WO2016121123A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2016121123A1
WO2016121123A1 PCT/JP2015/052769 JP2015052769W WO2016121123A1 WO 2016121123 A1 WO2016121123 A1 WO 2016121123A1 JP 2015052769 W JP2015052769 W JP 2015052769W WO 2016121123 A1 WO2016121123 A1 WO 2016121123A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
leeward
refrigerant
heat exchanger
inlet
Prior art date
Application number
PCT/JP2015/052769
Other languages
French (fr)
Japanese (ja)
Inventor
繁佳 松井
真哉 東井上
石橋 晃
伊東 大輔
裕樹 宇賀神
中村 伸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016571652A priority Critical patent/JP6239159B2/en
Priority to PCT/JP2015/052769 priority patent/WO2016121123A1/en
Publication of WO2016121123A1 publication Critical patent/WO2016121123A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • a circular pipe is used as a heat transfer tube of a conventional heat exchanger, and in order to reduce pressure loss, the refrigerant is divided into a plurality of flow paths and flows through the heat transfer tube.
  • a heat exchanger that uses a flat tube with a reduced diameter flow path as a heat transfer tube has a large pressure loss. Therefore, the number of refrigerant paths is increased compared to a circular tube, and the length of the heat transfer tube through which the refrigerant flows per pass. It is necessary to shorten the length.
  • multi-row flat tube heat exchange is used, if the equivalent diameter of the flow path is extremely small, it is difficult to adopt a cross-row path configuration, and it is necessary to flow the refrigerant in parallel in each row to make it an orthogonal flow.
  • a header or a distributor is provided in the refrigerant distributor that distributes the refrigerant to the heat transfer tubes.
  • a header or a distributor is provided in the refrigerant distributor that distributes the refrigerant to the heat transfer tubes.
  • the heat exchanger using a flat tube it has a 1st circular tube member and a 2nd circular tube member as a header which distributes a refrigerant
  • the second circular pipe member has an outer diameter smaller than the inner diameter of the first circular pipe member, and a header configured to extend along the vertical direction in the internal space of the first circular pipe member. Proposed.
  • An object of the present invention is to solve the above-described problems, and the diversion ratio of the refrigerant flowing through the column heat exchanger can be changed with a simple configuration.
  • An object of the present invention is to obtain a refrigeration cycle apparatus with improved heat exchange efficiency by sending the refrigerant.
  • a refrigeration cycle apparatus includes a circuit including a compressor, an indoor heat exchanger, an expansion unit, and an outdoor heat exchanger,
  • the outdoor heat exchanger includes a fan, a first heat exchanger, and a second heat exchanger disposed downstream of the first heat exchanger with respect to the air flow generated by the fan,
  • the first heat exchanger includes a first heat transfer tube
  • the second heat exchanger includes a second heat transfer tube, A first end of the first heat transfer tube is connected to a first header for supplying a refrigerant to the first heat exchanger;
  • a second end of the first heat transfer tube is connected to a second header;
  • a third end of the second heat transfer tube is connected to a third header;
  • a fourth end of the second heat transfer tube is connected to a fourth header;
  • the first header and the third header are refrigeration cycle apparatuses connected to a branch portion of the collecting pipe via a first distribution pipe and a second distribution pipe,
  • the first header or the first distribution pipe includes a first throttle part
  • the first header or the first distribution pipe includes a first throttle part
  • the third header or the second distribution pipe includes a second throttle part
  • the first throttle part The flow resistance of the outdoor heat exchanger is smaller than the flow resistance of the second constriction part, and the heat of the outdoor heat exchanger is increased by sending a larger amount of refrigerant to the windward first heat exchanger having a larger heat exchange amount with a simple configuration. Exchange efficiency is improved.
  • FIG. 1 shows the structure of the refrigerating cycle of Embodiment 1 of this invention. It is a perspective view which shows the outline of the outdoor heat exchanger which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the leeward inlet header of FIG. It is sectional drawing which shows the leeward inlet header of the outdoor heat exchanger which concerns on Embodiment 2.
  • FIG. It is sectional drawing which shows the leeward inlet header of the outdoor heat exchanger which concerns on Embodiment 3.
  • FIG. It is a perspective view which shows the outline of the outdoor heat exchanger which concerns on Embodiment 4.
  • FIG. It is a figure which shows the structure of the refrigerating cycle of Embodiment 5 of this invention.
  • FIG. 1 is a diagram illustrating a configuration of the refrigeration cycle apparatus 1 according to the first embodiment.
  • the refrigeration cycle apparatus 1 includes a circuit 2 through which a refrigerant circulates.
  • the circuit 2 includes at least a compressor 3, an indoor heat exchanger 4, an expansion unit 5, and an outdoor heat exchanger 6.
  • the refrigeration cycle apparatus 1 can perform both a heating operation and a cooling operation, and the circuit 2 is provided with a four-way valve 7 for switching the operation.
  • the refrigerant flow during the heating operation is indicated by a solid line arrow
  • the refrigerant flow during the cooling operation is indicated by a dotted line arrow.
  • the components of the circuit 2 will be described with reference to the direction in which the refrigerant flows during operation. That is, in the present specification, the wording is used for the inlet and the outlet based on the direction in which the refrigerant flows during the heating operation. That is, the outdoor heat exchanger 6 acts as an evaporator during heating operation, and at this time, the side where the refrigerant enters the outdoor heat exchanger 6 is an inlet, and the side where the refrigerant exits the outdoor heat exchanger 6 is an outlet. Yes.
  • the outlet of the compressor 3 is connected to the inlet of the indoor heat exchanger 4 via the four-way valve 7.
  • the outlet of the indoor heat exchanger 4 is connected to the inlet of the expansion unit 5.
  • the expansion part 5 is comprised by the expansion valve, for example.
  • the outlet of the expansion part 5 is connected to the inlet of the outdoor heat exchanger 6.
  • the outlet of the outdoor heat exchanger 6 is connected to the inlet of the compressor 3 through a four-way valve 7.
  • an arrow W indicates a flow of fluid that performs heat exchange with the refrigerant.
  • an arrow W indicates a flow of air that performs heat exchange with the refrigerant.
  • An indoor fan 8 is provided on the windward side of the indoor heat exchanger 4.
  • the indoor fan 8 positively generates an air flow with respect to the indoor heat exchanger 4.
  • the indoor heat exchanger 4 and the indoor fan 8 are accommodated in a case of the indoor unit 9, and the indoor unit 9 is disposed in the indoor space.
  • an outdoor fan 10 is provided on the windward side of the outdoor heat exchanger 6.
  • the outdoor fan 10 positively generates an air flow with respect to the outdoor heat exchanger 6.
  • the outdoor heat exchanger 6, the outdoor fan 10, the compressor 3, the expansion unit 5, and the four-way valve 7 are accommodated in a case of the outdoor unit 11.
  • FIG. 2 is a schematic perspective view showing the outdoor heat exchanger 6.
  • the outdoor heat exchanger 6 includes an outdoor fan 10, a windward row 12 that is a first heat exchanger, a leeward row 13 that is a second heat exchanger, a windward inlet header 20 that is a first header, A leeward outlet header 21 that is a second header, a leeward inlet header 22 that is a third header, and a leeward outlet header 23 that is a fourth header.
  • a windward row 12 is arranged on the windward side of the air flow generated by the outdoor fan 10, and a leeward row 13 is arranged on the leeward side.
  • the windward row 12 includes a plurality of windward heat transfer tubes 14 that are a plurality of first heat transfer tubes, and a plurality of windward fins 15 that intersect the plurality of windward heat transfer tubes 14.
  • the leeward row 13 includes a plurality of leeward heat transfer tubes 16 that are second heat transfer tubes, and a plurality of leeward fins 17 that intersect the plurality of leeward heat transfer tubes 16.
  • Each of the plurality of upwind heat transfer tubes 14 and the plurality of downwind heat transfer tubes 16 is a flat tube.
  • the flat tube has a rectangular cross section, and a plurality of internal flow paths arranged in the width direction penetrate along the longitudinal direction, and the refrigerant flows through the internal flow paths.
  • a circular tube may be used instead of the flat tube.
  • the windward row 12 and the leeward row 13 are arranged in the direction along the air flow W that performs heat exchange with the refrigerant, that is, the alignment direction Z.
  • the windward row 12 is closer to the air intake surface 19 of the case of the outdoor unit 11 than the leeward row 13.
  • the leeward row 13 is closer to the air discharge surface 18 provided in the case of the outdoor unit 11 than the windward row 12.
  • the plurality of windward heat transfer tubes 14 are arranged in the vertical direction Y perpendicular to both the longitudinal direction, that is, the flow direction X in the heat transfer tube and the alignment direction Z.
  • the plurality of leeward heat transfer tubes 16 are also arranged in the vertical direction Y orthogonal to both the longitudinal direction, that is, the flow direction X in the heat transfer tube and the alignment direction Z.
  • the heat transfer tube flow direction X is orthogonal to both the alignment direction Z and the vertical direction Y.
  • the plurality of windward fins 15 intersect with the plurality of windward heat transfer tubes 14 in plan view. More specifically, each of the plurality of upwind fins 15 extends in the alignment direction Z perpendicular to the flow direction X in the heat transfer tube.
  • the plurality of leeward fins 17 intersect with the plurality of leeward heat transfer tubes 16 in plan view. More specifically, each of the plurality of leeward fins 17 extends in an alignment direction Z perpendicular to the flow direction X in the heat transfer tube.
  • the inlet ends that are the first ends of the plurality of windward heat transfer tubes 14 are connected to the windward inlet header 20 that is the first header extending in the vertical direction, and the second ends of the plurality of windward heat transfer tubes 14 are connected.
  • the outlet end that is the end of the wind turbine is connected to a windward outlet header 21 that is a second header extending in the vertical direction.
  • the inlet end, which is the third end of the leeward heat transfer tube 16 that is the plurality of second heat transfer tubes is connected to the leeward inlet header 22, which is a third header extending in the vertical direction.
  • the outlet end which is the fourth end of the heat pipe 16 is connected to a leeward outlet header 23 which is a fourth header extending in the vertical direction.
  • a windward inlet distribution pipe 24 that is a first inlet distribution pipe is connected to the lower part of the windward inlet header 20.
  • the leeward inlet header 22 is connected to a leeward inlet distribution pipe 25 which is a second inlet distribution pipe at the lower part and the middle part.
  • the windward inlet distribution pipe 24 and the leeward inlet distribution pipe 25 are connected to a branch portion 27 of the inlet collecting pipe 26 (see FIG. 1).
  • a windward outlet distribution pipe 28 that is a first outlet distribution pipe is connected to the lower part of the windward outlet header 21.
  • a leeward outlet distribution pipe 29 that is a second outlet distribution pipe is connected to the lower part of the leeward outlet header 23.
  • the windward outlet pipe 28 and the leeward outlet pipe 29 are connected to the branch portion 31 of the outlet collecting pipe 30.
  • the windward inlet header 20, the leeward inlet header 22, the windward outlet header 21 and the leeward outlet header 23 have a cylindrical shape.
  • the cross-sectional area of the leeward inlet header 22 that is the third header is smaller than the cross-sectional area of the leeward inlet header 20 that is the first header.
  • the cross-sectional area of the leeward outlet header 23 that is the fourth header is smaller than the cross-sectional area of the leeward outlet header 21 that is the second header.
  • FIG. 3 is a sectional view showing the leeward inlet header 22 as the third header.
  • the cylindrical leeward inlet header 22 has a distribution space 32 whose interior is divided into two by a partition wall 34.
  • a leeward inlet distribution pipe 25 is connected to the lower part of each distribution space 32.
  • the leeward inlet distribution pipe 25 faces the refrigerant inlet 33 of the second hole, which is a second throttle portion formed at the lower end of the leeward inlet header 22.
  • a windward inlet distribution pipe 24 is connected to the lower part of the windward inlet header 20 which is a cylindrical first header.
  • the windward inlet distribution pipe 24 faces the refrigerant inlet 24a which is a first hole which is a first throttle portion formed at the lower end of the windward inlet header 20.
  • the refrigerant inlet 33 of the leeward inlet header 22 and the refrigerant inlet 24a of the windward inlet header 20 both have a mechanism for restricting the refrigerant.
  • the equivalent diameter of the refrigerant inlet 24 a of the windward inlet header 20 is larger than the equivalent diameter of the refrigerant inlet 33 of the leeward inlet header 22. That is, the flow resistance of the first throttle part is smaller than the flow resistance of the second throttle part.
