JP2017003140A - Refrigerant evaporator - Google Patents

Refrigerant evaporator Download PDF

Info

Publication number
JP2017003140A
JP2017003140A JP2015114758A JP2015114758A JP2017003140A JP 2017003140 A JP2017003140 A JP 2017003140A JP 2015114758 A JP2015114758 A JP 2015114758A JP 2015114758 A JP2015114758 A JP 2015114758A JP 2017003140 A JP2017003140 A JP 2017003140A
Authority
JP
Japan
Prior art keywords
refrigerant
outflow
tank
core
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015114758A
Other languages
Japanese (ja)
Inventor
康太 萩原
Kota Hagiwara
康太 萩原
聡也 長沢
Toshiya Nagasawa
聡也 長沢
鳥越 栄一
Eiichi Torigoe
栄一 鳥越
直久 石坂
Naohisa Ishizaka
直久 石坂
森本 正和
Masakazu Morimoto
正和 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015114758A priority Critical patent/JP2017003140A/en
Publication of JP2017003140A publication Critical patent/JP2017003140A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerant evaporator capable of suppressing deterioration in distributivity of refrigerant.SOLUTION: A refrigerant evaporator 1 is configured such that refrigerant in a first relay flow passage 33a and a second relay flow passage 33b outflows to a first outflow flow passage 32b and a second outflow flow passage 32a while flowing from one end side toward the other end side. In each of the first outflow flow passage 32b and second outflow flow passage 32a, a first outflow region where refrigerant is hard to outflow is formed on the one end side, and a second outflow region where refrigerant is easy to outflow is formed to the other end side with respect to the first outflow region.SELECTED DRAWING: Figure 4

Description

本発明は、外部を流れる被冷却流体と冷媒との間で熱交換を行う冷媒蒸発器に関する。   The present invention relates to a refrigerant evaporator that performs heat exchange between a fluid to be cooled flowing outside and a refrigerant.

冷媒蒸発器は、外部を流れる被冷却流体(例えば、空気)から吸熱して、内部を流れる冷媒(液相冷媒)を蒸発させることで、被冷却流体を冷却する冷却用熱交換器として機能する。   The refrigerant evaporator functions as a cooling heat exchanger that cools the fluid to be cooled by absorbing heat from the fluid to be cooled (for example, air) flowing outside and evaporating the refrigerant (liquid phase refrigerant) flowing inside. .

この種の冷媒蒸発器としては、複数のチューブを積層して構成される熱交換コア部、及び複数のチューブの両端部に接続された一対のタンク部を備える第1、第2蒸発部を被冷却流体の流れ方向に直列に配置し、各蒸発部における一方のタンク部同士を一対の連通部を介して連結する構成が知られている(例えば、特許文献1参照)。   As this type of refrigerant evaporator, the first and second evaporators including a heat exchange core part formed by laminating a plurality of tubes and a pair of tank parts connected to both ends of the plurality of tubes are covered. A configuration is known in which the tanks are arranged in series in the flow direction of the cooling fluid, and one tank unit in each evaporation unit is connected via a pair of communication units (see, for example, Patent Document 1).

この特許文献1の冷媒蒸発器では、第1蒸発部の熱交換コア部を流れた冷媒を、各蒸発部の一方のタンク部及び当該タンク部同士を連結する一対の連通部を介して第2蒸発部の熱交換コア部に流す際に、冷媒の流れを熱交換コア部の幅方向(左右方向)で入れ替える構成としている。冷媒蒸発器は、一対の連通部のうち、一方の連通部によって、第1蒸発部の熱交換コア部の幅方向一側を流れる冷媒を第2蒸発部の熱交換コア部の幅方向他側に流すと共に、他方の連通部によって第1蒸発部の熱交換コア部の幅方向他側を流れる冷媒を第2蒸発部の熱交換コア部の幅方向一側に流すように構成されている。   In the refrigerant evaporator disclosed in Patent Document 1, the refrigerant that has flowed through the heat exchange core portion of the first evaporation portion is secondly passed through one tank portion of each evaporation portion and a pair of communication portions that connect the tank portions to each other. When flowing through the heat exchange core part of the evaporation part, the refrigerant flow is changed in the width direction (left-right direction) of the heat exchange core part. In the refrigerant evaporator, the refrigerant flowing on one side in the width direction of the heat exchange core part of the first evaporation part is transferred to the other side in the width direction of the heat exchange core part of the second evaporation part by one of the communication parts. The refrigerant flowing on the other side in the width direction of the heat exchange core part of the first evaporation part is caused to flow to one side in the width direction of the heat exchange core part of the second evaporation part.

特許第4124136号公報Japanese Patent No. 4124136

しかしながら、特許文献1に開示された冷媒蒸発器のように、各蒸発部の一方タンク部同士を連結する一対の連通部にて冷媒の流れ方向を入れ替える構成とすると、第1蒸発部の熱交換コア部からの冷媒が第2蒸発部の熱交換コア部に流れる際に、液相冷媒が第2蒸発部の熱交換コア部の一部に偏って分配されることがある。   However, as in the refrigerant evaporator disclosed in Patent Document 1, if the refrigerant flow direction is switched by a pair of communicating parts that connect one tank part of each evaporation part, heat exchange of the first evaporation part When the refrigerant from the core part flows to the heat exchange core part of the second evaporation part, the liquid phase refrigerant may be distributed to a part of the heat exchange core part of the second evaporation part.

具体的には、第1蒸発部の熱交換コア部から第2蒸発部の熱交換コア部に流れる液相冷媒は、第2蒸発部の熱交換コア部を構成するチューブ群のうち、第2蒸発部の一方のタンク部における各連通部との接続箇所(連通部における冷媒の流出口)の近くに位置するチューブに流れ易い傾向があり、前記接続箇所から遠く離れたチューブに液相冷媒を充分に流すことができない。   Specifically, the liquid phase refrigerant flowing from the heat exchange core part of the first evaporation part to the heat exchange core part of the second evaporation part is the second of the tube group constituting the heat exchange core part of the second evaporation part. There is a tendency to flow easily to a tube located near a connection point (a refrigerant outlet in the communication part) with each communication part in one tank part of the evaporation part, and liquid phase refrigerant is applied to a tube far from the connection part. It cannot flow sufficiently.

このように、冷媒蒸発器における液相冷媒の分配性が悪化すると、第2蒸発部の熱交換コア部において、被冷却流体と冷媒との熱交換が有効に行われない領域が生じ、冷媒蒸発器の冷却性能が低下するといった問題がある。   Thus, when the distribution property of the liquid phase refrigerant in the refrigerant evaporator deteriorates, a region where heat exchange between the fluid to be cooled and the refrigerant is not effectively performed occurs in the heat exchange core portion of the second evaporation unit, and the refrigerant evaporation There is a problem that the cooling performance of the vessel is lowered.

本発明はこのような課題に鑑みてなされたものであり、その目的は、冷媒の分配性の悪化を抑制可能な冷媒蒸発器を提供することにある。   This invention is made | formed in view of such a subject, The objective is to provide the refrigerant | coolant evaporator which can suppress the deterioration of the distribution of a refrigerant | coolant.

上記課題を解決するために、本発明に係る冷媒蒸発器は、外部を流れる被冷却流体と冷媒との間で熱交換を行う冷媒蒸発器(1)であって、前記被冷却流体の流れ方向に対して直列に配置された第1蒸発部(20)、及び第2蒸発部(10)を備える。前記第1蒸発部及び前記第2蒸発部はそれぞれ、冷媒が流れる複数のチューブ(111、211)を積層して構成された熱交換コア部(11、21)と、前記複数のチューブの両端部に接続され、前記複数のチューブを流れる冷媒の集合又は分配を行う一対のタンク部(12、13、22、23)と、を有する。前記第1蒸発部における前記熱交換コア部(21)は、前記複数のチューブ(211)のうち一部のチューブ群で構成される第1コア部(21a)、及び残部のチューブ群のうち少なくとも一部のチューブ群で構成される第2コア部(21b)を有する。前記第2蒸発部における前記熱交換コア部(11)は、前記複数のチューブ(211)のうち一部のチューブ群で構成される前記第1コア部の少なくとも一部と対向するチューブ群で構成される第3コア部(11a)、及び残部のチューブ群のうち少なくとも一部のチューブ群で構成される第4コア部(11b)を有する。前記第1蒸発部における前記一対のタンク部(22、23)のうち、一方のタンク部(23)は、前記第1コア部からの冷媒を集合させる第1冷媒集合部(23a)、前記第2コア部(21b)からの冷媒を集合させる第2冷媒集合部(23b)を含んで構成されている。前記第2蒸発部における前記一対のタンク部(12、13)のうち、一方のタンク部(13)は、前記第3コア部に冷媒を分配させる第1冷媒分配部(13a)、前記第4コア部(11b)に冷媒を分配させる第2冷媒分配部(13b)を含んで構成されている。前記第1蒸発部及び前記第2蒸発部は、前記第1冷媒集合部の冷媒を前記第2冷媒分配部に導く第1連通部(31a、32b、33a)、及び前記第2冷媒集合部の冷媒を前記第1冷媒分配部に導く第2連通部(31b、32a、33b)を有する冷媒入替部(30)を介して連結されている。前記冷媒入替部は、中間タンク部(33)を有しており、前記中間タンク部は、前記第1冷媒集合部とは冷媒の第1流入流路(31a)を介して繋がり、前記第2冷媒分配部とは冷媒の第1流出流路(32b)を介して繋がる第1中継流路(33a)と、前記第2冷媒集合部とは冷媒の第2流入流路(31b)を介して繋がり、前記第1冷媒分配部とは冷媒の第2流出流路(32a)を介して繋がる第2中継流路(33b)と、を有する。前記第1中継流路及び前記第2中継流路において冷媒は、一端側から他端側に向かって流れながら前記第1流出流路及び前記第2流出流路に流出するように構成されている。前記第1流出流路及び前記第2流出流路にはそれぞれ、冷媒が流出し難い第1流出領域が前記一端側に形成されると共に、前記第1流出領域よりも前記他端側に冷媒が流出し易い第2流出領域が形成されている。   In order to solve the above problems, a refrigerant evaporator according to the present invention is a refrigerant evaporator (1) that performs heat exchange between a cooled fluid that flows outside and a refrigerant, and the flow direction of the cooled fluid Are provided with a first evaporator (20) and a second evaporator (10) arranged in series. The first evaporator and the second evaporator are respectively a heat exchange core (11, 21) configured by stacking a plurality of tubes (111, 211) through which a refrigerant flows, and both ends of the plurality of tubes. And a pair of tank parts (12, 13, 22, 23) for collecting or distributing refrigerant flowing through the plurality of tubes. The heat exchange core part (21) in the first evaporation part is at least one of a first core part (21a) constituted by a part of the tube groups of the plurality of tubes (211) and a remaining tube group. It has the 2nd core part (21b) comprised by a one part tube group. The heat exchange core part (11) in the second evaporation part is composed of a tube group facing at least a part of the first core part composed of a part of the plurality of tubes (211). And a fourth core portion (11b) constituted by at least a part of the tube group among the third core portion (11a) and the remaining tube group. Of the pair of tank parts (22, 23) in the first evaporation part, one tank part (23) is a first refrigerant assembly part (23a) for collecting refrigerant from the first core part, the first The second refrigerant assembly part (23b) that collects the refrigerant from the two core parts (21b) is included. Of the pair of tank parts (12, 13) in the second evaporation part, one tank part (13) is a first refrigerant distribution part (13a) for distributing refrigerant to the third core part, and the fourth A second refrigerant distribution part (13b) for distributing the refrigerant to the core part (11b) is included. The first evaporating unit and the second evaporating unit include a first communication unit (31a, 32b, 33a) for guiding the refrigerant of the first refrigerant collecting unit to the second refrigerant distributing unit, and the second refrigerant collecting unit. The refrigerant is connected via a refrigerant replacement section (30) having a second communication section (31b, 32a, 33b) for guiding the refrigerant to the first refrigerant distribution section. The refrigerant replacement part has an intermediate tank part (33), the intermediate tank part is connected to the first refrigerant assembly part via a refrigerant first inflow channel (31a), and the second The refrigerant distribution section is connected to the first relay flow path (33a) through the refrigerant first outflow path (32b), and the second refrigerant assembly section is connected through the refrigerant second inflow path (31b). The first refrigerant distribution section includes a second relay flow path (33b) connected via a refrigerant second outflow path (32a). In the first relay channel and the second relay channel, the refrigerant flows out from the one end side toward the other end side so as to flow out into the first outflow channel and the second outflow channel. . In each of the first outflow channel and the second outflow channel, a first outflow region where the refrigerant does not easily flow out is formed on the one end side, and the refrigerant is disposed on the other end side of the first outflow region. A second outflow region that easily flows out is formed.

