JPWO2019026256A1 - Heat exchange ventilator - Google Patents

Heat exchange ventilator Download PDF

Info

Publication number
JPWO2019026256A1
JPWO2019026256A1 JP2019533840A JP2019533840A JPWO2019026256A1 JP WO2019026256 A1 JPWO2019026256 A1 JP WO2019026256A1 JP 2019533840 A JP2019533840 A JP 2019533840A JP 2019533840 A JP2019533840 A JP 2019533840A JP WO2019026256 A1 JPWO2019026256 A1 JP WO2019026256A1
Authority
JP
Japan
Prior art keywords
air
temperature
humidity
supply
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019533840A
Other languages
Japanese (ja)
Inventor
真海 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019026256A1 publication Critical patent/JPWO2019026256A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Abstract

熱交換換気装置(50)は、給気用送風機(3)によって形成される室外から室内に向かう給気流が通る給気風路と、排気用送風機(2)によって形成される室内から室外へ向かう排気流が通る排気風路とを備えたケーシング(1)と、給気風路と排気風路との間に設置され、給気流と排気流との間で全熱交換を行う全熱交換器(4)と、排気風路における全熱交換器(4)の風上側に設けられた室内温度センサ(14)及び室内湿度センサ(15)と、給気風路における全熱交換器(4)の風下側に設けられた給気温度センサ(9)及び給気湿度センサ(10)と、室内空気の温度及び湿度と、給気空気の温度及び湿度とに基づいて、室外空気の温度及び湿度を算出し、算出した室外空気の温度及び湿度に基づいて給気用送風機(3)及び排気用送風機(2)を制御する制御部(11)とを有する。The heat exchange ventilator (50) includes an air supply air passage through which an air supply air flowing from the outside to the room formed by the air supply blower (3) passes, and an exhaust from the room to the outside formed by the exhaust fan (2). A total heat exchanger (4) installed between a casing (1) having an exhaust air passage through which a flow passes and between an air supply passage and an exhaust air passage, and performs total heat exchange between the air supply air flow and the exhaust air flow. ), The indoor temperature sensor (14) and the indoor humidity sensor (15) provided on the windward side of the total heat exchanger (4) in the exhaust air passage, and the leeward side of the total heat exchanger (4) in the supply air passage The temperature and humidity of the outdoor air are calculated based on the supply air temperature sensor (9) and the supply air humidity sensor (10) provided in the room, the temperature and humidity of the indoor air, and the temperature and humidity of the supply air. Based on the calculated outdoor air temperature and humidity, the air supply fan (3) and And a control unit for controlling the air blower (2) (11).

Description

本発明は、給気流と排気流との間で熱交換を行いながら換気を行う熱交換換気装置に関する。   The present invention relates to a heat exchange ventilator that performs ventilation while exchanging heat between a supply air flow and an exhaust flow.

排気流を通す排気風路と給気流を通す給気風路とが内部において交差し、排気流と給気流との間で全熱が交換を行う全熱交換器は、給気風路を通じて高湿度空気が内部に侵入すると、熱交換時に結露又は結氷が発生する場合がある。   The total heat exchanger in which the exhaust air passage for passing the exhaust flow intersects with the supply air passage for passing the supply air flow inside, and the total heat is exchanged between the exhaust flow and the supply air flow, If it enters the inside, condensation or icing may occur during heat exchange.

特許文献1に開示されるように、給気風路を通して霧及び高湿度空気が全熱交換器内に侵入することを防止するため、室外風路に設置された温湿度センサで高湿度状態を検知し、湿度が閾値以上である場合には、給気用送風機を停止させる制御方法がある。   As disclosed in Patent Document 1, in order to prevent fog and high-humidity air from entering the total heat exchanger through the air supply air passage, a high-humidity state is detected by a temperature / humidity sensor installed in the outdoor air passage. However, when the humidity is equal to or higher than the threshold, there is a control method for stopping the air supply blower.

特開2012−172961号公報JP 2012-172961 A

しかしながら、特許文献1に開示される技術によれば、温湿度センサが室外風路に設置されているため、温湿度センサは、室外空気に含まれる埃及び霧に直接晒される。したがって、特許文献1に開示される発明は、長時間の運転で埃が温湿度センサに付着し、感湿部に付着すると湿度を正確に測定できなくなる。また、温湿度センサの表面に霧が付着して凝縮すると、凝縮した水によって温湿度センサにショートが発生し、故障する可能性があった。   However, according to the technique disclosed in Patent Document 1, since the temperature / humidity sensor is installed in the outdoor air passage, the temperature / humidity sensor is directly exposed to dust and mist contained in the outdoor air. Therefore, according to the invention disclosed in Patent Document 1, when the dust adheres to the temperature / humidity sensor during a long time operation and adheres to the moisture-sensitive part, the humidity cannot be measured accurately. In addition, when mist adheres to the surface of the temperature / humidity sensor and condenses, the condensed water may cause a short circuit in the temperature / humidity sensor, resulting in failure.

本発明は、上記に鑑みてなされたものであって、室外空気に晒された温湿度センサを用いることなく室外温度及び室外湿度に基づいて給気用送風機及び排気用送風機を制御できる熱交換換気装置を得ることを目的とする。   The present invention has been made in view of the above, and is a heat exchange ventilation that can control an air supply fan and an air exhaust fan based on outdoor temperature and outdoor humidity without using a temperature and humidity sensor exposed to outdoor air. The object is to obtain a device.

上述した課題を解決し、目的を達成するために、本発明は、給気用送風機と、排気用送風機と、給気用送風機によって形成される室外から室内に向かう給気流が通る給気風路と、排気用送風機によって形成される室内から室外へ向かう排気流が通る排気風路とを備えたケーシングと、給気風路と排気風路との間に設置され、給気流と排気流との間で全熱交換を行う全熱交換器とを有する。本発明は、排気風路における全熱交換器の風上側に設けられた室内温度センサ及び室内湿度センサと、給気風路における全熱交換器の風下側に設けられた給気温度センサ及び給気湿度センサと、排気風路における全熱交換器の風上側の空気である室内空気の温度及び湿度と、給気風路における全熱交換器の風下側の空気である給気空気の温度及び湿度とに基づいて、給気風路における全熱交換器の風上側の空気である室外空気の温度及び湿度を算出し、算出した室外空気の温度及び湿度に基づいて給気用送風機及び排気用送風機を制御する制御部とを有する。   In order to solve the above-described problems and achieve the object, the present invention includes an air supply fan, an exhaust fan, and an air supply air passage through which an air supply air flowing from the outside to the room is formed by the air supply fan. And a casing provided with an exhaust air passage through which an exhaust air flow from the room to the outside formed by the exhaust air blower passes, and between the air supply air passage and the exhaust air passage, and between the air supply air flow and the exhaust air flow And a total heat exchanger that performs total heat exchange. The present invention relates to an indoor temperature sensor and an indoor humidity sensor provided on the windward side of the total heat exchanger in the exhaust air passage, and an air supply temperature sensor and an air supply provided on the leeward side of the total heat exchanger in the air supply air passage. The humidity sensor, the temperature and humidity of the indoor air that is the air upstream of the total heat exchanger in the exhaust air passage, and the temperature and humidity of the supply air that is the leeward air of the total heat exchanger in the supply air passage Based on the above, the temperature and humidity of the outdoor air, which is the air on the windward side of the total heat exchanger in the supply air passage, are calculated, and the air supply fan and the exhaust fan are controlled based on the calculated temperature and humidity of the outdoor air And a control unit.

本発明に係る熱交換換気装置は、室外空気に晒された温湿度センサを用いることなく室外温度及び室外湿度に基づいて給気用送風機及び排気用送風機を制御できるという効果を奏する。   The heat exchange ventilator according to the present invention has an effect that it is possible to control the air supply blower and the exhaust blower based on the outdoor temperature and the outdoor humidity without using the temperature / humidity sensor exposed to the outdoor air.