  • the flow rate of the refrigerant flowing through the leeward inlet header 22 is smaller than that of the leeward inlet header 20, and when the inertial force of the refrigerant in the leeward inlet header 22 becomes smaller, the refrigerant is connected to the upper side in each distribution space 32.
  • the refrigerant hardly rises up to the leeward heat transfer tube 16, and the flow rate of the refrigerant distributed to the leeward heat transfer tube 16 in that region decreases accordingly.
  • the flow rate of the refrigerant flowing into the leeward inlet header 22 and the flow velocity in the leeward inlet header 22 are increased to increase the inertial force of the refrigerant in the leeward inlet header 22 so that the refrigerant is easily lifted.
  • the refrigerant can be sent even in the leeward inlet header 22 having a small flow rate to the upper side of the distribution space 32, and the refrigerant is evenly distributed to the leeward heat transfer tubes 16 connected to the leeward inlet header
  • the heat exchange amount of the leeward row 13 is about 1/3 to 2/3 of the heat exchange amount of the leeward row 12, it is provided in the windward inlet header 20 according to the heat exchange amount.
  • the flow rate ratio of the refrigerant flowing into the leeward inlet header 22 is about 1/3 to 2/3.
  • the equivalent diameters D1 and D2 of the windward inlet header 20 and the leeward inlet header 22 are set to 0.5 ⁇ D2 / D1 ⁇ 0.85, respectively, the windward inlet header 20 and the leeward inlet header 22 respectively
  • the flow rate of the refrigerant is about the same.
  • the windward inlet of the windward inlet header 20 and the refrigerant inlet 33 of the leeward inlet header 22 are d1 and d2
  • the windward inlet is 0.5 ⁇ d2 / d1 ⁇ 0.85.
  • the flow velocity flowing into the header 20 and the leeward inlet header 22 is the same.
  • the leeward inlet header 20 has a single space, whereas the leeward inlet header 22 has a distribution space 32 that is divided into two parts.
  • the rising distance of the refrigerant that has flowed into the distribution space 32 from 25 is half of the rising distance of the refrigerant that has flowed into the inside from the upwind inlet distribution pipe 24 of the upwind inlet header 20. Is easy to reach.
  • the flow rate of the refrigerant flowing through the leeward inlet header 22 is smaller than that of the leeward inlet header 20
  • the flow rate of the refrigerant in the leeward outlet header 23 is also reduced.
  • the refrigerating machine oil stays in the leeward outlet header 23 and causes pressure loss, so that a necessary refrigerant split ratio may not be obtained in the leeward row 12 and the leeward row 13.
  • the cross-sectional area of the leeward outlet header 23 that is the fourth header is made smaller than the cross-sectional area of the leeward outlet header 21 that is the second header.
  • Increasing the flow rate of the refrigerant suppresses the refrigeration oil from staying in the leeward outlet header 23 to promote the return of oil, and suppresses the refrigerant flow ratio change in the leeward row 13 and the upwind row 12 due to the refrigeration oil staying. it can.
  • the refrigerating-cycle apparatus 1 which is the air conditioner of the said embodiment is demonstrated.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 3 flows into the indoor heat exchanger 4 of the indoor unit 9 through the four-way valve 7, and the air and heat supplied by the indoor fan 8. Exchange and condense.
  • the condensed refrigerant becomes a high-pressure liquid state, flows out of the indoor heat exchanger 4, and becomes a low-pressure gas-liquid two-phase state by the expansion unit 5.
  • the low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 6 of the outdoor unit 11.
  • the refrigerant is diverted at the branching portion 27 of the inlet collecting pipe 26, and one refrigerant passes through the windward inlet distribution pipe 24 into the windward inlet header 20 of the windward row 12 and the first throttle portion. It flows in through the refrigerant inlet 24a.
  • the other refrigerant flows through the two leeward inlet distribution pipes 25 into the leeward inlet header 22 of the leeward row 13 through the refrigerant inlet 33 as the second throttle part. Since it is smaller than the flow resistance of the throttle portion, the amount of refrigerant flowing into the windward inlet header 20 is larger than that of the leeward inlet header 22.
  • the cross-sectional area of the leeward inlet header 22 is smaller than the cross-sectional area of the leeward inlet header 20, even the leeward inlet header 22 having a smaller refrigerant amount than the leeward inlet header 22,
  • the flow rate is equivalent to the flow rate of the refrigerant in the windward inlet header 20.
  • the gas-liquid two-phase refrigerant that has flowed into the windward inlet header 20 is distributed to the windward heat transfer tubes 14 that are spaced apart in the vertical direction, and the distributed refrigerant is a space adjacent to the vertical direction.
  • the gas is in a low pressure gas state and is sent to the windward outlet header 21.
  • the gas-liquid two-phase refrigerant that has flowed into the leeward inlet header 22 is distributed to the leeward heat transfer tubes 16 that are spaced apart in the vertical direction, and the distributed refrigerant is The heat is exchanged with the air supplied from the outdoor fan 10 in the adjacent space, and the gas enters a low-pressure gas state and is sent to the leeward outlet header 23. Thereafter, the refrigerant from the windward outlet header 21 is sent to the windward outlet distribution pipe 28, the refrigerant from the leeward outlet header 23 is sent to the leeward outlet distribution pipe 29, and each refrigerant is supplied to the outlet collecting pipe 30. After merging at the branch portion 31, it flows out from the outlet collecting pipe 30 to the outside of the outdoor heat exchanger 6. The refrigerant that has flowed out of the outdoor heat exchanger 6 returns to the compressor 3 via the four-way valve 7.
  • the outdoor heat exchanger 6 functions as a condenser
  • the indoor heat exchanger 4 functions as an evaporator.
  • the flow resistance of the refrigerant inlet that is the first throttle part of the windward inlet header 20 is the flow resistance of the refrigerant inlet 33 that is the second throttle part of the leeward inlet header 22. Therefore, the amount of refrigerant supplied to the windward inlet header 20 can be made larger than the amount of refrigerant supplied to the leeward inlet header 22. Therefore, the upwind row 12 has a larger amount of heat exchange than the downwind row 13, but the refrigerant amount supplied to the upwind row 12 is easily compared with the refrigerant amount supplied to the downwind row 13. The heat exchange efficiency of the outdoor heat exchanger 6 is improved.
  • the refrigerant amount supplied to the leeward inlet header 22 is compared with the refrigerant amount supplied to the leeward inlet header 20. Although small, it is possible to make the flow rate of the refrigerant flowing in the distribution space 32 of the leeward inlet header 22 approximately the same as the flow rate of the refrigerant flowing in the leeward inlet header 20.
  • the refrigerant is supplied also to the upper side of the distribution space 32 in the leeward inlet header 22 having a small flow rate, so that the same amount of refrigerant as that of the lower leeward heat transfer pipe 16 is supplied to the upper leeward heat transfer pipe 16. it can.
  • the cross-sectional area of the leeward outlet header 23 is smaller than the cross-sectional area of the leeward outlet header 21
  • the amount of refrigerant flowing into the leeward outlet header 23 is smaller than the amount of refrigerant flowing into the leeward outlet header 21.
  • the flow rate of the refrigerant in the leeward outlet header 23 can be increased, and oil return on the leeward row 13 side is promoted. Therefore, it is possible to suppress a change in the refrigerant branching ratio required in the windward row 12 and the leeward row 13 due to the refrigeration oil remaining in the leeward outlet header 23.
  • the windward inlet header 20 and the leeward inlet header 22 each have a distribution space 32 therein, and the number of distribution spaces 32 of the leeward inlet header 22 is larger than the number of distribution spaces of the windward inlet header 20.
  • the height of the leeward inlet header 22 in the distribution space 32 is lower than the height of the leeward inlet header 20 in the distribution space. Therefore, even when the amount of refrigerant flowing into each leeward inlet header 22 is small, the refrigerant can be supplied also to the upper side of the distribution space 32. As a result, the refrigerant is equally supplied to the upper leeward heat transfer tubes 16 as well as the lower leeward heat transfer tubes 16. Can be supplied.
  • FIG. FIG. 4 is a cross-sectional view showing the leeward inlet header 22 of the refrigeration cycle apparatus 1 according to the second embodiment.
  • the leeward inlet header 22 has a distribution space 32 that is internally divided into two by a partition wall 34, and a ring 35 is provided below each distribution space 32.
  • a throttle hole 35a In the center portion of the ring 35, there is formed a throttle hole 35a that is a second throttle portion serving as a refrigerant passage and directed upward.
  • the windward inlet header 20 has a windward inlet distribution pipe 24 connected to the lower part thereof.
  • the windward inlet distribution pipe 24 faces the refrigerant inlet 24 a that is a first throttle portion formed at the lower end of the windward inlet header 20.
  • the throttle hole 35a of the leeward inlet header 22 and the refrigerant inlet 24a of the windward inlet header 20 both have a mechanism for squeezing the refrigerant.
  • the equivalent diameter of the refrigerant inlet 24 a that is the first throttle part of the windward inlet header 20 is larger than the equivalent diameter of the throttle hole 35 a that is the second throttle part of the leeward inlet header 22. That is, the flow resistance of the first throttle part is smaller than the flow resistance of the second throttle part.
  • Other configurations are the same as those of the refrigeration cycle apparatus 1 of the first embodiment.
  • the hole diameter of the refrigerant inlet 24a which is the first throttle portion of the windward inlet header 20, is larger than the hole diameter of the throttle hole 35a, which is the second throttle portion of the leeward inlet header 22.
  • the amount of refrigerant flowing into the upper inlet header 20 is larger than the amount of refrigerant flowing into the leeward inlet header 22. Therefore, the upwind row 12 has a larger amount of heat exchange than the downwind row 13, but the refrigerant amount supplied to the upwind row 12 is easily compared with the refrigerant amount supplied to the downwind row 13.
  • the heat exchange efficiency of the outdoor heat exchanger 6 is improved.
  • the refrigerant flow ratio between the refrigerant amount flowing into the leeward inlet header 20 and the refrigerant amount flowing into the leeward inlet header 22 is set to the throttle hole 35a as the second throttle portion, and the refrigerant flow as the first throttle portion. It can be easily changed by changing the diameter of each hole of the inlet 24a.
  • the throttle hole 35a of the ring 35 is directed upward, the refrigerant flowing into the leeward inlet header 22 from the refrigerant inlet 33 is forcibly directed upward through the throttle hole 35a and distributed as it is.
  • the refrigerant rises linearly in the direction of arrow B, and the refrigerant can be evenly distributed to the leeward heat transfer tubes 16. Further, the refrigerant that has flowed into the windward inlet header 20 through the refrigerant inflow port 24 a is distributed to each windward heat transfer tube 14.
  • FIG. 5 is a cross-sectional view showing the leeward inlet header 22 of the refrigeration cycle apparatus 1 according to the third embodiment.
  • the leeward inlet header 22 has a distribution space 32 that is internally divided into two by a partition wall 34, and a leeward windshield whose front end is bent upward at each distribution space 32.
  • a refrigerant pipe 36 is provided.
  • An outflow hole 36 a of a second hole, which is a second throttle part, is provided at the tip of the leeward refrigerant pipe 36.
  • the base end portions of these leeward refrigerant pipes 36 are connected to the branch portions 27 of the inlet collecting pipe 26.
  • the windward inlet header 20 has a windward inlet distribution pipe 24 connected to the lower part thereof.
  • the windward inlet distribution pipe 24 faces the refrigerant inlet 24 a that is a first throttle portion formed at the lower end of the windward inlet header 20.
  • Both the outflow hole 36a of the leeward inlet header 22 and the refrigerant inlet 24a of the leeward inlet header 20 have a mechanism for restricting the refrigerant.
  • the equivalent diameter of the refrigerant inlet 24 a that is the first constriction part of the upwind inlet header 20 is larger than the equivalent diameter of the outflow hole 36 a that is the second constriction part of the leeward inlet header 22. That is, the flow resistance of the first throttle part is smaller than the flow resistance of the second throttle part.
  • Other configurations are the same as those of the refrigeration cycle apparatus 1 of the first embodiment.
  • the leeward refrigerant pipe 36 is bent in the upward direction, the refrigerant flowing into the leeway inlet header 22 through the leeward refrigerant pipe 36 is forced at the front end of the leeward refrigerant pipe 36.
  • the refrigerant rises linearly in the direction of arrow C, and the refrigerant can be evenly distributed to the leeward heat transfer tubes 16. Further, the refrigerant that has flowed into the windward inlet header 20 through the refrigerant inflow port 24 a is distributed to each windward heat transfer tube 14.
