高い冷媒へと既に放熱された空気が、後列Rに流入する。そのため、流入した後列Rの上段側の扁平管11には、前列Fで放熱された後の空気との熱交換に相応の量の液相冷媒が流れていれば足りる。 Further, the air flowing along the arrow 2 shown in FIG. 4 passes through the upper side where the heat transfer amount of the front row F is large and the upper side where the heat transfer amount of the rear row R is small. Here, on the upper side of the front row F, air that has already been radiated to the refrigerant having a high flow ratio of the liquid phase refrigerant flows into the rear row R. Therefore, it is sufficient for the flat tubes 11 on the upper row side of the rear row R which has flowed in to flow the heat exchange with the air after being dissipated in the front row F so as to have a suitable amount of liquid phase refrigerant.
 以上より、前列Fの上段側および下段側、後列Rの上段側および下段側を合わせた熱交換器1の全体に亘り、伝熱損失を避けつつ、伝熱面が有効活用されるので、熱交換器1が小型であっても熱交換性能を十分に確保することができる。本実施形態のように、前列ヘッダ13および後列ヘッダ23に流速差を与えることで、上述のように、前列Fおよび後列Rの全体として上下方向D1における伝熱量のバランスをとることができる。そうすることで、冷媒分配の偏りによる熱交換性能の低下を回避できるため、冷媒分布を均一化するためにヘッダ13,23内に水平仕切板を設置する必要がない。そのため、部品点数の増大を免れるので、熱交換器1の製造コストを抑えることができる。 From the above, the heat transfer surface is effectively utilized while avoiding the heat transfer loss over the entire heat exchanger 1 in which the upper and lower sides of the front row F and the upper and lower sides of the rear row R are combined. Even if the exchanger 1 is small, sufficient heat exchange performance can be ensured. As described above, by providing the flow velocity difference to the front row header 13 and the rear row header 23 as in the present embodiment, it is possible to balance the amount of heat transfer in the vertical direction D1 as a whole of the front row F and the rear row R. By doing so, a decrease in heat exchange performance due to uneven distribution of the refrigerant can be avoided, and it is not necessary to install horizontal partition plates in the headers 13 and 23 in order to make the refrigerant distribution uniform. Therefore, since the increase in the number of parts is avoided, the manufacturing cost of the heat exchanger 1 can be suppressed.
 本実施形態とは逆に、流路断面積をAf>Arとなるように定めて、前列ヘッダ13の流速Vfが後列ヘッダ23の流速Vrよりも小さくなるようにしても、冷媒分配の偏りによる性能低下を避ける観点からは、本実施形態の同様の効果を得ることができる。 Contrary to the present embodiment, even if the flow passage cross-sectional area is set to Af> Ar so that the flow velocity Vf of the front row header 13 becomes smaller than the flow velocity Vr of the rear row header 23, the refrigerant distribution is uneven From the viewpoint of avoiding the performance degradation, the same effect as that of the present embodiment can be obtained.
 さらに、本実施形態は、冷媒分配の偏りに起因する性能低下に加えて、着霜による性能低下にも対応する。空調機の室外熱交換器に使用された熱交換器1において、暖房運転時に熱源である外気の温度が低いと、接触する空気との温度差が後列Rよりも大きい前列Fから着霜が進行する。あるいは、冷蔵・冷凍ショーケース等や冷蔵・冷凍庫等の庫内熱交換器等、熱負荷の冷却に使用される熱交換器1にも着霜が発生する場合があり、その場合も、前列Fから着霜が進行する。 Furthermore, in addition to the performance reduction due to the uneven distribution of the refrigerant, the present embodiment also copes with the performance reduction due to frost formation. In the heat exchanger 1 used for the outdoor heat exchanger of the air conditioner, frost formation proceeds from the front row F where the temperature difference with the contacting air is larger than the rear row R when the temperature of the outside air which is the heat source is low during heating operation. Do. Alternatively, frost may occur on the heat exchanger 1 used to cool the heat load, such as a refrigerator / freezer showcase or the like and an internal heat exchanger such as a refrigerator / freezer, etc. Also in this case, the front row F Frost formation progresses from.
 着霜による性能低下を避ける観点からは、本実施形態と同様に、前列ヘッダ13の流速Vfが後列ヘッダ23の流速Vrよりも大きくなるように、ヘッダ13,23の流速Vf,Vrの関係を特定するのが良い。そして、前列Fと後列Rとに同じ流量の冷媒が導入される本実施形態においては、流路断面積がAf<Arに特定される。 From the viewpoint of avoiding the performance decrease due to frost formation, the relationship between the flow velocities Vf and Vr of the headers 13 and 23 is set so that the flow velocity Vf of the front row header 13 becomes larger than the flow velocity Vr of the rear row header 23 as in the present embodiment. It is good to identify. Then, in the present embodiment in which the same flow rate of refrigerant is introduced to the front row F and the rear row R, the channel cross-sectional area is specified as Af <Ar.
 着霜が発生し易い前列Fの中でも、液相流量割合の大きい上段側は、液相流量割合が大きい冷媒により空気が十分に冷却されるため、着霜し易いのに対して、前列Fでも下段側は着霜し難い。つまり、上下方向D1における前列Fの液相流量割合の偏り(例えば、図3(c))と同様の着霜の偏りが見られる。 Among the front row F where frost formation tends to occur, the air on the upper side with a large liquid phase flow rate is sufficiently cooled by the refrigerant having a large liquid phase flow rate, so it is easy to form frost. The lower side is hard to frost. That is, the same bias of frost formation as the bias (for example, FIG.3 (c)) of the liquid phase flow rate ratio of front row F in the up-down direction D1 is seen.