本発明によれば、第1流出流路及び第2流出流路にはそれぞれ、一端壁部側に冷媒が流出し難い第1流出領域が形成されると共に、第1流出領域よりも他端壁部側に冷媒が流出し易い第2流出領域が形成されているので、冷媒の分配性の悪化を抑制することができる。   According to the present invention, the first outflow channel and the second outflow channel each have the first outflow region where the refrigerant hardly flows out on the one end wall side, and the other end wall from the first outflow region. Since the 2nd outflow area where a refrigerant | coolant tends to flow out is formed in the part side, the deterioration of the distribution property of a refrigerant | coolant can be suppressed.

本発明によれば、冷媒の分配性の悪化を抑制可能な冷媒蒸発器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the refrigerant evaporator which can suppress the deterioration of the distribution property of a refrigerant | coolant can be provided.

図1は、本実施形態に係る冷媒蒸発器の模式的な斜視図である。FIG. 1 is a schematic perspective view of a refrigerant evaporator according to the present embodiment. 図2は、本実施形態に係る冷媒蒸発器の分解斜視図である。FIG. 2 is an exploded perspective view of the refrigerant evaporator according to the present embodiment. 図3は、本実施形態に係る冷媒蒸発器における冷媒の流れを説明するための図である。FIG. 3 is a diagram for explaining the flow of the refrigerant in the refrigerant evaporator according to the present embodiment. 図4は、本実施形態に係る冷媒蒸発器において、中間タンク部から風上側熱交換コア部へ繋がる流路の形状を説明するための概略図である。FIG. 4 is a schematic diagram for explaining the shape of the flow path connecting the intermediate tank portion to the windward heat exchange core portion in the refrigerant evaporator according to the present embodiment. 比較例として、中間タンク部から風上側熱交換コア部へ繋がる流路の形状を説明するための概略図である。As a comparative example, it is the schematic for demonstrating the shape of the flow path connected from an intermediate | middle tank part to an upwind heat exchange core part. 比較例に係る冷媒蒸発器の各熱交換コア部を流れる液相冷媒の分布を説明するための図である。It is a figure for demonstrating distribution of the liquid phase refrigerant | coolant which flows through each heat exchange core part of the refrigerant evaporator which concerns on a comparative example. 本実施形態に係る冷媒蒸発器の各熱交換コア部を流れる液相冷媒の分布を説明するための図である。It is a figure for demonstrating distribution of the liquid phase refrigerant | coolant which flows through each heat exchange core part of the refrigerant evaporator which concerns on this embodiment. 中間タンク部から風上側熱交換コア部へ繋がる流路形状の変形例を説明するための図である。It is a figure for demonstrating the modification of the flow-path shape connected to an upwind heat exchange core part from an intermediate | middle tank part.

以下、添付図面を参照しながら本発明の実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.

図1に示される本実施形態に係る冷媒蒸発器1は、車室内の温度を調整する車両用空調装置の蒸気圧縮式の冷凍サイクルに適用され、車室内へ送風する送風空気から吸熱して冷媒(液相冷媒)を蒸発させることで、送風空気を冷却する冷却用熱交換器である。なお、本実施形態では、送風空気が特許請求の範囲における「外部を流れる被冷却流体」に相当する。   The refrigerant evaporator 1 according to the present embodiment shown in FIG. 1 is applied to a vapor compression refrigeration cycle of a vehicle air conditioner that adjusts the temperature in the vehicle interior, and absorbs heat from the blown air that is blown into the vehicle interior. It is a cooling heat exchanger that cools blown air by evaporating (liquid phase refrigerant). In the present embodiment, the blown air corresponds to the “cooled fluid flowing outside” in the claims.

冷凍サイクルは、冷媒蒸発器1以外に、図示しない圧縮機、放熱器(凝縮器)、膨張弁等を備えおり、本実施形態では、放熱器と膨張弁との間に受液器を配置するレシーバサイクルとして構成されている。   In addition to the refrigerant evaporator 1, the refrigeration cycle includes a compressor, a radiator (condenser), an expansion valve, and the like (not shown). In this embodiment, a liquid receiver is disposed between the radiator and the expansion valve. It is configured as a receiver cycle.

図1は、本実施形態に係る冷媒蒸発器1の模式的な斜視図であり、図2は、図1に示す冷媒蒸発器1の分解斜視図である。なお、図2では、後述する各熱交換コア部11、21におけるチューブ111、211、及びフィン112、212の図示を省略している。   FIG. 1 is a schematic perspective view of a refrigerant evaporator 1 according to this embodiment, and FIG. 2 is an exploded perspective view of the refrigerant evaporator 1 shown in FIG. In FIG. 2, illustration of tubes 111 and 211 and fins 112 and 212 in each heat exchange core portion 11 and 21 described later is omitted.

図1、図2に示されるように、本実施形態の冷媒蒸発器1は、送風空気の流れ方向(被冷却流体の流れ方向)Xに対して直列に配置された2つの蒸発部10、20を備えて構成されている。ここで、本実施形態では、2つの蒸発部10、20のうち、送風空気の空気流れ方向の風上側(上流側)に配置される蒸発部を風上側蒸発部10と称し、送風空気の流れ方向の風下側(下流側)に配置される蒸発部を風下側蒸発部20と称する。本実施形態における風上側蒸発部10が、特許請求の範囲の「第2蒸発部」を構成し、風下側蒸発部20が、特許請求の範囲の「第1蒸発部」を構成している。   As shown in FIG. 1 and FIG. 2, the refrigerant evaporator 1 of the present embodiment includes two evaporators 10 and 20 arranged in series with respect to the flow direction of the blown air (flow direction of the fluid to be cooled) X. It is configured with. Here, in this embodiment, the evaporation part arrange | positioned among the two evaporation parts 10 and 20 on the windward side (upstream side) of the air flow direction of blowing air is called the windward evaporation part 10, and the flow of blowing air The evaporator disposed on the leeward side (downstream side) in the direction is referred to as a leeward evaporator 20. The windward evaporator 10 in the present embodiment constitutes a “second evaporator” in the claims, and the leeward evaporator 20 constitutes a “first evaporator” in the claims.

風上側蒸発部10及び風下側蒸発部20の基本的構成は同一であり、それぞれ熱交換コア部11、21と、熱交換コア部11、21の上下両側に配置された一対のタンク部12、13、22、23を有している。   The basic configurations of the windward side evaporator 10 and the leeward side evaporator 20 are the same, and the heat exchange core parts 11 and 21 and a pair of tank parts 12 disposed on the upper and lower sides of the heat exchange core parts 11 and 21, respectively. 13, 22, and 23.

本実施形態では、風上側蒸発部10における熱交換コア部を風上側熱交換コア部11と称し、風下側蒸発部20における熱交換コア部を風下側熱交換コア部21と称する。また、風上側蒸発部10における一対のタンク部12、13のうち、上方側に配置されるタンク部を第1風上側タンク部12と称し、下方側に配置されるタンク部を第2風上側タンク部13と称する。同様に、風下側蒸発部20における一対のタンク部22、23のうち、上方側に配置されるタンク部を第1風下側タンク部22と称し、下方側に配置されるタンク部を第2風下側タンク部23と称する。   In this embodiment, the heat exchange core part in the windward evaporator 10 is referred to as the windward heat exchange core part 11, and the heat exchange core part in the leeward evaporator 20 is referred to as the leeward heat exchange core part 21. Of the pair of tank portions 12 and 13 in the windward side evaporation unit 10, the tank portion disposed on the upper side is referred to as a first windward tank portion 12, and the tank portion disposed on the lower side is referred to as the second windward side. This is referred to as a tank portion 13. Similarly, of the pair of tank parts 22 and 23 in the leeward side evaporation part 20, the tank part arranged on the upper side is referred to as the first leeward side tank part 22, and the tank part arranged on the lower side is referred to as the second leeward side. This is referred to as a side tank portion 23.

本実施形態の風上側熱交換コア部11及び風下側熱交換コア部21それぞれは、上下方向に延びる複数のチューブ111、211と、隣合うチューブ111、211の間に接合されるフィン112、212とが交互に積層配置された積層体で構成されている。以下、複数のチューブ111、211及び複数のフィン112、212の積層体における積層方向をチューブ積層方向と称する。   Each of the windward side heat exchange core part 11 and the leeward side heat exchange core part 21 of the present embodiment includes a plurality of tubes 111 and 211 extending in the vertical direction and fins 112 and 212 joined between the adjacent tubes 111 and 211. And a laminate in which layers are alternately arranged. Hereinafter, the stacking direction in the stacked body of the plurality of tubes 111 and 211 and the plurality of fins 112 and 212 is referred to as a tube stacking direction.

ここで、風上側熱交換コア部11は、複数のチューブ111のうち、一部のチューブ群で構成される第1風上側コア部11a、及び残部のチューブ群で構成される第2風上側コア部11bを有している。なお、本実施形態における第1風上側コア部11aが、特許請求の範囲における「第3コア部」を構成し、第2風上側コア部11bが、特許請求の範囲における「第4コア部」を構成する。   Here, the windward heat exchange core portion 11 includes a first windward core portion 11a composed of a part of the plurality of tubes 111 and a second windward core composed of the remaining tube groups. It has a portion 11b. In addition, the 1st windward core part 11a in this embodiment comprises the "3rd core part" in a claim, and the 2nd windward core part 11b is the "4th core part" in a claim. Configure.

本実施形態では、風上側熱交換コア部11を送風空気の流れ方向から見たときに、チューブ積層方向の右側に存するチューブ群で第1風上側コア部11aが構成され、チューブ積層方向の左側に存するチューブ群で第2風上側コア部11bが構成されている。   In this embodiment, when the windward heat exchange core portion 11 is viewed from the flow direction of the blown air, the first windward core portion 11a is configured by a tube group existing on the right side in the tube stacking direction, and the left side in the tube stacking direction. The second upwind core portion 11b is configured by the tube group existing in the above.