本発明の実施の形態1に係る熱交換換気装置の構成を示す図The figure which shows the structure of the heat exchange ventilation apparatus which concerns on Embodiment 1 of this invention. 実施の形態1に係る熱交換換気装置の動作の流れを示すフローチャートThe flowchart which shows the flow of operation | movement of the heat exchange ventilation apparatus which concerns on Embodiment 1. FIG. 本発明の実施の形態4に係る熱交換換気装置の構成を示す図The figure which shows the structure of the heat exchange ventilation apparatus which concerns on Embodiment 4 of this invention. 実施の形態1から実施の形態4のいずれかに係る制御部の機能をハードウェアで実現した構成を示す図The figure which shows the structure which implement | achieved the function of the control part which concerns on either of Embodiment 1 to Embodiment 4 with the hardware. 実施の形態1から実施の形態4のいずれかに係る制御部の機能をソフトウェアで実現した構成を示す図The figure which shows the structure which implement | achieved the function of the control part which concerns on either of Embodiment 1 to Embodiment 4 with software.

以下に、本発明の実施の形態に係る熱交換換気装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Below, the heat exchange ventilation apparatus which concerns on embodiment of this invention is demonstrated in detail based on drawing. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明の実施の形態1に係る熱交換換気装置の構成を示す図である。実施の形態1に係る熱交換換気装置50は、室外から室内に向かう給気流が通る給気風路と、室内から室外へ向かう排気流が通る排気風路とを備えた箱体構造のケーシング1、排気風路に排気流を発生させる排気用送風機2、給気風路に給気流を発生させる給気用送風機3、排気流と給気流との間で連続的に全熱交換を行わせる全熱交換器4、排気流を吹き出す排気吹出口5、給気流を吹き出す給気吹出口6、給気流が流入する給気吸込口7、排気流が流入する排気吸込口8、給気風路の全熱交換器4よりも風下側で給気流の温度を測定する給気温度センサ9、給気風路の全熱交換器4よりも風下側で給気流の相対湿度を測定する給気湿度センサ10、制御部11、ユーザインタフェースであるリモートコントローラ12、室内空気を全熱交換器4へ通じる風路に導くか、全熱交換器4を通さずに排気用送風機2に送るバイパス風路に導くかを切り替える風路切替ダンパ13、排気風路の全熱交換器4よりも風上側で排気流の温度を測定する室内温度センサ14及び排気風路の全熱交換器4よりも風上側で排気流の相対湿度を測定する室内湿度センサ15を備える。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a heat exchange ventilator according to Embodiment 1 of the present invention. A heat exchange ventilator 50 according to Embodiment 1 includes a casing 1 casing 1 having a supply air passage through which a supply air flow from outside to the room passes and an exhaust air passage through which an exhaust flow from the room to the outside passes. Exhaust air blower 2 that generates an exhaust flow in the exhaust air passage, an air supply fan 3 that generates an air supply air flow in the air supply air passage, and total heat exchange that allows continuous total heat exchange between the exhaust air flow and the air supply air flow 4, exhaust outlet 5 for blowing out exhaust flow, supply air outlet 6 for blowing out supply air, supply air inlet 7 through which supply air flows, exhaust inlet 8 through which exhaust flow flows, and total heat exchange of the supply air path A supply air temperature sensor 9 for measuring the temperature of the air supply air on the leeward side of the cooler 4, a supply air humidity sensor 10 for measuring the relative humidity of the air supply air on the leeward side of the total heat exchanger 4 in the supply air passage, and a control unit 11. Remote controller 12 as user interface, total heat exchange in room air More than the air path switching damper 13 for switching between the air path leading to the ventilator 4 or the bypass air path that is sent to the exhaust fan 2 without passing through the total heat exchanger 4, and the total heat exchanger 4 for the exhaust air path An indoor temperature sensor 14 that measures the temperature of the exhaust flow on the windward side and an indoor humidity sensor 15 that measures the relative humidity of the exhaust flow on the windward side of the total heat exchanger 4 in the exhaust airflow path are provided.

熱交換換気装置50は、室内側に給気吹出口6及び排気吸込口8を備え、室外側に排気吹出口5及び給気吸込口7を備えている。給気風路は、室外側の給気吸込口7と室内側の給気吹出口6とを繋いでいる。排気風路は、室内側の排気吸込口8と室外側の排気吹出口5とを繋いでいる。   The heat exchange ventilator 50 includes an air supply outlet 6 and an exhaust air inlet 8 on the indoor side, and an exhaust air outlet 5 and an air inlet 7 on the outdoor side. The air supply air passage connects the air supply inlet 7 on the outdoor side and the air supply outlet 6 on the indoor side. The exhaust air passage connects the indoor air inlet 8 and the outdoor air outlet 5.

給気用送風機3は、給気風路に組み込まれている。排気用送風機2は、排気風路に組み込まれている。全熱交換器4は、給気風路と排気風路とにまたがって配置され、全熱交換により室外空気を給気空気にし、室内空気を排気空気にする。したがって、給気風路における全熱交換器4の風下側に設けられた給気温度センサ9及び給気湿度センサ10は、給気空気の温度及び湿度を測定する。排気風路における全熱交換器の風上側に設けられた室内温度センサ14及び室内湿度センサ15は、室内空気の温度及び湿度を測定する。   The air supply blower 3 is incorporated in the air supply air passage. The exhaust fan 2 is incorporated in the exhaust air passage. The total heat exchanger 4 is disposed across the supply air path and the exhaust air path, and converts the outdoor air into supply air and the indoor air into exhaust air by total heat exchange. Therefore, the supply air temperature sensor 9 and the supply air humidity sensor 10 provided on the leeward side of the total heat exchanger 4 in the supply air passage measure the temperature and humidity of the supply air. An indoor temperature sensor 14 and an indoor humidity sensor 15 provided on the windward side of the total heat exchanger in the exhaust air passage measure the temperature and humidity of the indoor air.

全熱交換器4においては、排気流を通す排気風路と給気流を通す給気風路とは、内部において垂直に交差している。排気風路と給気風路とが交差していることにより、全熱交換器4では、排気流と給気流との間で全熱が交換され、熱交換換気を行うことができる。   In the total heat exchanger 4, the exhaust air passage through which the exhaust air flow passes and the air supply air passage through which the air supply air flows pass vertically cross inside. When the exhaust air passage and the supply air passage intersect, the total heat exchanger 4 exchanges the total heat between the exhaust air flow and the air supply air, thereby enabling heat exchange ventilation.

風路切替ダンパ13は、排気風路の風上側に配置されている。風路切替ダンパ13が閉じているとき、室内空気は全熱交換器4を通り、室内空気と室外空気との間で連続的に熱交換が行われる。風路切替ダンパ13が開いているとき、室内空気は全熱交換器4の奥に形成されているバイパス風路を通り、非熱交換換気が排気用送風機2を介して室外へ排出される。   The air path switching damper 13 is disposed on the windward side of the exhaust air path. When the air path switching damper 13 is closed, the room air passes through the total heat exchanger 4 and heat exchange is continuously performed between the room air and the outdoor air. When the air path switching damper 13 is open, the room air passes through a bypass air path formed at the back of the total heat exchanger 4, and non-heat exchange ventilation is exhausted to the outside through the exhaust fan 2.

給気温度センサ9及び給気湿度センサ10は、給気風路のうち全熱交換器4の風下側、すなわち全熱交換器4を通過後の給気風路に設置されている。室内温度センサ14及び室内湿度センサ15は、排気風路のうち全熱交換器4の風上側、すなわち全熱交換器4を通過前の排気風路に設置されている。   The supply air temperature sensor 9 and the supply air humidity sensor 10 are installed on the leeward side of the total heat exchanger 4 in the supply air path, that is, on the supply air path after passing through the total heat exchanger 4. The indoor temperature sensor 14 and the indoor humidity sensor 15 are installed on the upstream side of the total heat exchanger 4 in the exhaust air path, that is, in the exhaust air path before passing through the total heat exchanger 4.