 ここで、図3(c)に示すように液相流量割合が大きい前列Fの上段側の着霜が進行し、霜により風路が閉塞されることで後列Rの上段側の風量が低下したとする。しかし、この時点で、前列Fの下段側は着霜があまり進行していないので、少なくとも、前列Fの下段側の風下となる後列Rの下段側では風量が維持できている。
 つまり、着霜により上段側の熱交換能力が後列Rを含めて失われた後も、下段側においては、後列Rへと空気が送られ、霜の付着していない後列R下段側の伝熱面により熱交換能力が残されているので、除霜運転に切り替わるまでの時間が延長される。
 本実施形態によれば、着霜による伝熱損失も抑えることで、除霜運転による暖房運転等の中断を避けて、暖房運転等を継続することができる。
Here, as shown in FIG. 3C, the frost formation on the upper row side of the front row F having a large liquid phase flow rate proceeds, and the air passage is blocked by the frost, so the air volume on the upper row side of the rear row R decreases. I assume. However, at this time, since frost formation has not progressed so much on the lower side of the front row F, the air volume can be maintained at least on the lower side of the rear row R, which is downwind on the lower side of the front row F.
That is, even after the heat exchange capacity on the upper row side is lost including the rear row R due to frost formation, air is sent to the rear row R on the lower row side, and the heat transfer on the lower row side on the rear row R where the frost is not attached Since the heat exchange capacity is left by the surface, the time until switching to the defrosting operation is extended.
According to the present embodiment, by suppressing heat transfer loss due to frost formation, heating operation and the like can be continued without interruption of heating operation and the like due to the defrosting operation.
 図6は、前列ヘッダ13と比べて径の大きい後列ヘッダ23に挿入される扁平管11に、前列Fの扁平管11の幅Dfよりも広い幅Drを与えた例を示している。伝熱面積を向上させるため、後列ヘッダ23の径と同程度にまで、空気の流れの方向における扁平管11の幅Drを大きく確保することが好ましい。後列Rの扁平管11の幅Drを拡げることで、熱交換器1の設置に必要なスペースは変えずに、熱交換器1の能力を向上させることができる。
 なお、後列Rの扁平管11の幅Drを拡げる代わりに、幅方向に2本の扁平管11を並べてもよい。
FIG. 6 shows an example in which a width Dr larger than the width Df of the flat tube 11 of the front row F is given to the flat tube 11 inserted into the rear row header 23 having a larger diameter than the front row header 13. In order to improve the heat transfer area, it is preferable to secure a large width Dr of the flat tube 11 in the air flow direction to the same extent as the diameter of the rear row header 23. By expanding the width Dr of the flat tubes 11 in the rear row R, the capacity of the heat exchanger 1 can be improved without changing the space required for the installation of the heat exchanger 1.
Note that, instead of expanding the width Dr of the flat tubes 11 in the rear row R, two flat tubes 11 may be arranged in the width direction.
〔第2実施形態〕
 次に、図7を参照し、本発明の第2実施形態について説明する。
 第2実施形態では、直列に接続された複数のパスを備えた熱交換器への適用例を示す。
 図7(a)に示す熱交換器2は、直列に接続されたパスに相当する熱交換要素10,20を備えている。この点、第1実施形態の熱交換器1の熱交換要素10,20が冷媒回路の配管に対して並列に接続されるのとは相違する。
Second Embodiment
Next, a second embodiment of the present invention will be described with reference to FIG.
The second embodiment shows an application example to a heat exchanger having a plurality of paths connected in series.
The heat exchanger 2 shown in FIG. 7A includes heat exchange elements 10 and 20 corresponding to paths connected in series. This point is different from the fact that the heat exchange elements 10 and 20 of the heat exchanger 1 of the first embodiment are connected in parallel with the piping of the refrigerant circuit.
 図7(a)では、熱交換要素10,20を模式的に示しているが、熱交換要素10,20は、第1実施形態(図1)と同様に構成されている。
 つまり、前列熱交換要素10は、図1に示すように、扁平管11、フィン12、および前列ヘッダ13を備えている。後列熱交換要素20も、扁平管11、フィン12、および後列ヘッダ23を備えている。前列ヘッダ13の流路断面積Afは、後列ヘッダ23の流路断面積Arよりも小さいため、前列ヘッダ13の冷媒流速Vfが、後列ヘッダ23の冷媒流速Vrよりも大きい。
 この流速差に基づいて、第1実施形態と同様、前列Fおよび後列Rの全体として上下方向D1の伝熱量のバランスが図られるとともに、着霜時に除霜運転に切り替わるまでの時間を遅らせることができる。
FIG. 7A schematically shows the heat exchange elements 10 and 20, but the heat exchange elements 10 and 20 are configured in the same manner as the first embodiment (FIG. 1).
That is, the front row heat exchange element 10 is provided with the flat tube 11, the fins 12, and the front row header 13 as shown in FIG. 1. The rear row heat exchange element 20 also comprises a flat tube 11, fins 12 and a rear row header 23. Since the flow passage cross-sectional area Af of the front row header 13 is smaller than the flow passage cross-sectional area Ar of the rear row header 23, the refrigerant flow velocity Vf of the front row header 13 is larger than the refrigerant flow velocity Vr of the rear row header 23.
As in the first embodiment, the heat transfer amount in the vertical direction D1 is achieved as a whole in the front row F and the rear row R based on the flow velocity difference, and the time until switching to the defrosting operation at the time of frost formation is delayed. it can.
 さて、後列熱交換要素20は、最上流の第1パスP1に相当する。前列熱交換要素10は、第1パスP1に続く第2パスP2に相当する。ここでは、第2パスP2が最下流のパスである。
 最上流パスP1から冷媒が流入し、最下流のパスP2まで流れる間に、冷媒の乾き度が増大する。
The rear heat exchange element 20 corresponds to the most upstream first pass P1. The front row heat exchange element 10 corresponds to a second pass P2 following the first pass P1. Here, the second path P2 is the most downstream path.
While the refrigerant flows from the most upstream path P1 and flows to the most downstream path P2, the dryness of the refrigerant increases.
