WO2019026256A1 - Heat exchange ventilation device - Google Patents
Heat exchange ventilation device Download PDFInfo
- Publication number
- WO2019026256A1 WO2019026256A1 PCT/JP2017/028307 JP2017028307W WO2019026256A1 WO 2019026256 A1 WO2019026256 A1 WO 2019026256A1 JP 2017028307 W JP2017028307 W JP 2017028307W WO 2019026256 A1 WO2019026256 A1 WO 2019026256A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- temperature
- humidity
- exhaust
- outdoor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F7/00—Ventilation
- F24F7/007—Ventilation with forced flow
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to a heat exchange ventilator that performs ventilation while exchanging heat between a charge air flow and an exhaust flow.
- a high humidity state is detected by a temperature and humidity sensor installed in the outdoor air path. If the humidity is equal to or higher than the threshold value, there is a control method for stopping the air supply blower.
- the present invention has been made in view of the above, and is capable of controlling a blower for air supply and a blower for exhaust based on outdoor temperature and outdoor humidity without using a temperature and humidity sensor exposed to outdoor air.
- the purpose is to obtain a device.
- the present invention relates to an air supply path through which an air supply flow from the outside to the room, which is formed by an air supply blower, an exhaust air blower, and an air supply blower.
- a casing provided with an exhaust air passage formed by the exhaust blower through which the exhaust flow going from the room to the outdoor passes and an air supply passage and an exhaust air passage are provided between the supply air flow and the exhaust flow;
- a total heat exchanger that performs total heat exchange.
- the present invention relates to an indoor temperature sensor and an indoor humidity sensor provided on the windward side of the total heat exchanger in the exhaust air passage, and an air supply temperature sensor and air supply provided on the leeward side of the total heat exchanger in the air supply air passage.
- Humidity sensor temperature and humidity of room air which is air on the windward side of total heat exchanger in exhaust air passage, temperature and humidity of supply air which is air on the windward side of total heat exchanger in supply air passage Based on the temperature and humidity of the outdoor air which is the air on the windward side of the total heat exchanger in the air supply air path, and the blower for air supply and the blower for exhaust are controlled based on the calculated temperature and humidity of outdoor air. And a control unit.
- the heat exchange ventilator according to the present invention has the effect of being able to control the air supply blower and the exhaust air blower based on the outdoor temperature and the outdoor humidity without using a temperature and humidity sensor exposed to the outdoor air.
- Flow chart showing the flow of the operation of the heat exchange ventilator according to the first embodiment The figure which shows the structure of the heat exchange ventilator concerning Embodiment 4 of this invention.
- FIG. 1 is a diagram showing a configuration of a heat exchange ventilator according to a first embodiment of the present invention.
- the heat exchange ventilator according to the first embodiment includes a casing 1 having a box structure including an air supply passage through which an air supply flow from the outside to the room passes and an exhaust air passage through which an exhaust flow from the room to the outside flows.
- Exhaust blower 2 for generating exhaust flow in the exhaust air path
- Supply air blower 3 for generating supply flow in the air supply path, total heat exchange for continuous total heat exchange between the exhaust flow and the supply flow 4, exhaust outlet 5 for blowing out the exhaust flow, air outlet 6 for blowing out the air flow, air inlet 7 for flowing in the air flow, exhaust air inlet 8 for flowing in the exhaust stream, total heat exchange of the air flow path
- An air supply temperature sensor 9 that measures the temperature of the air supply flow on the downwind side of the cooling unit 4
- an air supply humidity sensor 10 that measures the relative humidity of the air supply flow on the downwind side of the total heat exchanger 4 in the air supply air path 11, remote control 12 which is a user interface, total heat exchange of indoor air Air path switching damper 13 for switching to the air path leading to the air conditioner 4 or to the bypass air path sent to the exhaust fan 2 without passing through the total heat exchanger 4, more than the total heat exchanger 4 of the exhaust air path
- the indoor temperature sensor 14 for measuring the temperature of the exhaust flow on the wind
- the heat exchange ventilator 50 includes an air supply outlet 6 and an exhaust air inlet 8 on the indoor side, and an exhaust air outlet 5 and an air supply inlet 7 on the outdoor side.
- the air supply path connects the air supply inlet 7 on the outdoor side and the air supply outlet 6 on the indoor side.
- the exhaust air passage connects the exhaust suction port 8 on the indoor side and the exhaust blowout port 5 on the outdoor side.
- the air supply fan 3 is incorporated in the air supply path.
- the exhaust fan 2 is incorporated in the exhaust air passage.
- the total heat exchanger 4 is disposed straddling the supply air flow path and the exhaust air flow path, and converts the outdoor air into the supply air by total heat exchange, and converts the room air into the exhaust air. Therefore, the air supply temperature sensor 9 and the air supply humidity sensor 10 provided on the downwind side of the total heat exchanger 4 in the air supply air path measure the temperature and humidity of the air supply air.
- the indoor temperature sensor 14 and the indoor humidity sensor 15 provided on the windward side of the total heat exchanger in the exhaust air path measure the temperature and humidity of the indoor air.
- the exhaust air passage passing the exhaust flow and the air supply passage passing the charge air flow vertically intersect in the inside. Since the exhaust air passage and the supply air passage cross each other, in the total heat exchanger 4, total heat is exchanged between the exhaust flow and the supply flow, and heat exchange ventilation can be performed.
- the air passage switching damper 13 is disposed on the windward side of the exhaust air passage. When the air passage switching damper 13 is closed, the indoor air passes through the total heat exchanger 4 and heat exchange is continuously performed between the indoor air and the outdoor air. When the air passage switching damper 13 is open, the indoor air passes through the bypass air passage formed at the back of the total heat exchanger 4 and the non-heat exchange ventilation is discharged to the outside through the exhaust fan 2.
- the air supply temperature sensor 9 and the air supply humidity sensor 10 are installed on the downwind side of the total heat exchanger 4 in the air supply air path, that is, in the air supply air path after passing through the total heat exchanger 4.
- the indoor temperature sensor 14 and the indoor humidity sensor 15 are installed on the upstream side of the total heat exchanger 4 in the exhaust air path, that is, the exhaust air path before passing through the total heat exchanger 4.
- the air supply temperature sensor 9, the air supply humidity sensor 10, the indoor temperature sensor 14, and the indoor humidity sensor 15 are connected to a control substrate installed in the control unit 11.
- the measurement results of the air supply temperature sensor 9, the air supply humidity sensor 10, the indoor temperature sensor 14, and the indoor humidity sensor 15 are periodically transmitted to the control unit 11.
- the control unit 11 stores a temperature exchange efficiency ⁇ t and an enthalpy exchange efficiency ⁇ h which are determined by the outer dimensions of the total heat exchanger 4 and the air volume passing through the total heat exchanger 4.
- control unit 11 calculates the enthalpy of the indoor air and the enthalpy of the supplied air from the temperature information and the relative humidity information.
- the indoor enthalpy h RA the air supply enthalpy h SA and the enthalpy exchange efficiency ⁇ h of the total heat exchanger 4
- the enthalpy h OA of the outdoor air is calculated.
- the control unit 11 may store only the characteristic values of the temperature exchange efficiency ⁇ t and the enthalpy exchange efficiency ⁇ h determined by the rated air volume. In addition, the control unit 11 periodically calculates the exchange efficiency of the total heat exchanger 4 based on the actual air volume ratio of the air supply blower 3 and the exhaust air blower 2, and outdoor air based on the calculated exchange efficiency. Temperature and enthalpy may be calculated.
- the control unit 11 calculates the relative humidity RH OA of the outdoor air, using the calculated temperature and enthalpy of the outdoor air.
- the calculated relative humidity RH OA of outdoor air may exceed the humidity threshold RH hum .
- the air supply blower 3 is stopped for a predetermined time, and the exhaust air blower 2 is operated to start intermittent operation.
- the humidity threshold RHhum is preferably set to the high humidity side because the time for performing the intermittent operation is shorter.
- the humidity threshold RHhum may be set between 90% and 100% relative humidity in consideration of detection variations of the air supply humidity sensor 10 and the indoor humidity sensor 15.
- FIG. 2 is a flowchart showing the flow of the operation of the heat exchange ventilator according to the first embodiment.
- the charge air temperature sensor 9 detects the temperature of the charge air.
- the air supply humidity sensor 10 detects the humidity of the air supply air.
- the indoor temperature sensor 14 also detects the temperature of the indoor air.
- the indoor humidity sensor 15 detects the humidity of the indoor air.
- the control unit 11 calculates the temperature of outdoor air and the humidity of outdoor air.
- the control unit 11 determines whether the humidity of the outdoor air is equal to or higher than a threshold value of humidity.
- Step S3 becomes Yes, and in Step S4, the control unit 11 stops intermittent operation of the air supply fan 3 for a certain period and starts intermittent operation of operating the exhaust air fan 2. . If the humidity of the outdoor air is less than the threshold value, the result of step S3 is No and the process returns to step S1.
- the heat exchange ventilator 50 according to the first embodiment calculates the humidity of the outdoor air from the temperature and humidity of the indoor air and the supplied air, the outdoor air is the same as when the humidity of the outdoor air is directly measured. Control can be performed to prevent outdoor air from entering when the humidity is high. Furthermore, since the heat exchange ventilator 50 according to the first embodiment does not arrange the sensor on the outdoor air side, it can prevent deterioration and failure of the sensor due to fog or high humidity air, leading to improvement in product reliability. .
- the heat exchange ventilation device 50 performs control based on the temperature and humidity of the outdoor air without arranging the temperature sensor and the humidity sensor in the atmosphere of the outdoor air where the measurement environment of temperature and humidity is severe. It can do.
- the indoor environment can be kept comfortable and energy saving can be realized.
- the configuration of the heat exchange ventilator 50 according to the second embodiment is the same as the heat exchange ventilator 50 according to the first embodiment, but the content of control by the control unit 11 is different.
- the control unit 11 When the temperature of the outdoor air is low, latent heat generated at the time of heat exchange of the total heat exchanger 4 may be cooled and dew condensation or freezing may occur in the total heat exchanger.
- the control unit 11 temporarily supplies the air for temporarily supplying the drying operation or the freezing of the moisture in the total heat exchanger 4.
- the cold region operation mode is used in which the blower 3 is stopped and only the exhaust blower 2 is operated.
- the temperature / humidity sensor When the temperature / humidity sensor is placed in the atmosphere of outdoor air, if the temperature of the outdoor air is low, the measurement accuracy may be lowered due to the temperature dependency depending on the electronic components mounted on the temperature sensor or humidity sensor Sometimes.