給気温度センサ9、給気湿度センサ10、室内温度センサ14及び室内湿度センサ15は、制御部11に設置された制御用基板に接続されている。給気温度センサ9、給気湿度センサ10、室内温度センサ14及び室内湿度センサ15の測定結果は、定期的に制御部11に送信される。   The supply air temperature sensor 9, the supply air humidity sensor 10, the indoor temperature sensor 14, and the indoor humidity sensor 15 are connected to a control board installed in the control unit 11. The measurement results of the supply air temperature sensor 9, the supply air humidity sensor 10, the indoor temperature sensor 14, and the indoor humidity sensor 15 are periodically transmitted to the control unit 11.

制御部11には、全熱交換器4の外形寸法と全熱交換器4を通過する風量とによって定まる温度交換効率ηtと、エンタルピー交換効率ηhとが保存されている。   The control unit 11 stores a temperature exchange efficiency ηt and an enthalpy exchange efficiency ηh determined by the outer dimensions of the total heat exchanger 4 and the air volume passing through the total heat exchanger 4.

制御部11では、受信した温度情報と全熱交換器4の温度交換効率ηtとを用い、室外空気の温度を算出する、室内温度をTRA、給気温度をTSAとすると、室外空気の温度TOAは、TOA=(TSA−ηt×TRA)/(1−ηt)で算出される。The controller 11 uses the received temperature information and the temperature exchange efficiency ηt of the total heat exchanger 4 to calculate the temperature of the outdoor air. When the indoor temperature is T RA and the supply air temperature is T SA , the outdoor air temperature is calculated. The temperature T OA is calculated by T OA = (T SA −ηt × T RA ) / (1−ηt).

また、制御部11は、温度情報と相対湿度情報とから室内空気のエンタルピー及び給気空気のエンタルピーを算出する。室内エンタルピーhRA、給気エンタルピーhSA及び全熱交換器4のエンタルピー交換効率ηhを用い、室外空気のエンタルピーhOAを算出する。室外空気のエンタルピーhOAは、hOA=(hSA−ηh×hRA)/(1−ηh)で算出される。Moreover, the control part 11 calculates the enthalpy of indoor air and the enthalpy of supply air from temperature information and relative humidity information. Using the indoor enthalpy h RA , the air supply enthalpy h SA and the enthalpy exchange efficiency ηh of the total heat exchanger 4, the enthalpy h OA of the outdoor air is calculated. The enthalpy h OA of the outdoor air is calculated by h OA = (h SA −ηh × h RA ) / (1−ηh).

なお、制御部11は、定格風量で定められた温度交換効率ηt及びエンタルピー交換効率ηhの固有値のみ記憶してもよい。また、制御部11は、給気用送風機3及び排気用送風機2の実際の風量比に基づいて、全熱交換器4の交換効率を定期的に算出し、算出した交換効率に基づいて室外空気の温度及びエンタルピーを算出してもよい。   Note that the control unit 11 may store only eigenvalues of the temperature exchange efficiency ηt and the enthalpy exchange efficiency ηh determined by the rated air volume. Further, the control unit 11 periodically calculates the exchange efficiency of the total heat exchanger 4 based on the actual air volume ratio of the air supply blower 3 and the exhaust blower 2, and the outdoor air based on the calculated exchange efficiency The temperature and enthalpy may be calculated.

制御部11は、算出した室外空気の温度及びエンタルピーを用い、室外空気の相対湿度RHOAを算出する。霧の発生又は降雨によって室外空気が高湿度状態となっている場合、算出した室外空気の相対湿度RHOAは、湿度の閾値RHhumを超えている可能性がある。この場合、製品保護のため、室外空気の侵入を防止する目的で、給気用送風機3を一定時間停止させ、かつ排気用送風機2を運転させ、間欠運転を開始する。Control unit 11, using the temperature and enthalpy of the calculated outdoor air, to calculate the relative humidity RH OA of the outdoor air. When the outdoor air is in a high humidity state due to generation of fog or rain, the calculated relative humidity RH OA of the outdoor air may exceed the humidity threshold RH hum . In this case, for the purpose of protecting the product, for the purpose of preventing the intrusion of outdoor air, the air supply fan 3 is stopped for a certain period of time and the exhaust air fan 2 is operated to start intermittent operation.

湿度の閾値RHhumは、高湿度側に設定した方が間欠運転を行う時間が短くなるため好ましい。給気湿度センサ10及び室内湿度センサ15の検出ばらつきを考慮し、湿度の閾値RHhumは相対湿度90%から100%の間に設定するとよい。The humidity threshold RH hum is preferably set on the high humidity side because the time for intermittent operation is shortened. In consideration of detection variations of the supply air humidity sensor 10 and the indoor humidity sensor 15, the humidity threshold RH hum may be set between 90% and 100% relative humidity.

図2は、実施の形態1に係る熱交換換気装置の動作の流れを示すフローチャートである。ステップS1において、給気温度センサ9は、給気空気の温度を検知する。また、給気湿度センサ10は、給気空気の湿度を検知する。また、室内温度センサ14は、室内空気の温度を検知する。また、室内湿度センサ15は、室内空気の湿度を検知する。ステップS2において、制御部11は、室外空気の温度及び室外空気の湿度を算出する。ステップS3において、制御部11は、室外空気の湿度が湿度の閾値以上であるか否かを判断する。室外空気の湿度が閾値以上であれば、ステップS3でYesとなり、ステップS4において、制御部11は、給気用送風機3を一定時間停止させ、かつ排気用送風機2を運転させる間欠運転を開始する。室外空気の湿度が閾値未満であれば、ステップS3でNoとなり、ステップS1に戻る。   FIG. 2 is a flowchart showing an operation flow of the heat exchange ventilator according to the first embodiment. In step S1, the supply air temperature sensor 9 detects the temperature of the supply air. The supply air humidity sensor 10 detects the humidity of the supply air. The room temperature sensor 14 detects the temperature of room air. The indoor humidity sensor 15 detects the humidity of room air. In step S2, the control unit 11 calculates the temperature of the outdoor air and the humidity of the outdoor air. In step S3, the control unit 11 determines whether the humidity of the outdoor air is equal to or higher than a humidity threshold value. If the humidity of the outdoor air is equal to or higher than the threshold value, Yes is determined in step S3, and in step S4, the control unit 11 stops the supply air blower 3 for a certain period of time and starts an intermittent operation in which the exhaust air blower 2 is operated. . If the humidity of the outdoor air is less than the threshold, No is returned in step S3, and the process returns to step S1.

室外空気の雰囲気中に温湿度センサを配置した場合、給気用送風機の運転によって、室外空気に含まれる霧又は高湿度空気が直接センサに触れてしまう。センサ表面では、霧又は高湿度空気が凝縮されて結露水が発生する。結露水は、センサの基板の導電パターンを酸化させて劣化させる原因となるだけでなく、基板上でショートを誘発させてしまう可能性があるため、結露水が発生することは好ましくない。   When the temperature / humidity sensor is arranged in an outdoor air atmosphere, fog or high-humidity air contained in the outdoor air directly touches the sensor due to the operation of the air supply fan. On the sensor surface, fog or high-humidity air is condensed to generate condensed water. Condensed water not only causes the conductive pattern of the sensor substrate to be oxidized and deteriorated, but also may induce a short circuit on the substrate, so it is not preferable that condensed water is generated.