 図示しない冷媒配管から第1パスP1の後列ヘッダ23A(図1)へと冷媒が導入されると、後列ヘッダ23Aから、後列Rの各扁平管11へと冷媒が分配される。それらの扁平管11をそれぞれ流れた冷媒は、後列ヘッダ23B(図1)の内部で合流し、U字管17を通って前列Fの第2パスP2へと流入する。そして、第2パスP2の前列ヘッダ13B(図1)内から、前列Fの各扁平管11へと冷媒が分配され、それらの扁平管11をそれぞれ流れた冷媒は、前列ヘッダ13A(図1)から冷媒配管へと流出する。 When the refrigerant is introduced from the refrigerant piping (not shown) to the rear row header 23A (FIG. 1) of the first path P1, the refrigerant is distributed from the rear row header 23A to the flat tubes 11 of the rear row R. The refrigerant flowing through the flat tubes 11 merges inside the rear row header 23B (FIG. 1), and flows into the second path P2 of the front row F through the U-shaped tube 17. Then, the refrigerant is distributed from the inside of the front row header 13B (FIG. 1) of the second pass P2 to the flat tubes 11 of the front row F, and the refrigerant flowing through those flat tubes 11 is the front row header 13A (FIG. 1) Flow out to the refrigerant piping.
 ここで、冷媒が空気から吸熱して乾き度が増大すると、液相流量割合の絶対量が減少するため、特に、最下流のパスP2のヘッダ内部に臨む上段側の扁平管11へ液相冷媒を流入させることが難しい。
 図7(c)および図7(d)は、いずれも、実験に基づき、冷媒の乾き度が高い場合の液相冷媒分布を示しているが、(c)と(d)ではヘッダの流路断面積が相違する。図7(c)は、ヘッダの流路断面積が典型的な大きさ(例えば、図8のAm)である場合を示し、図7(d)は、ヘッダの流路断面積が典型的な大きさよりも小さい場合を示す。図7(c)、(d)共に、冷媒流量は同一であるため、流路断面積が小さい方が(図7(d))、ヘッダ内の流速が大きい。そのため、図7(d)では、相対的に流速が小さい図7(c)と比べて、より上方の扁平管11まで液相冷媒が到達する。
Here, when the refrigerant absorbs heat from the air and the dryness increases, the absolute amount of the liquid phase flow rate ratio decreases, so in particular, the liquid phase refrigerant to the flat tube 11 on the upper side facing the inside of the header of the most downstream path P2. It is difficult to make
7 (c) and 7 (d) show the distribution of the liquid phase refrigerant in the case where the dryness of the refrigerant is high based on the experiment, but in (c) and (d), the flow path of the header Cross section is different. FIG. 7 (c) shows the case where the flow passage cross section of the header has a typical size (for example, Am in FIG. 8), and FIG. 7 (d) shows the flow passage cross section of the header is typical. The case where it is smaller than the size is shown. 7C and 7D, since the flow rate of the refrigerant is the same, the flow velocity in the header is larger when the flow passage cross-sectional area is smaller (FIG. 7D). Therefore, in FIG. 7 (d), the liquid-phase refrigerant reaches the flat tube 11 above as compared to FIG. 7 (c) having a relatively low flow velocity.
 それを踏まえて、図7(a)に示すように、乾き度が最も高くなる最下流のパスP2が前列Fに配置されている。流路断面積が小さいため流速が大きい前列ヘッダ13では、液相冷媒を十分に上方まで持ち上げて、上方に位置する扁平管11へと流入させることができる。そのため、最下流のパスP2の伝熱面も十分に利用して性能に寄与することができる。 Based on that, as shown in FIG. 7A, the most downstream path P2 with the highest dryness is arranged in the front row F. In the front row header 13 with a large flow velocity because the flow passage cross-sectional area is small, the liquid-phase refrigerant can be lifted sufficiently upward to flow into the flat tube 11 positioned above. Therefore, the heat transfer surface of the most downstream path P2 can be sufficiently utilized to contribute to the performance.
〔第2実施形態の変形例〕
 図7(b)に示すように、熱交換器2Aが、直列に接続された3つ以上のパスを備えている場合は、図7(a)と同様に最下流の第4パスP4を前列Fに配置するとともに、最上流の第1パスP1も前列Fに配置することが好ましい。
 第2パスP2および第3パスP3は、後列Rに配置される。
Modification of Second Embodiment
As shown in FIG. 7 (b), when the heat exchanger 2A includes three or more paths connected in series, the fourth path P4 on the most downstream side in the front row is the same as in FIG. 7 (a). It is preferable to arrange in the front row F as well as arrange in the front row F while arranging in the F.
The second pass P2 and the third pass P3 are arranged in the rear row R.
 熱交換器2Aは、4つのパスP1~P4を備えている。上流側の第1パスP1および第2パスP2は熱交換器2Aにおける下部に位置し、下流側の第3パスP3および第4パスP4は熱交換器2Aにおける上部に位置している。
 熱交換器2Aにおける直列回路の上流側では、乾き度が増大した下流側と比べて液相が多いため、同一流路断面積での圧力損失が下流側よりも小さい。そのため、下流側のパスP3,P4と比べて上流側のパスP1,P2の流路断面積を圧力損失が過大にならない程度に抑え(段数(扁平管11の数)を減らし)、それによって熱交換器2Aの高さを抑えている。
The heat exchanger 2A has four paths P1 to P4. The first pass P1 and the second pass P2 on the upstream side are located in the lower part of the heat exchanger 2A, and the third pass P3 and the fourth path P4 on the downstream side are located in the upper part of the heat exchanger 2A.
On the upstream side of the series circuit in the heat exchanger 2A, the liquid phase is more than that on the downstream side where the dryness is increased, so the pressure loss at the same channel cross-sectional area is smaller than on the downstream side. Therefore, the flow path cross-sectional area of the upstream paths P1 and P2 is suppressed to the extent that the pressure loss does not become excessive compared to the downstream paths P3 and P4 (the number of stages (the number of flat tubes 11) is reduced). The height of the exchanger 2A is reduced.
 図7(b)でも、熱交換要素10,20を模式的に示しているが、熱交換要素10,20は、第1実施形態(図1)と同様に構成されている。
 前列ヘッダ13と後列ヘッダ23との流速差に基づいて、第1実施形態と同様、前列Fおよび後列Rの全体として伝熱量のバランスが図られるとともに、着霜時に除霜運転に切り替わるまでの時間を遅らせることができる。
Although FIG. 7 (b) also schematically shows the heat exchange elements 10 and 20, the heat exchange elements 10 and 20 are configured in the same manner as the first embodiment (FIG. 1).