- temperature sensors or humidity sensors for general use such as those used for air conditioning and ventilation, are made to have high measurement accuracy at room temperature, so measurement accuracy is generally low at low temperatures outside the room temperature. It is Therefore, the heat exchange ventilation device 50 in which the temperature and humidity sensor is disposed in the atmosphere of the outdoor air is in the cold region mode due to the measurement error of the temperature of the outdoor air and the humidity of the outdoor air could not be used.
- the heat exchange ventilator 50 installs the supplied air temperature sensor 9 and the indoor temperature sensor 14 on the indoor side, and the control unit 11 determines the measured results of the supplied air temperature sensor 9 and the indoor temperature sensor 14. Calculate the temperature of the outdoor air. Therefore, the supply air temperature sensor 9 and the indoor temperature sensor 14 measure the temperature of the normal temperature air with high measurement accuracy, so the accuracy of the calculation result of the temperature of the outdoor air also becomes high. As a result, the cold region mode can be reliably used under conditions where the temperature of the outdoor air is low and the cold region mode is desired to be used.
- the control unit 11 calculates the temperature of the outdoor air based on the measurement results of the supply air temperature sensor 9 and the indoor temperature sensor 14, so even if the temperature of the outdoor air is low.
- the temperature of the outdoor air can be detected accurately. Therefore, condensation and freezing in the total heat exchanger 4 can be prevented when the temperature of the outdoor air is low.
- the configuration of the heat exchange ventilator 50 according to the third embodiment is the same as the heat exchange ventilator 50 according to the first embodiment, but the contents of control by the control unit 11 are different. If the temperature of the outdoor air is lower than the indoor temperature in the early morning or in the middle of summer, the total heat exchange between the indoor air and the outdoor air is not performed by the total heat exchanger 4, and the outdoor air cooling mode is there. In particular, there is a night purge control that reduces the sensible heat generated from office equipment only with the temperature of the outdoor air and reduces the air conditioning load in the morning when there is no room at night. When using the outdoor air cooling mode or performing night purge control, non-heat exchange ventilation is performed by using the air path switching damper 13 and guiding the room air directly to the exhaust fan 2 without passing through the total heat exchanger 4.
- the heat exchange ventilator 50 installs the supplied air temperature sensor 9 and the indoor temperature sensor 14 on the indoor side, and the control unit 11 determines the measured results of the supplied air temperature sensor 9 and the indoor temperature sensor 14. Since the temperature of the outdoor air is calculated, it is possible to prevent the air conditioning load from increasing in addition to the fact that the deterioration of the air supply temperature sensor 9 and the indoor temperature sensor 14 can be prevented.
- the air passage switching damper 13 in the heat exchange ventilator 50 based on the temperature and humidity of the outdoor air, the indoor environment can be kept comfortable and energy saving can be realized.
- FIG. 3 is a diagram showing a configuration of a heat exchange ventilator according to a fourth embodiment of the present invention.
- the heat exchange ventilation device 50 according to the fourth embodiment includes a humidifying unit 20 for supplying humidity to the supplied air and increasing the humidity in the room, and a direct expansion coil 21 for heating the supplied air to increase the amount of saturated water vapor. It differs from the heat exchange ventilator 50 according to the first embodiment in that it comprises.
- the control unit 11 controls the amount of water supplied to the humidifying unit 20 and the temperature of the direct expansion coil 21 based on the temperature of the outdoor air and the humidity of the outdoor air. That is, the control unit 11 controls the operation intensity of the direct expansion coil 21 in accordance with the temperature of outdoor air, and controls the amount of humidification by the humidification unit 20 in accordance with the temperature and humidity of outdoor air.
- the heat exchange ventilator calculates the temperature of the outdoor air and the humidity of the outdoor air from the indoor air and the supplied air, and therefore, in addition to being able to calculate the temperature of the outdoor air with high accuracy, the outdoor air Even under the freezing point, the humidity of the outdoor air can be detected to control the humidity.
- the humidity of the outdoor air can be detected to control the humidity.
- control unit 11 calculates the temperature and humidity of the outdoor air based on the temperature and humidity of the indoor air, and the temperature and the humidity of the supplied air, and supplies the temperature and humidity of the outdoor air calculated.
- the air supply blower 3 is stopped and the process of operating the exhaust blower 2 is performed, and when the temperature of the outdoor air is lower than the temperature of the indoor air, the wind is
- the exchange efficiency of the total heat exchanger 4 is periodically calculated based on the process to be controlled and the air flow ratio between the air supply fan 3 and the exhaust fan 2, and the outdoor air temperature and the exchange efficiency calculated.
- a processing circuit is provided which performs a process of calculating humidity.
- the processing circuit may be dedicated hardware or an arithmetic device that executes a
- FIG. 4 is a diagram showing a configuration in which the function of the control unit according to any one of the first to fourth embodiments is realized by hardware.
- the processing circuit 19 is supplied with a process of calculating the temperature and humidity of the outdoor air based on the temperature and humidity of the indoor air and the temperature and humidity of the supplied air, and the temperature and humidity of the outdoor air calculated.
- the air supply blower 3 is stopped and the process of operating the exhaust blower 2 is performed, and when the temperature of the outdoor air is lower than the temperature of the indoor air, the wind is
- a process of controlling the path switching damper 13 to flow indoor air to the bypass air path, a process of controlling the operating strength of the direct expansion coil 21 in accordance with the temperature of the outdoor air, and adjusting the temperature and humidity of the outdoor air Control the amount of humidification by 20
- the exchange efficiency of the total heat exchanger 4 is periodically calculated based on the process to be performed and the air flow ratio between the air supply fan 3 and the exhaust fan 2, and the outdoor air temperature and humidity are calculated based on the calculated exchange efficiency.
- a logic circuit 19a for implementing the process of calculating.
- the processing circuit 19 is an arithmetic unit, a process of calculating the temperature and humidity of the outdoor air based on the temperature and humidity of the indoor air and the temperature and humidity of the supplied air, and the calculated temperature and humidity of the outdoor air
- a process of controlling the supply air blower 3 and the discharge air blower 2 and a process of stopping the supply air blower 3 and operating the discharge air blower 2 when the outdoor air humidity is higher than the humidity threshold If the temperature of the outdoor air is lower than the temperature threshold, the air supply blower 3 is stopped and the process for operating the exhaust blower 2 is performed, and the temperature of the outdoor air is lower than the temperature of the indoor air
- the air passage switching damper 13 is controlled to flow the indoor air to the bypass air passage, the operation to control the operation strength of the direct expansion coil 21 according to the temperature of the outdoor air, and the temperature and humidity of the outdoor air.
- the exchange efficiency of the total heat exchanger 4 is periodically calculated based on the process of controlling the amount of humidification and the air flow ratio between the air supply fan 3 and the exhaust air fan 2, and the outdoor is calculated based on the calculated exchange efficiency.
- the process of calculating the temperature and humidity of air is realized by software, firmware, or a combination of software and firmware.
- FIG. 5 is a diagram showing a configuration in which the function of the control unit according to any one of the first to fourth embodiments is realized by software.
- the processing circuit 19 includes an arithmetic unit 191 that executes the program 19 b, a random access memory 192 that the arithmetic unit 191 uses for a work area, and a storage unit 193 that stores the program 19 b.
- Arithmetic device 191 develops program 19b stored in storage device 193 on random access memory 192 and executes the program 19b, whereby the temperature and humidity of room air and the temperature and humidity of supplied air are outdoor.
- the air supply blower 3 and the exhaust air blower 2 are controlled based on the calculated outdoor air temperature and humidity, and the outdoor air humidity is higher than the humidity threshold
- the exhaust air blower 2 When the temperature of the outdoor air is lower than the temperature of the indoor air, the air passage switching damper 13 is controlled to flow the indoor air to the bypass air passage, and according to the temperature of the outdoor air.
- the computing device 191 can be exemplified by a central processing unit, but is not limited thereto.
- the processing circuit 19 realizes each processing by reading and executing the program 19 b stored in the storage device 193. That is, when executed by the processing circuit 19, the control unit 11 calculates the temperature and humidity of the outdoor air based on the temperature and humidity of the indoor air and the temperature and humidity of the supplied air, and Controlling the air supply blower 3 and the exhaust air blower 2 based on the outdoor air temperature and humidity, and stopping the air supply blower 3 if the humidity of the outdoor air is higher than the humidity threshold.
- the air path switching damper 13 is controlled to flow indoor air to the bypass air path, and the operation strength of the direct expansion coil 21 is controlled according to the temperature of the outdoor air.
- the process for calculating the temperature and humidity of the outdoor air based on the temperature and humidity of the indoor air and the temperature and humidity of the supplied air, and the blower 3 for air supply based on the calculated temperature and humidity of the outdoor air And the process of controlling the exhaust fan 2 and the process of operating the exhaust fan 2 by stopping the air supply fan 3 when the humidity of the outdoor air is higher than the humidity threshold, and the temperature of the outdoor air If the temperature is lower than the temperature threshold, the process for operating the air supply blower 3 is stopped and the exhaust air blower 2 is operated, and if the temperature of the outdoor air is lower than the temperature of the indoor air, the air path switching damper 13 Control to flow indoor air to the bypass air path, control to control the operating intensity of the direct expansion coil 21 according to the temperature of the outdoor air, and the amount of humidification by the humidification unit 20 according to the temperature and humidity of the outdoor air.
- the exchange efficiency of the total heat exchanger 4 is periodically calculated based on the air volume ratio between the air supply fan 3 and the exhaust fan 2, and the temperature and humidity of the outdoor air are calculated based on the calculated exchange efficiency.
- the processing may be partly realized by dedicated hardware and partly by software or firmware.
- the processing circuit 19 can implement the above-described functions by hardware, software, firmware, or a combination thereof.
- the configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
- Ventilation (AREA)
Abstract
A heat exchange ventilation device (50), having: a casing (1) provided with an air supply airflow path channeling an outdoor-to-indoor air supply flow formed by an air supply blower (3), and an exhaust airflow path channeling an indoor-to-outdoor exhaust flow formed by an exhaust blower (2); a total heat exchanger (4) installed between the air supply airflow path and the exhaust airflow path, the total heat exchanger (4) exchanging heat between the air supply flow and the exhaust airflow; an indoor temperature sensor (14) and an indoor humidity sensor (15) provided to the exhaust airflow path on the upwind side of the total heat exchanger (4); an air supply temperature sensor (9) and an air supply humidity sensor (10) provided to the air supply airflow path on the downwind side of the total heat exchanger (4); and a control unit (11) for calculating the temperature and humidity of outdoor air on the basis of the temperature and humidity of indoor air and the temperature and humidity of air supply air, and controlling the air supply blower (3) and the exhaust blower (2) on the basis of the calculated temperature and humidity of outdoor air.
