JPH05288375A - Method and apparatus for detecting humidity of humidifier - Google Patents

Method and apparatus for detecting humidity of humidifier

Info

Publication number
JPH05288375A
JPH05288375A JP4089177A JP8917792A JPH05288375A JP H05288375 A JPH05288375 A JP H05288375A JP 4089177 A JP4089177 A JP 4089177A JP 8917792 A JP8917792 A JP 8917792A JP H05288375 A JPH05288375 A JP H05288375A
Authority
JP
Japan
Prior art keywords
air
humidity
temperature
humidifying
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4089177A
Other languages
Japanese (ja)
Inventor
Yasuo Uchikawa
靖夫 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4089177A priority Critical patent/JPH05288375A/en
Publication of JPH05288375A publication Critical patent/JPH05288375A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress a detection error and to improve a humidity detecting accuracy by calculating humidity of the air to be humidified in a state that a variation in a saturation efficiency is accurately grasped. CONSTITUTION:Humidity detecting means 27, 28 respectively detect temperature th of the air Ah to be humidified and temperature tm of humidified air Am passed through a moisture layer 21. Memory means 25a stores an absolute humidity difference of the air Ah to be humidified and the air Am, mutual change characteristics with a saturation efficiency in the layer 21 and humidity change gradient characteristics of the layer 21. Calculating means 25b obtains the difference of the air Ah and the air Am based on the gradient characteristics, detected temperature th of the air to be humidified and the temperature tm, and calculates relative humidity or absolute humidity of the air Ah based on the difference, the change characteristics and the temperature th. Thus, a detection error can be suppressed, and a humidity detecting accuracy is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加湿対象空気を湿潤層
に対し通過させて加湿する加湿装置における湿度検出方
法、及び、湿度検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a humidity detecting method and a humidity detecting apparatus in a humidifying device for passing humidified air through a humid layer to humidify the humidified layer.

【0002】[0002]

【従来の技術】従来、上記の如き加湿装置において、一
般に高価で、又、露滴や汚れに弱い湿度センサを用いず
に空気の温度検出だけで加湿対象空気の湿度を検出する
には(図4参照)、加湿対象空気Ahの検出温度thと
湿潤層21を通過した加湿空気Amの検出温度tmとの
温度差に対し、湿潤層21における湿度変化勾配Kや飽
和効率ηx(=Δx(h−m)/Δx(h−p))を考
慮した一定係数Gを乗じる、すなわち、 Δx(h−p’)=G・(th−tm) ことにより、検出加湿空気温度tmにおける飽和空気A
p’と加湿対象空気Ahとの絶対湿度差Δx(h−
p’)を近似的に求め、そして、検出加湿空気温度tm
における飽和空気Ap’の絶対湿度Δxp’(データ
値)から上記の算出絶対湿度差Δx(h−p’)を減じ
る、すなわち、 xh=Δxp’−Δx(h−p’) ことにより、加湿対象空気Ahの絶対湿度xhを求めた
り、又、このようにして求めた加湿対象空気Ahの絶対
湿度xhを検出加湿対象空気温度thにおける飽和空気
Ap''の絶対湿度xp''(データ値)で除する、すなわ
ち、 rh=(xh/xp'')・100 ことにより、加熱対象空気Ahの相対湿度rhを求める
ようにしていた(特開昭62−153673号参照)。
2. Description of the Related Art Conventionally, in the above humidifier, the humidity of the air to be humidified can be detected only by detecting the temperature of the air without using a humidity sensor which is generally expensive and is weak against dew drops and dirt. 4), the humidity change gradient K and the saturation efficiency ηx (= Δx (h) in the wetting layer 21 with respect to the temperature difference between the detected temperature th of the humidifying target air Ah and the detected temperature tm of the humidifying air Am that has passed through the wetting layer 21. -M) / Δx (hp)) is multiplied by a constant coefficient G, that is, Δx (hp −) = G · (th−tm) to obtain the saturated air A at the detected humidified air temperature tm.
Absolute humidity difference Δx (h− between p ′ and humidifying target air Ah
p ′) is obtained approximately, and the detected humidified air temperature tm
Of the saturated air Ap ′ in the above condition, the calculated absolute humidity difference Δx (hp−) is subtracted from the absolute humidity Δxp ′ (data value), that is, xh = Δxp′−Δx (hp ′) The absolute humidity xh of the air Ah is obtained, or the absolute humidity xh of the humidifying target air Ah thus obtained is detected as the absolute humidity xp '' (data value) of the saturated air Ap '' at the humidifying target air temperature th. That is, the relative humidity rh of the heating target air Ah is obtained by removing, that is, rh = (xh / xp ″) · 100 (see JP-A-62-153673).

【0003】[0003]

【発明が解決しようとする課題】しかし、飽和効率ηx
(=Δx(h−m)/Δx(h−p))は加湿対象空気
Ahの温湿度状態によって変化するものであり、これに
対し、上記従来の検出形態では、加湿対象空気Ahと加
湿空気Amとの検出温度差(th−tm)に対して乗じ
る係数Gを一定値とするため(換言すれば、飽和効率η
xを例えば100%や90%といった一定値に単純に仮
定して係数Gを決定しているため)、目的とする加湿対
象空気Ahの湿度検出において検出誤差が大きい問題が
あり、ひいては、加湿対象空気Ahの検出湿度に基づい
て実施する加湿対象域の湿度制御等を精度良く行えない
といった問題を招いていた。
However, the saturation efficiency ηx
(= Δx (hm−m) / Δx (h−p)) changes depending on the temperature / humidity state of the humidification target air Ah. On the other hand, in the above conventional detection mode, the humidification target air Ah and the humidification air. In order to make the coefficient G by which the detected temperature difference from Am (th-tm) is multiplied by a constant value (in other words, the saturation efficiency η
Since the coefficient G is determined by simply assuming x to be a constant value such as 100% or 90%), there is a problem in that the detection error is large in the humidity detection of the target humidification target air Ah, and, in turn, the humidification target. This causes a problem that it is not possible to accurately control the humidity of the humidifying target area based on the detected humidity of the air Ah.

【0004】本発明の目的は、温度検出に基づく湿度検
出において合理的な検出形態を採用することにより、そ
の湿度検出精度の向上を図る点にある。
An object of the present invention is to improve the humidity detection accuracy by adopting a rational detection mode in humidity detection based on temperature detection.

【0005】[0005]

【課題を解決するための手段】本発明による加湿装置に
おける湿度検出方法の第1の特徴構成は、加湿対象空気
を湿潤層に対し通過させて加湿する加湿装置において、
加湿対象空気の温度、及び、前記湿潤層を通過した加湿
空気の温度を検出し、加湿対象空気と加湿空気との絶対
湿度差と前記湿潤層における飽和効率との相互変化特
性、及び、前記湿潤層における湿度変化勾配特性を認知
し、前記の湿度変化勾配特性と検出加湿対象空気温度と
検出加湿空気温度とに基づいて加湿対象空気と加湿空気
との絶対湿度差を求め、この絶対湿度差と前記の相互変
化特性と検出加湿対象空気温度とに基づいて加湿対象空
気の相対湿度、又は、絶対湿度を算出することにある。
A first characteristic configuration of a humidity detecting method in a humidifying device according to the present invention is a humidifying device for humidifying air to be humidified by allowing air to be humidified to pass through a humidifying layer.
The temperature of the humidifying target air and the temperature of the humidifying air that has passed through the wetting layer are detected, and the mutual change characteristic between the absolute humidity difference between the humidifying target air and the humidifying air and the saturation efficiency in the wetting layer, and the wetting Recognizing the humidity change gradient characteristics in the layer, obtain the absolute humidity difference between the humidification target air and the humidified air based on the humidity change gradient characteristics and the detected humidification target air temperature and the detected humidification air temperature, and this absolute humidity difference The relative humidity or the absolute humidity of the humidification target air is calculated based on the mutual change characteristic and the detected humidification target air temperature.