一方、実施の形態1に係る熱交換換気装置50は、室内空気及び給気空気の温湿度から室外空気の湿度を算出するため、室外空気の湿度を直接計測する場合と同様に、室外空気が高湿度状態となっている場合に室外空気の侵入を防止する制御を行える。さらに、実施の形態1に係る熱交換換気装置50は、室外空気側にセンサを配置しないため、霧又は高湿度空気によるセンサの劣化及び故障を防止することができ、製品の信頼性向上に繋がる。   On the other hand, since the heat exchange ventilator 50 according to Embodiment 1 calculates the humidity of the outdoor air from the temperature and humidity of the indoor air and the supply air, the outdoor air is measured in the same manner as in the case of directly measuring the humidity of the outdoor air. Control can be performed to prevent intrusion of outdoor air in a high humidity state. Furthermore, since the heat exchanging ventilator 50 according to the first embodiment does not arrange the sensor on the outdoor air side, the sensor can be prevented from deteriorating and failing due to fog or high-humidity air, leading to improved product reliability. .

実施の形態1に係る熱交換換気装置50は、温度及び湿度の計測環境が過酷である室外空気の雰囲気中に温度センサ及び湿度センサを配置しなくとも室外空気の温度及び湿度に基づいた制御を行える。室外空気の温度及び湿度に基づいて熱交換換気装置50内の給気用送風機3及び排気用送風機2を制御することにより、室内環境を快適に保ち、かつ省エネルギー性を実現できる。   The heat exchange ventilator 50 according to the first embodiment performs control based on the temperature and humidity of the outdoor air without arranging the temperature sensor and the humidity sensor in the atmosphere of the outdoor air where the measurement environment for temperature and humidity is severe. Yes. By controlling the air supply blower 3 and the exhaust blower 2 in the heat exchange ventilator 50 based on the temperature and humidity of the outdoor air, the indoor environment can be kept comfortable and energy saving can be realized.

実施の形態2.
実施の形態2に係る熱交換換気装置50の構成は、実施の形態1にかかる熱交換換気装置50と同様であるが、制御部11による制御の内容が異なっている。室外空気の温度が低い場合、全熱交換器4の熱交換時に発生する潜熱が冷やされ、全熱交換器内で結露又は結氷が発生する場合がある。これを防止するために、制御部11は、室外空気の温度が閾値Tkan以下になった場合、全熱交換器4内の湿度分の乾燥運転又は結氷を溶かすために一時的に給気用送風機3を停止させ、排気用送風機2のみ運転させる寒冷地運転モードを使用する。
Embodiment 2. FIG.
The configuration of the heat exchange ventilator 50 according to the second embodiment is the same as that of the heat exchange ventilator 50 according to the first embodiment, but the contents of control by the control unit 11 are different. When the temperature of the outdoor air is low, the latent heat generated during the heat exchange of the total heat exchanger 4 is cooled, and condensation or icing may occur in the total heat exchanger. In order to prevent this, when the temperature of the outdoor air becomes equal to or lower than the threshold value T kan , the control unit 11 is temporarily used for supplying air in order to melt the drying operation or ice for the humidity in the total heat exchanger 4. The cold district operation mode in which the blower 3 is stopped and only the exhaust blower 2 is operated is used.

室外空気の雰囲気中に温湿度センサを配置した場合、室外空気の温度が低いと、温度センサ又は湿度センサに実装されている電子部品によっては、温度依存性によるばらつきにより測定精度が低くなってしまうことがある。特に、空気調和及び換気に使用されるような一般用途の温度センサ又は湿度センサは、常温での測定精度が高くなるように作られるため、常温から外れた低温では測定精度が低くなることが一般的である。したがって、室外空気の雰囲気中に温湿度センサを配置した熱交換換気装置50は、寒冷地モードを使用したい状況であっても、室外空気の温度及び室外空気の湿度の測定誤差により寒冷地モードが使用されない可能性があった。   When the temperature / humidity sensor is placed in an outdoor air atmosphere, if the temperature of the outdoor air is low, depending on the temperature sensor or the electronic components mounted on the humidity sensor, the measurement accuracy will be low due to variations due to temperature dependence. Sometimes. In particular, temperature sensors or humidity sensors for general purposes such as those used for air conditioning and ventilation are made so that the measurement accuracy at room temperature is high, so the measurement accuracy is generally low at low temperatures outside normal temperature. Is. Therefore, the heat exchanging ventilator 50 in which the temperature / humidity sensor is arranged in the atmosphere of the outdoor air has the cold region mode due to the measurement error of the temperature of the outdoor air and the humidity of the outdoor air even in a situation where the cold region mode is desired to be used. There was a possibility that it was not used.

実施の形態2に係る熱交換換気装置50は、室内側に給気温度センサ9及び室内温度センサ14を設置し、制御部11が給気温度センサ9及び室内温度センサ14の測定結果に基づいて室外空気の温度を算出する。したがって、給気温度センサ9及び室内温度センサ14は、測定精度の高い常温の空気の温度を測定するため、室外空気の温度の算出結果の精度も高くなる。これにより、室外空気の温度が低く寒冷地モードを使用したい状況下で、確実に寒冷地モードを使用することができる。   In the heat exchange ventilator 50 according to the second embodiment, the supply air temperature sensor 9 and the indoor temperature sensor 14 are installed on the indoor side, and the control unit 11 is based on the measurement results of the supply air temperature sensor 9 and the indoor temperature sensor 14. Calculate the temperature of the outdoor air. Accordingly, since the supply air temperature sensor 9 and the indoor temperature sensor 14 measure the temperature of air at normal temperature with high measurement accuracy, the accuracy of the calculation result of the outdoor air temperature is also high. Thereby, in the situation where the temperature of the outdoor air is low and it is desired to use the cold region mode, the cold region mode can be reliably used.

実施の形態2に係る熱交換換気装置50は、給気温度センサ9及び室内温度センサ14の測定結果に基づいて制御部11が室外空気の温度を算出するため、室外空気の温度が低い場合でも、室外空気の温度を精度良く検知できる。したがって、室外空気が低温時に全熱交換器4内での結露及び結氷を防止できる。   In the heat exchanging ventilator 50 according to the second embodiment, since the control unit 11 calculates the temperature of the outdoor air based on the measurement results of the supply air temperature sensor 9 and the indoor temperature sensor 14, even when the outdoor air temperature is low. The temperature of outdoor air can be accurately detected. Therefore, condensation and icing in the total heat exchanger 4 can be prevented when the outdoor air is at a low temperature.

実施の形態3.
実施の形態3に係る熱交換換気装置50の構成は、実施の形態1にかかる熱交換換気装置50と同様であるが、制御部11による制御の内容が異なっている。夏期の早朝又は中間期で室外空気の温度が室内温度よりも低い場合、室内空気と室外空気との全熱交換を全熱交換器4で行わず、そのまま室外空気を室内に取り入れる外気冷房モードがある。特に、夜間室内不在時に、室外空気の温度のみでオフィス機器から発生する顕熱を下げ、朝の空調負荷を下げるナイトパージ制御がある。外気冷房モード使用時又はナイトパージ制御実行時には、風路切替ダンパ13を用い、全熱交換器4を通さずに直接排気用送風機2に室内空気を導くことで非熱交換換気を実行する。
Embodiment 3 FIG.
The configuration of the heat exchange ventilator 50 according to the third embodiment is the same as that of the heat exchange ventilator 50 according to the first embodiment, but the contents of control by the control unit 11 are different. When the temperature of the outdoor air is lower than the room temperature in the early morning or the middle of the summer, the outdoor air cooling mode in which the total heat exchange between the indoor air and the outdoor air is not performed by the total heat exchanger 4 and the outdoor air is taken into the room as it is. is there. In particular, when there is no room at night, there is a night purge control that lowers the sensible heat generated from office equipment only by the temperature of the outdoor air and reduces the air conditioning load in the morning. When the outside air cooling mode is used or when the night purge control is executed, the air passage switching damper 13 is used, and the indoor air is directly guided to the exhaust fan 2 without passing through the total heat exchanger 4 to execute non-heat exchange ventilation.