Description
本発明は、給気流と排気流との間で熱交換を行いながら換気を行う熱交換換気装置に関する。
The present invention relates to a heat exchange ventilator that performs ventilation while exchanging heat between a charge air flow and an exhaust flow.
排気流を通す排気風路と給気流を通す給気風路とが内部において交差し、排気流と給気流との間で全熱が交換を行う全熱交換器は、給気風路を通じて高湿度空気が内部に侵入すると、熱交換時に結露又は結氷が発生する場合がある。
In the total heat exchanger where the exhaust air passage passing through the exhaust flow and the air supply passage passing through the air supply flow internally intersect and the total heat is exchanged between the exhaust flow and the air supply flow, high humidity air passes through the air supply passage. Enters inside, condensation or freezing may occur during heat exchange.
特許文献1に開示されるように、給気風路を通して霧及び高湿度空気が全熱交換器内に侵入することを防止するため、室外風路に設置された温湿度センサで高湿度状態を検知し、湿度が閾値以上である場合には、給気用送風機を停止させる制御方法がある。
As disclosed in Patent Document 1, in order to prevent fog and high humidity air from entering the total heat exchanger through the supply air path, a high humidity state is detected by a temperature and humidity sensor installed in the outdoor air path. If the humidity is equal to or higher than the threshold value, there is a control method for stopping the air supply blower.
しかしながら、特許文献1に開示される技術によれば、温湿度センサが室外風路に設置されているため、温湿度センサは、室外空気に含まれる埃及び霧に直接晒される。したがって、特許文献1に開示される発明は、長時間の運転で埃が温湿度センサに付着し、感湿部に付着すると湿度を正確に測定できなくなる。また、温湿度センサの表面に霧が付着して凝縮すると、凝縮した水によって温湿度センサにショートが発生し、故障する可能性があった。
However, according to the technology disclosed in Patent Document 1, since the temperature and humidity sensor is installed in the outdoor air passage, the temperature and humidity sensor is directly exposed to dust and mist contained in the outdoor air. Therefore, in the invention disclosed in Patent Document 1, when the dust adheres to the temperature / humidity sensor in a long operation, the humidity can not be accurately measured when the dust adheres to the humidity sensitive portion. In addition, when a mist adheres to the surface of the temperature and humidity sensor and condenses, the condensed water may cause a short circuit in the temperature and humidity sensor, which may cause a failure.
本発明は、上記に鑑みてなされたものであって、室外空気に晒された温湿度センサを用いることなく室外温度及び室外湿度に基づいて給気用送風機及び排気用送風機を制御できる熱交換換気装置を得ることを目的とする。
The present invention has been made in view of the above, and is capable of controlling a blower for air supply and a blower for exhaust based on outdoor temperature and outdoor humidity without using a temperature and humidity sensor exposed to outdoor air. The purpose is to obtain a device.
上述した課題を解決し、目的を達成するために、本発明は、給気用送風機と、排気用送風機と、給気用送風機によって形成される室外から室内に向かう給気流が通る給気風路と、排気用送風機によって形成される室内から室外へ向かう排気流が通る排気風路とを備えたケーシングと、給気風路と排気風路との間に設置され、給気流と排気流との間で全熱交換を行う全熱交換器とを有する。本発明は、排気風路における全熱交換器の風上側に設けられた室内温度センサ及び室内湿度センサと、給気風路における全熱交換器の風下側に設けられた給気温度センサ及び給気湿度センサと、排気風路における全熱交換器の風上側の空気である室内空気の温度及び湿度と、給気風路における全熱交換器の風下側の空気である給気空気の温度及び湿度とに基づいて、給気風路における全熱交換器の風上側の空気である室外空気の温度及び湿度を算出し、算出した室外空気の温度及び湿度に基づいて給気用送風機及び排気用送風機を制御する制御部とを有する。
In order to solve the problems described above and to achieve the object, the present invention relates to an air supply path through which an air supply flow from the outside to the room, which is formed by an air supply blower, an exhaust air blower, and an air supply blower. A casing provided with an exhaust air passage formed by the exhaust blower through which the exhaust flow going from the room to the outdoor passes and an air supply passage and an exhaust air passage are provided between the supply air flow and the exhaust flow; And a total heat exchanger that performs total heat exchange. The present invention relates to an indoor temperature sensor and an indoor humidity sensor provided on the windward side of the total heat exchanger in the exhaust air passage, and an air supply temperature sensor and air supply provided on the leeward side of the total heat exchanger in the air supply air passage. Humidity sensor, temperature and humidity of room air which is air on the windward side of total heat exchanger in exhaust air passage, temperature and humidity of supply air which is air on the windward side of total heat exchanger in supply air passage Based on the temperature and humidity of the outdoor air which is the air on the windward side of the total heat exchanger in the air supply air path, and the blower for air supply and the blower for exhaust are controlled based on the calculated temperature and humidity of outdoor air. And a control unit.
本発明に係る熱交換換気装置は、室外空気に晒された温湿度センサを用いることなく室外温度及び室外湿度に基づいて給気用送風機及び排気用送風機を制御できるという効果を奏する。
The heat exchange ventilator according to the present invention has the effect of being able to control the air supply blower and the exhaust air blower based on the outdoor temperature and the outdoor humidity without using a temperature and humidity sensor exposed to the outdoor air.
以下に、本発明の実施の形態に係る熱交換換気装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
Hereinafter, a heat exchange ventilator according to an embodiment of the present invention will be described in detail based on the drawings. The present invention is not limited by the embodiment.
実施の形態1.
図1は、本発明の実施の形態1に係る熱交換換気装置の構成を示す図である。実施の形態1に係る熱交換換気装置50は、室外から室内に向かう給気流が通る給気風路と、室内から室外へ向かう排気流が通る排気風路とを備えた箱体構造のケーシング1、排気風路に排気流を発生させる排気用送風機2、給気風路に給気流を発生させる給気用送風機3、排気流と給気流との間で連続的に全熱交換を行わせる全熱交換器4、排気流を吹き出す排気吹出口5、給気流を吹き出す給気吹出口6、給気流が流入する給気吸込口7、排気流が流入する排気吸込口8、給気風路の全熱交換器4よりも風下側で給気流の温度を測定する給気温度センサ9、給気風路の全熱交換器4よりも風下側で給気流の相対湿度を測定する給気湿度センサ10、制御部11、ユーザインタフェースであるリモートコントローラ12、室内空気を全熱交換器4へ通じる風路に導くか、全熱交換器4を通さずに排気用送風機2に送るバイパス風路に導くかを切り替える風路切替ダンパ13、排気風路の全熱交換器4よりも風上側で排気流の温度を測定する室内温度センサ14及び排気風路の全熱交換器4よりも風上側で排気流の相対湿度を測定する室内湿度センサ15を備える。 Embodiment 1
FIG. 1 is a diagram showing a configuration of a heat exchange ventilator according to a first embodiment of the present invention. The heat exchange ventilator according to the first embodiment includes a casing 1 having a box structure including an air supply passage through which an air supply flow from the outside to the room passes and an exhaust air passage through which an exhaust flow from the room to the outside flows.Exhaust blower 2 for generating exhaust flow in the exhaust air path, Supply air blower 3 for generating supply flow in the air supply path, total heat exchange for continuous total heat exchange between the exhaust flow and the supply flow 4, exhaust outlet 5 for blowing out the exhaust flow, air outlet 6 for blowing out the air flow, air inlet 7 for flowing in the air flow, exhaust air inlet 8 for flowing in the exhaust stream, total heat exchange of the air flow path An air supply temperature sensor 9 that measures the temperature of the air supply flow on the downwind side of the cooling unit 4, an air supply humidity sensor 10 that measures the relative humidity of the air supply flow on the downwind side of the total heat exchanger 4 in the air supply air path 11, remote control 12 which is a user interface, total heat exchange of indoor air Air path switching damper 13 for switching to the air path leading to the air conditioner 4 or to the bypass air path sent to the exhaust fan 2 without passing through the total heat exchanger 4, more than the total heat exchanger 4 of the exhaust air path The indoor temperature sensor 14 for measuring the temperature of the exhaust flow on the windward side and the indoor humidity sensor 15 for measuring the relative humidity of the exhaust flow on the windward side of the total heat exchanger 4 in the exhaust air passage are provided.
図1は、本発明の実施の形態1に係る熱交換換気装置の構成を示す図である。実施の形態1に係る熱交換換気装置50は、室外から室内に向かう給気流が通る給気風路と、室内から室外へ向かう排気流が通る排気風路とを備えた箱体構造のケーシング1、排気風路に排気流を発生させる排気用送風機2、給気風路に給気流を発生させる給気用送風機3、排気流と給気流との間で連続的に全熱交換を行わせる全熱交換器4、排気流を吹き出す排気吹出口5、給気流を吹き出す給気吹出口6、給気流が流入する給気吸込口7、排気流が流入する排気吸込口8、給気風路の全熱交換器4よりも風下側で給気流の温度を測定する給気温度センサ9、給気風路の全熱交換器4よりも風下側で給気流の相対湿度を測定する給気湿度センサ10、制御部11、ユーザインタフェースであるリモートコントローラ12、室内空気を全熱交換器4へ通じる風路に導くか、全熱交換器4を通さずに排気用送風機2に送るバイパス風路に導くかを切り替える風路切替ダンパ13、排気風路の全熱交換器4よりも風上側で排気流の温度を測定する室内温度センサ14及び排気風路の全熱交換器4よりも風上側で排気流の相対湿度を測定する室内湿度センサ15を備える。 Embodiment 1
FIG. 1 is a diagram showing a configuration of a heat exchange ventilator according to a first embodiment of the present invention. The heat exchange ventilator according to the first embodiment includes a casing 1 having a box structure including an air supply passage through which an air supply flow from the outside to the room passes and an exhaust air passage through which an exhaust flow from the room to the outside flows.
熱交換換気装置50は、室内側に給気吹出口6及び排気吸込口8を備え、室外側に排気吹出口5及び給気吸込口7を備えている。給気風路は、室外側の給気吸込口7と室内側の給気吹出口6とを繋いでいる。排気風路は、室内側の排気吸込口8と室外側の排気吹出口5とを繋いでいる。
The heat exchange ventilator 50 includes an air supply outlet 6 and an exhaust air inlet 8 on the indoor side, and an exhaust air outlet 5 and an air supply inlet 7 on the outdoor side. The air supply path connects the air supply inlet 7 on the outdoor side and the air supply outlet 6 on the indoor side. The exhaust air passage connects the exhaust suction port 8 on the indoor side and the exhaust blowout port 5 on the outdoor side.