また、風下側熱交換コア部21は、複数のチューブ211のうち、一部のチューブ群で構成される第1風下側コア部21a、及び残部のチューブ群で構成される第2風下側コア部21bを有している。なお、本実施形態における第1風下側コア部21aが、特許請求の範囲における「第1コア部」を構成し、第2風下側コア部21bが、特許請求の範囲における「第2コア部」を構成する。   Moreover, the leeward side heat exchange core part 21 is the 1st leeward side core part 21a comprised by some tube groups among the some tubes 211, and the 2nd leeward side core part comprised by the remaining tube groups. 21b. In addition, the 1st leeward side core part 21a in this embodiment comprises the "1st core part" in a claim, and the 2nd leeward side core part 21b is a "2nd core part" in a claim. Configure.

本実施形態では、風下側熱交換コア部21を送風空気の流れ方向から見たときに、チューブ積層方向の右側に存するチューブ群で第1風下側コア部21aが構成され、チューブ積層方向の左側に存するチューブ群で第2風下側コア部21bが構成されている。なお、本実施形態では、送風空気の流れ方向から見たときに、第1風上側コア部11a及び第1風下側コア部21aそれぞれが重合(対向)するように配置されると共に、第2風上側コア部11b及び第2風下側コア部21bそれぞれが重合(対向)するように配置されている。   In the present embodiment, when the leeward heat exchange core portion 21 is viewed from the flow direction of the blown air, the first leeward core portion 21a is configured by a tube group existing on the right side in the tube stacking direction, and the left side in the tube stacking direction. The second leeward core portion 21b is configured by the tube group existing in the above. In the present embodiment, when viewed from the flow direction of the blown air, the first windward core portion 11a and the first leeward core portion 21a are arranged so as to overlap (oppose) with each other, and the second wind The upper core portion 11b and the second leeward core portion 21b are arranged so as to overlap (oppose) each other.

各チューブ111、211は、内部に冷媒が流れる冷媒通路が形成されると共に、その断面形状が送風空気の流れ方向に沿って延びる扁平形状となる扁平チューブで構成されている。   Each of the tubes 111 and 211 includes a flat tube in which a refrigerant passage through which a refrigerant flows is formed and a cross-sectional shape thereof is a flat shape extending along the flow direction of the blown air.

風上側熱交換コア部11のチューブ111は、長手方向の一端側(上端側)が第1風上側タンク部12に接続されると共に、長手方向の他端側(下端側)が第2風上側タンク部13に接続されている。また、風下側熱交換コア部21のチューブ211は、長手方向の一端側(上端側)が第1風下側タンク部22に接続されると共に、長手方向の他端側(下端側)が第2風下側タンク部23に接続されている。   The tube 111 of the windward side heat exchange core part 11 has one end side (upper end side) in the longitudinal direction connected to the first windward tank part 12, and the other end side (lower end side) in the longitudinal direction is the second windward side. It is connected to the tank unit 13. The tube 211 of the leeward heat exchange core portion 21 has one end side (upper end side) in the longitudinal direction connected to the first leeward tank portion 22 and the other end side (lower end side) in the longitudinal direction is second. The leeward tank unit 23 is connected.

各フィン112、212は、薄板材を波上に曲げて成形したコルゲートフィンであり、チューブ111、211における平坦な外面側に接合され、送風空気と冷媒との伝熱面積を拡大させるための熱交換促進手段を構成する。   Each of the fins 112 and 212 is a corrugated fin formed by bending a thin plate material into a wave, joined to the flat outer surface side of the tubes 111 and 211, and heat for expanding the heat transfer area between the blown air and the refrigerant. It constitutes an exchange promoting means.

チューブ111、211及びフィン112、212の積層体には、チューブ積層方向の両端部に、各熱交換コア部11、12を補強するサイドプレート113、213が配置されている。なお、サイドプレート113、213は、チューブ積層方向の最も外側に配置されたフィン112、212に接合されている。   In the laminated body of the tubes 111 and 211 and the fins 112 and 212, side plates 113 and 213 that reinforce the heat exchange core parts 11 and 12 are arranged at both ends in the tube lamination direction. The side plates 113 and 213 are joined to the fins 112 and 212 arranged on the outermost side in the tube stacking direction.

第1風上側タンク部12は、一端側(送風空気の流れ方向から見たときの左側端部)が閉塞されると共に、他端側(送風空気の流れ方向から見たときの右側端部)にタンク内部から圧縮機(図示略)の吸入側に冷媒を導出するための冷媒導出口12aが形成された筒状の部材で構成されている。この第1風上側タンク部12は、底部に各チューブ111の一端側(上端側)が挿入接合される貫通穴(図示略)が形成されている。第1風上側タンク部12は、その内部空間が風上側熱交換コア部11の各チューブ111に連通するように構成されており、風上側熱交換コア部11の各コア部11a、11bからの冷媒を集合させる冷媒集合部として機能する。   The first upwind tank unit 12 is closed at one end (the left end when viewed from the flow direction of the blown air) and at the other end (the right end when viewed from the flow direction of the blown air). Further, it is constituted by a cylindrical member in which a refrigerant outlet 12a for leading out the refrigerant from the inside of the tank to the suction side of a compressor (not shown) is formed. The first upwind tank unit 12 has a through hole (not shown) in which one end side (upper end side) of each tube 111 is inserted and joined at the bottom. The first upwind tank section 12 is configured such that the internal space thereof communicates with each tube 111 of the upwind heat exchange core section 11, and the first upwind tank section 12 is connected to each of the core sections 11 a and 11 b of the upwind heat exchange core section 11. It functions as a refrigerant collecting part for collecting refrigerant.

第1風下側タンク部22は、一端側が閉塞されると共に、他端側にタンク内部に膨張弁(図示略)にて減圧された低圧冷媒を導入するための冷媒導入口22aが形成された筒状の部材で構成されている。この第1風下側タンク部22は、底部に各チューブ211の一端側(上端側)が挿入接合される貫通穴(図示略)が形成されている。つまり、第1風下側タンク部22は、その内部空間が風下側熱交換コア部21の各チューブ211に連通するように構成されており、風下側熱交換コア部21の各コア部21a、21bへ冷媒を分配する冷媒分配部として機能する。   The first leeward tank portion 22 is closed at one end side, and has a cylinder formed with a refrigerant inlet 22a for introducing a low-pressure refrigerant decompressed by an expansion valve (not shown) inside the tank at the other end side. It is comprised by the shape-shaped member. The first leeward tank portion 22 has a through hole (not shown) in which one end side (upper end side) of each tube 211 is inserted and joined at the bottom. That is, the 1st leeward side tank part 22 is comprised so that the internal space may connect with each tube 211 of the leeward side heat exchange core part 21, and each core part 21a, 21b of the leeward side heat exchange core part 21 is comprised. It functions as a refrigerant distribution unit that distributes the refrigerant.

第2風上側タンク部13は、両端側が閉塞された筒状の部材で構成されている。この第2風上側タンク部13は、天井部に各チューブ111の他端側(下端側)が挿入接合される貫通穴(図示略)が形成されている。つまり、第2風上側タンク部13は、その内部空間が各チューブ111に連通するように構成されている。   The 2nd windward side tank part 13 is comprised with the cylindrical member by which the both end sides were obstruct | occluded. The second upwind tank portion 13 has a through hole (not shown) in which the other end side (lower end side) of each tube 111 is inserted and joined to the ceiling portion. That is, the second upwind tank unit 13 is configured such that its internal space communicates with each tube 111.

また、第2風上側タンク部13の内部には、長手方向の中央位置に仕切部材131が配置されており、この仕切部材131によって、タンク内部空間が第1風上側コア部11aを構成する各チューブ111が連通する空間と、第2風上側コア部11bを構成する各チューブ111が連通する空間とに仕切られている。   In addition, a partition member 131 is disposed at the center in the longitudinal direction inside the second upwind tank unit 13, and the tank internal space constitutes the first upwind core unit 11 a by the partition member 131. It is partitioned into a space where the tubes 111 communicate with each other and a space where the tubes 111 constituting the second upwind core portion 11b communicate.

ここで、第2風上側タンク部13の内部のうち、第1風上側コア部11aを構成する各チューブ111に連通する空間が、第1風上側コア部11aに冷媒を分配する第1冷媒分配部13aを構成し、第2風上側コア部11bを構成する各チューブ111に連通する空間が、第2風上側コア部11bに冷媒を分配する第2冷媒分配部13bを構成する。   Here, in the inside of the second upwind tank section 13, the space communicating with each tube 111 constituting the first upwind core section 11a distributes the refrigerant to the first upwind core section 11a. The space which comprises the part 13a and is connected to each tube 111 which comprises the 2nd windward core part 11b comprises the 2nd refrigerant | coolant distribution part 13b which distributes a refrigerant | coolant to the 2nd windward core part 11b.

第2風下側タンク部23は、両端側が閉塞された筒状の部材で構成されている。この第2風下側タンク部23は、天井部に各チューブ211の他端側(下端側)が挿入接合される貫通穴(図示略)が形成されている。つまり、第2風下側タンク部23は、その内部空間が各チューブ211に連通するように構成されている。   The 2nd leeward side tank part 23 is comprised with the cylindrical member by which the both end sides were obstruct | occluded. The second leeward tank portion 23 has a through hole (not shown) in which the other end side (lower end side) of each tube 211 is inserted and joined to the ceiling portion. That is, the second leeward tank unit 23 is configured such that the internal space thereof communicates with each tube 211.

第2風下側タンク部23の内部には、長手方向の中央位置に仕切部材231が配置されており、この仕切部材231によって、タンク内部空間が第1風下側コア部21aを構成する各チューブ211が連通する空間と、第2風下側コア部21bを構成する各チューブ211が連通する空間とに仕切られている。   Inside the second leeward tank portion 23, a partition member 231 is disposed at a central position in the longitudinal direction, and by this partition member 231, each tube 211 whose tank internal space constitutes the first leeward core portion 21a. Is partitioned into a space where the tubes 211 constituting the second leeward core portion 21b communicate.

ここで、第2風下側タンク部23の内部のうち、第1風下側コア部21aを構成する各チューブ211に連通する空間が、第1風下側コア部21aからの冷媒を集合させる第1冷媒集合部23aを構成し、第2風下側コア部21bを構成する各チューブ211が連通する空間が、第2風下側コア部21bからの冷媒を集合させる第2冷媒集合部23bを構成する。   Here, in the inside of the second leeward side tank portion 23, the space that communicates with the respective tubes 211 constituting the first leeward side core portion 21a collects the refrigerant from the first leeward side core portion 21a. A space that constitutes the collecting portion 23a and communicates with each of the tubes 211 constituting the second leeward core portion 21b constitutes a second refrigerant collecting portion 23b that collects the refrigerant from the second leeward core portion 21b.