【0006】又、本発明による加湿装置における湿度検
出装置の第1の特徴構成は、加湿対象空気を湿潤層に対
し通過させて加湿する加湿装置において、加湿対象空気
の温度、及び、前記湿潤層を通過した加湿空気の温度を
検出する温度検出手段と、加湿対象空気と加湿空気との
絶対湿度差と前記湿潤層における飽和効率との相互変化
特性、及び、前記湿潤層における湿度変化勾配特性を記
憶する記憶手段と、前記の湿度変化勾配特性と検出加湿
対象空気温度と検出加湿空気温度とに基づいて加湿対象
空気と加湿空気との絶対湿度差を求め、この絶対湿度差
と前記の相互変化特性と検出加湿対象空気温度とに基づ
いて加湿対象空気の相対湿度、又は、絶対湿度を算出す
る演算手段とを設けたことにある。
The first characteristic configuration of the humidity detecting device in the humidifying device according to the present invention is the humidifying device for humidifying the humidifying target air by allowing the humidifying target air to pass through the humidifying layer and the humidifying target air. Temperature detection means for detecting the temperature of the humidified air passing through, the mutual change characteristics of the absolute humidity difference between the humidification target air and the humidified air and the saturation efficiency in the humidified layer, and the humidity change gradient characteristic in the humidified layer. Storage means for storing, the absolute humidity difference between the humidification target air and the humidification air based on the humidity change gradient characteristics, the detected humidification target air temperature and the detected humidification air temperature, the absolute humidity difference and the mutual change The calculation means for calculating the relative humidity or the absolute humidity of the humidification target air based on the characteristics and the detected humidification target air temperature is provided.

【0007】そして、これら第1特徴構成の作用・効果
は次の通りである。
The operation and effect of these first characteristic configurations are as follows.

【0008】[0008]

【作用】つまり、本発明における湿度検出方法の上記第
1特徴構成、及び、湿度検出装置の第1特徴構成のいず
れにおいても(図2参照)、加湿対象空気Ahの温湿度
変化に対する飽和効率ηx変化において、加湿対象空気
Ahと湿潤層21を通過した加湿空気Amとの絶対湿度
差Δx(h−m)(換言すれば水蒸気分圧差)と飽和効
率ηxとが湿潤層21の仕様によって決まる特定の相関
関係をもって相互変化するという特性に着目し、この相
互変化特性Fηxを、湿潤層21における湿度変化勾配
特性K(例えば、断熱加湿では空気線図上、等湿球温度
線の勾配や近似的に等エンタルピ線の勾配で空気が状態
変化するといった、加湿形態によって決まる特性)とと
もに認知し、又、湿度検出装置では記憶手段に記憶させ
ておく。
That is, in both the first characteristic configuration of the humidity detecting method and the first characteristic configuration of the humidity detecting device according to the present invention (see FIG. 2), the saturation efficiency ηx with respect to the temperature / humidity change of the humidification target air Ah. In the change, the absolute humidity difference Δx (hm) (in other words, the steam partial pressure difference) between the humidifying target air Ah and the humidifying air Am that has passed through the wetting layer 21 and the saturation efficiency ηx are determined by the specifications of the wetting layer 21. Paying attention to the characteristic that they mutually change with a correlation of, the mutual change characteristic F ηx is calculated by changing the humidity change gradient characteristic K in the wetting layer 21 (for example, in adiabatic humidification, the gradient of an isohumid bulb temperature line or an approximate curve on an air diagram). The air condition changes according to the gradient of the isenthalpy line, which is a characteristic determined by the humidification form), and is stored in the storage means in the humidity detecting device.

【0009】これにより、加湿対象空気Ah、及び、湿
潤層21を通過した加湿空気Amの温度検出に対し、そ
れら検出温度th,tmの温度差(th−tm)と上記
の湿度変化勾配特性Kとをもって、加湿対象空気Ahと
加湿後の加湿空気Amとの絶対湿度差Δx(h−m)を
求めることができる。
As a result, in detecting the temperature of the humidification target air Ah and the humidification air Am that has passed through the wetting layer 21, the temperature difference (th-tm) between the detected temperatures th and tm and the above-mentioned humidity change gradient characteristic K. With, the absolute humidity difference Δx (hm) between the humidifying target air Ah and the humidified air Am can be obtained.

【0010】又、この絶対湿度差Δx(h−m)と上記
の相互変化特性Fηxとに基づき、そのときの飽和効率
ηxを確定した状態で、湿潤層通過に伴う加湿で飽和状
態にまで達した場合の空気Apと加湿対象空気Ahとの
理論絶対湿度差Δx(h−p)(すなわち、飽和効率η
xが100%である理想状態での加湿対象空気Ahと湿
潤層21を通過した加湿空気Apとの絶対湿度差)を求
めることができる。
Further, based on this absolute humidity difference Δx (hm) and the above mutual change characteristic Fηx, the saturation efficiency ηx at that time is fixed, and the saturated state is reached by humidification accompanying the passage of the wetting layer. The theoretical absolute humidity difference Δx (hp) between the air Ap and the humidifying target air Ah (that is, the saturation efficiency η
The absolute humidity difference between the humidification target air Ah and the humidified air Ap that has passed through the wetting layer 21 in the ideal state where x is 100% can be obtained.

【0011】そして、前記の湿度変化勾配特性Kの元で
検出加湿対象空気温度thから加湿した場合の飽和状態
点Apとの絶対湿度差Δxが上記の理論絶対湿度差Δx
(h−p)となる検出加湿対象空気温度th上の空気状
態点Ahを逆算する形態をもって、加湿対象空気Ahの
相対湿度rhや絶対湿度xhを算出できる。
Then, the absolute humidity difference Δx from the saturated state point Ap when the detected humidification target air temperature th is humidified based on the humidity change gradient characteristic K is the theoretical absolute humidity difference Δx.
The relative humidity rh and the absolute humidity xh of the humidification target air Ah can be calculated in a form of back-calculating the air state point Ah on the detected humidification target air temperature th that is (hp).

【0012】[0012]

【発明の効果】すなわち、本発明による湿度検出方法の
第1特徴構成によれば、湿度センサを用いずに空気の温
度検出にのみ基づく加湿対象空気の湿度検出において、
上述の作用の如く飽和効率の変化を正確に把握した状態
で加湿対象空気の湿度を算出するようにしたことで、飽
和効率を単に一定値に仮定して演算する従来形態に比
べ、検出誤差を抑止して湿度検出精度を大きく向上し得
る。
That is, according to the first characteristic configuration of the humidity detecting method of the present invention, in the humidity detection of the humidification target air based only on the temperature detection of the air without using the humidity sensor,
Since the humidity of the air to be humidified is calculated while accurately grasping the change in the saturation efficiency as in the above-described operation, the detection error can be reduced as compared with the conventional mode in which the saturation efficiency is simply assumed to be a constant value. By suppressing it, the humidity detection accuracy can be greatly improved.

【0013】又、本発明による湿度検出装置の第1特徴
構成によれば、上記と同様に従来形態に比べ検出誤差を
抑止して湿度検出精度を大きく向上した状態で、空気温
度検出のみに基づき加湿対象空気の湿度を自動的に算出
できる。
Further, according to the first characteristic configuration of the humidity detecting device of the present invention, the humidity detecting accuracy is greatly improved and the humidity detecting accuracy is greatly improved as compared with the conventional embodiment in the same manner as described above. The humidity of the humidification target air can be automatically calculated.