給気用送風機3は、給気風路に組み込まれている。排気用送風機2は、排気風路に組み込まれている。全熱交換器4は、給気風路と排気風路とにまたがって配置され、全熱交換により室外空気を給気空気にし、室内空気を排気空気にする。したがって、給気風路における全熱交換器4の風下側に設けられた給気温度センサ9及び給気湿度センサ10は、給気空気の温度及び湿度を測定する。排気風路における全熱交換器の風上側に設けられた室内温度センサ14及び室内湿度センサ15は、室内空気の温度及び湿度を測定する。
The air supply fan 3 is incorporated in the air supply path. The exhaust fan 2 is incorporated in the exhaust air passage. The total heat exchanger 4 is disposed straddling the supply air flow path and the exhaust air flow path, and converts the outdoor air into the supply air by total heat exchange, and converts the room air into the exhaust air. Therefore, the air supply temperature sensor 9 and the air supply humidity sensor 10 provided on the downwind side of the total heat exchanger 4 in the air supply air path measure the temperature and humidity of the air supply air. The indoor temperature sensor 14 and the indoor humidity sensor 15 provided on the windward side of the total heat exchanger in the exhaust air path measure the temperature and humidity of the indoor air.
全熱交換器4においては、排気流を通す排気風路と給気流を通す給気風路とは、内部において垂直に交差している。排気風路と給気風路とが交差していることにより、全熱交換器4では、排気流と給気流との間で全熱が交換され、熱交換換気を行うことができる。
In the total heat exchanger 4, the exhaust air passage passing the exhaust flow and the air supply passage passing the charge air flow vertically intersect in the inside. Since the exhaust air passage and the supply air passage cross each other, in the total heat exchanger 4, total heat is exchanged between the exhaust flow and the supply flow, and heat exchange ventilation can be performed.
風路切替ダンパ13は、排気風路の風上側に配置されている。風路切替ダンパ13が閉じているとき、室内空気は全熱交換器4を通り、室内空気と室外空気との間で連続的に熱交換が行われる。風路切替ダンパ13が開いているとき、室内空気は全熱交換器4の奥に形成されているバイパス風路を通り、非熱交換換気が排気用送風機2を介して室外へ排出される。
The air passage switching damper 13 is disposed on the windward side of the exhaust air passage. When the air passage switching damper 13 is closed, the indoor air passes through the total heat exchanger 4 and heat exchange is continuously performed between the indoor air and the outdoor air. When the air passage switching damper 13 is open, the indoor air passes through the bypass air passage formed at the back of the total heat exchanger 4 and the non-heat exchange ventilation is discharged to the outside through the exhaust fan 2.
給気温度センサ9及び給気湿度センサ10は、給気風路のうち全熱交換器4の風下側、すなわち全熱交換器4を通過後の給気風路に設置されている。室内温度センサ14及び室内湿度センサ15は、排気風路のうち全熱交換器4の風上側、すなわち全熱交換器4を通過前の排気風路に設置されている。
The air supply temperature sensor 9 and the air supply humidity sensor 10 are installed on the downwind side of the total heat exchanger 4 in the air supply air path, that is, in the air supply air path after passing through the total heat exchanger 4. The indoor temperature sensor 14 and the indoor humidity sensor 15 are installed on the upstream side of the total heat exchanger 4 in the exhaust air path, that is, the exhaust air path before passing through the total heat exchanger 4.
給気温度センサ9、給気湿度センサ10、室内温度センサ14及び室内湿度センサ15は、制御部11に設置された制御用基板に接続されている。給気温度センサ9、給気湿度センサ10、室内温度センサ14及び室内湿度センサ15の測定結果は、定期的に制御部11に送信される。
The air supply temperature sensor 9, the air supply humidity sensor 10, the indoor temperature sensor 14, and the indoor humidity sensor 15 are connected to a control substrate installed in the control unit 11. The measurement results of the air supply temperature sensor 9, the air supply humidity sensor 10, the indoor temperature sensor 14, and the indoor humidity sensor 15 are periodically transmitted to the control unit 11.
制御部11には、全熱交換器4の外形寸法と全熱交換器4を通過する風量とによって定まる温度交換効率ηtと、エンタルピー交換効率ηhとが保存されている。
The control unit 11 stores a temperature exchange efficiency ηt and an enthalpy exchange efficiency ηh which are determined by the outer dimensions of the total heat exchanger 4 and the air volume passing through the total heat exchanger 4.
制御部11では、受信した温度情報と全熱交換器4の温度交換効率ηtとを用い、室外空気の温度を算出する、室内温度をTRA、給気温度をTSAとすると、室外空気の温度TOAは、TOA=(TSA-ηt×TRA)/(1-ηt)で算出される。
The control unit 11 calculates the temperature of the outdoor air using the received temperature information and the temperature exchange efficiency ηt of the total heat exchanger 4. Assuming that the room temperature is T RA and the supply air temperature is T SA , the outdoor air is The temperature T OA is calculated by T OA = (T SA −ηt × T RA ) / (1−ηt).
また、制御部11は、温度情報と相対湿度情報とから室内空気のエンタルピー及び給気空気のエンタルピーを算出する。室内エンタルピーhRA、給気エンタルピーhSA及び全熱交換器4のエンタルピー交換効率ηhを用い、室外空気のエンタルピーhOAを算出する。室外空気のエンタルピーhOAは、hOA=(hSA-ηh×hRA)/(1-ηh)で算出される。
Further, the control unit 11 calculates the enthalpy of the indoor air and the enthalpy of the supplied air from the temperature information and the relative humidity information. Using the indoor enthalpy h RA , the air supply enthalpy h SA and the enthalpy exchange efficiency η h of the total heat exchanger 4, the enthalpy h OA of the outdoor air is calculated. The enthalpy h OA of the outdoor air is calculated by h OA = (h SA −ηh × h RA ) / (1−ηh).
なお、制御部11は、定格風量で定められた温度交換効率ηt及びエンタルピー交換効率ηhの固有値のみ記憶してもよい。また、制御部11は、給気用送風機3及び排気用送風機2の実際の風量比に基づいて、全熱交換器4の交換効率を定期的に算出し、算出した交換効率に基づいて室外空気の温度及びエンタルピーを算出してもよい。
The control unit 11 may store only the characteristic values of the temperature exchange efficiency ηt and the enthalpy exchange efficiency ηh determined by the rated air volume. In addition, the control unit 11 periodically calculates the exchange efficiency of the total heat exchanger 4 based on the actual air volume ratio of the air supply blower 3 and the exhaust air blower 2, and outdoor air based on the calculated exchange efficiency. Temperature and enthalpy may be calculated.
制御部11は、算出した室外空気の温度及びエンタルピーを用い、室外空気の相対湿度RHOAを算出する。霧の発生又は降雨によって室外空気が高湿度状態となっている場合、算出した室外空気の相対湿度RHOAは、湿度の閾値RHhumを超えている可能性がある。この場合、製品保護のため、室外空気の侵入を防止する目的で、給気用送風機3を一定時間停止させ、かつ排気用送風機2を運転させ、間欠運転を開始する。
The control unit 11 calculates the relative humidity RH OA of the outdoor air, using the calculated temperature and enthalpy of the outdoor air. When outdoor air is in a high humidity state due to fog generation or rainfall, the calculated relative humidity RH OA of outdoor air may exceed the humidity threshold RH hum . In this case, in order to prevent the entry of outdoor air for product protection, the air supply blower 3 is stopped for a predetermined time, and the exhaust air blower 2 is operated to start intermittent operation.
湿度の閾値RHhumは、高湿度側に設定した方が間欠運転を行う時間が短くなるため好ましい。給気湿度センサ10及び室内湿度センサ15の検出ばらつきを考慮し、湿度の閾値RHhumは相対湿度90%から100%の間に設定するとよい。
The humidity threshold RHhum is preferably set to the high humidity side because the time for performing the intermittent operation is shorter. The humidity threshold RHhum may be set between 90% and 100% relative humidity in consideration of detection variations of the air supply humidity sensor 10 and the indoor humidity sensor 15.
図2は、実施の形態1に係る熱交換換気装置の動作の流れを示すフローチャートである。ステップS1において、給気温度センサ9は、給気空気の温度を検知する。また、給気湿度センサ10は、給気空気の湿度を検知する。また、室内温度センサ14は、室内空気の温度を検知する。また、室内湿度センサ15は、室内空気の湿度を検知する。ステップS2において、制御部11は、室外空気の温度及び室外空気の湿度を算出する。ステップS3において、制御部11は、室外空気の湿度が湿度の閾値以上であるか否かを判断する。室外空気の湿度が閾値以上であれば、ステップS3でYesとなり、ステップS4において、制御部11は、給気用送風機3を一定時間停止させ、かつ排気用送風機2を運転させる間欠運転を開始する。室外空気の湿度が閾値未満であれば、ステップS3でNoとなり、ステップS1に戻る。
FIG. 2 is a flowchart showing the flow of the operation of the heat exchange ventilator according to the first embodiment. In step S1, the charge air temperature sensor 9 detects the temperature of the charge air. Further, the air supply humidity sensor 10 detects the humidity of the air supply air. The indoor temperature sensor 14 also detects the temperature of the indoor air. Further, the indoor humidity sensor 15 detects the humidity of the indoor air. In step S2, the control unit 11 calculates the temperature of outdoor air and the humidity of outdoor air. In step S3, the control unit 11 determines whether the humidity of the outdoor air is equal to or higher than a threshold value of humidity. If the humidity of the outdoor air is equal to or higher than the threshold value, Step S3 becomes Yes, and in Step S4, the control unit 11 stops intermittent operation of the air supply fan 3 for a certain period and starts intermittent operation of operating the exhaust air fan 2. . If the humidity of the outdoor air is less than the threshold value, the result of step S3 is No and the process returns to step S1.
室外空気の雰囲気中に温湿度センサを配置した場合、給気用送風機の運転によって、室外空気に含まれる霧又は高湿度空気が直接センサに触れてしまう。センサ表面では、霧又は高湿度空気が凝縮されて結露水が発生する。結露水は、センサの基板の導電パターンを酸化させて劣化させる原因となるだけでなく、基板上でショートを誘発させてしまう可能性があるため、結露水が発生することは好ましくない。
When the temperature and humidity sensor is disposed in the atmosphere of the outdoor air, fog or high humidity air contained in the outdoor air directly touches the sensor by the operation of the air supply blower. On the sensor surface, fog or high humidity air is condensed to generate condensation water. The dew condensation water not only causes oxidation and deterioration of the conductive pattern of the substrate of the sensor, but also may cause a short circuit on the substrate, so it is not preferable to generate condensation water.