  • the amount of refrigerant flowing into the leeward inlet header 22 can be changed by changing the diameter of the outlet hole 36a at the tip of the leeward refrigerant pipe 36 of the leeward inlet header 22 and the diameter of the refrigerant inlet 24a of the windward inlet header 20. And the ratio of the refrigerant amount flowing into the windward inlet header 20 can be easily changed.
  • the two members of the leeward inlet distribution pipe 25 and the ring 35 are only one member of the leeward refrigerant pipe 36, and the number of parts and the number of assembling steps can be reduced.
  • FIG. FIG. 6 is a perspective view showing an outline of the outdoor heat exchanger 6 of the refrigeration cycle apparatus 1 of the fourth embodiment.
  • This outdoor heat exchanger 6 has the same configuration as that of the outdoor heat exchanger 6 of the first embodiment, and a sub heat exchanger 40 is provided on the lower side.
  • the auxiliary heat exchanger 40 includes a windward inlet header (not shown), a leeward inlet header 41, a windward outlet header 42, a leeward outlet header 43, a windward heat transfer tube 44, and a leeward heat transfer tube 45.
  • the refrigerant flows from the refrigerant inlet pipe 37 into the upwind inlet header and the downwind inlet header 41. Thereafter, the refrigerant passes through each of the windward heat transfer tubes 44 and each of the leeward heat transfer tubes 45 and then collects in the windward outlet header 42 and the leeward outlet header 43. Of the refrigerant flowing out from the auxiliary heat exchanger 40, the refrigerant collected in the leeward outlet header 43 flows into the distribution space 32 of the leeward inlet header 22 through the leeward inlet distribution pipe 25 and the refrigerant inlet 33 which is the leeward constriction part. To do.
  • the refrigerant collected in the windward outlet header 42 flows into the distribution space of the windward inlet header 20 through the windward inlet distribution pipe 24 and the refrigerant inlet which is the first throttle part.
  • the subsequent flow of the refrigerant is the same as that of the refrigeration cycle apparatus 1 of the first embodiment, and the description thereof is omitted.
  • the refrigerant flow is opposite to that in the heating operation.
  • the outdoor heat exchanger 6 functions as a condenser
  • the outdoor heat exchanger 6 becomes a gas-liquid two-phase part
  • the refrigerant flowing into the auxiliary heat exchanger 40 from the outdoor heat exchanger 6 In the heat exchanger 40 it becomes a liquid phase by heat exchange with the air flowing through the windward heat transfer tube 44 and the leeward heat transfer tube 45.
  • FIG. FIG. 7 is a diagram illustrating a configuration of the refrigeration cycle apparatus 1 according to the fifth embodiment.
  • the first upstream part which is the first header
  • the second downstream part, the third downstream header includes the second throttle part.
  • the windward inlet distribution pipe 24 that is the first distribution pipe includes the first hole 38 that is the first throttle part.
  • the leeward inlet distribution pipe 25 that is the second distribution pipe includes the second hole 39 that is the second throttle part.
  • Other configurations are the same as those of the refrigeration cycle apparatus 1 of the first embodiment, and the same effects as those of the refrigeration cycle apparatus 1 of the first embodiment can be obtained.
  • the refrigeration cycle apparatus 1 that is an air conditioner has been described.
  • the present invention is not limited to this, and the compressor, the expansion unit, the indoor heat exchanger, and the outdoor
  • the present invention can be widely applied to a refrigeration cycle apparatus including a refrigeration circuit including a heat exchanger. Therefore, for example, the present invention can be implemented as a refrigeration cycle apparatus that is a hot water heater.
  • the outdoor heat exchanger 6 is demonstrated as a 2 rows heat exchanger, this invention is not limited to this, The heat exchanger of 3 rows or more It is also possible to apply to. In that case, this invention is implemented as said windward row
  • the present invention can be applied even when the outdoor heat exchanger functions as a condenser and high-pressure and high-temperature gas refrigerant flows into the windward inlet header 20 and the leeward inlet header 22.
  • Refrigeration cycle device 2 circuit, 3 compressor, 4 indoor heat exchanger, 5 expansion section, 6 outdoor heat exchanger, 7 four-way valve, 8 indoor fan, 9 outdoor unit, 10 outdoor fan, 11 outdoor unit, 12 wind Upper row (first heat exchanger), 13 Downward row (second heat exchanger), 14 Upwind heat transfer tube (first heat transfer tube), 15 Upwind fan, 16 Downwind heat transfer tube (second heat transfer tube), 17 Leeward fin, 18 air discharge surface, 19 air intake surface, 20 windward inlet header (first header), 21 windward outlet header (second header), 22 leeward inlet header (third header), 23 leeward outlet header ( 4th header), 24 windward inlet distribution pipe (first distribution pipe), 24a refrigerant inlet (first throttle section), 25 leeward inlet distribution pipe (second distribution pipe), 26 inlet collecting pipe, 27 branching section, 28 Windward exit distribution , 29 leeward outlet distribution pipe, 30 outlet collecting pipe, 31 branching section, 32 distribution space, 33 refrigerant inlet (second throttle part), 34 partition, 35 ring, 35a

Abstract

A refrigeration cycle device 1 wherein an outdoor heat exchanger 6 is equipped with an upwind row 12 and a downwind row 13, with the upwind row 12 being equipped with multiple upwind heat transfer tubes 14, and the downwind row 13 being equipped with multiple downwind heat transfer tubes 16. One end of each of the upwind heat transfer tubes 14 is connected to an upwind inlet header 20, the other end of each of the heat transfer tubes 14 is connected to an upwind outlet header 21, one end of each of the downwind heat transfer tubes 16 is connected to a downwind inlet header 22, and the other end of each of the downwind heat transfer tubes 16 is connected to a downwind outlet header 23. The upwind inlet header 20 includes a first throttle part, the downwind outlet header includes a second throttle part, and the fluid resistance of the first throttle part is less than the fluid resistance of the second throttle part.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle apparatus.
 従来の熱交換器の伝熱管には円管が使用されており、圧力損失を低減するため、冷媒が複数流路に分配されて伝熱管内を流れる構成されている。流路が細径化された扁平管を伝熱管に用いる熱交換器は圧力損失が大きくなるため、円管と比べて冷媒のパス数を増加させ、1パス当たりの冷媒が流れる伝熱管の長さを短くする必要がある。扁平管熱交を多列化する場合、流路の相当直径が極端に小さい場合は列またぎのパス構成をとることが困難であり、各列にパラレルに冷媒を流して直行流とする必要がある。冷媒を各伝熱管に分配する冷媒分配器には、例えばヘッダやディストリビュータが設けられる。熱交換器の性能を確保するためには、各伝熱管に熱交換量に合わせた適正な冷媒流量を分配することが重要となる。 A circular pipe is used as a heat transfer tube of a conventional heat exchanger, and in order to reduce pressure loss, the refrigerant is divided into a plurality of flow paths and flows through the heat transfer tube. A heat exchanger that uses a flat tube with a reduced diameter flow path as a heat transfer tube has a large pressure loss. Therefore, the number of refrigerant paths is increased compared to a circular tube, and the length of the heat transfer tube through which the refrigerant flows per pass. It is necessary to shorten the length. When multi-row flat tube heat exchange is used, if the equivalent diameter of the flow path is extremely small, it is difficult to adopt a cross-row path configuration, and it is necessary to flow the refrigerant in parallel in each row to make it an orthogonal flow. is there. For example, a header or a distributor is provided in the refrigerant distributor that distributes the refrigerant to the heat transfer tubes. In order to ensure the performance of the heat exchanger, it is important to distribute an appropriate refrigerant flow rate according to the heat exchange amount to each heat transfer tube.
 ここで、扁平管を用いた熱交換器において、冷媒を各伝熱管に分配するヘッダとして、第1円管部材と、第2円管部材とを有し、第1円管部材は各扁平管の端部が接続され、第2円管部材は、第1円管部材の内径よりも小さな外径を有し、第1円管部材の内部空間で、鉛直方向に沿って延びる構成のヘッダが提案されている。第1円管部材の断面積に占める第2円管部材の断面積を大きくすることで、冷媒が通過する流路の断面積を小さくすることができ、ヘッダ内で冷媒流速を上げることができるため、二相冷媒をヘッダの上方まで流すことができる(特許文献1参照)。 Here, in the heat exchanger using a flat tube, it has a 1st circular tube member and a 2nd circular tube member as a header which distributes a refrigerant | coolant to each heat exchanger tube, and a 1st circular tube member is each flat tube. The second circular pipe member has an outer diameter smaller than the inner diameter of the first circular pipe member, and a header configured to extend along the vertical direction in the internal space of the first circular pipe member. Proposed. By increasing the cross-sectional area of the second circular pipe member occupying the cross-sectional area of the first circular pipe member, the cross-sectional area of the flow path through which the refrigerant passes can be reduced, and the refrigerant flow rate can be increased in the header. For this reason, the two-phase refrigerant can flow up to the top of the header (see Patent Document 1).
特開2014-37898号公報JP 2014-37898 A
 ところで、従来の直行流の多列扁平管熱交換器では、風上側に位置する熱交換器ほど熱交換量が大きいため、冷媒の分流比を列熱交換器ごとに変更する機構が必要となるものの、ヘッダに流れる冷媒流量が列熱交換器ごとに大きく異なるので熱交換効率が悪いという問題点があった。 By the way, in the conventional direct flow multi-row flat tube heat exchanger, since the heat exchange amount is larger as the heat exchanger is located on the windward side, a mechanism for changing the refrigerant diversion ratio for each row heat exchanger is required. However, since the flow rate of the refrigerant flowing through the header is greatly different for each row heat exchanger, there is a problem that the heat exchange efficiency is poor.
 本発明は、上記のような問題点を解決することを課題とするものであって、冷媒の列熱交換器に流れる分流比を簡単な構成で変更でき、熱交換量が大きい風上側ほど大量の冷媒を送ることで熱交換効率が向上した冷凍サイクル装置を得ることを目的とする。 An object of the present invention is to solve the above-described problems, and the diversion ratio of the refrigerant flowing through the column heat exchanger can be changed with a simple configuration. An object of the present invention is to obtain a refrigeration cycle apparatus with improved heat exchange efficiency by sending the refrigerant.
 本発明に係る冷凍サイクル装置は、 圧縮機と、室内熱交換器と、膨脹部と、室外熱交換器とを含む回路を備え、
 前記室外熱交換器は、ファンと、第1熱交換器と、前記ファンにより起こされる気流に対して前記第1熱交換器よりも風下に配置される第2熱交換器とを備えており、
 前記第1熱交換器は、第1伝熱管を備えており、
 前記第2熱交換器は、第2伝熱管を備えており、
 前記第1伝熱管の第1の端部は、冷媒を前記第1熱交換器に供給する第1ヘッダに接続されており、
 前記第1伝熱管の第2の端部は、第2ヘッダに接続されており、
 前記第2伝熱管の第3の端部は、第3ヘッダに接続されており、
 前記第2伝熱管の第4の端部は、第4ヘッダに接続されており、
 前記第1ヘッダと、前記第3ヘッダとは、第1分配管及び第2分配管を介して集合管の分岐部に接続されている、冷凍サイクル装置であって、
 前記第1ヘッダまたは前記第1分配管は、第1絞り部を含み、前記第3ヘッダまたは前記第2分配管は、第2絞り部を含み、
 前記第1絞り部の流動抵抗は、前記第2絞り部の流動抵抗よりも小さい。
A refrigeration cycle apparatus according to the present invention includes a circuit including a compressor, an indoor heat exchanger, an expansion unit, and an outdoor heat exchanger,
The outdoor heat exchanger includes a fan, a first heat exchanger, and a second heat exchanger disposed downstream of the first heat exchanger with respect to the air flow generated by the fan,
The first heat exchanger includes a first heat transfer tube,
The second heat exchanger includes a second heat transfer tube,
A first end of the first heat transfer tube is connected to a first header for supplying a refrigerant to the first heat exchanger;
A second end of the first heat transfer tube is connected to a second header;
A third end of the second heat transfer tube is connected to a third header;
A fourth end of the second heat transfer tube is connected to a fourth header;
The first header and the third header are refrigeration cycle apparatuses connected to a branch portion of the collecting pipe via a first distribution pipe and a second distribution pipe,
The first header or the first distribution pipe includes a first throttle part, and the third header or the second distribution pipe includes a second throttle part,
The flow resistance of the first throttle part is smaller than the flow resistance of the second throttle part.