【0014】〔本発明の第2特徴構成〕本発明による加
湿装置における湿度検出方法の第2の特徴構成は、前記
の加湿対象空気を加熱手段により加熱した空気とし、加
湿対象空気の算出絶対湿度と前記加熱手段への導入空気
の検出温度とに基づいて前記加熱手段への導入空気の相
対湿度を算出し、検出加湿対象空気温度と検出導入空気
温度と前記加熱手段の出力に基づいて導入空気の風量を
検出し、風量変化による前記相互変化特性の変化に対
し、検出導入空気風量に基づいて湿度算出に補正を加え
ることにある。
[Second Characteristic Configuration of the Present Invention] A second characteristic configuration of the humidity detecting method in the humidifying device according to the present invention is that the air to be humidified is heated by the heating means, and the calculated absolute humidity of the air to be humidified. And the relative temperature of the introduced air to the heating means is calculated based on the detected temperature of the introduced air to the heating means, and the introduced air based on the detected humidification target air temperature, the detected introduced air temperature and the output of the heating means. Is detected, and the change in the mutual change characteristic due to the change in air volume is corrected in the humidity calculation based on the detected introduced air volume.

【0015】又、本発明による加湿装置における湿度検
出装置の第2の特徴構成は、前記の加湿対象空気が加熱
手段により加熱した空気であり、前記演算手段を、加湿
対象空気の算出絶対湿度と前記加熱手段への導入空気の
検出温度とに基づいて前記加熱手段への導入空気の相対
湿度を算出するように構成し、検出加湿対象空気温度と
検出導入空気温度と前記加熱手段の出力に基づいて導入
空気の風量を検出する風量検出手段、及び、風量変化に
よる前記相互変化特性の変化に対し、検出導入空気風量
に基づいて前記演算手段による湿度算出に補正を加える
補正手段を設けたことにある。
A second characteristic configuration of the humidity detecting device in the humidifying device according to the present invention is that the air to be humidified is the air heated by the heating means, and the calculating means is set to the calculated absolute humidity of the air to be humidified. It is configured to calculate the relative humidity of the introduced air to the heating means based on the detected temperature of the introduced air to the heating means, based on the detected humidification target air temperature, the detected introduced air temperature and the output of the heating means. The air volume detection means for detecting the air volume of the introduced air, and the correction means for correcting the change in the mutual change characteristic due to the air volume change to the humidity calculation by the calculation means based on the detected introduced air volume. is there.

【0016】つまり、本発明における湿度検出方法の上
記第2特徴構成、及び、湿度検出装置の第2特徴構成の
いずれにおいても(同図2参照)、加熱手段20により
加熱した空気Ahを加湿対象空気とすることにより、導
入空気温度tiが低温である場合に対しても大きな加湿
量を確保でき、又、導入空気温度tiが氷点下である場
合における湿潤層21での凍結トラブルを防止できる。
That is, in both the second characteristic configuration of the humidity detecting method and the second characteristic configuration of the humidity detecting device of the present invention (see FIG. 2), the air Ah heated by the heating means 20 is to be humidified. By using air, a large amount of humidification can be secured even when the introduced air temperature ti is low, and freezing trouble in the wetting layer 21 when the introduced air temperature ti is below freezing can be prevented.

【0017】そして、このように導入空気Aiを加熱し
た上で加湿する形態において、導入空気Aiは加熱手段
20での加熱により絶対湿度xが一定の状態で温度tの
み上昇することから、導入空気Aiの温度tiを検出す
れば、その検出導入空気温度tiと前記の第1特徴構成
による加湿対象空気Ah(加熱手段20を通過した空
気)の算出絶対湿度xhとに基づいて、加熱手段20へ
の導入空気Aiの相対湿度riを算出できる。
In this way, in the mode in which the introduced air Ai is heated and then humidified, since the introduced air Ai is heated by the heating means 20, only the temperature t rises in the state where the absolute humidity x is constant. When the temperature ti of Ai is detected, the temperature is introduced into the heating means 20 based on the detected introduction air temperature ti and the calculated absolute humidity xh of the humidifying target air Ah (air that has passed through the heating means 20) according to the first characteristic configuration. The relative humidity ri of the introduced air Ai can be calculated.

【0018】又、湿潤層21の飽和効率ηxは導入空気
Aiの風量Q(すなわち、湿潤層通過風量)によって変
化し、これにより、前記の相互変化特性Fηxも導入空
気風量Qの変化に伴い変化するが、これに対し、前記の
加熱手段20を風量検出に合理的に利用して、検出加湿
対象空気温度thと検出導入空気温度tiと加熱手段2
0の出力Hに基づき次式の関係、すなわち、 Q=H/(th−ti)・C (Cは空気比熱) から導入空気Aiの風量Qを検出し、この検出風量Qに
基づき湿度算出に補正を加えることにより、風量変化に
かかわらず導入空気Aiの相対湿度riを常に正確に得
ることができる。
Further, the saturation efficiency ηx of the wetting layer 21 changes depending on the air volume Q of the introduced air Ai (that is, the air volume passing through the wetting layer), so that the mutual change characteristic Fηx also changes with the change of the introduced air volume Q. However, on the other hand, the heating means 20 is rationally used to detect the air volume, and the detected humidifying target air temperature th, the detected introduced air temperature ti, and the heating means 2 are used.
Based on the output H of 0, the air flow rate Q of the introduced air Ai is detected from the following equation, that is, Q = H / (th-ti) .C (C is the specific heat of air), and the humidity is calculated based on this detected air flow rate Q. By adding the correction, the relative humidity ri of the introduced air Ai can always be obtained accurately regardless of the change in the air volume.

【0019】[0019]

【実施例】次に実施例を説明する。EXAMPLES Next, examples will be described.

【0020】図1は作物貯蔵室1に対する空調設備を示
し、貯蔵室1における一側壁のほぼ全面を多孔構成や多
列スリット構成の吹出口2とし、又、それに対向する側
壁のほぼ全面を同じく多孔構成や多列スリット構成の吸
込口3とし、これにより室内空気Aiを室内全域におい
て横向き層流状に流動させて、室内を均一に、換言すれ
ば、貯蔵作物に対し均一に空調を施すようにしてある。
FIG. 1 shows an air conditioning facility for the crop storage room 1, in which almost one side wall of the storage room 1 is used as a blow-out port 2 having a porous structure or a multi-row slit structure, and almost the entire side wall facing the same is the same. The suction port 3 having a porous structure or a multi-row slit structure is used to make the indoor air Ai flow laterally in a laminar manner in the entire room so that the room is uniformly air-conditioned, in other words, the stored crops are uniformly air-conditioned. I am doing it.

【0021】貯蔵室1の一側部に配置したヒートポンプ
式空調機4から吹出口2へは二重壁構造に形成した給気
風路5及び給気チャンバ6を介して調整空気Asを供給
し、又、吸込口3からの吸込空気Arは還気チャンバ7
及び還気風路8を介して空調機4に戻すようにしてあ
る。
Conditioned air As is supplied from the heat pump type air conditioner 4 arranged on one side of the storage chamber 1 to the air outlet 2 via the air supply air passage 5 and the air supply chamber 6 formed in a double wall structure, In addition, the suction air Ar from the suction port 3 is returned to the return air chamber 7
And it is returned to the air conditioner 4 via the return air passage 8.

【0022】図中9は循環ファン、D1〜D6は夫々、
ダンパであり、これらダンパD1〜D6の開度操作によ
り、貯蔵室1に対する通風形態として全循環方式、一部
外気導入循環方式、全外気方式を選択実施できるように
してある。
In the figure, 9 is a circulation fan, D1 to D6 are respectively,
It is a damper, and by operating the opening degree of these dampers D1 to D6, the total circulation system, the partial external air introduction circulation system, and the total external air system can be selectively implemented as the ventilation mode for the storage chamber 1.