一方、実施の形態1に係る熱交換換気装置50は、室内空気及び給気空気の温湿度から室外空気の湿度を算出するため、室外空気の湿度を直接計測する場合と同様に、室外空気が高湿度状態となっている場合に室外空気の侵入を防止する制御を行える。さらに、実施の形態1に係る熱交換換気装置50は、室外空気側にセンサを配置しないため、霧又は高湿度空気によるセンサの劣化及び故障を防止することができ、製品の信頼性向上に繋がる。
On the other hand, since the heat exchange ventilator 50 according to the first embodiment calculates the humidity of the outdoor air from the temperature and humidity of the indoor air and the supplied air, the outdoor air is the same as when the humidity of the outdoor air is directly measured. Control can be performed to prevent outdoor air from entering when the humidity is high. Furthermore, since the heat exchange ventilator 50 according to the first embodiment does not arrange the sensor on the outdoor air side, it can prevent deterioration and failure of the sensor due to fog or high humidity air, leading to improvement in product reliability. .
実施の形態1に係る熱交換換気装置50は、温度及び湿度の計測環境が過酷である室外空気の雰囲気中に温度センサ及び湿度センサを配置しなくとも室外空気の温度及び湿度に基づいた制御を行える。室外空気の温度及び湿度に基づいて熱交換換気装置50内の給気用送風機3及び排気用送風機2を制御することにより、室内環境を快適に保ち、かつ省エネルギー性を実現できる。
The heat exchange ventilation device 50 according to the first embodiment performs control based on the temperature and humidity of the outdoor air without arranging the temperature sensor and the humidity sensor in the atmosphere of the outdoor air where the measurement environment of temperature and humidity is severe. It can do. By controlling the air supply fan 3 and the exhaust air fan 2 in the heat exchange ventilator 50 based on the temperature and humidity of the outdoor air, the indoor environment can be kept comfortable and energy saving can be realized.
実施の形態2.
実施の形態2に係る熱交換換気装置50の構成は、実施の形態1にかかる熱交換換気装置50と同様であるが、制御部11による制御の内容が異なっている。室外空気の温度が低い場合、全熱交換器4の熱交換時に発生する潜熱が冷やされ、全熱交換器内で結露又は結氷が発生する場合がある。これを防止するために、制御部11は、室外空気の温度が閾値Tkan以下になった場合、全熱交換器4内の湿度分の乾燥運転又は結氷を溶かすために一時的に給気用送風機3を停止させ、排気用送風機2のみ運転させる寒冷地運転モードを使用する。 Second Embodiment
The configuration of theheat exchange ventilator 50 according to the second embodiment is the same as the heat exchange ventilator 50 according to the first embodiment, but the content of control by the control unit 11 is different. When the temperature of the outdoor air is low, latent heat generated at the time of heat exchange of the total heat exchanger 4 may be cooled and dew condensation or freezing may occur in the total heat exchanger. In order to prevent this, when the temperature of the outdoor air becomes equal to or less than the threshold T kan , the control unit 11 temporarily supplies the air for temporarily supplying the drying operation or the freezing of the moisture in the total heat exchanger 4. The cold region operation mode is used in which the blower 3 is stopped and only the exhaust blower 2 is operated.
実施の形態2に係る熱交換換気装置50の構成は、実施の形態1にかかる熱交換換気装置50と同様であるが、制御部11による制御の内容が異なっている。室外空気の温度が低い場合、全熱交換器4の熱交換時に発生する潜熱が冷やされ、全熱交換器内で結露又は結氷が発生する場合がある。これを防止するために、制御部11は、室外空気の温度が閾値Tkan以下になった場合、全熱交換器4内の湿度分の乾燥運転又は結氷を溶かすために一時的に給気用送風機3を停止させ、排気用送風機2のみ運転させる寒冷地運転モードを使用する。 Second Embodiment
The configuration of the
室外空気の雰囲気中に温湿度センサを配置した場合、室外空気の温度が低いと、温度センサ又は湿度センサに実装されている電子部品によっては、温度依存性によるばらつきにより測定精度が低くなってしまうことがある。特に、空気調和及び換気に使用されるような一般用途の温度センサ又は湿度センサは、常温での測定精度が高くなるように作られるため、常温から外れた低温では測定精度が低くなることが一般的である。したがって、室外空気の雰囲気中に温湿度センサを配置した熱交換換気装置50は、寒冷地モードを使用したい状況であっても、室外空気の温度及び室外空気の湿度の測定誤差により寒冷地モードが使用されない可能性があった。
When the temperature / humidity sensor is placed in the atmosphere of outdoor air, if the temperature of the outdoor air is low, the measurement accuracy may be lowered due to the temperature dependency depending on the electronic components mounted on the temperature sensor or humidity sensor Sometimes. In particular, temperature sensors or humidity sensors for general use, such as those used for air conditioning and ventilation, are made to have high measurement accuracy at room temperature, so measurement accuracy is generally low at low temperatures outside the room temperature. It is Therefore, the heat exchange ventilation device 50 in which the temperature and humidity sensor is disposed in the atmosphere of the outdoor air is in the cold region mode due to the measurement error of the temperature of the outdoor air and the humidity of the outdoor air Could not be used.
実施の形態2に係る熱交換換気装置50は、室内側に給気温度センサ9及び室内温度センサ14を設置し、制御部11が給気温度センサ9及び室内温度センサ14の測定結果に基づいて室外空気の温度を算出する。したがって、給気温度センサ9及び室内温度センサ14は、測定精度の高い常温の空気の温度を測定するため、室外空気の温度の算出結果の精度も高くなる。これにより、室外空気の温度が低く寒冷地モードを使用したい状況下で、確実に寒冷地モードを使用することができる。
The heat exchange ventilator 50 according to the second embodiment installs the supplied air temperature sensor 9 and the indoor temperature sensor 14 on the indoor side, and the control unit 11 determines the measured results of the supplied air temperature sensor 9 and the indoor temperature sensor 14. Calculate the temperature of the outdoor air. Therefore, the supply air temperature sensor 9 and the indoor temperature sensor 14 measure the temperature of the normal temperature air with high measurement accuracy, so the accuracy of the calculation result of the temperature of the outdoor air also becomes high. As a result, the cold region mode can be reliably used under conditions where the temperature of the outdoor air is low and the cold region mode is desired to be used.
実施の形態2に係る熱交換換気装置50は、給気温度センサ9及び室内温度センサ14の測定結果に基づいて制御部11が室外空気の温度を算出するため、室外空気の温度が低い場合でも、室外空気の温度を精度良く検知できる。したがって、室外空気が低温時に全熱交換器4内での結露及び結氷を防止できる。
In the heat exchange ventilator 50 according to the second embodiment, the control unit 11 calculates the temperature of the outdoor air based on the measurement results of the supply air temperature sensor 9 and the indoor temperature sensor 14, so even if the temperature of the outdoor air is low. The temperature of the outdoor air can be detected accurately. Therefore, condensation and freezing in the total heat exchanger 4 can be prevented when the temperature of the outdoor air is low.
実施の形態3.
実施の形態3に係る熱交換換気装置50の構成は、実施の形態1にかかる熱交換換気装置50と同様であるが、制御部11による制御の内容が異なっている。夏期の早朝又は中間期で室外空気の温度が室内温度よりも低い場合、室内空気と室外空気との全熱交換を全熱交換器4で行わず、そのまま室外空気を室内に取り入れる外気冷房モードがある。特に、夜間室内不在時に、室外空気の温度のみでオフィス機器から発生する顕熱を下げ、朝の空調負荷を下げるナイトパージ制御がある。外気冷房モード使用時又はナイトパージ制御実行時には、風路切替ダンパ13を用い、全熱交換器4を通さずに直接排気用送風機2に室内空気を導くことで非熱交換換気を実行する。 Third Embodiment
The configuration of theheat exchange ventilator 50 according to the third embodiment is the same as the heat exchange ventilator 50 according to the first embodiment, but the contents of control by the control unit 11 are different. If the temperature of the outdoor air is lower than the indoor temperature in the early morning or in the middle of summer, the total heat exchange between the indoor air and the outdoor air is not performed by the total heat exchanger 4, and the outdoor air cooling mode is there. In particular, there is a night purge control that reduces the sensible heat generated from office equipment only with the temperature of the outdoor air and reduces the air conditioning load in the morning when there is no room at night. When using the outdoor air cooling mode or performing night purge control, non-heat exchange ventilation is performed by using the air path switching damper 13 and guiding the room air directly to the exhaust fan 2 without passing through the total heat exchanger 4.
実施の形態3に係る熱交換換気装置50の構成は、実施の形態1にかかる熱交換換気装置50と同様であるが、制御部11による制御の内容が異なっている。夏期の早朝又は中間期で室外空気の温度が室内温度よりも低い場合、室内空気と室外空気との全熱交換を全熱交換器4で行わず、そのまま室外空気を室内に取り入れる外気冷房モードがある。特に、夜間室内不在時に、室外空気の温度のみでオフィス機器から発生する顕熱を下げ、朝の空調負荷を下げるナイトパージ制御がある。外気冷房モード使用時又はナイトパージ制御実行時には、風路切替ダンパ13を用い、全熱交換器4を通さずに直接排気用送風機2に室内空気を導くことで非熱交換換気を実行する。 Third Embodiment
The configuration of the
室外空気の雰囲気中に温湿度センサを配置した場合、夏期の早朝又は中間期の室外空気に含まれる霧又は高湿度空気にセンサが晒されることによって経時的に発生する検知温度の誤差により、外気冷房モード又はナイトパージ制御が実行されず、空調負荷が大きくなる可能性が高くなる。実施の形態3に係る熱交換換気装置50は、室内側に給気温度センサ9及び室内温度センサ14を設置し、制御部11が給気温度センサ9及び室内温度センサ14の測定結果に基づいて室外空気の温度を算出するため、給気温度センサ9及び室内温度センサ14の劣化を防止できることに加え、空調負荷が増大することを抑制できる。室外空気の温度及び湿度に基づいて熱交換換気装置50内の風路切替ダンパ13を制御することにより、室内環境を快適に保ち、かつ省エネルギー性を実現できる。
When the temperature / humidity sensor is disposed in the atmosphere of outdoor air, the temperature of the sensor may be exposed to fog or high humidity air contained in outdoor air in the early morning or in the middle of the summer, and this is an outdoor air temperature error. The cooling mode or night purge control is not executed, and the possibility of the air conditioning load becoming large increases. The heat exchange ventilator 50 according to the third embodiment installs the supplied air temperature sensor 9 and the indoor temperature sensor 14 on the indoor side, and the control unit 11 determines the measured results of the supplied air temperature sensor 9 and the indoor temperature sensor 14. Since the temperature of the outdoor air is calculated, it is possible to prevent the air conditioning load from increasing in addition to the fact that the deterioration of the air supply temperature sensor 9 and the indoor temperature sensor 14 can be prevented. By controlling the air passage switching damper 13 in the heat exchange ventilator 50 based on the temperature and humidity of the outdoor air, the indoor environment can be kept comfortable and energy saving can be realized.