Based on the flow velocity difference between the front row header 13 and the rear row header 23, as in the first embodiment, the heat transfer amount is balanced as a whole in the front row F and the rear row R, and the time until switching to the defrosting operation at the time of frost formation Can be delayed.
 図7(b)に示す構成において、第1パスP1のヘッダ13A(図1)へと冷媒が導入されると、前列ヘッダ13Aから、前列Fの各扁平管11へと冷媒が分配され、それらの扁平管11をそれぞれ流れた冷媒は、前列ヘッダ13B(図1)の内部で合流し、U字管181を通って後列Rの第2パスP2へと流入する。そして、第2パスP2の後列ヘッダ23B内から、各扁平管11へと冷媒が分配され、それらの扁平管11をそれぞれ流れた冷媒は、後列ヘッダ23AからU字管182を通って上段側の第3パスP3の後列ヘッダ23Aへと流入する。さらに、第3パスP3の扁平管11を流れ、U字管183を通って第4パスP4の前列ヘッダ13Bへと流入する。そして、第4パスP4の扁平管11を流れて冷媒配管へと流出する。 In the configuration shown in FIG. 7 (b), when the refrigerant is introduced into the header 13A (FIG. 1) of the first path P1, the refrigerant is distributed from the front row header 13A to the flat tubes 11 of the front row F. The refrigerants flowing through the flat tubes 11 join together in the front row header 13B (FIG. 1), and flow into the second path P2 of the rear row R through the U-shaped tube 181. Then, the refrigerant is distributed to the flat tubes 11 from the rear row header 23B of the second pass P2, and the refrigerant flowing through the flat tubes 11 passes from the rear row header 23A through the U-shaped tube 182 to the upper row side. It flows into the back row header 23A of the third pass P3. Furthermore, it flows through the flat pipe 11 of the third pass P3 and flows into the front row header 13B of the fourth path P4 through the U-shaped pipe 183. Then, it flows through the flat pipe 11 of the fourth pass P4 and flows out to the refrigerant pipe.
 図7(b)に示す構成によれば、図7(a)に示す第2実施形態と同様に、乾き度が最も高くなる最下流のパスP4が前列Fに配置されていることで、最下流のパスP4の伝熱面も十分に利用して性能に寄与することができる。
 それに加えて、ヘッダ13に流入する冷媒の乾き度が最も低いため冷媒圧損が相対的に小さい最上流のパスP1のヘッダ13、特にパスP1の入口のヘッダ13Aの流路断面積が小さいことで、冷媒圧損に起因する蒸発温度の上昇を抑制することができる。蒸発温度の上昇を抑制することで、蒸発性能の低下を避けることができる。
According to the configuration shown in FIG. 7B, as in the second embodiment shown in FIG. 7A, the most downstream path P4 where the dryness is the highest is arranged in the front row F. The heat transfer surface of the downstream path P4 can also be sufficiently utilized to contribute to the performance.
In addition to that, since the dryness of the refrigerant flowing into the header 13 is the lowest, the flow path cross-sectional area of the header 13 of the most upstream path P1 having a relatively small refrigerant pressure loss, especially the header 13A at the inlet of the path P1 is small. As a result, it is possible to suppress the rise of the evaporation temperature caused by the refrigerant pressure loss. By suppressing the rise of the evaporation temperature, it is possible to avoid the deterioration of the evaporation performance.
〔第3実施形態〕
 次に、図8を参照し、本発明の第3実施形態について説明する。
 図8(a)に示す第3実施形態の熱交換器3は、第1実施形態の熱交換器1(図2)と同様に、前列熱交換要素10と、後列熱交換要素20とを備えている。
 前列ヘッダ13の流速Vfが後列ヘッダ23の流速Vrよりも大きくなるように、第1実施形態(図2)では、前列ヘッダ13に、後列ヘッダ23の流路断面積Arよりも小さい流路断面積Afを与えているのに対し、第3実施形態では、前列ヘッダ13および後列ヘッダ23にそれぞれ導入される冷媒の流量を調整可能な分配器15(流量調整部)を使用する。
Third Embodiment
Next, a third embodiment of the present invention will be described with reference to FIG.
Like the heat exchanger 1 (FIG. 2) of the first embodiment, the heat exchanger 3 of the third embodiment shown in FIG. 8A includes the front row heat exchange element 10 and the rear row heat exchange element 20. ing.
In the first embodiment (FIG. 2), the flow passage cross-sectional area smaller than the flow passage cross-sectional area Ar of the rear row header 23 in the first embodiment (FIG. 2) so that the flow velocity Vf of the front row header 13 becomes larger than the flow velocity Vr of the rear row header 23 While the area Af is given, in the third embodiment, a distributor 15 (flow rate adjustment unit) capable of adjusting the flow rate of the refrigerant introduced to the front row header 13 and the rear row header 23 is used.
 キャピラリチューブ等を含んで構成された分配器15は、前列ヘッダ13に流入する冷媒の流量Rfが、後列ヘッダ23に流入する冷媒の流量Rrよりも多くなるように、図示しない冷媒配管から流入した冷媒を所定の流量比で分流させる。
 そうすると、前列ヘッダ13には、流量Rfおよび流路断面積Amに対応する流速Vfが与えられ、後列ヘッダ23には、流量Rrおよび流路断面積Amに対応する流速Vrが与えられる。
 本実施形態において、前列ヘッダ13の流路断面積Amと後列ヘッダ23の流路断面積Amは同等であるため、Rf/Rr=Vf/Vrである。
The distributor 15, which includes capillary tubes and the like, flows from a refrigerant pipe (not shown) so that the flow rate Rf of the refrigerant flowing into the front row header 13 is larger than the flow rate Rr of the refrigerant flowing into the rear row header 23. The refrigerant is diverted at a predetermined flow ratio.
Then, the front row header 13 is provided with the flow velocity Vf corresponding to the flow rate Rf and the flow passage cross sectional area Am, and the rear row header 23 is provided with the flow velocity Rr and the flow velocity Vr corresponding to the flow passage cross sectional area Am.