【0023】又、循環ファン9には軸流ファンを採用し
て、そのファン回転方向の正逆転切り換えにより貯蔵室
1における気流方向を逆向きにできるように、すなわ
ち、吹出口2を吸込口として用い、かつ、吸込口2を吹
出口として用いる形態を実施できるようにしてある。
An axial fan is used as the circulation fan 9 so that the air flow direction in the storage chamber 1 can be reversed by switching the fan rotation direction between forward and reverse, that is, the outlet 2 is used as a suction port. It is configured such that the suction port 2 can be used as the air outlet.

【0024】給気チャンバ6及び還気チャンバ7の夫々
において、10,11は吹出口2における空気吹出分布
や吸込口3における空気吸込分布を均一化するための整
風体である。
In each of the air supply chamber 6 and the return air chamber 7, 10 and 11 are air conditioning bodies for making the air blowout distribution at the air outlet 2 and the air intake distribution at the air inlet 3 uniform.

【0025】空調機4において、吹出口2への供給空気
Asを調整する室内器部分4Aは、除湿用熱交換器1
2、温調用熱交換器13、及び、それら熱交換器12,
13に対して調整対象空気Arを通風するファン14を
直列に並べて風胴15に内装した構造としてあり、一
方、室外器部分4Bには吸放熱用熱交換器16、及び、
それに対して外気を通風するファン17を備えさせてあ
る。
In the air conditioner 4, the indoor unit portion 4A for adjusting the supply air As to the air outlet 2 is the dehumidifying heat exchanger 1
2, heat exchanger 13 for temperature control, and those heat exchangers 12,
13 has a structure in which fans 14 for ventilating the adjustment target air Ar are arranged in series and installed in a wind tunnel 15. On the other hand, the outdoor unit portion 4B has a heat exchanger 16 for absorbing and radiating heat, and
On the other hand, a fan 17 for ventilating the outside air is provided.

【0026】空調機4の運転としては冷媒流れ形態の切
り換えにより下記の如き運転を実施する。
As the operation of the air conditioner 4, the following operation is carried out by switching the refrigerant flow form.

【0027】除湿用熱交換器12を機能停止させた状態
で、温調用熱交換器13を凝縮器として機能させ、か
つ、吸放熱用熱交換器16を蒸発器として機能させ、も
って、吸放熱用熱交換器16で外気から吸熱しながら温
調用熱交換器13で空気を加熱温調する暖房運転。
With the dehumidifying heat exchanger 12 stopped functioning, the temperature adjusting heat exchanger 13 functions as a condenser, and the heat absorbing / releasing heat exchanger 16 functions as an evaporator. A heating operation in which the heat control heat exchanger 16 absorbs heat from the outside air while the temperature control heat exchanger 13 heats the air.

【0028】除湿用熱交換器12及び吸放熱用熱交換器
16を蒸発器として機能させ、かつ、温調用熱交換器1
3を凝縮器として機能させ、もって、吸放熱用熱交換器
16で外気から吸熱しながら、除湿用熱交換器12で空
気を冷却除湿するとともに、その冷却除湿空気を温調用
熱交換器13で再熱温調する暖房乾燥運転。
The dehumidifying heat exchanger 12 and the heat absorbing / releasing heat exchanger 16 function as an evaporator, and the temperature adjusting heat exchanger 1
3 is made to function as a condenser, and while heat is absorbed from the outside air by the heat-absorbing and heat-dissipating heat exchanger 16, the dehumidifying heat exchanger 12 cools and dehumidifies the air, and the cooled dehumidified air is heat-controlled by the heat exchanger 13. Heating and drying operation to reheat temperature.

【0029】除湿用熱交換器12を機能停止させた状態
で、温調用熱交換器13を蒸発器として機能させ、か
つ、吸放熱用熱交換器16を凝縮器として機能させ、も
って、吸放熱用熱交換器16で外気へ放熱しながら温調
用熱交換器13で空気を冷却温調する冷房運転。
With the dehumidifying heat exchanger 12 stopped functioning, the temperature adjusting heat exchanger 13 functions as an evaporator, and the heat absorbing / releasing heat exchanger 16 functions as a condenser. A cooling operation in which the heat control heat exchanger 16 radiates heat to the outside air while the temperature control heat exchanger 13 cools the air.

【0030】除湿用熱交換器12を蒸発器として機能さ
せ、かつ、温調用熱交換器13及び吸放熱用熱交換器1
6を凝縮器として機能させ、もって、吸放熱用熱交換器
16で外気へ放熱しながら、除湿用熱交換器12で空気
を冷却除湿するとともに、その冷却除湿空気を温調用熱
交換器13で再熱温調する冷房乾燥運転。
The dehumidifying heat exchanger 12 functions as an evaporator, and the temperature adjusting heat exchanger 13 and the heat absorbing / releasing heat exchanger 1
6 is made to function as a condenser, and while the heat is absorbed and released by the heat exchanger 16 to the outside air, the dehumidifying heat exchanger 12 cools and dehumidifies the air, and the cooled dehumidified air is controlled by the temperature control heat exchanger 13. Cooling and drying operation to reheat temperature.

【0031】吸放熱用熱交換器16を機能停止させた状
態で、除湿用熱交換器12を蒸発器として機能させ、か
つ、温調用熱交換器13を凝縮器として機能させ、もっ
て、外部との熱授受を断った状態で、除湿用熱交換器1
2で空気を冷却除湿するとともに、その冷却除湿空気を
温調用熱交換器13で再熱する乾燥運転。
With the heat exchanger 16 for absorbing and radiating heat stopped, the heat exchanger 12 for dehumidification functions as an evaporator, and the heat exchanger 13 for temperature control functions as a condenser, so that it can be connected to the outside. Dehumidifying heat exchanger 1 with heat transfer
A drying operation in which the air is cooled and dehumidified in 2 and the cooled dehumidified air is reheated in the temperature adjustment heat exchanger 13.

【0032】上記の空調機4に対し貯蔵室1には加湿装
置18を設置してあり、暖房運転時や空調機運転を停止
した状態での換気運転時、又、場合によっては冷房運転
時等において、この加湿装置18により貯蔵室1を所望
の湿度状態に保つようにしてある。
A humidifier 18 is installed in the storage room 1 in contrast to the air conditioner 4 described above, and during heating operation, ventilation operation with the air conditioner stopped, or cooling operation in some cases. In the above, the humidifying device 18 keeps the storage chamber 1 in a desired humidity state.

【0033】加湿装置18は、ファン19、ヒータ2
0、加湿板21を直列に並べて風胴22に内装した構造
としてあり、ファン19の運転により、貯蔵室1内の空
気Aiを風胴22に導入し、その導入空気Aiをヒータ
20及び加湿板21に対しその順に通過させた上で風胴
他端側の加湿空気吐出口から貯蔵室1に戻すようにして
ある。
The humidifier 18 includes a fan 19 and a heater 2.
0 and the humidifying plates 21 are arranged in series in the wind tunnel 22, and the air Ai in the storage chamber 1 is introduced into the wind tunnel 22 by the operation of the fan 19, and the introduced air Ai is supplied to the heater 20 and the humidifying plate. 21 is passed in that order and then returned to the storage chamber 1 from the humidified air discharge port on the other end side of the wind tunnel.

【0034】加湿板21には通気性及び含水性を有する
セラミックス板を採用してあり、給水装置23からの散
水により加湿板21を含水湿潤状態に保ち、この湿潤状
態の加湿板21に対しヒータ20による加熱空気Ahを
通風することにより、その加熱空気Ahからの気化熱奪
取で加湿板21から水を蒸発させて通過空気Ahを加湿
する、いわゆる気化式水加湿方式を採用してある。
As the humidifying plate 21, a ceramic plate having air permeability and water content is adopted, and the humidifying plate 21 is kept in a water containing and wet state by sprinkling water from the water supply device 23, and the humidifying plate 21 in this wet state is heated by a heater. A so-called vaporization-type water humidification method is adopted, in which the heating air Ah is blown by 20 to evaporate water from the humidification plate 21 by absorbing heat of vaporization from the heating air Ah to humidify the passing air Ah.