室外空気の雰囲気中に温湿度センサを配置した場合、夏期の早朝又は中間期の室外空気に含まれる霧又は高湿度空気にセンサが晒されることによって経時的に発生する検知温度の誤差により、外気冷房モード又はナイトパージ制御が実行されず、空調負荷が大きくなる可能性が高くなる。実施の形態3に係る熱交換換気装置50は、室内側に給気温度センサ9及び室内温度センサ14を設置し、制御部11が給気温度センサ9及び室内温度センサ14の測定結果に基づいて室外空気の温度を算出するため、給気温度センサ9及び室内温度センサ14の劣化を防止できることに加え、空調負荷が増大することを抑制できる。室外空気の温度及び湿度に基づいて熱交換換気装置50内の風路切替ダンパ13を制御することにより、室内環境を快適に保ち、かつ省エネルギー性を実現できる。   When a temperature / humidity sensor is placed in an outdoor air atmosphere, the outside air may be exposed due to a detection temperature error that occurs over time due to exposure of the sensor to fog or high-humidity air contained in the outdoor air in the early summer or intermediate period of summer. The cooling mode or the night purge control is not executed, and there is a high possibility that the air conditioning load becomes large. In the heat exchange ventilator 50 according to the third embodiment, the supply air temperature sensor 9 and the indoor temperature sensor 14 are installed on the indoor side, and the control unit 11 is based on the measurement results of the supply air temperature sensor 9 and the indoor temperature sensor 14. Since the temperature of the outdoor air is calculated, it is possible to prevent the air supply temperature sensor 9 and the indoor temperature sensor 14 from being deteriorated, and to suppress an increase in the air conditioning load. By controlling the air path switching damper 13 in the heat exchange ventilator 50 based on the temperature and humidity of the outdoor air, the indoor environment can be kept comfortable and energy saving can be realized.

実施の形態4.
図3は、本発明の実施の形態4に係る熱交換換気装置の構成を示す図である。実施の形態4に係る熱交換換気装置50は、給気空気に湿度を与え室内の湿度を増加させる加湿ユニット20と、給気空気を加熱して飽和水蒸気量を増大させる直膨コイル21とを備える点で実施の形態1に係る熱交換換気装置50と相違している。制御部11は、室外空気の温度及び室外空気の湿度に基づいて、加湿ユニット20への給水量及び直膨コイル21の温度を制御する。すなわち、制御部11は、室外空気の温度に合わせて直膨コイル21の運転強度を制御し、室外空気の温度及び湿度に合わせ、加湿ユニット20による加湿量を制御する。
Embodiment 4 FIG.
FIG. 3 is a diagram showing a configuration of a heat exchange ventilation apparatus according to Embodiment 4 of the present invention. The heat exchange ventilator 50 according to Embodiment 4 includes a humidification unit 20 that gives humidity to the supply air and increases indoor humidity, and a direct expansion coil 21 that heats the supply air and increases the amount of saturated water vapor. It differs from the heat exchange ventilation apparatus 50 which concerns on Embodiment 1 by the point provided. The control unit 11 controls the amount of water supplied to the humidification unit 20 and the temperature of the direct expansion coil 21 based on the temperature of the outdoor air and the humidity of the outdoor air. That is, the control unit 11 controls the operating strength of the direct expansion coil 21 according to the temperature of the outdoor air, and controls the humidification amount by the humidification unit 20 according to the temperature and humidity of the outdoor air.

加湿ユニット20及び直膨コイル21を用いて給気空気を加湿する必要があるのは、室外空気が低温かつ低湿度である冬期が主であるため、室外空気の雰囲気中に温湿度センサを配置して室外空気の温度及び湿度を測定すると、測定誤差が大きくなりやすい。室外空気の温度及び湿度の測定誤差が大きくなると、室内の過加湿又は加湿不足の原因となる。また、室外空気の絶対湿度が低いため、湿度センサの特性によっては、室外空気の温度が氷点下の時には、湿度を検出できず、湿度制御を行えない場合がある。   The reason why the supply air needs to be humidified using the humidification unit 20 and the direct expansion coil 21 is mainly in the winter when the outdoor air is low temperature and low humidity, and therefore a temperature and humidity sensor is arranged in the atmosphere of the outdoor air. If the temperature and humidity of outdoor air are measured, measurement errors tend to increase. If the measurement error of the temperature and humidity of the outdoor air becomes large, it may cause excessive humidification or insufficient humidification in the room. Also, since the absolute humidity of outdoor air is low, depending on the characteristics of the humidity sensor, when the temperature of the outdoor air is below freezing, the humidity cannot be detected and humidity control may not be performed.

実施の形態4に係る熱交換換気装置50は、室内空気と給気空気とから室外空気の温度及び室外空気の湿度を算出するため、室外空気の温度を精度良く算出できることに加え、室外空気が氷点下であっても室外空気の湿度を検出して湿度制御が可能となる。室外空気の温度及び湿度に基づいて熱交換換気装置50内の加湿ユニット20及び直膨コイル21を制御することにより、室内環境を快適に保ち、かつ省エネルギー性を実現できる。   Since the heat exchange ventilator 50 according to Embodiment 4 calculates the temperature of the outdoor air and the humidity of the outdoor air from the indoor air and the supply air, in addition to being able to calculate the temperature of the outdoor air with high accuracy, Even when the temperature is below freezing, the humidity can be controlled by detecting the humidity of the outdoor air. By controlling the humidification unit 20 and the direct expansion coil 21 in the heat exchange ventilator 50 based on the temperature and humidity of the outdoor air, the indoor environment can be kept comfortable and energy saving can be realized.

上記実施の形態1から実施の形態4の制御部11の機能は、処理回路により実現される。すなわち制御部11は、室内空気の温度及び湿度と、給気空気の温度及び湿度とに基づいて、室外空気の温度及び湿度を算出する処理と、算出した室外空気の温度及び湿度に基づいて給気用送風機3及び排気用送風機2を制御する処理と、室外空気の湿度が湿度の閾値よりも高い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が温度の閾値よりも低い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が室内空気の温度よりも低い場合には、風路切替ダンパ13を制御し、室内空気をバイパス風路へ流す処理と、室外空気の温度に合わせて直膨コイル21の運転強度を制御する処理と、室外空気の温度及び湿度に合わせ、加湿ユニット20による加湿量を制御する処理と、給気用送風機3と排気用送風機2との風量比に基づいて、全熱交換器4の交換効率を定期的に算出し、算出した交換効率に基づいて室外空気の温度及び湿度を算出する処理とを行う処理回路を備える。また、処理回路は、専用のハードウェアであっても、記憶装置に格納されるプログラムを実行する演算装置であってもよい。   The function of the control unit 11 in the first to fourth embodiments is realized by a processing circuit. That is, the control unit 11 calculates the temperature and humidity of the outdoor air based on the temperature and humidity of the indoor air and the temperature and humidity of the supply air, and supplies the air based on the calculated temperature and humidity of the outdoor air. A process for controlling the air blower 3 and the exhaust blower 2, and a process for stopping the air supply blower 3 and operating the exhaust blower 2 when the humidity of the outdoor air is higher than the humidity threshold, and the outdoor When the temperature of the air is lower than the temperature threshold, the supply blower 3 is stopped and the exhaust blower 2 is operated. When the temperature of the outdoor air is lower than the temperature of the indoor air, A process for controlling the path switching damper 13 to flow the indoor air to the bypass air path, a process for controlling the operating strength of the direct expansion coil 21 according to the temperature of the outdoor air, and a humidifying unit according to the temperature and humidity of the outdoor air Humidification amount by 20 The exchange efficiency of the total heat exchanger 4 is periodically calculated based on the processing to be controlled and the air volume ratio between the air supply fan 3 and the exhaust fan 2, and the outdoor air temperature and the A processing circuit for performing a process of calculating humidity; The processing circuit may be dedicated hardware or an arithmetic device that executes a program stored in the storage device.