 本発明に係る冷凍サイクル装置によれば、第1ヘッダまたは第1分配管は、第1絞り部を含み、第3ヘッダまたは第2分配管は、第2絞り部を含み、前記第1絞り部の流動抵抗は、前記第2絞り部の流動抵抗よりも小さいので、簡単な構成で、熱交換量が大きい風上側の第1熱交換器ほど大量の冷媒を送ることで室外熱交換器の熱交換効率が向上する。 According to the refrigeration cycle apparatus according to the present invention, the first header or the first distribution pipe includes a first throttle part, and the third header or the second distribution pipe includes a second throttle part, and the first throttle part The flow resistance of the outdoor heat exchanger is smaller than the flow resistance of the second constriction part, and the heat of the outdoor heat exchanger is increased by sending a larger amount of refrigerant to the windward first heat exchanger having a larger heat exchange amount with a simple configuration. Exchange efficiency is improved.
本発明の実施の形態1の冷凍サイクルの構成を示す図である。It is a figure which shows the structure of the refrigerating cycle of Embodiment 1 of this invention. 実施の形態1に係る室外熱交換器の概略を示す斜視図である。It is a perspective view which shows the outline of the outdoor heat exchanger which concerns on Embodiment 1. FIG. 図2の風下入口ヘッダを示す断面図である。It is sectional drawing which shows the leeward inlet header of FIG. 実施の形態2に係る室外熱交換器の風下入口ヘッダを示す断面図である。It is sectional drawing which shows the leeward inlet header of the outdoor heat exchanger which concerns on Embodiment 2. FIG. 実施の形態3に係る室外熱交換器の風下入口ヘッダを示す断面図である。It is sectional drawing which shows the leeward inlet header of the outdoor heat exchanger which concerns on Embodiment 3. FIG. 実施の形態4に係る室外熱交換器の概略を示す斜視図である。It is a perspective view which shows the outline of the outdoor heat exchanger which concerns on Embodiment 4. FIG. 本発明の実施の形態5の冷凍サイクルの構成を示す図である。It is a figure which shows the structure of the refrigerating cycle of Embodiment 5 of this invention.
 以下、本発明の実施の各形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the drawings, the same reference numerals indicate the same or corresponding parts.
 実施の形態1.
 図1は、本実施の形態1の冷凍サイクル装置1の構成を示す図である。冷凍サイクル装置1は、冷媒が循環する回路2を備えている。回路2は、少なくとも、圧縮機3と、室内熱交換器4と、膨張部5と、室外熱交換器6とを含んでいる。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration of the refrigeration cycle apparatus 1 according to the first embodiment. The refrigeration cycle apparatus 1 includes a circuit 2 through which a refrigerant circulates. The circuit 2 includes at least a compressor 3, an indoor heat exchanger 4, an expansion unit 5, and an outdoor heat exchanger 6.
 冷凍サイクル装置1は、暖房運転、および、冷房運転の両方を行うことができ、回路2には、この運転の切り替えを行う四方弁7が設けられている。
 図1では、暖房運転時の冷媒の流れが、実線矢印で示されており、冷房運転時の冷媒の流れが、点線矢印で示されている。
The refrigeration cycle apparatus 1 can perform both a heating operation and a cooling operation, and the circuit 2 is provided with a four-way valve 7 for switching the operation.
In FIG. 1, the refrigerant flow during the heating operation is indicated by a solid line arrow, and the refrigerant flow during the cooling operation is indicated by a dotted line arrow.
 運転時における冷媒の流れる向きを基準に回路2の構成要素を説明する。すなわち、本願明細書では、暖房運転時における冷媒の流れる向きを基準に、入口および出口に文言を用いている。
 即ち、室外熱交換器6は、暖房運転時には蒸発器として作用しているが、このとき冷媒が室外熱交換器6に入る側を入口とし、冷媒が室外熱交換器6から出る側を出口としている。
The components of the circuit 2 will be described with reference to the direction in which the refrigerant flows during operation. That is, in the present specification, the wording is used for the inlet and the outlet based on the direction in which the refrigerant flows during the heating operation.
That is, the outdoor heat exchanger 6 acts as an evaporator during heating operation, and at this time, the side where the refrigerant enters the outdoor heat exchanger 6 is an inlet, and the side where the refrigerant exits the outdoor heat exchanger 6 is an outlet. Yes.
 まず、圧縮機3の出口は、四方弁7を介して、室内熱交換器4の入口につながっている。室内熱交換器4の出口は、膨張部5の入口につながっている。膨張部5は、例えば、膨張弁で構成されている。 First, the outlet of the compressor 3 is connected to the inlet of the indoor heat exchanger 4 via the four-way valve 7. The outlet of the indoor heat exchanger 4 is connected to the inlet of the expansion unit 5. The expansion part 5 is comprised by the expansion valve, for example.
 膨張部5の出口は、室外熱交換器6の入口につながっている。室外熱交換器6の出口は、四方弁7を介して、圧縮機3の入口につながっている。 The outlet of the expansion part 5 is connected to the inlet of the outdoor heat exchanger 6. The outlet of the outdoor heat exchanger 6 is connected to the inlet of the compressor 3 through a four-way valve 7.
 また、図中、矢印Wは、冷媒との熱交換を行う流体の流れを示している。具体的な例としては、矢印Wは、冷媒との熱交換を行う空気の流れを示している。 In addition, in the figure, an arrow W indicates a flow of fluid that performs heat exchange with the refrigerant. As a specific example, an arrow W indicates a flow of air that performs heat exchange with the refrigerant.
 室内熱交換器4の風上側には、室内ファン8が設けられている。この室内ファン8によって、室内熱交換器4に対する空気の流れが積極的に生み出されている。これら室内熱交換器4および室内ファン8は、室内機9のケース内に収容されており、室内機9は、室内空間に配置されている。 An indoor fan 8 is provided on the windward side of the indoor heat exchanger 4. The indoor fan 8 positively generates an air flow with respect to the indoor heat exchanger 4. The indoor heat exchanger 4 and the indoor fan 8 are accommodated in a case of the indoor unit 9, and the indoor unit 9 is disposed in the indoor space.
 一方、室外熱交換器6の風上側には、室外ファン10が設けられている。この室外ファン10によって、室外熱交換器6に対する空気の流れが積極的に生み出されている。室外熱交換器6、室外ファン10、圧縮機3、膨張部5および四方弁7は、室外機11のケース内に収容されている。 On the other hand, an outdoor fan 10 is provided on the windward side of the outdoor heat exchanger 6. The outdoor fan 10 positively generates an air flow with respect to the outdoor heat exchanger 6. The outdoor heat exchanger 6, the outdoor fan 10, the compressor 3, the expansion unit 5, and the four-way valve 7 are accommodated in a case of the outdoor unit 11.
 次に、室外熱交換器6の詳細について図2に基いて説明する。
 図2は、室外熱交換器6を示す概略斜視図である。
 室外熱交換器6は、室外ファン10と、第1熱交換器である風上列12と、第2熱交換器である風下列13と、第1ヘッダである風上入口ヘッダ20と、第2ヘッダである風上出口ヘッダ21と、第3ヘッダである風下入口ヘッダ22と、第4ヘッダである風下出口ヘッダ23と、を備えている。
 この室外ファン10により起こされる気流の風上側に風上列12が配置され、風下側に風下列13が配置されている。
 風上列12は、複数の第1伝熱管である風上伝熱管14と、複数の風上伝熱管14に交差する複数の風上フィン15とを備えている。風下列13は、第2伝熱管である複数の風下伝熱管16と、複数の風下伝熱管16に交差する複数の風下フィン17とを備えている。複数の風上伝熱管14および複数の風下伝熱管16はそれぞれ、扁平管である。扁平管は、断面矩形状であって、幅方向に配列された複数の内部流路が、長手方向に沿って貫通しており、この内部流路に冷媒が流通する。
 なお、扁平管の代りに円管であってよい。
Next, the detail of the outdoor heat exchanger 6 is demonstrated based on FIG.
FIG. 2 is a schematic perspective view showing the outdoor heat exchanger 6.
The outdoor heat exchanger 6 includes an outdoor fan 10, a windward row 12 that is a first heat exchanger, a leeward row 13 that is a second heat exchanger, a windward inlet header 20 that is a first header, A leeward outlet header 21 that is a second header, a leeward inlet header 22 that is a third header, and a leeward outlet header 23 that is a fourth header.
A windward row 12 is arranged on the windward side of the air flow generated by the outdoor fan 10, and a leeward row 13 is arranged on the leeward side.
The windward row 12 includes a plurality of windward heat transfer tubes 14 that are a plurality of first heat transfer tubes, and a plurality of windward fins 15 that intersect the plurality of windward heat transfer tubes 14. The leeward row 13 includes a plurality of leeward heat transfer tubes 16 that are second heat transfer tubes, and a plurality of leeward fins 17 that intersect the plurality of leeward heat transfer tubes 16. Each of the plurality of upwind heat transfer tubes 14 and the plurality of downwind heat transfer tubes 16 is a flat tube. The flat tube has a rectangular cross section, and a plurality of internal flow paths arranged in the width direction penetrate along the longitudinal direction, and the refrigerant flows through the internal flow paths.
A circular tube may be used instead of the flat tube.
 風上列12と、風下列13とは、冷媒との熱交換を行う空気の流れWに沿う方向すなわち整列方向Zに並んでいる。 The windward row 12 and the leeward row 13 are arranged in the direction along the air flow W that performs heat exchange with the refrigerant, that is, the alignment direction Z.
 風上列12は、風下列13よりも、室外機11のケースの空気取り入れ面19に近い。別言すると、風下列13は、風上列12よりも、室外機11のケースに設けられた空気排出面18に近い。 The windward row 12 is closer to the air intake surface 19 of the case of the outdoor unit 11 than the leeward row 13. In other words, the leeward row 13 is closer to the air discharge surface 18 provided in the case of the outdoor unit 11 than the windward row 12.
 風上列12において、複数の風上伝熱管14は、長手方向すなわち伝熱管内流れ方向Xと、整列方向Zとの双方に直交する上下方向Yに並んでいる。同様に、風下列13において、複数の風下伝熱管16も、長手方向すなわち伝熱管内流れ方向Xと、整列方向Zとの双方に直交する上下方向Yに並んでいる。なお、伝熱管内流れ方向Xは、整列方向Zと、上下方向Yとの双方と直交している。 In the windward row 12, the plurality of windward heat transfer tubes 14 are arranged in the vertical direction Y perpendicular to both the longitudinal direction, that is, the flow direction X in the heat transfer tube and the alignment direction Z. Similarly, in the leeward row 13, the plurality of leeward heat transfer tubes 16 are also arranged in the vertical direction Y orthogonal to both the longitudinal direction, that is, the flow direction X in the heat transfer tube and the alignment direction Z. The heat transfer tube flow direction X is orthogonal to both the alignment direction Z and the vertical direction Y.
 複数の風上フィン15は、平面視、複数の風上伝熱管14と交差している。より詳細には、複数の風上フィン15は、それぞれ、伝熱管内流れ方向Xに対して直交する整列方向Zに延びている。同様に、複数の風下フィン17は、平面視、複数の風下伝熱管16と交差している。より詳細には、複数の風下フィン17は、それぞれ、伝熱管内流れ方向Xに対して直交する整列方向Zに延びている。 The plurality of windward fins 15 intersect with the plurality of windward heat transfer tubes 14 in plan view. More specifically, each of the plurality of upwind fins 15 extends in the alignment direction Z perpendicular to the flow direction X in the heat transfer tube. Similarly, the plurality of leeward fins 17 intersect with the plurality of leeward heat transfer tubes 16 in plan view. More specifically, each of the plurality of leeward fins 17 extends in an alignment direction Z perpendicular to the flow direction X in the heat transfer tube.
 複数の風上伝熱管14の第1の端部である入口端は、上下方向に延びた第1ヘッダである風上入口ヘッダ20に接続されており、複数の風上伝熱管14の第2の端部である出口端は、上下方向に延びた第2ヘッダである風上出口ヘッダ21に接続されている。また、複数の第2伝熱管である風下伝熱管16の第3の端部である入口端は、上下方向に延びた第3ヘッダである風下入口ヘッダ22に接続されており、複数の風下伝熱管16の第4の端部である出口端は、上下方向に延びた第4ヘッダである風下出口ヘッダ23に接続されている。 The inlet ends that are the first ends of the plurality of windward heat transfer tubes 14 are connected to the windward inlet header 20 that is the first header extending in the vertical direction, and the second ends of the plurality of windward heat transfer tubes 14 are connected. The outlet end that is the end of the wind turbine is connected to a windward outlet header 21 that is a second header extending in the vertical direction. In addition, the inlet end, which is the third end of the leeward heat transfer tube 16 that is the plurality of second heat transfer tubes, is connected to the leeward inlet header 22, which is a third header extending in the vertical direction. The outlet end which is the fourth end of the heat pipe 16 is connected to a leeward outlet header 23 which is a fourth header extending in the vertical direction.