実施の形態4.
図3は、本発明の実施の形態4に係る熱交換換気装置の構成を示す図である。実施の形態4に係る熱交換換気装置50は、給気空気に湿度を与え室内の湿度を増加させる加湿ユニット20と、給気空気を加熱して飽和水蒸気量を増大させる直膨コイル21とを備える点で実施の形態1に係る熱交換換気装置50と相違している。制御部11は、室外空気の温度及び室外空気の湿度に基づいて、加湿ユニット20への給水量及び直膨コイル21の温度を制御する。すなわち、制御部11は、室外空気の温度に合わせて直膨コイル21の運転強度を制御し、室外空気の温度及び湿度に合わせ、加湿ユニット20による加湿量を制御する。 Fourth Embodiment
FIG. 3 is a diagram showing a configuration of a heat exchange ventilator according to a fourth embodiment of the present invention. The heatexchange ventilation device 50 according to the fourth embodiment includes a humidifying unit 20 for supplying humidity to the supplied air and increasing the humidity in the room, and a direct expansion coil 21 for heating the supplied air to increase the amount of saturated water vapor. It differs from the heat exchange ventilator 50 according to the first embodiment in that it comprises. The control unit 11 controls the amount of water supplied to the humidifying unit 20 and the temperature of the direct expansion coil 21 based on the temperature of the outdoor air and the humidity of the outdoor air. That is, the control unit 11 controls the operation intensity of the direct expansion coil 21 in accordance with the temperature of outdoor air, and controls the amount of humidification by the humidification unit 20 in accordance with the temperature and humidity of outdoor air.
図3は、本発明の実施の形態4に係る熱交換換気装置の構成を示す図である。実施の形態4に係る熱交換換気装置50は、給気空気に湿度を与え室内の湿度を増加させる加湿ユニット20と、給気空気を加熱して飽和水蒸気量を増大させる直膨コイル21とを備える点で実施の形態1に係る熱交換換気装置50と相違している。制御部11は、室外空気の温度及び室外空気の湿度に基づいて、加湿ユニット20への給水量及び直膨コイル21の温度を制御する。すなわち、制御部11は、室外空気の温度に合わせて直膨コイル21の運転強度を制御し、室外空気の温度及び湿度に合わせ、加湿ユニット20による加湿量を制御する。 Fourth Embodiment
FIG. 3 is a diagram showing a configuration of a heat exchange ventilator according to a fourth embodiment of the present invention. The heat
加湿ユニット20及び直膨コイル21を用いて給気空気を加湿する必要があるのは、室外空気が低温かつ低湿度である冬期が主であるため、室外空気の雰囲気中に温湿度センサを配置して室外空気の温度及び湿度を測定すると、測定誤差が大きくなりやすい。室外空気の温度及び湿度の測定誤差が大きくなると、室内の過加湿又は加湿不足の原因となる。また、室外空気の絶対湿度が低いため、湿度センサの特性によっては、室外空気の温度が氷点下の時には、湿度を検出できず、湿度制御を行えない場合がある。
It is necessary to humidify the supplied air using the humidification unit 20 and the direct expansion coil 21 mainly because the winter season when outdoor air is low temperature and low humidity is placed temperature and humidity sensor in the atmosphere of outdoor air When measuring the temperature and humidity of the outdoor air, the measurement error tends to be large. When the measurement error of the temperature and humidity of the outdoor air becomes large, it causes excessive humidification or insufficient humidification of the room. Further, since the absolute humidity of the outdoor air is low, depending on the characteristics of the humidity sensor, when the temperature of the outdoor air is below the freezing point, the humidity can not be detected, and the humidity control may not be performed.
実施の形態4に係る熱交換換気装置50は、室内空気と給気空気とから室外空気の温度及び室外空気の湿度を算出するため、室外空気の温度を精度良く算出できることに加え、室外空気が氷点下であっても室外空気の湿度を検出して湿度制御が可能となる。室外空気の温度及び湿度に基づいて熱交換換気装置50内の加湿ユニット20及び直膨コイル21を制御することにより、室内環境を快適に保ち、かつ省エネルギー性を実現できる。
The heat exchange ventilator according to the fourth embodiment calculates the temperature of the outdoor air and the humidity of the outdoor air from the indoor air and the supplied air, and therefore, in addition to being able to calculate the temperature of the outdoor air with high accuracy, the outdoor air Even under the freezing point, the humidity of the outdoor air can be detected to control the humidity. By controlling the humidifying unit 20 and the direct expansion coil 21 in the heat exchange ventilator 50 based on the temperature and humidity of the outdoor air, the indoor environment can be kept comfortable and energy saving can be realized.
上記実施の形態1から実施の形態4の制御部11の機能は、処理回路により実現される。すなわち制御部11は、室内空気の温度及び湿度と、給気空気の温度及び湿度とに基づいて、室外空気の温度及び湿度を算出する処理と、算出した室外空気の温度及び湿度に基づいて給気用送風機3及び排気用送風機2を制御する処理と、室外空気の湿度が湿度の閾値よりも高い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が温度の閾値よりも低い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が室内空気の温度よりも低い場合には、風路切替ダンパ13を制御し、室内空気をバイパス風路へ流す処理と、室外空気の温度に合わせて直膨コイル21の運転強度を制御する処理と、室外空気の温度及び湿度に合わせ、加湿ユニット20による加湿量を制御する処理と、給気用送風機3と排気用送風機2との風量比に基づいて、全熱交換器4の交換効率を定期的に算出し、算出した交換効率に基づいて室外空気の温度及び湿度を算出する処理とを行う処理回路を備える。また、処理回路は、専用のハードウェアであっても、記憶装置に格納されるプログラムを実行する演算装置であってもよい。
The functions of the control unit 11 according to the first to fourth embodiments are realized by a processing circuit. That is, the control unit 11 calculates the temperature and humidity of the outdoor air based on the temperature and humidity of the indoor air, and the temperature and the humidity of the supplied air, and supplies the temperature and humidity of the outdoor air calculated. A process for controlling the air blower 3 and the exhaust blower 2 and a process for stopping the air supply blower 3 and operating the exhaust blower 2 when the humidity of the outdoor air is higher than the humidity threshold, and the outdoor In the case where the temperature of the air is lower than the temperature threshold, the air supply blower 3 is stopped and the process of operating the exhaust blower 2 is performed, and when the temperature of the outdoor air is lower than the temperature of the indoor air, the wind is A process of controlling the path switching damper 13 to flow indoor air to the bypass air path, a process of controlling the operating strength of the direct expansion coil 21 in accordance with the temperature of the outdoor air, and adjusting the temperature and humidity of the outdoor air Humidification amount by 20 The exchange efficiency of the total heat exchanger 4 is periodically calculated based on the process to be controlled and the air flow ratio between the air supply fan 3 and the exhaust fan 2, and the outdoor air temperature and the exchange efficiency calculated. A processing circuit is provided which performs a process of calculating humidity. The processing circuit may be dedicated hardware or an arithmetic device that executes a program stored in the storage device.
処理回路が専用のハードウェアである場合、処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、又はこれらを組み合わせたものが該当する。図4は、実施の形態1から実施の形態4のいずれかに係る制御部の機能をハードウェアで実現した構成を示す図である。処理回路19には、室内空気の温度及び湿度と、給気空気の温度及び湿度とに基づいて、室外空気の温度及び湿度を算出する処理と、算出した室外空気の温度及び湿度に基づいて給気用送風機3及び排気用送風機2を制御する処理と、室外空気の湿度が湿度の閾値よりも高い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が温度の閾値よりも低い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が室内空気の温度よりも低い場合には、風路切替ダンパ13を制御し、室内空気をバイパス風路へ流す処理と、室外空気の温度に合わせて直膨コイル21の運転強度を制御する処理と、室外空気の温度及び湿度に合わせ、加湿ユニット20による加湿量を制御する処理と、給気用送風機3と排気用送風機2との風量比に基づいて、全熱交換器4の交換効率を定期的に算出し、算出した交換効率に基づいて室外空気の温度及び湿度を算出する処理とを実現する論理回路19aが組み込まれている。
Where the processing circuit is dedicated hardware, the processing circuit may be a single circuit, a complex circuit, a programmed processor, a parallel programmed processor, an application specific integrated circuit, a field programmable gate array, or a combination thereof. Is the case. FIG. 4 is a diagram showing a configuration in which the function of the control unit according to any one of the first to fourth embodiments is realized by hardware. The processing circuit 19 is supplied with a process of calculating the temperature and humidity of the outdoor air based on the temperature and humidity of the indoor air and the temperature and humidity of the supplied air, and the temperature and humidity of the outdoor air calculated. A process for controlling the air blower 3 and the exhaust blower 2 and a process for stopping the air supply blower 3 and operating the exhaust blower 2 when the humidity of the outdoor air is higher than the humidity threshold, and the outdoor In the case where the temperature of the air is lower than the temperature threshold, the air supply blower 3 is stopped and the process of operating the exhaust blower 2 is performed, and when the temperature of the outdoor air is lower than the temperature of the indoor air, the wind is A process of controlling the path switching damper 13 to flow indoor air to the bypass air path, a process of controlling the operating strength of the direct expansion coil 21 in accordance with the temperature of the outdoor air, and adjusting the temperature and humidity of the outdoor air Control the amount of humidification by 20 The exchange efficiency of the total heat exchanger 4 is periodically calculated based on the process to be performed and the air flow ratio between the air supply fan 3 and the exhaust fan 2, and the outdoor air temperature and humidity are calculated based on the calculated exchange efficiency. And a logic circuit 19a for implementing the process of calculating.
処理回路19が演算装置の場合、室内空気の温度及び湿度と、給気空気の温度及び湿度とに基づいて、室外空気の温度及び湿度を算出する処理と、算出した室外空気の温度及び湿度に基づいて給気用送風機3及び排気用送風機2を制御する処理と、室外空気の湿度が湿度の閾値よりも高い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が温度の閾値よりも低い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が室内空気の温度よりも低い場合には、風路切替ダンパ13を制御し、室内空気をバイパス風路へ流す処理と、室外空気の温度に合わせて直膨コイル21の運転強度を制御する処理と、室外空気の温度及び湿度に合わせ、加湿ユニット20による加湿量を制御する処理と、給気用送風機3と排気用送風機2との風量比に基づいて、全熱交換器4の交換効率を定期的に算出し、算出した交換効率に基づいて室外空気の温度及び湿度を算出する処理とは、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。
When the processing circuit 19 is an arithmetic unit, a process of calculating the temperature and humidity of the outdoor air based on the temperature and humidity of the indoor air and the temperature and humidity of the supplied air, and the calculated temperature and humidity of the outdoor air A process of controlling the supply air blower 3 and the discharge air blower 2 and a process of stopping the supply air blower 3 and operating the discharge air blower 2 when the outdoor air humidity is higher than the humidity threshold If the temperature of the outdoor air is lower than the temperature threshold, the air supply blower 3 is stopped and the process for operating the exhaust blower 2 is performed, and the temperature of the outdoor air is lower than the temperature of the indoor air The air passage switching damper 13 is controlled to flow the indoor air to the bypass air passage, the operation to control the operation strength of the direct expansion coil 21 according to the temperature of the outdoor air, and the temperature and humidity of the outdoor air. To the humidification unit 20 The exchange efficiency of the total heat exchanger 4 is periodically calculated based on the process of controlling the amount of humidification and the air flow ratio between the air supply fan 3 and the exhaust air fan 2, and the outdoor is calculated based on the calculated exchange efficiency. The process of calculating the temperature and humidity of air is realized by software, firmware, or a combination of software and firmware.