処理回路が専用のハードウェアである場合、処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、又はこれらを組み合わせたものが該当する。図4は、実施の形態1から実施の形態4のいずれかに係る制御部の機能をハードウェアで実現した構成を示す図である。処理回路19には、室内空気の温度及び湿度と、給気空気の温度及び湿度とに基づいて、室外空気の温度及び湿度を算出する処理と、算出した室外空気の温度及び湿度に基づいて給気用送風機3及び排気用送風機2を制御する処理と、室外空気の湿度が湿度の閾値よりも高い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が温度の閾値よりも低い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が室内空気の温度よりも低い場合には、風路切替ダンパ13を制御し、室内空気をバイパス風路へ流す処理と、室外空気の温度に合わせて直膨コイル21の運転強度を制御する処理と、室外空気の温度及び湿度に合わせ、加湿ユニット20による加湿量を制御する処理と、給気用送風機3と排気用送風機2との風量比に基づいて、全熱交換器4の交換効率を定期的に算出し、算出した交換効率に基づいて室外空気の温度及び湿度を算出する処理とを実現する論理回路19aが組み込まれている。   If the processing circuit is dedicated hardware, the processing circuit may be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an application specific integrated circuit, a field programmable gate array, or a combination thereof Is applicable. FIG. 4 is a diagram illustrating a configuration in which the function of the control unit according to any one of Embodiments 1 to 4 is realized by hardware. The processing circuit 19 calculates the temperature and humidity of the outdoor air based on the temperature and humidity of the indoor air and the temperature and humidity of the supply air, and supplies the air based on the calculated temperature and humidity of the outdoor air. A process for controlling the air blower 3 and the exhaust blower 2, and a process for stopping the air supply blower 3 and operating the exhaust blower 2 when the humidity of the outdoor air is higher than the humidity threshold, and the outdoor When the temperature of the air is lower than the temperature threshold, the supply blower 3 is stopped and the exhaust blower 2 is operated. When the temperature of the outdoor air is lower than the temperature of the indoor air, A process for controlling the path switching damper 13 to flow the indoor air to the bypass air path, a process for controlling the operating strength of the direct expansion coil 21 according to the temperature of the outdoor air, and a humidifying unit according to the temperature and humidity of the outdoor air 20 to control the amount of humidification The exchange efficiency of the total heat exchanger 4 is periodically calculated based on the processing to be performed and the air flow ratio between the air supply blower 3 and the exhaust blower 2, and the temperature and humidity of the outdoor air based on the calculated exchange efficiency And a logic circuit 19a that implements the process of calculating.

処理回路19が演算装置の場合、室内空気の温度及び湿度と、給気空気の温度及び湿度とに基づいて、室外空気の温度及び湿度を算出する処理と、算出した室外空気の温度及び湿度に基づいて給気用送風機3及び排気用送風機2を制御する処理と、室外空気の湿度が湿度の閾値よりも高い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が温度の閾値よりも低い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が室内空気の温度よりも低い場合には、風路切替ダンパ13を制御し、室内空気をバイパス風路へ流す処理と、室外空気の温度に合わせて直膨コイル21の運転強度を制御する処理と、室外空気の温度及び湿度に合わせ、加湿ユニット20による加湿量を制御する処理と、給気用送風機3と排気用送風機2との風量比に基づいて、全熱交換器4の交換効率を定期的に算出し、算出した交換効率に基づいて室外空気の温度及び湿度を算出する処理とは、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。   When the processing circuit 19 is an arithmetic unit, the temperature and humidity of the outdoor air are calculated based on the temperature and humidity of the indoor air and the temperature and humidity of the supply air, and the calculated temperature and humidity of the outdoor air are calculated. A process for controlling the air supply blower 3 and the exhaust blower 2 based on this, and a process for stopping the air supply blower 3 and operating the exhaust blower 2 when the humidity of the outdoor air is higher than the humidity threshold. When the temperature of the outdoor air is lower than the temperature threshold value, when the supply blower 3 is stopped and the exhaust blower 2 is operated, and when the temperature of the outdoor air is lower than the temperature of the indoor air Controls the air path switching damper 13 to flow the indoor air to the bypass air path, controls the operating strength of the direct expansion coil 21 according to the temperature of the outdoor air, and matches the temperature and humidity of the outdoor air , According to the humidification unit 20 Based on the processing for controlling the humidification amount and the air volume ratio between the air supply fan 3 and the exhaust air fan 2, the exchange efficiency of the total heat exchanger 4 is periodically calculated, and the outdoor air is calculated based on the calculated exchange efficiency. The process of calculating the temperature and humidity is realized by software, firmware, or a combination of software and firmware.

図5は、実施の形態1から実施の形態4のいずれかに係る制御部の機能をソフトウェアで実現した構成を示す図である。処理回路19は、プログラム19bを実行する演算装置191と、演算装置191がワークエリアに用いるランダムアクセスメモリ192と、プログラム19bを記憶する記憶装置193を有する。記憶装置193に記憶されているプログラム19bを演算装置191がランダムアクセスメモリ192上に展開し、実行することにより、室内空気の温度及び湿度と、給気空気の温度及び湿度とに基づいて、室外空気の温度及び湿度を算出する処理と、算出した室外空気の温度及び湿度に基づいて給気用送風機3及び排気用送風機2を制御する処理と、室外空気の湿度が湿度の閾値よりも高い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が温度の閾値よりも低い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が室内空気の温度よりも低い場合には、風路切替ダンパ13を制御し、室内空気をバイパス風路へ流す処理と、室外空気の温度に合わせて直膨コイル21の運転強度を制御する処理と、室外空気の温度及び湿度に合わせ、加湿ユニット20による加湿量を制御する処理と、給気用送風機3と排気用送風機2との風量比に基づいて、全熱交換器4の交換効率を定期的に算出し、算出した交換効率に基づいて室外空気の温度及び湿度を算出する処理とが実現される。ソフトウェア又はファームウェアはプログラム言語で記述され、記憶装置193に格納される。演算装置191は、中央処理装置を例示できるがこれに限定はされない。   FIG. 5 is a diagram illustrating a configuration in which the function of the control unit according to any one of the first to fourth embodiments is realized by software. The processing circuit 19 includes an arithmetic device 191 that executes the program 19b, a random access memory 192 that the arithmetic device 191 uses as a work area, and a storage device 193 that stores the program 19b. The arithmetic device 191 develops and executes the program 19b stored in the storage device 193 on the random access memory 192, and thus, based on the temperature and humidity of the indoor air and the temperature and humidity of the supply air, the outdoor device Processing for calculating the temperature and humidity of the air, processing for controlling the air supply fan 3 and the exhaust fan 2 based on the calculated temperature and humidity of the outdoor air, and the humidity of the outdoor air is higher than the humidity threshold The air supply fan 3 is stopped and the exhaust air blower 2 is operated. When the temperature of the outdoor air is lower than the temperature threshold, the air supply fan 3 is stopped and the exhaust air fan 2 is stopped. When the temperature of the outdoor air is lower than the temperature of the room air, the air path switching damper 13 is controlled so that the room air flows to the bypass air path, and the temperature of the outdoor air is adjusted. Based on the process for controlling the operating strength of the expansion coil 21, the process for controlling the humidification amount by the humidification unit 20 in accordance with the temperature and humidity of the outdoor air, and the air volume ratio between the air supply fan 3 and the exhaust fan 2. In addition, the process of periodically calculating the exchange efficiency of the total heat exchanger 4 and calculating the temperature and humidity of the outdoor air based on the calculated exchange efficiency is realized. Software or firmware is described in a program language and stored in the storage device 193. The arithmetic unit 191 can be exemplified by a central processing unit, but is not limited thereto.