 風上入口ヘッダ20の下部には、第1入口分配管である風上入口分配管24が接続されている。風下入口ヘッダ22は、下部および中間部で第2入口分配管である風下入口分配管25が接続されている。風上入口分配管24および風下入口分配管25は、入口集合管26の分岐部27に接続されている(図1参照)。また、風上出口ヘッダ21の下部には、第1出口分配管である風上出口分配管28が接続されている。風下出口ヘッダ23の下部には、第2出口分配管である風下出口分配管29が接続されている。風上出口分配管28および風下出口分配管29は、出口集合管30の分岐部31に接続されている。
 風上入口ヘッダ20、風下入口ヘッダ22、風上出口ヘッダ21および風下出口ヘッダ23は、円筒形状である。
 第3ヘッダである風下入口ヘッダ22の断面積は、第1ヘッダである風上入口ヘッダ20の断面積よりも小さい。
 また、第4ヘッダである風下出口ヘッダ23の断面積は、第2ヘッダである風上出口ヘッダ21の断面積よりも小さい。
A windward inlet distribution pipe 24 that is a first inlet distribution pipe is connected to the lower part of the windward inlet header 20. The leeward inlet header 22 is connected to a leeward inlet distribution pipe 25 which is a second inlet distribution pipe at the lower part and the middle part. The windward inlet distribution pipe 24 and the leeward inlet distribution pipe 25 are connected to a branch portion 27 of the inlet collecting pipe 26 (see FIG. 1). A windward outlet distribution pipe 28 that is a first outlet distribution pipe is connected to the lower part of the windward outlet header 21. A leeward outlet distribution pipe 29 that is a second outlet distribution pipe is connected to the lower part of the leeward outlet header 23. The windward outlet pipe 28 and the leeward outlet pipe 29 are connected to the branch portion 31 of the outlet collecting pipe 30.
The windward inlet header 20, the leeward inlet header 22, the windward outlet header 21 and the leeward outlet header 23 have a cylindrical shape.
The cross-sectional area of the leeward inlet header 22 that is the third header is smaller than the cross-sectional area of the leeward inlet header 20 that is the first header.
Moreover, the cross-sectional area of the leeward outlet header 23 that is the fourth header is smaller than the cross-sectional area of the leeward outlet header 21 that is the second header.
 図3は、第3ヘッダである風下入口ヘッダ22を示す断面図である。
 円筒形状の風下入口ヘッダ22は、内部が隔壁34で2分割された分配空間32を有している。各分配空間32の下部には、風下入口分配管25が接続されている。風下入口分配管25は、先端部が風下入口ヘッダ22の下部に形成された第2絞り部である第2穴の冷媒流入口33に臨んでいる。
 円筒形状の第1ヘッダである風上入口ヘッダ20は、下部に風上入口分配管24が接続されている。風上入口分配管24は、先端部が風上入口ヘッダ20の下部に形成された第1絞り部である第1穴である冷媒流入口24aに臨んでいる。
 風下入口ヘッダ22の冷媒流入口33および風上入口ヘッダ20の冷媒流入口24aは共に冷媒を絞る機構を有している。風上入口ヘッダ20の冷媒流入口24aの相当直径は、風下入口ヘッダ22の冷媒流入口33の相当直径よりも大きい。すなわち、第1絞り部の流動抵抗は、第2絞り部の流動抵抗よりも小さい。
FIG. 3 is a sectional view showing the leeward inlet header 22 as the third header.
The cylindrical leeward inlet header 22 has a distribution space 32 whose interior is divided into two by a partition wall 34. A leeward inlet distribution pipe 25 is connected to the lower part of each distribution space 32. The leeward inlet distribution pipe 25 faces the refrigerant inlet 33 of the second hole, which is a second throttle portion formed at the lower end of the leeward inlet header 22.
A windward inlet distribution pipe 24 is connected to the lower part of the windward inlet header 20 which is a cylindrical first header. The windward inlet distribution pipe 24 faces the refrigerant inlet 24a which is a first hole which is a first throttle portion formed at the lower end of the windward inlet header 20.
The refrigerant inlet 33 of the leeward inlet header 22 and the refrigerant inlet 24a of the windward inlet header 20 both have a mechanism for restricting the refrigerant. The equivalent diameter of the refrigerant inlet 24 a of the windward inlet header 20 is larger than the equivalent diameter of the refrigerant inlet 33 of the leeward inlet header 22. That is, the flow resistance of the first throttle part is smaller than the flow resistance of the second throttle part.
 風下入口ヘッダ22に流れる冷媒の流量は、風上入口ヘッダ20と比較して小さく、風下入口ヘッダ22内の冷媒の慣性力が小さくなる場合には、各分配空間32内の上側に接続された風下伝熱管16まで冷媒が持ち上がりにくく、それだけその領域の風下伝熱管16に分配される冷媒流量が小さくなる。
 本実施の形態では、風下入口ヘッダ22に流入する冷媒の流速および風下入口ヘッダ22内の流速を上げて風下入口ヘッダ22内の冷媒の慣性力を大きくして冷媒が持ち上がり易くなるようにしており、流量が小さい風下入口ヘッダ22内でも分配空間32の上側までも冷媒を送ることができ、風下入口ヘッダ22に接続された各風下伝熱管16に冷媒が均等に分配される。
The flow rate of the refrigerant flowing through the leeward inlet header 22 is smaller than that of the leeward inlet header 20, and when the inertial force of the refrigerant in the leeward inlet header 22 becomes smaller, the refrigerant is connected to the upper side in each distribution space 32. The refrigerant hardly rises up to the leeward heat transfer tube 16, and the flow rate of the refrigerant distributed to the leeward heat transfer tube 16 in that region decreases accordingly.
In the present embodiment, the flow rate of the refrigerant flowing into the leeward inlet header 22 and the flow velocity in the leeward inlet header 22 are increased to increase the inertial force of the refrigerant in the leeward inlet header 22 so that the refrigerant is easily lifted. The refrigerant can be sent even in the leeward inlet header 22 having a small flow rate to the upper side of the distribution space 32, and the refrigerant is evenly distributed to the leeward heat transfer tubes 16 connected to the leeward inlet header 22.
 ここで、例えば風下列13の熱交換量は、風上列12の熱交換量の1/3~2/3程度であるとした場合には、熱交換量に合わせて風上入口ヘッダ20に対して風下入口ヘッダ22に流入する冷媒の流量比は、1/3~2/3程度である。そして、風上入口ヘッダ20、風下入口ヘッダ22の各相当直径D1、D2とした場合、0.5<D2/D1<0.85のとき、風上入口ヘッダ20と風下入口ヘッダ22それぞれ内部の冷媒の流速は同程度である。
 また、風上入口ヘッダ20の冷媒流入口、風下入口ヘッダ22の冷媒流入口33の各相当直径をd1、d2とした場合、0.5<d2/d1<0.85のとき、風上入口ヘッダ20、風下入口ヘッダ22内に流入する流速は同等である。
Here, for example, when the heat exchange amount of the leeward row 13 is about 1/3 to 2/3 of the heat exchange amount of the leeward row 12, it is provided in the windward inlet header 20 according to the heat exchange amount. On the other hand, the flow rate ratio of the refrigerant flowing into the leeward inlet header 22 is about 1/3 to 2/3. When the equivalent diameters D1 and D2 of the windward inlet header 20 and the leeward inlet header 22 are set to 0.5 <D2 / D1 <0.85, respectively, the windward inlet header 20 and the leeward inlet header 22 respectively The flow rate of the refrigerant is about the same.
Further, when the equivalent diameters of the refrigerant inlet of the windward inlet header 20 and the refrigerant inlet 33 of the leeward inlet header 22 are d1 and d2, the windward inlet is 0.5 <d2 / d1 <0.85. The flow velocity flowing into the header 20 and the leeward inlet header 22 is the same.
 また、風上入口ヘッダ20の内部は単一の空間を有しているのに対して、風下入口ヘッダ22は、内部が2分割して分配空間32を有しており、各風下入口分配管25から分配空間32内に流入した冷媒の上昇距離は、風上入口ヘッダ20の風上入口分配管24から内部に流入した冷媒の上昇距離の半分であり、各分配空間32の上側には冷媒が達しやすい。 The leeward inlet header 20 has a single space, whereas the leeward inlet header 22 has a distribution space 32 that is divided into two parts. The rising distance of the refrigerant that has flowed into the distribution space 32 from 25 is half of the rising distance of the refrigerant that has flowed into the inside from the upwind inlet distribution pipe 24 of the upwind inlet header 20. Is easy to reach.
 また、風下入口ヘッダ22に流れる冷媒の流量が風上入口ヘッダ20と比較して小さい場合には、風下出口ヘッダ23内の冷媒の流速も小さくなる。その結果、風下出口ヘッダ23内に冷凍機油が滞留して圧損となるため、風上列12と風下列13とで必要な冷媒の分流比が得られない場合がある。
 これに対して、本実施の形態では、第4ヘッダである風下出口ヘッダ23の断面積を第2ヘッダである風上出口ヘッダ21の断面積よりも小さくすることで、風下出口ヘッダ23内の冷媒の流速を増加させて風下出口ヘッダ23内での冷凍機油の滞留を抑えて返油を促進し、冷凍機油の滞留による風下列13および風上列12の冷媒分流比変化を抑制することができる。
Further, when the flow rate of the refrigerant flowing through the leeward inlet header 22 is smaller than that of the leeward inlet header 20, the flow rate of the refrigerant in the leeward outlet header 23 is also reduced. As a result, the refrigerating machine oil stays in the leeward outlet header 23 and causes pressure loss, so that a necessary refrigerant split ratio may not be obtained in the leeward row 12 and the leeward row 13.
On the other hand, in the present embodiment, the cross-sectional area of the leeward outlet header 23 that is the fourth header is made smaller than the cross-sectional area of the leeward outlet header 21 that is the second header. Increasing the flow rate of the refrigerant suppresses the refrigeration oil from staying in the leeward outlet header 23 to promote the return of oil, and suppresses the refrigerant flow ratio change in the leeward row 13 and the upwind row 12 due to the refrigeration oil staying. it can.
 次に、上記実施の形態の空気調和機である冷凍サイクル装置1の動作について説明する。
 暖房運転の場合、圧縮機3から吐出される高圧高温のガス状態の冷媒は、四方弁7を介して室内機9の室内熱交換器4に流入し、室内ファン8によって供給される空気と熱交換を行い、凝縮する。
 凝縮した冷媒は、高圧の液状態となり、室内熱交換器4から流出し、膨張部5によって、低圧の気液二相状態となる。低圧の気液二相状態の冷媒は、室外機11の室外熱交換器6に流入する。
 室外熱交換器6では、冷媒は、入口集合管26の分岐部27で分流し、一方の冷媒は、風上入口分配管24を通じて風上列12の風上入口ヘッダ20内に第1絞り部である冷媒流入口24aを通じて流入する。他方の冷媒は、2個の風下入口分配管25を通じて風下列13の風下入口ヘッダ22内に第2絞り部である冷媒流入口33を通じて流入する
 この際、風上絞り部の流動抵抗は、風下絞り部の流動抵抗よりも小さいので、風下入口ヘッダ22と比較して風上入口ヘッダ20内に流入する冷媒量が多い。
 また、風下入口ヘッダ22の断面積は、風上入口ヘッダ20の断面積よりも小さいので、風下入口ヘッダ22と比較して冷媒量の少ない風下入口ヘッダ22でも、風下入口ヘッダ22内の冷媒の流速は、風上入口ヘッダ20内の冷媒の流速と同等である。
Next, operation | movement of the refrigerating-cycle apparatus 1 which is the air conditioner of the said embodiment is demonstrated.
In the heating operation, the high-pressure and high-temperature gas refrigerant discharged from the compressor 3 flows into the indoor heat exchanger 4 of the indoor unit 9 through the four-way valve 7, and the air and heat supplied by the indoor fan 8. Exchange and condense.
The condensed refrigerant becomes a high-pressure liquid state, flows out of the indoor heat exchanger 4, and becomes a low-pressure gas-liquid two-phase state by the expansion unit 5. The low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 6 of the outdoor unit 11.
In the outdoor heat exchanger 6, the refrigerant is diverted at the branching portion 27 of the inlet collecting pipe 26, and one refrigerant passes through the windward inlet distribution pipe 24 into the windward inlet header 20 of the windward row 12 and the first throttle portion. It flows in through the refrigerant inlet 24a. The other refrigerant flows through the two leeward inlet distribution pipes 25 into the leeward inlet header 22 of the leeward row 13 through the refrigerant inlet 33 as the second throttle part. Since it is smaller than the flow resistance of the throttle portion, the amount of refrigerant flowing into the windward inlet header 20 is larger than that of the leeward inlet header 22.