In the present embodiment, since the flow passage cross-sectional area Am of the front row header 13 and the flow passage cross-sectional area Am of the rear row header 23 are equal, Rf / Rr = Vf / Vr.
 本実施形態によれば、分配器15を備えていることにより、前列ヘッダ13および後列ヘッダ23の流路断面積が同等であるとしても、前列ヘッダ13および後列ヘッダ23に冷媒の流速差を与え、流速の違いによる液相流量割合の上下方向D1における分布に基づいて、第1実施形態と同様の作用効果を得ることができる。
 また、径が等しい同一のヘッダを使用することで、熱交換器3の製造時において、前列熱交換要素10および後列熱交換要素20の組み間違えを未然に防ぐことができる。
According to the present embodiment, by providing the distributor 15, even if the flow passage cross sectional areas of the front row header 13 and the rear row header 23 are equal, the flow velocity difference of the refrigerant is given to the front row header 13 and the rear row header 23. The effect similar to 1st Embodiment can be obtained based on the distribution in the up-down direction D1 of the liquid phase flow rate ratio by the difference in a flow velocity.
In addition, by using the same header having the same diameter, it is possible to prevent the assembly error of the front row heat exchange element 10 and the rear row heat exchange element 20 at the time of manufacturing the heat exchanger 3.
 分配器15に代えて、図8(b)に示すように絞り16(流量調整部)を用いることもできる。図示しない冷媒配管から等しい流量で分流した管路のうち、後列ヘッダ23に導入される一方に、絞り16が設けられている。後列ヘッダ23に向かう冷媒に対して絞り16により圧力損失が与えられることにより、後列ヘッダ23へ導入される冷媒の流量Rrは、前列ヘッダ13へ導入される冷媒の流量Rfよりも小さい。 Instead of the distributor 15, as shown in FIG. 8B, a throttle 16 (flow rate adjusting unit) can be used. Among the pipes branched from the refrigerant piping (not shown) at the same flow rate, the throttle 16 is provided on one side introduced into the rear row header 23. Since the pressure loss is given to the refrigerant directed to the rear row header 23 by the throttle 16, the flow rate Rr of the refrigerant introduced to the rear row header 23 is smaller than the flow rate Rf of the refrigerant introduced to the front row header 13.
〔第4実施形態〕
 次に、図9を参照し、本発明の第4実施形態について説明する。
 図9(a)および(b)は、同一の構成の熱交換器4を示している。図9(a)と(b)は、液相冷媒の分布のイメージのみが異なる。
 第4実施形態の熱交換器4は、前列Fにおいて上下方向D1に積層された2つの熱交換要素10と、後列Rにおいて上下方向D1に積層された2つの熱交換要素20とを備えている。
 この熱交換器4においては、前列熱交換要素10と、後列熱交換要素20とが上下方向D1にシフトして配置されている、前列熱交換要素10と後列熱交換要素20とは、それぞれの下端から上端までの高さが同等に構成されている。
 また、前列熱交換要素10と後列熱交換要素20とは冷媒回路の配管に並列または直列に接続されており、前列熱交換要素10と後列熱交換要素20とに同じ流量の冷媒が流れる。
Fourth Embodiment
Next, a fourth embodiment of the present invention will be described with reference to FIG.
FIGS. 9A and 9B show the heat exchanger 4 of the same configuration. FIGS. 9 (a) and 9 (b) differ only in the image of the distribution of the liquid phase refrigerant.
The heat exchanger 4 according to the fourth embodiment includes two heat exchange elements 10 stacked in the vertical direction D1 in the front row F and two heat exchange elements 20 stacked in the vertical direction D1 in the rear row R. .
In this heat exchanger 4, the front row heat exchange element 10 and the rear row heat exchange element 20 are disposed in such a manner that the front row heat exchange element 10 and the rear row heat exchange element 20 are shifted in the vertical direction D1. The height from the lower end to the upper end is equal.
Further, the front row heat exchange element 10 and the rear row heat exchange element 20 are connected in parallel or in series to the piping of the refrigerant circuit, and the refrigerant having the same flow rate flows through the front row heat exchange element 10 and the rear row heat exchange element 20.
 熱交換器4は、第1実施形態と同様に構成された前列熱交換要素10および後列熱交換要素20を備えている。但し、第1実施形態とは異なり、前列ヘッダ13と後列ヘッダ23とのそれぞれの流路断面積は、同等である。 The heat exchanger 4 includes a front row heat exchange element 10 and a rear row heat exchange element 20 configured in the same manner as the first embodiment. However, unlike the first embodiment, the flow passage cross-sectional areas of the front row header 13 and the rear row header 23 are equal.
 前列熱交換要素10と後列熱交換要素20とが上下方向D1においてシフトしていることで、前列ヘッダ13へ通じる導入部131の位置と、後列ヘッダ23へ通じる導入部231の位置とが、上下方向D1において異なっている。 By shifting the front row heat exchange element 10 and the rear row heat exchange element 20 in the vertical direction D1, the position of the introduction portion 131 leading to the front row header 13 and the position of the introduction portion 231 leading to the rear row header 23 It differs in the direction D1.
 冷媒の流量が少ない場合や、乾き度が高い場合は、図9(a)に液相冷媒の分布のイメージを上下方向D1に沿ったグレー色の矢印で示すように、ヘッダ13,23内にそれぞれ流入した液相冷媒の流速がいずれも遅い。そのため、液相冷媒がヘッダ13,23の下部すなわち下段側の扁平管11に流入し易い。
 一方、冷媒の流量が多い場合や、乾き度が低い場合は、図9(b)に液相冷媒の分布のイメージを上下方向D1に沿ったグレー色の矢印で示すように、液相冷媒の流速がいずれも速い。そのため、液相冷媒がヘッダ13,23の上部すなわち上段側の扁平管11に流入し易い。
When the flow rate of the refrigerant is small or the dryness is high, as shown by the gray arrows along the vertical direction D1 in FIG. 9A, the image of the distribution of the liquid phase refrigerant is in the headers 13 and 23. The flow rates of the liquid phase refrigerant flowing into each are slow. Therefore, the liquid-phase refrigerant is likely to flow into the flat tubes 11 on the lower side of the headers 13 and 23, that is, on the lower side.