【0035】24は加湿板21から滴下する余剰水を受
け止めるパンであり、23vは加湿板21に対する散水
を発停する電磁弁である。
Reference numeral 24 is a pan for receiving excess water dropped from the humidifying plate 21, and 23v is an electromagnetic valve for starting and stopping water spraying on the humidifying plate 21.

【0036】25は加湿装置18の制御器であり、この
制御器25は風胴内通過過程における各段階での空気温
度検出に基づき導入空気Ai(すなわち、貯蔵室1の室
内空気)の相対湿度riを検出して、この相対湿度検出
に基づき貯蔵室1を所望の湿度状態に保つように加湿装
置18を運転制御するものとしてある。
Reference numeral 25 is a controller of the humidifying device 18, and this controller 25 detects the relative humidity of the introduced air Ai (that is, the room air of the storage chamber 1) based on the air temperature detection at each stage in the passage through the wind tunnel. ri is detected, and the humidifying device 18 is controlled so as to maintain the storage chamber 1 in a desired humidity state based on the relative humidity detection.

【0037】26は導入空気Aiの温度tiを検出する
第1センサ、27はヒータ通過後における加熱空気Ah
の温度thを検出する第2センサ、28は加湿用湿潤層
である加湿板通過後における加湿空気Amの温度tmを
検出する第3センサである。
26 is a first sensor for detecting the temperature ti of the introduced air Ai, and 27 is heated air Ah after passing through the heater.
Is a second sensor for detecting the temperature th of the above, and 28 is a third sensor for detecting the temperature tm of the humidified air Am after passing through the humidifying plate which is the humidifying layer for humidification.

【0038】又、制御器25における記憶部25aに
は、加湿板21における湿度変化勾配特性、加熱空気A
hと加湿空気Amとの絶対湿度差Δx(h−m)と加湿
板21における飽和効率ηxとの相互変化特性、並び
に、風量偏差ΔQに対する特性補正係数eを、湿り空気
の状態値データとともに記憶させてある。
The storage unit 25a of the controller 25 stores the humidity change gradient characteristics of the humidifying plate 21 and the heated air A.
The mutual change characteristic between the absolute humidity difference Δx (hm) between h and the humidified air Am and the saturation efficiency ηx of the humidifying plate 21, and the characteristic correction coefficient e for the air volume deviation ΔQ are stored together with the state value data of the humidified air. I am allowed to do it.

【0039】尚、本例においては加湿板21の通過に伴
い空気線図(図2参照)上で等エンタルピ線Lに沿って
空気が状態変化(Ah〜Am)する加湿形態を採用して
いるのに対し、上記の湿度変化勾配特性として、具体的
には空気線図上での等エンタルピ線Lの勾配値Kを記憶
させてある。
In this example, the humidification mode is employed in which the air changes its state (Ah to Am) along the isenthalpy line L on the air diagram (see FIG. 2) as it passes through the humidification plate 21. On the other hand, as the humidity change gradient characteristic, specifically, the gradient value K of the isenthalpic line L on the psychrometric chart is stored.

【0040】又、上記の相互変化特性については、加湿
板21に通過させる加湿対象空気としての加熱空気Ah
の状態変化に伴い、設定定格風量条件において、加熱空
気Ahと加湿板21を通過した加湿空気Amとの絶対湿
度差Δx(h−m)と、飽和効率ηxとが加湿板21の
仕様によって決まる特定の相関関係に従い相互変化する
ことに対し、その相関関係を示す関数Fηxを上記の相
互変化特性として記憶させてあり、具体的には図3に示
すように、加熱空気Ahと加湿空気Amとの絶対湿度差
Δx(h−m)及び、飽和効率を100%として加湿板
通過に伴う加湿で飽和状態にまで達した場合の空気Ap
と加熱空気Ahとの理論絶対湿度差Δx(h−p)を変
数とする関数Fηxの形で記憶させてある。
Regarding the above mutual change characteristics, the heated air Ah as the humidification target air to be passed through the humidification plate 21.
In accordance with the change in the state of, the absolute humidity difference Δx (hm) between the heated air Ah and the humidified air Am passing through the humidifying plate 21 and the saturation efficiency ηx are determined by the specifications of the humidifying plate 21 under the set rated air volume condition. The function F ηx indicating the correlation is stored as the above-mentioned mutual change characteristic in response to the mutual change according to the specific correlation, and specifically, as shown in FIG. 3, the heating air Ah and the humidified air Am are stored. Absolute humidity difference Δx (hm) and air Ap when the saturation efficiency is set to 100% and the saturated state is reached by the humidification accompanying the passage of the humidifying plate.
And the theoretical absolute humidity difference Δx (hp) between the heated air Ah and the heated air Ah are stored in the form of a function Fηx having a variable.

【0041】図3に示す関数Fηxのグラフにおいて飽
和効率ηxはグラフFηxの各点における接線の勾配と
して表され、又、図3において破線で示すグラフは仕様
の異なる加湿板21における上記の相互変化特性を示す
ものである。
In the graph of the function Fηx shown in FIG. 3, the saturation efficiency ηx is expressed as the gradient of the tangent line at each point of the graph Fηx, and the graph shown by the broken line in FIG. 3 shows the above mutual change in the humidifying plate 21 having different specifications. It shows the characteristics.

【0042】制御器25による加湿装置18の運転制御
については(図2参照)、ファン19を運転するととも
にヒータ20を加熱作動させ、又、給水装置23による
加湿板21への散水を実施している運転状態において、
検出加熱空気温度th、検出加湿空気温度tm、及び、
湿度変化勾配特性としての記憶勾配値Kに基づき次式で
表される演算をもって、
Regarding the operation control of the humidifying device 18 by the controller 25 (see FIG. 2), the fan 19 is operated and the heater 20 is heated, and the water supplying device 23 sprays water on the humidifying plate 21. In operating condition
Detected heating air temperature th, detected humidified air temperature tm, and
Based on the stored gradient value K as the humidity change gradient characteristic, with the calculation represented by the following equation,

【0043】Δx(h−m)=K・(th−tp)Δx (hm) = K · (th-tp)

【0044】加熱空気Ahと加湿空気Amとの絶対湿度
差Δx(h−m)を演算部25bで算出し、この算出し
た絶対湿度差Δx(h−m)と相互変化特性としての記
憶関数Fηxとに基づき、その運転状態での理論絶対湿
度差Δx(h−p)を演算部25bで算出する。
An absolute humidity difference Δx (h-m) between the heated air Ah and the humidified air Am is calculated by the arithmetic unit 25b, and the calculated absolute humidity difference Δx (h-m) and a storage function Fηx as a mutual change characteristic. Based on the above, the calculation unit 25b calculates the theoretical absolute humidity difference Δx (hp) in the operating state.