In addition, since the cross-sectional area of the leeward inlet header 22 is smaller than the cross-sectional area of the leeward inlet header 20, even the leeward inlet header 22 having a smaller refrigerant amount than the leeward inlet header 22, The flow rate is equivalent to the flow rate of the refrigerant in the windward inlet header 20.
 風上入口ヘッダ20内に流入した気液二相状態の冷媒は、上下方向に間隔を空けて配置された各風上伝熱管14に分配され、分配された冷媒は、上下方向に隣接した空間に室外ファン10から供給された空気との熱交換によって低圧のガス状態となり、風上出口ヘッダ21に送られる。
 また、同様に、風下入口ヘッダ22内に流入した気液二相状態の冷媒は、上下方向に間隔を空けて配置された各風下伝熱管16に分配され、分配された冷媒は、上下方向に隣接した空間に室外ファン10から供給された空気との熱交換によって低圧のガス状態となり、風下出口ヘッダ23に送られる。
 その後、風上出口ヘッダ21からの冷媒は、風上出口分配管28に送られ、風下出口ヘッダ23からの冷媒は、風下出口分配管29に送られ、それぞれの冷媒は、出口集合管30の分岐部31で合流した後、出口集合管30から室外熱交換器6の外部に流出する。
 室外熱交換器6から流出した冷媒は、四方弁7を介して圧縮機3に戻る。
The gas-liquid two-phase refrigerant that has flowed into the windward inlet header 20 is distributed to the windward heat transfer tubes 14 that are spaced apart in the vertical direction, and the distributed refrigerant is a space adjacent to the vertical direction. As a result of heat exchange with the air supplied from the outdoor fan 10, the gas is in a low pressure gas state and is sent to the windward outlet header 21.
Similarly, the gas-liquid two-phase refrigerant that has flowed into the leeward inlet header 22 is distributed to the leeward heat transfer tubes 16 that are spaced apart in the vertical direction, and the distributed refrigerant is The heat is exchanged with the air supplied from the outdoor fan 10 in the adjacent space, and the gas enters a low-pressure gas state and is sent to the leeward outlet header 23.
Thereafter, the refrigerant from the windward outlet header 21 is sent to the windward outlet distribution pipe 28, the refrigerant from the leeward outlet header 23 is sent to the leeward outlet distribution pipe 29, and each refrigerant is supplied to the outlet collecting pipe 30. After merging at the branch portion 31, it flows out from the outlet collecting pipe 30 to the outside of the outdoor heat exchanger 6.
The refrigerant that has flowed out of the outdoor heat exchanger 6 returns to the compressor 3 via the four-way valve 7.
 また、冷房運転の場合には、四方弁7の流路を切り替えることによって、暖房運転から冷房運転に切り替えられ、冷媒の流れが暖房運転の反対になる。
 従って、この場合には、室外熱交換器6は、凝縮器として機能し、室内熱交換器4は蒸発器として機能する。
Further, in the case of the cooling operation, by switching the flow path of the four-way valve 7, the heating operation is switched to the cooling operation, and the refrigerant flow is opposite to the heating operation.
Therefore, in this case, the outdoor heat exchanger 6 functions as a condenser, and the indoor heat exchanger 4 functions as an evaporator.
 以上説明したように、本実施の形態では、風上入口ヘッダ20の第1絞り部である冷媒流入口の流動抵抗は、風下入口ヘッダ22の第2絞り部である冷媒流入口33の流動抵抗よりも小さいので、風上入口ヘッダ20に供給される冷媒量は、風下入口ヘッダ22に供給される冷媒量よりも多くすることができる。
 したがって、風上列12は風下列13よりも熱交換量が大であるが、それに合わせて風上列12に供給される冷媒量を風下列13に供給される冷媒量と比較して簡単に大きくすることができ、室外熱交換器6の熱交換効率が向上する。
As described above, in the present embodiment, the flow resistance of the refrigerant inlet that is the first throttle part of the windward inlet header 20 is the flow resistance of the refrigerant inlet 33 that is the second throttle part of the leeward inlet header 22. Therefore, the amount of refrigerant supplied to the windward inlet header 20 can be made larger than the amount of refrigerant supplied to the leeward inlet header 22.
Therefore, the upwind row 12 has a larger amount of heat exchange than the downwind row 13, but the refrigerant amount supplied to the upwind row 12 is easily compared with the refrigerant amount supplied to the downwind row 13. The heat exchange efficiency of the outdoor heat exchanger 6 is improved.
 また、風下入口ヘッダ22の断面積は、風上入口ヘッダ20の断面積よりも小さので、 風下入口ヘッダ22に供給される冷媒量が風上入口ヘッダ20に供給される冷媒量と比較して小さいものの、風下入口ヘッダ22の分配空間32内を流通する冷媒の流速を風上入口ヘッダ20内を流通する冷媒の流速と同程度にすることが可能となる。
 したがって、流量が小さい風下入口ヘッダ22内の分配空間32の上側にも冷媒は供給される結果、上側の風下伝熱管16にも下側の風下伝熱管16と等しい量の冷媒を供給することができる。
Further, since the cross-sectional area of the leeward inlet header 22 is smaller than the cross-sectional area of the leeward inlet header 20, the refrigerant amount supplied to the leeward inlet header 22 is compared with the refrigerant amount supplied to the leeward inlet header 20. Although small, it is possible to make the flow rate of the refrigerant flowing in the distribution space 32 of the leeward inlet header 22 approximately the same as the flow rate of the refrigerant flowing in the leeward inlet header 20.
Accordingly, the refrigerant is supplied also to the upper side of the distribution space 32 in the leeward inlet header 22 having a small flow rate, so that the same amount of refrigerant as that of the lower leeward heat transfer pipe 16 is supplied to the upper leeward heat transfer pipe 16. it can.
 また、風下出口ヘッダ23の断面積は、風上出口ヘッダ21の断面積よりも小さいので、風下出口ヘッダ23に流入する冷媒量が風上出口ヘッダ21に流入する冷媒量と比較して小さいものの、風下出口ヘッダ23内の冷媒の流速を高めることができ、風下列13側の返油が促進される。
 したがって、冷凍機油の風下出口ヘッダ23内での滞留に起因した、風上列12と風下列13とで必要な冷媒の分流比の変化を抑制することができる。
Further, since the cross-sectional area of the leeward outlet header 23 is smaller than the cross-sectional area of the leeward outlet header 21, the amount of refrigerant flowing into the leeward outlet header 23 is smaller than the amount of refrigerant flowing into the leeward outlet header 21. The flow rate of the refrigerant in the leeward outlet header 23 can be increased, and oil return on the leeward row 13 side is promoted.
Therefore, it is possible to suppress a change in the refrigerant branching ratio required in the windward row 12 and the leeward row 13 due to the refrigeration oil remaining in the leeward outlet header 23.
 また、風上入口ヘッダ20および風下入口ヘッダ22は、それぞれ内部に分配空間32を有し、風下入口ヘッダ22の分配空間32の数は、風上入口ヘッダ20の分配空間の数よりも多いので、風下入口ヘッダ22の分配空間32内の空間高さが、風上入口ヘッダ20の分配空間内の高さと比較して低い。したがって、各風下入口ヘッダ22に流入する冷媒量が小さい場合でも、分配空間32の上側にも冷媒を供給できる結果、上側の各風下伝熱管16にも下側の風下伝熱管16と等しく冷媒を供給することができる。 Further, the windward inlet header 20 and the leeward inlet header 22 each have a distribution space 32 therein, and the number of distribution spaces 32 of the leeward inlet header 22 is larger than the number of distribution spaces of the windward inlet header 20. The height of the leeward inlet header 22 in the distribution space 32 is lower than the height of the leeward inlet header 20 in the distribution space. Therefore, even when the amount of refrigerant flowing into each leeward inlet header 22 is small, the refrigerant can be supplied also to the upper side of the distribution space 32. As a result, the refrigerant is equally supplied to the upper leeward heat transfer tubes 16 as well as the lower leeward heat transfer tubes 16. Can be supplied.
 実施の形態2.
 図4は、本実施の形態2の冷凍サイクル装置1の風下入口ヘッダ22を示す断面図である。
 本実施の形態では、風下入口ヘッダ22は、隔壁34により内部が2分割された分配空間32を有しており、それぞれの分配空間32の下部にはリング35が設けられている。このリング35の中央部には、冷媒の通路となり、上方向に指向した第2絞り部である絞り穴35aが形成されている。
 風上入口ヘッダ20は、下部に風上入口分配管24が接続されている。風上入口分配管24は、先端部が風上入口ヘッダ20の下部に形成された第1絞り部である冷媒流入口24aに臨んでいる。
 風下入口ヘッダ22の絞り穴35aおよび風上入口ヘッダ20の冷媒流入口24aは、共に冷媒を絞る機構を有している。風上入口ヘッダ20の第1絞り部である冷媒流入口24aの相当直径は、風下入口ヘッダ22の第2絞り部である絞り穴35aの相当直径よりも大きい。すなわち、第1絞り部の流動抵抗は、第2絞り部の流動抵抗よりも小さい。
 他の構成は、実施の形態1の冷凍サイクル装置1と同じである。
Embodiment 2. FIG.
FIG. 4 is a cross-sectional view showing the leeward inlet header 22 of the refrigeration cycle apparatus 1 according to the second embodiment.
In this embodiment, the leeward inlet header 22 has a distribution space 32 that is internally divided into two by a partition wall 34, and a ring 35 is provided below each distribution space 32. In the center portion of the ring 35, there is formed a throttle hole 35a that is a second throttle portion serving as a refrigerant passage and directed upward.
The windward inlet header 20 has a windward inlet distribution pipe 24 connected to the lower part thereof. The windward inlet distribution pipe 24 faces the refrigerant inlet 24 a that is a first throttle portion formed at the lower end of the windward inlet header 20.
The throttle hole 35a of the leeward inlet header 22 and the refrigerant inlet 24a of the windward inlet header 20 both have a mechanism for squeezing the refrigerant. The equivalent diameter of the refrigerant inlet 24 a that is the first throttle part of the windward inlet header 20 is larger than the equivalent diameter of the throttle hole 35 a that is the second throttle part of the leeward inlet header 22. That is, the flow resistance of the first throttle part is smaller than the flow resistance of the second throttle part.
Other configurations are the same as those of the refrigeration cycle apparatus 1 of the first embodiment.
 本実施の形態では、風上入口ヘッダ20の第1絞り部である冷媒流入口24aの穴径は、風下入口ヘッダ22の第2絞り部である絞り穴35aの穴径よりも大きいので、風上入口ヘッダ20内に流入する冷媒量は、風下入口ヘッダ22内に流入する冷媒量と比較して大きい。
 したがって、風上列12は風下列13よりも熱交換量が大であるが、それに合わせて風上列12に供給される冷媒量を風下列13に供給される冷媒量と比較して簡単に大きくすることができ、室外熱交換器6の熱交換効率が向上する。
 また、風上入口ヘッダ20内に流入する冷媒量と、風下入口ヘッダ22内に流入する冷媒量との冷媒の分流比率を第2絞り部である絞り穴35a、第1絞り部である冷媒流入口24aのそれぞれの穴径を変えることで簡単に変えることができる。
 また、リング35の絞り穴35aは、上方向に指向しているので、冷媒流入口33から風下入口ヘッダ22内に流入した冷媒は、絞り穴35aで強制的に上方向に向けられ、そのまま分配空間32内では矢印Bの方向に直線的に上昇し、各風下伝熱管16に冷媒を均等に分配することができる。
 また、冷媒流入口24aを通じて風上入口ヘッダ20内に流入した冷媒は、各風上伝熱管14に分配される。
In the present embodiment, the hole diameter of the refrigerant inlet 24a, which is the first throttle portion of the windward inlet header 20, is larger than the hole diameter of the throttle hole 35a, which is the second throttle portion of the leeward inlet header 22. The amount of refrigerant flowing into the upper inlet header 20 is larger than the amount of refrigerant flowing into the leeward inlet header 22.
Therefore, the upwind row 12 has a larger amount of heat exchange than the downwind row 13, but the refrigerant amount supplied to the upwind row 12 is easily compared with the refrigerant amount supplied to the downwind row 13. The heat exchange efficiency of the outdoor heat exchanger 6 is improved.