On the other hand, when the flow rate of the refrigerant is high or the dryness is low, as shown by the gray arrows along the vertical direction D1 of the liquid phase refrigerant distribution image in FIG. The flow rates are all fast. Therefore, the liquid-phase refrigerant is likely to flow into the upper portions of the headers 13 and 23, ie, the flat tubes 11 on the upper side.
 そうすると、図4を参照して説明したように、前列Fおよび後列Rの全体として上下方向D1の伝熱量のバランスが図られるとともに、着霜時に除霜運転に切り替わるまでの時間を遅らせることができる。
 また、径が等しい同一のヘッダを使用することで、熱交換器4の製造時において、前列熱交換要素10および後列熱交換要素20の組み間違えを未然に防ぐことができる。
As a result, as described with reference to FIG. 4, the heat transfer amount in the vertical direction D1 can be balanced as a whole in the front row F and the rear row R, and the time until switching to the defrosting operation can be delayed at the time of frost formation. .
In addition, by using the same headers having the same diameter, it is possible to prevent the assembly error of the front row heat exchange element 10 and the rear row heat exchange element 20 at the time of manufacturing the heat exchanger 4.
 第4実施形態において、前列ヘッダ13や後列ヘッダ23の内部が複数の区画に仕切られていて、各区画に冷媒を導入する導入部が用意されていてもよい。その場合も、前列熱交換要素10と後列熱交換要素20とを上下方向D1にシフトさせることで、前列Fの導入部と後列Rの導入部との高さ位置を異ならせることができるので、同様の作用効果を得ることができる。 In the fourth embodiment, the inside of the front row header 13 and the rear row header 23 may be divided into a plurality of sections, and an introduction unit for introducing a refrigerant into each section may be prepared. Also in this case, the height positions of the introduction portion of the front row F and the introduction portion of the rear row R can be made different by shifting the front row heat exchange element 10 and the rear row heat exchange element 20 in the vertical direction D1, Similar effects can be obtained.
 上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
 例えば、本発明の熱交換器が、前列Fおよび後列Rに加え、前列Fと後列Rとの間に位置する中間の1以上の列を備えていてもよい。
In addition to the above, the configurations described in the above embodiment can be selected or changed to other configurations as appropriate without departing from the spirit of the present invention.
For example, the heat exchanger of the present invention may include, in addition to the front row F and the rear row R, one or more middle rows located between the front row F and the rear row R.
 上記各実施形態において、熱交換要素10,20はそれぞれ、上下方向D1に積層された複数の扁平管11からなる一列の扁平管要素を備えている。これに限らず、本発明の熱交換要素が、二列、すなわち空気の流れ方向に並ぶ2つの扁平管要素を備えており、それらの扁平管要素が同じヘッダに接続されるように構成されていてもよい。 In each of the above-described embodiments, the heat exchange elements 10 and 20 each include a row of flat tube elements composed of a plurality of flat tubes 11 stacked in the vertical direction D1. Not limited to this, the heat exchange element of the present invention comprises two rows, that is, two flat tube elements aligned in the air flow direction, and these flat tube elements are configured to be connected to the same header May be
1~4  熱交換器
10   前列熱交換要素
11   扁平管
12   フィン
13,13A,13B   前列ヘッダ
14   垂直仕切板(仕切部)
14A  開口
15   分配器(流量調整部)
16   絞り(流量調整部)
17   U字管
20   後列熱交換要素
23,23A,23B   後列ヘッダ
24   垂直仕切板(仕切部)
24A  開口
121  切欠
131  導入部
141  区画
142  区画
181,182,183   U字管
231  導入部
241  区画
242  区画
Af,Ar,Am   流路断面積
D1   上下方向
Df,Dr   幅
F    前列
G1   寸法
G2   寸法
P1~P4   パス
R    後列
Rf,Rr   流量
Vf,Vr   流速
1 to 4 Heat exchanger 10 Front row heat exchange element 11 Flat tube 12 Fins 13, 13A, 13B Front row header 14 Vertical partition plate (partition portion)
14A Opening 15 Distributor (Flow Adjustment Unit)
16 Throttle (Flow control part)
17 U-shaped tube 20 rear row heat exchange element 23, 23A, 23B rear row header 24 vertical partition plate (partition portion)
24A Opening 121 Notch 131 Introduction portion 141 Section 142 Section 181, 182, 183 U-shaped tube 231 Introduction section 241 Section 242 Section Af, Ar, Am Channel cross-sectional area D1 Vertical direction Df, Dr Width F Front row G Dimension G2 Dimension P1- P4 path R back row Rf, Rr flow Vf, Vr flow

Claims (8)

  1.  積層される複数の扁平管と、前記扁平管に設けられるフィンと、前記扁平管が積層される積層方向に起立し、前記扁平管に接続されるヘッダと、を備えた熱交換器であって、
     前記ヘッダを通じて前記扁平管に流入する冷媒と、空気とを熱交換させ、前記冷媒を蒸発させる蒸発器として機能し、
     前記扁平管、前記フィン、および前記ヘッダからなる熱交換要素が、前記空気の流れの上流側に位置する前列と、前記空気の流れの下流側に位置する後列と、を含んで配列され、
     前記前列の前記ヘッダである前列ヘッダを流れる前記冷媒の流速が、前記後列の前記ヘッダである後列ヘッダを流れる前記冷媒の流速よりも大きくなるように、
     前記前列ヘッダ内の流路断面積が前記後列ヘッダ内の流路断面積よりも小さい、
    ことを特徴とする熱交換器。
    A heat exchanger comprising: a plurality of flat tubes to be stacked; a fin provided to the flat tube; and a header rising in a stacking direction in which the flat tubes are stacked and connected to the flat tubes, ,
    It functions as an evaporator that exchanges heat between the refrigerant flowing into the flat tube through the header and the air, and evaporates the refrigerant.