第2風上側タンク部13、及び第2風下側タンク部23それぞれは、冷媒入替部30を介して連結されている。この冷媒入替部30は、第2風下側タンク部23における第1冷媒集合部23a内の冷媒を第2風上側タンク部13における第2冷媒分配部13bに導くと共に、第2風下側タンク部23における第2冷媒集合部23b内の冷媒を第2風上側タンク部13における第1冷媒分配部13aに導くように構成されている。すなわち、冷媒入替部30は、冷媒の流れを各熱交換コア部11、21においてコア幅方向に入れ替えるように構成されている。   The second leeward tank unit 13 and the second leeward tank unit 23 are connected via a refrigerant replacement unit 30. The refrigerant replacement unit 30 guides the refrigerant in the first refrigerant collecting unit 23 a in the second leeward tank unit 23 to the second refrigerant distribution unit 13 b in the second leeward tank unit 13 and also the second leeward tank unit 23. The refrigerant in the second refrigerant collecting portion 23b is guided to the first refrigerant distributing portion 13a in the second upwind tank portion 13. That is, the refrigerant replacement unit 30 is configured to replace the refrigerant flow in the core width direction in each of the heat exchange core units 11 and 21.

具体的には、冷媒入替部30は、第2風下側タンク部23における第1、第2冷媒集合部23a、23bに連結された一対の集合部連結部材31a、31bと、第2風上側タンク部13における各冷媒分配部13a、13bに連結された一対の分配部連結部材32a、32bと、一対の集合部連結部材31a、31b及び一対の分配部連結部材32a、32bそれぞれに連結された中間タンク部33と、を有して構成されている。   Specifically, the refrigerant replacement part 30 includes a pair of collecting part connecting members 31a and 31b connected to the first and second refrigerant collecting parts 23a and 23b in the second leeward tank part 23, and a second windward tank. A pair of distributor connecting members 32a and 32b connected to the respective refrigerant distributors 13a and 13b in the section 13, and a pair of intermediate members connected to the pair of collecting member connecting members 31a and 31b and the pair of distributor connecting members 32a and 32b, respectively. And a tank portion 33.

一対の集合部連結部材31a、31bそれぞれは、内部に冷媒が流通する冷媒通路が形成された筒状の部材で構成されており、その一端側が第2風下側タンク部23に接続されると共に、他端側が中間タンク部33に接続されている。本実施形態における集合部連結部材31aが、特許請求の範囲の「第1流入流路」を構成し、集合部連結部材31bが、特許請求の範囲の「第2流入流路」を構成している。   Each of the pair of assembly portion connecting members 31a and 31b is configured by a cylindrical member in which a refrigerant passage through which a refrigerant flows is formed, and one end side thereof is connected to the second leeward tank portion 23, The other end side is connected to the intermediate tank portion 33. The collective portion connecting member 31a in the present embodiment constitutes the “first inflow passage” in the claims, and the collective portion connecting member 31b constitutes the “second inflow passage” in the claims. Yes.

一対の集合部連結部材31a、31bのうち、一方を構成する第1集合部連結部材31aは、一端側が第1冷媒集合部23aに連通するように第2風下側タンク部23に接続されており、他端側が後述する中間タンク部33内の第1冷媒通路33aに連通するように中間タンク部33に接続されている。本実施形態における第1冷媒通路33aが、特許請求の範囲の「第1中継流路」を構成している。   The first collecting portion connecting member 31a constituting one of the pair of collecting portion connecting members 31a and 31b is connected to the second leeward tank portion 23 so that one end side thereof communicates with the first refrigerant collecting portion 23a. The other end side is connected to the intermediate tank portion 33 so as to communicate with a first refrigerant passage 33a in the intermediate tank portion 33 described later. The first refrigerant passage 33a in the present embodiment constitutes the “first relay flow path” in the claims.

また、他方を構成する第2集合部連結部材31bは、一端側が第2冷媒集合部23bに連通するように第2風下側タンク部23に接続されており、他端側が後述する中間タンク部33内の第2冷媒通路33bに連通するように中間タンク部33に接続されている。本実施形態における第2冷媒通路33bが、特許請求の範囲の「第2中継流路」を構成している。   Further, the second collecting portion connecting member 31b constituting the other is connected to the second leeward tank portion 23 so that one end side thereof communicates with the second refrigerant collecting portion 23b, and the other end side is an intermediate tank portion 33 described later. It is connected to the intermediate tank portion 33 so as to communicate with the inner second refrigerant passage 33b. The second refrigerant passage 33b in the present embodiment constitutes a “second relay flow path” in the claims.

本実施形態では、第1集合部連結部材31aの一端側が、第1冷媒集合部23aのうち、仕切部材231に近い位置に接続され、第2集合部連結部材31bの一端側が、第2冷媒集合部23bのうち、第2風下側タンク部23の閉塞端に近い位置に接続されている。   In the present embodiment, one end side of the first collecting portion connecting member 31a is connected to a position near the partition member 231 in the first refrigerant collecting portion 23a, and one end side of the second collecting portion connecting member 31b is the second refrigerant set. The part 23b is connected to a position close to the closed end of the second leeward tank part 23.

一対の分配部連結部材32a、32bそれぞれは、内部に冷媒が流通する冷媒通路が形成された筒状の部材で構成されており、その一端側が第2風上側タンク部13に接続されると共に、他端側が中間タンク部33に接続されている。本実施形態における分配部連結部材32aが、特許請求の範囲の「第2流出流路」を構成し、分配部連結部材32bが、特許請求の範囲の「第1流出流路」を構成している。   Each of the pair of distribution unit connecting members 32a and 32b is configured by a cylindrical member in which a refrigerant passage through which a refrigerant flows is formed, and one end side thereof is connected to the second upwind tank unit 13, The other end side is connected to the intermediate tank portion 33. The distribution part connection member 32a in the present embodiment constitutes the “second outflow channel” in the claims, and the distribution part connection member 32b constitutes the “first outflow channel” in the claims. Yes.

一対の分配部連結部材32a、32bのうち、一方を構成する第1分配部連結部材32aは、一端側が第1冷媒分配部13aに連通するように第2風上側タンク部13に接続されており、他端側が後述する中間タンク部33内の第2冷媒通路33bに連通するように中間タンク部33に接続されている。すなわち、第1分配部連結部材32aは、中間タンク部33の第2冷媒通路33bを介して、上述の第2集合部連結部材31bと連通している。   Of the pair of distributor connecting members 32a and 32b, the first distributor connecting member 32a constituting one is connected to the second windward tank 13 so that one end side thereof communicates with the first refrigerant distributor 13a. The other end is connected to the intermediate tank 33 so as to communicate with a second refrigerant passage 33b in the intermediate tank 33 described later. In other words, the first distribution part connecting member 32 a communicates with the above-described second collecting part connecting member 31 b via the second refrigerant passage 33 b of the intermediate tank part 33.

一対の分配部連結部材32a、32bのうち、他方を構成する第2分配部連結部材32bは、一端側が第2冷媒分配部13bに連通するように第2風上側タンク部13に接続されており、他端側が後述する中間タンク部33内の第1冷媒通路33aに連通するように中間タンク部33に接続されている。すなわち、第2分配部連結部材32bは、中間タンク部33の第1冷媒通路33aを介して、上述の第1集合部連結部材31aと連通している。   Of the pair of distribution unit coupling members 32a and 32b, the second distribution unit coupling member 32b constituting the other is connected to the second upwind tank unit 13 so that one end side communicates with the second refrigerant distribution unit 13b. The other end side is connected to the intermediate tank portion 33 so as to communicate with a first refrigerant passage 33a in the intermediate tank portion 33 described later. In other words, the second distribution part connecting member 32 b communicates with the first collecting part connecting member 31 a described above via the first refrigerant passage 33 a of the intermediate tank part 33.

本実施形態では、第1分配部連結部材32aの一端側が、第1冷媒分配部13aのうち、第2風上側タンク部13の閉塞端に近い位置に接続され、第2分配部連結部材32bの一端側が、第2冷媒分配部13bのうち、仕切部材131に近い位置に接続されている。   In the present embodiment, one end side of the first distribution unit connecting member 32a is connected to a position near the closed end of the second upwind tank unit 13 in the first refrigerant distribution unit 13a, and the second distribution unit connecting member 32b One end side is connected to a position near the partition member 131 in the second refrigerant distribution portion 13b.

このように構成される一対の集合部連結部材31a、31bそれぞれは、冷媒入替部30における冷媒の流入口を構成し、一対の分配部連結部材32a、32bそれぞれは、冷媒入替部30における冷媒の流出口を構成している。   Each of the pair of collecting portion connecting members 31 a and 31 b configured as described above constitutes a refrigerant inlet in the refrigerant replacement portion 30, and each of the pair of distribution portion connecting members 32 a and 32 b is the refrigerant in the refrigerant replacement portion 30. It constitutes an outlet.

風上側熱交換コア部11における各コア部11a、11bでは、各コア部11a、11bを構成する複数のチューブ111のうち、積層方向の端部側に位置するチューブへ冷媒が流れ難く、冷媒の分配性が悪いといった傾向がある。   In each core part 11a, 11b in the windward heat exchange core part 11, the refrigerant hardly flows to the tube located on the end side in the stacking direction among the plurality of tubes 111 constituting each core part 11a, 11b. There is a tendency that distribution is bad.

具体的には、第1風上側コア部11aでは、第2風上側タンク部13の第1冷媒分配部13aにおける閉塞された端部付近に位置するチューブ111、及び仕切部材131付近に位置するチューブ111に冷媒が流れ難い傾向がある。また、第2風上側コア部11bでは、第2風上側タンク部13の第2冷媒分配部13bにおける閉塞された端部付近に位置するチューブ111、及び仕切部材131付近に位置するチューブ111に冷媒が流れ難い傾向がある。   Specifically, in the first upwind core portion 11a, the tube 111 located near the closed end of the first refrigerant distribution portion 13a of the second upwind tank portion 13 and the tube located near the partition member 131. There is a tendency that the refrigerant does not easily flow in 111. In the second upwind core portion 11b, the tube 111 located near the closed end of the second refrigerant distribution portion 13b of the second upwind tank portion 13 and the tube 111 located near the partition member 131 receive refrigerant. Tend to be difficult to flow.

そこで、本実施形態では、各分配部連結部材32a、32bを、第1風上側コア部11aを構成する複数のチューブ111のうち、積層方向一端側に位置するチューブと対向するように開口する構成としている。   Therefore, in the present embodiment, each distribution part connecting member 32a, 32b is configured to open so as to face a tube located on one end side in the stacking direction among the plurality of tubes 111 constituting the first upwind core part 11a. It is said.

図4は、第1分配部連結部材32a及び第2分配部連結部材32b近傍の冷媒の流れを示す図であって、(A)は模式的な断面図を示し、(B)は模式的な側面図を示す。図4に示されるように、第1分配部連結部材32aについては、その開口部が第1風上側コア部11aを構成する複数のチューブ111のうち、積層方向一端側に位置するチューブと対向して開口するように、第1冷媒分配部13aのうち、第2風上側タンク部13の閉塞端に近い位置に接続している。第1分配部連結部材32aは、第2冷媒通路33bの側壁部33baに繋がれている。第1分配部連結部材32aは、第2冷媒通路33bの一端壁部33bbに近接し、他端壁部33bcからは離間して設けられている。   4A and 4B are diagrams showing the flow of the refrigerant in the vicinity of the first distributor connecting member 32a and the second distributor connecting member 32b. FIG. 4A is a schematic cross-sectional view, and FIG. A side view is shown. As shown in FIG. 4, with respect to the first distribution part connecting member 32a, the opening thereof faces the tube located on one end side in the stacking direction among the plurality of tubes 111 constituting the first upwind core part 11a. The first refrigerant distribution part 13a is connected to a position close to the closed end of the second upwind tank part 13 so as to open. The 1st distribution part connection member 32a is connected with side wall part 33ba of the 2nd refrigerant passage 33b. The 1st distribution part connection member 32a is provided near the one end wall part 33bb of the 2nd refrigerant passage 33b, and separated from the other end wall part 33bc.