【0045】又、これに並行して、制御器25における
風量検出部25cは、検出導入空気温度ti、検出加熱
空気温度th、及び、別途検出されるヒータ20の発熱
量Hに基づいて次式に表される演算により、
In parallel with this, the air flow rate detection unit 25c in the controller 25 calculates the following equation based on the detected introduction air temperature ti, the detected heating air temperature th, and the heat generation amount H of the heater 20 which is separately detected. By the operation represented in

【0046】Q=H/(th−ti)・C (但し、Cは空気比熱)Q = H / (th-ti) .C (where C is the specific heat of air)

【0047】風胴22内への導入風量Qを算出し、The amount Q of air introduced into the wind tunnel 22 is calculated,

【0048】この風量算出に対し、制御部25における
補正部25dが、加湿板21での目詰まり発生等に起因
する風量偏差、すなわち、算出風量Qと設定定格風量Q
fとの偏差ΔQ(=Q−Qf)に応じた特性補正係数e
を記憶部25aから抽出して、次式に示す如く、この特
性補正係数eを上記の理論絶対湿度差Δx(h−p)に
乗じることにより、風量変化による前記の相互変化特性
の変化に対し理論絶対湿度差Δx(h−p)を補正す
る。
For this air volume calculation, the correction unit 25d in the control unit 25 causes the air volume deviation caused by the occurrence of clogging in the humidifying plate 21, that is, the calculated air volume Q and the set rated air volume Q.
Characteristic correction coefficient e according to the deviation ΔQ (= Q−Qf) from f
Is extracted from the storage unit 25a, and the characteristic correction coefficient e is multiplied by the theoretical absolute humidity difference Δx (hp) as shown in the following equation, so that the change in the mutual change characteristic due to the change in the air volume can be reduced. Correct the theoretical absolute humidity difference Δx (hp).

【0049】 Δx(h−p)(補正値)←Δx(h−p)・eΔx (hp) (correction value) ← Δx (hp) · e

【0050】そして、記憶勾配値Kで検出加熱空気温度
thから加湿状態変化させた場合における飽和状態点A
pとの絶対湿度差Δxが上記の補正を施した理論絶対湿
度差Δx(h−p)となる検出加熱空気温度th上の空
気状態点Ahを湿り空気の状態値データに基づき逆算す
る演算形態で、そのときの加熱空気Ahの絶対湿度xh
を算出し、更に、ヒータ20での加熱では絶対湿度xが
一定の状態で温度tが上昇することに対し、加熱空気A
hの上記算出絶対湿度xhと検出導入空気温度tiとを
湿り空気の状態値データに照合する演算形態で、導入空
気Aiの相対湿度ri(すなわち貯蔵室1の室内相対湿
度)を演算部25bで算出する。
The saturated state point A when the humidified state is changed from the detected heated air temperature th with the stored gradient value K
A calculation form in which the air state point Ah on the detected heating air temperature th is calculated based on the state value data of the moist air so that the absolute humidity difference Δx with respect to p becomes the theoretical absolute humidity difference Δx (hp) with the above correction. Then, the absolute humidity of heated air Ah at that time xh
Further, when heating with the heater 20, the temperature t rises while the absolute humidity x is constant, whereas the heating air A
In the calculation mode in which the calculated absolute humidity xh of h and the detected introduction air temperature ti are compared with the state value data of the moist air, the calculation unit 25b calculates the relative humidity ri of the introduction air Ai (that is, the indoor relative humidity of the storage room 1). calculate.

【0051】このように加湿運転に並行して導入空気A
iの相対湿度riを逐次算出することにおいて、その算
出相対湿度riが設定された目標値riiにまで上昇す
ると、制御器25はファン19及びヒータ20を停止す
るとともに電磁弁23vを閉弁して加湿運転を停止す
る。
In this way, the introduced air A is supplied in parallel with the humidifying operation.
In the sequential calculation of the relative humidity ri of i, when the calculated relative humidity ri rises to the set target value rii, the controller 25 stops the fan 19 and the heater 20 and closes the solenoid valve 23v. Stop the humidifying operation.

【0052】又、制御器25は時間計測により、加湿運
転の停止時点から設定インターバル時間ΔTが経過する
と、ファン19及びヒータ20の運転を再開するととも
に電磁弁23vを再び開弁して加湿運転を再開し、この
加湿運転を算出相対湿度riが目標値riiとなるまで
継続する。
When the set interval time ΔT elapses from the time when the humidifying operation is stopped, the controller 25 restarts the operation of the fan 19 and the heater 20 and opens the solenoid valve 23v again to restart the humidifying operation. The humidifying operation is restarted and continued until the calculated relative humidity ri reaches the target value rii.

【0053】すなわち、導入空気Aiの相対湿度検出に
基づく加湿運転の停止と、設定インターバル時間ΔTの
計測による加湿運転の再開とを、以降、運転停止指令が
与えられるまで交互に繰り返し、これによって、貯蔵室
1の室内相対湿度riを貯蔵作物にとって好適な目標値
riiに調整・維持するようにしてある。
That is, the stop of the humidifying operation based on the detection of the relative humidity of the introduced air Ai and the restart of the humidifying operation based on the measurement of the set interval time ΔT are alternately repeated until an operation stop command is given. The indoor relative humidity ri of the storage room 1 is adjusted and maintained at a target value rii suitable for the stored crops.

【0054】〔別実施例〕次に別実施例を列記する。[Other Embodiments] Next, other embodiments will be listed.

【0055】本発明は、作物貯蔵室1の加湿に限らず、
対人の一般空調や紡績工場、クリーンルーム等の産業空
調における加湿にも適用できる。
The present invention is not limited to the humidification of the crop storage room 1,
It can also be applied to humidification in general air conditioning for people and industrial air conditioning such as spinning factories and clean rooms.

【0056】湿度演算において、絶対湿度xに相当する
値として水蒸気分圧を用いたり、又、相対湿度rに相当
する値として飽和水蒸気分圧に対する水蒸気分圧の比値
を用いてもよいことは言うまでもない。
In the humidity calculation, the water vapor partial pressure may be used as the value corresponding to the absolute humidity x, or the ratio of the water vapor partial pressure to the saturated water vapor partial pressure may be used as the value corresponding to the relative humidity r. Needless to say.

【0057】湿潤状態の通気性加湿板21に対し空気通
過させる加湿方式に代えて、ワッシャによる加湿方式を
採用してもよく、加湿用湿潤層には種々の形式を採用で
きる。
Instead of the humidifying method of passing air through the air-permeable humidifying plate 21 in the wet state, a humidifying method using a washer may be adopted, and various types of humidifying moist layers can be adopted.

【0058】断熱加湿では空気線図における等エンタル
ピ線Lの勾配値や湿球温度一定線の勾配値を湿度変化勾
配特性として採用するが、加湿用水に温水を用いる場合
等では、実験により加湿に伴う空気状態変化を関数化し
て、その関数を湿度変化勾配特性として記憶させるよう
にしてもよい。
In the adiabatic humidification, the gradient value of the isenthalpic line L and the gradient value of the constant wet-bulb temperature line in the psychrometric chart are adopted as the humidity change gradient characteristics. However, when hot water is used as the humidifying water, the humidification is experimentally performed. The accompanying air condition change may be made into a function and the function may be stored as the humidity change gradient characteristic.

【0059】加熱手段20を省略する場合には、加湿板
21やワッシャ域等の加湿用湿潤層へ導入する加湿対象
空気(前述実施例において空気Ahに相当)の相対湿度
rhや絶対湿度xhを検出対象湿度として本発明を実施
する。
When the heating means 20 is omitted, the relative humidity rh and the absolute humidity xh of the humidification target air (corresponding to the air Ah in the above-described embodiment) introduced into the humidification layer such as the humidification plate 21 and the washer area are set. The present invention is implemented as the humidity to be detected.

【0060】加湿対象空気Ahと加湿空気Amとの絶対
湿度差Δx(h−m)と飽和効率ηxとの相互変化特性
を関数化して記憶さえる場合、その関数の表現形態は前
述実施例の如き形態(すなわち、加湿対象空気Ahと加
湿空気Amとの絶対湿度差Δx(h−m)、及び、飽和
効率を100%としての加湿で飽和状態にまで達した場
合の空気Apと加熱空気Ahとの理論絶対湿度差Δx
(h−p)を変数とする表現形態)に限定されるもので
はなく、例えば、単純に飽和効率ηxを一方の変数とす
る表現形態を採用する等、種々の形態の関数化が可能で
ある。
When the mutual change characteristics of the absolute humidity difference Δx (hm) between the humidifying target air Ah and the humidifying air Am and the saturation efficiency ηx are made into a function and stored, the expression form of the function is as in the above-mentioned embodiment. Form (that is, the absolute humidity difference Δx (hm) between the humidifying target air Ah and the humidifying air Am, and the air Ap and the heated air Ah when reaching a saturated state by humidifying with a saturation efficiency of 100%. The absolute humidity difference Δx
It is not limited to (expression form using (hp) as a variable), and various forms of functionalization are possible, for example, simply adopting an expression form using the saturation efficiency ηx as one variable. ..