    Heat exchange elements comprising the flat tubes, the fins and the header are arranged including a front row located upstream of the air flow and a rear row located downstream of the air flow;
    The flow rate of the refrigerant flowing through the front row header, which is the header of the front row, is greater than the flow rate of the refrigerant that flows through the rear row header, which is the rear row header.
    The flow passage cross-sectional area in the front row header is smaller than the flow passage cross-sectional area in the rear row header,
    A heat exchanger characterized by
  2.  前記積層方向に延びて前記前列ヘッダおよび前記後列ヘッダの少なくともいずれかの内部を仕切る仕切部を備え、
     前記仕切部により前記流路断面積が設定されている、
    請求項1に記載の熱交換器。
    A partition portion extending in the stacking direction to partition at least one of the front row header and the rear row header;
    The flow passage cross-sectional area is set by the partition unit,
    The heat exchanger according to claim 1.
  3.  前記後列の前記扁平管の前記空気の流れ方向における幅は、
     前記前列の前記扁平管の前記空気の流れ方向における幅よりも広い、
    請求項1または2に記載の熱交換器。
    The width of the flat tubes in the rear row in the flow direction of the air is:
    The width of the flat tubes in the front row in the flow direction of the air is wider than
    The heat exchanger according to claim 1 or 2.
  4.  直列に接続された2以上の前記熱交換要素を備え、
     最下流の前記熱交換要素は、前記前列に位置する、
    請求項1から3のいずれか一項に記載の熱交換器。
    Comprising two or more of said heat exchange elements connected in series;
    The most downstream heat exchange element is located in the front row,
    The heat exchanger according to any one of claims 1 to 3.
  5.  直列に接続された3つ以上の前記熱交換要素を備え、
     最上流の前記熱交換要素は、前記前列に位置する、
    請求項4に記載の熱交換器。
    Comprising three or more of said heat exchange elements connected in series;
    The most upstream heat exchange element is located in the front row,
    The heat exchanger according to claim 4.
  6.  積層される複数の扁平管と、前記扁平管に設けられるフィンと、前記扁平管が積層される積層方向に起立し、前記扁平管に接続されるヘッダと、を備えた熱交換器であって、
     前記ヘッダを通じて前記扁平管に流入する冷媒と、空気とを熱交換させ、前記冷媒を蒸発させる蒸発器として機能し、
     前記扁平管、前記フィン、および前記ヘッダからなる熱交換要素が、前記空気の流れの上流側に位置する前列と、前記空気の流れの下流側に位置する後列と、を含んで配列され、
     前記前列の前記ヘッダである前列ヘッダを流れる前記冷媒の流速が、前記後列の前記ヘッダである後列ヘッダを流れる前記冷媒の流速よりも大きくなるように、
     前記前列ヘッダおよび前記後列ヘッダの少なくとも一方に導入される前記冷媒の流量を調整する流量調整部を備える、
    ことを特徴とする熱交換器。
    A heat exchanger comprising: a plurality of flat tubes to be stacked; a fin provided to the flat tube; and a header rising in a stacking direction in which the flat tubes are stacked and connected to the flat tubes, ,
    It functions as an evaporator that exchanges heat between the refrigerant flowing into the flat tube through the header and the air, and evaporates the refrigerant.
    Heat exchange elements comprising the flat tubes, the fins and the header are arranged including a front row located upstream of the air flow and a rear row located downstream of the air flow;
    The flow rate of the refrigerant flowing through the front row header, which is the header of the front row, is greater than the flow rate of the refrigerant that flows through the rear row header, which is the rear row header.
    A flow rate adjusting unit configured to adjust a flow rate of the refrigerant introduced to at least one of the front row header and the rear row header;
    A heat exchanger characterized by
  7.  積層される複数の扁平管と、前記扁平管に設けられるフィンと、前記扁平管が積層される積層方向に起立し、前記扁平管に接続されるヘッダと、を備えた熱交換器であって、
     前記ヘッダを通じて前記扁平管に流入する冷媒と、空気とを熱交換させ、前記冷媒を蒸発させる蒸発器として機能し、
     前記扁平管、前記フィン、および前記ヘッダからなる熱交換要素が、前記空気の流れの上流側に位置する前列と、前記空気の流れの下流側に位置する後列と、を含んで配列され、
     前記前列の前記ヘッダに内在する区画に前記冷媒を導入する導入部の位置と、前記後列の前記ヘッダに内在する区画に前記冷媒を導入する導入部の位置とが、前記積層方向において異なるように、
     前記前列の前記熱交換要素と、前記後列の前記熱交換要素とが前記積層方向にシフトして配置されている、
    ことを特徴とする熱交換器。
    A heat exchanger comprising: a plurality of flat tubes to be stacked; a fin provided to the flat tube; and a header rising in a stacking direction in which the flat tubes are stacked and connected to the flat tubes, ,
    It functions as an evaporator that exchanges heat between the refrigerant flowing into the flat tube through the header and the air, and evaporates the refrigerant.
    Heat exchange elements comprising the flat tubes, the fins and the header are arranged including a front row located upstream of the air flow and a rear row located downstream of the air flow;
    The position of the introduction portion for introducing the refrigerant into the section inherent to the header of the front row and the position of the introduction portion for introducing the refrigerant into the section inherent to the header of the rear row are different in the stacking direction ,
    The heat exchange elements in the front row and the heat exchange elements in the rear row are disposed shifted in the stacking direction,
    A heat exchanger characterized by
  8.  前記前列において前記積層方向に積層された2つの前記熱交換要素と、
     前記後列において前記積層方向に積層された2つの前記熱交換要素と、を備える、
    請求項7に記載の熱交換器。
    Two of the heat exchange elements stacked in the stacking direction in the front row;
    The two heat exchange elements stacked in the stacking direction in the rear row;
    The heat exchanger according to claim 7.