Further, the refrigerant flow ratio between the refrigerant amount flowing into the leeward inlet header 20 and the refrigerant amount flowing into the leeward inlet header 22 is set to the throttle hole 35a as the second throttle portion, and the refrigerant flow as the first throttle portion. It can be easily changed by changing the diameter of each hole of the inlet 24a.
In addition, since the throttle hole 35a of the ring 35 is directed upward, the refrigerant flowing into the leeward inlet header 22 from the refrigerant inlet 33 is forcibly directed upward through the throttle hole 35a and distributed as it is. Within the space 32, the refrigerant rises linearly in the direction of arrow B, and the refrigerant can be evenly distributed to the leeward heat transfer tubes 16.
Further, the refrigerant that has flowed into the windward inlet header 20 through the refrigerant inflow port 24 a is distributed to each windward heat transfer tube 14.
 実施の形態3.
 図5は、本実施の形態3の冷凍サイクル装置1の風下入口ヘッダ22を示す断面図である。
 本実施の形態では、風下入口ヘッダ22は、隔壁34により内部が2分割された分配空間32を有しており、それぞれの分配空間32の下部に、先端部が上方向に折曲された風下冷媒配管36が設けられている。この風下冷媒配管36の先端部には、第2絞り部である第2穴の流出穴36aが設けられている。これらの風下冷媒配管36の基端部は、入口集合管26の分岐部27に接続されている。
 風上入口ヘッダ20は、下部に風上入口分配管24が接続されている。風上入口分配管24は、先端部が風上入口ヘッダ20の下部に形成された第1絞り部である冷媒流入口24aに臨んでいる。
 風下入口ヘッダ22の流出穴36aおよび風上入口ヘッダ20の冷媒流入口24aは、共に冷媒を絞る機構を有している。風上入口ヘッダ20の第1絞り部である冷媒流入口24aの相当直径は、風下入口ヘッダ22の第2絞り部である流出穴36aの相当直径よりも大きい。すなわち、第1絞り部の流動抵抗は、第2絞り部の流動抵抗よりも小さい。
 他の構成は実施の形態1の冷凍サイクル装置1と同じである。
Embodiment 3 FIG.
FIG. 5 is a cross-sectional view showing the leeward inlet header 22 of the refrigeration cycle apparatus 1 according to the third embodiment.
In the present embodiment, the leeward inlet header 22 has a distribution space 32 that is internally divided into two by a partition wall 34, and a leeward windshield whose front end is bent upward at each distribution space 32. A refrigerant pipe 36 is provided. An outflow hole 36 a of a second hole, which is a second throttle part, is provided at the tip of the leeward refrigerant pipe 36. The base end portions of these leeward refrigerant pipes 36 are connected to the branch portions 27 of the inlet collecting pipe 26.
The windward inlet header 20 has a windward inlet distribution pipe 24 connected to the lower part thereof. The windward inlet distribution pipe 24 faces the refrigerant inlet 24 a that is a first throttle portion formed at the lower end of the windward inlet header 20.
Both the outflow hole 36a of the leeward inlet header 22 and the refrigerant inlet 24a of the leeward inlet header 20 have a mechanism for restricting the refrigerant. The equivalent diameter of the refrigerant inlet 24 a that is the first constriction part of the upwind inlet header 20 is larger than the equivalent diameter of the outflow hole 36 a that is the second constriction part of the leeward inlet header 22. That is, the flow resistance of the first throttle part is smaller than the flow resistance of the second throttle part.
Other configurations are the same as those of the refrigeration cycle apparatus 1 of the first embodiment.
 この実施の形態では、風下冷媒配管36は、先端部が上方向に折曲されているので、風下冷媒配管36を通じて風下入口ヘッダ22内に流入した冷媒は、風下冷媒配管36の先端部で強制的に上方向に向けられ、そのまま分配空間32内では矢印Cの方向に直線的に上昇し、各風下伝熱管16に冷媒を均等に分配することができる。
 また、冷媒流入口24aを通じて風上入口ヘッダ20内に流入した冷媒は、各風上伝熱管14に分配される。
 また、風下入口ヘッダ22の風下冷媒配管36の先端部の流出穴36aの口径寸法、風上入口ヘッダ20の冷媒流入口24aの口径寸法を変えることで、風下入口ヘッダ22内に流入する冷媒量と風上入口ヘッダ20内に流入する冷媒量との比率を簡単に変えることができる。
 また、実施の形態2では風下入口分配管25及びリング35の2部材が風下冷媒配管36の一部材ですみ、部品点数及びに組立工数を削減することができる。
In this embodiment, since the leeward refrigerant pipe 36 is bent in the upward direction, the refrigerant flowing into the leeway inlet header 22 through the leeward refrigerant pipe 36 is forced at the front end of the leeward refrigerant pipe 36. In the distribution space 32, the refrigerant rises linearly in the direction of arrow C, and the refrigerant can be evenly distributed to the leeward heat transfer tubes 16.
Further, the refrigerant that has flowed into the windward inlet header 20 through the refrigerant inflow port 24 a is distributed to each windward heat transfer tube 14.
Further, the amount of refrigerant flowing into the leeward inlet header 22 can be changed by changing the diameter of the outlet hole 36a at the tip of the leeward refrigerant pipe 36 of the leeward inlet header 22 and the diameter of the refrigerant inlet 24a of the windward inlet header 20. And the ratio of the refrigerant amount flowing into the windward inlet header 20 can be easily changed.
In the second embodiment, the two members of the leeward inlet distribution pipe 25 and the ring 35 are only one member of the leeward refrigerant pipe 36, and the number of parts and the number of assembling steps can be reduced.
 実施の形態4.
 図6は、本実施の形態4の冷凍サイクル装置1の室外熱交換器6の概略を示す斜視図である。
 この室外熱交換器6は、実施の形態1の室外熱交換器6と同一構成であり、下側に副熱交換器40が設けられている。
 副熱交換器40は、風上入口ヘッダ(図示せず)、風下入口ヘッダ41、風上出口ヘッダ42、風下出口ヘッダ43、風上伝熱管44および風下伝熱管45を含んでいる。
Embodiment 4 FIG.
FIG. 6 is a perspective view showing an outline of the outdoor heat exchanger 6 of the refrigeration cycle apparatus 1 of the fourth embodiment.
This outdoor heat exchanger 6 has the same configuration as that of the outdoor heat exchanger 6 of the first embodiment, and a sub heat exchanger 40 is provided on the lower side.
The auxiliary heat exchanger 40 includes a windward inlet header (not shown), a leeward inlet header 41, a windward outlet header 42, a leeward outlet header 43, a windward heat transfer tube 44, and a leeward heat transfer tube 45.
 上記室外熱交換器6では、暖房運転の場合、冷媒は、冷媒入口配管37から風上入口ヘッダ、風下入口ヘッダ41のそれぞれの内部に流入する。その後、冷媒は、各風上伝熱管44、各風下伝熱管45を通過した後、風上出口ヘッダ42、風下出口ヘッダ43に集まる。
 副熱交換器40から流出した冷媒のうち、風下出口ヘッダ43に集められた冷媒は、風下入口分配管25、風下絞り部である冷媒流入口33を通じて風下入口ヘッダ22の分配空間32内に流入する。
 また、風上出口ヘッダ42に集められた冷媒は、風上入口分配管24、第1絞り部である冷媒流入口を通じて風上入口ヘッダ20の分配空間内に流入する。
 その後の冷媒の流れは、実施の形態1の冷凍サイクル装置1と同じであり、その説明は省略する。
In the outdoor heat exchanger 6, in the heating operation, the refrigerant flows from the refrigerant inlet pipe 37 into the upwind inlet header and the downwind inlet header 41. Thereafter, the refrigerant passes through each of the windward heat transfer tubes 44 and each of the leeward heat transfer tubes 45 and then collects in the windward outlet header 42 and the leeward outlet header 43.
Of the refrigerant flowing out from the auxiliary heat exchanger 40, the refrigerant collected in the leeward outlet header 43 flows into the distribution space 32 of the leeward inlet header 22 through the leeward inlet distribution pipe 25 and the refrigerant inlet 33 which is the leeward constriction part. To do.
Further, the refrigerant collected in the windward outlet header 42 flows into the distribution space of the windward inlet header 20 through the windward inlet distribution pipe 24 and the refrigerant inlet which is the first throttle part.
The subsequent flow of the refrigerant is the same as that of the refrigeration cycle apparatus 1 of the first embodiment, and the description thereof is omitted.
 また、冷房運転のときは、冷媒の流れが暖房運転の反対になる。
 この場合には、室外熱交換器6は、凝縮器として機能し、室外熱交換器6は気液二相部となり、室外熱交換器6から副熱交換器40内に流入した冷媒は、副熱交換器40では、風上伝熱管44および風下伝熱管45を流通する空気との熱交換により液相となる。
In the cooling operation, the refrigerant flow is opposite to that in the heating operation.
In this case, the outdoor heat exchanger 6 functions as a condenser, the outdoor heat exchanger 6 becomes a gas-liquid two-phase part, and the refrigerant flowing into the auxiliary heat exchanger 40 from the outdoor heat exchanger 6 In the heat exchanger 40, it becomes a liquid phase by heat exchange with the air flowing through the windward heat transfer tube 44 and the leeward heat transfer tube 45.
 実施の形態5.
 図7は、本実施の形態5の冷凍サイクル装置1の構成を示す図である。
 実施の形態1~4の冷凍サイクル装置1では、第1ヘッダである風上第1ヘッダに第1絞り部を含み、第3ヘッダである風下第1ヘッダに第2絞り部を含んでいる。
 これに対して、本実施の形態では、風上第1ヘッダおよび風下第1ヘッダの代りに、第1分配管である風上入口分配管24に第1絞り部である第1穴38を含み、第2分配管である風下入口分配管25に第2絞り部である第2穴39を含んでいる。
 他の構成は、実施の形態1の冷凍サイクル装置1と同じであり、実施の形態1の冷凍サイクル装置1と同様の効果を得ることができる。
Embodiment 5 FIG.
FIG. 7 is a diagram illustrating a configuration of the refrigeration cycle apparatus 1 according to the fifth embodiment.
In the refrigeration cycle apparatus 1 according to Embodiments 1 to 4, the first upstream part, which is the first header, includes the first throttle part, and the second downstream part, the third downstream header, includes the second throttle part.
On the other hand, in this embodiment, instead of the windward first header and the windward first header, the windward inlet distribution pipe 24 that is the first distribution pipe includes the first hole 38 that is the first throttle part. The leeward inlet distribution pipe 25 that is the second distribution pipe includes the second hole 39 that is the second throttle part.
Other configurations are the same as those of the refrigeration cycle apparatus 1 of the first embodiment, and the same effects as those of the refrigeration cycle apparatus 1 of the first embodiment can be obtained.
 なお、上述した各実施の形態では、空気調和機である冷凍サイクル装置1として説明してきたが、本発明は、これに限定されるものではなく、圧縮機、膨張部、室内熱交換器、室外熱交換器を含む冷凍回路を備えた冷凍サイクル装置に広く適用することができる。よって、例えば、本発明は、給湯器である冷凍サイクル装置として実施することも可能である。 In each of the above-described embodiments, the refrigeration cycle apparatus 1 that is an air conditioner has been described. However, the present invention is not limited to this, and the compressor, the expansion unit, the indoor heat exchanger, and the outdoor The present invention can be widely applied to a refrigeration cycle apparatus including a refrigeration circuit including a heat exchanger. Therefore, for example, the present invention can be implemented as a refrigeration cycle apparatus that is a hot water heater.
 また、上述した各実施の形態においては、室外熱交換器6は2列の熱交換器として説明しているが、本発明は、これに限定されるものではなく、3列以上の熱交換器に適用することも可能である。その場合、本発明は、上記の風上列が、3列以上の熱交換器における最も風上側の列であるものとして、実施される。
 また、室外熱交換器が凝縮器として機能し、風上入口ヘッダ20、風下入口ヘッダ22に高圧高温のガス状態の冷媒が流入する場合であっても本発明は適用できる。
Moreover, in each embodiment mentioned above, although the outdoor heat exchanger 6 is demonstrated as a 2 rows heat exchanger, this invention is not limited to this, The heat exchanger of 3 rows or more It is also possible to apply to. In that case, this invention is implemented as said windward row | line | column being what is the uppermost row | line | column in the heat exchanger of three or more rows.
In addition, the present invention can be applied even when the outdoor heat exchanger functions as a condenser and high-pressure and high-temperature gas refrigerant flows into the windward inlet header 20 and the leeward inlet header 22.