第2集合部連結部材31bを通って第2冷媒通路33bに流れ込む冷媒は、他端壁部33bc側に流れこむ。他端壁部33bc側に流れ込んだ冷媒は、一端壁部33bbに向かって流れ、一端壁部33bbに当たって流れを変え、側壁部33baに沿って一端壁部33bbから他端壁部33bcに向かって流れながら第1分配部連結部材32aに流出するように構成されている。この冷媒の流出段階に着目すると、第2中継流路である第2冷媒流路33bにおいて冷媒は、一端側である一端壁部33bbから他端側である他端壁部bcに向かって流れながら第2流出流路である第1分配部連結部材32aに流出する。   The refrigerant that flows into the second refrigerant passage 33b through the second collecting portion connecting member 31b flows into the other end wall portion 33bc side. The refrigerant flowing into the other end wall portion 33bc flows toward the one end wall portion 33bb, hits the one end wall portion 33bb, changes its flow, and flows along the side wall portion 33ba from the one end wall portion 33bb toward the other end wall portion 33bc. However, it is configured to flow out to the first distributor connecting member 32a. Focusing on this refrigerant outflow stage, the refrigerant flows in the second refrigerant flow path 33b, which is the second relay flow path, from the one end wall part 33bb which is one end side toward the other end wall part bc which is the other end side. It flows out to the 1st distribution part connection member 32a which is the 2nd outflow channel.

本実施形態の場合、第1分配部連結部材32aは、一端側である一端壁部33bb側が冷媒の流れ方向に対して幅狭で、他端側である他端壁部33bc側が幅広になるように構成されている。このような構成により、第1分配部連結部材32aには、一端側である一端壁部33bb側に冷媒が流出し難い第1流出領域が形成されると共に、その第1流出領域よりも他端側である他端壁部33bc側に冷媒が流出し易い第2流出領域が形成されていることになる。   In the case of the present embodiment, the first distribution portion connecting member 32a has one end wall portion 33bb side which is one end side narrower than the refrigerant flow direction and the other end wall portion 33bc side which is the other end side is wider. It is configured. With such a configuration, the first distribution portion connecting member 32a is formed with a first outflow region in which the refrigerant does not easily flow out on the one end wall portion 33bb side, which is one end side, and the other end than the first outflow region. A second outflow region where the refrigerant easily flows out is formed on the other end wall portion 33bc side.

一方、第2分配部連結部材32bについては、第2風上側コア部11bを構成する複数のチューブ111のうち、積層方向一端側に位置するチューブと対向して開口するように、第2冷媒分配部13bのうち、仕切部材131に近い位置に接続している。   On the other hand, about the 2nd distribution part connection member 32b, 2nd refrigerant | coolant distribution so that it may open and oppose the tube located in the lamination direction one end among the some tubes 111 which comprise the 2nd windward core part 11b. The part 13b is connected to a position close to the partition member 131.

第2分配部連結部材32bは、第1冷媒通路33aの側壁部33aaに繋がれている。第2分配部連結部材32bは、第1冷媒通路33aの一端壁部33abに近接し、他端壁部33acからは離間して設けられている。   The 2nd distribution part connection member 32b is connected with side wall part 33aa of the 1st refrigerant passage 33a. The second distribution portion connecting member 32b is provided close to the one end wall portion 33ab of the first refrigerant passage 33a and separated from the other end wall portion 33ac.

第1集合部連結部材31aを通って第1冷媒通路33aに流れ込む冷媒は、一端壁部33ab側に流れこむ。一端壁部33ab側に流れ込んだ冷媒は、他端壁部33acに向かって流れ、側壁部33aaに沿って一端壁部33abから他端壁部33acに向かって流れながら第2分配部連結部材32bに流出するように構成されている。この冷媒の流出段階に着目すると、第1中継流路である第1冷媒流路33aにおいて冷媒は、一端側である一端壁部33abから他端側である他端壁部acに向かって流れながら第1流出流路である第2分配部連結部材32bに流出する。   The refrigerant flowing into the first refrigerant passage 33a through the first collecting portion connecting member 31a flows into the one end wall portion 33ab. The refrigerant flowing into the one end wall portion 33ab flows toward the other end wall portion 33ac, and flows into the second distribution portion connecting member 32b while flowing from the one end wall portion 33ab toward the other end wall portion 33ac along the side wall portion 33aa. It is configured to flow out. Focusing on this refrigerant outflow stage, the refrigerant flows in the first refrigerant flow path 33a, which is the first relay flow path, from the one end wall section 33ab which is one end side toward the other end wall section ac which is the other end side. It flows out to the 2nd distribution part connection member 32b which is the 1st outflow channel.

本実施形態の場合、第2分配部連結部材32bは、一端側である一端壁部33ab側が冷媒の流れ方向に対して幅狭で、他端側である他端壁部33ac側が幅広になるように構成されている。このような構成により、第2分配部連結部材32bには、一端側である一端壁部33ab側に冷媒が流出し難い第1流出領域が形成されると共に、その第1流出領域よりも他端側である他端壁部33ac側に冷媒が流出し易い第2流出領域が形成されていることになる。   In the case of the present embodiment, the second distribution portion connecting member 32b is configured such that the one end wall portion 33ab side, which is one end side, is narrow in the refrigerant flow direction, and the other end wall portion 33ac side, which is the other end side, is wide. It is configured. With such a configuration, the second distribution portion connecting member 32b is formed with a first outflow region where the refrigerant does not easily flow out on the one end wall portion 33ab side, which is one end side, and the other end than the first outflow region. The second outflow region where the refrigerant easily flows out is formed on the other end wall portion 33ac side.

中間タンク部33は、両端側が閉塞された筒状の部材で構成されている。この中間タンク部33は、第2風上側タンク部13、及び第2風下側タンク部23との間に配置されている。具体的には、本実施形態の中間タンク部33は、送風空気の流れ方向Xから見たときに、その一部(上方側の部位)が第2風上側タンク部13、及び第2風下側タンク部23と重合し、他部(下方側の部位)が第2風上側タンク部13、及び第2風下側タンク部23と重合しないように配置されている。   The intermediate tank portion 33 is configured by a cylindrical member whose both ends are closed. The intermediate tank portion 33 is disposed between the second leeward tank portion 13 and the second leeward tank portion 23. Specifically, when viewed from the flow direction X of the blown air, the intermediate tank portion 33 of the present embodiment has a part (upper side portion) of the second tank side 13 and the second windward side. It superposes | stacks with the tank part 23, and it arrange | positions so that the other part (lower site | part) may not superimpose with the 2nd leeward side tank part 13 and the 2nd leeward side tank part 23.

このように、中間タンク部33の一部を第2風上側タンク部13、及び第2風下側タンク部23と重合しないように配置する構成とすれば、送風空気の流れ方向Xにおいて、第1蒸発部10及び第2蒸発部20を近接した配置形態とすることができるので、中間タンク部33を設けることによる冷媒蒸発器1の体格の増大を抑制することが可能となる。   Thus, if it is set as the structure arrange | positioned so that a part of intermediate | middle tank part 33 may not superimpose with the 2nd leeward side tank part 13 and the 2nd leeward side tank part 23, in the flow direction X of blowing air, the 1st Since the evaporator 10 and the second evaporator 20 can be arranged close to each other, it is possible to suppress an increase in the size of the refrigerant evaporator 1 due to the provision of the intermediate tank 33.

ここで、本実施形態では、第1集合部連結部材31a、第2分配部連結部材32b、中間タンク部33における第1冷媒通路33aが、特許請求の範囲に記載の「第1連通部」を構成している。そして、第1集合部連結部材31aが「第1連通部」における「冷媒の流入口」に相当し、第2分配部連結部材32bが「第1連通部」における「冷媒の流出口」に相当している。   Here, in the present embodiment, the first refrigerant passage 33a in the first collecting portion connection member 31a, the second distribution portion connection member 32b, and the intermediate tank portion 33 is the “first communication portion” described in the claims. It is composed. The first collecting portion connecting member 31a corresponds to the “refrigerant inlet” in the “first communicating portion”, and the second distributing portion connecting member 32b corresponds to the “refrigerant outlet” in the “first communicating portion”. doing.

第2集合部連結部材31b、第1分配部連結部材32a、中間タンク部33における第2冷媒通路33bが、特許請求の範囲に記載の「第2連通部」を構成している。そして、第2集合部連結部材31bが「第2連通部」における「冷媒の流入口」に相当し、第1分配部連結部材32aが「第2連通部」における「冷媒の流出口」に相当している。   The second collecting portion connecting member 31b, the first distributing portion connecting member 32a, and the second refrigerant passage 33b in the intermediate tank portion 33 constitute a “second communicating portion” described in the claims. The second collecting portion connecting member 31b corresponds to a “refrigerant inlet” in the “second communicating portion”, and the first distributing portion connecting member 32a corresponds to a “refrigerant outlet” in the “second communicating portion”. doing.

次に、本実施形態に係る冷媒蒸発器1における冷媒の流れについて図3を用いて説明する。図3は、本実施形態に係る冷媒蒸発器1における冷媒の流れを説明するための説明図である。   Next, the flow of the refrigerant in the refrigerant evaporator 1 according to the present embodiment will be described with reference to FIG. FIG. 3 is an explanatory diagram for explaining the flow of the refrigerant in the refrigerant evaporator 1 according to the present embodiment.

図3に示すように、膨張弁(図示略)にて減圧された低圧冷媒は、矢印Aの如く第1風下側タンク部22の一端側に形成された冷媒導入口22aからタンク内部に導入される。第1風下側タンク部22の内部に導入された冷媒は、矢印Bの如く風下側熱交換コア部21の第1風下側コア部21aを下降すると共に、矢印Cの如く風下側熱交換コア部21の第2風下側コア部21bを下降する。   As shown in FIG. 3, the low-pressure refrigerant decompressed by an expansion valve (not shown) is introduced into the tank through a refrigerant inlet 22a formed on one end side of the first leeward tank portion 22 as indicated by an arrow A. The The refrigerant introduced into the first leeward side tank unit 22 descends the first leeward side core portion 21a of the leeward side heat exchange core portion 21 as indicated by an arrow B, and at the same time the leeward side heat exchange core portion as indicated by an arrow C. 21 descends the second leeward core portion 21b.

第1風下側コア部21aを下降した冷媒は、矢印Dの如く第2風下側タンク部23の第1冷媒集合部23aに流入する。一方、第2風下側コア部21bを下降した冷媒は、矢印Eの如く第2風下側タンク部23の第2冷媒集合部23bに流入する。   The refrigerant descending the first leeward core portion 21a flows into the first refrigerant collecting portion 23a of the second leeward tank portion 23 as indicated by an arrow D. On the other hand, the refrigerant descending the second leeward core portion 21 b flows into the second refrigerant collecting portion 23 b of the second leeward tank portion 23 as indicated by an arrow E.