処理回路19は、記憶装置193に記憶されたプログラム19bを読み出して実行することにより、各処理を実現する。すなわち、制御部11は、処理回路19により実行されるときに、室内空気の温度及び湿度と、給気空気の温度及び湿度とに基づいて、室外空気の温度及び湿度を算出するステップと、算出した室外空気の温度及び湿度に基づいて給気用送風機3及び排気用送風機2を制御するステップと、室外空気の湿度が湿度の閾値よりも高い場合には、給気用送風機3を停止させ、排気用送風機2を運転させるステップと、室外空気の温度が温度の閾値よりも低い場合には、給気用送風機3を停止させ、排気用送風機2を運転させるステップと、室外空気の温度が室内空気の温度よりも低い場合には、風路切替ダンパ13を制御し、室内空気をバイパス風路へ流すステップと、室外空気の温度に合わせて直膨コイル21の運転強度を制御するステップと、室外空気の温度及び湿度に合わせ、加湿ユニット20による加湿量を制御するステップと、給気用送風機3と排気用送風機2との風量比に基づいて、全熱交換器4の交換効率を定期的に算出し、算出した交換効率に基づいて室外空気の温度及び湿度を算出するステップとが結果的に実行されることになるプログラム19bを記憶するための記憶装置193を備える。また、プログラム19bは、上記の手順及び方法をコンピュータに実行させるものであるとも言える。   The processing circuit 19 implements each process by reading and executing the program 19b stored in the storage device 193. That is, the control unit 11 calculates the temperature and humidity of the outdoor air based on the temperature and humidity of the indoor air and the temperature and humidity of the supply air when executed by the processing circuit 19; The step of controlling the air supply fan 3 and the exhaust air fan 2 based on the temperature and humidity of the outdoor air, and when the outdoor air humidity is higher than the humidity threshold, the air supply fan 3 is stopped, When the exhaust fan 2 is operated, and when the outdoor air temperature is lower than the temperature threshold, the air supply fan 3 is stopped and the exhaust fan 2 is operated. When the temperature is lower than the air temperature, the air path switching damper 13 is controlled to flow the indoor air to the bypass air path, and the operation intensity of the direct expansion coil 21 is controlled according to the outdoor air temperature. Based on the step of controlling the humidification amount by the humidification unit 20 according to the temperature and humidity of the outdoor air and the airflow ratio of the air supply fan 3 and the exhaust air fan 2, the exchange efficiency of the total heat exchanger 4 is periodically changed. And a storage device 193 for storing a program 19b in which the step of calculating the temperature and humidity of the outdoor air based on the calculated replacement efficiency is executed as a result. The program 19b can also be said to cause a computer to execute the above procedures and methods.

なお、室内空気の温度及び湿度と、給気空気の温度及び湿度とに基づいて、室外空気の温度及び湿度を算出する処理と、算出した室外空気の温度及び湿度に基づいて給気用送風機3及び排気用送風機2を制御する処理と、室外空気の湿度が湿度の閾値よりも高い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が温度の閾値よりも低い場合には、給気用送風機3を停止させ、排気用送風機2を運転させる処理と、室外空気の温度が室内空気の温度よりも低い場合には、風路切替ダンパ13を制御し、室内空気をバイパス風路へ流す処理と、室外空気の温度に合わせて直膨コイル21の運転強度を制御する処理と、室外空気の温度及び湿度に合わせ、加湿ユニット20による加湿量を制御する処理と、給気用送風機3と排気用送風機2との風量比に基づいて、全熱交換器4の交換効率を定期的に算出し、算出した交換効率に基づいて室外空気の温度及び湿度を算出する処理とについて、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。   The process for calculating the temperature and humidity of the outdoor air based on the temperature and humidity of the indoor air and the temperature and humidity of the supply air, and the air supply fan 3 based on the calculated temperature and humidity of the outdoor air When the humidity of the outdoor air is higher than the humidity threshold, the air supply fan 3 is stopped and the exhaust fan 2 is operated, and the temperature of the outdoor air is controlled. When the temperature is lower than the temperature threshold, the supply air blower 3 is stopped and the exhaust air blower 2 is operated. When the temperature of the outdoor air is lower than the temperature of the indoor air, the air path switching damper 13 is used. The amount of humidification by the humidifying unit 20 according to the temperature and humidity of the outdoor air, the processing of controlling the operating strength of the direct expansion coil 21 according to the temperature of the outdoor air, the processing of flowing the indoor air to the bypass air passage Process to control A process of periodically calculating the exchange efficiency of the total heat exchanger 4 based on the air volume ratio between the air supply fan 3 and the exhaust fan 2 and calculating the temperature and humidity of the outdoor air based on the calculated exchange efficiency For the above, a part may be realized by dedicated hardware and a part may be realized by software or firmware.

このように、処理回路19は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の各機能を実現することができる。   As described above, the processing circuit 19 can realize the above-described functions by hardware, software, firmware, or a combination thereof.

以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。   The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

1 ケーシング、2 排気用送風機、3 給気用送風機、4 全熱交換器、5 排気吹出口、6 給気吹出口、7 給気吸込口、8 排気吸込口、9 給気温度センサ、10 給気湿度センサ、11 制御部、12 リモートコントローラ、13 風路切替ダンパ、14 室内温度センサ、15 室内湿度センサ、19 処理回路、19a 論理回路、19b プログラム、20 加湿ユニット、21 直膨コイル、50 熱交換換気装置、191 演算装置、192 ランダムアクセスメモリ、193 記憶装置。   DESCRIPTION OF SYMBOLS 1 Casing, 2 Exhaust fan, 3 Supply air fan, 4 Total heat exchanger, 5 Exhaust air outlet, 6 Supply air outlet, 7 Supply air inlet, 8 Exhaust air inlet, 9 Supply air temperature sensor, 10 Supply Air humidity sensor, 11 control unit, 12 remote controller, 13 air path switching damper, 14 indoor temperature sensor, 15 indoor humidity sensor, 19 processing circuit, 19a logic circuit, 19b program, 20 humidifying unit, 21 direct expansion coil, 50 heat Exchange ventilation device, 191 computing device, 192 random access memory, 193 storage device.

Claims (7)