 1 冷凍サイクル装置、2 回路、3 圧縮機、4 室内熱交換器、5 膨脹部、6 室外熱交換器、7 四方弁、8 室内ファン、9 室外機、10 室外ファン、11 室外機、12 風上列(第1熱交換器)、13 風下列(第2熱交換器)、14 風上伝熱管(第1伝熱管)、15 風上ファン、16 風下伝熱管(第2伝熱管)、17 風下フィン、18 空気排出面、19 空気取り入れ面、20 風上入口ヘッダ(第1ヘッダ)、21 風上出口ヘッダ(第2ヘッダ)、22 風下入口ヘッダ(第3ヘッダ)、23 風下出口ヘッダ(第4ヘッダ)、24 風上入口分配管(第1分配管)、24a 冷媒流入口(第1絞り部)、25 風下入口分配管(第2分配管)、26 入口集合管、27 分岐部、28 風上出口分配管、29 風下出口分配管、30 出口集合管、31 分岐部、32 分配空間、33 冷媒流入口(第2絞り部)、34 隔壁、35 リング、35a 絞り穴(第2絞り部)、36 風下冷媒配管、36a 流出穴(第2絞り部)37 冷媒入口配管、38 第1穴(第1絞り部)、39 第2穴(第2絞り部)、40 副熱交換器、41 風下入口ヘッダ、42 風上出口ヘッダ、43 風下出口ヘッダ、44 風上伝熱管、45 風下伝熱管。   1 Refrigeration cycle device, 2 circuit, 3 compressor, 4 indoor heat exchanger, 5 expansion section, 6 outdoor heat exchanger, 7 four-way valve, 8 indoor fan, 9 outdoor unit, 10 outdoor fan, 11 outdoor unit, 12 wind Upper row (first heat exchanger), 13 Downward row (second heat exchanger), 14 Upwind heat transfer tube (first heat transfer tube), 15 Upwind fan, 16 Downwind heat transfer tube (second heat transfer tube), 17 Leeward fin, 18 air discharge surface, 19 air intake surface, 20 windward inlet header (first header), 21 windward outlet header (second header), 22 leeward inlet header (third header), 23 leeward outlet header ( 4th header), 24 windward inlet distribution pipe (first distribution pipe), 24a refrigerant inlet (first throttle section), 25 leeward inlet distribution pipe (second distribution pipe), 26 inlet collecting pipe, 27 branching section, 28 Windward exit distribution , 29 leeward outlet distribution pipe, 30 outlet collecting pipe, 31 branching section, 32 distribution space, 33 refrigerant inlet (second throttle part), 34 partition, 35 ring, 35a throttle hole (second throttle part), 36 leeward refrigerant Pipe, 36a Outflow hole (second throttle part) 37 Refrigerant inlet pipe, 38 First hole (first throttle part), 39 Second hole (second throttle part), 40 Sub heat exchanger, 41 Downward inlet header, 42 Upwind outlet header, 43 Downwind outlet header, 44 Upwind heat transfer tube, 45 Downwind heat transfer tube. *

Claims (7)

  1.  圧縮機と、室内熱交換器と、膨脹部と、室外熱交換器とを含む回路を備え、
     前記室外熱交換器は、ファンと、第1熱交換器と、前記ファンにより起こされる気流に対して前記第1熱交換器よりも風下に配置される第2熱交換器とを備えており、
     前記第1熱交換器は、第1伝熱管を備えており、
     前記第2熱交換器は、第2伝熱管を備えており、
     前記第1伝熱管の第1の端部は、冷媒を前記第1熱交換器に供給する第1ヘッダに接続されており、
     前記第1伝熱管の第2の端部は、第2ヘッダに接続されており、
     前記第2伝熱管の第3の端部は、第3ヘッダに接続されており、
     前記第2伝熱管の第4の端部は、第4ヘッダに接続されており、
     前記第1ヘッダと、前記第3ヘッダとは、第1分配管及び第2分配管を介して集合管の分岐部に接続されている、冷凍サイクル装置であって、
     前記第1ヘッダまたは前記第1分配管は、第1絞り部を含み、前記第3ヘッダまたは前記第2分配管は、第2絞り部を含み、
     前記第1絞り部の流動抵抗は、前記第2絞り部の流動抵抗よりも小さい冷凍サイクル装置。
    A circuit including a compressor, an indoor heat exchanger, an expansion unit, and an outdoor heat exchanger;
    The outdoor heat exchanger includes a fan, a first heat exchanger, and a second heat exchanger disposed downstream of the first heat exchanger with respect to the air flow generated by the fan,
    The first heat exchanger includes a first heat transfer tube,
    The second heat exchanger includes a second heat transfer tube,
    A first end of the first heat transfer tube is connected to a first header for supplying a refrigerant to the first heat exchanger;
    A second end of the first heat transfer tube is connected to a second header;
    A third end of the second heat transfer tube is connected to a third header;
    A fourth end of the second heat transfer tube is connected to a fourth header;
    The first header and the third header are refrigeration cycle apparatuses connected to a branch portion of the collecting pipe via a first distribution pipe and a second distribution pipe,
    The first header or the first distribution pipe includes a first throttle part, and the third header or the second distribution pipe includes a second throttle part,
    The flow resistance of the first throttle part is a refrigeration cycle apparatus that is smaller than the flow resistance of the second throttle part.
  2.  前記第1絞り部は、第1穴であり、前記第2絞り部は、第2穴であり、
     前記第1穴の相当直径は、前記第2穴の相当直径よりも大きい請求項1に記載の冷凍サイクル装置。
    The first throttle portion is a first hole, the second throttle portion is a second hole,
    The refrigeration cycle apparatus according to claim 1, wherein an equivalent diameter of the first hole is larger than an equivalent diameter of the second hole.
  3.  前記第3ヘッダの断面積は、前記第1ヘッダの断面積よりも小さい請求項1または2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, wherein a cross-sectional area of the third header is smaller than a cross-sectional area of the first header.
  4.  前記第4ヘッダの断面積は、前記第2ヘッダの断面積よりも小さい請求項1~3の何れか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein a cross-sectional area of the fourth header is smaller than a cross-sectional area of the second header.
  5.  前記第1ヘッダ及び前記第3ヘッダは、それぞれ内部に分配空間を有し、前記第3ヘッダの前記分配空間の数は、前記第1ヘッダの前記分配空間の数よりも多い請求項1~4の何れか1項に記載の冷凍サイクル装置。 The first header and the third header each have a distribution space therein, and the number of the distribution spaces of the third header is larger than the number of the distribution spaces of the first header. The refrigeration cycle apparatus according to any one of the above.
  6.  前記第3ヘッダの前記分配空間の下部に、上方向に指向した前記第2穴が設けられている請求項5に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 5, wherein the second hole directed upward is provided in a lower portion of the distribution space of the third header.
  7.  前記第3ヘッダの前記分配空間の下部に取り付けられた、先端部が上方向に折曲された冷媒配管の前記先端部に、前記第2穴が設けられている請求項5に記載の冷凍サイクル装置。 6. The refrigeration cycle according to claim 5, wherein the second hole is provided in the distal end portion of the refrigerant pipe attached to a lower portion of the distribution space of the third header and having a distal end portion bent upward. apparatus.
PCT/JP2015/052769 2015-01-30 2015-01-30 Refrigeration cycle device WO2016121123A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016571652A JP6239159B2 (en) 2015-01-30 2015-01-30 Refrigeration cycle equipment
PCT/JP2015/052769 WO2016121123A1 (en) 2015-01-30 2015-01-30 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052769 WO2016121123A1 (en) 2015-01-30 2015-01-30 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2016121123A1 true WO2016121123A1 (en) 2016-08-04

Family

ID=56542770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052769 WO2016121123A1 (en) 2015-01-30 2015-01-30 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6239159B2 (en)
WO (1) WO2016121123A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055826A1 (en) * 2016-09-23 2018-03-29 東芝キヤリア株式会社 Heat exchanger and refrigeration cycle device
WO2019026436A1 (en) * 2017-08-02 2019-02-07 三菱重工サーマルシステムズ株式会社 Heat exchanger
EP3534103A4 (en) * 2016-10-28 2020-02-26 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
EP3734190A4 (en) * 2017-12-25 2021-01-06 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
JP7102686B2 (en) 2017-05-19 2022-07-20 株式会社富士通ゼネラル Heat exchanger
JP7470909B2 (en) 2020-02-03 2024-04-19 東芝ライフスタイル株式会社 Microchannel heat exchanger and air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166371U (en) * 1979-05-18 1980-11-29
JPS6121259U (en) * 1984-07-11 1986-02-07 松下精工株式会社 Refrigerant distribution device for air conditioners, etc.
JPS6250468U (en) * 1985-09-17 1987-03-28
JPS62245058A (en) * 1986-04-17 1987-10-26 松下電器産業株式会社 Flow diverter
JP2005226866A (en) * 2004-02-10 2005-08-25 Denso Corp Refrigerating cycle device
WO2013160952A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Coolant distributor, and heat exchanger equipped with coolant distributor
JP2015014397A (en) * 2013-07-04 2015-01-22 パナソニック株式会社 Heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166371U (en) * 1979-05-18 1980-11-29
JPS6121259U (en) * 1984-07-11 1986-02-07 松下精工株式会社 Refrigerant distribution device for air conditioners, etc.
JPS6250468U (en) * 1985-09-17 1987-03-28
JPS62245058A (en) * 1986-04-17 1987-10-26 松下電器産業株式会社 Flow diverter
JP2005226866A (en) * 2004-02-10 2005-08-25 Denso Corp Refrigerating cycle device
WO2013160952A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Coolant distributor, and heat exchanger equipped with coolant distributor
JP2015014397A (en) * 2013-07-04 2015-01-22 パナソニック株式会社 Heat exchanger

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055826A1 (en) * 2016-09-23 2018-03-29 東芝キヤリア株式会社 Heat exchanger and refrigeration cycle device
CN109073343A (en) * 2016-09-23 2018-12-21 东芝开利株式会社 Heat exchanger and refrigerating circulatory device
EP3534103A4 (en) * 2016-10-28 2020-02-26 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
JP7102686B2 (en) 2017-05-19 2022-07-20 株式会社富士通ゼネラル Heat exchanger
WO2019026436A1 (en) * 2017-08-02 2019-02-07 三菱重工サーマルシステムズ株式会社 Heat exchanger
JP2019027727A (en) * 2017-08-02 2019-02-21 三菱重工サーマルシステムズ株式会社 Heat exchanger
CN110998215A (en) * 2017-08-02 2020-04-10 三菱重工制冷空调系统株式会社 Heat exchanger
EP3647711A4 (en) * 2017-08-02 2020-09-23 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat exchanger
CN110998215B (en) * 2017-08-02 2021-09-14 三菱重工制冷空调系统株式会社 Heat exchanger
EP3734190A4 (en) * 2017-12-25 2021-01-06 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
JP7470909B2 (en) 2020-02-03 2024-04-19 東芝ライフスタイル株式会社 Microchannel heat exchanger and air conditioner

Also Published As

Publication number Publication date
JP6239159B2 (en) 2017-11-29
JPWO2016121123A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
US9651317B2 (en) Heat exchanger and air conditioner
EP2853843B1 (en) A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device
JP6091641B2 (en) Heat exchanger and air conditioner
JP6333401B2 (en) Heat exchanger and air conditioner
AU2014291046B2 (en) Heat exchanger
JP6239159B2 (en) Refrigeration cycle equipment
ES2440241T3 (en) Improved refrigerant distribution in parallel flow heat exchanger manifolds
CN109154460B (en) Laminated header, heat exchanger, and air conditioner
JP6109303B2 (en) Heat exchanger and refrigeration cycle apparatus
JP6336100B2 (en) Heat exchanger and air conditioner
KR20110110722A (en) Improved heat exchanger having an inlet distributor and outlet collector
JP2012002475A (en) Refrigerant distributor, and heat pump device using the refrigerant distributor
EP3156752B1 (en) Heat exchanger
US20120292004A1 (en) Heat exchanger
JP2010127601A (en) Air conditioner
KR20140106552A (en) Fin tube-type heat exchanger
US10126065B2 (en) Heat exchanger assembly having a refrigerant distribution control using selective tube port closures
JP2014137177A (en) Heat exchanger and refrigerator
JP2017138085A (en) Heat exchanger
JP2016148480A (en) Heat exchanger
JP2016050718A (en) Air conditioner
CN106871496B (en) Indoor heat exchanger and air conditioner
KR101210570B1 (en) Heat exchanger
JP2014137172A (en) Heat exchanger and refrigerator
JP6885857B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880019

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571652

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880019

Country of ref document: EP

Kind code of ref document: A1