第1冷媒集合部23aに流入した冷媒は、矢印Fの如く第1集合部連結部材31aを介して中間タンク部33の第1冷媒通路33aに流入する。また、第2冷媒集合部23bに流入した冷媒は、矢印Gの如く第2集合部連結部材31bを介して中間タンク部33の第2冷媒通路33bに流入する。   The refrigerant that has flowed into the first refrigerant collecting portion 23a flows into the first refrigerant passage 33a of the intermediate tank portion 33 through the first collecting portion connecting member 31a as indicated by the arrow F. Further, the refrigerant flowing into the second refrigerant collecting portion 23b flows into the second refrigerant passage 33b of the intermediate tank portion 33 through the second collecting portion connecting member 31b as indicated by an arrow G.

第1冷媒通路33aに流入した冷媒は、矢印Hの如く第2分配部連結部材32bを介して第2風上側タンク部13の第2冷媒分配部13bに流入する。また、第2冷媒通路33bに流入した冷媒は、矢印Iの如く第1分配部連結部材32aを介して第2風上側タンク部13の第1冷媒分配部13aに流入する。   The refrigerant flowing into the first refrigerant passage 33a flows into the second refrigerant distribution portion 13b of the second upwind tank portion 13 through the second distribution portion connecting member 32b as indicated by an arrow H. Further, the refrigerant flowing into the second refrigerant passage 33b flows into the first refrigerant distribution portion 13a of the second upwind tank portion 13 through the first distribution portion connecting member 32a as indicated by an arrow I.

第2風上側タンク部13の第2冷媒分配部13bに流入した冷媒は、矢印Jの如く風上側熱交換コア部11の第2風上側コア部11bを上昇する。一方、第1冷媒分配部13aに流入した冷媒は、矢印Kの如く風上側熱交換コア部11の第1風上側コア部11aを上昇する。   The refrigerant that has flowed into the second refrigerant distribution unit 13b of the second upwind tank unit 13 moves up the second upwind core unit 11b of the upwind heat exchange core unit 11 as indicated by an arrow J. On the other hand, the refrigerant that has flowed into the first refrigerant distribution unit 13a ascends the first upwind core unit 11a of the upwind heat exchange core unit 11 as indicated by an arrow K.

第2風上側コア部11bを上昇した冷媒、及び第1風上側コア部11aを上昇した冷媒は、それぞれ矢印L、Mの如く第1風上側タンク部12のタンク内部に流入し、矢印Nの如く第1風上側タンク部12の一端側に形成された冷媒導出口12aから圧縮機(図示略)吸入側に導出される。   The refrigerant rising up the second windward core portion 11b and the refrigerant rising up the first windward core portion 11a flow into the tank of the first windward tank portion 12 as indicated by arrows L and M, respectively. As described above, the refrigerant is led out to the compressor (not shown) suction side from the refrigerant outlet 12a formed on one end side of the first upwind tank section 12.

以上説明した本実施形態に係る冷媒蒸発器1では、冷媒入替部30における各連通部の冷媒の流出口を構成する各分配部連結部材32a、32bのチューブ積層方向に交わる方向の開口幅が、開口部分の冷媒流れの前流側よりも後流側が広い部分が形成されるように設けられている。   In the refrigerant evaporator 1 according to the present embodiment described above, the opening width in the direction intersecting the tube stacking direction of the distribution unit connecting members 32a and 32b constituting the refrigerant outlet of each communication unit in the refrigerant replacement unit 30 is as follows. The opening portion is provided so that a portion wider on the downstream side than on the upstream side in the refrigerant flow is formed.

これにより、風上側蒸発部10における第2風上側タンク部13の各冷媒分配部13a、13bから風上側熱交換コア部11の各コア部11a、11bへの液相冷媒の分配の偏りを抑制することができる。この結果、冷媒蒸発器1における送風空気の冷却性能の低下を抑制することが可能となる。   This suppresses the bias in the distribution of the liquid-phase refrigerant from the respective refrigerant distributors 13a and 13b of the second upwind tank unit 13 to the respective cores 11a and 11b of the upwind heat exchange core unit 11 in the upwind evaporator 10. can do. As a result, it is possible to suppress a decrease in the cooling performance of the blown air in the refrigerant evaporator 1.

ここで、図6は、比較例に係る冷媒蒸発器1(図5に示されるような、開口幅が変化しない各分配部連結部材32aF、32bFを有するもの)の各熱交換コア部11、21を流れる液相冷媒の分布を説明するための説明図であり、図7は、本実施形態に係る冷媒蒸発器1の各熱交換コア部11、21を流れる液相冷媒の分布を説明するための説明図である。尚、本実施形態の各分配部連結部材32a、32bの幅Lb1、Lb2と、比較例地の各分配部連結部材32aF、32bFの幅Lb1、Lb2とは同じ幅である。   Here, FIG. 6 shows the heat exchanger core parts 11 and 21 of the refrigerant evaporator 1 according to the comparative example (having the distributor connecting members 32aF and 32bF whose opening width does not change as shown in FIG. 5). FIG. 7 is an explanatory diagram for explaining the distribution of the liquid phase refrigerant flowing through the refrigerant, and FIG. 7 is a diagram for explaining the distribution of the liquid phase refrigerant flowing through the heat exchange core portions 11 and 21 of the refrigerant evaporator 1 according to the present embodiment. It is explanatory drawing of. Note that the widths Lb1 and Lb2 of the distribution unit connecting members 32a and 32b of the present embodiment and the widths Lb1 and Lb2 of the distribution unit connecting members 32aF and 32bF of the comparative example are the same width.

図6(A)及び図7(A)は、風上側熱交換コア部11を流れる液相冷媒の分布を示し、図6(B)及び図7(B)は、風下側熱交換コア部21を流れる液相冷媒の分布を示し、図6(C)及び図7(C)は、各熱交換コア部11、21を流れる液相冷媒の分布の合成を示している。なお、図6及び図7は、冷媒蒸発器1を図1の矢印Y方向(送風空気の流れ方向Yの逆方向)から見たときの液相冷媒の分布を示すもので、図中の斜線部分で示す箇所が、液相冷媒が存する部分を示す。   FIGS. 6 (A) and 7 (A) show the distribution of the liquid-phase refrigerant flowing through the windward heat exchange core unit 11, and FIGS. 6 (B) and 7 (B) show the leeward heat exchange core unit 21. 6 (C) and FIG. 7 (C) show the synthesis of the distribution of the liquid phase refrigerant flowing through the heat exchange core portions 11 and 21. FIG. 6 and 7 show the distribution of the liquid-phase refrigerant when the refrigerant evaporator 1 is viewed from the direction of arrow Y in FIG. 1 (the direction opposite to the flow direction Y of the blown air). A portion indicated by a portion indicates a portion where the liquid-phase refrigerant exists.

まず、風下側熱交換コア部21を流れる液相冷媒の分布については、図6(B)及び図7(B)で示すように、比較例に係る冷媒蒸発器1と本実施形態に係る冷媒蒸発器1とで同様であり、冷媒の流速が低い場合、それぞれ第2風下側コア部21bにおける一部に液相冷媒が流れ難い箇所(図中右下方側の白抜き箇所)が生ずる。   First, regarding the distribution of the liquid-phase refrigerant flowing through the leeward heat exchange core section 21, as shown in FIGS. 6B and 7B, the refrigerant evaporator 1 according to the comparative example and the refrigerant according to the present embodiment. The same applies to the evaporator 1, and when the flow rate of the refrigerant is low, a portion where the liquid refrigerant is difficult to flow (a white portion on the lower right side in the figure) is generated in a part of the second leeward core portion 21b.

一方、比較例に係る冷媒蒸発器1における風上側熱交換コア部11を流れる液相冷媒の分布については、図6(A)に示すように、風上側熱交換コア部11の各風上側コア部11a、11bでは、チューブ積層方向において、各分配部連結部材32aF、32bFが形成された側に液相冷媒が流れ易く、各分配部連結部材32aF、32bFが形成されていない側に液相冷媒が流れ難くなっている。   On the other hand, regarding the distribution of the liquid-phase refrigerant flowing through the windward heat exchange core unit 11 in the refrigerant evaporator 1 according to the comparative example, as shown in FIG. In the portions 11a and 11b, in the tube stacking direction, the liquid-phase refrigerant easily flows on the side where the distribution unit connection members 32aF and 32bF are formed, and the liquid-phase refrigerant on the side where the distribution unit connection members 32aF and 32bF are not formed. Is difficult to flow.

そして、図6(C)に示すように、比較例に係る冷媒蒸発器1を送風空気の流れ方向Xから見たときに、第2風上側コア部11b及び第2風下側コア部21bにおける重合する部位の一部に液相冷媒が流れ難い箇所(図中右側の白抜き箇所)が生ずる。   As shown in FIG. 6C, when the refrigerant evaporator 1 according to the comparative example is viewed from the flow direction X of the blown air, the polymerization in the second windward core portion 11b and the second leeward core portion 21b. A portion where the liquid-phase refrigerant is difficult to flow (a white portion on the right side in the figure) is generated in a part of the portion to be performed.

このように液相冷媒が分布する比較例に係る冷媒蒸発器1では、液相冷媒が流れ難い箇所にて冷媒が送風空気から顕熱分を吸熱するだけで送風空気を充分に冷却することができない。この結果、冷媒蒸発器1を通過する送風空気に温度分布が生じてしまうこととなる。   As described above, in the refrigerant evaporator 1 according to the comparative example in which the liquid-phase refrigerant is distributed, the refrigerant can sufficiently cool the blown air only by absorbing the sensible heat from the blown air at the location where the liquid-phase refrigerant is difficult to flow. Can not. As a result, a temperature distribution is generated in the blown air passing through the refrigerant evaporator 1.

これに対して、本実施形態に係る冷媒蒸発器1における風上側熱交換コア部11を流れる液相冷媒の分布については、各分配部連結部材32a、32bのチューブ積層方向に交わる方向に開口幅が増大していくようにしているので、図7(A)に示すように、風上側熱交換コア部11の各風上側コア部11a、11bでは、チューブ積層方向に均等に液相冷媒が流れ易くなっている。つまり、本実施形態に係る冷媒蒸発器1は、風上側熱交換コア部11の各コア部11a、11bへの液相冷媒の分配の偏りが抑制されることとなる。   On the other hand, with respect to the distribution of the liquid-phase refrigerant flowing through the windward heat exchange core portion 11 in the refrigerant evaporator 1 according to the present embodiment, the opening width in the direction intersecting the tube stacking direction of the distribution portion connecting members 32a and 32b. 7A, as shown in FIG. 7A, the liquid-phase refrigerant flows evenly in the tube stacking direction in each of the windward core portions 11a and 11b of the windward heat exchange core portion 11. It is easy. That is, in the refrigerant evaporator 1 according to the present embodiment, the uneven distribution of the liquid-phase refrigerant to the core parts 11a and 11b of the windward heat exchange core part 11 is suppressed.

そして、図8(C)に示すように、本実施形態に係る冷媒蒸発器1を送風空気の流れ方向Xから見たときに、第2風上側コア部11b及び第2風下側コア部21bにおける重合する部位の全域に液相冷媒が流れる。   And when the refrigerant evaporator 1 which concerns on this embodiment is seen from the flow direction X of blowing air, as shown in FIG.8 (C), in the 2nd windward side core part 11b and the 2nd leeward side core part 21b. A liquid-phase refrigerant flows over the entire region to be polymerized.