PCT/JP2018/022761 2017-08-02 2018-06-14 Heat exchanger WO2019026436A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES18842154T ES2955923T3 (en) 2017-08-02 2018-06-14 Heat exchanger
CN201880050493.6A CN110998215B (en) 2017-08-02 2018-06-14 Heat exchanger
EP18842154.9A EP3647711B1 (en) 2017-08-02 2018-06-14 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017149664A JP6946105B2 (en) 2017-08-02 2017-08-02 Heat exchanger
JP2017-149664 2017-08-02

Publications (1)

Publication Number Publication Date
WO2019026436A1 true WO2019026436A1 (en) 2019-02-07

Family

ID=65233682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022761 WO2019026436A1 (en) 2017-08-02 2018-06-14 Heat exchanger

Country Status (5)

Country Link
EP (1) EP3647711B1 (en)
JP (1) JP6946105B2 (en)
CN (1) CN110998215B (en)
ES (1) ES2955923T3 (en)
WO (1) WO2019026436A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217271A1 (en) * 2019-04-22 2020-10-29 三菱電機株式会社 Refrigerant distributor, heat exchanger, and refrigeration cycle device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6930622B1 (en) 2020-03-24 2021-09-01 株式会社富士通ゼネラル Heat exchanger
FR3126768B1 (en) * 2021-09-03 2023-08-11 Valeo Systemes Thermiques HEAT EXCHANGER FOR A REFRIGERANT LOOP

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840291B2 (en) 1976-07-23 1983-09-05 オムロン株式会社 electrical equipment
JP2004163036A (en) * 2002-11-14 2004-06-10 Japan Climate Systems Corp Double row heat exchanger
JP2009270781A (en) * 2008-05-08 2009-11-19 Mitsubishi Electric Corp Heat exchanger module, heat exchanger, indoor unit and air conditioning and refrigerating device
WO2013190830A1 (en) * 2012-06-18 2013-12-27 パナソニック株式会社 Heat exchanger and air conditioner
JP2015055405A (en) * 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger and air conditioner
WO2016121123A1 (en) * 2015-01-30 2016-08-04 三菱電機株式会社 Refrigeration cycle device
JP2017003140A (en) * 2015-06-05 2017-01-05 株式会社デンソー Refrigerant evaporator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529116A (en) * 1989-08-23 1996-06-25 Showa Aluminum Corporation Duplex heat exchanger
JP3083385B2 (en) * 1992-01-23 2000-09-04 松下冷機株式会社 Heat exchanger
US7784529B2 (en) * 2004-11-30 2010-08-31 Showa Denko K.K. Heat exchanger
JP4887213B2 (en) * 2007-05-18 2012-02-29 日立アプライアンス株式会社 Refrigerant distributor and air conditioner
KR20120135800A (en) * 2011-06-07 2012-12-17 주식회사 고산 Heat exchanger for combined evaportor and condenser
JP5796518B2 (en) * 2012-03-06 2015-10-21 株式会社デンソー Refrigerant evaporator
JP2015014397A (en) * 2013-07-04 2015-01-22 パナソニック株式会社 Heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840291B2 (en) 1976-07-23 1983-09-05 オムロン株式会社 electrical equipment
JP2004163036A (en) * 2002-11-14 2004-06-10 Japan Climate Systems Corp Double row heat exchanger
JP2009270781A (en) * 2008-05-08 2009-11-19 Mitsubishi Electric Corp Heat exchanger module, heat exchanger, indoor unit and air conditioning and refrigerating device
WO2013190830A1 (en) * 2012-06-18 2013-12-27 パナソニック株式会社 Heat exchanger and air conditioner
JP2015055405A (en) * 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger and air conditioner
WO2016121123A1 (en) * 2015-01-30 2016-08-04 三菱電機株式会社 Refrigeration cycle device
JP2017003140A (en) * 2015-06-05 2017-01-05 株式会社デンソー Refrigerant evaporator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217271A1 (en) * 2019-04-22 2020-10-29 三菱電機株式会社 Refrigerant distributor, heat exchanger, and refrigeration cycle device
JPWO2020217271A1 (en) * 2019-04-22 2021-10-21 三菱電機株式会社 Refrigerant distributor, heat exchanger and refrigeration cycle equipment
JP7086279B2 (en) 2019-04-22 2022-06-17 三菱電機株式会社 Refrigerant distributor, heat exchanger and refrigeration cycle device

Also Published As

Publication number Publication date
EP3647711B1 (en) 2023-07-26
CN110998215A (en) 2020-04-10
EP3647711C0 (en) 2023-07-26
CN110998215B (en) 2021-09-14
JP6946105B2 (en) 2021-10-06
JP2019027727A (en) 2019-02-21
EP3647711A1 (en) 2020-05-06
ES2955923T3 (en) 2023-12-11
EP3647711A4 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
US9494368B2 (en) Heat exchanger and air conditioner
US9651317B2 (en) Heat exchanger and air conditioner
CN113330268B (en) Heat exchanger and air conditioner provided with same
US7398819B2 (en) Minichannel heat exchanger with restrictive inserts
US10508862B2 (en) Heat exchanger for air-cooled chiller
US20150362222A1 (en) Refrigerant distribution device and a heat pump apparatus using the same refrigerant distribution device
US10041710B2 (en) Heat exchanger and air conditioner
JP6109303B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2019026436A1 (en) Heat exchanger
WO2015005352A1 (en) Heat exchanger, and heat pump device
EP3156752A1 (en) Heat exchanger
JP5716496B2 (en) Heat exchanger and air conditioner
JP5608478B2 (en) Heat exchanger and air conditioner using the same
JP2011158250A (en) Heat exchanger and refrigerator-freezer mounted with the heat exchanger
WO2019003428A1 (en) Heat exchanger and refrigeration cycle device
WO2021192903A1 (en) Heat exchanger
WO2021074950A1 (en) Heat exchanger and air conditioner on which heat exchanger is mounted
JP4762266B2 (en) Heat exchanger and refrigerator-freezer equipped with this heat exchanger
WO2022195659A1 (en) Heat exchanger and air-conditioning device
WO2021192902A1 (en) Heat exchanger
WO2021234955A1 (en) Heat exchanger and air conditioner
WO2023199466A1 (en) Heat exchanger, and air conditioning device including same
WO2022172359A1 (en) Outdoor heat exchanger and air conditioner
KR20130000896U (en) Evaporator for equalizing flow pattern of refrigerant
JPH11270982A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018842154

Country of ref document: EP

Effective date: 20200131