図5は、実施の形態1から実施の形態4のいずれかに係る制御部の機能をソフトウェアで実現した構成を示す図である。処理回路19は、プログラム19bを実行する演算装置191と、演算装置191がワークエリアに用いるランダムアクセスメモリ192と、プログラム19bを記憶する記憶装置193を有する。記憶装置193に記憶されているプログラム19bを演算装置191がランダムアクセスメモリ192上に展開し、実行することにより、室内空気の温度及び湿度と、給気空気の温度及び湿度とに基づいて、室外空気の温度及び湿度を算出する処理と、算出した室外空気の温度及び湿度に基づいて給気用送風機3及び排気用送風機2を制御する処理と、室外空気の湿度が湿度の閾値よりも高い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が温度の閾値よりも低い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が室内空気の温度よりも低い場合には、風路切替ダンパ13を制御し、室内空気をバイパス風路へ流す処理と、室外空気の温度に合わせて直膨コイル21の運転強度を制御する処理と、室外空気の温度及び湿度に合わせ、加湿ユニット20による加湿量を制御する処理と、給気用送風機3と排気用送風機2との風量比に基づいて、全熱交換器4の交換効率を定期的に算出し、算出した交換効率に基づいて室外空気の温度及び湿度を算出する処理とが実現される。ソフトウェア又はファームウェアはプログラム言語で記述され、記憶装置193に格納される。演算装置191は、中央処理装置を例示できるがこれに限定はされない。
FIG. 5 is a diagram showing a configuration in which the function of the control unit according to any one of the first to fourth embodiments is realized by software. The processing circuit 19 includes an arithmetic unit 191 that executes the program 19 b, a random access memory 192 that the arithmetic unit 191 uses for a work area, and a storage unit 193 that stores the program 19 b. Arithmetic device 191 develops program 19b stored in storage device 193 on random access memory 192 and executes the program 19b, whereby the temperature and humidity of room air and the temperature and humidity of supplied air are outdoor. When the air temperature and humidity are calculated, the air supply blower 3 and the exhaust air blower 2 are controlled based on the calculated outdoor air temperature and humidity, and the outdoor air humidity is higher than the humidity threshold To stop the air supply blower 3 and operate the exhaust air blower 2, and to stop the air supply blower 3 when the temperature of the outdoor air is lower than the temperature threshold, the exhaust air blower 2 When the temperature of the outdoor air is lower than the temperature of the indoor air, the air passage switching damper 13 is controlled to flow the indoor air to the bypass air passage, and according to the temperature of the outdoor air. Based on the process of controlling the operation intensity of the expansion coil 21 and the process of controlling the amount of humidification by the humidification unit 20 according to the temperature and humidity of the outdoor air, and based on the air volume ratio between the air supply blower 3 and the exhaust blower 2 A process of periodically calculating the exchange efficiency of the total heat exchanger 4 and calculating the temperature and humidity of the outdoor air based on the calculated exchange efficiency is realized. The software or firmware is written in a programming language and stored in the storage device 193. The computing device 191 can be exemplified by a central processing unit, but is not limited thereto.
処理回路19は、記憶装置193に記憶されたプログラム19bを読み出して実行することにより、各処理を実現する。すなわち、制御部11は、処理回路19により実行されるときに、室内空気の温度及び湿度と、給気空気の温度及び湿度とに基づいて、室外空気の温度及び湿度を算出するステップと、算出した室外空気の温度及び湿度に基づいて給気用送風機3及び排気用送風機2を制御するステップと、室外空気の湿度が湿度の閾値よりも高い場合には、給気用送風機3を停止させ、排気用送風機2を運転させるステップと、室外空気の温度が温度の閾値よりも低い場合には、給気用送風機3を停止させ、排気用送風機2を運転させるステップと、室外空気の温度が室内空気の温度よりも低い場合には、風路切替ダンパ13を制御し、室内空気をバイパス風路へ流すステップと、室外空気の温度に合わせて直膨コイル21の運転強度を制御するステップと、室外空気の温度及び湿度に合わせ、加湿ユニット20による加湿量を制御するステップと、給気用送風機3と排気用送風機2との風量比に基づいて、全熱交換器4の交換効率を定期的に算出し、算出した交換効率に基づいて室外空気の温度及び湿度を算出するステップとが結果的に実行されることになるプログラム19bを記憶するための記憶装置193を備える。また、プログラム19bは、上記の手順及び方法をコンピュータに実行させるものであるとも言える。
The processing circuit 19 realizes each processing by reading and executing the program 19 b stored in the storage device 193. That is, when executed by the processing circuit 19, the control unit 11 calculates the temperature and humidity of the outdoor air based on the temperature and humidity of the indoor air and the temperature and humidity of the supplied air, and Controlling the air supply blower 3 and the exhaust air blower 2 based on the outdoor air temperature and humidity, and stopping the air supply blower 3 if the humidity of the outdoor air is higher than the humidity threshold The step of operating the exhaust fan 2 and the step of operating the exhaust fan 2 to stop the air supply fan 3 when the temperature of the outdoor air is lower than the temperature threshold, the temperature of the outdoor air is indoors When the temperature is lower than the temperature of air, the air path switching damper 13 is controlled to flow indoor air to the bypass air path, and the operation strength of the direct expansion coil 21 is controlled according to the temperature of the outdoor air. The step of controlling the amount of humidification by the humidification unit 20 according to the temperature and humidity of the outdoor air, and based on the air volume ratio of the air blower 3 for air supply and the air blower 2 for exhaust air, the exchange efficiency of total heat exchanger 4 periodically And a step of calculating the temperature and humidity of the outdoor air based on the calculated exchange efficiency, and a storage device 193 for storing a program 19b which is to be executed as a result. Also, it can be said that the program 19b causes the computer to execute the above-described procedure and method.
なお、室内空気の温度及び湿度と、給気空気の温度及び湿度とに基づいて、室外空気の温度及び湿度を算出する処理と、算出した室外空気の温度及び湿度に基づいて給気用送風機3及び排気用送風機2を制御する処理と、室外空気の湿度が湿度の閾値よりも高い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が温度の閾値よりも低い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が室内空気の温度よりも低い場合には、風路切替ダンパ13を制御し、室内空気をバイパス風路へ流す処理と、室外空気の温度に合わせて直膨コイル21の運転強度を制御する処理と、室外空気の温度及び湿度に合わせ、加湿ユニット20による加湿量を制御する処理と、給気用送風機3と排気用送風機2との風量比に基づいて、全熱交換器4の交換効率を定期的に算出し、算出した交換効率に基づいて室外空気の温度及び湿度を算出する処理とについて、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。
Note that the process for calculating the temperature and humidity of the outdoor air based on the temperature and humidity of the indoor air and the temperature and humidity of the supplied air, and the blower 3 for air supply based on the calculated temperature and humidity of the outdoor air And the process of controlling the exhaust fan 2 and the process of operating the exhaust fan 2 by stopping the air supply fan 3 when the humidity of the outdoor air is higher than the humidity threshold, and the temperature of the outdoor air If the temperature is lower than the temperature threshold, the process for operating the air supply blower 3 is stopped and the exhaust air blower 2 is operated, and if the temperature of the outdoor air is lower than the temperature of the indoor air, the air path switching damper 13 Control to flow indoor air to the bypass air path, control to control the operating intensity of the direct expansion coil 21 according to the temperature of the outdoor air, and the amount of humidification by the humidification unit 20 according to the temperature and humidity of the outdoor air. Control process The exchange efficiency of the total heat exchanger 4 is periodically calculated based on the air volume ratio between the air supply fan 3 and the exhaust fan 2, and the temperature and humidity of the outdoor air are calculated based on the calculated exchange efficiency. The processing may be partly realized by dedicated hardware and partly by software or firmware.
このように、処理回路19は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の各機能を実現することができる。
Thus, the processing circuit 19 can implement the above-described functions by hardware, software, firmware, or a combination thereof.
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
The configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.
1 ケーシング、2 排気用送風機、3 給気用送風機、4 全熱交換器、5 排気吹出口、6 給気吹出口、7 給気吸込口、8 排気吸込口、9 給気温度センサ、10 給気湿度センサ、11 制御部、12 リモートコントローラ、13 風路切替ダンパ、14 室内温度センサ、15 室内湿度センサ、19 処理回路、19a 論理回路、19b プログラム、20 加湿ユニット、21 直膨コイル、50 熱交換換気装置、191 演算装置、192 ランダムアクセスメモリ、193 記憶装置。
Reference Signs List 1 casing, 2 exhaust fan, 3 air supply blower, 4 total heat exchanger, 5 exhaust air outlet, 6 air supply air outlet, 7 air supply air inlet, 8 exhaust air inlet, 9 air temperature sensor, 10 air supply Air humidity sensor, 11 control unit, 12 remote controller, 13 air path switching damper, 14 indoor temperature sensor, 15 indoor humidity sensor, 19 processing circuit, 19a logic circuit, 19b program, 20 humidifying unit, 21 direct expansion coil, 50 heat Replacement ventilator, 191 arithmetic unit, 192 random access memory, 193 storage unit.