【0061】飽和効率ηxに関する前記の相互変化特性
Fηxが風量変化に伴い変化することに対し、それに応
じた補正を湿度算出に加えるにあたり、各風量値におけ
る相互変化特性Fηxを記憶手段25aに記憶させてお
き、検出風量Qに応じた相互変化特性Fηxを選択して
湿度算出に採用する構成としてもよく、風量変化に対す
る具体的補正形態は種々の変更が可能である。
The above-mentioned mutual change characteristic Fηx relating to the saturation efficiency ηx changes with the change of the air flow rate, however, when the corresponding correction is added to the humidity calculation, the mutual change characteristic Fηx at each air flow rate value is stored in the storage means 25a. Alternatively, the mutual change characteristic Fηx according to the detected air volume Q may be selected and used for the humidity calculation, and various concrete correction forms for the air volume change can be changed.

【0062】また逆に、風量Qを一定値に維持するよう
に風量検出に基づきファン19を出力調整する形態を採
用してもよい。
On the contrary, it is also possible to adopt a mode in which the output of the fan 19 is adjusted based on the detection of the air volume so as to maintain the air volume Q at a constant value.

【0063】加熱手段20の出力調整により加湿量を調
整するようにしてもよい。
The humidification amount may be adjusted by adjusting the output of the heating means 20.

【0064】倉庫やホール等の大空間における各部に加
湿装置18を設置して、それら各部ごとに湿度調整を図
る用にしてもよい。
The humidifying device 18 may be installed in each part in a large space such as a warehouse or a hall to adjust the humidity in each part.

【0065】本発明の湿度検出方法を実施するにあた
り、加湿対象空気Ahの温度th、加湿空気Amの温度
tm、導入空気Aiの温度ti、飽和効率ηxに関する
前記の相互変化特性Fηx、並びに、湿潤層21におけ
る湿度変化勾配特性Kを認知して、それらに基づき人為
演算により湿度算出を実施してもよい。
In carrying out the humidity detecting method of the present invention, the temperature th of the humidifying target air Ah, the temperature tm of the humidifying air Am, the temperature ti of the introduced air Ai, the mutual change characteristic Fηx relating to the saturation efficiency ηx, and the wetting. The humidity change gradient characteristic K in the layer 21 may be recognized, and the humidity calculation may be performed by artificial calculation based on them.

【0066】尚、特許請求の範囲の項に図面との対照を
便利にするため符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】貯蔵室への設置状態で示す装置構成図FIG. 1 is a device configuration diagram shown in an installed state in a storage room.

【図2】空気線図[Figure 2] Pneumatic diagram

【図3】飽和効率に関する特性を示すグラフFIG. 3 is a graph showing characteristics regarding saturation efficiency.

【図4】従来の湿度検出形態を説明する空気線図FIG. 4 is a psychrometric chart explaining a conventional humidity detection mode.

【符号の説明】[Explanation of symbols]

20 加熱手段 21 湿潤層 25a 記憶手段 25b 演算手段 25c 風量検出手段 25d 補正手段 26 温度検出手段 27 温度検出手段 28 温度検出手段 Ah 加湿対象空気 Ai 導入空気 Am 加湿空気 Fηx 相互変化特性 H 加熱手段出力 K 湿度変化勾配特性 Q 風量 rh 加湿対象空気相対湿度 ri 導入空気相対湿度 th 加湿対象空気温度 ti 導入空気温度 tm 加湿空気温度 xh 加湿対象空気絶対湿度 Δx(h−m)絶対湿度差 ηx 飽和効率 20 Heating Means 21 Wetting Layer 25a Storage Means 25b Computing Means 25c Air Volume Detection Means 25d Correction Means 26 Temperature Detection Means 27 Temperature Detection Means 28 Temperature Detection Means Ah Humidification Target Air Ai Introduced Air Am Humidified Air Fηx Mutual Change Characteristics H Heating Means Output K Humidity change gradient characteristics Q Air flow rate rh Humidification target air relative humidity ri Introduced air relative humidity th Humidification target air temperature ti Introduced air temperature tm Humidification air temperature xh Humidification target air absolute humidity Δx (h-m) Absolute humidity difference ηx Saturation efficiency