給気用送風機と、
排気用送風機と、
前記給気用送風機によって形成される室外から室内に向かう給気流が通る給気風路と、前記排気用送風機によって形成される室内から室外へ向かう排気流が通る排気風路とを備えたケーシングと、
前記給気風路と前記排気風路との間に設置され、前記給気流と前記排気流との間で全熱交換を行う全熱交換器と、
前記排気風路における前記全熱交換器の風上側に設けられた室内温度センサ及び室内湿度センサと、
前記給気風路における前記全熱交換器の風下側に設けられた給気温度センサ及び給気湿度センサと、
前記排気風路における前記全熱交換器の風上側の空気である室内空気の温度及び湿度と、前記給気風路における前記全熱交換器の風下側の空気である給気空気の温度及び湿度とに基づいて、前記給気風路における前記全熱交換器の風上側の空気である室外空気の温度及び湿度を算出し、算出した前記室外空気の温度及び湿度に基づいて前記給気用送風機及び前記排気用送風機を制御する制御部とを有することを特徴とする熱交換換気装置。
An air supply blower;
An exhaust fan,
A casing provided with an air supply air passage through which an air supply air flowing from the outside to the room formed by the air supply blower passes, and an exhaust air passage through which an exhaust flow from the room to the outside formed by the exhaust air blower passes.
A total heat exchanger that is installed between the supply air path and the exhaust air path, and performs total heat exchange between the supply air stream and the exhaust stream;
An indoor temperature sensor and an indoor humidity sensor provided on the windward side of the total heat exchanger in the exhaust air passage;
An air supply temperature sensor and an air supply humidity sensor provided on the leeward side of the total heat exchanger in the air supply air passage;
The temperature and humidity of the indoor air that is the air upstream of the total heat exchanger in the exhaust air passage, and the temperature and humidity of the supply air that is the air leeward of the total heat exchanger in the supply air passage Based on the above, the temperature and humidity of the outdoor air that is the air on the windward side of the total heat exchanger in the supply air passage are calculated, and the air supply blower and the air based on the calculated temperature and humidity of the outdoor air A heat exchange ventilator comprising: a control unit that controls the exhaust fan.
前記制御部は、前記室外空気の湿度が湿度の閾値よりも高い場合には,前記給気用送風機を停止させ、前記排気用送風機を運転させることを特徴とする請求項1に記載の熱交換換気装置。   2. The heat exchange according to claim 1, wherein when the humidity of the outdoor air is higher than a humidity threshold, the control unit stops the air supply blower and operates the exhaust air blower. Ventilation device. 前記制御部は、前記室外空気の温度が温度の閾値よりも低い場合には、前記給気用送風機を停止させ、前記排気用送風機を運転させることを特徴とする請求項1に記載の熱交換換気装置。   2. The heat exchange according to claim 1, wherein when the temperature of the outdoor air is lower than a temperature threshold, the control unit stops the supply air blower and operates the exhaust air blower. Ventilation device. 前記排気風路に配設され、室内空気を前記全熱交換器へ流すか、前記全熱交換器を迂回するバイパス風路へ流すかを切り替える風路切替ダンパを備え、
前記制御部は、前記室外空気の温度が前記室内空気の温度よりも低い場合には、前記風路切替ダンパを制御し、前記室内空気を前記バイパス風路へ流すことを特徴とする請求項1に記載の熱交換換気装置。
An air path switching damper that is disposed in the exhaust air path and switches between flowing indoor air to the total heat exchanger or flowing to a bypass air path that bypasses the total heat exchanger;
2. The control unit according to claim 1, wherein when the temperature of the outdoor air is lower than the temperature of the room air, the control unit controls the air path switching damper to flow the room air to the bypass air path. The heat exchange ventilator described in 1.
前記給気空気を加熱して飽和水蒸気量を増大させる直膨コイルを備え、
前記制御部は、前記室外空気の温度に合わせて前記直膨コイルの運転強度を制御することを特徴とする請求項1に記載の熱交換換気装置。
A direct expansion coil for heating the supply air to increase the amount of saturated water vapor;
The heat exchange ventilator according to claim 1, wherein the control unit controls an operating strength of the direct expansion coil in accordance with a temperature of the outdoor air.
前記給気空気を加湿する加湿ユニットを備え、
前記制御部は、前記室外空気の温度及び湿度に合わせ、前記加湿ユニットによる加湿量を制御することを特徴とする請求項5に記載の熱交換換気装置。
A humidifying unit for humidifying the supply air;
The heat exchange ventilator according to claim 5, wherein the control unit controls a humidification amount by the humidification unit in accordance with a temperature and humidity of the outdoor air.
前記制御部は、前記給気用送風機と前記排気用送風機との風量比に基づいて、前記全熱交換器の交換効率を定期的に算出し、算出した前記交換効率に基づいて前記室外空気の温度及び湿度を算出することを特徴とする請求項1から6のいずれか1項に記載の熱交換換気装置。   The control unit periodically calculates the exchange efficiency of the total heat exchanger based on the air volume ratio between the air supply fan and the exhaust fan, and based on the calculated exchange efficiency, The heat exchange ventilator according to any one of claims 1 to 6, wherein temperature and humidity are calculated.
JP2019533840A 2017-08-03 2017-08-03 Heat exchange ventilator Pending JPWO2019026256A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028307 WO2019026256A1 (en) 2017-08-03 2017-08-03 Heat exchange ventilation device

Publications (1)

Publication Number Publication Date
JPWO2019026256A1 true JPWO2019026256A1 (en) 2019-11-14

Family

ID=65232600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019533840A Pending JPWO2019026256A1 (en) 2017-08-03 2017-08-03 Heat exchange ventilator

Country Status (2)

Country Link
JP (1) JPWO2019026256A1 (en)
WO (1) WO2019026256A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7336630B2 (en) * 2019-02-18 2023-09-01 パナソニックIpマネジメント株式会社 ventilation system
WO2021028964A1 (en) * 2019-08-09 2021-02-18 三菱電機株式会社 Heat exchange type ventilation device
CN110715353A (en) * 2019-10-21 2020-01-21 广东美的制冷设备有限公司 Humidification control method and device for household appliance and household appliance
CN111981588A (en) * 2020-08-28 2020-11-24 广东积微科技有限公司 Fresh air purification unit system and operation control method thereof
JP7224412B1 (en) 2021-09-28 2023-02-17 日立ジョンソンコントロールズ空調株式会社 Ventilation system, air conditioner and control method
JP2023108652A (en) * 2022-01-26 2023-08-07 パナソニックIpマネジメント株式会社 space purifier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142338A (en) * 1982-10-27 1984-08-15 Nippon Soken Inc Cooling device
JPH07280316A (en) * 1994-04-06 1995-10-27 Matsushita Seiko Co Ltd Multi-function ventilator
JP2008309381A (en) * 2007-06-13 2008-12-25 Mitsubishi Electric Corp Heat exchange ventilation device
JP2009250451A (en) * 2008-04-01 2009-10-29 Mitsubishi Electric Corp Total enthalpy heat exchange ventilation device
JP2014219153A (en) * 2013-05-08 2014-11-20 三菱電機株式会社 Ventilation air conditioner
JP2015028391A (en) * 2013-07-30 2015-02-12 パナソニック株式会社 Air conditioning system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142338A (en) * 1982-10-27 1984-08-15 Nippon Soken Inc Cooling device
JPH07280316A (en) * 1994-04-06 1995-10-27 Matsushita Seiko Co Ltd Multi-function ventilator
JP2008309381A (en) * 2007-06-13 2008-12-25 Mitsubishi Electric Corp Heat exchange ventilation device
JP2009250451A (en) * 2008-04-01 2009-10-29 Mitsubishi Electric Corp Total enthalpy heat exchange ventilation device
JP2014219153A (en) * 2013-05-08 2014-11-20 三菱電機株式会社 Ventilation air conditioner
JP2015028391A (en) * 2013-07-30 2015-02-12 パナソニック株式会社 Air conditioning system

Also Published As

Publication number Publication date
WO2019026256A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JPWO2019026256A1 (en) Heat exchange ventilator
JP5185319B2 (en) Air conditioning system and air conditioning control method for server room management
JP5932350B2 (en) Air conditioning apparatus and air conditioning control method
CN106662355B (en) Air-conditioning air-breather equipment
KR101034936B1 (en) Ventilation apparatus of heat exchanging type and controlling method thereof
JP5759808B2 (en) Air conditioning system and air conditioning control method for server room management
WO2013073222A1 (en) Air conditioning system and air conditioning control method for server room management
US20150060557A1 (en) Energy saving apparatus, system and method
WO2012020495A1 (en) Local air conditioning system and control device and program therefor
JP2005265401A (en) Air conditioner
JP7026781B2 (en) Air conditioning system
JP4664190B2 (en) Air conditioning control system
CN108131804A (en) A kind of air-conditioning system and its control method that air-out humidity is controlled by dew-point temperature
CA2948877C (en) Optimized dehumidification with hvac systems
WO2018142782A1 (en) Air treatment device, device for controlling air treatment device, and method for controlling air treatment system and air treatment device
JP4047639B2 (en) Industrial air conditioner
JP2010242995A (en) Air conditioning system
JP5602072B2 (en) Air conditioning system for server room management
JP2012141118A (en) Air conditioning device, and air conditioning system
JP2018124035A5 (en)
JP3966441B2 (en) Air conditioning apparatus and method
JP3135017B2 (en) Operating method of air conditioner
JP5491908B2 (en) Humidification control system
JP7193356B2 (en) Outside air processing device
JP5543002B2 (en) Air conditioning apparatus and air conditioning system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210316