このように液相冷媒が分布する本実施形態に係る冷媒蒸発器1では、各熱交換コア部11、21のいずれかによって、冷媒が送風空気から顕熱及び潜熱を吸熱するので、送風空気を充分に冷却することが可能となる。この結果、冷媒蒸発器1を通過する送風空気に温度分布が生じてしまうことが抑制される。   In the refrigerant evaporator 1 according to the present embodiment in which the liquid-phase refrigerant is distributed in this way, the refrigerant absorbs sensible heat and latent heat from the blown air by any of the heat exchange core parts 11 and 21, and thus the blown air is used. Sufficient cooling is possible. As a result, the temperature distribution in the blown air passing through the refrigerant evaporator 1 is suppressed.

ところで、各分配部連結部材32a、32bの形状は、上記説明した形状に限られるものではなく、各分配部連結部材32a、32bに流れ込む付近の冷媒流れ方向の前流側(一端壁33ab、33bb側)に冷媒が流れ込み難い第1流出領域が形成され、後流側(他端壁33ac、33bc側)に冷媒が流れ込み易い第2流出領域が形成されればよいものである。   By the way, the shape of each distribution part connection member 32a, 32b is not restricted to the shape demonstrated above, The front flow side (one end wall 33ab, 33bb) of the refrigerant | coolant flow direction of the vicinity which flows into each distribution part connection member 32a, 32b The first outflow region where the refrigerant does not flow easily is formed on the side), and the second outflow region where the refrigerant easily flows can be formed on the rear flow side (the other end walls 33ac, 33bc side).

図8は、第1分配部連結部材32aを(A)に示し、その変形例を(B)から(G)に示したものである。第1分配部連結部材32aを例に説明するけれども、第2分配部連結部材32bでも同様である。   FIG. 8 shows the first distributor connecting member 32a in (A), and its modifications are shown in (B) to (G). Although the first distributor connecting member 32a will be described as an example, the same applies to the second distributor connecting member 32b.

(B)では、流出領域32aAaと、流出領域32aAbと、流出領域32aAcとを有する第1分配部連結部材32aAを示している。各流出領域の流路断面積は、流出領域32aAaが一番狭く、流出領域32aAcが一番広い。従って、流出領域32aAaが第1流出領域として形成され、流出領域32aAcが第2流出領域として形成されている。流出領域32aAbの流路断面積は、流出領域32aAaと流出領域32aAcとの中間に設定されているけれども、いずれかの流路断面積と略同等でも構わず、流出領域32aAaより狭くても構わない。   In (B), 1st distribution part connection member 32aA which has outflow area | region 32aAa, outflow area | region 32aAb, and outflow area | region 32aAc is shown. The flow passage cross-sectional area of each outflow region is the narrowest in the outflow region 32aAa and the widest in the outflow region 32aAc. Accordingly, the outflow region 32aAa is formed as the first outflow region, and the outflow region 32aAc is formed as the second outflow region. The cross-sectional area of the outflow region 32aAb is set in the middle between the outflow region 32aAa and the outflow region 32aAc, but may be substantially the same as any of the cross-sectional areas of the flow regions or may be narrower than the outflow region 32aAa. .

(C)では、流出領域32aBaと、流出領域32aBbとを有する第1分配部連結部材32aBを示している。流出領域32aBaが狭く、流出領域32aBbが広い。従って、流出領域32aBaが第1流出領域として形成され、流出領域32aBbが第2流出領域として形成されている。   In (C), the 1st distribution part connection member 32aB which has outflow area 32aBa and outflow area 32aBb is shown. The outflow region 32aBa is narrow and the outflow region 32aBb is wide. Accordingly, the outflow region 32aBa is formed as the first outflow region, and the outflow region 32aBb is formed as the second outflow region.

(D)では、流出領域32aCaと、流出領域32aCbと、流出領域32aCcとを有する第1分配部連結部材32aCを示している。各流出領域の流路断面積は、流出領域32aCaが一番狭く、流出領域32aCcが一番広い。従って、流出領域32aCaが第1流出領域として形成され、流出領域32aCcが第2流出領域として形成されている。流出領域32aCbの流路断面積は、流出領域32aCaと流出領域32aCcとの中間に設定されているけれども、いずれかの流路断面積と略同等でも構わず、流出領域32aCaより狭くても構わない。また、流出領域32aCbの流路断面積が、流出領域32aCaと流出領域32aCcとの中間に設定されている場合、流出領域32aCaとの関係では流出領域32aCbが第2流出領域として形成されており、流出領域32aCcとの関係では流出領域32aCbが第1流出領域として形成されていることになる。   In (D), the 1st distribution part connection member 32aC which has outflow area | region 32aCa, outflow area | region 32aCb, and outflow area | region 32aCc is shown. The flow passage cross-sectional area of each outflow region is the narrowest in the outflow region 32aCa and the widest in the outflow region 32aCc. Accordingly, the outflow region 32aCa is formed as the first outflow region, and the outflow region 32aCc is formed as the second outflow region. The cross-sectional area of the outflow region 32aCb is set in the middle between the outflow region 32aCa and the outflow region 32aCc. . In addition, when the cross-sectional area of the outflow region 32aCb is set between the outflow region 32aCa and the outflow region 32aCc, the outflow region 32aCb is formed as the second outflow region in relation to the outflow region 32aCa. In relation to the outflow region 32aCc, the outflow region 32aCb is formed as the first outflow region.

(E)では、流出領域32aDaと、流出領域32aDbと、流出領域32aDcとを有する第1分配部連結部材32aDを示している。流出領域32aDa、流出領域32aDb、及び流出領域32aDcは、同じ流路断面積の円状流出口の個数を変えることで構成されている。流出領域32aDaは1つの円状流出口で構成され、流出領域32aDbは2つの円状流出口で構成され、流出領域32aDcは3つの円状流出口で構成されている。従って、流出領域32aDaが第1流出領域として形成され、流出領域32aDcが第2流出領域として形成されている。流出領域32aDaとの関係では流出領域32aDbが第2流出領域として形成されており、流出領域32aDcとの関係では流出領域32aDbが第1流出領域として形成されていることになる。   In (E), the 1st distribution part connection member 32aD which has outflow area 32aDa, outflow area 32aDb, and outflow area 32aDc is shown. The outflow region 32aDa, the outflow region 32aDb, and the outflow region 32aDc are configured by changing the number of circular outflow ports having the same flow path cross-sectional area. The outflow region 32aDa is composed of one circular outlet, the outflow region 32aDb is composed of two circular outlets, and the outflow region 32aDc is composed of three circular outlets. Accordingly, the outflow region 32aDa is formed as the first outflow region, and the outflow region 32aDc is formed as the second outflow region. The outflow region 32aDb is formed as the second outflow region in relation to the outflow region 32aDa, and the outflow region 32aDb is formed as the first outflow region in relation to the outflow region 32aDc.

(F)では、流出領域32aEaと、流出領域32aEbと、流出領域32aEcとを有する第1分配部連結部材32aEを示している。流出領域32aEaは流出領域32aDaに対応し、流出領域32aEbは流出領域32aDbに対応し、流出領域32aEcは流出領域32aDcに対応している。流出領域32aEaは、流出領域32aDaと同一形状である。流出領域32aEb及び流出領域32aEcは、流出領域32aDb及び流出領域32aDcの外周を結んだ長円形状をなしている。   In (F), the 1st distribution part connection member 32aE which has outflow area 32aEa, outflow area 32aEb, and outflow area 32aEc is shown. The outflow region 32aEa corresponds to the outflow region 32aDa, the outflow region 32aEb corresponds to the outflow region 32aDb, and the outflow region 32aEc corresponds to the outflow region 32aDc. The outflow region 32aEa has the same shape as the outflow region 32aDa. The outflow region 32aEb and the outflow region 32aEc have an oval shape connecting the outer peripheries of the outflow region 32aDb and the outflow region 32aDc.

(G)では、流出領域32aFaと、流出領域32aFbと、流出領域32aFcとを有する第1分配部連結部材32aFを示している。流出領域32aFaは流出領域32aEaに対応し、流出領域32aFbは流出領域32aEbに対応し、流出領域32aFcは流出領域32aEcに対応している。流出領域32aFaは、流出領域32aEaと同一形状である。流出領域32aFb及び流出領域32aFcは、流出領域32aEb及び流出領域32aEcに仕切りを設けた形状をなしている。   In (G), the 1st distribution part connection member 32aF which has the outflow area | region 32aFa, the outflow area | region 32aFb, and the outflow area | region 32aFc is shown. The outflow region 32aFa corresponds to the outflow region 32aEa, the outflow region 32aFb corresponds to the outflow region 32aEb, and the outflow region 32aFc corresponds to the outflow region 32aEc. The outflow region 32aFa has the same shape as the outflow region 32aEa. The outflow region 32aFb and the outflow region 32aFc have a shape in which a partition is provided in the outflow region 32aEb and the outflow region 32aEc.

尚、上述した本実施形態では、風上側熱交換コア部11を2つに分割して風上側コア部11a,11bとし、風下側熱交換コア部21を2分割して風下側コア部21a,21bとしたが、コアの分割態様はこれに限られるものではない。風上側熱交換コア部11や風下側熱交換コア部21を3つ以上に分割してもよい。また、風上側熱交換コア部11及び風下側熱交換コア部21を同数に分割するのではなく、互いに異なる個数に分割してもよい。例えば、風上側熱交換コア部11を2つに分割し、風下側熱交換コア部21を3つに分割してもよい。   In the present embodiment described above, the windward side heat exchange core part 11 is divided into two parts to form the windward side core parts 11a and 11b, and the leeward side heat exchange core part 21 is divided into two parts to obtain the leeward side core part 21a, Although 21b is used, the division mode of the core is not limited to this. The windward side heat exchange core part 11 and the leeward side heat exchange core part 21 may be divided into three or more. Moreover, you may divide into the mutually different number instead of dividing | segmenting the windward side heat exchange core part 11 and the leeward side heat exchange core part 21 into the same number. For example, the leeward side heat exchange core part 11 may be divided into two and the leeward side heat exchange core part 21 may be divided into three.