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加湿対象空気(Ah)を湿潤層(21)
に対し通過させて加湿する加湿装置における湿度検出方
法であって、 加湿対象空気(Ah)の温度(th)、及び、前記湿潤
層(21)を通過した加湿空気(Am)の温度(tm)
を検出し、 加湿対象空気(Ah)と加湿空気(Am)との絶対湿度
差(Δx(h−m))と前記湿潤層(21)における飽
和効率(ηx)との相互変化特性(Fηx)、及び、前
記湿潤層(21)における湿度変化勾配特性(K)を認
知し、 前記の湿度変化勾配特性(K)と検出加湿対象空気温度
(th)と検出加湿空気温度(tm)とに基づいて加湿
対象空気(Ah)と加湿空気(Am)との絶対湿度差
(Δx(h−m))を求め、 この絶対湿度差(Δx(h−m))と前記の相互変化特
性(Fηx)と検出加湿対象空気温度(th)とに基づ
いて加湿対象空気(Ah)の相対湿度(rh)、又は、
絶対湿度(xh)を算出する加湿装置における湿度検出
方法。
1. A humidifying layer (21) for humidifying target air (Ah).
A method for detecting humidity in a humidifying device for humidifying air by passing it to a temperature (th) of air (Ah) to be humidified, and a temperature (tm) of humid air (Am) that has passed through the wetting layer (21).
And a mutual change characteristic (Fηx) between the absolute humidity difference (Δx (hm)) between the humidified air (Ah) and the humidified air (Am) and the saturation efficiency (ηx) in the wetting layer (21). , And the humidity change gradient characteristic (K) in the wet layer (21) is recognized, and based on the humidity change gradient characteristic (K), the detected humidification target air temperature (th), and the detected humidification air temperature (tm). To obtain the absolute humidity difference (Δx (h-m)) between the humidification target air (Ah) and the humidified air (Am), and the absolute humidity difference (Δx (h-m)) and the mutual change characteristic (Fηx). And the relative humidity (rh) of the humidification target air (Ah) based on the detected humidification target air temperature (th), or
A method for detecting humidity in a humidifier that calculates absolute humidity (xh).
【請求項2】 前記の加湿対象空気(Ah)を加熱手段
(20)により加熱した空気とし、加湿対象空気(A
h)の算出絶対湿度(xh)と前記加熱手段(20)へ
の導入空気(Ai)の検出温度(ti)とに基づいて前
記加熱手段(20)への導入空気(Ai)の相対湿度
(ri)を算出し、 検出加湿対象空気温度(th)と検出導入空気温度(t
i)と前記加熱手段(20)の出力(H)に基づいて導
入空気(Ai)の風量(Q)を検出し、 風量変化による前記相互変化特性(Fηx)の変化に対
し、検出導入空気風量(Q)に基づいて湿度算出に補正
を加える請求項1記載の加湿装置における湿度検出方
法。
2. The air to be humidified (Ah) is heated by a heating means (20) to obtain the air to be humidified (Ah).
Based on the calculated absolute humidity (xh) of h) and the detected temperature (ti) of the air introduced into the heating means (20) (ti), the relative humidity of the introduced air (Ai) into the heating means (20) ( ri) is calculated, and the detected humidification target air temperature (th) and the detected introduction air temperature (t
i) and the output (H) of the heating means (20), the air volume (Q) of the introduced air (Ai) is detected, and the detected introduced air air volume with respect to the change of the mutual change characteristic (Fηx) due to the air volume change. The humidity detecting method in the humidifying device according to claim 1, wherein the humidity calculation is corrected based on (Q).
【請求項3】 加湿対象空気(Ah)を湿潤層(21)
に対し通過させて加湿する加湿装置における湿度検出装
置であって、 加湿対象空気(Ah)の温度(th)、及び、前記湿潤
層(21)を通過した加湿空気(Am)の温度(tm)
を検出する温度検出手段(27),(28)と、 加湿対象空気(Ah)と加湿空気(Am)との絶対湿度
差(Δx(h−m))と前記湿潤層(21)における飽
和効率(ηx)との相互変化特性(Fηx)、及び、前
記湿潤層(21)における湿度変化勾配特性(K)を記
憶する記憶手段(25a)と、 前記の湿度変化勾配特性(K)と検出加湿対象空気温度
(th)と検出加湿空気温度(tm)とに基づいて加湿
対象空気(Ah)と加湿空気(Am)との絶対湿度差
(Δx(h−m))を求め、この絶対湿度差(Δx(h
−m))と前記の相互変化特性(Fηx)と検出加湿対
象空気温度(th)とに基づいて加湿対象空気(Ah)
の相対湿度(rh)、又は、絶対湿度(xh)を算出す
る演算手段(25b)とを設けた加湿装置における湿度
検出装置。
3. A humidifying layer (21) for humidifying target air (Ah).
A humidity detection device in a humidifying device that passes and humidifies the humidified air (Ah), and the temperature (tm) of the humidified air (Am) that has passed through the wetting layer (21).
Temperature detection means (27) and (28) for detecting the temperature difference, the absolute humidity difference (Δx (hm)) between the humidifying target air (Ah) and the humidifying air (Am), and the saturation efficiency in the wetting layer (21). (Ηx) Mutual change characteristic (Fηx) and storage means (25a) for storing the humidity change gradient characteristic (K) in the wetting layer (21), the humidity change gradient characteristic (K) and detected humidification. The absolute humidity difference (Δx (hm)) between the humidifying target air (Ah) and the humidified air (Am) is calculated based on the target air temperature (th) and the detected humidified air temperature (tm), and the absolute humidity difference is calculated. (Δx (h
-M)), the mutual change characteristic (Fηx), and the detected humidification target air temperature (th) based on the humidification target air (Ah).
Humidity detector in a humidifier provided with a calculation means (25b) for calculating relative humidity (rh) or absolute humidity (xh).
【請求項4】 前記の加湿対象空気(Ah)が加熱手段
(20)により加熱した空気であり、前記演算手段(2
5b)を、加湿対象空気(Ah)の算出絶対湿度(x
h)と前記加熱手段(20)への導入空気(Ai)の検
出温度(ti)とに基づいて前記加熱手段(20)への
導入空気(Ai)の相対湿度(ri)を算出するように
構成し、 検出加湿対象空気温度(th)と検出導入空気温度(t
i)と前記加熱手段(20)の出力(H)に基づいて導
入空気(Ai)の風量(Q)を検出する風量検出手段
(25c)、及び、風量変化による前記相互変化特性
(Fηx)の変化に対し、検出導入空気風量(Q)に基
づいて前記演算手段(25b)による湿度算出に補正を
加える補正手段(25d)を設けた請求項3記載の加湿
装置における湿度検出装置。
4. The humidifying target air (Ah) is air heated by a heating means (20), and the calculation means (2).
5b) is the calculated absolute humidity (x) of the air to be humidified (Ah)
The relative humidity (ri) of the introduced air (Ai) to the heating means (20) is calculated based on h) and the detected temperature (ti) of the introduced air (Ai) to the heating means (20). The detected humidification target air temperature (th) and the detected introduction air temperature (t
i) and an air volume detection means (25c) for detecting the air volume (Q) of the introduced air (Ai) based on the output (H) of the heating means (20), and the mutual change characteristic (Fηx) due to the air volume change. The humidity detecting device in the humidifying device according to claim 3, further comprising a correcting means (25d) for correcting the humidity calculation by the calculating means (25b) on the basis of the detected introduced air volume (Q).
JP4089177A 1992-04-10 1992-04-10 Method and apparatus for detecting humidity of humidifier Pending JPH05288375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4089177A JPH05288375A (en) 1992-04-10 1992-04-10 Method and apparatus for detecting humidity of humidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4089177A JPH05288375A (en) 1992-04-10 1992-04-10 Method and apparatus for detecting humidity of humidifier

Publications (1)

Publication Number Publication Date
JPH05288375A true JPH05288375A (en) 1993-11-02

Family

ID=13963490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4089177A Pending JPH05288375A (en) 1992-04-10 1992-04-10 Method and apparatus for detecting humidity of humidifier

Country Status (1)

Country Link
JP (1) JPH05288375A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206776A (en) * 2001-01-11 2002-07-26 Daikin Ind Ltd Air conditioner having humidifying function
JP2006214672A (en) * 2005-02-04 2006-08-17 Techno Ryowa Ltd Indoor circulation type cooling device
JP2011179699A (en) * 2010-02-26 2011-09-15 Dyna-Air Co Ltd Air conditioning system and method
WO2015193950A1 (en) * 2014-06-16 2015-12-23 三菱電機株式会社 Air-conditioning system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206776A (en) * 2001-01-11 2002-07-26 Daikin Ind Ltd Air conditioner having humidifying function
JP2006214672A (en) * 2005-02-04 2006-08-17 Techno Ryowa Ltd Indoor circulation type cooling device
JP2011179699A (en) * 2010-02-26 2011-09-15 Dyna-Air Co Ltd Air conditioning system and method
WO2015193950A1 (en) * 2014-06-16 2015-12-23 三菱電機株式会社 Air-conditioning system
JPWO2015193950A1 (en) * 2014-06-16 2017-04-20 三菱電機株式会社 Air conditioning system

Similar Documents

Publication Publication Date Title
CN106662355B (en) Air-conditioning air-breather equipment
KR101419970B1 (en) Humidity control equipment, environment test equipment and temperature/humidity controller
US6311511B1 (en) Dehumidifying air-conditioning system and method of operating the same
JP3310118B2 (en) Humidification method and air conditioning system
JP3545315B2 (en) Air conditioner and humidity control method
US8517356B2 (en) Ventilation device and controlling method of the same
WO2019026256A1 (en) Heat exchange ventilation device
JP4047639B2 (en) Industrial air conditioner
JP2011021881A (en) Air conditioner
JP6626424B2 (en) Environmental test equipment and air conditioner
JP2010242995A (en) Air conditioning system
JP6873721B2 (en) Air treatment device, control device for air treatment device, control method for air treatment system and air treatment device
JP2004324973A (en) Air conditioner and operating method of air conditioner
JP5496238B2 (en) Air conditioner
JPH05288375A (en) Method and apparatus for detecting humidity of humidifier
JP4251004B2 (en) Humidity control device
JP3754586B2 (en) Air conditioner
JP4317792B2 (en) Air conditioner indoor unit
JP7416604B2 (en) air conditioner
JP2006017369A5 (en)
JP3519380B2 (en) Environmental test equipment with downflow cooler
JP2649986B2 (en) Clean room using a direct expansion type heat exchanger
JP7224412B1 (en) Ventilation system, air conditioner and control method
JP2523020B2 (en) Air conditioner
JPH0243015Y2 (en)