Claims (7)
- 給気用送風機と、
排気用送風機と、
前記給気用送風機によって形成される室外から室内に向かう給気流が通る給気風路と、前記排気用送風機によって形成される室内から室外へ向かう排気流が通る排気風路とを備えたケーシングと、
前記給気風路と前記排気風路との間に設置され、前記給気流と前記排気流との間で全熱交換を行う全熱交換器と、
前記排気風路における前記全熱交換器の風上側に設けられた室内温度センサ及び室内湿度センサと、
前記給気風路における前記全熱交換器の風下側に設けられた給気温度センサ及び給気湿度センサと、
前記排気風路における前記全熱交換器の風上側の空気である室内空気の温度及び湿度と、前記給気風路における前記全熱交換器の風下側の空気である給気空気の温度及び湿度とに基づいて、前記給気風路における前記全熱交換器の風上側の空気である室外空気の温度及び湿度を算出し、算出した前記室外空気の温度及び湿度に基づいて前記給気用送風機及び前記排気用送風機を制御する制御部とを有することを特徴とする熱交換換気装置。 A blower for air supply,
An exhaust fan,
A casing provided with an air supply air passage through which an air supply flow from the outside to the room formed by the air supply blower flows, and an exhaust air passage formed by the air discharge fan from the room to the room;
A total heat exchanger disposed between the supply air flow path and the exhaust air flow path for performing total heat exchange between the supply air flow and the exhaust flow;
An indoor temperature sensor and an indoor humidity sensor provided on the windward side of the total heat exchanger in the exhaust air passage;
An air supply temperature sensor and an air supply humidity sensor provided on the downwind side of the total heat exchanger in the air supply air path;
Temperature and humidity of room air which is air on the windward side of the total heat exchanger in the exhaust air passage, temperature and humidity of supply air which is the air on the windward side of the total heat exchanger in the air supply passage. Based on the temperature and humidity of the outdoor air which is the air on the windward side of the total heat exchanger in the air supply air path, and based on the calculated temperature and humidity of the outdoor air; What is claimed is: 1. A heat exchange ventilator comprising: a control unit that controls an exhaust fan. - 前記制御部は、前記室外空気の湿度が湿度の閾値よりも高い場合には,前記給気用送風機を停止させ、前記排気用送風機を運転させることを特徴とする請求項1に記載の熱交換換気装置。 The heat exchange according to claim 1, wherein the control unit stops the air supply blower and operates the exhaust air blower when the humidity of the outdoor air is higher than a humidity threshold. Ventilation system.
- 前記制御部は、前記室外空気の温度が温度の閾値よりも低い場合には、前記給気用送風機を停止させ、前記排気用送風機を運転させることを特徴とする請求項1に記載の熱交換換気装置。 The heat exchange according to claim 1, wherein the control unit stops the air supply fan and operates the exhaust air fan when the temperature of the outdoor air is lower than a temperature threshold. Ventilation system.
- 前記排気風路に配設され、室内空気を前記全熱交換器へ流すか、前記全熱交換器を迂回するバイパス風路へ流すかを切り替える風路切替ダンパを備え、
前記制御部は、前記室外空気の温度が前記室内空気の温度よりも低い場合には、前記風路切替ダンパを制御し、前記室内空気を前記バイパス風路へ流すことを特徴とする請求項1に記載の熱交換換気装置。 The air path switching damper is disposed in the exhaust air path and switches between indoor air flow to the total heat exchanger or to a bypass air path bypassing the total heat exchanger,
The control unit controls the air path switching damper when the temperature of the outdoor air is lower than the temperature of the room air, and flows the room air to the bypass air path. Heat exchange ventilator as described in. - 前記給気空気を加熱して飽和水蒸気量を増大させる直膨コイルを備え、
前記制御部は、前記室外空気の温度に合わせて前記直膨コイルの運転強度を制御することを特徴とする請求項1に記載の熱交換換気装置。 A direct expansion coil for heating the supplied air to increase the amount of saturated water vapor;
The heat exchange ventilator according to claim 1, wherein the control unit controls the operating strength of the direct expansion coil in accordance with the temperature of the outdoor air. - 前記給気空気を加湿する加湿ユニットを備え、
前記制御部は、前記室外空気の温度及び湿度に合わせ、前記加湿ユニットによる加湿量を制御することを特徴とする請求項5に記載の熱交換換気装置。 A humidifying unit for humidifying the supplied air;
The heat exchange ventilator according to claim 5, wherein the control unit controls the amount of humidification by the humidification unit in accordance with the temperature and humidity of the outdoor air. - 前記制御部は、前記給気用送風機と前記排気用送風機との風量比に基づいて、前記全熱交換器の交換効率を定期的に算出し、算出した前記交換効率に基づいて前記室外空気の温度及び湿度を算出することを特徴とする請求項1から6のいずれか1項に記載の熱交換換気装置。 The control unit periodically calculates the exchange efficiency of the total heat exchanger based on an air volume ratio between the air supply blower and the exhaust air blower, and the outdoor air is calculated based on the calculated exchange efficiency. The heat exchange ventilator according to any one of claims 1 to 6, wherein temperature and humidity are calculated.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/028307 WO2019026256A1 (en) | 2017-08-03 | 2017-08-03 | Heat exchange ventilation device |
JP2019533840A JPWO2019026256A1 (en) | 2017-08-03 | 2017-08-03 | Heat exchange ventilator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/028307 WO2019026256A1 (en) | 2017-08-03 | 2017-08-03 | Heat exchange ventilation device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019026256A1 true WO2019026256A1 (en) | 2019-02-07 |
Family
ID=65232600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/028307 WO2019026256A1 (en) | 2017-08-03 | 2017-08-03 | Heat exchange ventilation device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2019026256A1 (en) |
WO (1) | WO2019026256A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020134121A (en) * | 2019-02-18 | 2020-08-31 | パナソニックIpマネジメント株式会社 | Ventilation system |
CN111981588A (en) * | 2020-08-28 | 2020-11-24 | 广东积微科技有限公司 | Fresh air purification unit system and operation control method thereof |
WO2021077532A1 (en) * | 2019-10-21 | 2021-04-29 | 广东美的制冷设备有限公司 | Humidification control method and device for household electrical appliance, and household electrical appliance |
EP4012280A4 (en) * | 2019-08-09 | 2022-08-10 | Mitsubishi Electric Corporation | Heat exchange type ventilation device |
JP7224412B1 (en) | 2021-09-28 | 2023-02-17 | 日立ジョンソンコントロールズ空調株式会社 | Ventilation system, air conditioner and control method |
WO2023145264A1 (en) * | 2022-01-26 | 2023-08-03 | パナソニックIpマネジメント株式会社 | Space purification device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59142338A (en) * | 1982-10-27 | 1984-08-15 | Nippon Soken Inc | Cooling device |
JP2008309381A (en) * | 2007-06-13 | 2008-12-25 | Mitsubishi Electric Corp | Heat exchange ventilation device |
JP2014219153A (en) * | 2013-05-08 | 2014-11-20 | 三菱電機株式会社 | Ventilation air conditioner |
JP2015028391A (en) * | 2013-07-30 | 2015-02-12 | パナソニック株式会社 | Air conditioning system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3231539B2 (en) * | 1994-04-06 | 2001-11-26 | 松下精工株式会社 | Multifunctional ventilator |
JP5063451B2 (en) * | 2008-04-01 | 2012-10-31 | 三菱電機株式会社 | Total heat exchange ventilator |
-
2017
- 2017-08-03 JP JP2019533840A patent/JPWO2019026256A1/en active Pending
- 2017-08-03 WO PCT/JP2017/028307 patent/WO2019026256A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59142338A (en) * | 1982-10-27 | 1984-08-15 | Nippon Soken Inc | Cooling device |
JP2008309381A (en) * | 2007-06-13 | 2008-12-25 | Mitsubishi Electric Corp | Heat exchange ventilation device |
JP2014219153A (en) * | 2013-05-08 | 2014-11-20 | 三菱電機株式会社 | Ventilation air conditioner |
JP2015028391A (en) * | 2013-07-30 | 2015-02-12 | パナソニック株式会社 | Air conditioning system |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020134121A (en) * | 2019-02-18 | 2020-08-31 | パナソニックIpマネジメント株式会社 | Ventilation system |
JP7336630B2 (en) | 2019-02-18 | 2023-09-01 | パナソニックIpマネジメント株式会社 | ventilation system |
EP4012280A4 (en) * | 2019-08-09 | 2022-08-10 | Mitsubishi Electric Corporation | Heat exchange type ventilation device |
WO2021077532A1 (en) * | 2019-10-21 | 2021-04-29 | 广东美的制冷设备有限公司 | Humidification control method and device for household electrical appliance, and household electrical appliance |
CN111981588A (en) * | 2020-08-28 | 2020-11-24 | 广东积微科技有限公司 | Fresh air purification unit system and operation control method thereof |
JP7224412B1 (en) | 2021-09-28 | 2023-02-17 | 日立ジョンソンコントロールズ空調株式会社 | Ventilation system, air conditioner and control method |
JP2023048622A (en) * | 2021-09-28 | 2023-04-07 | 日立ジョンソンコントロールズ空調株式会社 | Ventilation system, air conditioner and control method |
WO2023145264A1 (en) * | 2022-01-26 | 2023-08-03 | パナソニックIpマネジメント株式会社 | Space purification device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019026256A1 (en) | 2019-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019026256A1 (en) | Heat exchange ventilation device | |
JP5185319B2 (en) | Air conditioning system and air conditioning control method for server room management | |
JP5932350B2 (en) | Air conditioning apparatus and air conditioning control method | |
KR101034936B1 (en) | Ventilation apparatus of heat exchanging type and controlling method thereof | |
US8944897B2 (en) | Ventilation system and controlling method of the same | |
JP3310118B2 (en) | Humidification method and air conditioning system | |
WO2013073222A1 (en) | Air conditioning system and air conditioning control method for server room management | |
JP5759808B2 (en) | Air conditioning system and air conditioning control method for server room management | |
US20150060557A1 (en) | Energy saving apparatus, system and method | |
JP5110152B2 (en) | Air conditioner | |
JP2003287240A (en) | Air-conditioner | |
CA2948877C (en) | Optimized dehumidification with hvac systems | |
EP3967944B1 (en) | Outside air treatment device and air conditioning system | |
JP4047639B2 (en) | Industrial air conditioner | |
JP2012141118A (en) | Air conditioning device, and air conditioning system | |
JP2002048380A (en) | Air conditioner and method therefor | |
US11703248B2 (en) | Proactive system control using humidity prediction | |
CN207797333U (en) | A kind of air-conditioning system controlling air-out humidity by dew-point temperature | |
KR101423448B1 (en) | Ventilation unit for outdoor air cooling | |
JP5543002B2 (en) | Air conditioning apparatus and air conditioning system | |
JP2011185509A (en) | Humidifying amount control system | |
JPH05288375A (en) | Method and apparatus for detecting humidity of humidifier | |
KR101553550B1 (en) | White plume preventing system using cooling and dehumidifying and preventing method for white plume using it | |
US20240210056A1 (en) | Ventilation system | |
JP2010190494A (en) | Exhaust heat utilization energy-saving air conditioning facility, system thereof, exhaust heat utilization energy-saving air conditioning method and exhaust heat utilization energy-saving air conditioning program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17920004 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019533840 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17920004 Country of ref document: EP Kind code of ref document: A1 |