1:冷媒蒸発器
10:風上側蒸発部(第2蒸発部)
11:風上側熱交換コア部(熱交換コア部)
111:チューブ
11a:風上側コア部(第3コア部)
11b:風上側コア部(第4コア部)
12:風上側タンク部(タンク部)
13:風上側タンク部(タンク部)
13a:第1冷媒分配部
13b:第2冷媒分配部
20:風下側蒸発部(第1蒸発部)
21:風下側熱交換コア部(熱交換コア部)
211:チューブ
21a:風下側コア部(第1コア部)
21b:風下側コア部(第2コア部)
22:風下側タンク部(タンク部)
23:風下側タンク部(タンク部)
23a:第1冷媒集合部
23b:第2冷媒集合部
30:冷媒入替部
31a:第1集合部連結部材(第1流入流路(第1連通部))
31b:第2集合部連結部材(第2流入流路(第2連通部))
32a:第1分配部連結部材(第2流出流路(第2連通部))
32b:第2分配部連結部材(第1流出流路(第1連通部))
33:中間タンク部
33a:第1冷媒通路(第1中継流路)
33b:第2冷媒通路(第2中継流路)
1: Refrigerant evaporator 10: Upwind evaporator (second evaporator)
11: Windward side heat exchange core part (heat exchange core part)
111: Tube 11a: Windward core (third core)
11b: Windward core (fourth core)
12: Upwind tank (tank)
13: Upwind tank (tank)
13a: first refrigerant distributor 13b: second refrigerant distributor 20: leeward evaporator (first evaporator)
21: Downward heat exchange core (heat exchange core)
211: Tube 21a: Downward core part (first core part)
21b: Downward core part (second core part)
22: Downward tank part (tank part)
23: Downward tank part (tank part)
23a: 1st refrigerant | coolant gathering part 23b: 2nd refrigerant | coolant gathering part 30: Refrigerant replacement | exchange part 31a: 1st gathering part connection member (1st inflow channel (1st communication part))
31b: 2nd gathering part connection member (2nd inflow channel (2nd communication part))
32a: 1st distribution part connection member (2nd outflow channel (2nd communication part))
32b: 2nd distribution part connection member (1st outflow channel (1st communication part))
33: Intermediate tank section 33a: first refrigerant passage (first relay passage)
33b: second refrigerant passage (second relay flow path)

Claims (3)

外部を流れる被冷却流体と冷媒との間で熱交換を行う冷媒蒸発器(1)であって、
前記被冷却流体の流れ方向に対して直列に配置された第1蒸発部(20)、及び第2蒸発部(10)を備え、
前記第1蒸発部及び前記第2蒸発部はそれぞれ、
冷媒が流れる複数のチューブ(111、211)を積層して構成された熱交換コア部(11、21)と、
前記複数のチューブの両端部に接続され、前記複数のチューブを流れる冷媒の集合又は分配を行う一対のタンク部(12、13、22、23)と、を有し、
前記第1蒸発部における前記熱交換コア部(21)は、前記複数のチューブ(211)のうち一部のチューブ群で構成される第1コア部(21a)、及び残部のチューブ群のうち少なくとも一部のチューブ群で構成される第2コア部(21b)を有し、
前記第2蒸発部における前記熱交換コア部(11)は、前記複数のチューブ(211)のうち一部のチューブ群で構成される前記第1コア部の少なくとも一部と対向するチューブ群で構成される第3コア部(11a)、及び残部のチューブ群のうち少なくとも一部のチューブ群で構成される第4コア部(11b)を有し、
前記第1蒸発部における前記一対のタンク部(22、23)のうち、一方のタンク部(23)は、前記第1コア部からの冷媒を集合させる第1冷媒集合部(23a)、前記第2コア部(21b)からの冷媒を集合させる第2冷媒集合部(23b)を含んで構成され、
前記第2蒸発部における前記一対のタンク部(12、13)のうち、一方のタンク部(13)は、前記第3コア部に冷媒を分配させる第1冷媒分配部(13a)、前記第4コア部(11b)に冷媒を分配させる第2冷媒分配部(13b)を含んで構成され、
前記第1蒸発部及び前記第2蒸発部は、前記第1冷媒集合部の冷媒を前記第2冷媒分配部に導く第1連通部(31a、32b、33a)、及び前記第2冷媒集合部の冷媒を前記第1冷媒分配部に導く第2連通部(31b、32a、33b)を有する冷媒入替部(30)を介して連結されており、
前記冷媒入替部は、中間タンク部(33)を有しており、
前記中間タンク部は、
前記第1冷媒集合部とは冷媒の第1流入流路(31a)を介して繋がり、前記第2冷媒分配部とは冷媒の第1流出流路(32b)を介して繋がる第1中継流路(33a)と、
前記第2冷媒集合部とは冷媒の第2流入流路(31b)を介して繋がり、前記第1冷媒分配部とは冷媒の第2流出流路(32a)を介して繋がる第2中継流路(33b)と、を有し、
前記第1中継流路及び前記第2中継流路において冷媒は、一端側から他端側に向かって流れながら前記第1流出流路及び前記第2流出流路に流出するように構成されており、
前記第1流出流路及び前記第2流出流路にはそれぞれ、冷媒が流出し難い第1流出領域が前記一端側に形成されると共に、前記第1流出領域よりも前記他端側に冷媒が流出し易い第2流出領域が形成されていることを特徴とする冷媒蒸発器。
A refrigerant evaporator (1) for exchanging heat between a fluid to be cooled flowing outside and a refrigerant,
A first evaporator (20) and a second evaporator (10) arranged in series with respect to the flow direction of the fluid to be cooled;
The first evaporator and the second evaporator are respectively
A heat exchange core (11, 21) configured by laminating a plurality of tubes (111, 211) through which refrigerant flows;
A pair of tank parts (12, 13, 22, 23) connected to both ends of the plurality of tubes and collecting or distributing refrigerant flowing through the plurality of tubes;
The heat exchange core part (21) in the first evaporation part is at least one of a first core part (21a) constituted by a part of the tube groups of the plurality of tubes (211) and a remaining tube group. It has a second core part (21b) composed of a part of a tube group,
The heat exchange core part (11) in the second evaporation part is composed of a tube group facing at least a part of the first core part composed of a part of the plurality of tubes (211). The third core portion (11a), and the fourth core portion (11b) composed of at least a part of the remaining tube groups.
Of the pair of tank parts (22, 23) in the first evaporation part, one tank part (23) is a first refrigerant assembly part (23a) for collecting refrigerant from the first core part, the first A second refrigerant assembly part (23b) for collecting refrigerant from the two core parts (21b),
Of the pair of tank parts (12, 13) in the second evaporation part, one tank part (13) is a first refrigerant distribution part (13a) for distributing refrigerant to the third core part, and the fourth A second refrigerant distributor (13b) that distributes the refrigerant to the core (11b);
The first evaporating unit and the second evaporating unit include a first communication unit (31a, 32b, 33a) for guiding the refrigerant of the first refrigerant collecting unit to the second refrigerant distributing unit, and the second refrigerant collecting unit. It is connected via a refrigerant replacement part (30) having a second communication part (31b, 32a, 33b) for guiding the refrigerant to the first refrigerant distribution part,
The refrigerant replacement part has an intermediate tank part (33),
The intermediate tank portion is
The first refrigerant flow path is connected to the first refrigerant collecting section through a first refrigerant flow-in path (31a), and the second refrigerant distribution section is connected to the first refrigerant flow-out path (32b). (33a)
A second relay flow path connected to the second refrigerant collecting section via a second refrigerant flow-in flow path (31b) and a first refrigerant distribution section connected to the second refrigerant distribution section via a second refrigerant flow-out flow path (32a). (33b)
In the first relay flow path and the second relay flow path, the refrigerant flows out from the one end side toward the other end side and flows out to the first outflow path and the second outflow path. ,
In each of the first outflow channel and the second outflow channel, a first outflow region where the refrigerant does not easily flow out is formed on the one end side, and the refrigerant is disposed on the other end side of the first outflow region. The refrigerant | coolant evaporator characterized by the 2nd outflow area | region easy to flow out being formed.
前記第1流出領域の流路断面積よりも前記第2流出領域の流路断面積が広くなるように構成されていることを特徴とする請求項1に記載の冷媒蒸発器。   2. The refrigerant evaporator according to claim 1, wherein a flow path cross-sectional area of the second outflow area is larger than a flow path cross-sectional area of the first outflow area. 前記第1流出領域及び前記第2流出領域の少なくとも一方は、1つ又は複数の開口部によって構成されているものであって、
前記第1流出領域に含まれる前記開口部の数よりも、前記第2流出領域に含まれる前記開口部の数が多いことを特徴とする請求項1に記載の冷媒蒸発器。
At least one of the first outflow region and the second outflow region is constituted by one or a plurality of openings,
2. The refrigerant evaporator according to claim 1, wherein the number of the openings included in the second outflow region is larger than the number of the openings included in the first outflow region.
JP2015114758A 2015-06-05 2015-06-05 Refrigerant evaporator Pending JP2017003140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015114758A JP2017003140A (en) 2015-06-05 2015-06-05 Refrigerant evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015114758A JP2017003140A (en) 2015-06-05 2015-06-05 Refrigerant evaporator

Publications (1)

Publication Number Publication Date
JP2017003140A true JP2017003140A (en) 2017-01-05

Family

ID=57753747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015114758A Pending JP2017003140A (en) 2015-06-05 2015-06-05 Refrigerant evaporator

Country Status (1)

Country Link
JP (1) JP2017003140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026436A1 (en) * 2017-08-02 2019-02-07 三菱重工サーマルシステムズ株式会社 Heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719771U (en) * 1980-07-02 1982-02-01
JP2001255095A (en) * 2000-03-15 2001-09-21 Zexel Valeo Climate Control Corp Heat exchanger
JP4124136B2 (en) * 2003-04-21 2008-07-23 株式会社デンソー Refrigerant evaporator
US20110139413A1 (en) * 2009-12-15 2011-06-16 Delphi Technologies, Inc. Flow distributor for a heat exchanger assembly
JP2013057426A (en) * 2011-09-07 2013-03-28 Hitachi Appliances Inc Plate-type heat exchanger and freezing cycle device with the same
JP2013096653A (en) * 2011-11-01 2013-05-20 Denso Corp Refrigerant evaporator
JP2013185723A (en) * 2012-03-06 2013-09-19 Denso Corp Refrigerant evaporator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719771U (en) * 1980-07-02 1982-02-01
JP2001255095A (en) * 2000-03-15 2001-09-21 Zexel Valeo Climate Control Corp Heat exchanger
JP4124136B2 (en) * 2003-04-21 2008-07-23 株式会社デンソー Refrigerant evaporator
US20110139413A1 (en) * 2009-12-15 2011-06-16 Delphi Technologies, Inc. Flow distributor for a heat exchanger assembly
JP2013057426A (en) * 2011-09-07 2013-03-28 Hitachi Appliances Inc Plate-type heat exchanger and freezing cycle device with the same
JP2013096653A (en) * 2011-11-01 2013-05-20 Denso Corp Refrigerant evaporator
JP2013185723A (en) * 2012-03-06 2013-09-19 Denso Corp Refrigerant evaporator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026436A1 (en) * 2017-08-02 2019-02-07 三菱重工サーマルシステムズ株式会社 Heat exchanger
JP2019027727A (en) * 2017-08-02 2019-02-21 三菱重工サーマルシステムズ株式会社 Heat exchanger

Similar Documents

Publication Publication Date Title
JP5454553B2 (en) Refrigerant evaporator
JP5796518B2 (en) Refrigerant evaporator
JP6098343B2 (en) Refrigerant evaporator
WO2014188689A1 (en) Refrigerant evaporator
JP5998854B2 (en) Refrigerant evaporator
WO2013140797A1 (en) Refrigerant evaporator
JP2016130612A (en) Refrigerant evaporator
JP6131705B2 (en) Refrigerant evaporator
JP6322982B2 (en) Refrigerant evaporator
JP5195300B2 (en) Refrigerant evaporator
JP2017003140A (en) Refrigerant evaporator
JP2014228233A (en) Refrigerant evaporator
JP6098358B2 (en) Refrigerant evaporator
JP4547205B2 (en) Evaporator
WO2014181547A1 (en) Refrigerant evaporator
JP2017015363A (en) Refrigerant evaporator
JP6458617B2 (en) Refrigerant evaporator
JP2015021665A (en) Refrigerant evaporator
WO2016063519A1 (en) Refrigerant evaporator
JP2017044375A (en) Refrigerant evaporator
JP2014126271A (en) Evaporator structure
JP2017187216A (en) Refrigerant evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204